WorldWideScience

Sample records for safety role models

  1. Researchers' Roles in Patient Safety Improvement.

    Science.gov (United States)

    Pietikäinen, Elina; Reiman, Teemu; Heikkilä, Jouko; Macchi, Luigi

    2016-03-01

    In this article, we explore how researchers can contribute to patient safety improvement. We aim to expand the instrumental role researchers have often occupied in relation to patient safety improvement. We reflect on our own improvement model and experiences as patient safety researchers in an ongoing Finnish multi-actor innovation project through self-reflective narration. Our own patient safety improvement model can be described as systemic. Based on the purpose of the innovation project, our improvement model, and the improvement models of the other actors in the project, we have carried out a wide range of activities. Our activities can be summarized in 8 overlapping patient safety improvement roles: modeler, influencer, supplier, producer, ideator, reflector, facilitator, and negotiator. When working side by side with "practice," researchers are offered and engage in several different activities. The way researchers contribute to patient safety improvement and balance between different roles depends on the purpose of the study, as well as on the underlying patient safety improvement models. Different patient safety research paradigms seem to emphasize different improvement roles, and thus, they also face different challenges. Open reflection on the underlying improvement models and roles can help researchers with different backgrounds-as well as other actors involved in patient safety improvement-in structuring their work and collaborating productively.

  2. Modelling and simulation in nuclear safety and the role of experiment

    International Nuclear Information System (INIS)

    Baek, W-P.

    2015-01-01

    'Full text:' Modeling and simulation (M&S) technology is a key element in assuring and enhancing the safety of nuclear installations. The M&S technology has been progressed continuously with the introduction of new designs, improved understanding on relevant physical processes, and the improvement of computing environment. This presentation covers the role, progresses and prospect of M&S technology relevant to nuclear safety. Special attention is given to the effective interaction between M&S and experiment. The expected role of experiment to motivate the advancement of M&S technology is emphasized with some typical examples. Finally, relevant R&D activities of Korea are introduced for thermal-hydraulics and severe accident safety. (author)

  3. Food Safety Management in a Global Environment: The Role of Risk Assessment Models

    OpenAIRE

    Fuentes-Pila, Joaquin; Jimeno, Vicente; Manzano, Amparo; Rodriguez Monroy, Carlos; Mar Fernandez, Maria Del

    2006-01-01

    Quantitative risk assessment models are playing a minor role in the development of the new EU legal framework for food safety. There is a tendency of the EU institutions to apply the precautionary principle versus the predisposition of the USA institutions to rely on risk analysis. This paper provides a comparison of the role played by quantitative risk assessment models in the development of new policies on food safety in the EU and in the USA, focusing on a study case: the supply chain of s...

  4. Railing for safety: job demands, job control, and safety citizenship role definition.

    Science.gov (United States)

    Turner, Nick; Chmiel, Nik; Walls, Melanie

    2005-10-01

    This study investigated job demands and job control as predictors of safety citizenship role definition, that is, employees' role orientation toward improving workplace safety. Data from a survey of 334 trackside workers were framed in the context of R. A. Karasek's (1979) job demands-control model. High job demands were negatively related to safety citizenship role definition, whereas high job control was positively related to this construct. Safety citizenship role definition of employees with high job control was buffered from the influence of high job demands, unlike that of employees with low job control, for whom high job demands were related to lower levels of the construct. Employees facing both high job demands and low job control were less likely than other employees to view improving safety as part of their role orientation. Copyright (c) 2005 APA, all rights reserved.

  5. Perceived organizational support for safety and employee safety voice: the mediating role of coworker support for safety.

    Science.gov (United States)

    Tucker, Sean; Chmiel, Nik; Turner, Nick; Hershcovis, M Sandy; Stride, Chris B

    2008-10-01

    In the present study, we modeled 2 sources of safety support (perceived organizational support for safety and perceived coworker support for safety) as predictors of employee safety voice, that is, speaking out in an attempt to change unsafe working conditions. Drawing on social exchange and social impact theories, we hypothesized and tested a mediated model predicting employee safety voice using a cross-sectional survey of urban bus drivers (n = 213) in the United Kingdom. Hierarchical regression analysis showed that perceived coworker support for safety fully mediated the relationship between perceived organizational support for safety and employee safety voice. This study adds to the employee voice literature by evaluating the important role that coworkers can play in encouraging others to speak out about safety issues. Implications for research and practice related to change-oriented safety communication are discussed.

  6. The operator's role and safety functions

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Finnicum, D.J.; Hubbard, F.R.; Musick, C.R.; Walzer, R.F.

    1980-01-01

    A nuclear power plant can be thought of as a single system with two major subsystems: equipment and people. Both play important roles in nuclear safety. Whereas, in the past, the role of equipment had been emphasized in nuclear safety, the accident at Three Mile Island and its subsequent investigations point out the vital role of the operator. This paper outlines the operator's roles in nuclear safety and suggests how the concept of safety functions can be used to reduce economic losses and increase safety margins. (auth)

  7. Communication's Role in Safety Management and Performance for the Road Safety Practices

    OpenAIRE

    Salim Keffane (s)

    2014-01-01

    Communication among organizations could play an important role in increasing road safety. To get in-depth knowledge of its role, this study measured managers' and employees' perceptions of the communication's role on six safety management and performance criteria for road safety practices by conducting a survey using a questionnaire among 165 employees and 135 managers. Path analysis using AMOS-19 software shows that some of the safety management road safety practices have high correlation wi...

  8. Strengthening safety compliance in nuclear power operations: a role-based approach.

    Science.gov (United States)

    Martínez-Córcoles, Mario; Gracia, Francisco J; Tomás, Inés; Peiró, José M

    2014-07-01

    Safety compliance is of paramount importance in guaranteeing the safe running of nuclear power plants. However, it depends mostly on procedures that do not always involve the safest outcomes. This article introduces an empirical model based on the organizational role theory to analyze the influence of legitimate sources of expectations (procedures formalization and leadership) on workers' compliance behaviors. The sample was composed of 495 employees from two Spanish nuclear power plants. Structural equation analysis showed that, in spite of some problematic effects of proceduralization (such as role conflict and role ambiguity), procedure formalization along with an empowering leadership style lead to safety compliance by clarifying a worker's role in safety. Implications of these findings for safety research are outlined, as well as their practical implications. © 2014 Society for Risk Analysis.

  9. Leader-member exchange and safety citizenship behavior: The mediating role of coworker trust.

    Science.gov (United States)

    Jiang, Li; Li, Feng; Li, YongJuan; Li, Rui

    2017-01-01

    To achieve high safety levels, mere compliance with safety regulations is not sufficient; employees must be proactive and demonstrate safety citizenship behaviors. Trust is considered as a mechanism for facilitating the effects of a leader on employee citizenship behaviors. Increasingly research has focused on the role of trust in a safety context; however, the role of coworker trust has been overlooked. The mediating role of coworker trust in the relationship between the leader-member exchange and safety citizenship behavior is the focus of this field study. Front-line employees from an air traffic control center and an airline maintenance department completed surveys measuring leader-member exchange, co-worker trust, and safety citizenship behavior. Structural Equation Modeling revealed affective and cognitive trust in coworkers is influenced by leader-member exchange. A trust-based mediation model where cognitive trust and affective trust mediate the relationship between the leader-member exchange and safety citizenship behavior emerged. Results of this study add to our understanding of the relationship between leader-member exchange and safety behavior. The effect of co-worker trust and the extent to which employees participate in workplace safety practice were identified as critical factors. The findings show that managers need to focus on developing cognitive and affective coworker trust to improve safety citizenship behaviors.

  10. The role of probabilistic safety assessment and probabilistic safety criteria in nuclear power plant safety

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this Safety Report is to provide guidelines on the role of probabilistic safety assessment (PSA) and a range of associated reference points, collectively referred to as probabilistic safety criteria (PSC), in nuclear safety. The application of this Safety Report and the supporting Safety Practice publication should help to ensure that PSA methodology is used appropriately to assess and enhance the safety of nuclear power plants. The guidelines are intended for use by nuclear power plant designers, operators and regulators. While these guidelines have been prepared with nuclear power plants in mind, the principles involved have wide application to other nuclear and non-nuclear facilities. In Section 2 of this Safety Report guidelines are established on the role PSA can play as part of an overall safety assurance programme. Section 3 summarizes guidelines for the conduct of PSAs, and in Section 4 a PSC framework is recommended and guidance is provided for the establishment of PSC values

  11. Role of nuclear safety research and future plan

    International Nuclear Information System (INIS)

    Kim, W. S.; Lee, J. I.; Kang, S. C.; Park, Y. W.; Lee, J. H.; Kim, M. W.; Lee, C. J.; Park, Y. I.

    2000-01-01

    For promoting and improving nuclear safety research activities, this report gives an insight on the scope of safety research and its role in the safety management of nuclear installations, and suggests measures to adequately utilize the research results through taking an optimized role share among research organizations. Several measures such as cooperative planning of common research areas and proper role assignment, improvement of the interfaces among researchers, and reflection of end-users' opinion in the course of planning and conducting research to promote application of research results are identified. It is expected that the identified measures will contribute to enhancing the efficiency and effectiveness of nuclear safety research, if they are implemented after deliberating with the government and safety research organizations

  12. The role of natural analogues in safety assessment and acceptability

    International Nuclear Information System (INIS)

    Papp, Toenis

    1987-01-01

    The safety assessment must evaluate the level of safety for a repository, the confidence that can be placed on the assessment and how well the repository can meet the acceptance criteria of the society. Many of the processes and phenomena that govern the long term performance of a deep geologic repository for radioactive waste also take place in nature. To investigate these natural analogues and try to validate the models on which the safety assessment are based is a main task in the effort to build of confidence in the safety assessments. The assessment of the safety of a repository can, however, not only be based on good models. The possible role of natural analogues or natural evidence in other parts of the safety assessment is discussed. Specially with regard to - the need to demonstrate that all relevant processes have been taken into account, and that the important ones have been validated to an acceptable level for relevant parameters spans, -the definition and analysis of external scenarios for the safety assessment and for the claim that all reasonable scenarios have been addressed, - the public confidence in the long-term relevance of the acceptance criteria. (author)

  13. Applying a realistic evaluation model to occupational safety interventions

    DEFF Research Database (Denmark)

    Pedersen, Louise Møller

    2018-01-01

    Background: Recent literature characterizes occupational safety interventions as complex social activities, applied in complex and dynamic social systems. Hence, the actual outcomes of an intervention will vary, depending on the intervention, the implementation process, context, personal characte......Background: Recent literature characterizes occupational safety interventions as complex social activities, applied in complex and dynamic social systems. Hence, the actual outcomes of an intervention will vary, depending on the intervention, the implementation process, context, personal...... and qualitative methods. This revised model has, however, not been applied in a real life context. Method: The model is applied in a controlled, four-component, integrated behaviour-based and safety culture-based safety intervention study (2008-2010) in a medium-sized wood manufacturing company. The interventions...... involve the company’s safety committee, safety manager, safety groups and 130 workers. Results: The model provides a framework for more valid evidence of what works within injury prevention. Affective commitment and role behaviour among key actors are identified as crucial for the implementation...

  14. Nurse safety outcomes: old problem, new solution - the differentiating roles of nurses' psychological capital and managerial support.

    Science.gov (United States)

    Brunetto, Yvonne; Xerri, Matthew; Farr-Wharton, Ben; Shacklock, Kate; Farr-Wharton, Rod; Trinchero, Elisabetta

    2016-11-01

    The aim of this study was to examine the impacts of nurses' psychological capital and managerial support, plus specific safety interventions (managerial safety priorities, safety training satisfaction), on nurses' in-role safety performance. Most hospitals in industrialized countries have adopted selective (often the least costly) aspects of safety, usually related to safety policies. However, patient safety remains a challenge in many countries. Research shows that training can be used to upskill employees in psychological capital, with statistically significant organizational and employee benefits, but this area is under-researched in nursing. Data were collected using a survey-based, self-report strategy. The emerging patterns of data were then compared with the findings of previous research. Quantitative survey data were collected during 2014 from 242 nurses working in six Australian hospitals. Two models were tested and analysed using covariance-based Structural Equation Modelling. Psychological capital and safety training satisfaction were important predictors of nurses' in-role safety performance and as predictors of nurses' perceptions of whether management implements what it espouses about safety ('managerial safety priorities'). Managerial support accounted for just under a third of psychological capital and together, psychological capital and managerial support, plus satisfaction with safety training, were important to nurses' perceptions of in-role safety performance. Organizations are likely to benefit from upskilling nurses and their managers to increase nurses' psychological capital and managerial support, which then will enhance nurses' satisfaction with training and in-role safety performance perceptions. © 2016 John Wiley & Sons Ltd.

  15. The role of production and teamwork practices in construction safety: a cognitive model and an empirical case study.

    Science.gov (United States)

    Mitropoulos, Panagiotis Takis; Cupido, Gerardo

    2009-01-01

    In construction, the challenge for researchers and practitioners is to develop work systems (production processes and teams) that can achieve high productivity and high safety at the same time. However, construction accident causation models ignore the role of work practices and teamwork. This study investigates the mechanisms by which production and teamwork practices affect the likelihood of accidents. The paper synthesizes a new model for construction safety based on the cognitive perspective (Fuller's Task-Demand-Capability Interface model, 2005) and then presents an exploratory case study. The case study investigates and compares the work practices of two residential framing crews: a 'High Reliability Crew' (HRC)--that is, a crew with exceptional productivity and safety over several years, and an average performing crew from the same company. The model explains how the production and teamwork practices generate the work situations that workers face (the task demands) and affect the workers ability to cope (capabilities). The case study indicates that the work practices of the HRC directly influence the task demands and match them with the applied capabilities. These practices were guided by the 'principle' of avoiding errors and rework and included work planning and preparation, work distribution, managing the production pressures, and quality and behavior monitoring. The Task Demand-Capability model links construction research to a cognitive model of accident causation and provides a new way to conceptualize safety as an emergent property of the production practices and teamwork processes. The empirical evidence indicates that the crews' work practices and team processes strongly affect the task demands, the applied capabilities, and the match between demands and capabilities. The proposed model and the exploratory case study will guide further discovery of work practices and teamwork processes that can increase both productivity and safety in construction

  16. Flightdeck Automation Problems (FLAP) Model for Safety Technology Portfolio Assessment

    Science.gov (United States)

    Ancel, Ersin; Shih, Ann T.

    2014-01-01

    NASA's Aviation Safety Program (AvSP) develops and advances methodologies and technologies to improve air transportation safety. The Safety Analysis and Integration Team (SAIT) conducts a safety technology portfolio assessment (PA) to analyze the program content, to examine the benefits and risks of products with respect to program goals, and to support programmatic decision making. The PA process includes systematic identification of current and future safety risks as well as tracking several quantitative and qualitative metrics to ensure the program goals are addressing prominent safety risks accurately and effectively. One of the metrics within the PA process involves using quantitative aviation safety models to gauge the impact of the safety products. This paper demonstrates the role of aviation safety modeling by providing model outputs and evaluating a sample of portfolio elements using the Flightdeck Automation Problems (FLAP) model. The model enables not only ranking of the quantitative relative risk reduction impact of all portfolio elements, but also highlighting the areas with high potential impact via sensitivity and gap analyses in support of the program office. Although the model outputs are preliminary and products are notional, the process shown in this paper is essential to a comprehensive PA of NASA's safety products in the current program and future programs/projects.

  17. Job characteristics and safety climate: the role of effort-reward and demand-control-support models.

    Science.gov (United States)

    Phipps, Denham L; Malley, Christine; Ashcroft, Darren M

    2012-07-01

    While safety climate is widely recognized as a key influence on organizational safety, there remain questions about the nature of its antecedents. One potential influence on safety climate is job characteristics (that is, psychosocial features of the work environment). This study investigated the relationship between two job characteristics models--demand-control-support (Karasek & Theorell, 1990) and effort-reward imbalance (Siegrist, 1996)--and safety climate. A survey was conducted with a random sample of 860 British retail pharmacists, using the job contents questionnaire (JCQ), effort-reward imbalance indicator (ERI) and a measure of safety climate in pharmacies. Multivariate data analyses found that: (a) both models contributed to the prediction of safety climate ratings, with the demand-control-support model making the largest contribution; (b) there were some interactions between demand, control and support from the JCQ in the prediction of safety climate scores. The latter finding suggests the presence of "active learning" with respect to safety improvement in high demand, high control settings. The findings provide further insight into the ways in which job characteristics relate to safety, both individually and at an aggregated level.

  18. Plant designer's view of the operator's role in nuclear plant safety

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Church, J.F.; Cross, M.T.; Porter, N.J.

    1981-01-01

    The nuclear plant operator's role supports the design assumptions and equipment with four functional tasks. He must set up th plant for predictable response to disturbances, operate the plant so as to minimize the likelihood and severity of event initiators, assist in accomplishing the safety functions, and feed back operating experiences to reinforce or redefine the safety analyses' assumptions. The latter role enhances the operator effectiveness in the former three roles. The Safety Level Concept offers a different perspective that enables the operator to view his roles in nuclear plant safety. This paper outlines the operator's role in nuclear safety and classifies his tasks using the Safety Level Concept

  19. Safety inspections - the role of TS : risks, their assessment and the role of safety systems

    CERN Document Server

    Béjar-Alonso, Isabel; CERN. Geneva. TS Department

    2008-01-01

    In 2007 the DG decided a new approach for safety at CERN. This had as consequence the creation of a new unit, the safety service provider, in the TS department. The organization and the services that this unit provides to CERN will be described and the achievements since the creation of the unit will be summarized. Some important personnel safety systems, on their side have been the responsibility of the TS Department for many years. Their importance has grown with the arrival of LHC and their complexity and impact on operation has increased. Their role as well as the importance of an appropriate regulatory framework shall be discussed.

  20. The role of PSA in safety management

    International Nuclear Information System (INIS)

    Szikszai, T.

    1997-01-01

    The presentation discusses the following issues: defence in depth principle (the role of the barriers, how does PSA represents the barriers?); the safety management and nuclear power plants; the probabilistic and deterministic approaches; the PSA applications and safety management

  1. Role of criticality models in ANSI standards for nuclear criticality safety

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1976-01-01

    Two methods used in nuclear criticality safety evaluations in the area of neutron interaction among subcritical components of fissile materials are the solid angle and surface density techniques. The accuracy and use of these models are briefly discussed

  2. The impact of nursing work environments on patient safety outcomes: the mediating role of burnout/engagement.

    Science.gov (United States)

    Spence Laschinger, Heather K; Leiter, Michael P

    2006-05-01

    To test a theoretical model of professional nurse work environments linking conditions for professional nursing practice to burnout and, subsequently, patient safety outcomes. The 2004 Institute of Medicine report raised serious concerns about the impact of hospital restructuring on nursing work environments and patient safety outcomes. Few studies have used a theoretical framework to study the nature of the relationships between nursing work environments and patient safety outcomes. Hospital-based nurses in Canada (N = 8,597) completed measures of worklife (Practice Environment Scale of the Nursing Work Index), burnout (Maslach Burnout Inventory-Human Service Scale), and their report of frequency of adverse patient events. Structural equation modeling analysis supported an extension of Leiter and Laschinger's Nursing Worklife Model. Nursing leadership played a fundamental role in the quality of worklife regarding policy involvement, staffing levels, support for a nursing model of care (vs medical), and nurse/physician relationships. Staffing adequacy directly affected emotional exhaustion, and use of a nursing model of care had a direct effect on nurses' personal accomplishment. Both directly affected patient safety outcomes. The results suggest that patient safety outcomes are related to the quality of the nursing practice work environment and nursing leadership's role in changing the work environment to decrease nurse burnout.

  3. Specification of advanced safety modeling requirements (Rev. 0).

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, T. H.; Tautges, T. J.

    2008-06-30

    The U.S. Department of Energy's Global Nuclear Energy Partnership has lead to renewed interest in liquid-metal-cooled fast reactors for the purpose of closing the nuclear fuel cycle and making more efficient use of future repository capacity. However, the U.S. has not designed or constructed a fast reactor in nearly 30 years. Accurate, high-fidelity, whole-plant dynamics safety simulations will play a crucial role by providing confidence that component and system designs will satisfy established design limits and safety margins under a wide variety of operational, design basis, and beyond design basis transient conditions. Current modeling capabilities for fast reactor safety analyses have resulted from several hundred person-years of code development effort supported by experimental validation. The broad spectrum of mechanistic and phenomenological models that have been developed represent an enormous amount of institutional knowledge that needs to be maintained. Complicating this, the existing code architectures for safety modeling evolved from programming practices of the 1970s. This has lead to monolithic applications with interdependent data models which require significant knowledge of the complexities of the entire code in order for each component to be maintained. In order to develop an advanced fast reactor safety modeling capability, the limitations of the existing code architecture must be overcome while preserving the capabilities that already exist. To accomplish this, a set of advanced safety modeling requirements is defined, based on modern programming practices, that focuses on modular development within a flexible coupling framework. An approach for integrating the existing capabilities of the SAS4A/SASSYS-1 fast reactor safety analysis code into the SHARP framework is provided in order to preserve existing capabilities while providing a smooth transition to advanced modeling capabilities. In doing this, the advanced fast reactor safety models

  4. Specification of advanced safety modeling requirements (Rev. 0)

    International Nuclear Information System (INIS)

    Fanning, T. H.; Tautges, T. J.

    2008-01-01

    The U.S. Department of Energy's Global Nuclear Energy Partnership has lead to renewed interest in liquid-metal-cooled fast reactors for the purpose of closing the nuclear fuel cycle and making more efficient use of future repository capacity. However, the U.S. has not designed or constructed a fast reactor in nearly 30 years. Accurate, high-fidelity, whole-plant dynamics safety simulations will play a crucial role by providing confidence that component and system designs will satisfy established design limits and safety margins under a wide variety of operational, design basis, and beyond design basis transient conditions. Current modeling capabilities for fast reactor safety analyses have resulted from several hundred person-years of code development effort supported by experimental validation. The broad spectrum of mechanistic and phenomenological models that have been developed represent an enormous amount of institutional knowledge that needs to be maintained. Complicating this, the existing code architectures for safety modeling evolved from programming practices of the 1970s. This has lead to monolithic applications with interdependent data models which require significant knowledge of the complexities of the entire code in order for each component to be maintained. In order to develop an advanced fast reactor safety modeling capability, the limitations of the existing code architecture must be overcome while preserving the capabilities that already exist. To accomplish this, a set of advanced safety modeling requirements is defined, based on modern programming practices, that focuses on modular development within a flexible coupling framework. An approach for integrating the existing capabilities of the SAS4A/SASSYS-1 fast reactor safety analysis code into the SHARP framework is provided in order to preserve existing capabilities while providing a smooth transition to advanced modeling capabilities. In doing this, the advanced fast reactor safety models will

  5. The role of psychological factors in workplace safety.

    Science.gov (United States)

    Kotzé, Martina; Steyn, Leon

    2013-01-01

    Workplace safety researchers and practitioners generally agree that it is necessary to understand the psychological factors that influence people's workplace safety behaviour. Yet, the search for reliable individual differences regarding psychological factors associated with workplace safety has lead to sparse results and inconclusive findings. The aim of this study was to investigate whether there are differences between the psychological factors, cognitive ability, personality and work-wellness of employees involved in workplace incidents and accidents and/or driver vehicle accidents and those who are not. The study population (N = 279) consisted of employees employed at an electricity supply organisation in South Africa. Mann-Whitney U-test and one-way ANOVA were conducted to determine the differences in the respective psychological factors between the groups. These results showed that cognitive ability did not seem to play a role in workplace incident/accident involvement, including driver vehicle accidents, while the wellness factors burnout and sense of coherence, as well as certain personality traits, namely conscientiousness, pragmatic and gregariousness play a statistically significant role in individuals' involvement in workplace incidents/accidents/driver vehicle accidents. Safety practitioners, managers and human resource specialists should take cognisance of the role of specifically work-wellness in workplace safety behaviour, as management can influence these negative states that are often caused by continuously stressful situations, and subsequently enhance work place safety.

  6. The role of the safety authority

    International Nuclear Information System (INIS)

    Gelder, P. de

    2004-01-01

    The original programme of the Belgium Workshop did not include a scheduled talk by a representative of the safety authority. However, because of the interest expressed by FSC delegates in this player, a speaker stepped forward. Pieter De Gelder, division head of AVN spoke of the role of the safety authority in the local dialogue. He recalled that in Belgium a safety authority in the modern sense of the word was founded only in the mid 1990's. The safety authority is a federal agency (FANC), while AVN is a private company, a contractor to FANC. Mr. De Gelder highlighted that the regulators are not formal members of the partnerships and do not attend each meeting. However, from time to time, partnerships invite experts from FANC and AVN to give presentations on specific topics. In particular, these experts have provided information on their roles and activities in the process, on legal and authorization procedures, and on the evaluation of ONDRAF/NIRAS dossiers. Mr. De Gelder observed that they found a very motivated local audience and they have committed themselves to continued interaction with the partnerships. Finally, he stressed that this type of public interaction around the repository issue is new to the regulator. (author)

  7. A total safety management model

    International Nuclear Information System (INIS)

    Obadia, I.J.; Vidal, M.C.R.; Melo, P.F.F.F.

    2002-01-01

    In nuclear organizations, quality and safety are inextricably linked. Therefore, the search for excellence means reaching excellence in nuclear safety. The International Atomic Energy Agency, IAEA, developed, after the Chernobyl accident, the organizational approach for improving nuclear safety based on the safety culture, which requires a framework necessary to provide modifications in personnel attitudes and behaviors in situations related to safety. This work presents a Total Safety Management Model, based on the Model of Excellence of the Brazilian Quality Award and on the safety culture approach, which represents an alternative to this framework. The Model is currently under validation at the Nuclear Engineering Institute, in Rio de Janeiro, Brazil, and the results of its initial safety culture self assessment are also presented and discussed. (author)

  8. Training courses on integrated safety assessment modelling for waste repositories

    International Nuclear Information System (INIS)

    Mallants, D.

    2007-01-01

    Near-surface or deep repositories of radioactive waste are being developed and evaluated all over the world. Also, existing repositories for low- and intermediate-level waste often need to be re-evaluated to extend their license or to obtain permission for final closure. The evaluation encompasses both a technical feasibility as well as a safety analysis. The long term safety is usually demonstrated by means of performance or safety assessment. For this purpose computer models are used that calculate the migration of radionuclides from the conditioned radioactive waste, through engineered barriers to the environment (groundwater, surface water, and biosphere). Integrated safety assessment modelling addresses all relevant radionuclide pathways from source to receptor (man), using in combination various computer codes in which the most relevant physical, chemical, mechanical, or even microbiological processes are mathematically described. SCK-CEN organizes training courses in Integrated safety assessment modelling that are intended for individuals who have either a controlling or supervising role within the national radwaste agencies or regulating authorities, or for technical experts that carry out the actual post-closure safety assessment for an existing or new repository. Courses are organised by the Department of Waste and Disposal

  9. [Safety culture: definition, models and design].

    Science.gov (United States)

    Pfaff, Holger; Hammer, Antje; Ernstmann, Nicole; Kowalski, Christoph; Ommen, Oliver

    2009-01-01

    Safety culture is a multi-dimensional phenomenon. Safety culture of a healthcare organization is high if it has a common stock in knowledge, values and symbols in regard to patients' safety. The article intends to define safety culture in the first step and, in the second step, demonstrate the effects of safety culture. We present the model of safety behaviour and show how safety culture can affect behaviour and produce safe behaviour. In the third step we will look at the causes of safety culture and present the safety-culture-model. The main hypothesis of this model is that the safety culture of a healthcare organization strongly depends on its communication culture and its social capital. Finally, we will investigate how the safety culture of a healthcare organization can be improved. Based on the safety culture model six measures to improve safety culture will be presented.

  10. The Role of OSHA in Safety and Health. Module SH-02. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on the role of OSHA (Occupational Safety and Health Act) in Safety and Health is one of 50 modules concerned with job safety and health. This module looks at the OSHA Act, its aims, and the rights and responsibilities of employers and workers under the Act. Following the introduction, 16 objectives (each keyed to a page in the…

  11. Integrated Safety Culture Model and Application

    Institute of Scientific and Technical Information of China (English)

    汪磊; 孙瑞山; 刘汉辉

    2009-01-01

    A new safety culture model is constructed and is applied to analyze the correlations between safety culture and SMS. On the basis of previous typical definitions, models and theories of safety culture, an in-depth analysis on safety culture's structure, composing elements and their correlations was conducted. A new definition of safety culture was proposed from the perspective of sub-cuhure. 7 types of safety sub-culture, which are safety priority culture, standardizing culture, flexible culture, learning culture, teamwork culture, reporting culture and justice culture were defined later. Then integrated safety culture model (ISCM) was put forward based on the definition. The model divided safety culture into intrinsic latency level and extrinsic indication level and explained the potential relationship between safety sub-culture and all safety culture dimensions. Finally in the analyzing of safety culture and SMS, it concluded that positive safety culture is the basis of im-plementing SMS effectively and an advanced SMS will improve safety culture from all around.

  12. The role of individual diligence in improving safety.

    Science.gov (United States)

    Corbett, Angus; Travaglia, Jo; Braithwaite, Jeffrey

    2011-01-01

    This paper aims to be a theoretical examination of the role of individuals in sponsoring and facilitating effective, systemic change in organisations. Using reports of a number of high-profile initiatives to improve patient safety, it seeks to analyse the role of individual health care professionals in developing and facilitating new systems of care that improve safety and quality. The paper uses recent work in sociology that is concerned with the phenomenon of "sociological citizenship". The authors test whether successful initiators of change in health care can be described as sociological citizens. This notion of sociological citizens is applied to a number of highly successful initiatives to improve safety and quality to extrapolate the factors associated with individual clinician leadership, which may have affected the success of such endeavours. In each of the examples analysed the initiators of change can be characterised as sociological citizens. In reviewing the roles of these charismatic individuals it is evident that they see the relational interdependence between the individuals and organisations and that they use this information to achieve both professional and organisational objectives. The paper uses a case study method to investigate the usefulness of the role of sociological citizenship in interventions that aim to improve patient safety. The paper reviews the key concepts and uses of the concept of sociological citizenship to produce a framework against which the case studies were assessed. The authors suggest that a goal of policy for improving patient safety should be directed to the problem of how hospitals and health care organisations can create the conditions for encouraging the individual diligence and care that is needed to support reliable, safe health care practices. Improving the safety and quality of health care is an important public health initiative. It has also proven to be difficult to achieve sustained reductions in the harm

  13. Leading and lagging indicators of occupational health and safety: The moderating role of safety leadership.

    Science.gov (United States)

    Sheehan, Cathy; Donohue, Ross; Shea, Tracey; Cooper, Brian; Cieri, Helen De

    2016-07-01

    In response to the call for empirical evidence of a connection between leading and lagging indicators of occupational health and safety (OHS), the first aim of the current research is to consider the association between leading and lagging indicators of OHS. Our second aim is to investigate the moderating effect of safety leadership on the association between leading and lagging indicators. Data were collected from 3578 employees nested within 66 workplaces. Multi-level modelling was used to test the two hypotheses. The results confirm an association between leading and lagging indicators of OHS as well as the moderating impact of middle management safety leadership on the direct association. The association between leading and lagging indicators provides OHS practitioners with useful information to substantiate efforts within organisations to move away from a traditional focus on lagging indicators towards a preventative focus on leading indicators. The research also highlights the important role played by middle managers and the value of OHS leadership development and investment at the middle management level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Role of Leadership in Fostering Employee Safety Behaviors

    International Nuclear Information System (INIS)

    Mattson, M.; Von Thiele Schwarz, U.; Hasson, H.; Hellgren, J.; Tafvelin, S.

    2016-01-01

    During the last decades significant improvements have been achieved when it comes to raising the level of safety in high-risk organizations. However, many organizations are still suffering from safety related problems such as lacking employee safety behaviors and high injury rates. Research has indicated that leadership can have a vital role in promoting safety. Most of the studies investigating the relationships between leadership styles and organizational safety have tended to focus on the role of a single leadership style, such as transformational leadership or transactional leadership. A few studies have also examined the association between safety-specific leadership, that is, a leadership style that specifically emphasises the promotion and enhancement of safety, and workplace safety outcomes. Still, no study up to date has investigated the relative importance of these three leadership styles. In addition, previous research on leadership and safety have provided ambiguous or only weak support for leadership styles being related to accident and injury frequencies. Based on this background, the first aim of the present study was to investigate the relative importance of three different leadership styles for employee safety behaviors and injury rates in a high-risk organization. The three investigated leadership styles were transformational leadership, transactional leadership, and safety-specific leadership. The second aim of the study was to examine whether a relationship between leadership style and injury frequency could be found when the occurrence of minor injuries was measured in addition to that of major injuries.

  15. Model checking of safety-critical software in the nuclear engineering domain

    International Nuclear Information System (INIS)

    Lahtinen, J.; Valkonen, J.; Björkman, K.; Frits, J.; Niemelä, I.; Heljanko, K.

    2012-01-01

    Instrumentation and control (I and C) systems play a vital role in the operation of safety-critical processes. Digital programmable logic controllers (PLC) enable sophisticated control tasks which sets high requirements for system validation and verification methods. Testing and simulation have an important role in the overall verification of a system but are not suitable for comprehensive evaluation because only a limited number of system behaviors can be analyzed due to time limitations. Testing is also performed too late in the development lifecycle and thus the correction of design errors is expensive. This paper discusses the role of formal methods in software development in the area of nuclear engineering. It puts forward model checking, a computer-aided formal method for verifying the correctness of a system design model, as a promising approach to system verification. The main contribution of the paper is the development of systematic methodology for modeling safety critical systems in the nuclear domain. Two case studies are reviewed, in which we have found errors that were previously not detected. We also discuss the actions that should be taken in order to increase confidence in the model checking process.

  16. Modelling blood safety

    NARCIS (Netherlands)

    Janssen, M.P.

    2010-01-01

    This thesis describes the development and application of methods and models to support decision making on safety measures aimed at preventing the transmission of infections by blood donors. Safety measures refer to screening tests for blood donors, quarantine periods for blood plasma, or methods for

  17. The role of probabilistic safety assessment in the design

    International Nuclear Information System (INIS)

    Green, A.; Ingham, E.L.

    1989-01-01

    The use of probabilistic safety assessment (PSA) for Heysham 2 and Torness marked a major change in the design approach to nuclear safety within the U.K. Design Safety Guidelines incorporating probabilistic safety targets required that design justification would necessitate explicit consideration of the consequence of accidents in relation to their frequency. The paper discusses these safety targets and their implications, the integration of PSA into the design process and an outline of the methodology. The influence of PSA on the design is discussed together with its role in the overall demonstration of reactor safety. (author)

  18. On the role of safety culture in risk-informed regulation

    International Nuclear Information System (INIS)

    Sorensen, J.N.; Apostolakis, G.E.; Powers, D.A.

    2000-01-01

    There is a widespread belief that safety culture is an important contributor to safety of operations. The commonly accepted attributes of safety culture include good organizational communications, good organizational learning, and senior management commitment to safety. Safety culture may be particularly important in reducing latent errors in complex, well-defended systems. The role of regulatory bodies in fostering strong safety cultures remains unclear, and additional work is required to define the essential attributes of safety culture and to identify reliable performance indicators. (author)

  19. Acute care patients discuss the patient role in patient safety.

    Science.gov (United States)

    Rathert, Cheryl; Huddleston, Nicole; Pak, Youngju

    2011-01-01

    Patient safety has been a highly researched topic in health care since the year 2000. One strategy for improving patient safety has been to encourage patients to take an active role in their safety during their health care experiences. However, little research has shed light on how patients view their roles. This study attempted to address this deficit by inductively exploring the results of a qualitative study in which patients reported their ideas about what they believe their roles should be. Patients with an overnight stay in the previous 90 days at one of three hospitals were surveyed using a mailing methodology. Of 1,040 respondents, 491 provided an open-ended response regarding what they believe the patient role should be. Qualitative analysis found several prominent themes. The largest proportion of responses (23%) suggested that patients should follow instructions given by care providers. Other prominent themes were that patients should ask questions and become informed about their conditions and treatments, and many implied that they should expect competent care. Our results suggest that patients believe they should be able to trust that they are being provided competent care, as opposed to assuming a leadership role in their safety. Our results suggest that engaging patients in safety efforts may be complex, requiring a variety of strategies. Managers must provide environments conducive to staff and patient interactions to support patients in this effort. Different types of patients may require different engagement strategies.

  20. The role of the ward manager in promoting patient safety.

    Science.gov (United States)

    Pinnock, David

    In this article the role of the ward manager in promoting patient safety is explored. The background to the development of the patient safety agenda is briefly discussed and the relationship between quality and safety is illustrated. The pivotal importance of the role of the ward manager in delivering services to patients is underlined and literature on patient safety is examined to identify what a ward manager can do to make care safer. Possible actions of the ward manager to improve safety discussed in the literature are structured around the Leadership Framework. This framework identifies seven domains for the leadership of service delivery. Ward managers use their personal qualities, and network and work within teams, while managing performance and facilitating innovation, change and measurement for improvement. The challenge of promoting patient safety for ward managers is briefly explored and recommendations for further research are made.

  1. Role of supervising authorities in NPP operation safety ensuring

    International Nuclear Information System (INIS)

    Elagin, Yu.P.

    2001-01-01

    The main working spheres and results gained during 40 years of activity of the Great Britain Nuclear Installation Inspectorate (NII) are considered. The new approach to safety analysis developed with NII participation is described in details. The important role of the safety analysis realization, utilization of modern methods for risk estimation and safety culture principles introduction at NPPs is shown [ru

  2. Safety sans Frontières: An International Safety Culture Model.

    Science.gov (United States)

    Reader, Tom W; Noort, Mark C; Shorrock, Steven; Kirwan, Barry

    2015-05-01

    The management of safety culture in international and culturally diverse organizations is a concern for many high-risk industries. Yet, research has primarily developed models of safety culture within Western countries, and there is a need to extend investigations of safety culture to global environments. We examined (i) whether safety culture can be reliably measured within a single industry operating across different cultural environments, and (ii) if there is an association between safety culture and national culture. The psychometric properties of a safety culture model developed for the air traffic management (ATM) industry were examined in 17 European countries from four culturally distinct regions of Europe (North, East, South, West). Participants were ATM operational staff (n = 5,176) and management staff (n = 1,230). Through employing multigroup confirmatory factor analysis, good psychometric properties of the model were established. This demonstrates, for the first time, that when safety culture models are tailored to a specific industry, they can operate consistently across national boundaries and occupational groups. Additionally, safety culture scores at both regional and national levels were associated with country-level data on Hofstede's five national culture dimensions (collectivism, power distance, uncertainty avoidance, masculinity, and long-term orientation). MANOVAs indicated safety culture to be most positive in Northern Europe, less so in Western and Eastern Europe, and least positive in Southern Europe. This indicates that national cultural traits may influence the development of organizational safety culture, with significant implications for safety culture theory and practice. © 2015 Society for Risk Analysis.

  3. [Fundamental role of the workers' representative in preventive safety activity].

    Science.gov (United States)

    Ossicini, A; Bindi, L; Casale, M C

    2003-01-01

    With the arrival of Legislative Decree 626/94 which brought into Italian law the EU directives on workers' health and safety at the workplace, our country has also introduced rules that make a break with the past in this area, with the creation of new professional roles. The workers' safety representative takes on a fundamentally important role in the management of prevention, safety and health for workers in their place of employment in accordance with article 19. In fact, before the introduction of this Legislative Decree, the "protection" of workers' health was essentially based on rules and regulations the application of which was left to the exclusive and direct responsibility of the relationship between the employer and doctor, leaving out any participation by the worker. Whereas in the past workers could only be considered the final receivers of instructions about the security measures to apply, with Law 626 the workers themselves became active participants in the assessment of risks at work and consequently in the implementing of all the safety and hygiene measures contributing to the reduction of risk levels. The new regulations now in force assign important tasks to the workers' safety representative; all tasks and responsibilities associated with that role are examined and discussed, especially those relating to rights to information and training, consultation and participation in the process of designing and promoting safety measures. The job of workers' representative today takes on a fundamentally important meaning and role in a self-regulating system of work safety, where he or she has a proper area responsibility, so becoming a reference point for the workers generally.

  4. Group contribution modelling for the prediction of safety-related and environmental properties

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    warming potential and ozone depletion potential. Process safety studies and environmental assessments rely on accurate property data. Safety data such as flammability limits, heat of combustion or auto ignition temperature play an important role in quantifying the risk of fire and explosions among others......We present a new set of property prediction models based on group contributions to predict major safety-related and environmental properties for organic compounds. The predicted list of properties includes lower and upper flammability limits, heat of combustion, auto ignition temperature, global...... models like group contribution (GC) models can estimate data. However, the estimation needs to be accurate, reliable and as little time-consuming as possible so that the models can be used on the fly. In this study the Marrero and Gani group contribution (MR GC) method has been used to develop the models...

  5. Leader communication approaches and patient safety: An integrated model.

    Science.gov (United States)

    Mattson, Malin; Hellgren, Johnny; Göransson, Sara

    2015-06-01

    Leader communication is known to influence a number of employee behaviors. When it comes to the relationship between leader communication and safety, the evidence is more scarce and ambiguous. The aim of the present study is to investigate whether and in what way leader communication relates to safety outcomes. The study examines two leader communication approaches: leader safety priority communication and feedback to subordinates. These approaches were assumed to affect safety outcomes via different employee behaviors. Questionnaire data, collected from 221 employees at two hospital wards, were analyzed using structural equation modeling. The two examined communication approaches were both positively related to safety outcomes, although leader safety priority communication was mediated by employee compliance and feedback communication by organizational citizenship behaviors. The findings suggest that leader communication plays a vital role in improving organizational and patient safety and that different communication approaches seem to positively affect different but equally essential employee safety behaviors. The results highlights the necessity for leaders to engage in one-way communication of safety values as well as in more relational feedback communication with their subordinates in order to enhance patient safety. Copyright © 2015 Elsevier Ltd. and National Safety Council. Published by Elsevier Ltd. All rights reserved.

  6. Food safety - the roles and responsibilities of different sectors

    Science.gov (United States)

    Karabasil, N.; Bošković, T.; Dimitrijević, M.; Vasilev, D.; Đorđević, V.; Lakićević, B.; Teodorović, V.

    2017-09-01

    Serbia is a relatively small country but with a long tradition in food production, especially meat and meat products. Serbia, as part of its open negotiation process as a candidate country with the European Union (EU), started to harmonise its legislation with the EU, and has published a set of laws and regulations relating to the hygiene of food production and food safety, the official control of production and the welfare of animals. Therefore, the food safety system in Serbia is based on principles established in the EU. There is a need for cooperation of different sectors (government, food business operators and consumers) in the management of food safety, and every sector has its role and responsibility. This paper aims to provide analytical support for the process of upgrading safety and quality in Serbia’s food sector and explains the roles and responsibilities of different sectors in the food chain.

  7. The Role of the Engineered Barrier System in Safety Cases for Geological Radioactive Waste Repositories: An NEA Initiative in Co-Operations with the EC Process Issues and Modeling

    International Nuclear Information System (INIS)

    D.G. Bennett; A.J. Hooper; S. Voinis; H. Umeki; A.V. Luik; J. Alonso

    2006-01-01

    The Integration Group for the Safety Case (IGSC) of the Nuclear Energy Agency (NEA) Radioactive Waste Management Committee in co-operation with the European Commission (EC) is conducting a project to develop a greater understanding of how to achieve the necessary integration for successful design, construction, testing, modeling, and assessment of engineered barrier systems. The project also seeks to clarify the role that the EBS plays in assuring the overall safety of a repository. A framework for the EBS Project is provided by a series of workshops that allow discussion of the wide range of activities necessary for the design, assessment and optimization of the EBS, and the integration of this information into the safety case. The topics of this series of workshops have been planned so that the EBS project will work progressively through the main aspects comprising one cycle of the design and optimization process. This paper seeks to communicate key results from the EBS project to a wider audience. The paper focuses on two topics discussed at the workshops: process issues and the role of modeling

  8. An integrative model of organizational safety behavior.

    Science.gov (United States)

    Cui, Lin; Fan, Di; Fu, Gui; Zhu, Cherrie Jiuhua

    2013-06-01

    This study develops an integrative model of safety management based on social cognitive theory and the total safety culture triadic framework. The purpose of the model is to reveal the causal linkages between a hazardous environment, safety climate, and individual safety behaviors. Based on primary survey data from 209 front-line workers in one of the largest state-owned coal mining corporations in China, the model is tested using structural equation modeling techniques. An employee's perception of a hazardous environment is found to have a statistically significant impact on employee safety behaviors through a psychological process mediated by the perception of management commitment to safety and individual beliefs about safety. The integrative model developed here leads to a comprehensive solution that takes into consideration the environmental, organizational and employees' psychological and behavioral aspects of safety management. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  9. Organizational culture and a safety-conscious work environment: The mediating role of employee communication satisfaction.

    Science.gov (United States)

    Silla, Inmaculada; Navajas, Joaquin; Koves, G Kenneth

    2017-06-01

    A safety-conscious work environment allows high-reliability organizations to be proactive regarding safety and enables employees to feel free to report any concern without fear of retaliation. Currently, research on the antecedents to safety-conscious work environments is scarce. Structural equation modeling was applied to test the mediating role of employee communication satisfaction in the relationship between constructive culture and a safety-conscious work environment in several nuclear power plants. Employee communication satisfaction partially mediated the positive relationships between a constructive culture and a safety-conscious work environment. Constructive cultures in which cooperation, supportive relationships, individual growth and high performance are encouraged facilitate the establishment of a safety-conscious work environment. This influence is partially explained by increased employee communication satisfaction. Constructive cultures should be encouraged within organizations. In addition, managers should promote communication policies and practices that support a safety-conscious work environment. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  10. Model-Driven Development of Safety Architectures

    Science.gov (United States)

    Denney, Ewen; Pai, Ganesh; Whiteside, Iain

    2017-01-01

    We describe the use of model-driven development for safety assurance of a pioneering NASA flight operation involving a fleet of small unmanned aircraft systems (sUAS) flying beyond visual line of sight. The central idea is to develop a safety architecture that provides the basis for risk assessment and visualization within a safety case, the formal justification of acceptable safety required by the aviation regulatory authority. A safety architecture is composed from a collection of bow tie diagrams (BTDs), a practical approach to manage safety risk by linking the identified hazards to the appropriate mitigation measures. The safety justification for a given unmanned aircraft system (UAS) operation can have many related BTDs. In practice, however, each BTD is independently developed, which poses challenges with respect to incremental development, maintaining consistency across different safety artifacts when changes occur, and in extracting and presenting stakeholder specific information relevant for decision making. We show how a safety architecture reconciles the various BTDs of a system, and, collectively, provide an overarching picture of system safety, by considering them as views of a unified model. We also show how it enables model-driven development of BTDs, replete with validations, transformations, and a range of views. Our approach, which we have implemented in our toolset, AdvoCATE, is illustrated with a running example drawn from a real UAS safety case. The models and some of the innovations described here were instrumental in successfully obtaining regulatory flight approval.

  11. Aviation Safety Simulation Model

    Science.gov (United States)

    Houser, Scott; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.

  12. Applying different quality and safety models in healthcare improvement work: Boundary objects and system thinking

    International Nuclear Information System (INIS)

    Wiig, Siri; Robert, Glenn; Anderson, Janet E.; Pietikainen, Elina; Reiman, Teemu; Macchi, Luigi; Aase, Karina

    2014-01-01

    A number of theoretical models can be applied to help guide quality improvement and patient safety interventions in hospitals. However there are often significant differences between such models and, therefore, their potential contribution when applied in diverse contexts. The aim of this paper is to explore how two such models have been applied by hospitals to improve quality and safety. We describe and compare the models: (1) The Organizing for Quality (OQ) model, and (2) the Design for Integrated Safety Culture (DISC) model. We analyze the theoretical foundations of the models, and show, by using a retrospective comparative case study approach from two European hospitals, how these models have been applied to improve quality and safety. The analysis shows that differences appear in the theoretical foundations, practical approaches and applications of the models. Nevertheless, the case studies indicate that the choice between the OQ and DISC models is of less importance for guiding the practice of quality and safety improvement work, as they are both systemic and share some important characteristics. The main contribution of the models lay in their role as boundary objects directing attention towards organizational and systems thinking, culture, and collaboration

  13. The role of nuclear law in nuclear safety after Fukushima

    International Nuclear Information System (INIS)

    Cardozo, Diva E. Puig

    2013-01-01

    The paper contains the following topics: nuclear law, origin and evolution, role of the legal instruments on nuclear safety, nuclear safety the impact of major nuclear accidents: Chernobyl and Fukushima. The response of the nuclear law post Fukushima. Safety and security. International framework for nuclear safety: nuclear convention joint convention on safety on spent fuel management and on the safety of radioactive waste management. The Fukushima World Conference on Nuclear Safety. Convention on Prompt Notification and Assistance in case of a Nuclear Accident or Radiological Emergency. Plan of Action for Nuclear Safety. IAEA recommendations for the safety transport of radioactive material. International framework for nuclear security. Convention on the Physical Protection of Nuclear Materials. International Convention for the Suppression of Acts Against Nuclear Terrorism. Resolution No. 1540 of the Security Council of United Nations (2004). Measures to strengthen international safety. Code of conduct on the safety research reactor

  14. Model quality and safety studies

    DEFF Research Database (Denmark)

    Petersen, K.E.

    1997-01-01

    The paper describes the EC initiative on model quality assessment and emphasizes some of the problems encountered in the selection of data from field tests used in the evaluation process. Further, it discusses the impact of model uncertainties in safety studies of industrial plants. The model...... that most of these have never been through a procedure of evaluation, but nonetheless are used to assist in making decisions that may directly affect the safety of the public and the environment. As a major funder of European research on major industrial hazards, DGXII is conscious of the importance......-tain model is appropriate for use in solving a given problem. Further, the findings from the REDIPHEM project related to dense gas dispersion will be highlighted. Finally, the paper will discuss the need for model quality assessment in safety studies....

  15. Application of Safety Maturity Model and 4P-4C Model in Safety Culture Assessment

    International Nuclear Information System (INIS)

    Choi, K. S.; Lee, Y. E.; Ha, J. T.; Chang, H. S.; Kam, S. C.

    2010-01-01

    Korean government and utility have made efforts to enhance the nuclear safety culture and the development of quantitative index of safety culture was promoted for past several years. Quantitative index of safety culture and the past efforts to understand safety culture need insight into the concept of culture. This paper aims to apply new method of measuring nuclear safety culture through the review of approaches of evaluating safety culture in non-nuclear industries. Scoring table has been developed based on new models and example of result of interviews evaluating the nuclear safety culture is also shown

  16. Effects of safety climate on safety norm violations: exploring the mediating role of attitudinal ambivalence toward personal protective equipment.

    Science.gov (United States)

    Cavazza, Nicoletta; Serpe, Alessandra

    2009-01-01

    Research on the role of organizational and psychosocial factors in influencing risk behaviors and the likelihood of injury at work showed that safety climate also has great impact on workers' behavior. However, the mechanisms through which this impact operates are still partially unclear. In order to explore the role that attitudinal ambivalence toward wearing PPE might play in mediating the impact of safety climate on safety norm violations, a questionnaire was administered to 345 Italian workers. Three dimensions of safety climate (i.e., company safety concern, senior managers' safety concern, supervisors' attitudes towards safety) were found to be positively associated with the individual ambivalence level, whereas the fourth one (i.e., work pressure) was negatively correlated with it. In turn, low levels of ambivalence were associated with a lower tendency to break the safety norms, even though the perception of a good safety climate also maintained a direct effect on unsafe behaviors. Designers of training program for the prevention of work related injuries must pay great attention to the psycho-social factors (such as the effects of the safety climate perception by employees on their attitudes and behaviors), and include specific contents into the prevention programs in order to improve workers compliance with safety norms.

  17. Modeling approach for safety of high activity waste disposal

    International Nuclear Information System (INIS)

    Serres, Christophe; Besnus, Francois

    2005-01-01

    This paper presents two examples of numerical modeling studies performed by IRSN for assessing geochemical interactions and the role of engineered barriers for the confinement of radionuclides. These examples illustrate the ability of numerical calculations to contribute to the long-term safety assessment approach. In the first example, disturbances and interactions between cementitious materials, bentonite and clayey host rock are tackled by numerical calculations at process level that enable addressing main issues of interest for performance assessment, e.g. extension and intensity of mineralogical transformations and alkaline plume spreading in the vicinity of the disposal tunnels. Once main disturbances and their effects on confinement properties of repository barriers have been identified and quantified, one may assess the role of each barrier on the overall safety of the repository for various scenarios of evolution. This assessment is tackled by integrated level calculations allowing quantifying radionuclide confinement performance of the whole repository for different stages of alteration of its components. The second example highlights the role played by bentonite engineered barriers, plugs and seals as hydraulic and migration barrier in presence of an excavation damaged zone around the vaults, drifts and shafts for different hydrogeological settings. (author)

  18. The Role of Probabilistic Design Analysis Methods in Safety and Affordability

    Science.gov (United States)

    Safie, Fayssal M.

    2016-01-01

    For the last several years, NASA and its contractors have been working together to build space launch systems to commercialize space. Developing commercial affordable and safe launch systems becomes very important and requires a paradigm shift. This paradigm shift enforces the need for an integrated systems engineering environment where cost, safety, reliability, and performance need to be considered to optimize the launch system design. In such an environment, rule based and deterministic engineering design practices alone may not be sufficient to optimize margins and fault tolerance to reduce cost. As a result, introduction of Probabilistic Design Analysis (PDA) methods to support the current deterministic engineering design practices becomes a necessity to reduce cost without compromising reliability and safety. This paper discusses the importance of PDA methods in NASA's new commercial environment, their applications, and the key role they can play in designing reliable, safe, and affordable launch systems. More specifically, this paper discusses: 1) The involvement of NASA in PDA 2) Why PDA is needed 3) A PDA model structure 4) A PDA example application 5) PDA link to safety and affordability.

  19. The Role of the Master in Improving Safety Culture Onboard Ships

    Directory of Open Access Journals (Sweden)

    T. Bielic

    2017-03-01

    Full Text Available As a complex socio-technical system marine transportation is open to risks. Due to the efforts of international organisations, flag and port administrations, classification societies and ship-owners the safety record has steadily improved. However, marine accidents resulting from inadequate safety culture still occur. In this paper examples of recent accidents related to different dimensions of safety culture are provided. The role of the master in achieving an enhanced safety is emphasised.

  20. Analyzing research trends on drug safety using topic modeling.

    Science.gov (United States)

    Zou, Chen

    2018-04-06

    Published drug safety data has evolved in the past decade due to scientific and technological advances in the relevant research fields. Considering that a vast amount of scientific literature has been published in this area, it is not easy to identify the key information. Topic modeling has emerged as a powerful tool to extract meaningful information from a large volume of unstructured texts. Areas covered: We analyzed the titles and abstracts of 4347 articles in four journals dedicated to drug safety from 2007 to 2016. We applied Latent Dirichlet allocation (LDA) model to extract 50 main topics, and conducted trend analysis to explore the temporal popularity of these topics over years. Expert Opinion/Commentary: We found that 'benefit-risk assessment and communication', 'diabetes' and 'biologic therapy for autoimmune diseases' are the top 3 most published topics. The topics relevant to the use of electronic health records/observational data for safety surveillance are becoming increasingly popular over time. Meanwhile, there is a slight decrease in research on signal detection based on spontaneous reporting, although spontaneous reporting still plays an important role in benefit-risk assessment. The topics related to medical conditions and treatment showed highly dynamic patterns over time.

  1. Safety climate and self-reported injury: assessing the mediating role of employee safety control.

    Science.gov (United States)

    Huang, Yueng-Hsiang; Ho, Michael; Smith, Gordon S; Chen, Peter Y

    2006-05-01

    To further reduce injuries in the workplace, companies have begun focusing on organizational factors which may contribute to workplace safety. Safety climate is an organizational factor commonly cited as a predictor of injury occurrence. Characterized by the shared perceptions of employees, safety climate can be viewed as a snapshot of the prevailing state of safety in the organization at a discrete point in time. However, few studies have elaborated plausible mechanisms through which safety climate likely influences injury occurrence. A mediating model is proposed to link safety climate (i.e., management commitment to safety, return-to-work policies, post-injury administration, and safety training) with self-reported injury through employees' perceived control on safety. Factorial evidence substantiated that management commitment to safety, return-to-work policies, post-injury administration, and safety training are important dimensions of safety climate. In addition, the data support that safety climate is a critical factor predicting the history of a self-reported occupational injury, and that employee safety control mediates the relationship between safety climate and occupational injury. These findings highlight the importance of incorporating organizational factors and workers' characteristics in efforts to improve organizational safety performance.

  2. A review of models relevant to road safety.

    Science.gov (United States)

    Hughes, B P; Newstead, S; Anund, A; Shu, C C; Falkmer, T

    2015-01-01

    It is estimated that more than 1.2 million people die worldwide as a result of road traffic crashes and some 50 million are injured per annum. At present some Western countries' road safety strategies and countermeasures claim to have developed into 'Safe Systems' models to address the effects of road related crashes. Well-constructed models encourage effective strategies to improve road safety. This review aimed to identify and summarise concise descriptions, or 'models' of safety. The review covers information from a wide variety of fields and contexts including transport, occupational safety, food industry, education, construction and health. The information from 2620 candidate references were selected and summarised in 121 examples of different types of model and contents. The language of safety models and systems was found to be inconsistent. Each model provided additional information regarding style, purpose, complexity and diversity. In total, seven types of models were identified. The categorisation of models was done on a high level with a variation of details in each group and without a complete, simple and rational description. The models identified in this review are likely to be adaptable to road safety and some of them have previously been used. None of systems theory, safety management systems, the risk management approach, or safety culture was commonly or thoroughly applied to road safety. It is concluded that these approaches have the potential to reduce road trauma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Safety aid use and social anxiety symptoms: The mediating role of perceived control.

    Science.gov (United States)

    Korte, Kristina J; Unruh, Amanda S; Oglesby, Mary E; Schmidt, Norman B

    2015-08-30

    The use of safety aids, cognitive or behavioral strategies used to reduce or cope with anxiety, has emerged as a key construct of interest in anxiety disorders due to their role in the development and maintenance of anxiety symptoms. It has been suggested that individuals with anxiety engage in safety aid use to reduce their anxiety and feel more in control of a situation; however, no studies to date have examined the association between perceived control, that is, perceived level of control over internal events in anxiety provoking situations, and the use of safety aids. The purpose of the present study was to examine the association of perceived control, the use of safety aids, and symptoms of social anxiety. It was predicted that the association between safety aid use and social anxiety symptoms would be mediated by perceived control. This prediction was examined in a large sample of 281 participants. As predicted, perceived control was a significant mediator of the association between the use of safety aids and social anxiety symptoms. This effect remained significant after running a multiple mediation model with distress tolerance added as a competing mediator. Implications for future research are discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. HRET patient safety leadership fellowship: the role of "community" in patient safety.

    Science.gov (United States)

    Leonhardt, Kathryn Kraft

    2010-01-01

    Community engagement is widely endorsed but poorly defined as a strategy to improve patient safety. With strong evidence that engaging patients can positively influence health outcomes, it is presumed that community engagement could improve patient safety. Leaning on the models from other disciplines such as public health, the adequate knowledge and application of the principles of community engagement are critical for this approach to be effective. This article provides a description of the theories supporting patient partnership and community engagement, reviews critical elements of successful community-based programs, and identifies the potential for empowering communities to improve patient safety.

  5. Technological progress, safety, and the guardian role of inspection

    Energy Technology Data Exchange (ETDEWEB)

    Critchley, O H

    1981-08-01

    Technological innovation is accompanied by unforeseen human consequences as well as benefits, and progress has produced a public awareness of the potential for hazards that has led to efficient safety-inspection procedures. Because no safety procedure is foolproof, the public learns to tolerate certain levels of risk from technology if it concludes that the benefits are worthwhile. The perception of values often transcends simple cost/benefit analysis. Safety technology and regulation developed during the past 50 years has benefited from earlier disastrous accidents enough to give the nuclear power industry an unprecedented safety record. Efforts to understand and anticipate human error have refined the role of inspection without achieving absolute reliability. Well-directed inspections that accept human fallibility will achieve more than design and organizational improvements. 42 references. (DCK)

  6. Time series modeling in traffic safety research.

    Science.gov (United States)

    Lavrenz, Steven M; Vlahogianni, Eleni I; Gkritza, Konstantina; Ke, Yue

    2018-08-01

    The use of statistical models for analyzing traffic safety (crash) data has been well-established. However, time series techniques have traditionally been underrepresented in the corresponding literature, due to challenges in data collection, along with a limited knowledge of proper methodology. In recent years, new types of high-resolution traffic safety data, especially in measuring driver behavior, have made time series modeling techniques an increasingly salient topic of study. Yet there remains a dearth of information to guide analysts in their use. This paper provides an overview of the state of the art in using time series models in traffic safety research, and discusses some of the fundamental techniques and considerations in classic time series modeling. It also presents ongoing and future opportunities for expanding the use of time series models, and explores newer modeling techniques, including computational intelligence models, which hold promise in effectively handling ever-larger data sets. The information contained herein is meant to guide safety researchers in understanding this broad area of transportation data analysis, and provide a framework for understanding safety trends that can influence policy-making. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Improving health care quality and safety: the role of collective learning.

    Science.gov (United States)

    Singer, Sara J; Benzer, Justin K; Hamdan, Sami U

    2015-01-01

    Despite decades of effort to improve quality and safety in health care, this goal feels increasingly elusive. Successful examples of improvement are infrequently replicated. This scoping review synthesizes 76 empirical or conceptual studies (out of 1208 originally screened) addressing learning in quality or safety improvement, that were published in selected health care and management journals between January 2000 and December 2014 to deepen understanding of the role that collective learning plays in quality and safety improvement. We categorize learning activities using a theoretical model that shows how leadership and environmental factors support collective learning processes and practices, and in turn team and organizational improvement outcomes. By focusing on quality and safety improvement, our review elaborates the premise of learning theory that leadership, environment, and processes combine to create conditions that promote learning. Specifically, we found that learning for quality and safety improvement includes experimentation (including deliberate experimentation, improvisation, learning from failures, exploration, and exploitation), internal and external knowledge acquisition, performance monitoring and comparison, and training. Supportive learning environments are characterized by team characteristics like psychological safety, appreciation of differences, openness to new ideas social motivation, and team autonomy; team contextual factors including learning resources like time for reflection, access to knowledge, organizational capabilities; incentives; and organizational culture, strategy, and structure; and external environmental factors including institutional pressures, environmental dynamism and competitiveness and learning collaboratives. Lastly learning in the context of quality and safety improvement requires leadership that reinforces learning through actions and behaviors that affect people, such as coaching and trust building, and through

  8. The role of engineering judgement, safety culture, and organizational factors in risk assessment

    International Nuclear Information System (INIS)

    Muzumdar, Ajit; Professor, Visiting

    1996-01-01

    This paper reviews the role of engineering judgement, safety culture, and organizational factors in risk assessment by examining the reasons for human-based error. The need for more emphasis on producing engineers with good engineering judgement is described. The progress in quantifying the role of safety culture and organizational factors in risk assessment studies is summarized

  9. The role of post accident chemistry data in nuclear safety

    International Nuclear Information System (INIS)

    Bradshaw, R.W.; Caruthers, G.F.

    1982-01-01

    The NRC instituted the NUREG-0737 requirements as implementation of the Post-TMI Action Plan in October, 1980. Among these requirements was the capability to obtain chemistry samples of the reactor coolant and containment building atmosphere under post accident conditions. The quantitative criteria were, in general, beyond the capabilities of existing plant systems. As a consequence the nuclear industry expended substantial efforts to design and install the post-accident sampling systems necessary to comply with these criteria. With such efforts essentially complete, the task remains to establish the role that data provided by these systems would play in mitigating the consequences of a nuclear plant accident. This role definition must include a characterization of the timing and priority for the post accident chemistry data. This paper defines that role using the Safety Level and Safety Function concepts as a matrix

  10. Plasma-safety assessment model and safety analyses of ITER

    International Nuclear Information System (INIS)

    Honda, T.; Okazaki, T.; Bartels, H.-H.; Uckan, N.A.; Sugihara, M.; Seki, Y.

    2001-01-01

    A plasma-safety assessment model has been provided on the basis of the plasma physics database of the International Thermonuclear Experimental Reactor (ITER) to analyze events including plasma behavior. The model was implemented in a safety analysis code (SAFALY), which consists of a 0-D dynamic plasma model and a 1-D thermal behavior model of the in-vessel components. Unusual plasma events of ITER, e.g., overfueling, were calculated using the code and plasma burning is found to be self-bounded by operation limits or passively shut down due to impurity ingress from overheated divertor targets. Sudden transition of divertor plasma might lead to failure of the divertor target because of a sharp increase of the heat flux. However, the effects of the aggravating failure can be safely handled by the confinement boundaries. (author)

  11. Modeling for safety in a synthesis-centric systems engineering framework

    NARCIS (Netherlands)

    Markovski, J.; Mortel - Fronczak, van de J.M.; Ortmeier, F.; Daniel, P.

    2012-01-01

    The ever-increasing complexity of safety-critical systems puts high demands on safety assurance and certification. We focus on the development of control software, where safety) requirements engineering plays a crucial and delicate role. Nowadays, most of the safety features are ensured by the

  12. Medication Safety Systems and the Important Role of Pharmacists.

    Science.gov (United States)

    Mansur, Jeannell M

    2016-03-01

    Preventable medication-related adverse events continue to occur in the healthcare setting. While the Institute of Medicine's To Err is Human, published in 2000, highlighted the prevalence of medical and medication-related errors in patient morbidity and mortality, there has not been significant documented progress in addressing system contributors to medication errors. The lack of progress may be related to the myriad of pharmaceutical options now available and the nuances of optimizing drug therapy to achieve desired outcomes and prevent undesirable outcomes. However, on a broader scale, there may be opportunities to focus on the design and performance of the many processes that are part of the medication system. Errors may occur in the storage, prescribing, transcription, preparation and dispensing, or administration and monitoring of medications. Each of these nodes of the medication system, with its many components, is prone to failure, resulting in harm to patients. The pharmacist is uniquely trained to be able to impact medication safety at the individual patient level through medication management skills that are part of the clinical pharmacist's role, but also to analyze the performance of medication processes and to lead redesign efforts to mitigate drug-related outcomes that may cause harm. One population that can benefit from a focus on medication safety through clinical pharmacy services and medication safety programs is the elderly, who are at risk for adverse drug events due to their many co-morbidities and the number of medications often used. This article describes the medication safety systems and provides a blueprint for creating a foundation for medication safety programs within healthcare organizations. The specific role of pharmacists and clinical pharmacy services in medication safety is also discussed here and in other articles in this Theme Issue.

  13. Nuclear safety culture evaluation model based on SSE-CMM

    International Nuclear Information System (INIS)

    Yang Xiaohua; Liu Zhenghai; Liu Zhiming; Wan Yaping; Peng Guojian

    2012-01-01

    Safety culture, which is of great significance to establish safety objectives, characterizes level of enterprise safety production and development. Traditional safety culture evaluation models emphasis on thinking and behavior of individual and organization, and pay attention to evaluation results while ignore process. Moreover, determining evaluation indicators lacks objective evidence. A novel multidimensional safety culture evaluation model, which has scientific and completeness, is addressed by building an preliminary mapping between safety culture and SSE-CMM's (Systems Security Engineering Capability Maturity Model) process area and generic practice. The model focuses on enterprise system security engineering process evaluation and provides new ideas and scientific evidences for the study of safety culture. (authors)

  14. Sensitivity analysis of model output - a step towards robust safety indicators?

    International Nuclear Information System (INIS)

    Broed, R.; Pereira, A.; Moberg, L.

    2004-01-01

    The protection of the environment from ionising radiation challenges the radioecological community with the issue of harmonising disparate safety indicators. These indicators should preferably cover the whole spectrum of model predictions on chemo-toxic and radiation impact of contaminants. In question is not only the protection of man and biota but also of abiotic systems. In many cases modelling will constitute the basis for an evaluation of potential impact. It is recognised that uncertainty and sensitivity analysis of model output will play an important role in the 'construction' of safety indicators that are robust, reliable and easy to explain to all groups of stakeholders including the general public. However, environmental models of transport of radionuclides have some extreme characteristics. They are, a) complex, b) non-linear, c) include a huge number of input parameters, d) input parameters are associated with large or very large uncertainties, e) parameters are often correlated to each other, f) uncertainties other than parameter-driven may be present in the modelling system, g) space variability and time-dependence of parameters are present, h) model predictions may cover geological time scales. Consequently, uncertainty and sensitivity analysis are non-trivial tasks, challenging the decision-maker when it comes to the interpretation of safety indicators or the application of regulatory criteria. In this work we use the IAEA model ISAM, to make a set of Monte Carlo calculations. The ISAM model includes several nuclides and decay chains, many compartments and variable parameters covering the range of nuclide migration pathways from the near field to the biosphere. The goal of our calculations is to make a global sensitivity analysis. After extracting the non-influential parameters, the M.C. calculations are repeated with those parameters frozen. Reducing the number of parameters to a few ones will simplify the interpretation of the results and the use

  15. Safety Cultural Competency Modeling in Nuclear Organizations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa Kil; Oh, Yeon Ju; Luo, Meiling; Lee, Yong Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear safety cultural competency model should be supplemented through a bottom-up approach such as behavioral event interview. The developed model, however, is meaningful for determining what should be dealt for enhancing safety cultural competency of nuclear organizations. The more details of the developing process, results, and applications will be introduced later. Organizational culture include safety culture in terms of its organizational characteristics.

  16. An optimization model for improving highway safety

    Directory of Open Access Journals (Sweden)

    Promothes Saha

    2016-12-01

    Full Text Available This paper developed a traffic safety management system (TSMS for improving safety on county paved roads in Wyoming. TSMS is a strategic and systematic process to improve safety of roadway network. When funding is limited, it is important to identify the best combination of safety improvement projects to provide the most benefits to society in terms of crash reduction. The factors included in the proposed optimization model are annual safety budget, roadway inventory, roadway functional classification, historical crashes, safety improvement countermeasures, cost and crash reduction factors (CRFs associated with safety improvement countermeasures, and average daily traffics (ADTs. This paper demonstrated how the proposed model can identify the best combination of safety improvement projects to maximize the safety benefits in terms of reducing overall crash frequency. Although the proposed methodology was implemented on the county paved road network of Wyoming, it could be easily modified for potential implementation on the Wyoming state highway system. Other states can also benefit by implementing a similar program within their jurisdictions.

  17. Role of management in the development of safety culture at the operating organization

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, W [International Atomic Energy Agency, Vienna (Austria)

    1997-09-01

    Role of management in the development of safety culture at the operating organization to offer practical suggestions to assist in the development or improvement of a progressive safety culture. 2 figs.

  18. Role of management in the development of safety culture at the operating organization

    International Nuclear Information System (INIS)

    Zhong, W.

    1997-01-01

    Role of management in the development of safety culture at the operating organization to offer practical suggestions to assist in the development or improvement of a progressive safety culture. 2 figs

  19. Call for NDT leadership role in assuring safety of nuclear power

    International Nuclear Information System (INIS)

    Anders, W.A.; Simpson, J.W.

    1976-01-01

    Nondestructive Testing and its potential role in assuring the safety of nuclear power were given emphasis at a conference on Nondestructive Testing in the Nuclear Industry sponsored by the American Society for Metals Dec. 1--3 in Denver, Colo. Excerpts from two major addresses challenging the NDT community to assume leadership in solving nuclear safety problems are presented

  20. The role of organizational trust in safety climate's influence on organizational outcomes.

    Science.gov (United States)

    Kath, Lisa M; Magley, Vicki J; Marmet, Matthew

    2010-09-01

    Based on elements of social exchange theory and other conceptualizations of trust, a model was developed situating organizational trust as a central component to the relationship that safety climate has with organizational outcomes. Specifically, the model specified that two facets of safety climate--upward safety communication and management attitudes toward safety--would be positively related to organizational trust. Increased levels of trust would then predict increased motivation to engage in safe job-related behaviors, increased job satisfaction, and decreased turnover intentions. Another hypothesis investigated whether job safety relevance would moderate the relationship between safety climate and trust. Online survey research was conducted with 599 employees from 97 work groups across a New England grocery store chain. Hierarchical linear modeling indicated support for trust mediating the relationship between safety climate and organizational outcomes; further, the relationship between safety climate and trust was stronger within work groups where safety was more relevant. 2009 Elsevier Ltd. All rights reserved.

  1. Design of plant safety model in plant enterprise engineering environment

    International Nuclear Information System (INIS)

    Gabbar, Hossam A.; Suzuki, Kazuhiko; Shimada, Yukiyasu

    2001-01-01

    Plant enterprise engineering environment (PEEE) is an approach aiming to manage the plant through its lifecycle. In such environment, safety is considered as the common objective for all activities throughout the plant lifecycle. One approach to achieve plant safety is to embed safety aspects within each function and activity within such environment. One ideal way to enable safety aspects within each automated function is through modeling. This paper proposes a theoretical approach to design plant safety model as integrated with the plant lifecycle model within such environment. Object-oriented modeling approach is used to construct the plant safety model using OO CASE tool on the basis of unified modeling language (UML). Multiple views are defined for plant objects to express static, dynamic, and functional semantics of these objects. Process safety aspects are mapped to each model element and inherited from design to operation stage, as it is naturally embedded within plant's objects. By developing and realizing the plant safety model, safer plant operation can be achieved and plant safety can be assured

  2. The motivational theory of role modeling : How role models influence role aspirants' goals

    NARCIS (Netherlands)

    Morgenroth, Thekla; Ryan, Michelle K.; Peters, Kim

    2015-01-01

    Role models are often suggested as a way of motivating individuals to set and achieve ambitious goals, especially for members of stigmatized groups in achievement settings. Yet, the literature on role models tends not to draw on the motivational literature to explain how role models may help role

  3. Safety First: The Role of Trust and School Safety in Non-Suicidal Self-Injury

    Science.gov (United States)

    Noble, Rick Nelson; Sornberger, Michael J.; Toste, Jessica R.; Heath, Nancy L.; McLouth, Rusty

    2011-01-01

    Non-suicidal self-injury (NSSI) has become very prominent among adolescents in middle and high school settings. However, little research has evaluated the role of the school environment in the behaviour. This study examined whether indices of school trust and perceived safety were predictive of NSSI behaviour. Results indicate that these variables…

  4. Seafood Safety and Quality: The Consumer’s Role

    Directory of Open Access Journals (Sweden)

    Doris T. Hicks

    2016-10-01

    Full Text Available All the good news about seafood—the health and nutritional benefits, the wide varieties and flavors—has had a positive effect on consumption: people are eating more seafood (http://www.seagrant.sunysb.edu/seafood/pdfs/SeafoodSavvy.pdf. Yet consumers want to be assured that seafood is as safe as, or safer to eat than, other foods. When you hear “seafood safety”, think of a safety net designed to protect you, the consumer, from food-borne illness. Every facet of the seafood industry, from harvester to consumer, plays a role in holding up the safety net. The role of state and federal agencies, fishermen, aquaculturists, retailers, processors, restaurants, and scientists is to provide, update, and carry out the necessary handling, processing, and inspection procedures to give consumers the safest seafood possible. The consumer’s responsibility is to follow through with proper handling techniques, from purchase to preparation. It doesn’t matter how many regulations and inspection procedures are set up; the final edge of the safety net is held by the consumer. This article will give you the information you need to educate yourself and be assured that the fish and shellfish you consume are safe. The most common food-borne illnesses are caused by a combination of bacteria naturally present in our environment and food handling errors made in commercial settings, food service institutions, or at home.

  5. Safety culture in nuclear installations - The role of the regulator

    International Nuclear Information System (INIS)

    Karigi, Alice W.

    2002-01-01

    Safety culture is an amalgamation of values, standards, morals and norms of acceptable behavior by the licensees, Radiation workers and the Regulator. The role played by a Regulator in establishing safety culture in a nuclear installation is that related to Authorization, review, assessment, inspection and enforcement. The regulator is to follow the development of a facility or activity from initial selection of the site through design, construction, commissioning, radioactive waste management through to decommissioning and closure. He is to ensure safety measures are followed through out the operation of the facility by laying down in the license conditions of controlling construction of nuclear installations and ensuring competence of the operators. (author)

  6. TSO Role in Supporting the Regulatory Authority in View of Safety Culture

    International Nuclear Information System (INIS)

    Khamaza, A.; Vasilishin, A.

    2016-01-01

    Human and organizational factors are always of paramount importance at nuclear and radiation safety as well as in the safety regulation provision. Major NPP accidents occurred merely reaffirm this fact. The role of an authority that regulates nuclear safety increases each time in the aftermath of accidents perceived as a shock together with the importance of scientific and technical support. SEC NRS was established in 1987, the next year after the Chernobyl NPP accident aiming to strengthen supervision over works carried out at the nuclear industry enterprises. Currently SEC NRS provides comprehensive scientific and technical support to Rostechnadzor including safety review and regulatory legal documents development to regulate safety along with safety culture.

  7. Transformational leadership, intrinsic motivation, and trust: a moderated-mediated model of workplace safety.

    Science.gov (United States)

    Conchie, Stacey M

    2013-04-01

    Two studies examine the role of motivation and trust in the relationship between safety-specific transformational leadership and employees' safety behavior. Study 1 tested the prediction that intrinsic and identified regulation motivations mediate the relationship between safety-specific transformational leadership and employees' safety behaviors. Study 2 further explored this relationship by testing the prediction that the mediating role of intrinsic motivation is dependent on employees' level of trust in their leader. Survey data from the U.K. construction industry supported both predictions. However, the mediating role of intrinsic motivation was found only for challenge safety citizenship behaviors (i.e., voice) and not for affiliative safety citizenship behaviors (i.e., helping). These findings suggest that employees' intrinsic motivation is important to the effectiveness of leaders' efforts to promote some but not all forms of safety behavior.

  8. Models and methods for hot spot safety work

    DEFF Research Database (Denmark)

    Vistisen, Dorte

    2002-01-01

    Despite the fact that millions DKK each year are spent on improving roadsafety in Denmark, funds for traffic safety are limited. It is therefore vital to spend the resources as effectively as possible. This thesis is concerned with the area of traffic safety denoted "hot spot safety work", which...... is the task of improving road safety through alterations of the geometrical and environmental characteristics of the existing road network. The presently applied models and methods in hot spot safety work on the Danish road network were developed about two decades ago, when data was more limited and software...... and statistical methods less developed. The purpose of this thesis is to contribute to improving "State of the art" in Denmark. Basis for the systematic hot spot safety work are the models describing the variation in accident counts on the road network. In the thesis hierarchical models disaggregated on time...

  9. Modelling the effects of road traffic safety measures.

    Science.gov (United States)

    Lu, Meng

    2006-05-01

    A model is presented for assessing the effects of traffic safety measures, based on a breakdown of the process in underlying components of traffic safety (risk and consequence), and five (speed and conflict related) variables that influence these components, and are influenced by traffic safety measures. The relationships between measures, variables and components are modelled as coefficients. The focus is on probabilities rather than historical statistics, although in practice statistics may be needed to find values for the coefficients. The model may in general contribute to improve insight in the mechanisms between traffic safety measures and their safety effects. More specifically it allows comparative analysis of different types of measures by defining an effectiveness index, based on the coefficients. This index can be used to estimate absolute effects of advanced driver assistance systems (ADAS) related measures from absolute effects of substitutional (in terms of safety effects) infrastructure measures.

  10. Job demands, job resources and safety outcomes: The roles of emotional exhaustion and safety compliance.

    Science.gov (United States)

    Li, Feng; Jiang, Li; Yao, Xiang; Li, YongJuan

    2013-03-01

    The aim of this study was to assess the effectiveness of the job demands-resources (JD-R) model in explaining the relationship of job demands and resources with safety outcomes (i.e., workplace injuries and near-misses). We collected self-reported data from 670 crude oil production workers from three sub-companies of a major oilfield company in China. The results of a structural equation analysis indicated that job demands (psychological and physical demands) and job resources (decision latitude, supervisor support and coworker support) could affect emotional exhaustion and safety compliance, and thus influence the occurrence of injuries and near-misses. The implications of the present findings regarding both the JD-R model and occupational safety research were discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The art of regression modeling in road safety

    CERN Document Server

    Hauer, Ezra

    2015-01-01

    This unique book explains how to fashion useful regression models from commonly available data to erect models essential for evidence-based road safety management and research. Composed from techniques and best practices presented over many years of lectures and workshops, The Art of Regression Modeling in Road Safety illustrates that fruitful modeling cannot be done without substantive knowledge about the modeled phenomenon. Class-tested in courses and workshops across North America, the book is ideal for professionals, researchers, university professors, and graduate students with an interest in, or responsibilities related to, road safety. This book also: · Presents for the first time a powerful analytical tool for road safety researchers and practitioners · Includes problems and solutions in each chapter as well as data and spreadsheets for running models and PowerPoint presentation slides · Features pedagogy well-suited for graduate courses and workshops including problems, solutions, and PowerPoint p...

  12. MSSV Modeling for Wolsong-1 Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Bok Ja; Choi, Chul Jin; Kim, Seoung Rae [KEPCO EandC, Daejeon (Korea, Republic of)

    2010-10-15

    The main steam safety valves (MSSVs) are installed on the main steam line to prevent the overpressurization of the system. MSSVs are held in closed position by spring force and the valves pop open by internal force when the main steam pressure increases to open set pressure. If the overpressure condition is relieved, the valves begin to close. For the safety analysis of anticipated accident condition, the safety systems are modeled conservatively to simulate the accident condition more severe. MSSVs are also modeled conservatively for the analysis of over-pressurization accidents. In this paper, the pressure transient is analyzed at over-pressurization condition to evaluate the conservatism for MSSV models

  13. Role of computers in CANDU safety systems

    International Nuclear Information System (INIS)

    Hepburn, G.A.; Gilbert, R.S.; Ichiyen, N.M.

    1985-01-01

    Small digital computers are playing an expanding role in the safety systems of CANDU nuclear generating stations, both as active components in the trip logic, and as monitoring and testing systems. The paper describes three recent applications: (i) A programmable controller was retro-fitted to Bruce ''A'' Nuclear Generating Station to handle trip setpoint modification as a function of booster rod insertion. (ii) A centralized monitoring computer to monitor both shutdown systems and the Emergency Coolant Injection system, is currently being retro-fitted to Bruce ''A''. (iii) The implementation of process trips on the CANDU 600 design using microcomputers. While not truly a retrofit, this feature was added very late in the design cycle to increase the margin against spurious trips, and has now seen about 4 unit-years of service at three separate sites. Committed future applications of computers in special safety systems are also described. (author)

  14. The role of passive and inherent safety properties in Siemens/KWU nuclear power plants

    International Nuclear Information System (INIS)

    Gremm, O.

    1990-01-01

    In Siemens/KWU Nuclear Power Plants the applied safety concept consist of a well balanced combination of active, passive use well is inherent safety measures. In principle it is not possible to realise a safety concept exclusively with inherent and/or passive safety properties. The respective measures and arguments will be explained in detail in the presentation. In addition the Siemens/KWU safety concept with examples of the role of inherent and passive safety measures will be illustrated. (author). 9 refs, 9 figs

  15. Forecast model of safety economy contribution rate of China

    Institute of Scientific and Technical Information of China (English)

    LIU Li-jun; SHI Shi-liang

    2005-01-01

    It is the rational and exact computation of the safety economy contribution rate that has the far-reaching realistic meaning to the improvement of society cognition to safety and the investment to the nation safety and the national macro-safety decision-makings. The accurate function between safety inputs and outputs was obtained through a founded econometric model. Then the forecasted safety economy contribution rate is 3.01% and the forecasted ratio between safety inputs and outputs is 1:1.81 in China in 2005. And the model accords with the practice of China and the results are satisfying.

  16. The role of the Health and Safety Division of DNPDE

    International Nuclear Information System (INIS)

    Arkley, J.

    1985-01-01

    The paper concerns the role of the Health and Safety Division of the Dounreay Nuclear Power Development Establishment, Scotland. Radiological conditions in the workplace; dosimetry; off-site monitoring; and accidents and emergencies, are all discussed. (U.K.)

  17. Indicators of safety culture - selection and utilization of leading safety performance indicators

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Teemu; Pietikaeinen, Elina (VTT, Technical Research Centre of Finland (Finland))

    2010-03-15

    Safety indicators play a role in providing information on organizational performance, motivating people to work on safety and increasing organizational potential for safety. The aim of this report is to provide an overview on leading safety indicators in the domain of nuclear safety. The report explains the distinction between lead and lag indicators and proposes a framework of three types of safety performance indicators - feedback, monitor and drive indicators. Finally the report provides guidance for nuclear energy organizations for selecting and interpreting safety indicators. It proposes the use of safety culture as a leading safety performance indicator and offers an example list of potential indicators in all three categories. The report concludes that monitor and drive indicators are so called lead indicators. Drive indicators are chosen priority areas of organizational safety activity. They are based on the underlying safety model and potential safety activities and safety policy derived from it. Drive indicators influence control measures that manage the socio technical system; change, maintain, reinforce, or reduce something. Monitor indicators provide a view on the dynamics of the system in question; the activities taking place, abilities, skills and motivation of the personnel, routines and practices - the organizational potential for safety. They also monitor the efficacy of the control measures that are used to manage the socio technical system. Typically the safety performance indicators that are used are lagging (feedback) indicators that measure the outcomes of the socio technical system. Besides feedback indicators, organizations should also acknowledge the important role of monitor and drive indicators in managing safety. The selection and use of safety performance indicators is always based on an understanding (a model) of the socio technical system and safety. The safety model defines what risks are perceived. It is important that the safety

  18. Indicators of safety culture - selection and utilization of leading safety performance indicators

    International Nuclear Information System (INIS)

    Reiman, Teemu; Pietikaeinen, Elina

    2010-03-01

    Safety indicators play a role in providing information on organizational performance, motivating people to work on safety and increasing organizational potential for safety. The aim of this report is to provide an overview on leading safety indicators in the domain of nuclear safety. The report explains the distinction between lead and lag indicators and proposes a framework of three types of safety performance indicators - feedback, monitor and drive indicators. Finally the report provides guidance for nuclear energy organizations for selecting and interpreting safety indicators. It proposes the use of safety culture as a leading safety performance indicator and offers an example list of potential indicators in all three categories. The report concludes that monitor and drive indicators are so called lead indicators. Drive indicators are chosen priority areas of organizational safety activity. They are based on the underlying safety model and potential safety activities and safety policy derived from it. Drive indicators influence control measures that manage the socio technical system; change, maintain, reinforce, or reduce something. Monitor indicators provide a view on the dynamics of the system in question; the activities taking place, abilities, skills and motivation of the personnel, routines and practices - the organizational potential for safety. They also monitor the efficacy of the control measures that are used to manage the socio technical system. Typically the safety performance indicators that are used are lagging (feedback) indicators that measure the outcomes of the socio technical system. Besides feedback indicators, organizations should also acknowledge the important role of monitor and drive indicators in managing safety. The selection and use of safety performance indicators is always based on an understanding (a model) of the socio technical system and safety. The safety model defines what risks are perceived. It is important that the safety

  19. Cross-validation of an employee safety climate model in Malaysia.

    Science.gov (United States)

    Bahari, Siti Fatimah; Clarke, Sharon

    2013-06-01

    Whilst substantial research has investigated the nature of safety climate, and its importance as a leading indicator of organisational safety, much of this research has been conducted with Western industrial samples. The current study focuses on the cross-validation of a safety climate model in the non-Western industrial context of Malaysian manufacturing. The first-order factorial validity of Cheyne et al.'s (1998) [Cheyne, A., Cox, S., Oliver, A., Tomas, J.M., 1998. Modelling safety climate in the prediction of levels of safety activity. Work and Stress, 12(3), 255-271] model was tested, using confirmatory factor analysis, in a Malaysian sample. Results showed that the model fit indices were below accepted levels, indicating that the original Cheyne et al. (1998) safety climate model was not supported. An alternative three-factor model was developed using exploratory factor analysis. Although these findings are not consistent with previously reported cross-validation studies, we argue that previous studies have focused on validation across Western samples, and that the current study demonstrates the need to take account of cultural factors in the development of safety climate models intended for use in non-Western contexts. The results have important implications for the transferability of existing safety climate models across cultures (for example, in global organisations) and highlight the need for future research to examine cross-cultural issues in relation to safety climate. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  20. Role of computer techniques for knowledge propagation about nuclear energetics safety

    International Nuclear Information System (INIS)

    Osachkin, V.S.

    1996-01-01

    The development of nuclear power engineering depends on the levels of nuclear, radiological and ecological safety. To ensure the approval of such levels by the community to spread the knowledge on Safety of Nuclear Engineering in understandable forms. New computer technologies may play an important role in the safety education of the public and upgrading of qualification of personnel. The progress in computer nets development makes it possible to use besides e-mail qualification of personnel. The progress in computer in nets development makes it possible to use besides e-mail and BBS the Internet system for remote education. As an example a computer course on Atomic Energy and its safety presented. This course now written in Russian consists of 6 parts, namely: physical basis of utilization of Nuclear energy; technical bases of uses of Nuclear energy; nuclear Reactors and their Systems; safety Principles, Goals, Nuclear Safety Regulation; the Environmental Impact of the us of Nuclear Power, severe accident consequences and scenarios

  1. Promoting safety voice with safety-specific transformational leadership: the mediating role of two dimensions of trust.

    Science.gov (United States)

    Conchie, Stacey M; Taylor, Paul J; Donald, Ian J

    2012-01-01

    Although safety-specific transformational leadership is known to encourage employee safety voice behaviors, less is known about what makes this style of leadership effective. We tested a model that links safety-specific transformational leadership to safety voice through various dimensions of trust. Data from 150 supervisor-employee dyads from the United Kingdom oil industry supported our predictions that the effects of safety-specific transformational leadership are sequentially mediated by affect-based trust beliefs and disclosure trust intentions. Moreover, we found that reliance trust intentions moderated the effect of disclosure: employees' disclosure intentions mediated the effects of affect-based trust on safety voice behaviors only when employees' intention to rely on their leader was moderate to high. These findings suggest that leaders seeking to encourage safety voice behaviors should go beyond "good reason" arguments and develop affective bonds with their employees.

  2. Aviation Safety: Modeling and Analyzing Complex Interactions between Humans and Automated Systems

    Science.gov (United States)

    Rungta, Neha; Brat, Guillaume; Clancey, William J.; Linde, Charlotte; Raimondi, Franco; Seah, Chin; Shafto, Michael

    2013-01-01

    The on-going transformation from the current US Air Traffic System (ATS) to the Next Generation Air Traffic System (NextGen) will force the introduction of new automated systems and most likely will cause automation to migrate from ground to air. This will yield new function allocations between humans and automation and therefore change the roles and responsibilities in the ATS. Yet, safety in NextGen is required to be at least as good as in the current system. We therefore need techniques to evaluate the safety of the interactions between humans and automation. We think that current human factor studies and simulation-based techniques will fall short in front of the ATS complexity, and that we need to add more automated techniques to simulations, such as model checking, which offers exhaustive coverage of the non-deterministic behaviors in nominal and off-nominal scenarios. In this work, we present a verification approach based both on simulations and on model checking for evaluating the roles and responsibilities of humans and automation. Models are created using Brahms (a multi-agent framework) and we show that the traditional Brahms simulations can be integrated with automated exploration techniques based on model checking, thus offering a complete exploration of the behavioral space of the scenario. Our formal analysis supports the notion of beliefs and probabilities to reason about human behavior. We demonstrate the technique with the Ueberligen accident since it exemplifies authority problems when receiving conflicting advices from human and automated systems.

  3. Fuel cycle safety research. Role and development in future

    International Nuclear Information System (INIS)

    Matsumoto, Shiro

    2005-01-01

    The report stresses important roles played by risk informed methodology in chemical process safety problems as encountered in fuel cycle facility such as a reprocessing plant. Abnormal situation management is a safety issue - The lesson learned from the pesticide manufacturing facility in Bhopal, India. Little attention has been given to understanding the issues regarding performance during normal versus abnormal situation. The first step is in abnormal situation management is to define what really is abnormal. The second step is to ensure that everyone understands the difference between normal and abnormal, and the root causes of abnormal events. The third step is to be aware of current practices that support abnormal situation management, and the procedures, practices, and techniques used to respond to abnormal conditions. Dynamic simulation will become to useful techniques for abnormal situation management as well as probabilistic safety assessment for process facilities including nuclear fuel cycle. (S. Ohno)

  4. Safety Case Development as an Information Modelling Problem

    Science.gov (United States)

    Lewis, Robert

    This paper considers the benefits from applying information modelling as the basis for creating an electronically-based safety case. It highlights the current difficulties of developing and managing large document-based safety cases for complex systems such as those found in Air Traffic Control systems. After a review of current tools and related literature on this subject, the paper proceeds to examine the many relationships between entities that can exist within a large safety case. The paper considers the benefits to both safety case writers and readers from the future development of an ideal safety case tool that is able to exploit these information models. The paper also introduces the idea that the safety case has formal relationships between entities that directly support the safety case argument using a methodology such as GSN, and informal relationships that provide links to direct and backing evidence and to supporting information.

  5. A multi-agent safety response model in the construction industry.

    Science.gov (United States)

    Meliá, José L

    2015-01-01

    The construction industry is one of the sectors with the highest accident rates and the most serious accidents. A multi-agent safety response approach allows a useful diagnostic tool in order to understand factors affecting risk and accidents. The special features of the construction sector can influence the relationships among safety responses along the model of safety influences. The purpose of this paper is to test a model explaining risk and work-related accidents in the construction industry as a result of the safety responses of the organization, the supervisors, the co-workers and the worker. 374 construction employees belonging to 64 small Spanish construction companies working for two main companies participated in the study. Safety responses were measured using a 45-item Likert-type questionnaire. The structure of the measure was analyzed using factor analysis and the model of effects was tested using a structural equation model. Factor analysis clearly identifies the multi-agent safety dimensions hypothesized. The proposed safety response model of work-related accidents, involving construction specific results, showed a good fit. The multi-agent safety response approach to safety climate is a useful framework for the assessment of organizational and behavioral risks in construction.

  6. Modelizing home safety as experienced by people with mental illness.

    Science.gov (United States)

    Désormeaux-Moreau, Marjorie; Larivière, Nadine; Aubin, Ginette

    2018-05-01

    As more individuals with mental disorders now live in the community and as the custodial care housing model has shifted to supported housing, home safety has become a rising issue, however, not well documented. To describe the phenomenon of home safety for people with a mental disorder as well as its contributing factors. A descriptive qualitative design was used. Individual interviews were conducted with persons with a mental disorder (n = 8), while focus groups were conducted with relatives, health and social service providers and community stakeholders (n = 21). The data were analyzed with the grounded theory analysis as described by Paillé (1994). Findings suggest that home safety implies risk and protective factors, which are associated with (1) the person's characteristics; (2) the quality of the home environment; (3) the nature of the activities in which the individual engages. These dimensions are interrelated so that home incidents arise from a dynamic interaction between risk and protective factors. Home incidents therefore occur when the interaction between these dimensions is altered. Considering this situation, Occupational Therapists are well positioned to play a leading role and act as key contributors in the area of home safety in people with mental disorders.

  7. Occupational safety management: the role of causal attribution.

    Science.gov (United States)

    Gyekye, Seth Ayim

    2010-12-01

    The paper addresses the causal attribution theory, an old and well-established theme in social psychology which denotes the everyday, commonsense explanations that people use to explain events and the world around them. The attribution paradigm is considered one of the most appropriate analytical tools for exploratory and descriptive studies in social psychology and organizational literature. It affords the possibility of describing accident processes as objectively as possible and with as much detail as possible. Causal explanations are vital to the formal analysis of workplace hazards and accidents, as they determine how organizations act to prevent accident recurrence. Accordingly, they are regarded as fundamental and prerequisite elements for safety management policies. The paper focuses primarily on the role of causal attributions in occupational and industrial accident analyses and implementation of safety interventions. It thus serves as a review of the contribution of attribution theory to occupational and industrial accidents. It comprises six sections. The first section presents an introduction to the classic attribution theories, and the second an account of the various ways in which the attribution paradigm has been applied in organizational settings. The third and fourth sections review the literature on causal attributions and demographic and organizational variables respectively. The sources of attributional biases in social psychology and how they manifest and are identified in the causal explanations for industrial and occupational accidents are treated in the fifth section. Finally, conclusion and recommendations are presented. The recommendations are particularly important for the reduction of workplace accidents and associated costs. The paper touches on the need for unbiased causal analyses, belief in the preventability of accidents, and the imperative role of management in occupational safety management.

  8. Traffic & safety statewide model and GIS modeling.

    Science.gov (United States)

    2012-07-01

    Several steps have been taken over the past two years to advance the Utah Department of Transportation (UDOT) safety initiative. Previous research projects began the development of a hierarchical Bayesian model to analyze crashes on Utah roadways. De...

  9. Modular reliability modeling of the TJNAF personnel safety system

    International Nuclear Information System (INIS)

    Cinnamon, J.; Mahoney, K.

    1997-01-01

    A reliability model for the Thomas Jefferson National Accelerator Facility (formerly CEBAF) personnel safety system has been developed. The model, which was implemented using an Excel spreadsheet, allows simulation of all or parts of the system. Modularity os the model's implementation allows rapid open-quotes what if open-quotes case studies to simulate change in safety system parameters such as redundancy, diversity, and failure rates. Particular emphasis is given to the prediction of failure modes which would result in the failure of both of the redundant safety interlock systems. In addition to the calculation of the predicted reliability of the safety system, the model also calculates availability of the same system. Such calculations allow the user to make tradeoff studies between reliability and availability, and to target resources to improving those parts of the system which would most benefit from redesign or upgrade. The model includes calculated, manufacturer's data, and Jefferson Lab field data. This paper describes the model, methods used, and comparison of calculated to actual data for the Jefferson Lab personnel safety system. Examples are given to illustrate the model's utility and ease of use

  10. Model-based safety analysis of a control system using Simulink and Simscape extended models

    Directory of Open Access Journals (Sweden)

    Shao Nian

    2017-01-01

    Full Text Available The aircraft or system safety assessment process is an integral part of the overall aircraft development cycle. It is usually characterized by a very high timely and financial effort and can become a critical design driver in certain cases. Therefore, an increasing demand of effective methods to assist the safety assessment process arises within the aerospace community. One approach is the utilization of model-based technology, which is already well-established in the system development, for safety assessment purposes. This paper mainly describes a new tool for Model-Based Safety Analysis. A formal model for an example system is generated and enriched with extended models. Then, system safety analyses are performed on the model with the assistance of automation tools and compared to the results of a manual analysis. The objective of this paper is to improve the increasingly complex aircraft systems development process. This paper develops a new model-based analysis tool in Simulink/Simscape environment.

  11. Simulation modeling on the growth of firm's safety management capability

    Institute of Scientific and Technical Information of China (English)

    LIU Tie-zhong; LI Zhi-xiang

    2008-01-01

    Aiming to the deficiency of safety management measure, established simulation model about firm's safety management capability(FSMC) based on organizational learning theory. The system dynamics(SD) method was used, in which level and rate system, variable equation and system structure flow diagram was concluded. Simulation model was verified from two aspects: first, model's sensitivity to variable was tested from the gross of safety investment and the proportion of safety investment; second, variables dependency was checked up from the correlative variable of FSMC and organizational learning. The feasibility of simulation model is verified though these processes.

  12. The Principal's Role in Promoting Teachers' Extra-Role Behaviors: Some Insights from Road-Safety Education

    Science.gov (United States)

    Oplatka, Izhar

    2013-01-01

    The current study aimed to understand the principal's role in promoting or inhibiting the appearance of teacher organizational citizenship behaviors (OCB) in safety education. Based on semistructured interviews with 30 teachers and 10 principals working in the Israeli State Education System, it was found that the principal influences teacher OCB…

  13. Nuclear risk and communication: the essential role of safety authorities

    International Nuclear Information System (INIS)

    Hautin, N.

    1998-01-01

    Full text of publication follows: whether concerning mad cow disease, asbestos, nuclear, OGM or now, dioxin in French meat, public health risks have been making the headlines of newspapers for a while. And, firms whose activity is associated with these risks are in effect in the defendants box. Therefore, communicating becomes difficult: their word is suspect and, debates quite rapidly exceed the firm competencies to become a socio-cultural conflict. This paper explores in nuclear fields the essential role of safety authorities in such communication cases. Our surveys and the comparative case study between the pipe at La Hague and 'contaminated' nuclear transports in France are eloquent: the messages of nuclear firms is perceived through their image of a State within the State built from the past and reinforced by the negative prism of the news. Regular and technical arguments (the respect of norms) entertain the debate rather than hush it. That is why we could infer an objective, and independent opinion is required, one different from the firm, the public and ministries: its role of referee could allow a constructive dialog between the public and the firm. Risk communication nature and efficiency depend on that (cf. the diagram). As a solution, we think about a legitimate authority organization identified by the public first, but by other actors as well. From the public point of view, if we see the place of pressure groups (e.g. Greenpeace) in the debate as a measure of the lack of trust in the independence of safety authorities, we can infer that it is a reaffirmation of democracy which is demanded by the French public, which could be satisfied with powerful safety authorities. That is why safety authorities have an essential role to play, beyond this of control, in nuclear risk communication towards the public. Diagram: communication path between a nuclear firm and the public during conflict. (author)

  14. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety crew roles and qualifications. 417.311 Section 417.311 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... vehicles in flight under the influence of aerodynamic forces; and (x) The application of flight termination...

  15. Model-based safety architecture framework for complex systems

    NARCIS (Netherlands)

    Schuitemaker, Katja; Rajabali Nejad, Mohammadreza; Braakhuis, J.G.; Podofillini, Luca; Sudret, Bruno; Stojadinovic, Bozidar; Zio, Enrico; Kröger, Wolfgang

    2015-01-01

    The shift to transparency and rising need of the general public for safety, together with the increasing complexity and interdisciplinarity of modern safety-critical Systems of Systems (SoS) have resulted in a Model-Based Safety Architecture Framework (MBSAF) for capturing and sharing architectural

  16. The role of staff training in the safety of nuclear facilities

    International Nuclear Information System (INIS)

    Koechlin, J.C.; Tanguy, P.

    1980-01-01

    Although nuclear energy largely involves automatic protection systems enabling the effects of human error to be mitigated, the human factor still remains of extreme importance in nuclear risk analysis. Hence, the attainment of the high safety standards sought after for nuclear energy must of necessity entail staff training programmes which take into account the concern for nuclear safety. It is incumbent upon constructors and operators to evolve a training programme suited to each job, and the safety authorities are responsible for assessing whether the programme is satisfactory from the standpoint of safety and, where necessary, for issuing the relevant certificates or permits. The paper makes some comments on the cost of human error and the profitability of investment in training, on the importance of practical training and of the role of simulators, and on the need for operators to note and analyse all operational abnormalities, which are so often an advance warning of accidents. The training of special safety teams is examined, with consideration of three aspects: safety assessment, inspection, and action to be taken in the event of accident. Finally, some information is given on the human reliability studies under way and their implications for nuclear safety and training, with emphasis on the valuable assistance rendered in this matter by international organizations. (author)

  17. Mathematical modelling of performance of safety rod and its drive mechanism in sodium cooled fast reactor during scram action

    International Nuclear Information System (INIS)

    Rajan Babu, V.; Thanigaiyarasu, G.; Chellapandi, P.

    2014-01-01

    Highlights: • Mathematical modelling of dynamic behaviour of safety rod during scram action in fast reactor. • Effects of hydraulics, structural interaction and geometry on drop time of safety rod are understood. • Using simplified model, drop time can be assessed replacing detailed CFD analysis. • Sensitivities of the related parameters on drop time are understood. • Experimental validation qualifies the modelling and computer software developed. - Abstract: Performance of safety rod and its drive mechanism which are parts of shutdown systems in sodium cooled fast reactor (SFR) plays a major role in ensuring safe operation of the plant during all the design basis events. The safety rods are to be inserted into the core within a stipulated time during off-normal conditions of the reactor. Mathematical modelling of dynamic behaviour of a safety rod and its drive mechanism in a typical 500 MWe SFR during scram action is considered in the present study. A full-scale prototype system has undergone qualification tests in air, water and in sodium simulating the operating conditions in the reactor. In this paper, the salient features of the safety rod and its mechanism, details related to mathematical modelling and sensitivity of the parameters having influence on drop time are presented. The outcomes of the numerical analysis are compared with the experimental results. In this process, the mathematical model and the computer software developed are validated

  18. THE ROLE OF THE TECHNICAL STAFF IN THE FLIGHT SAFETY

    Directory of Open Access Journals (Sweden)

    M. V. Artyuhovich

    2014-01-01

    Full Text Available The article deals with the role of the maintenance personnel in the safety of flights. Statistical data and the reasons of wrong actions of the maintenance personnel are presented. The reasons of wrong actions of the personnel are analysed within the interrelation of personal and human factors.

  19. Road network safety evaluation using Bayesian hierarchical joint model.

    Science.gov (United States)

    Wang, Jie; Huang, Helai

    2016-05-01

    Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Descriptions and models of safety functions - a prestudy

    International Nuclear Information System (INIS)

    Harms-Ringdahl, L.

    1999-09-01

    A study has been made with the focus on different theories and applications concerning 'safety functions' and 'barriers'. In this report, a safety function is defined as a technical or organisational function with the aim to reduce probability and/or consequences associated with a hazard. The study contains a limited review of practice and theories related to safety, with a focus on applications from nuclear and industrial safety. The study is based on a literature review and interviews. A summary has been made of definitions and terminology, which shows a large variation. E.g. 'barrier' can have a precise physical and technical meaning, or it can include human, technical and organisational elements. Only a few theoretical models describing safety functions have been found. One section of the report summarises problems related to safety issues and procedures. They concern errors in procedure design and user compliance. A proposal for describing and structuring safety functions has been made. Dimensions in a description could be degree of abstraction, systems level, the different parts of the function, etc. A model for safety functions has been proposed, which includes the division of a safety function in a number connected 'safety function elements'. One conclusion is that there is a potential for improving theories and tools for safety work and procedures. Safety function could be a useful concept in such a development, and advantages and disadvantages with this is discussed. If further work should be done, it is recommended that this is made as a combination of theoretical analysis and case studies

  1. Ending on a positive: Examining the role of safety leadership decisions, behaviours and actions in a safety critical situation.

    Science.gov (United States)

    Donovan, Sarah-Louise; Salmon, Paul M; Horberry, Timothy; Lenné, Michael G

    2018-01-01

    Safety leadership is an important factor in supporting safe performance in the workplace. The present case study examined the role of safety leadership during the Bingham Canyon Mine high-wall failure, a significant mining incident in which no fatalities or injuries were incurred. The Critical Decision Method (CDM) was used in conjunction with a self-reporting approach to examine safety leadership in terms of decisions, behaviours and actions that contributed to the incidents' safe outcome. Mapping the analysis onto Rasmussen's Risk Management Framework (Rasmussen, 1997), the findings demonstrate clear links between safety leadership decisions, and emergent behaviours and actions across the work system. Communication and engagement based decisions featured most prominently, and were linked to different leadership practices across the work system. Further, a core sub-set of CDM decision elements were linked to the open flow and exchange of information across the work system, which was critical to supporting the safe outcome. The findings provide practical implications for the development of safety leadership capability to support safety within the mining industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A fuzzy-based model to implement the global safety buildings index assessment for agri-food buildings

    Directory of Open Access Journals (Sweden)

    Francesco Barreca

    2014-06-01

    Full Text Available The latest EU policies focus on the issue of food safety with a view to ensuring adequate and standard quality levels for the food produced and/or consumed within the EC. To that purpose, the environment where agricultural products are manufactured and processed plays a crucial role in achieving food hygiene. As a consequence, it is of the outmost importance to adopt proper building solutions which meet health and hygiene requirements as well as to use suitable tools to measure the levels achieved. Similarly, it is necessary to verify and evaluate the level of workers’ safety and welfare in their working environment. Workers’ safety has not only an ethical and social value but also an economic implication, since possible accidents or environmental stressors are the major causes of the lower efficiency and productivity of workers. Therefore, it is fundamental to design suitable models of analysis that allow assessing buildings as a whole, taking into account both health and hygiene safety as well as workers’ safety and welfare. Hence, this paper proposes an assessment model that, based on an established study protocol and on the application of a fuzzy logic procedure, allows assessing the global safety level of an agri-food building by means of a global safety buildings index. The model here presented is original since it uses fuzzy logic to evaluate the performances of both the technical and environmental systems of an agri-food building in terms of health and hygiene safety of the manufacturing process as well as of workers’ health and safety. The result of the assessment is expressed through a triangular fuzzy membership function which allows carrying out comparative analyses of different buildings. A specific procedure was developed to apply the model to a case study which tested its operational simplicity and the validity of its results. The proposed model allows obtaining a synthetic and global value of the building performance of

  3. Management of safety and safety culture at the NPPs of Ukraine

    International Nuclear Information System (INIS)

    Koltakov, Vladimir

    2002-01-01

    The report contains general aspects of safety and safety culture. The brief description of operational characteristics and basic indexes of atomic power plants at the Ukraine are represented. The information referring to structure of NPPs of Operation organization license-holder, safety responsibility of both Regulatory and Utility Bodies also is given. The main part of the report include seven sections: 1. Practical application of safety management models; 2. erspective on the relationship between safety management and safety culture; 3. The role of leadership in achieving high standards of safety; 4. Current and future challengers that impact on safety culture and safety management (e.g. the impact of competition, changing, economic and political circumstances, workforce demographics, etc.); 5. Key lessons learned from major events; 6. Practical applications of safety culture concepts (e.g. learning organizations, training staff communications, etc.); 7. dvance in human performance. Some of the main pending safety and safety culture problems that are necessary to achieve in the near future are mentioned

  4. System theory and safety models in Swedish, UK, Dutch and Australian road safety strategies.

    Science.gov (United States)

    Hughes, B P; Anund, A; Falkmer, T

    2015-01-01

    Road safety strategies represent interventions on a complex social technical system level. An understanding of a theoretical basis and description is required for strategies to be structured and developed. Road safety strategies are described as systems, but have not been related to the theory, principles and basis by which systems have been developed and analysed. Recently, road safety strategies, which have been employed for many years in different countries, have moved to a 'vision zero', or 'safe system' style. The aim of this study was to analyse the successful Swedish, United Kingdom and Dutch road safety strategies against the older, and newer, Australian road safety strategies, with respect to their foundations in system theory and safety models. Analysis of the strategies against these foundations could indicate potential improvements. The content of four modern cases of road safety strategy was compared against each other, reviewed against scientific systems theory and reviewed against types of safety model. The strategies contained substantial similarities, but were different in terms of fundamental constructs and principles, with limited theoretical basis. The results indicate that the modern strategies do not include essential aspects of systems theory that describe relationships and interdependencies between key components. The description of these strategies as systems is therefore not well founded and deserves further development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Labor unions and safety climate: perceived union safety values and retail employee safety outcomes.

    Science.gov (United States)

    Sinclair, Robert R; Martin, James E; Sears, Lindsay E

    2010-09-01

    Although trade unions have long been recognized as a critical advocate for employee safety and health, safety climate research has not paid much attention to the role unions play in workplace safety. We proposed a multiple constituency model of workplace safety which focused on three central safety stakeholders: top management, ones' immediate supervisor, and the labor union. Safety climate research focuses on management and supervisors as key stakeholders, but has not considered whether employee perceptions about the priority their union places on safety contributes contribute to safety outcomes. We addressed this gap in the literature by investigating unionized retail employee (N=535) perceptions about the extent to which their top management, immediate supervisors, and union valued safety. Confirmatory factor analyses demonstrated that perceived union safety values could be distinguished from measures of safety training, workplace hazards, top management safety values, and supervisor values. Structural equation analyses indicated that union safety values influenced safety outcomes through its association with higher safety motivation, showing a similar effect as that of supervisor safety values. These findings highlight the need for further attention to union-focused measures related to workplace safety as well as further study of retail employees in general. We discuss the practical implications of our findings and identify several directions for future safety research. 2009 Elsevier Ltd. All rights reserved.

  6. The role of aging in resolving the ferrocyanide safety issue

    International Nuclear Information System (INIS)

    Babad, H.; Meacham, J.E.; Simpson, B.C.; Cash, R.J.

    1993-08-01

    A chemical process called aging, in which stored ferrocyanide waste could be dissolved and dispersed among waste tanks, or destroyed by radiolysis and hydrolysis, has been proposed at the Hanford Site. This paper summarizes the results of applied research, characterization, and modeling activities on Hanford Site ferrocyanide waste material that support the existence of a chemical aging mechanism. Test results from waste simulants and actual waste tank materials are presented and compared with theoretical estimates. Chemical and energetic behavior of the materials are the key indicators of destruction or dispersion. Screening experiments on vendor-prepared sodium nickel ferrocyanide and the initial results from core sampling support the concept that aging of ferrocyanide is taking place in the waste tanks at the Hanford Site. This report defines the concept of waste aging and explains the role that aging could play in resolving the Hanford Site ferrocyanide safety issue

  7. The Role of the Regulator in the Field of Safety Culture to Shun Nuclear Accident

    International Nuclear Information System (INIS)

    Kandil, M.M.

    2016-01-01

    The 2011 accident at the Fukushima Daiichi nuclear power plant in Japan has, as might be expected, led to improvements in equipment at plants around the world that have fortified safety systems and allowed for better protection against rare, extreme natural events. Equally important to the process of improving nuclear safety is the emphasis placed on implementing quality improvements to the human side of nuclear safety, a crucial element that is often not considered by those outside the nuclear sector. Ensuring nuclear reactor safety is not only a question of physical protection against all credible threats, enhancing robustness of important safety systems and increasing redundancy of back-up power and water cooling systems, but also one of making certain that qualified and trained staff are supported by effective procedures. However, these assets are valued only in an organizational culture that places a premium on ensuring high levels of safety, or implementing what is called an effective “nuclear safety culture”. Principles, characteristics and factors for effective safety culture are to great extent similar between licencees and regulatory bodies and can be applied for developing RB’s safety. Safety is the primary purpose of the regulatory body, Regulator plays a significant role in the field of nuclear safety even though the prime responsibility for safety belongs to the operator, and it is the regulator which actually decides what is considered to be safe. In order to effectively implement the international principle of high level of nuclear safety, nuclear safety culture should be clearly named as an objective in international nuclear legal acts and the regulator’s responsibility for promotion of nuclear safety culture should be established. What is more difficult for the regulator is finding the right balance of firmness but fairness in dealing with the operator. In addition to enforcing safety regulations, the regulator should have a positive

  8. Modelling safety of multistate systems with ageing components

    Energy Technology Data Exchange (ETDEWEB)

    Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna [Gdynia Maritime University, Department of Mathematics ul. Morska 81-87, Gdynia 81-225 Poland (Poland)

    2016-06-08

    An innovative approach to safety analysis of multistate ageing systems is presented. Basic notions of the ageing multistate systems safety analysis are introduced. The system components and the system multistate safety functions are defined. The mean values and variances of the multistate systems lifetimes in the safety state subsets and the mean values of their lifetimes in the particular safety states are defined. The multi-state system risk function and the moment of exceeding by the system the critical safety state are introduced. Applications of the proposed multistate system safety models to the evaluation and prediction of the safty characteristics of the consecutive “m out of n: F” is presented as well.

  9. Modelling safety of multistate systems with ageing components

    International Nuclear Information System (INIS)

    Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna

    2016-01-01

    An innovative approach to safety analysis of multistate ageing systems is presented. Basic notions of the ageing multistate systems safety analysis are introduced. The system components and the system multistate safety functions are defined. The mean values and variances of the multistate systems lifetimes in the safety state subsets and the mean values of their lifetimes in the particular safety states are defined. The multi-state system risk function and the moment of exceeding by the system the critical safety state are introduced. Applications of the proposed multistate system safety models to the evaluation and prediction of the safty characteristics of the consecutive “m out of n: F” is presented as well.

  10. NASA's Aviation Safety and Modeling Project

    Science.gov (United States)

    Chidester, Thomas R.; Statler, Irving C.

    2006-01-01

    The Aviation Safety Monitoring and Modeling (ASMM) Project of NASA's Aviation Safety program is cultivating sources of data and developing automated computer hardware and software to facilitate efficient, comprehensive, and accurate analyses of the data collected from large, heterogeneous databases throughout the national aviation system. The ASMM addresses the need to provide means for increasing safety by enabling the identification and correcting of predisposing conditions that could lead to accidents or to incidents that pose aviation risks. A major component of the ASMM Project is the Aviation Performance Measuring System (APMS), which is developing the next generation of software tools for analyzing and interpreting flight data.

  11. Improving health care quality and safety: the role of collective learning

    Directory of Open Access Journals (Sweden)

    Singer SJ

    2015-11-01

    Full Text Available Sara J Singer,1–4 Justin K Benzer,4–6 Sami U Hamdan4,6 1Department of Health Policy and Management, Harvard T.H. Chan School of Public Health, Boston, MA, USA; 2Department of Medicine, Harvard Medical School, Boston, MA, USA; 3Mongan Institute for Health Policy, Massachusetts General Hospital, Boston, MA, USA; 4Center for Healthcare Organization and Implementation Research, VA Boston Healthcare System, Boston, MA, USA; 5VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA; 6Department of Health Policy and Management, Boston University School of Public Health, Boston, MA, USA Abstract: Despite decades of effort to improve quality and safety in health care, this goal feels increasingly elusive. Successful examples of improvement are infrequently replicated. This scoping review synthesizes 76 empirical or conceptual studies (out of 1208 originally screened addressing learning in quality or safety improvement, that were published in selected health care and management journals between January 2000 and December 2014 to deepen understanding of the role that collective learning plays in quality and safety improvement. We categorize learning activities using a theoretical model that shows how leadership and environmental factors support collective learning processes and practices, and in turn team and organizational improvement outcomes. By focusing on quality and safety improvement, our review elaborates the premise of learning theory that leadership, environment, and processes combine to create conditions that promote learning. Specifically, we found that learning for quality and safety improvement includes experimentation (including deliberate experimentation, improvisation, learning from failures, exploration, and exploitation, internal and external knowledge acquisition, performance monitoring and comparison, and training. Supportive learning environments are characterized by team characteristics like psychological

  12. The role of quality management in safety case development - Nagra's experience

    International Nuclear Information System (INIS)

    Schneider, Juerg W.; Zuidema, Piet

    2014-01-01

    This paper discusses the role of quality management (QM) in safety case development based on Nagra's experience from a broad range of projects. These include Project Gewahr (L/ILW and HLW, Nagra, 1985), the Wellenberg Project (L/ILW, Nagra, 1994), Project Opalinus Clay (HLW, Nagra, 2002a, 2002b), and recent project work needed in the context of the Swiss site selection process (L/ILW and HLW, Nagra, 2008a, 2008b, 2008c, 2010). Broadly speaking, Nagra's Quality Management policy is focused on ensuring: i) the quality of the disposal system (siting, design and implementation); ii) the quality of the underlying scientific understanding, which are seen as key elements of a credible safety case, along with the quality of the safety calculations themselves and of compiling the safety case, including the drawing of conclusions (Nagra, 2002a). All aspects of QM discussed in this paper should be seen in this context. (authors)

  13. Introduction to safety theory

    International Nuclear Information System (INIS)

    Meyna, A.

    1982-01-01

    After a general introduction to safety theory, safety characteristics are defined and quantified. This is followed by a calculation of the safety characteristics of simple, safety-relevant systems in general and in consideration of common-mode errors. The qualitative and quantitative role of human errors is discussed for various models, and a simple man-machine model is developed for investigation of common-mode errors and human error. The main part of the paper deals with safety analysis in complex systems. After a general review, the common inductive and deductive methods of analysis are presented and commented on and their fields of application discussed. Analytical and simulation codes are presented as methods of evaluation for big, complex event trees - i.e. ''hazard trees in the sense of safety engineering (as a subset of safety relevance). After a basic classification and mathematical formulation of Markovian processes, the author shows that these may be used successfully for calculation of safety characteristics if transition rates are constant and if the number of system states is limited. (orig./RW) [de

  14. Exploring the role of emotional intelligence in behavior-based safety coaching.

    Science.gov (United States)

    Wiegand, Douglas M

    2007-01-01

    Safety coaching is an applied behavior analysis technique that involves interpersonal interaction to understand and manipulate environmental conditions that are directing (i.e., antecedent to) and motivating (i.e., consequences of) safety-related behavior. A safety coach must be skilled in interacting with others so as to understand their perspectives, communicate a point clearly, and be persuasive with behavior-based feedback. This article discusses the evidence-based "ability model" of emotional intelligence and its relevance to the interpersonal aspect of the safety coaching process. Emotional intelligence has potential for improving safety-related efforts and other aspects of individuals' work and personal lives. Safety researchers and practitioners are therefore encouraged to gain an understanding of emotional intelligence and conduct and support research applying this construct toward injury prevention.

  15. Examining the Role of School Resource Officers on School Safety and Crisis Response Teams

    Science.gov (United States)

    Eklund, Katie; Meyer, Lauren; Bosworth, Kris

    2018-01-01

    School resource officers (SROs) are being increasingly employed in schools to respond to incidents of school violence and to help address safety concerns among students and staff. While previous research on school safety and crisis teams has examined the role of school mental health professionals' and administrators, fewer studies have evaluated…

  16. ITER plasma safety interface models and assessments

    International Nuclear Information System (INIS)

    Uckan, N.A.; Bartels, H-W.; Honda, T.; Amano, T.; Boucher, D.; Post, D.; Wesley, J.

    1996-01-01

    Physics models and requirements to be used as a basis for safety analysis studies are developed and physics results motivated by safety considerations are presented for the ITER design. Physics specifications are provided for enveloping plasma dynamic events for Category I (operational event), Category II (likely event), and Category III (unlikely event). A safety analysis code SAFALY has been developed to investigate plasma anomaly events. The plasma response to ex-vessel component failure and machine response to plasma transients are considered

  17. Knowledge management: Role of the the Radiation Safety Information Computational Center (RSICC)

    Science.gov (United States)

    Valentine, Timothy

    2017-09-01

    The Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL) is an information analysis center that collects, archives, evaluates, synthesizes and distributes information, data and codes that are used in various nuclear technology applications. RSICC retains more than 2,000 software packages that have been provided by code developers from various federal and international agencies. RSICC's customers (scientists, engineers, and students from around the world) obtain access to such computing codes (source and/or executable versions) and processed nuclear data files to promote on-going research, to ensure nuclear and radiological safety, and to advance nuclear technology. The role of such information analysis centers is critical for supporting and sustaining nuclear education and training programs both domestically and internationally, as the majority of RSICC's customers are students attending U.S. universities. Additionally, RSICC operates a secure CLOUD computing system to provide access to sensitive export-controlled modeling and simulation (M&S) tools that support both domestic and international activities. This presentation will provide a general review of RSICC's activities, services, and systems that support knowledge management and education and training in the nuclear field.

  18. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    International Nuclear Information System (INIS)

    Pannala, S.; Turner, J. A.; Allu, S.; Elwasif, W. R.; Kalnaus, S.; Simunovic, S.; Kumar, A.; Billings, J. J.; Wang, H.; Nanda, J.

    2015-01-01

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. Gaining an understanding of the role of these processes as well as development of predictive capabilities for design of better performing batteries requires synergy between theory, modeling, and simulation, and fundamental experimental work to support the models. This paper presents the overview of the work performed by the authors aligned with both experimental and computational efforts. In this paper, we describe a new, open source computational environment for battery simulations with an initial focus on lithium-ion systems but designed to support a variety of model types and formulations. This system has been used to create a three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. This paper also provides an overview of the experimental techniques to obtain crucial validation data to benchmark the simulations at various scales for performance as well as abuse. We detail some initial validation using characterization experiments such as infrared and neutron imaging and micro-Raman mapping. In addition, we identify opportunities for future integration of theory, modeling, and experiments

  19. [Design, implementation and evaluation of a management model of patient safety in hospitals in Catalonia, Spain].

    Science.gov (United States)

    Saura, Rosa Maria; Moreno, Pilar; Vallejo, Paula; Oliva, Glòria; Alava, Fernando; Esquerra, Miquel; Davins, Josep; Vallès, Roser; Bañeres, Joaquim

    2014-07-01

    Since its inception in 2006, the Alliance for Patient Safety in Catalonia has played a major role in promoting and shaping a series of projects related to the strategy of the Ministry of Health, Social Services and Equality, for improving patient safety. One such project was the creation of functional units or committees of safety in hospitals in order to facilitate the management of patient safety. The strategy has been implemented in hospitals in Catalonia which were selected based on criteria of representativeness. The intervention was based on two lines of action, one to develop the model framework and the other for its development. Firstly the strategy for safety management based on EFQM (European Foundation for Quality Management) was defined with the development of standards, targets and indicators to implement security while the second part involved the introduction of tools, methodologies and knowledge to the management support of patient safety and risk prevention. The project was developed in four hospital areas considered higher risk, each assuming six goals for safety management. Some of these targets such as the security control panel or system of adverse event reporting were shared. 23 hospitals joined the project in Catalonia. Despite the different situations in each centre, high compliance was achieved in the development of the objectives. In each of the participating areas the security control panel was developed. Stable structures for safety management were established or strengthened. Training in patient safety played and important role, 1415 professionals participated. Through these kind of projects not only have been introduced programs of proven effectiveness in reducing risks, but they also provide to the facilities a work system that allows autonomy in diagnosis and analysis of the different risk situations or centre specific safety issues. Copyright © 2014. Published by Elsevier Espana.

  20. Safety Culture Assessment at Regulatory Body - PNRA Experience of Implementing IAEA Methodology for Safety Culture Self Assessment

    International Nuclear Information System (INIS)

    Bhatti, S.A.N.; Arshad, N.

    2016-01-01

    The prevalence of a good safety culture is equally important for all kind of organizations involved in nuclear business including operating organizations, designers, regulator, etc., and this should be reflected through all the processes and activities of these organizations. The need for inculcating safety culture into regulatory processes and practices is gradually increasing since the major accident at Fukushima. Accordingly, several international fora in last few years repeatedly highlighted the importance of prevalence of safety culture in regulatory bodies as well. The utilisation of concept of safety culture always remained applicable in regulatory activities of PNRA in the form of core values. After the Fukushima accident, PNRA considered it important to check the extent of utilisation of safety culture concept in organizational activities and decided to conduct its “Safety Culture Self-Assessment (SCSA)” for presenting itself as a role model in-order to endorse the fact that safety culture at regulatory authority plays an important role to influence safety culture at licenced facilities.

  1. Evaluating Performance of Safety Management and Occupational Health Using Total Quality Safety Management Model (TQSM

    Directory of Open Access Journals (Sweden)

    E Mohammadfam

    2015-11-01

    Full Text Available Introduction: All organizations, whether public or private, necessitate performance evaluation systems in regard with growth, stability, and development in the competitive fields. One of the existing models for performance evaluation of occupational health and safety management is Total Quality Safety Management model (TQSM. Therefore, the present study aimed to evaluate performance of safety management and occupational health utilizing TQSM model. Methods: In this descriptive-analytic study, the population consisted of 16 individuals, including managers, supervisors, and members of technical protection and work health committee. Then the participants were asked to respond to TQSM questionnaire before and after the implementation of Occupational Health & Safety Advisory Services 18001 (OHSAS18001. Ultimately, the level of each program as well as the TQSM status were determined before and after the implementation of OHSAS18001. Results: The study results showed that the scores obtained by the company before OHSAS 18001’s implementation, was 43.7 out of 312. After implementing OHSAS 18001 in the company and receiving the related certificate, the total score of safety program that company could obtain was 127.12 out of 312 demonstrating a rise of 83.42 scores (26.8%. The paired t-test revealed that mean difference of TQSM scores before and after OHSAS 18001 implementation was proved to be significant (p> 0.05. Conclusion: The study findings demonstrated that TQSM can be regarded as an appropriate model in order to monitor the performance of safety management system and occupational health, since it possesses the ability to quantitatively evaluate the system performance.

  2. Applications of Dynamic Clamp to Cardiac Arrhythmia Research: Role in Drug Target Discovery and Safety Pharmacology Testing

    Directory of Open Access Journals (Sweden)

    Francis A. Ortega

    2018-01-01

    Full Text Available Dynamic clamp, a hybrid-computational-experimental technique that has been used to elucidate ionic mechanisms underlying cardiac electrophysiology, is emerging as a promising tool in the discovery of potential anti-arrhythmic targets and in pharmacological safety testing. Through the injection of computationally simulated conductances into isolated cardiomyocytes in a real-time continuous loop, dynamic clamp has greatly expanded the capabilities of patch clamp outside traditional static voltage and current protocols. Recent applications include fine manipulation of injected artificial conductances to identify promising drug targets in the prevention of arrhythmia and the direct testing of model-based hypotheses. Furthermore, dynamic clamp has been used to enhance existing experimental models by addressing their intrinsic limitations, which increased predictive power in identifying pro-arrhythmic pharmacological compounds. Here, we review the recent advances of the dynamic clamp technique in cardiac electrophysiology with a focus on its future role in the development of safety testing and discovery of anti-arrhythmic drugs.

  3. Model-based testing for software safety

    NARCIS (Netherlands)

    Gurbuz, Havva Gulay; Tekinerdogan, Bedir

    2017-01-01

    Testing safety-critical systems is crucial since a failure or malfunction may result in death or serious injuries to people, equipment, or environment. An important challenge in testing is the derivation of test cases that can identify the potential faults. Model-based testing adopts models of a

  4. Safety first!

    CERN Multimedia

    2016-01-01

    Among the many duties I assumed at the beginning of the year was the ultimate responsibility for Safety at CERN: the responsibility for the physical safety of the personnel, the responsibility for the safe operation of the facilities, and the responsibility to ensure that CERN acts in accordance with the highest standards of radiation and environmental protection.   The Safety Policy document drawn up in September 2014 is an excellent basis for the implementation of Safety in all areas of CERN’s work. I am happy to commit during my mandate to help meet its objectives, not least by ensuring the Organization makes available the necessary means to achieve its Safety objectives. One of the main objectives of the HSE (Occupational Health and Safety and Environmental Protection) unit in the coming months is to enhance the measures to minimise CERN’s impact on the environment. I believe CERN should become a role model for an environmentally-aware scientific research laboratory. Risk ...

  5. The role of cooperatives in food safety management of fresh produce chains: Case studies in four strawberry cooperatives

    NARCIS (Netherlands)

    Kirezieva, K.K.; Bijman, J.; Jacxsens, L.; Luning, P.A.

    2016-01-01

    Recent outbreaks with fresh produce have raised questions regarding management of quality and safety in the complex supply chains, where cooperatives play a central role. The overall objective of this article was to investigate the role of cooperatives in food quality and safety management in the

  6. Predicting safety culture: the roles of employer, operations manager and safety professional.

    Science.gov (United States)

    Wu, Tsung-Chih; Lin, Chia-Hung; Shiau, Sen-Yu

    2010-10-01

    This study explores predictive factors in safety culture. In 2008, a sample 939 employees was drawn from 22 departments of a telecoms firm in five regions in central Taiwan. The sample completed a questionnaire containing four scales: the employer safety leadership scale, the operations manager safety leadership scale, the safety professional safety leadership scale, and the safety culture scale. The sample was then randomly split into two subsamples. One subsample was used for measures development, one for the empirical study. A stepwise regression analysis found four factors with a significant impact on safety culture (R²=0.337): safety informing by operations managers; safety caring by employers; and safety coordination and safety regulation by safety professionals. Safety informing by operations managers (ß=0.213) was by far the most significant predictive factor. The findings of this study provide a framework for promoting a positive safety culture at the group level. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  7. Simulation modeling and analysis in safety. II

    International Nuclear Information System (INIS)

    Ayoub, M.A.

    1981-01-01

    The paper introduces and illustrates simulation modeling as a viable approach for dealing with complex issues and decisions in safety and health. The author details two studies: evaluation of employee exposure to airborne radioactive materials and effectiveness of the safety organization. The first study seeks to define a policy to manage a facility used in testing employees for radiation contamination. An acceptable policy is one that would permit the testing of all employees as defined under regulatory requirements, while not exceeding available resources. The second study evaluates the relationship between safety performance and the characteristics of the organization, its management, its policy, and communication patterns among various functions and levels. Both studies use models where decisions are reached based on the prevailing conditions and occurrence of key events within the simulation environment. Finally, several problem areas suitable for simulation studies are highlighted. (Auth.)

  8. Job hindrances, job resources, and safety performance: The mediating role of job engagement.

    Science.gov (United States)

    Yuan, Zhenyu; Li, Yongjuan; Tetrick, Lois E

    2015-11-01

    Job engagement has received widespread attention in organizational research but has rarely been empirically investigated in the context of safety. In the present study, we examined the mediating role of job engagement in the relationships between job characteristics and safety performance using self-reported data collected at a coal mining company in China. Most of our study hypotheses were supported. Job engagement partially mediated the relationships between job resources and safety performance dimensions. Theoretical and practical implications and directions for future research are also discussed. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. Automatic creation of Markov models for reliability assessment of safety instrumented systems

    International Nuclear Information System (INIS)

    Guo Haitao; Yang Xianhui

    2008-01-01

    After the release of new international functional safety standards like IEC 61508, people care more for the safety and availability of safety instrumented systems. Markov analysis is a powerful and flexible technique to assess the reliability measurements of safety instrumented systems, but it is fallible and time-consuming to create Markov models manually. This paper presents a new technique to automatically create Markov models for reliability assessment of safety instrumented systems. Many safety related factors, such as failure modes, self-diagnostic, restorations, common cause and voting, are included in Markov models. A framework is generated first based on voting, failure modes and self-diagnostic. Then, repairs and common-cause failures are incorporated into the framework to build a complete Markov model. Eventual simplification of Markov models can be done by state merging. Examples given in this paper show how explosively the size of Markov model increases as the system becomes a little more complicated as well as the advancement of automatic creation of Markov models

  10. Macroscopic models for traffic safety.

    NARCIS (Netherlands)

    Oppe, S.

    1988-01-01

    Recently there has been an increased interest in the application of macroscopic models for the description of developments in traffic safety. A discussion was started on the causes of the sudden decrease in the number of fatal and injury accidents after 1974. Before that time these numbers had

  11. A strategy to establish Food Safety Model Repositories.

    Science.gov (United States)

    Plaza-Rodríguez, C; Thoens, C; Falenski, A; Weiser, A A; Appel, B; Kaesbohrer, A; Filter, M

    2015-07-02

    Transferring the knowledge of predictive microbiology into real world food manufacturing applications is still a major challenge for the whole food safety modelling community. To facilitate this process, a strategy for creating open, community driven and web-based predictive microbial model repositories is proposed. These collaborative model resources could significantly improve the transfer of knowledge from research into commercial and governmental applications and also increase efficiency, transparency and usability of predictive models. To demonstrate the feasibility, predictive models of Salmonella in beef previously published in the scientific literature were re-implemented using an open source software tool called PMM-Lab. The models were made publicly available in a Food Safety Model Repository within the OpenML for Predictive Modelling in Food community project. Three different approaches were used to create new models in the model repositories: (1) all information relevant for model re-implementation is available in a scientific publication, (2) model parameters can be imported from tabular parameter collections and (3) models have to be generated from experimental data or primary model parameters. All three approaches were demonstrated in the paper. The sample Food Safety Model Repository is available via: http://sourceforge.net/projects/microbialmodelingexchange/files/models and the PMM-Lab software can be downloaded from http://sourceforge.net/projects/pmmlab/. This work also illustrates that a standardized information exchange format for predictive microbial models, as the key component of this strategy, could be established by adoption of resources from the Systems Biology domain. Copyright © 2015. Published by Elsevier B.V.

  12. A study on the assessment of safety culture impacts on risk of nuclear power plants using common uncertainty source model

    International Nuclear Information System (INIS)

    Lee, Yong Suk; Bang, Young Suk; Chung, Chang Hyun; Jeong, Ji Hwan

    2004-01-01

    Since International Safety Advisory Group (INSAG) introduced term 'safety culture', it has been widely recognized that safety culture has an important role in safety of nuclear power plants. Research on the safety culture can be divided in the following two parts. 1) Assessment of safety culture (by interview, questionnaire, etc.) 2) Assessment of link between safety culture and safety of nuclear power plants. There is a substantial body of literature that addresses the first part, but there is much less work that addresses the second part. To address the second part, most work focused on the development of model incorporating safety culture into Probabilistic Safety Assessment (PSA). One of the most advanced methodology in the area of incorporating safety culture quantitatively into PSA is System Dynamics (SD) model developed by Kwak et al. It can show interactions among various factors which affect employees' productivity and job quality. Also various situations in nuclear power plant can be simulated and time-dependent risk can be recalculated with this model. But this model does not consider minimal cut set (MCS) dependency and uncertainty of risk. Another well-known methodology is Work Process Analysis Model (WPAM) developed by Davoudian. It considers MCS dependency by modifying conditional probability values using SLI methodology. But we found that the modified conditional probability values in WPAM are somewhat artificial and have no sound basis. WPAM tend to overestimate conditional probability of hardware failure, because it uses SLI methodology which is normally used in Human Reliability Analysis (HRA). WPAM also does not consider uncertainty of risk. In this study, we proposed methodology to incorporate safety culture into PSA quantitatively that can deal with MCS dependency and uncertainty of risk by applying the Common Uncertainty Source (CUS) model developed by Zhang. CUS is uncertainty source that is common to basic events, and this can be physical

  13. The roles of government in improving health care quality and safety.

    Science.gov (United States)

    Tang, Ning; Eisenberg, John M; Meyer, Gregg S

    2004-01-01

    Discussions surrounding the role of government have been and continue to be a favorite American pastime. A framework is provided for understanding the 10 roles that government plays in improving health care quality and safety in the United States. Examples of proposed federal actions to reduce medical errors and enhance patient safety are provided to illustrate the 10 roles: (1) purchase health care, (2) provide health care, (3) ensure access to quality care for vulnerable populations, (4) regulate health care markets, (5) support acquisition of new knowledge, (6) develop and evaluate health technologies and practices, (7) monitor health care quality, (8) inform health care decision makers, (9) develop the health care workforce, and (10) convene stakeholders from across the health care system. Government's responsibility to protect and advance the interests of society includes the delivery of high-quality health care. Because the market alone cannot ensure all Americans access to quality health care, the government must preserve the interests of its citizens by supplementing the market where there are gaps and regulating the market where there is inefficiency or unfairness. The ultimate goal of achieving high quality of care will require strong partnerships among federal, state, and local governments and the private sector. Translating general principles regarding the appropriate role of government into specific actions within a rapidly changing, decentralized delivery system will require the combined efforts of the public and private sectors.

  14. Psychometric model for safety culture assessment in nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, C.S. do, E-mail: claudio.souza@ctmsp.mar.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), Av. Professor Lineu Prestes 2468, 05508-000 São Paulo, SP (Brazil); Andrade, D.A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil)

    2017-04-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  15. Psychometric model for safety culture assessment in nuclear research facilities

    International Nuclear Information System (INIS)

    Nascimento, C.S. do; Andrade, D.A.; Mesquita, R.N. de

    2017-01-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  16. Multilevel model of safety climate for furniture industries.

    Science.gov (United States)

    Rodrigues, Matilde A; Arezes, Pedro M; Leão, Celina P

    2015-01-01

    Furniture companies can analyze their safety status using quantitative measures. However, the data needed are not always available and the number of accidents is under-reported. Safety climate scales may be an alternative. However, there are no validated Portuguese scales that account for the specific attributes of the furniture sector. The current study aims to develop and validate an instrument that uses a multilevel structure to measure the safety climate of the Portuguese furniture industry. The Safety Climate in Wood Industries (SCWI) model was developed and applied to the safety climate analysis using three different scales: organizational, group and individual. A multilevel exploratory factor analysis was performed to analyze the factorial structure. The studied companies' safety conditions were also analyzed. Different factorial structures were found between and within levels. In general, the results show the presence of a group-level safety climate. The scores of safety climates are directly and positively related to companies' safety conditions; the organizational scale is the one that best reflects the actual safety conditions. The SCWI instrument allows for the identification of different safety climates in groups that comprise the same furniture company and it seems to reflect those groups' safety conditions. The study also demonstrates the need for a multilevel analysis of the studied instrument.

  17. Integrated model of port oil piping transportation system safety including operating environment threats

    Directory of Open Access Journals (Sweden)

    Kołowrocki Krzysztof

    2017-06-01

    Full Text Available The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  18. Integrated model of port oil piping transportation system safety including operating environment threats

    OpenAIRE

    Kołowrocki, Krzysztof; Kuligowska, Ewa; Soszyńska-Budny, Joanna

    2017-01-01

    The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  19. A preliminary study on the application of system dynamics methodology to organizational safety in nuclear power plants: Learning from past models

    Energy Technology Data Exchange (ETDEWEB)

    Do, Giang [Sol Bridge International School of Business, Daejeon (Korea, Republic of); Kim, Sakil; Lee, Yong Hee; Lee, Yong Hee [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Besides technical design, organizational and human factor are of increasing interest in literature on nuclear safety. Among the methodologies employed to study these factors, System Dynamics (SD) is considered to be suitable for addressing the complexity and dynamicity of the organizational system in nuclear power plants (NPPs). In the following sections, the method will be described and its several prior applications to studying organizational safety will be introduced. An SD model with emphasis on the role of organizational learning in organizational safety will be presented.

  20. Critical Conversations and the Role of Dialogue in Delivering Meaningful Improvements in Safety and Security Culture

    International Nuclear Information System (INIS)

    Brissette, S.

    2016-01-01

    Significant scholarship has been devoted to research into safety culture assessment methodologies. These focus on the development, delivery and interpretations of safety culture surveys and other assessment techniques to assure reliable outcomes that provide insights into the safety culture of an organization across multiple dimensions. The lessons from this scholarship can be applied to the emerging area of security culture assessments as the nuclear industry broadens its focus on this topic. The aim of this paper is to discuss the value of establishing mechanisms, immediately after an assessment and regularly between assessments, to facilitate a structured dialogue among leaders around insights derived from an assessment, to enable ongoing improvements in safety and security culture. The leader’s role includes both understanding the current state of culture, the “what is”, and creating regular, open and informed dialogue around their role in shaping the culture to achieve “what should be”.

  1. Modeling the Relationship between Safety Climate and Safety Performance in a Developing Construction Industry: A Cross-Cultural Validation Study.

    Science.gov (United States)

    Zahoor, Hafiz; Chan, Albert P C; Utama, Wahyudi P; Gao, Ran; Zafar, Irfan

    2017-03-28

    This study attempts to validate a safety performance (SP) measurement model in the cross-cultural setting of a developing country. In addition, it highlights the variations in investigating the relationship between safety climate (SC) factors and SP indicators. The data were collected from forty under-construction multi-storey building projects in Pakistan. Based on the results of exploratory factor analysis, a SP measurement model was hypothesized. It was tested and validated by conducting confirmatory factor analysis on calibration and validation sub-samples respectively. The study confirmed the significant positive impact of SC on safety compliance and safety participation , and negative impact on number of self-reported accidents/injuries . However, number of near-misses could not be retained in the final SP model because it attained a lower standardized path coefficient value. Moreover, instead of safety participation , safety compliance established a stronger impact on SP. The study uncovered safety enforcement and promotion as a novel SC factor, whereas safety rules and work practices was identified as the most neglected factor. The study contributed to the body of knowledge by unveiling the deviations in existing dimensions of SC and SP. The refined model is expected to concisely measure the SP in the Pakistani construction industry, however, caution must be exercised while generalizing the study results to other developing countries.

  2. Ignalina NPP Safety Analysis: Models and Results

    International Nuclear Information System (INIS)

    Uspuras, E.

    1999-01-01

    Research directions, linked to safety assessment of the Ignalina NPP, of the scientific safety analysis group are presented: Thermal-hydraulic analysis of accidents and operational transients; Thermal-hydraulic assessment of Ignalina NPP Accident Localization System and other compartments; Structural analysis of plant components, piping and other parts of Main Circulation Circuit; Assessment of RBMK-1500 reactor core and other. Models and main works carried out last year are described. (author)

  3. Making work safer: testing a model of social exchange and safety management.

    Science.gov (United States)

    DeJoy, David M; Della, Lindsay J; Vandenberg, Robert J; Wilson, Mark G

    2010-04-01

    This study tests a conceptual model that focuses on social exchange in the context of safety management. The model hypothesizes that supportive safety policies and programs should impact both safety climate and organizational commitment. Further, perceived organizational support is predicted to partially mediate both of these relationships. Study outcomes included traditional outcomes for both organizational commitment (e.g., withdrawal behaviors) as well as safety climate (e.g., self-reported work accidents). Questionnaire responses were obtained from 1,723 employees of a large national retailer. Using structural equation modeling (SEM) techniques, all of the model's hypothesized relationships were statistically significant and in the expected directions. The results are discussed in terms of social exchange in organizations and research on safety climate. Maximizing safety is a social-technical enterprise. Expectations related to social exchange and reciprocity figure prominently in creating a positive climate for safety within the organization. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Aviation Safety Risk Modeling: Lessons Learned From Multiple Knowledge Elicitation Sessions

    Science.gov (United States)

    Luxhoj, J. T.; Ancel, E.; Green, L. L.; Shih, A. T.; Jones, S. M.; Reveley, M. S.

    2014-01-01

    Aviation safety risk modeling has elements of both art and science. In a complex domain, such as the National Airspace System (NAS), it is essential that knowledge elicitation (KE) sessions with domain experts be performed to facilitate the making of plausible inferences about the possible impacts of future technologies and procedures. This study discusses lessons learned throughout the multiple KE sessions held with domain experts to construct probabilistic safety risk models for a Loss of Control Accident Framework (LOCAF), FLightdeck Automation Problems (FLAP), and Runway Incursion (RI) mishap scenarios. The intent of these safety risk models is to support a portfolio analysis of NASA's Aviation Safety Program (AvSP). These models use the flexible, probabilistic approach of Bayesian Belief Networks (BBNs) and influence diagrams to model the complex interactions of aviation system risk factors. Each KE session had a different set of experts with diverse expertise, such as pilot, air traffic controller, certification, and/or human factors knowledge that was elicited to construct a composite, systems-level risk model. There were numerous "lessons learned" from these KE sessions that deal with behavioral aggregation, conditional probability modeling, object-oriented construction, interpretation of the safety risk results, and model verification/validation that are presented in this paper.

  5. Modeling of passengers' safety perception for buses on mountainous roads.

    Science.gov (United States)

    Khoo, Hooi Ling; Ahmed, Muaid

    2018-04-01

    This study had developed a passenger safety perception model specifically for buses taking into consideration the various factors, namely driver characteristics, environmental conditions, and bus characteristics using Bayesian Network. The behaviour of bus driver is observed through the bus motion profile, measured in longitudinal, lateral, and vertical accelerations. The road geometry is recorded using GPS and is computed with the aid of the Google map while the perceived bus safety is rated by the passengers in the bus in real time. A total of 13 variables were derived and used in the model development. The developed Bayesian Network model shows that the type of bus and the experience of the driver on the investigated route could have an influence on passenger's perception of their safety on buses. Road geometry is an indirect influencing factor through the driver's behavior. The findings of this model are useful for the authorities to structure an effective strategy to improve the level of perceived bus safety. A high level of bus safety will definitely boost passenger usage confidence which will subsequently increase ridership. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. The effect of road network patterns on pedestrian safety: A zone-based Bayesian spatial modeling approach.

    Science.gov (United States)

    Guo, Qiang; Xu, Pengpeng; Pei, Xin; Wong, S C; Yao, Danya

    2017-02-01

    Pedestrian safety is increasingly recognized as a major public health concern. Extensive safety studies have been conducted to examine the influence of multiple variables on the occurrence of pedestrian-vehicle crashes. However, the explicit relationship between pedestrian safety and road network characteristics remains unknown. This study particularly focused on the role of different road network patterns on the occurrence of crashes involving pedestrians. A global integration index via space syntax was introduced to quantify the topological structures of road networks. The Bayesian Poisson-lognormal (PLN) models with conditional autoregressive (CAR) prior were then developed via three different proximity structures: contiguity, geometry-centroid distance, and road network connectivity. The models were also compared with the PLN counterpart without spatial correlation effects. The analysis was based on a comprehensive crash dataset from 131 selected traffic analysis zones in Hong Kong. The results indicated that higher global integration was associated with more pedestrian-vehicle crashes; the irregular pattern network was proved to be safest in terms of pedestrian crash occurrences, whereas the grid pattern was the least safe; the CAR model with a neighborhood structure based on road network connectivity was found to outperform in model goodness-of-fit, implying the importance of accurately accounting for spatial correlation when modeling spatially aggregated crash data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Model for safety reports including descriptive examples

    International Nuclear Information System (INIS)

    1995-12-01

    Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository

  8. A modeling approach to support safety assurance in the automotive domain

    NARCIS (Netherlands)

    Luo, Y.; Brand, van den M.G.J.; Engelen, L.J.P.; Klabbers, M.D.; Selvaraj, H.; Zydek, D.; Chmaj, G.

    2015-01-01

    As safety standards are widely used in safety-critical domains, such as ISO 26262 in the automotive domain, the use of safety cases to demonstrate product safety is stimulated. It is crucial to ensure that a safety case is both correct and clear. To support this, we proposed to make use of modeling

  9. Metamodel comparison and model comparison for safety assurance

    NARCIS (Netherlands)

    Luo, Y.; Engelen, L.J.P.; Brand, van den M.G.J.; Bondavelli, A.; Ceccarelli, A.; Ortmeier, F.

    2014-01-01

    In safety-critical domains, conceptual models are created in the form of metamodels using different concepts from possibly overlapping domains. Comparison between those conceptual models can facilitate the reuse of models from one domain to another. This paper describes the mappings detected when

  10. The Relationship between Psychological Safety and Employee Voice: The Mediation Role of Affective Commitment and Intrinsic Motivation

    Directory of Open Access Journals (Sweden)

    Özlem YAŞAR UĞURLU

    2016-03-01

    Full Text Available In this quantitative research, we enhance understanding of psychological safety on employee voice behavior by examining mediating role of affective commitment and intrinsic motivation. We examined these relationships among 151 research assistants working full-time for universities. The results suggest that psychological safety is significantly associated with affective commitment whereas it does not significantly influence intrinsic motivation. Furthermore, employee voice behavior is affected by intrinsic motivation but not by affective commitment. Lastly, while affective commitment plays an important role as mediator in the relationship between psychological safety and employee voice although intrinsic motivation does not have a mediating effect. We discuss the implications of these findings for both theory and practice.

  11. Regulator Loss Functions and Hierarchical Modeling for Safety Decision Making.

    Science.gov (United States)

    Hatfield, Laura A; Baugh, Christine M; Azzone, Vanessa; Normand, Sharon-Lise T

    2017-07-01

    Regulators must act to protect the public when evidence indicates safety problems with medical devices. This requires complex tradeoffs among risks and benefits, which conventional safety surveillance methods do not incorporate. To combine explicit regulator loss functions with statistical evidence on medical device safety signals to improve decision making. In the Hospital Cost and Utilization Project National Inpatient Sample, we select pediatric inpatient admissions and identify adverse medical device events (AMDEs). We fit hierarchical Bayesian models to the annual hospital-level AMDE rates, accounting for patient and hospital characteristics. These models produce expected AMDE rates (a safety target), against which we compare the observed rates in a test year to compute a safety signal. We specify a set of loss functions that quantify the costs and benefits of each action as a function of the safety signal. We integrate the loss functions over the posterior distribution of the safety signal to obtain the posterior (Bayes) risk; the preferred action has the smallest Bayes risk. Using simulation and an analysis of AMDE data, we compare our minimum-risk decisions to a conventional Z score approach for classifying safety signals. The 2 rules produced different actions for nearly half of hospitals (45%). In the simulation, decisions that minimize Bayes risk outperform Z score-based decisions, even when the loss functions or hierarchical models are misspecified. Our method is sensitive to the choice of loss functions; eliciting quantitative inputs to the loss functions from regulators is challenging. A decision-theoretic approach to acting on safety signals is potentially promising but requires careful specification of loss functions in consultation with subject matter experts.

  12. The Role of Geographical Indication in Supporting Food Safety: A not Taken for Granted Nexus

    Science.gov (United States)

    2014-01-01

    The paper focuses on the role of geographical indication in supporting strategies of food safety. Starting from the distinction between generic and specific quality, the article analyses the main factors influencing food safety in cases of geographical indication products, by stressing the importance of traceability systems and biodiversity in securing generic and specific quality. In the second part, the paper investigates the coordination problems behind a designation of origin and conditions to foster an effective collective action, a prerequisite to grant food safety through geographical indications. PMID:27800417

  13. Modelling of Condensation in Vertical Tubes for Passive Safety System

    International Nuclear Information System (INIS)

    Papini, D.; Ricotti, M.; Santini, L.; Grgic, D.

    2008-01-01

    Condensation in vertical tubes plays an important role in the performance of heat exchangers in passive safety systems, widely adopted in next generation reactors. Vertical pipe condensers are implemented in the GE-SBWR1000 Isolation Condenser as well as in the Emergency Heat Removal System (EHRS) of the IRIS reactor. The transient and safety analysis is usually carried out by means of best-estimate, thermalhydraulic codes, as RELAP. Suitable heat transfer correlations are required to duly model the two-phase processes. As far as the condensation process is concerned, RELAP5/MOD3.3 adopts the Nusselt correlation to calculate the heat transfer coefficient in laminar conditions and the Shah correlation for turbulent conditions; the maximum of the predictions from laminar and turbulent regimes is used to calculate the condensation heat transfer coefficient. Shah correlation is generally considered as the best empirical correlation for turbulent annular film condensation, but suitable in proper ranges of the various parameters. Nevertheless, recent investigations have pointed out that its validity is highly questionable for high pressure and large diameter tube applications with water, as should be for the utilization for vertical tube condensers in passive safety systems. Thus, a best-estimate model, based on the theory of film condensation on a plain wall, is proposed. Condensate velocity, expressed in terms of Reynolds number, governs the development of three different regime zones: laminar, laminar wavy and turbulent. The best correlation for each regime (Nusselt's for laminar, Kutateladze's for laminar wavy and Chen's for turbulent) is considered and then implemented in RELAP code. Comparison between the Nusselt-Shah and the proposed model shows substantial differences in heat transfer coefficient prediction. Especially, a trend of increasing value of the heat transfer coefficient with tube abscissa (and quality decreasing) is predicted, when turbulence

  14. Safety of street: The role of street design

    Science.gov (United States)

    Rashid, Suhaila Abdul; Wahab, Mohammad Hussaini; Rani, Wan Nurul Mardiah Wan Mohd.; Ismail, Syuhaida

    2017-10-01

    Living in the cities poses many challenges for the vulnerable group of user especially women where they are exposed to many issues related to safety. With the changing of lifestyle and demands, women are expected to play multiple roles in the society and working is one of the tasks. When women are expected to be working as men do, they are no longer occupied at one place. Women nowadays travel on a daily basis and being in the streets is one of the important activities. With the influx of diverse group of people into the country, our streets are dominated by different types of people from different background. Due to these factors, there are possibilities of challenges and threats for users especially women. Therefore, city spaces especially the street become an important public realm for women. The design of the street should be able to make women feel safe as these are the public space where they spend time getting to and from work. The way women perceived their environment might be different from men especially when they fear of crime. Perception of safety will affect the quality of life where fear is an important psychological factor in human life. Living in fear will restrict human's freedom. Therefore, this study aimed to explore women's perception of safety in the streets of Kuala Lumpur. The study adopted a mixed-method approach of qualitative and quantitative in order to understand the safety perception among women that will later establish the relationship between built environment and human psychology. 120 respondents were selected randomly around Jalan Benteng, Jalan Tun Perak, Jalan Melaka and Jalan Melayu. Questionnaire survey forms were distributed and structured observation was conducted at interval period at these streets to examined and assess women's behavior. Finding shows that fear does affect women's perception and physical design of the streets are important in affecting their behavior.

  15. Safety modelling and testing of lithium-ion batteries in electrified vehicles

    Science.gov (United States)

    Deng, Jie; Bae, Chulheung; Marcicki, James; Masias, Alvaro; Miller, Theodore

    2018-04-01

    To optimize the safety of batteries, it is important to understand their behaviours when subjected to abuse conditions. Most early efforts in battery safety modelling focused on either one battery cell or a single field of interest such as mechanical or thermal failure. These efforts may not completely reflect the failure of batteries in automotive applications, where various physical processes can take place in a large number of cells simultaneously. In this Perspective, we review modelling and testing approaches for battery safety under abuse conditions. We then propose a general framework for large-scale multi-physics modelling and experimental work to address safety issues of automotive batteries in real-world applications. In particular, we consider modelling coupled mechanical, electrical, electrochemical and thermal behaviours of batteries, and explore strategies to extend simulations to the battery module and pack level. Moreover, we evaluate safety test approaches for an entire range of automotive hardware sets from cell to pack. We also discuss challenges in building this framework and directions for its future development.

  16. Mathematical modeling of efficacy and safety for anticancer drugs clinical development.

    Science.gov (United States)

    Lavezzi, Silvia Maria; Borella, Elisa; Carrara, Letizia; De Nicolao, Giuseppe; Magni, Paolo; Poggesi, Italo

    2018-01-01

    Drug attrition in oncology clinical development is higher than in other therapeutic areas. In this context, pharmacometric modeling represents a useful tool to explore drug efficacy in earlier phases of clinical development, anticipating overall survival using quantitative model-based metrics. Furthermore, modeling approaches can be used to characterize earlier the safety and tolerability profile of drug candidates, and, thus, the risk-benefit ratio and the therapeutic index, supporting the design of optimal treatment regimens and accelerating the whole process of clinical drug development. Areas covered: Herein, the most relevant mathematical models used in clinical anticancer drug development during the last decade are described. Less recent models were considered in the review if they represent a standard for the analysis of certain types of efficacy or safety measures. Expert opinion: Several mathematical models have been proposed to predict overall survival from earlier endpoints and validate their surrogacy in demonstrating drug efficacy in place of overall survival. An increasing number of mathematical models have also been developed to describe the safety findings. Modeling has been extensively used in anticancer drug development to individualize dosing strategies based on patient characteristics, and design optimal dosing regimens balancing efficacy and safety.

  17. Leveraging Trainees to Improve Quality and Safety at the Point of Care: Three Models for Engagement.

    Science.gov (United States)

    Johnson Faherty, Laura; Mate, Kedar S; Moses, James M

    2016-04-01

    Trainees, as frontline providers who are acutely aware of quality improvement (QI) opportunities and patient safety (PS) issues, are key partners in achieving institutional quality and safety goals. However, as academic medical centers accelerate their initiatives to prioritize QI and PS, trainees have not always been engaged in these efforts. This article describes the development of an organizing framework with three suggested models of varying scopes and time horizons to effectively involve trainees in the quality and safety work of their training institutions. The proposed models, which were developed through a literature review, expert interviews with key stakeholders, and iterative testing, are (1) short-term, team-based, rapid-cycle initiatives; (2) medium-term, unit-based initiatives; and (3) long-term, health-system-wide initiatives. For each, the authors describe the objective, scope, duration, role of faculty leaders, steps for implementation in the clinical setting, pros and cons, and examples in the clinical setting. There are many barriers to designing the ideal training environments that fully engage trainees in QI/PS efforts, including lack of protected time for faculty mentors, time restrictions due to rotation-based training, and structural challenges. However, one of the most promising strategies for overcoming these barriers is integrating QI/PS principles into routine clinical care. These models provide opportunities for trainees to successfully learn and apply quality and safety principles to routine clinical care at the team, unit, and system level.

  18. Using the Job Demands-Resources model to investigate risk perception, safety climate and job satisfaction in safety critical organizations.

    Science.gov (United States)

    Nielsen, Morten Birkeland; Mearns, Kathryn; Matthiesen, Stig Berge; Eid, Jarle

    2011-10-01

    Using the Job Demands-Resources model (JD-R) as a theoretical framework, this study investigated the relationship between risk perception as a job demand and psychological safety climate as a job resource with regard to job satisfaction in safety critical organizations. In line with the JD-R model, it was hypothesized that high levels of risk perception is related to low job satisfaction and that a positive perception of safety climate is related to high job satisfaction. In addition, it was hypothesized that safety climate moderates the relationship between risk perception and job satisfaction. Using a sample of Norwegian offshore workers (N = 986), all three hypotheses were supported. In summary, workers who perceived high levels of risk reported lower levels of job satisfaction, whereas this effect diminished when workers perceived their safety climate as positive. Follow-up analyses revealed that this interaction was dependent on the type of risks in question. The results of this study supports the JD-R model, and provides further evidence for relationships between safety-related concepts and work-related outcomes indicating that organizations should not only develop and implement sound safety procedures to reduce the effects of risks and hazards on workers, but can also enhance other areas of organizational life through a focus on safety. © 2011 The Authors. Scandinavian Journal of Psychology © 2011 The Scandinavian Psychological Associations.

  19. The Role(s) of Process Models in Design Practice

    DEFF Research Database (Denmark)

    Iversen, Søren; Jensen, Mads Kunø Nyegaard; Vistisen, Peter

    2018-01-01

    This paper investigates how design process models are implemented and used in design-driven organisations. The archetypical theoretical framing of process models, describe their primary role as guiding the design process, and assign roles and deliverables throughout the process. We hypothesise...... that the process models also take more communicative roles in practice, both in terms of creating an internal design rationale, as well as demystifying the black box of design thinking to external stakeholders. We investigate this hypothesis through an interview study of four major danish design......-driven organisations, and analyse the different roles their archetypical process models take in their organisations. The main contribution is the identification of three, often overlapping roles, which design process models showed to assume in design-driven organisations: process guidance, adding transparency...

  20. The Role of the Radiation Safety Information Computational Center (RSICC) in Knowledge Management

    International Nuclear Information System (INIS)

    Valentine, T.

    2016-01-01

    Full text: The Radiation Safety Information Computational Center (RSICC) is an information analysis center that collects, archives, evaluates, synthesizes and distributes information, data and codes that are used in various nuclear technology applications. RSICC retains more than 2,000 packages that have been provided by contributors from various agencies. RSICC’s customers obtain access to such computing codes (source and/or executable versions) and processed nuclear data files to promote on-going research, to help ensure nuclear and radiological safety, and to advance nuclear technology. The role of such information analysis centers is critical for supporting and sustaining nuclear education and training programmes both domestically and internationally, as the majority of RSICC’s customers are students attending U.S. universities. RSICC also supports and promotes workshops and seminars in nuclear science and technology to further the use and/or development of computational tools and data. Additionally, RSICC operates a secure CLOUD computing system to provide access to sensitive export-controlled modeling and simulation (M&S) tools that support both domestic and international activities. This presentation will provide a general review of RSICC’s activities, services, and systems that support knowledge management and education and training in the nuclear field. (author

  1. Evaluation of atmospheric dispersion/consequence models supporting safety analysis

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Lazaro, M.A.; Woodard, K.

    1996-01-01

    Two DOE Working Groups have completed evaluation of accident phenomenology and consequence methodologies used to support DOE facility safety documentation. The independent evaluations each concluded that no one computer model adequately addresses all accident and atmospheric release conditions. MACCS2, MATHEW/ADPIC, TRAC RA/HA, and COSYMA are adequate for most radiological dispersion and consequence needs. ALOHA, DEGADIS, HGSYSTEM, TSCREEN, and SLAB are recommended for chemical dispersion and consequence applications. Additional work is suggested, principally in evaluation of new models, targeting certain models for continued development, training, and establishing a Web page for guidance to safety analysts

  2. Job Demands-Control-Support model and employee safety performance.

    Science.gov (United States)

    Turner, Nick; Stride, Chris B; Carter, Angela J; McCaughey, Deirdre; Carroll, Anthony E

    2012-03-01

    The aim of this study was to explore whether work characteristics (job demands, job control, social support) comprising Karasek and Theorell's (1990) Job Demands-Control-Support framework predict employee safety performance (safety compliance and safety participation; Neal and Griffin, 2006). We used cross-sectional data of self-reported work characteristics and employee safety performance from 280 healthcare staff (doctors, nurses, and administrative staff) from Emergency Departments of seven hospitals in the United Kingdom. We analyzed these data using a structural equation model that simultaneously regressed safety compliance and safety participation on the main effects of each of the aforementioned work characteristics, their two-way interactions, and the three-way interaction among them, while controlling for demographic, occupational, and organizational characteristics. Social support was positively related to safety compliance, and both job control and the two-way interaction between job control and social support were positively related to safety participation. How work design is related to employee safety performance remains an important area for research and provides insight into how organizations can improve workplace safety. The current findings emphasize the importance of the co-worker in promoting both safety compliance and safety participation. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  3. The Relationship between Race and Students' Identified Career Role Models and Perceived Role Model Influence

    Science.gov (United States)

    Karunanayake, Danesh; Nauta, Margaret M.

    2004-01-01

    The authors examined whether college students' race was related to the modal race of their identified career role models, the number of identified career role models, and their perceived influence from such models. Consistent with A. Bandura's (1977, 1986) social learning theory, students tended to have role models whose race was the same as…

  4. Role of research in the safety case of future reactor concepts definite needs, confirmatory areas, added value

    International Nuclear Information System (INIS)

    Timo, Okkonen; Juhani, Hyvarinen

    2002-01-01

    In this paper, we aim to describe the role(s) of research when assessing - and finally demonstrating - the safety of future reactor concepts. The term 'research' could be defined in quite a limited fashion, while in this paper, we will use it synonymously to all Research and Design (R and D) work. First, we will provide a top-down planning perspective by identifying the general set of safety factors related to new reactor projects; i.e., factors that have to be accounted for already in the safety case. The research needs can be based on such a set of safety factors and related challenges, and it is crucial that the research requirements remain reasonable. For this, suitable design choices have to be made, such that they limit the criticality of individual plant functions, related systems/ structures/components (SSC), and human actions. In this context, we will discuss the general ways of limiting excessive research needs. The critical plant functions and SSC, in their turn, will require a strong safety demonstration. Once major design decisions have been made according to the aforementioned lines, actual systems are designed, using available equipment or developing new. Research support is needed to establish the technological adequacy and confidence level of each decision at each design level; this is relatively easy where conventional technologies are used, but more challenging if novel technologies come into question. Maturity of technology also correlates strongly with the attainable certainty and qualification of analysis tools. Here, we will describe the general phases of R and D from exploratory work to safety demonstration, and also independent confirmation. We will also touch upon the roles of different actors - the vendor, the licensee and the regulator - as well as their strategies in attacking the above-mentioned safety factors through research. (authors)

  5. Multi-physics Modeling for Improving Li-Ion Battery Safety; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Kim, G.; Santhanagopalan, S.; Yang, C.

    2015-04-21

    Battery performance, cost, and safety must be further improved for larger market share of HEVs/PEVs and penetration into the grid. Significant investment is being made to develop new materials, fine tune existing ones, improve cell and pack designs, and enhance manufacturing processes to increase performance, reduce cost, and make batteries safer. Modeling, simulation, and design tools can play an important role by providing insight on how to address issues, reducing the number of build-test-break prototypes, and accelerating the development cycle of generating products.

  6. A fuzzy-logic-based approach to qualitative safety modelling for marine systems

    International Nuclear Information System (INIS)

    Sii, H.S.; Ruxton, Tom; Wang Jin

    2001-01-01

    Safety assessment based on conventional tools (e.g. probability risk assessment (PRA)) may not be well suited for dealing with systems having a high level of uncertainty, particularly in the feasibility and concept design stages of a maritime or offshore system. By contrast, a safety model using fuzzy logic approach employing fuzzy IF-THEN rules can model the qualitative aspects of human knowledge and reasoning processes without employing precise quantitative analyses. A fuzzy-logic-based approach may be more appropriately used to carry out risk analysis in the initial design stages. This provides a tool for working directly with the linguistic terms commonly used in carrying out safety assessment. This research focuses on the development and representation of linguistic variables to model risk levels subjectively. These variables are then quantified using fuzzy sets. In this paper, the development of a safety model using fuzzy logic approach for modelling various design variables for maritime and offshore safety based decision making in the concept design stage is presented. An example is used to illustrate the proposed approach

  7. Role of systems safety in maintaining affordable safety in the 1980's

    International Nuclear Information System (INIS)

    Hollister, H.; Trauth, C.A. Jr.

    1979-01-01

    Historically, the Department of Energy and its predecessors have used and supported the development of systems safety programs, practices, and principles, finding them by and large adequate, effective, and managerially efficient. Today, attempts are bing made to resolve increasingly complex environmental, safety, and health problems by turning to increasingly complex and detailed regulation as the primary governmental answer. It is increasingly doubtful that such an approach will provide management of these issues and problems that is either effective or efficient. Challenge is issued to those in systems safety to develop and apply systems safety principles and practices more broadly to total operational systems and not just to hardware and to environmental and health protection and not just to safety, so that the total universe of environmental, safety, and health can be managed effectively and efficiently with encouragement of innovation and creativity, using a relatively brief and concise, but adequate, regulatory base

  8. Cryogenic safety organisation at CERN

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    With Safety being a top priority of CERN’s general policy, the Organisation defines and implements a Policy that sets out the general principles governing Safety at CERN. To the end of the attainment of said Safety objectives, the organic units (owners/users of the equipment) are assigned the responsibility for the implementation of the CERN Safety Policy at all levels of the organization, whereas the Health and Safety and Environmental Protection Unit (HSE) has the role of providing assistance for the implementation of the Safety Policy, and a monitoring role related to the implementation of continuous improvement of Safety, compliance with the Safety Rules and the handling of emergency situations. This talk will elaborate on the roles, responsibilities and organisational structure of the different stakeholders within the Organization with regards to Safety, and in particular to cryogenic safety. The roles of actors of particular importance such as the Cryogenic Safety Officers (CSOs) and the Cryogenic Sa...

  9. Biosphere models for safety assesment of radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Proehl, G; Olyslaegers, G; Zeevaert, T [SCK/CEN, Mol (Belgium); Kanyar, B [University of Veszprem (Hungary). Dept. of Radiochemistry; Pinedo, P; Simon, I [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Bergstroem, U; Hallberg, B [Studsvik Ecosafe, Nykoeping (Sweden); Mobbs, S; Chen, Q; Kowe, R [NRPB, Chilton, Didcot (United Kingdom)

    2004-07-01

    The aim of the BioMoSA project has been to contribute in the confidence building of biosphere models, for application in performance assessments of radioactive waste disposal. The detailed objectives of this project are: development and test of practical biosphere models for application in long-term safety studies of radioactive waste disposal to different European locations, identification of features, events and processes that need to be modelled on a site-specific rather than on a generic base, comparison of the results and quantification of the variability of site-specific models developed according to the reference biosphere methodology, development of a generic biosphere tool for application in long term safety studies, comparison of results from site-specific models to those from generic one, Identification of possibilities and limitations for the application of the generic biosphere model. (orig.)

  10. Biosphere models for safety assessment of radioactive waste disposal

    International Nuclear Information System (INIS)

    Proehl, G.; Olyslaegers, G.; Zeevaert, T.; Kanyar, B.; Bergstroem, U.; Hallberg, B.; Mobbs, S.; Chen, Q.; Kowe, R.

    2004-01-01

    The aim of the BioMoSA project has been to contribute in the confidence building of biosphere models, for application in performance assessments of radioactive waste disposal. The detailed objectives of this project are: development and test of practical biosphere models for application in long-term safety studies of radioactive waste disposal to different European locations, identification of features, events and processes that need to be modelled on a site-specific rather than on a generic base, comparison of the results and quantification of the variability of site-specific models developed according to the reference biosphere methodology, development of a generic biosphere tool for application in long term safety studies, comparison of results from site-specific models to those from generic one, Identification of possibilities and limitations for the application of the generic biosphere model. (orig.)

  11. Formal safety assessment based on relative risks model in ship navigation

    Energy Technology Data Exchange (ETDEWEB)

    Hu Shenping [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: sphu@mmc.shmtu.edu.cn; Fang Quangen [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: qgfang@mmc.shmtu.edu.cn; Xia Haibo [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: hbxia@mmc.shmtu.edu.cn; Xi Yongtao [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: xiyt@mmc.shmtu.edu.cn

    2007-03-15

    Formal safety assessment (FSA) is a structured and systematic methodology aiming at enhancing maritime safety. It has been gradually and broadly used in the shipping industry nowadays around the world. On the basis of analysis and conclusion of FSA approach, this paper discusses quantitative risk assessment and generic risk model in FSA, especially frequency and severity criteria in ship navigation. Then it puts forward a new model based on relative risk assessment (MRRA). The model presents a risk-assessment approach based on fuzzy functions and takes five factors into account, including detailed information about accident characteristics. It has already been used for the assessment of pilotage safety in Shanghai harbor, China. Consequently, it can be proved that MRRA is a useful method to solve the problems in the risk assessment of ship navigation safety in practice.

  12. Formal safety assessment based on relative risks model in ship navigation

    International Nuclear Information System (INIS)

    Hu Shenping; Fang Quangen; Xia Haibo; Xi Yongtao

    2007-01-01

    Formal safety assessment (FSA) is a structured and systematic methodology aiming at enhancing maritime safety. It has been gradually and broadly used in the shipping industry nowadays around the world. On the basis of analysis and conclusion of FSA approach, this paper discusses quantitative risk assessment and generic risk model in FSA, especially frequency and severity criteria in ship navigation. Then it puts forward a new model based on relative risk assessment (MRRA). The model presents a risk-assessment approach based on fuzzy functions and takes five factors into account, including detailed information about accident characteristics. It has already been used for the assessment of pilotage safety in Shanghai harbor, China. Consequently, it can be proved that MRRA is a useful method to solve the problems in the risk assessment of ship navigation safety in practice

  13. Generic safety documentation model

    International Nuclear Information System (INIS)

    Mahn, J.A.

    1994-04-01

    This document is intended to be a resource for preparers of safety documentation for Sandia National Laboratories, New Mexico facilities. It provides standardized discussions of some topics that are generic to most, if not all, Sandia/NM facilities safety documents. The material provides a ''core'' upon which to develop facility-specific safety documentation. The use of the information in this document will reduce the cost of safety document preparation and improve consistency of information

  14. An architecture model for communication of safety in public transportation

    NARCIS (Netherlands)

    Rajabalinejad, Mohammad; Horváth, Imre; Pernot, Jean-Paul; Rusák, Zoltan

    2016-01-01

    Safety in transportation is under the influence of the rising complexity, increasing demands for capacity and decreasing cost. Furthermore, the interdisciplinary environment of operation and altered safety regulations invite for a centralized (integrated) modelling/ communication approach. This

  15. Revised health and safety compliance model for the Ghanaian ...

    African Journals Online (AJOL)

    The construction industry in Ghana is faced with employees' negligence in obeying rules and regulations, and acts that conflict with health and safety. The purpose of the paper was to present the revised health and safety (H&S) compliance model for the construction industry based on a developed theoretical six factor ...

  16. Process and plant safety

    CERN Document Server

    Hauptmanns, Ulrich

    2015-01-01

    Accidents in technical installations are random events. Hence they cannot be totally avoided. Only the probability of their occurrence may be reduced and their consequences be mitigated. The book proceeds from hazards caused by materials and process conditions to indicating technical and organizational measures for achieving the objectives of reduction and mitigation. Qualitative methods for identifying weaknesses of design and increasing safety as well as models for assessing accident consequences are presented. The quantitative assessment of the effectiveness of safety measures is explained. The treatment of uncertainties plays a role there. They stem from the random character of the accident and from lacks of knowledge on some of the phenomena to be addressed. The reader is acquainted with the simulation of accidents, safety and risk analyses and learns how to judge the potential and limitations of mathematical modelling. Risk analysis is applied amongst others to “functional safety” and the determinat...

  17. The Role of Interpersonal Relations in Healthcare Team Communication and Patient Safety: A Proposed Model of Interpersonal Process in Teamwork.

    Science.gov (United States)

    Lee, Charlotte Tsz-Sum; Doran, Diane Marie

    2017-06-01

    Patient safety is compromised by medical errors and adverse events related to miscommunications among healthcare providers. Communication among healthcare providers is affected by human factors, such as interpersonal relations. Yet, discussions of interpersonal relations and communication are lacking in healthcare team literature. This paper proposes a theoretical framework that explains how interpersonal relations among healthcare team members affect communication and team performance, such as patient safety. We synthesized studies from health and social science disciplines to construct a theoretical framework that explicates the links among these constructs. From our synthesis, we identified two relevant theories: framework on interpersonal processes based on social relation model and the theory of relational coordination. The former involves three steps: perception, evaluation, and feedback; and the latter captures relational communicative behavior. We propose that manifestations of provider relations are embedded in the third step of the framework on interpersonal processes: feedback. Thus, varying team-member relationships lead to varying collaborative behavior, which affects patient-safety outcomes via a change in team communication. The proposed framework offers new perspectives for understanding how workplace relations affect healthcare team performance. The framework can be used by nurses, administrators, and educators to improve patient safety, team communication, or to resolve conflicts.

  18. Modeling patient safety incidents knowledge with the Categorial Structure method.

    Science.gov (United States)

    Souvignet, Julien; Bousquet, Cédric; Lewalle, Pierre; Trombert-Paviot, Béatrice; Rodrigues, Jean Marie

    2011-01-01

    Following the WHO initiative named World Alliance for Patient Safety (PS) launched in 2004 a conceptual framework developed by PS national reporting experts has summarized the knowledge available. As a second step, the Department of Public Health of the University of Saint Etienne team elaborated a Categorial Structure (a semi formal structure not related to an upper level ontology) identifying the elements of the semantic structure underpinning the broad concepts contained in the framework for patient safety. This knowledge engineering method has been developed to enable modeling patient safety information as a prerequisite for subsequent full ontology development. The present article describes the semantic dissection of the concepts, the elicitation of the ontology requirements and the domain constraints of the conceptual framework. This ontology includes 134 concepts and 25 distinct relations and will serve as basis for an Information Model for Patient Safety.

  19. The role of CFD combustion modeling in hydrogen safety management – IV: Validation based on non-homogeneous hydrogen–air experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: pratap.sathiah78@gmail.com [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Komen, Ed, E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Roekaerts, Dirk, E-mail: d.j.e.m.roekaerts@tudelft.nl [Delft University of Technology, Department of Process and Energy, Section Fluid Mechanics, Mekelweg 2, 2628 CD Delft (Netherlands)

    2016-12-15

    Highlights: • TFC combustion model is further extended to simulate flame propagation in non-homogeneous hydrogen–air mixtures. • TFC combustion model results are in good agreement with large-scale non-homogeneous hydrogen–air experiments. • The model is further extended to account for the non-uniform hydrogen–air–steam mixture for the presence of PARs on hydrogen deflagration. - Abstract: The control of hydrogen in the containment is an important safety issue in NPPs during a loss of coolant accident, because the dynamic pressure loads from hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. In Sathiah et al. (2012b), we presented a computational fluid dynamics based method to assess the consequence of the combustion of uniform hydrogen–air mixtures. In the present article, the extension of this method to and its validation for non-uniform hydrogen–air mixture is described. The method is implemented in the CFD software ANSYS FLUENT using user defined functions. The extended code is validated against non-uniform hydrogen–air experiments in the ENACCEF facility. It is concluded that the maximum pressure and intermediate peak pressure were predicted within 12% and 18% accuracy. The eigen frequencies of the residual pressure wave phenomena were predicted within 4%. It is overall concluded that the current model predicts the considered ENACCEF experiments well.

  20. A multilevel model of patient safety culture: cross-level relationship between organizational culture and patient safety behavior in Taiwan's hospitals.

    Science.gov (United States)

    Chen, I-Chi; Ng, Hui-Fuang; Li, Hung-Hui

    2012-01-01

    As health-care organizations endeavor to improve their quality of care, there is a growing recognition of the importance of establishing a culture of patient safety. The main objective of this study was to investigate the cross-level influences of organizational culture on patient safety behavior in Taiwan's hospitals. The authors measured organizational culture (bureaucratic, supportive and innovative culture), patient safety culture and behavior from 788 hospital workers among 42 hospitals in Taiwan. Multilevel analysis was applied to explore the relationship between organizational culture (group level) and patient safety behavior (individual level). Patient safety culture had positive impact on patient safety behavior in Taiwan's hospitals. The results also indicated that bureaucratic, innovative and supportive organizational cultures all had direct influence on patient safety behavior. However, only supportive culture demonstrated significant moderation effect on the relationship between patient safety culture and patient safety behavior. Furthermore, organizational culture strength was shown correlated negatively with patient safety culture variability. Overall, organizational culture plays an important role in patient safety activities. Safety behaviors of hospital staff are partly influenced by the prevailing cultural norms in their organizations and work groups. For management implications, constructed patient priority from management commitment to leadership is necessary. For academic implications, research on patient safety should consider leadership, group dynamics and organizational learning. These factors are important for understanding the barriers and the possibilities embedded in patient safety. Copyright © 2011 John Wiley & Sons, Ltd.

  1. A model for managing cold-related health and safety risks at workplaces.

    Science.gov (United States)

    Risikko, Tanja; Mäkinen, Tiina M; Påsche, Arvid; Toivonen, Liisa; Hassi, Juhani

    2003-05-01

    Cold conditions increase health and safety risks at work in several ways. The effects of cold have not been sufficiently taken into consideration in occupational safety and health practices. A systematic model and methods were developed for managing cold-related health and safety risks at workplaces. The development work was performed, in a context-bound manner, in pilot industries and workplaces. The model can be integrated into the company's occupational health and safety management system, such as OHSAS 18001. The cold risks are identified and assessed by using a checklist. The preventive measures are systematically planned in a written form specifically produced for cold workplaces. It includes the organisational and technical preventive measures, protective clothing and personal protective equipment, as well as training and information of the personnel. According to the model, all the workers, foremen, occupational safety personnel and occupational health care personnel are trained to recognise the cold risks and to conduct preventive actions. The developed model was evaluated in the context of cold outdoor (construction) and indoor work (fish processing), and by occupational health and safety professionals. According to the feedback, the model and methods were easy to use after a one-day introduction session. The continuum between the cold risk assessment and management worked well, although there was some overlap in the documentation. The cold risk management model and its methods form an essential part of ISO CD 15743 Strategy for risk assessment, management and work practice in cold environments.

  2. Review of SFR Design Safety using Preliminary Regulatory PSA Model

    International Nuclear Information System (INIS)

    Na, Hyun Ju; Lee, Yong Suk; Shin, Andong; Suh, Nam Duk

    2013-01-01

    The major objective of this research is to develop a risk model for regulatory verification of the SFR design, and thereby, make sure that the SFR design is adequate from a risk perspective. In this paper, the development result of preliminary regulatory PSA model of SFR is discussed. In this paper, development and quantification result of preliminary regulatory PSA model of SFR is discussed. It was confirmed that the importance PDRC and ADRC dampers is significant as stated in the result of KAERI PSA model. However, the importance can be changed significantly depending on assumption of CCCG and CCF factor of PDRC and ADRC dampers. SFR (sodium-cooled fast reactor) which is Gen-IV nuclear energy system, is designed to accord with the concept of stability, sustainability and proliferation resistance. KALIMER-600, which is under development in Korea, includes passive safety systems (e. g. passive reactor shutdown, passive residual heat removal, and etc.) as well as active safety systems. Risk analysis from a regulatory perspective is needed to support the regulatory body in its safety and licensing review for SFR (KALIMER-600). Safety issues should be identified in the early design phase in order to prevent the unexpected cost increase and delay of the SFR licensing schedule that may be caused otherwise

  3. Development of the KINS Safety Culture Maturity Model for Self and Independent Assessment

    International Nuclear Information System (INIS)

    Sheen, C.; Choi, Y.S.

    2016-01-01

    Safety culture of an organization is cultivated and affected not only by societal and regulatory environment of the organization, but by its philosophies, policies, events and activities experienced in the process of accomplishing its mission. The safety culture would be continuously changed by the interactions between its members along with time as an organic entity. In order to perform a systematic self- or independent assessment of safety culture, a safety culture assessment model (SCAM) properly reflecting cultural characteristics should be necessary. In addition, a SCAM should be helpful not only to establish correct directions, goals, and strategies for safety culture development, but should anticipating obstacles against safety culture development in the implementation process derived from the assessment. In practical terms, a SCAM should be useful for deriving effective guidelines and implementing of corrective action programs for the evaluated organization. Korea Institute of Nuclear Safety (KINS) performed a research project for six years to develop a SCAM satisfying the above prerequisites for self- and independent assessment. The KINS SCAM was developed based on the five stage safety culture maturity model proposed by Professor Patrick Hudson and was modified into four stages to reflect existing safety culture assessment experiences at Korean nuclear power plants. In order to define the change mechanism of safety culture for development and reversion, the change model proposed by Prochaska and DiClemente was introduced into KINS SCAM and developed into the Spiral Change Model.

  4. Modeling the hospital safety partnership preferences of patients and their families: a discrete choice conjoint experiment

    Directory of Open Access Journals (Sweden)

    Cunningham CE

    2016-07-01

    Full Text Available Charles E Cunningham,1 Tracy Hutchings,2 Jennifer Henderson,2 Heather Rimas,1 Yvonne Chen1 1Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, Michael G DeGroote School of Medicine, McMaster University, 2Department of Quality and Performance, Hamilton Health Sciences, Hamilton, ON, Canada Background: Patients and their families play an important role in efforts to improve health service safety. Objective: The objective of this study is to understand the safety partnership preferences of patients and their families. Method: We used a discrete choice conjoint experiment to model the safety partnership preferences of 1,084 patients or those such as parents acting on their behalf. Participants made choices between hypothetical safety partnerships composed by experimentally varying 15 four-level partnership design attributes. Results: Participants preferred an approach to safety based on partnerships between patients and staff rather than a model delegating responsibility for safety to hospital staff. They valued the opportunity to participate in point of service safety partnerships, such as identity and medication double checks, that might afford an immediate risk reduction. Latent class analysis yielded two segments. Actively engaged participants (73.3% comprised outpatients with higher education, who anticipated more benefits to safety partnerships, were more confident in their ability to contribute, and were more intent on participating. They were more likely to prefer a personal engagement strategy, valued scientific evidence, preferred a more active approach to safety education, and advocated disclosure of errors. The passively engaged segment (26.7% anticipated fewer benefits, were less confident in their ability to contribute, and were less intent on participating. They were more likely to prefer an engagement strategy based on signage. They preferred that staff explain why they thought patients should help

  5. The role of health and safety experts in the management of hazardous and toxic wastes in Indonesia

    Science.gov (United States)

    Supriyadi; Hadiyanto

    2018-02-01

    Occupational Safety and Health Experts in Indonesia have an important role in integrating environmental health and safety factors, including in this regard as human resources assigned to undertake hazardous waste management. Comprehensive knowledge and competence skills need to be carried out responsibly, as an inherent professional occupational safety and health profession. Management leaders should continue to provide training in external agencies responsible for science in the management of toxic waste to enable occupational safety and health experts to improve their performance in the hierarchy of control over the presence of hazardous materials. This paper provides an overview of what strategies and competencies the Occupational Safety and Health expert needs to have in embracing hazardous waste management practices.

  6. Assessment of the Clinical Trainer as a Role Model: A Role Model Apperception Tool (RoMAT)

    NARCIS (Netherlands)

    Jochemsen-van der Leeuw, H. G. A. Ria; van Dijk, Nynke; Wieringa-de Waard, Margreet

    2014-01-01

    Purpose Positive role modeling by clinical trainers is important for helping trainees learn professional and competent behavior. The authors developed and validated an instrument to assess clinical trainers as role models: the Role Model Apperception Tool (RoMAT). Method On the basis of a 2011

  7. Role Model, Hero or Champion? Children's Views Concerning Role Models

    Science.gov (United States)

    Bricheno, Patricia; Thornton, Mary

    2007-01-01

    Background: Claims that male role models can improve the behaviour and achievement of boys are familiar and persistent. However, research has not confirmed such a link; recent UK studies indicate that peers and relatives may be far more important to boys than their teachers. Given the seemingly relentless reference to male teachers as role models…

  8. Nuclear safety culture and nuclear safety supervision

    International Nuclear Information System (INIS)

    Chai Jianshe

    2013-01-01

    In this paper, the author reviews systematically and summarizes up the development process and stage characteristics of nuclear safety culture, analysis the connotation and characteristics of nuclear safety culture, sums up the achievements of our country's nuclear safety supervision, dissects the challenges and problems of nuclear safety supervision. This thesis focused on the relationship between nuclear safety culture and nuclear safety supervision, they are essential differences, but there is a close relationship. Nuclear safety supervision needs to introduce some concepts of nuclear safety culture, lays emphasis on humanistic care and improves its level and efficiency. Nuclear safety supervision authorities must strengthen nuclear safety culture training, conduct the development of nuclear safety culture, make sure that nuclear safety culture can play significant roles. (author)

  9. Transformational leadership and safety performance among nurses: the mediating role of knowledge-related job characteristics.

    Science.gov (United States)

    Lievens, Ilse; Vlerick, Peter

    2014-03-01

    To report the impact of transformational leadership on two dimensions of nurses' safety performance (i.e. safety compliance and safety participation) and to study the mediating role of knowledge-related job characteristics in this relationship. Safety performance refers to the behaviours that employees exhibit to adhere to safety guidelines and to promote health and safety at their workplace. Nurses' safety performance is a major challenge for healthcare settings, urging the need to identify the key determinants and psychological mechanisms that influence it. A cross-sectional survey study. The study was carried out in September 2010 in a large Belgian hospital. We used self-administered questionnaires; 152 nurses participated. The hypotheses were tested using hierarchical regression analyses. In line with our first hypothesis, the results show that transformational leadership exerted a significant positive impact on both dimensions of nurses' safety performance. This positive relation was mediated by knowledge-related job characteristics, supporting our second hypothesis. Head nurses' transformational leadership can enhance nurses' compliance with and participation in safety. Furthermore, transformational head nurses are able to influence the perception that their nurses have about the kind and amount of knowledge in their job, which can also lead to increases in both dimensions of nurses' safety performance. This study therefore demonstrates the key impact that transformational head nurses have, both directly and indirectly, on the safety performance of their nurses. © 2013 John Wiley & Sons Ltd.

  10. Critical roles of orthopaedic surgeon leadership in healthcare systems to improve orthopaedic surgical patient safety.

    Science.gov (United States)

    Kuo, Calvin C; Robb, William J

    2013-06-01

    The prevention of medical and surgical harm remains an important public health problem despite increased awareness and implementation of safety programs. Successful introduction and maintenance of surgical safety programs require both surgeon leadership and collaborative surgeon-hospital alignment. Documentation of success of such surgical safety programs in orthopaedic practice is limited. We describe the scope of orthopaedic surgical patient safety issues, define critical elements of orthopaedic surgical safety, and outline leadership roles for orthopaedic surgeons needed to establish and sustain a culture of safety in contemporary healthcare systems. We identified the most common causes of preventable surgical harm based on adverse and sentinel surgical events reported to The Joint Commission. A comprehensive literature review through a MEDLINE(®) database search (January 1982 through April 2012) to identify pertinent orthopaedic surgical safety articles found 14 articles. Where gaps in orthopaedic literature were identified, the review was supplemented by 22 nonorthopaedic surgical references. Our final review included 36 articles. Six important surgical safety program elements needed to eliminate preventable surgical harm were identified: (1) effective surgical team communication, (2) proper informed consent, (3) implementation and regular use of surgical checklists, (4) proper surgical site/procedure identification, (5) reduction of surgical team distractions, and (6) routine surgical data collection and analysis to improve the safety and quality of surgical patient care. Successful surgical safety programs require a culture of safety supported by all six key surgical safety program elements, active surgeon champions, and collaborative hospital and/or administrative support designed to enhance surgical safety and improve surgical patient outcomes. Further research measuring improvements from such surgical safety systems in orthopaedic care is needed.

  11. The role of cognitive and visual abilities as predictors in the Multifactorial Model of Driving Safety.

    Science.gov (United States)

    Anstey, Kaarin J; Horswill, Mark S; Wood, Joanne M; Hatherly, Christopher

    2012-03-01

    The current study evaluated part of the Multifactorial Model of Driving Safety to elucidate the relative importance of cognitive function and a limited range of standard measures of visual function in relation to the Capacity to Drive Safely. Capacity to Drive Safely was operationalized using three validated screening measures for older drivers. These included an adaptation of the well validated Useful Field of View (UFOV) and two newer measures, namely a Hazard Perception Test (HPT), and a Hazard Change Detection Task (HCDT). Community dwelling drivers (n=297) aged 65-96 were assessed using a battery of measures of cognitive and visual function. Factor analysis of these predictor variables yielded factors including Executive/Speed, Vision (measured by visual acuity and contrast sensitivity), Spatial, Visual Closure, and Working Memory. Cognitive and Vision factors explained 83-95% of age-related variance in the Capacity to Drive Safely. Spatial and Working Memory were associated with UFOV, HPT and HCDT, Executive/Speed was associated with UFOV and HCDT and Vision was associated with HPT. The Capacity to Drive Safely declines with chronological age, and this decline is associated with age-related declines in several higher order cognitive abilities involving manipulation and storage of visuospatial information under speeded conditions. There are also age-independent effects of cognitive function and vision that determine driving safety. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Multiparty Evolutionary Game Model in Coal Mine Safety Management and Its Application

    Directory of Open Access Journals (Sweden)

    Rongwu Lu

    2018-01-01

    Full Text Available Coal mine safety management involves many interested parties and there are complex relationships between them. According to game theory, a multiparty evolutionary game model is established to analyze the selection of strategies. Then, a simplified three-party model is taken as an example to carry out detailed analysis and solution. Based on stability theory of dynamics system and phase diagram analysis, this article studies replicator dynamics of the evolutionary model to make an optimization analysis of the behaviors of those interested parties and the adjustment mechanism of safety management policies and decisions. The results show how the charge of supervision of government department and inspection of coal mine enterprise impact the efficiency of safety management and the effect of constraint measures and incentive and other measures in safety management.

  13. Development of the Monju core safety analysis numerical models by super-COPD code

    International Nuclear Information System (INIS)

    Yamada, Fumiaki; Minami, Masaki

    2010-12-01

    Japan Atomic Energy Agency constructed a computational model for safety analysis of Monju reactor core to be built into a modularized plant dynamics analysis code Super-COPD code, for the purpose of heat removal capability evaluation at the in total 21 defined transients in the annex to the construction permit application. The applicability of this model to core heat removal capability evaluation has been estimated by back to back result comparisons of the constituent models with conventionally applied codes and by application of the unified model. The numerical model for core safety analysis has been built based on the best estimate model validated by the actually measured plant behavior up to 40% rated power conditions, taking over safety analysis models of conventionally applied COPD and HARHO-IN codes, to be capable of overall calculations of the entire plant with the safety protection and control systems. Among the constituents of the analytical model, neutronic-thermal model, heat transfer and hydraulic models of PHTS, SHTS, and water/steam system are individually verified by comparisons with the conventional calculations. Comparisons are also made with the actually measured plant behavior up to 40% rated power conditions to confirm the calculation adequacy and conservativeness of the input data. The unified analytical model was applied to analyses of in total 8 anomaly events; reactivity insertion, abnormal power distribution, decrease and increase of coolant flow rate in PHTS, SHTS and water/steam systems. The resulting maximum values and temporal variations of the key parameters in safety evaluation; temperatures of fuel, cladding, in core sodium coolant and RV inlet and outlet coolant have negligible discrepancies against the existing analysis result in the annex to the construction permit application, verifying the unified analytical model. These works have enabled analytical evaluation of Monju core heat removal capability by Super-COPD utilizing the

  14. Safety management systems and their role in achieving high standards of operational safety

    International Nuclear Information System (INIS)

    Coulston, D.J.; Baylis, C.C.

    2000-01-01

    Achieving high standards of operational safety requires a robust management framework that is visible to all personnel with responsibility for its implementation. The structure of the management framework must ensure that all processes used to manage safety interlink in a logical and coherent manner, that is, they form a management system that leads to continuous improvement in safety performance. This Paper describes BNFL's safety management system (SMS). The SMS has management processes grouped within 5 main elements: 1. Policy, 2. Organisation, 3. Planning and Implementation, 4. Measuring and Reviewing Performance, 5. Audit. These elements reflect the overall process of setting safety objective (from Policy), measuring success and reviewing the performance. Effective implementation of the SMS requires senior managers to demonstrate leadership through their commitment and accountability. However, the SMS as a whole reflects that every employee at every level within BNFL is responsible for safety of operations under their control. The SMS therefore promotes a proactive safety culture and safe operations. The system is formally documented in the Company's Environmental, Health and Safety (EHS) Manual. Within in BNFL Group, the Company structures enables the Manual to provide overall SMS guidance and co-ordination to its range of nuclear businesses. Each business develops the SMS to be appropriate at all levels of its organisation, but ensuring that each level is consistent with the higher level. The Paper concludes with a summary of BNFL's safety performance. (author)

  15. The impact of masculinity on safety oversights, safety priority and safety violations in two male-dominated occupations

    DEFF Research Database (Denmark)

    Nielsen, Kent; Hansen, Claus D.; Bloksgaard, Lotte

    2015-01-01

    Background Although men have a higher risk of occupational injuries than women the role of masculinity for organizational safety outcomes has only rarely been the object of research. Aim The current study investigated the association between masculinity and safety oversights, safety priority......-related context factors (safety leadership, commitment of the safety representative, and safety involvement) and three safety-related outcome factors (safety violations, safety oversights and safety priority) were administered twice 12 months apart to Danish ambulance workers (n = 1157) and slaughterhouse workers...

  16. The role of food irradiation in food safety and food security

    International Nuclear Information System (INIS)

    Kaeferstein, F.K.

    1996-01-01

    In view of the enormous health and economic consequences of foodborne diseases, the World Health Organization (WHO) encourages its Member States to consider all measures to eliminate or reduce foodborne pathogens in food an improve their supplies of safe and nutritious food. With the wholesomeness of irradiated food clearly established by extensive scientific studies, food irradiation has important roles to play in both ensuring food safety and reducing food losses. Food irradiation may be one of the most significant contributions to public health to be made by food science and technology since the introduction of pasteurization. Because the promotion of a safe, nutritious and adequate food supply is an essential component of its primary health care strategy, WHO is concerned that the unwarranted rejection of this process may endanger public health and deprive consumers of the choice of foods processed for safety. (J.P.N.)

  17. The role of TSOs in the context of increasing demand for safety expertise - Expectations of the NPP operators

    International Nuclear Information System (INIS)

    Debes, M.

    2013-01-01

    This series of slides focuses on expectations from NPP operators concerning key points and role of TSOs (Technical Safety Organizations) related to -) skills and competence, with the need for broad systemic views regarding safety issues, -) the whole licensing and regulatory framework, for an efficient safety management in a competitiveness context (the requirements must be clear, reliable, stable, timely and internationally aligned), and -) the harmonization and the standardization in the licensing process to foster nuclear renaissance

  18. The role of the regulator in promoting and evaluating safety culture. Operating experience feedback programme approach

    International Nuclear Information System (INIS)

    Perez, S.

    2002-01-01

    Promoting and Evaluating Safety Culture (S.C.) in Operating Organizations must be one of the main Nuclear Regulator goals to achieve. This can be possible only if each and every one of the regulatory activities inherently involves S.C. It can be seen throughout attitudes, values, uses and practices in both individuals and the whole regulatory organization. One among all the regulatory tools commonly used by regulators to promote and evaluate the commitment of the licensees with safety culture as a whole involves organizational factors and particular attention is directed to the operating organization. This entailed a wide range of activities, including all those related with management of safety performance. Operating Experience Feedback Programme as a tool to enhance safety operation is particularly useful for regulators in the evaluation of the role of S.C. in operating organization. Safety Culture is recognized as a subset of the wider Organizational Culture. Practices that improve organizational effectiveness can also contribute to enhance safety. An effective event investigation methodology is a specific practice, which contributes to a healthy Safety Culture. (author)

  19. The Safety Culture Enactment Questionnaire (SCEQ): Theoretical model and empirical validation.

    Science.gov (United States)

    de Castro, Borja López; Gracia, Francisco J; Tomás, Inés; Peiró, José M

    2017-06-01

    This paper presents the Safety Culture Enactment Questionnaire (SCEQ), designed to assess the degree to which safety is an enacted value in the day-to-day running of nuclear power plants (NPPs). The SCEQ is based on a theoretical safety culture model that is manifested in three fundamental components of the functioning and operation of any organization: strategic decisions, human resources practices, and daily activities and behaviors. The extent to which the importance of safety is enacted in each of these three components provides information about the pervasiveness of the safety culture in the NPP. To validate the SCEQ and the model on which it is based, two separate studies were carried out with data collection in 2008 and 2014, respectively. In Study 1, the SCEQ was administered to the employees of two Spanish NPPs (N=533) belonging to the same company. Participants in Study 2 included 598 employees from the same NPPs, who completed the SCEQ and other questionnaires measuring different safety outcomes (safety climate, safety satisfaction, job satisfaction and risky behaviors). Study 1 comprised item formulation and examination of the factorial structure and reliability of the SCEQ. Study 2 tested internal consistency and provided evidence of factorial validity, validity based on relationships with other variables, and discriminant validity between the SCEQ and safety climate. Exploratory Factor Analysis (EFA) carried out in Study 1 revealed a three-factor solution corresponding to the three components of the theoretical model. Reliability analyses showed strong internal consistency for the three scales of the SCEQ, and each of the 21 items on the questionnaire contributed to the homogeneity of its theoretically developed scale. Confirmatory Factor Analysis (CFA) carried out in Study 2 supported the internal structure of the SCEQ; internal consistency of the scales was also supported. Furthermore, the three scales of the SCEQ showed the expected correlation

  20. The role of CFD combustion modeling in hydrogen safety management – V: Validation for slow deflagrations in homogeneous hydrogen-air experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Holler, Tadej, E-mail: tadej.holler@ijs.si [Jozef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana (Slovenia); Kljenak, Ivo [Jozef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana (Slovenia); Komen, Ed [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2016-12-15

    Highlights: • Validation of the modeling approach for hydrogen deflagration is presented. • Modeling approach is based on two combustion models implemented in ANSYS Fluent. • Experiments with various initial hydrogen concentrations were used for validation. • The effects of heat transfer mechanisms selection were also investigated. • The grid sensitivity analysis was performed as well. - Abstract: The control of hydrogen in the containment is an important safety issue following rapid oxidation of the uncovered reactor core during a severe accident in a Nuclear Power Plant (NPP), because dynamic pressure loads from eventual hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. In the set of our previous papers, a CFD-based method to assess the consequence of fast combustion of uniform hydrogen-air mixtures was presented, followed by its validation for hydrogen-air mixtures with diluents and for non-uniform hydrogen-air mixtures. In the present paper, the extension of this model for the slow deflagration regime is presented and validated using the hydrogen deflagration experiments performed in the medium-scale experimental facility THAI. The proposed method is implemented in the CFD software ANSYS Fluent using user defined functions. The paper describes the combustion model and the main results of code validation. It addresses questions regarding turbulence model selection, effect of heat transfer mechanisms, and grid sensitivity, as well as provides insights into the importance of combustion model choice for the slow deflagration regime of hydrogen combustion in medium-scale and large-scale experimental vessels mimicking the NPP containment.

  1. Development and Execution of the RUNSAFE Runway Safety Bayesian Belief Network Model

    Science.gov (United States)

    Green, Lawrence L.

    2015-01-01

    One focus area of the National Aeronautics and Space Administration (NASA) is to improve aviation safety. Runway safety is one such thrust of investigation and research. The two primary components of this runway safety research are in runway incursion (RI) and runway excursion (RE) events. These are adverse ground-based aviation incidents that endanger crew, passengers, aircraft and perhaps other nearby people or property. A runway incursion is the incorrect presence of an aircraft, vehicle or person on the protected area of a surface designated for the landing and take-off of aircraft; one class of RI events simultaneously involves two aircraft, such as one aircraft incorrectly landing on a runway while another aircraft is taking off from the same runway. A runway excursion is an incident involving only a single aircraft defined as a veer-off or overrun off the runway surface. Within the scope of this effort at NASA Langley Research Center (LaRC), generic RI, RE and combined (RI plus RE, or RUNSAFE) event models have each been developed and implemented as a Bayesian Belief Network (BBN). Descriptions of runway safety issues from the literature searches have been used to develop the BBN models. Numerous considerations surrounding the process of developing the event models have been documented in this report. The event models were then thoroughly reviewed by a Subject Matter Expert (SME) panel through multiple knowledge elicitation sessions. Numerous improvements to the model structure (definitions, node names, node states and the connecting link topology) were made by the SME panel. Sample executions of the final RUNSAFE model have been presented herein for baseline and worst-case scenarios. Finally, a parameter sensitivity analysis for a given scenario was performed to show the risk drivers. The NASA and LaRC research in runway safety event modeling through the use of BBN technology is important for several reasons. These include: 1) providing a means to clearly

  2. Role of in-house safety analysis and research activities in regulatory decision making

    International Nuclear Information System (INIS)

    Pradhan, Santosh K.; Nagrale, Dhanesh B.; Gaikwad, Avinash J.

    2015-01-01

    Achievement of an acceptable level of nuclear safety is an essential requirement for the peaceful utilization of nuclear energy. The success of Global Nuclear Safety Regime is built upon a foundation of research. Such research has been sponsored by Governments and industry and has led to improved designs, safer and more reliable plant operation, and improvements in operating plant efficiency. A key element of this research has been the nuclear safety research performed or sponsored by regulatory organizations. In part, it has been the safety research performed or sponsored by regulatory organizations that has contributed to improved safety and has laid the foundation for activities such as risk-informed regulation, plant life extension, improved plant performance (e.g. power uprates) and new plant designs. The regulatory research program is meant to improve the regulatory authority’s knowledge where uncertainty exists, where safety margins are not well-characterized, and where regulatory decisions need to be confirmed in existing or new designs and technologies. The regulatory body get research initiated either in-house or by the licensee or through technical support organizations (TSOs). Research and analysis carried out within the regulatory body is of immense value in this context. This could be in the form of analysis of safety significant events, analysis of severe accidents, review of operating experience, independent checks of critical designs and even review of operator responses under different situations towards arriving at modifications to training programmes and licensing procedures for operating personnel. A latent benefit of regulatory research carried out by the regulators themselves is that it improves their technical competence considerably which in turn leads to high quality safety reviews and improved regulation in general. The aim of the present paper is to provide an overview of role of regulatory research and the in-house regulatory safety

  3. Multilevel Safety Climate and Safety Performance in the Construction Industry: Development and Validation of a Top-Down Mechanism

    Directory of Open Access Journals (Sweden)

    Ran Gao

    2016-11-01

    Full Text Available The character of construction projects exposes front-line workers to dangers and accidents. Safety climate has been confirmed to be a predictor of safety performance in the construction industry. This study aims to explore the underlying mechanisms of the relationship between multilevel safety climate and safety performance. An integrated model was developed to study how particular safety climate factors of one level affect those of other levels, and then affect safety performance from the top down. A questionnaire survey was administered on six construction sites in Vietnam. A total of 1030 valid questionnaires were collected from this survey. Approximately half of the data were used to conduct exploratory factor analysis (EFA and the remaining data were submitted to structural equation modeling (SEM. Top management commitment (TMC and supervisors’ expectation (SE were identified as factors to represent organizational safety climate (OSC and supervisor safety climate (SSC, respectively, and coworkers’ caring and communication (CCC and coworkers’ role models (CRM were identified as factors to denote coworker safety climate (CSC. SEM results show that OSC factor is positively related to SSC factor and CSC factors significantly. SSC factor could partially mediate the relationship between OSC factor and CSC factors, as well as the relationship between OSC factor and safety performance. CSC factors partially mediate the relationship between OSC factor and safety performance, and the relationship between SSC factor and safety performance. The findings imply that a positive safety culture should be established both at the organizational level and the group level. Efforts from all top management, supervisors, and coworkers should be provided to improve safety performance in the construction industry.

  4. Multilevel Safety Climate and Safety Performance in the Construction Industry: Development and Validation of a Top-Down Mechanism.

    Science.gov (United States)

    Gao, Ran; Chan, Albert P C; Utama, Wahyudi P; Zahoor, Hafiz

    2016-11-08

    The character of construction projects exposes front-line workers to dangers and accidents. Safety climate has been confirmed to be a predictor of safety performance in the construction industry. This study aims to explore the underlying mechanisms of the relationship between multilevel safety climate and safety performance. An integrated model was developed to study how particular safety climate factors of one level affect those of other levels, and then affect safety performance from the top down. A questionnaire survey was administered on six construction sites in Vietnam. A total of 1030 valid questionnaires were collected from this survey. Approximately half of the data were used to conduct exploratory factor analysis (EFA) and the remaining data were submitted to structural equation modeling (SEM). Top management commitment (TMC) and supervisors' expectation (SE) were identified as factors to represent organizational safety climate (OSC) and supervisor safety climate (SSC), respectively, and coworkers' caring and communication (CCC) and coworkers' role models (CRM) were identified as factors to denote coworker safety climate (CSC). SEM results show that OSC factor is positively related to SSC factor and CSC factors significantly. SSC factor could partially mediate the relationship between OSC factor and CSC factors, as well as the relationship between OSC factor and safety performance. CSC factors partially mediate the relationship between OSC factor and safety performance, and the relationship between SSC factor and safety performance. The findings imply that a positive safety culture should be established both at the organizational level and the group level. Efforts from all top management, supervisors, and coworkers should be provided to improve safety performance in the construction industry.

  5. Possibilities and Limitations of Applying Software Reliability Growth Models to Safety- Critical Software

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Jang, Seung Cheol; Ha, Jae Joo

    2006-01-01

    As digital systems are gradually introduced to nuclear power plants (NPPs), the need of quantitatively analyzing the reliability of the digital systems is also increasing. Kang and Sung identified (1) software reliability, (2) common-cause failures (CCFs), and (3) fault coverage as the three most critical factors in the reliability analysis of digital systems. For the estimation of the safety-critical software (the software that is used in safety-critical digital systems), the use of Bayesian Belief Networks (BBNs) seems to be most widely used. The use of BBNs in reliability estimation of safety-critical software is basically a process of indirectly assigning a reliability based on various observed information and experts' opinions. When software testing results or software failure histories are available, we can use a process of directly estimating the reliability of the software using various software reliability growth models such as Jelinski- Moranda model and Goel-Okumoto's nonhomogeneous Poisson process (NHPP) model. Even though it is generally known that software reliability growth models cannot be applied to safety-critical software due to small number of expected failure data from the testing of safety-critical software, we try to find possibilities and corresponding limitations of applying software reliability growth models to safety critical software

  6. The role of human intrusion in the dutch safety study

    International Nuclear Information System (INIS)

    Prij, J.; Weers, A.W.v.; Glasbergen, P.; Slot, A.F.M.

    1989-01-01

    In the Netherlands the OPLA research program in which a large number of possible disposal concepts for radioactive waste is investigated has been carried out recently. The disposal concepts concern three different waste strategies, two disposal techiques and three different types of salt formations. In the OPLA program the post-closure safety of the disposal concepts has been investigated. The paper reviews the role of the human intrusion in this safety study. The hydrological consequences of human activities in the underground are discussed and it has been demonstrated that these effects could be taken into account during the groundwater transport calculations. Four different scenario's for human intrusion in the repository have been studied to obtain an indication of the radiological effects. The results show that extremely high doses may result if, after several hundred years, human beings come into direct contact with highly active waste. For the final assessment the probability that the doses will be received should be calculated. This should be done in a subsequent research

  7. The role of risk assessment and safety analysis in integrated safety assessments

    International Nuclear Information System (INIS)

    Niall, R.; Hunt, M.; Wierman, T.E.

    1990-01-01

    To ensure that the design and operation of both nuclear and non- nuclear hazardous facilities is acceptable, and meets all societal safety expectations, a rigorous deterministic and probabilistic assessment is necessary. An approach is introduced, founded on the concept of an ''Integrated Safety Assessment.'' It merges the commonly performed safety and risk analyses and uses them in concert to provide decision makers with the necessary depth of understanding to achieve ''adequacy.'' 3 refs., 1 fig

  8. Animal models for microbicide safety and efficacy testing.

    Science.gov (United States)

    Veazey, Ronald S

    2013-07-01

    Early studies have cast doubt on the utility of animal models for predicting success or failure of HIV-prevention strategies, but results of multiple human phase 3 microbicide trials, and interrogations into the discrepancies between human and animal model trials, indicate that animal models were, and are, predictive of safety and efficacy of microbicide candidates. Recent studies have shown that topically applied vaginal gels, and oral prophylaxis using single or combination antiretrovirals are indeed effective in preventing sexual HIV transmission in humans, and all of these successes were predicted in animal models. Further, prior discrepancies between animal and human results are finally being deciphered as inadequacies in study design in the model, or quite often, noncompliance in human trials, the latter being increasingly recognized as a major problem in human microbicide trials. Successful microbicide studies in humans have validated results in animal models, and several ongoing studies are further investigating questions of tissue distribution, duration of efficacy, and continued safety with repeated application of these, and other promising microbicide candidates in both murine and nonhuman primate models. Now that we finally have positive correlations with prevention strategies and protection from HIV transmission, we can retrospectively validate animal models for their ability to predict these results, and more importantly, prospectively use these models to select and advance even safer, more effective, and importantly, more durable microbicide candidates into human trials.

  9. Strengthening patient safety in transitions of care: an emerging role for local medical centres in Norway.

    Science.gov (United States)

    Kongsvik, Trond; Halvorsen, Kristin; Osmundsen, Tonje; Gjøsund, Gudveig

    2016-08-30

    Patient safety has gained less attention in primary care in comparison to specialised care. We explore how local medical centres (LMCs) can play a role in strengthening patient safety, both locally and in transitions between care levels. LMCs represent a form of intermediate care organisation in Norway that is increasingly used as a strategy for integrated care policies. The analysis is based on institutional theory and general safety theories. A qualitative design was applied, involving 20 interviews of nursing home managers, managers at local medical centres and administrative personnel. The LMCs mediate important information between care levels, partly by means of workarounds, but also as a result of having access to the different information and communications technology (ICT) systems in use. Their knowledge of local conditions is found to be a key asset. LMCs are providers of competence and training for the local level, as well as serving as quality assurers. As a growing organisational form in Norway, LMCs have to legitimise their role in the health care system. They represent an asset to the local level in terms of information, competence and quality assurance. As they have overlapping competencies, tasks and responsibilities with other parts of the health care system, they add to organisational redundancy and strengthen patient safety.

  10. Integrating model checking with HiP-HOPS in model-based safety analysis

    International Nuclear Information System (INIS)

    Sharvia, Septavera; Papadopoulos, Yiannis

    2015-01-01

    The ability to perform an effective and robust safety analysis on the design of modern safety–critical systems is crucial. Model-based safety analysis (MBSA) has been introduced in recent years to support the assessment of complex system design by focusing on the system model as the central artefact, and by automating the synthesis and analysis of failure-extended models. Model checking and failure logic synthesis and analysis (FLSA) are two prominent MBSA paradigms. Extensive research has placed emphasis on the development of these techniques, but discussion on their integration remains limited. In this paper, we propose a technique in which model checking and Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) – an advanced FLSA technique – can be applied synergistically with benefit for the MBSA process. The application of the technique is illustrated through an example of a brake-by-wire system. - Highlights: • We propose technique to integrate HiP-HOPS and model checking. • State machines can be systematically constructed from HiP-HOPS. • The strengths of different MBSA techniques are combined. • Demonstrated through modeling and analysis of brake-by-wire system. • Root cause analysis is automated and system dynamic behaviors analyzed and verified

  11. A decision model to allocate protective safety barriers and mitigate domino effects

    International Nuclear Information System (INIS)

    Janssens, Jochen; Talarico, Luca; Reniers, Genserik; Sörensen, Kenneth

    2015-01-01

    In this paper, we present a model to support decision-makers about where to locate safety barriers and mitigate the consequences of an accident triggering domino effects. Based on the features of an industrial area that may be affected by domino accidents, and knowing the characteristics of the safety barriers that can be installed to stall the fire propagation between installations, the decision model can help practitioners in their decision-making. The model can be effectively used to decide how to allocate a limited budget in terms of safety barriers. The goal is to maximize the time-to-failure of a chemical installation ensuring a worst case scenario approach. The model is mathematically stated and a flexible and effective solution approach, based on metaheuristics, is developed and tested on an illustrative case study representing a tank storage area of a chemical company. We show that a myopic optimization approach, which does not take into account knock-on effects possibly triggered by an accident, can lead to a distribution of safety barriers that are not effective in mitigating the consequences of a domino accident. Moreover, the optimal allocation of safety barriers, when domino effects are considered, may depend on the so-called cardinality of the domino effects. - Highlights: • A model to allocate safety barriers and mitigate domino effects is proposed. • The goal is to maximize the escalation time of the worst case scenario. • The model provides useful recommendations for decision makers. • A fast metaheuristic approach is proposed to solve such a complex problem. • Numerical simulations on a realistic case study are shown

  12. Safety goals and safety culture opening plenary. 1. WANO's Role in Maintaining and Improving Safety Culture

    International Nuclear Information System (INIS)

    Tsutsumi, Ryosuke

    2001-01-01

    Over the past several years, operators of the world's nuclear plants have compiled an increasingly impressive record of operational performance. Among the many factors that have led to this improvement are the unprecedented cooperation and information exchange among the world's nuclear operators. This paper presents the World Association of Nuclear Operators (WANO) operating experience program and WANO peer review program as examples of the kinds of interaction that are occurring around the globe to maintain and improve the nuclear safety culture. In addition, some unique features of WANO are discussed. WANO has established four programs to help its members communicate effectively with each other. These include the exchange of operating experiences, voluntary peer reviews, professional and technical development, and technical support and exchange. The operating experience program alerts members to events that have occurred at other NPPs and enables members to take appropriate actions to prevent event recurrence. When an event occurs at a plant, management at that plant analyses the event and completes an event report, which is then sent to the WANO regional center to which the plant belongs. After a regional center review and necessary iteration, the report is posted onto the WANO Web site to make it available to all WANO members. By the end of 2000, more than 1500 event reports had been posted. The WANO Peer Review Program is a unique opportunity for members to learn and share the best worldwide insights into safe and reliable nuclear operations. The peer review program has become one of WANO's most important activities containing all essential elements of WANO's mission. A WANO peer review team consists of 15 to 16 people with NPP experience; most team members are from countries outside the one that they are visiting. These teams of peers from plants around the world visit host plants upon request to identify strengths and areas for improvement, with a strong

  13. Fusion safety codes International modeling with MELCOR and ATHENA- INTRA

    CERN Document Server

    Marshall, T; Topilski, L; Merrill, B

    2002-01-01

    For a number of years, the world fusion safety community has been involved in benchmarking their safety analyses codes against experiment data to support regulatory approval of a next step fusion device. This paper discusses the benchmarking of two prominent fusion safety thermal-hydraulic computer codes. The MELCOR code was developed in the US for fission severe accident safety analyses and has been modified for fusion safety analyses. The ATHENA code is a multifluid version of the US-developed RELAP5 code that is also widely used for fusion safety analyses. The ENEA Fusion Division uses ATHENA in conjunction with the INTRA code for its safety analyses. The INTRA code was developed in Germany and predicts containment building pressures, temperatures and fluid flow. ENEA employs the French-developed ISAS system to couple ATHENA and INTRA. This paper provides a brief introduction of the MELCOR and ATHENA-INTRA codes and presents their modeling results for the following breaches of a water cooling line into the...

  14. Model Transformation for a System of Systems Dependability Safety Case

    Science.gov (United States)

    Murphy, Judy; Driskell, Steve

    2011-01-01

    The presentation reviews the dependability and safety effort of NASA's Independent Verification and Validation Facility. Topics include: safety engineering process, applications to non-space environment, Phase I overview, process creation, sample SRM artifact, Phase I end result, Phase II model transformation, fault management, and applying Phase II to individual projects.

  15. Mathematical models for prediction of safety factors for a simply ...

    African Journals Online (AJOL)

    From the results obtained, mathematical prediction models were developed using a least square regression analysis for bending, shear and deflection modes of failure considered in the study. The results showed that the safety factors for material, dead and live load are not unique, but they are influenced by safety index ...

  16. The Role of Leadership in Safety Performance and Results

    Science.gov (United States)

    Caravello, Halina E.

    Employee injury rates in U.S. land-based operations in the energy industry are 2 to 3 times higher relative to other regions in the world. Although a rich literature exists on drivers of safety performance, no previous studies investigated factors influencing this elevated rate. Leadership has been identified as a key contributor to safety outcomes and this grounded theory study drew upon the full range leadership model, situational leadership, and leader-member exchange theories for the conceptual framework. Leadership aspects influencing safety performance were investigated through guided interviews of 27 study participants; data analyses included open and axial coding, and constant comparisons identified higher-level categories. Selective coding integrated categories into the theoretical framework that developed the idealized, transformational leader traits motivating safe behaviors of leading by example, expressing care and concern for employees' well-being, celebrating successes, and communicating the importance of safety (other elements included visibility and commitment). Employee and supervisor participants reported similar views on the idealized leader traits, but low levels of these qualities may be driving elevated injury rates. Identifying these key elements provides the foundation to creating strategies and action plans enabling energy sector companies to prevent employee injuries and fatalities in an industry where tens of thousands of employees are subjected to significant hazards and elevated risks. Creating safer workplaces for U.S. employees by enhancing leaders' skills, building knowledge, and improving behaviors will improve the employees' and their families' lives by reducing the pain and suffering resulting from injuries and fatalities.

  17. Overview of the reactor safety study consequence model

    International Nuclear Information System (INIS)

    Wall, I.B.; Yaniv, S.S.; Blond, R.M.; McGrath, P.E.; Church, H.W.; Wayland, J.R.

    1977-01-01

    The Reactor Safety Study (WASH-1400) is a comprehensive assessment of the potential risk to the public from accidents in light water power reactors. The engineering analysis of the plants is described in detail in the Reactor Safety Study: it provides an estimate of the probability versus magnitude of the release of radioactive material. The consequence model, which is the subject of this paper, describes the progression of the postulated accident after the release of the radioactive material from the containment. A brief discussion of the manner in which the consequence calculations are performed is presented. The emphasis in the description is on the models and data that differ significantly from those previously used for these types of assessments. The results of the risk calculations for 100 light water power reactors are summarized

  18. Modeling the factors affecting unsafe behavior in the construction industry from safety supervisors' perspective.

    Science.gov (United States)

    Khosravi, Yahya; Asilian-Mahabadi, Hassan; Hajizadeh, Ebrahim; Hassanzadeh-Rangi, Narmin; Bastani, Hamid; Khavanin, Ali; Mortazavi, Seyed Bagher

    2014-01-01

    There can be little doubt that the construction is the most hazardous industry in the worldwide. This study was designed to modeling the factors affecting unsafe behavior from the perspective of safety supervisors. The qualitative research was conducted to extract a conceptual model. A structural model was then developed based on a questionnaire survey (n=266) by two stage Structural Equation Model (SEM) approach. An excellent confirmed 12-factors structure explained about 62% of variances unsafe behavior in the construction industry. A good fit structural model indicated that safety climate factors were positively correlated with safety individual factors (Pconstruction workers' engagement in safe or unsafe behavior. In order to improve construction safety performance, more focus on the workplace condition is required.

  19. Control of Industrial Safety Based on Dynamic Characteristics of a Safety Budget-Industrial Accident Rate Model in Republic of Korea.

    Science.gov (United States)

    Choi, Gi Heung; Loh, Byoung Gook

    2017-06-01

    Despite the recent efforts to prevent industrial accidents in the Republic of Korea, the industrial accident rate has not improved much. Industrial safety policies and safety management are also known to be inefficient. This study focused on dynamic characteristics of industrial safety systems and their effects on safety performance in the Republic of Korea. Such dynamic characteristics are particularly important for restructuring of the industrial safety system. The effects of damping and elastic characteristics of the industrial safety system model on safety performance were examined and feedback control performance was explained in view of cost and benefit. The implications on safety policies of restructuring the industrial safety system were also explored. A strong correlation between the safety budget and the industrial accident rate enabled modeling of an industrial safety system with these variables as the input and the output, respectively. A more effective and efficient industrial safety system could be realized by having weaker elastic characteristics and stronger damping characteristics in it. A substantial decrease in total social cost is expected as the industrial safety system is restructured accordingly. A simple feedback control with proportional-integral action is effective in prevention of industrial accidents. Securing a lower level of elastic industrial accident-driving energy appears to have dominant effects on the control performance compared with the damping effort to dissipate such energy. More attention needs to be directed towards physical and social feedbacks that have prolonged cumulative effects. Suggestions for further improvement of the safety system including physical and social feedbacks are also made.

  20. An extended car-following model considering random safety distance with different probabilities

    Science.gov (United States)

    Wang, Jufeng; Sun, Fengxin; Cheng, Rongjun; Ge, Hongxia; Wei, Qi

    2018-02-01

    Because of the difference in vehicle type or driving skill, the driving strategy is not exactly the same. The driving speeds of the different vehicles may be different for the same headway. Since the optimal velocity function is just determined by the safety distance besides the maximum velocity and headway, an extended car-following model accounting for random safety distance with different probabilities is proposed in this paper. The linear stable condition for this extended traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulting from multiple safety distance in the optimal velocity function. The cases of multiple types of safety distances selected with different probabilities are presented. Numerical results show that the traffic flow with multiple safety distances with different probabilities will be more unstable than that with single type of safety distance, and will result in more stop-and-go phenomena.

  1. The spread model of food safety risk under the supply-demand disturbance.

    Science.gov (United States)

    Wang, Jining; Chen, Tingqiang

    2016-01-01

    In this paper, based on the imbalance of the supply-demand relationship of food, we design a spreading model of food safety risk, which is about from food producers to consumers in the food supply chain. We use theoretical analysis and numerical simulation to describe the supply-demand relationship and government supervision behaviors' influence on the risk spread of food safety and the behaviors of the food producers and the food retailers. We also analyze the influence of the awareness of consumer rights protection and the level of legal protection of consumer rights on the risk spread of food safety. This model contributes to the explicit investigation of the influence relationship among supply-demand factors, the regulation behavioral choice of government, the behavioral choice of food supply chain members and food safety risk spread. And this paper provides a new viewpoint for considering food safety risk spread in the food supply chain, which has a great reference for food safety management.

  2. Possibilities and limitations of applying software reliability growth models to safety-critical software

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Jang, Seung Cheol; Ha, Jae Joo

    2007-01-01

    It is generally known that software reliability growth models such as the Jelinski-Moranda model and the Goel-Okumoto's Non-Homogeneous Poisson Process (NHPP) model cannot be applied to safety-critical software due to a lack of software failure data. In this paper, by applying two of the most widely known software reliability growth models to sample software failure data, we demonstrate the possibility of using the software reliability growth models to prove the high reliability of safety-critical software. The high sensitivity of a piece of software's reliability to software failure data, as well as a lack of sufficient software failure data, is also identified as a possible limitation when applying the software reliability growth models to safety-critical software

  3. [Alcohol and work: the role of the company physician in the occupational health and safety management systems].

    Science.gov (United States)

    Patussi, V; Muran, A

    2010-01-01

    The organization of safety in the working places and the increasing attention to behaviours and life styles of workers that may lead to increasing occupational risks are the pick innovative aspects of the recent changes in our country's legislation about occupational safety. In this organization, the role of the company physician is becoming more and more important and his work of evaluation beginning with the knowledge both of the working places and of the workers's lifestyles, is irreplaceable. His role in organizing the managing standards of occupational safety and health cannot be limited to health supervision but must be an essential element in risk assessment in the prevision of workplaces and of safe working conditions, in workers training and information, in organizing the control system of each business. The present paper examines--referring to the current regulation--the duties and functions of a company physician when facing the problems concerning the working risks tied to alcohol assumption.

  4. Analysis and comparison of safety models using average daily, average hourly, and microscopic traffic.

    Science.gov (United States)

    Wang, Ling; Abdel-Aty, Mohamed; Wang, Xuesong; Yu, Rongjie

    2018-02-01

    There have been plenty of traffic safety studies based on average daily traffic (ADT), average hourly traffic (AHT), or microscopic traffic at 5 min intervals. Nevertheless, not enough research has compared the performance of these three types of safety studies, and seldom of previous studies have intended to find whether the results of one type of study is transferable to the other two studies. First, this study built three models: a Bayesian Poisson-lognormal model to estimate the daily crash frequency using ADT, a Bayesian Poisson-lognormal model to estimate the hourly crash frequency using AHT, and a Bayesian logistic regression model for the real-time safety analysis using microscopic traffic. The model results showed that the crash contributing factors found by different models were comparable but not the same. Four variables, i.e., the logarithm of volume, the standard deviation of speed, the logarithm of segment length, and the existence of diverge segment, were positively significant in the three models. Additionally, weaving segments experienced higher daily and hourly crash frequencies than merge and basic segments. Then, each of the ADT-based, AHT-based, and real-time models was used to estimate safety conditions at different levels: daily and hourly, meanwhile, the real-time model was also used in 5 min intervals. The results uncovered that the ADT- and AHT-based safety models performed similar in predicting daily and hourly crash frequencies, and the real-time safety model was able to provide hourly crash frequency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A Neural Network Classifier Model for Forecasting Safety Behavior at Workplaces

    Directory of Open Access Journals (Sweden)

    Fakhradin Ghasemi

    2017-07-01

    Full Text Available The construction industry is notorious for having an unacceptable rate of fatal accidents. Unsafe behavior has been recognized as the main cause of most accidents occurring at workplaces, particularly construction sites. Having a predictive model of safety behavior can be helpful in preventing construction accidents. The aim of the present study was to build a predictive model of unsafe behavior using the Artificial Neural Network approach. A brief literature review was conducted on factors affecting safe behavior at workplaces and nine factors were selected to be included in the study. Data were gathered using a validated questionnaire from several construction sites. Multilayer perceptron approach was utilized for constructing the desired neural network. Several models with various architectures were tested to find the best one. Sensitivity analysis was conducted to find the most influential factors. The model with one hidden layer containing fourteen hidden neurons demonstrated the best performance (Sum of Squared Errors=6.73. The error rate of the model was approximately 21 percent. The results of sensitivity analysis showed that safety attitude, safety knowledge, supportive environment, and management commitment had the highest effects on safety behavior, while the effects from resource allocation and perceived work pressure were identified to be lower than those of others. The complex nature of human behavior at workplaces and the presence of many influential factors make it difficult to achieve a model with perfect performance.

  6. Disentangling the roles of safety climate and safety culture: Multi-level effects on the relationship between supervisor enforcement and safety compliance.

    Science.gov (United States)

    Petitta, Laura; Probst, Tahira M; Barbaranelli, Claudio; Ghezzi, Valerio

    2017-02-01

    Despite increasing attention to contextual effects on the relationship between supervisor enforcement and employee safety compliance, no study has yet explored the conjoint influence exerted simultaneously by organizational safety climate and safety culture. The present study seeks to address this literature shortcoming. We first begin by briefly discussing the theoretical distinctions between safety climate and culture and the rationale for examining these together. Next, using survey data collected from 1342 employees in 32 Italian organizations, we found that employee-level supervisor enforcement, organizational-level safety climate, and autocratic, bureaucratic, and technocratic safety culture dimensions all predicted individual-level safety compliance behaviors. However, the cross-level moderating effect of safety climate was bounded by certain safety culture dimensions, such that safety climate moderated the supervisor enforcement-compliance relationship only under the clan-patronage culture dimension. Additionally, the autocratic and bureaucratic culture dimensions attenuated the relationship between supervisor enforcement and compliance. Finally, when testing the effects of technocratic safety culture and cooperative safety culture, neither safety culture nor climate moderated the relationship between supervisor enforcement and safety compliance. The results suggest a complex relationship between organizational safety culture and safety climate, indicating that organizations with particular safety cultures may be more likely to develop more (or less) positive safety climates. Moreover, employee safety compliance is a function of supervisor safety leadership, as well as the safety climate and safety culture dimensions prevalent within the organization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The Role of the Biosphere in a Safety Case. IGSC topical session at the third IGSC Meeting

    International Nuclear Information System (INIS)

    Russell, Sean; Voinis, Sylvie; Alonso, Jesus; Van Luik, Abraham E.

    2002-01-01

    The safety case is a collection of arguments at a given stage of repository development in support of the long-term safety of the repository. The safety case comprises the findings of a safety assessment and a statement of confidence in these findings. The biosphere is one of the features of a geologic repository system for the long-term management of radioactive waste. The biosphere is important in a safety assessment since it is the place where humans and most organisms live and where regulations are made. Generally speaking, the biosphere is more dynamic than the geosphere and its evolution with time can significantly affect dose estimations and potential impacts of a geologic repository (e.g., climate change, glaciation, civilisation movement, etc.). That is, other parts of the repository system (vault, geosphere) are more robust or constant in time than the ever changing biosphere. Most of the variability associated with future events in the biosphere is driven by climate change. Climatic change and the characteristics of future societies are important sources of uncertainties Biosphere. Uncertainty can be addressed using reference or example biospheres, or alternative safety indicators such as radionuclide concentration or radionuclide flux from the geosphere to the surface biosphere (as indicated by the recent regulatory guidance in Finland), or by comparing predicted radionuclide concentrations from a repository with background levels in the environment. Thus, a Topical Session that focused on the 'Role of the Biosphere in a Safety Case' was organised in the framework of the 3. plenary meeting of the IGSC. This Topical Session reviewed the role of the biosphere in a safety case for geologic disposal of radioactive waste and discusses recent developments in international programs (IAEA Biomass, EC Bioclim), the views of regulators and the strategies being adopted by several implementers for incorporating the biosphere in their safety assessments

  8. Macro-Level Modeling of Urban Transportation Safety: Case-Study of Mashhad (Iran

    Directory of Open Access Journals (Sweden)

    Mohammadi Mehdi

    2017-12-01

    Full Text Available Transportation safety can be aimed at the planning stage in order to adopt safety management and evaluate the long-time policies. The main objective of this research was to make use of crash prediction models in urban transportation planning process. As such, it was attempted to gather data on the results of transportation master plan as well as Mashhad urban crash database. Two modelling method, generalized linear model with negative binomial distribution and geographically weighted regression, were considered as the methods used in this research. Trip variables, including trip by car, trip by bus, trip by bus services and trip by school services, were significant at 95%. The results indicated that both finalized models were competent in predicting urban crashes in Mashhad. Regarding to results urban transportation safety will be improved by changing the modal share for example from private car to bus. The application of the process presented in this study can improve the urban transportation safety management processes and lead to more accurate prediction in terms of crashes across urban traffic areas.

  9. Modeling Safety Barriers and Defense in Depth with Mulitlevel Flow Modeling

    DEFF Research Database (Denmark)

    Lind, Morten

    2012-01-01

    in MFM is a barrier function. It is shown that other barrier types can be represented andthat their combination into barrier chains may be used to analyze and design levels of safety in automated processes.Suggestion for further research on barrier modeling with MFM are included....

  10. Nuclear safety in France

    International Nuclear Information System (INIS)

    Queniart, D.

    1989-12-01

    This paper outlines the organizational and technical aspects of nuclear safety in France. From the organization point of view, the roles of the operator, of the safety authority and of the Institute for Protection and Nuclear Safety are developed. From the technical viewpoint, the evolution of safety since the beginning of the French nuclear programme, the roles of deterministic and probabilistic methods and the severe accident policy (prevention and mitigation, venting containment) in France are explained

  11. Safety Learning, Organizational Contradictions and the Dynamics of Safety Practice

    Science.gov (United States)

    Ripamonti, Silvio Carlo; Scaratti, Giuseppe

    2015-01-01

    Purpose: The purpose of this paper is to explore the enactment of safety routines in a transshipment port. Research on work safety and reliability has largely neglected the role of the workers' knowledge in practice in the enactment of organisational safety. The workers' lack of compliance with safety regulations represents an enduring problem…

  12. A structural equation modelling approach examining the pathways between safety climate, behaviour performance and workplace slipping

    Science.gov (United States)

    Swedler, David I; Verma, Santosh K; Huang, Yueng-Hsiang; Lombardi, David A; Chang, Wen-Ruey; Brennan, Melayne; Courtney, Theodore K

    2015-01-01

    Objective Safety climate has previously been associated with increasing safe workplace behaviours and decreasing occupational injuries. This study seeks to understand the structural relationship between employees’ perceptions of safety climate, performing a safety behaviour (ie, wearing slip-resistant shoes) and risk of slipping in the setting of limited-service restaurants. Methods At baseline, we surveyed 349 employees at 30 restaurants for their perceptions of their safety training and management commitment to safety as well as demographic data. Safety performance was identified as wearing slip-resistant shoes, as measured by direct observation by the study team. We then prospectively collected participants’ hours worked and number of slips weekly for the next 12 weeks. Using a confirmatory factor analysis, we modelled safety climate as a higher order factor composed of previously identified training and management commitment factors. Results The 349 study participants experienced 1075 slips during the 12-week follow-up. Confirmatory factor analysis supported modelling safety climate as a higher order factor composed of safety training and management commitment. In a structural equation model, safety climate indirectly affected prospective risk of slipping through safety performance, but no direct relationship between safety climate and slips was evident. Conclusions Results suggest that safety climate can reduce workplace slips through performance of a safety behaviour as well as suggesting a potential causal mechanism through which safety climate can reduce workplace injuries. Safety climate can be modelled as a higher order factor composed of safety training and management commitment. PMID:25710968

  13. Modeling of requirement specification for safety critical real time computer system using formal mathematical specifications

    International Nuclear Information System (INIS)

    Sankar, Bindu; Sasidhar Rao, B.; Ilango Sambasivam, S.; Swaminathan, P.

    2002-01-01

    Full text: Real time computer systems are increasingly used for safety critical supervision and control of nuclear reactors. Typical application areas are supervision of reactor core against coolant flow blockage, supervision of clad hot spot, supervision of undesirable power excursion, power control and control logic for fuel handling systems. The most frequent cause of fault in safety critical real time computer system is traced to fuzziness in requirement specification. To ensure the specified safety, it is necessary to model the requirement specification of safety critical real time computer systems using formal mathematical methods. Modeling eliminates the fuzziness in the requirement specification and also helps to prepare the verification and validation schemes. Test data can be easily designed from the model of the requirement specification. Z and B are the popular languages used for modeling the requirement specification. A typical safety critical real time computer system for supervising the reactor core of prototype fast breeder reactor (PFBR) against flow blockage is taken as case study. Modeling techniques and the actual model are explained in detail. The advantages of modeling for ensuring the safety are summarized

  14. STAMP model and its application prospect in DCS safety analysis of nuclear power plant

    International Nuclear Information System (INIS)

    Yang Xiaohua; Liu Jie; Liu Zhaohui; Liu Hua; Yu Tonglan

    2013-01-01

    The application of DCS (Digit Control System) is a certain trend for the development of nuclear power. DCS not only improves the control capability of nuclear power system, but also increases the complexity of the system. Traditional safety analysis techniques based on event-chain model are facing challenges. In order to improve the safety performance of nuclear power DCS, the latest research achievement in the field of safety engineering should be focused, studied and applied into nuclear power safety. This paper introduces a new safety analysis model named STAMP (Systems-Theoretic Accident Modeling and Processes) based on the system theory, analyzes its advantages and disadvantages compared with the traditional ones, and explains the basic steps of STPA (STAMP-Based Hazard Analysis) technology. Finally, according to the application status of STAMP at home and abroad, it prospects the development of STAMP in China's nuclear power safety. (authors)

  15. Study on Fuzzy Comprehensive Evaluation Model for the Safety of Mine Belt Conveyor

    Directory of Open Access Journals (Sweden)

    Gong Xiaoyan

    2017-01-01

    Full Text Available To improve the situation of the frequent failures of mine belt conveyor during operation, a model was used to evaluate the safety of mine belt conveyor. Based on the foundation of collecting and analyzing a large quantity of fault information of belt conveyor in the nationwide coal mine, the fault tree model of belt conveyor has been built, then the safety evaluation index system was established by analyzing and removing some secondary indicators. Furthermore, the weighted value of safety evaluation indexs was determined by analytic hierarchy process(AHP, and the single factor fuzzy evaluation matrix was constructed by experts grading method. Additionally, the model was applied in evaluating the security of belt conveyor in Nanliang coal mine. The results shows the security level is recognized to the “general”, which means that this model can be adopted widely in evaluating the safety of mine belt conveyor.

  16. Transformational leadership and employee safety performance: a within-person, between-jobs design.

    Science.gov (United States)

    Inness, Michelle; Turner, Nick; Barling, Julian; Stride, Chris B

    2010-07-01

    We investigated the extent to which the safety performance (i.e., self-reported safety compliance and safety participation) of employees with 2 jobs was predicted by their respective supervisors' transformational leadership behaviors. We compared 2 within-person models: a context-specific model (i.e., transformational leadership experienced by employees in 1 context related to those same employees' safety performance only in that context) and a context-spillover model (i.e., transformational leadership experienced by employees in 1 context related to those same employees' safety performance in the same and other contexts). Our sample comprised 159 "moonlighters" (73 men, 86 women): employees who simultaneously hold 2 different jobs, each with a different supervisor, providing within-person data on the influence of different supervisors on employee safety performance across 2 job contexts. Having controlled for individual differences (negative affectivity and conscientiousness) and work characteristics (e.g., hours worked and length of relationship with supervisor), the context-specific model provided the best fit to the data among alternative nested models. Implications for the role of transformational leadership in promoting workplace safety are discussed.

  17. Non-clinical models: validation, study design and statistical consideration in safety pharmacology.

    Science.gov (United States)

    Pugsley, M K; Towart, R; Authier, S; Gallacher, D J; Curtis, M J

    2010-01-01

    The current issue of the Journal of Pharmacological and Toxicological Methods (JPTM) focuses exclusively on safety pharmacology methods. This is the 7th year the Journal has published on this topic. Methods and models that specifically relate to methods relating to the assessment of the safety profile of a new chemical entity (NCE) prior to first in human (FIH) studies are described. Since the Journal started publishing on this topic there has been a major effort by safety pharmacologists, toxicologists and regulatory scientists within Industry (both large and small Pharma as well as Biotechnology companies) and also from Contract Research Organizations (CRO) to publish the surgical details of the non-clinical methods utilized but also provide important details related to standard and non-standard (or integrated) study models and designs. These details from core battery and secondary (or ancillary) drug safety assessment methods used in drug development programs have been the focus of these special issues and have been an attempt to provide validation of methods. Similarly, the safety pharmacology issues of the Journal provide the most relevant forum for scientists to present novel and modified methods with direct applicability to determination of drug safety-directly to the safety pharmacology scientific community. The content of the manuscripts in this issue includes the introduction of additional important surgical methods, novel data capture and data analysis methods, improved study design and effects of positive control compounds with known activity in the model. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Constructing a Bayesian network model for improving safety behavior of employees at workplaces.

    Science.gov (United States)

    Mohammadfam, Iraj; Ghasemi, Fakhradin; Kalatpour, Omid; Moghimbeigi, Abbas

    2017-01-01

    Unsafe behavior increases the risk of accident at workplaces and needs to be managed properly. The aim of the present study was to provide a model for managing and improving safety behavior of employees using the Bayesian networks approach. The study was conducted in several power plant construction projects in Iran. The data were collected using a questionnaire composed of nine factors, including management commitment, supporting environment, safety management system, employees' participation, safety knowledge, safety attitude, motivation, resource allocation, and work pressure. In order for measuring the score of each factor assigned by a responder, a measurement model was constructed for each of them. The Bayesian network was constructed using experts' opinions and Dempster-Shafer theory. Using belief updating, the best intervention strategies for improving safety behavior also were selected. The result of the present study demonstrated that the majority of employees do not tend to consider safety rules, regulation, procedures and norms in their behavior at the workplace. Safety attitude, safety knowledge, and supporting environment were the best predictor of safety behavior. Moreover, it was determined that instantaneous improvement of supporting environment and employee participation is the best strategy to reach a high proportion of safety behavior at the workplace. The lack of a comprehensive model that can be used for explaining safety behavior was one of the most problematic issues of the study. Furthermore, it can be concluded that belief updating is a unique feature of Bayesian networks that is very useful in comparing various intervention strategies and selecting the best one form them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The Swiss cheese model of safety incidents: are there holes in the metaphor?

    Directory of Open Access Journals (Sweden)

    Perneger Thomas V

    2005-11-01

    Full Text Available Abstract Background Reason's Swiss cheese model has become the dominant paradigm for analysing medical errors and patient safety incidents. The aim of this study was to determine if the components of the model are understood in the same way by quality and safety professionals. Methods Survey of a volunteer sample of persons who claimed familiarity with the model, recruited at a conference on quality in health care, and on the internet through quality-related websites. The questionnaire proposed several interpretations of components of the Swiss cheese model: a slice of cheese, b hole, c arrow, d active error, e how to make the system safer. Eleven interpretations were compatible with this author's interpretation of the model, 12 were not. Results Eighty five respondents stated that they were very or quite familiar with the model. They gave on average 15.3 (SD 2.3, range 10 to 21 "correct" answers out of 23 (66.5% – significantly more than 11.5 "correct" answers that would expected by chance (p Conclusion The interpretations of specific features of the Swiss cheese model varied considerably among quality and safety professionals. Reaching consensus about concepts of patient safety requires further work.

  20. Current role of the USNRC safety research program in support of the regulatory process

    International Nuclear Information System (INIS)

    Levine, S.

    1979-01-01

    The current role of the USNRC's safety research program is shown. Some aspects of this role in the wake of the TMI accident are discused as well as some historical perspective on the development of USNRC's program, its relationship with the NRC mission, an overview of the program activities and some recent research results, and finally the impact of the TMI accident in clarifiying needs for expedited and new research activities, including the need for a greatly enhanced use of probabilistic analysis techniques to improve the coherence of its regulatory process. (author)

  1. Having a New Pair of Glassess : Applying Systemic Accident Models on Road Safety

    OpenAIRE

    Huang, Yu-Hsing

    2007-01-01

    The main purpose of the thesis is to discuss the accident models which underlie accident prevention in general and road safety in particular, and the consequences of relying on a particular model have for actual preventive work. The discussion centres on two main topics. The first topic is whether the underlying accident model, or paradigm, of traditional road safety should be exchanged for a more complex accident model, and if so, which model(s) are appropriate. From a discussion of current ...

  2. The role of the central registry in the safety and security of radioactive materials in Hungary

    International Nuclear Information System (INIS)

    Petoe, A.; Safar, J.; Turi, G.; Abonyi, T.

    2001-01-01

    After a brief overview of the Hungarian legislation and regulatory infrastructure the report provides information on the number of companies and licensees using radioactive materials and explains also the role of the established central registry of radiation sources and radioactive materials in Hungary for improving the safety and security of radioactive materials in the country. It concludes that a reliable nationwide central registry can be a very useful tool for increasing the safety and security of radiation sources and radioactive materials. (author)

  3. Safety learning among young newly employed in three trades – the role of the profession?

    DEFF Research Database (Denmark)

    Grytnes, Regine; Dyreborg, Johnny; Jørgensen, Astrid

    2017-01-01

    Background Young workers aged 18-24 years have an increased risk of injuries at work compared to older workers. This is a problem not only for young workers themselves but also for the society and it lends relevance to the question of how young people learn safe working practices. Safety learning...... to be 'something everyone can do'. Learning safe working practices are shown to be part of canonical and non- canonical professional norms and safety learning is thus an integral part of local and professional induction practices....... is not achieved through information and campaigns alone; it also involves practical training and mentorship at the specific work place. In this paper an analysis of how induction practices relates to safety learning in three different trades is pursued focusing especially on the role of the professions...

  4. More safety by improving the safety culture

    International Nuclear Information System (INIS)

    Laaksonen, J.

    1993-01-01

    In its meeting in 1986, after Chernobyl accident, the INSAG group concluded, that the most important reason for the accident was lack of safety culture. Later the group realized that the safety culture, if it is well enough, can be used as a powerful tool to assess and develop practices affecting safety in any country. A comprehensive view on the various aspects of safety culture was presented in the INSAG-4 report published in 1991. Finland was among the first nations include the concept of safety culture in its regulations. This article describes the roles of government and the regulatory body in creating a national safety culture. How safety culture is seen in the operation of a nuclear power plant is also discussed. (orig.)

  5. Role model and prototype matching

    DEFF Research Database (Denmark)

    Lykkegaard, Eva; Ulriksen, Lars

    2016-01-01

    ’ meetings with the role models affected their thoughts concerning STEM students and attending university. The regular self-to-prototype matching process was shown in real-life role-models meetings to be extended to a more complex three-way matching process between students’ self-perceptions, prototype...

  6. Mental models of safety: do managers and employees see eye to eye?

    Science.gov (United States)

    Prussia, Gregory E; Brown, Karen A; Willis, P Geoff

    2003-01-01

    Disagreements between managers and employees about the causes of accidents and unsafe work behaviors can lead to serious workplace conflicts and distract organizations from the important work of establishing positive safety climate and reducing the incidence of accidents. In this study, the authors examine a model for predicting safe work behaviors and establish the model's consistency across managers and employees in a steel plant setting. Using the model previously described by Brown, Willis, and Prussia (2000), the authors found that when variables influencing safety are considered within a framework of safe work behaviors, managers and employees share a similar mental model. The study then contrasts employees' and managers' specific attributional perceptions. Findings from these more fine-grained analyses suggest the two groups differ in several respects about individual constructs. Most notable were contrasts in attributions based on their perceptions of safety climate. When perceived climate is poor, managers believe employees are responsible and employees believe managers are responsible for workplace safety. However, as perceived safety climate improves, managers and employees converge in their perceptions of who is responsible for safety. It can be concluded from this study that in a highly interdependent work environment, such as a steel mill, where high system reliability is essential and members possess substantial experience working together, managers and employees will share general mental models about the factors that contribute to unsafe behaviors, and, ultimately, to workplace accidents. It is possible that organizations not as tightly coupled as steel mills can use such organizations as benchmarks, seeking ways to create a shared understanding of factors that contribute to a safe work environment. Part of this improvement effort should focus on advancing organizational safety climate. As climate improves, managers and employees are likely to agree

  7. PROBABILISTIC MODEL FOR AIRPORT RUNWAY SAFETY AREAS

    Directory of Open Access Journals (Sweden)

    Stanislav SZABO

    2017-06-01

    Full Text Available The Laboratory of Aviation Safety and Security at CTU in Prague has recently started a project aimed at runway protection zones. The probability of exceeding by a certain distance from the runway in common incident/accident scenarios (take-off/landing overrun/veer-off, landing undershoot is being identified relative to the runway for any airport. As a result, the size and position of safety areas around runways are defined for the chosen probability. The basis for probability calculation is a probabilistic model using statistics from more than 1400 real-world cases where jet airplanes have been involved over the last few decades. Other scientific studies have contributed to understanding the issue and supported the model’s application to different conditions.

  8. A preliminary study on safety stock placement in capacitated supply chains

    NARCIS (Netherlands)

    Sitompul, Carles; Aghezzaf, El Houssaine; Chen, Huan; Dullaert, Wout

    2006-01-01

    The issue of safety stock placement is one of the challenging problems in the area of supply chain design. Safety stocks play a significant role in supply chains since they assure the service level and the smoothness of the flow of materials throughout the chain. Some special models of the problem

  9. A PRELIMINARY STUDY ON SAFETY STOCK PLACEMENT IN CAPACITATED SUPPLY CHAINS

    NARCIS (Netherlands)

    Sitompul, Carles; Aghezzaf, El Houssaine; Chen, Huan; Dullaert, Wout; Dolgui, A.; Morel, G.; Pereira, C.E.

    2006-01-01

    Abstract The issue of safety stock placement is one of the challenging problems in the area of supply chain design. Safety stocks play a significant role in supply chains since they assure the service level and the smoothness of the flow of materials throughout the chain. Some special models of the

  10. Role of seismic PRA in seismic safety decisions of nuclear power plants

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Kennedy, R.P.; Sues, R.H.

    1985-01-01

    This paper highlights the important roles that seismic probabilistic risk assessments (PRAs) can play in the seismic safety decisions of nuclear power plants. If a seismic PRA has been performed for a plant, its results can be utilized to evaluate the seismic capability beyond the safe shutdown event (SSE). Seismic fragilities of key structures and equipment, fragilities of dominant plant damage states and the frequencies of occurrence of these plant damage states are reviewed to establish the seismic safety of the plant beyond the SSE level. Guidelines for seismic margin reviews and upgrading may be developed by first identifying the generic classes of structures and equipment that have been shown to be dominant risk contributors in the completed seismic PRAs, studying the underlying causes for their contribution and examining why certain other items (e.g., piping) have not proved to be high-risk-contributors

  11. Discussion on building safety culture inside a nuclear safety regulatory body

    International Nuclear Information System (INIS)

    Fan Yumao

    2013-01-01

    A strong internal safety culture plays a key role in improving the performance of a nuclear regulatory body. This paper discusses the definition of internal safety culture of nuclear regulatory bodies, and explains the functions that the safety culture to facilitate the nuclear safety regulation and finally puts forward some thoughts about building internal safety culture inside regulatory bodies. (author)

  12. The link between leadership and safety outcomes in hospitals.

    Science.gov (United States)

    Squires, Mae; Tourangeau, Ann; Spence Laschinger, Heather K; Doran, Diane

    2010-11-01

    To test and refine a model examining relationships among leadership, interactional justice, quality of the nursing work environment, safety climate and patient and nurse safety outcomes. The quality of nursing work environments may pose serious threats to patient and nurse safety. Justice is an important element in work environments that support safety initiatives yet little research has been done that looks at how leader interactional justice influences safety outcomes. A cross-sectional survey was conducted with 600 acute care registered nurses (RNs) to test and refine a model linking interactional justice, the quality of nurse leader-nurse relationships, work environment and safety climate with patient and nurse outcomes. In general the hypothesized model was supported. Resonant leadership and interactional justice influenced the quality of the leader-nurse relationship which in turn affected the quality of the work environment and safety climate. This ultimately was associated with decreased reported medication errors, intentions to leave and emotional exhaustion. Quality relationships based on fairness and empathy play a pivotal role in creating positive safety climates and work environments. To advocate for safe work environments, managers must strive to develop high-quality relationships through just leadership practices. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  13. FMCSA safety program effectiveness measurement : carrier intervention effectiveness model, version 1.0 : [analysis brief].

    Science.gov (United States)

    2015-01-01

    The Carrier Intervention Effectiveness Model (CIEM) : provides the Federal Motor Carrier Safety : Administration (FMCSA) with a tool for measuring : the safety benefits of carrier interventions conducted : under the Compliance, Safety, Accountability...

  14. Study on development of education model and its evaluation system for radiation safety

    CERN Document Server

    Seo, K W; Nam, Y M

    2002-01-01

    As one of the detailed action strategy of multi object preparedness for strengthening of radiation safety management by MOST, this project was performed, in order to promote the safety culture for user and radiation worker through effective education program. For the prevention of radiological accident and effective implementation of radiation safety education and training, this project has been carried out the development of education model and its evaluation system on radiation safety. In the development of new education model, education course was classified; new and old radiation worker, temporary worker, lecturer and manager. The education model includes the contents of expanding the education opportunity and workplace training. In the development of evaluation system, the recognition criteria for commission-education institute and inside-education institute which should establish by law were suggested for evaluation program. The recognition criteria contains classification, student, method, facilities, ...

  15. Determining supply chain safety stock level and location

    Directory of Open Access Journals (Sweden)

    Bahareh Amirjabbari

    2014-01-01

    Full Text Available Purpose: The lean methodology and its principles have widely been applied in supply chain management in recent decades. Manufacturers are one of the most important contributors in a supply chain and inventory plays a paramount role for them to become lean. Therefore, there should be appropriate management of inventory and all of its drivers in accordance with a lean strategy. Safety stock is one of the main drivers of inventory; it protects against increasing the stretch in the breaking points of the supply chain, which in turn can result in possible reduction of inventory. In this paper an optimization model and a simulation model are developed and applied in a real case to optimize the safety stock level with the objective of logistics cost minimization.Design/methodology/approach: In order to optimize the safety stock level while minimizing logistics costs, a nonlinear cost minimization safety stock model is developed in this paper and then it is applied in a real world manufacturing case company. A safety stock simulation model based on appropriate metrics in the case company’s supply chain performance is also provided.Findings: These models result in not only the optimum levels but also locations of safety stock within the supply chain.Originality/value: In this research, two models of cost minimization and simulation have been developed and also applied in a real case company to result in not only optimized levels but also optimized locations of safety stock across the whole supply chain. In addition, the appropriate supply chain performance measurement metrics have been introduced in this paper and the simulation model is developed based on those.

  16. A structural equation modelling approach examining the pathways between safety climate, behaviour performance and workplace slipping.

    Science.gov (United States)

    Swedler, David I; Verma, Santosh K; Huang, Yueng-Hsiang; Lombardi, David A; Chang, Wen-Ruey; Brennan, Melayne; Courtney, Theodore K

    2015-07-01

    Safety climate has previously been associated with increasing safe workplace behaviours and decreasing occupational injuries. This study seeks to understand the structural relationship between employees' perceptions of safety climate, performing a safety behaviour (ie, wearing slip-resistant shoes) and risk of slipping in the setting of limited-service restaurants. At baseline, we surveyed 349 employees at 30 restaurants for their perceptions of their safety training and management commitment to safety as well as demographic data. Safety performance was identified as wearing slip-resistant shoes, as measured by direct observation by the study team. We then prospectively collected participants' hours worked and number of slips weekly for the next 12 weeks. Using a confirmatory factor analysis, we modelled safety climate as a higher order factor composed of previously identified training and management commitment factors. The 349 study participants experienced 1075 slips during the 12-week follow-up. Confirmatory factor analysis supported modelling safety climate as a higher order factor composed of safety training and management commitment. In a structural equation model, safety climate indirectly affected prospective risk of slipping through safety performance, but no direct relationship between safety climate and slips was evident. Results suggest that safety climate can reduce workplace slips through performance of a safety behaviour as well as suggesting a potential causal mechanism through which safety climate can reduce workplace injuries. Safety climate can be modelled as a higher order factor composed of safety training and management commitment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Multilevel models in the explanation of the relationship between safety climate and safe behavior.

    Science.gov (United States)

    Cheyne, Alistair; Tomás, José M; Oliver, Amparo

    2013-01-01

    This study examines the relationships between components of organizational safety climate, including employee attitudes to organizational safety issues; perceptions of the physical working environment, and evaluations of worker engagement with safety issues; and relates these to self-reported levels of safety behavior. It attempts to explore the relationships between these variables in 1189 workers across 78 work groups in a large transportation organization. Evaluations of safety climate, the working environment and worker engagement, as well as safe behaviors, were collected using a self report questionnaire. The multilevel analysis showed that both levels of evaluation (the work group and the individual), and some cross-level interactions, were significant in explaining safe behaviors. Analyses revealed that a number of variables, at both levels, were associated with worker engagement and safe behaviors. The results suggest that, while individual evaluations of safety issues are important, there is also a role for the fostering of collective safety climates in encouraging safe behaviors and therefore reducing accidents.

  18. Software safety analysis on the model specified by NuSCR and SMV input language at requirements phase of software development life cycle using SMV

    International Nuclear Information System (INIS)

    Koh, Kwang Yong; Seong, Poong Hyun

    2005-01-01

    Safety-critical software process is composed of development process, verification and validation (V and V) process and safety analysis process. Safety analysis process has been often treated as an additional process and not found in a conventional software process. But software safety analysis (SSA) is required if software is applied to a safety system, and the SSA shall be performed independently for the safety software through software development life cycle (SDLC). Of all the phases in software development, requirements engineering is generally considered to play the most critical role in determining the overall software quality. NASA data demonstrate that nearly 75% of failures found in operational software were caused by errors in the requirements. The verification process in requirements phase checks the correctness of software requirements specification, and the safety analysis process analyzes the safety-related properties in detail. In this paper, the method for safety analysis at requirements phase of software development life cycle using symbolic model verifier (SMV) is proposed. Hazard is discovered by hazard analysis and in other to use SMV for the safety analysis, the safety-related properties are expressed by computation tree logic (CTL)

  19. Cognitive decision errors and organization vulnerabilities in nuclear power plant safety management: Modeling using the TOGA meta-theory framework

    International Nuclear Information System (INIS)

    Cappelli, M.; Gadomski, A. M.; Sepiellis, M.; Wronikowska, M. W.

    2012-01-01

    In the field of nuclear power plant (NPP) safety modeling, the perception of the role of socio-cognitive engineering (SCE) is continuously increasing. Today, the focus is especially on the identification of human and organization decisional errors caused by operators and managers under high-risk conditions, as evident by analyzing reports on nuclear incidents occurred in the past. At present, the engineering and social safety requirements need to enlarge their domain of interest in such a way to include all possible losses generating events that could be the consequences of an abnormal state of a NPP. Socio-cognitive modeling of Integrated Nuclear Safety Management (INSM) using the TOGA meta-theory has been discussed during the ICCAP 2011 Conference. In this paper, more detailed aspects of the cognitive decision-making and its possible human errors and organizational vulnerability are presented. The formal TOGA-based network model for cognitive decision-making enables to indicate and analyze nodes and arcs in which plant operators and managers errors may appear. The TOGA's multi-level IPK (Information, Preferences, Knowledge) model of abstract intelligent agents (AIAs) is applied. In the NPP context, super-safety approach is also discussed, by taking under consideration unexpected events and managing them from a systemic perspective. As the nature of human errors depends on the specific properties of the decision-maker and the decisional context of operation, a classification of decision-making using IPK is suggested. Several types of initial situations of decision-making useful for the diagnosis of NPP operators and managers errors are considered. The developed models can be used as a basis for applications to NPP educational or engineering simulators to be used for training the NPP executive staff. (authors)

  20. Cognitive decision errors and organization vulnerabilities in nuclear power plant safety management: Modeling using the TOGA meta-theory framework

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, M. [UTFISST, ENEA Casaccia, via Anguillarese 301, Rome (Italy); Gadomski, A. M. [ECONA, Centro Interuniversitario Elaborazione Cognitiva Sistemi Naturali e Artificiali, via dei Marsi 47, Rome (Italy); Sepiellis, M. [UTFISST, ENEA Casaccia, via Anguillarese 301, Rome (Italy); Wronikowska, M. W. [UTFISST, ENEA Casaccia, via Anguillarese 301, Rome (Italy); Poznan School of Social Sciences (Poland)

    2012-07-01

    In the field of nuclear power plant (NPP) safety modeling, the perception of the role of socio-cognitive engineering (SCE) is continuously increasing. Today, the focus is especially on the identification of human and organization decisional errors caused by operators and managers under high-risk conditions, as evident by analyzing reports on nuclear incidents occurred in the past. At present, the engineering and social safety requirements need to enlarge their domain of interest in such a way to include all possible losses generating events that could be the consequences of an abnormal state of a NPP. Socio-cognitive modeling of Integrated Nuclear Safety Management (INSM) using the TOGA meta-theory has been discussed during the ICCAP 2011 Conference. In this paper, more detailed aspects of the cognitive decision-making and its possible human errors and organizational vulnerability are presented. The formal TOGA-based network model for cognitive decision-making enables to indicate and analyze nodes and arcs in which plant operators and managers errors may appear. The TOGA's multi-level IPK (Information, Preferences, Knowledge) model of abstract intelligent agents (AIAs) is applied. In the NPP context, super-safety approach is also discussed, by taking under consideration unexpected events and managing them from a systemic perspective. As the nature of human errors depends on the specific properties of the decision-maker and the decisional context of operation, a classification of decision-making using IPK is suggested. Several types of initial situations of decision-making useful for the diagnosis of NPP operators and managers errors are considered. The developed models can be used as a basis for applications to NPP educational or engineering simulators to be used for training the NPP executive staff. (authors)

  1. Multi-approach model for improving agrochemical safety among rice farmers in Pathumthani, Thailand

    Directory of Open Access Journals (Sweden)

    Siriwong W

    2012-07-01

    Full Text Available Buppha Raksanam,1,2 Surasak Taneepanichskul,2 Wattasit Siriwong,2 Mark Robson3,41Sirindhorn College of Public Health, Trang, 2College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand; 3School of Environmental and Biological Sciences, Rutgers University, 4School of Public Health, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USAAbstract: The large-scale use of agrochemicals has raised environmental and human health concerns. A comprehensive intervention strategy for improving agrochemical safety among rice farmers in Thailand is lacking. The objective of this study is to develop a model in order to improve farmers’ health and prevent them from being exposed to agrochemical hazards, in addition to evaluating the effectiveness of the intervention in terms of agrochemical safety. This study was conducted between October 2009 and January 2011. It measures changes in the mean scores of agrochemical knowledge, health beliefs, agrochemical use behaviors, and in-home pesticide safety. Knowledge of agrochemical use constitutes a basic knowledge of agrochemicals and agrochemical safety behaviors. Health beliefs constitute perceived susceptibility, severity, benefits, and barriers to using agrochemicals. Agrochemical use behaviors include self-care practices in terms of personal health at specific times including before spraying, while spraying, during storage, transportation, waste management, and health risk management. Fifty rice farmers from Khlong Seven Community (study group and 51 rice farmers from Bueng Ka Sam community (control group were randomly recruited with support from community leaders. The participants were involved in a combination of home visits (ie, pesticide safety assessments at home and community participatory activities regarding agrochemical safety. This study reveals that health risk behaviors regarding agrochemical exposure in the study area are mainly caused by lack of attention to

  2. A Network Diffusion Model of Food Safety Scare Behavior considering Information Transparency

    Directory of Open Access Journals (Sweden)

    Tingqiang Chen

    2017-01-01

    Full Text Available This study constructs the network diffusion model of food safety scare behavior under the effect of information transparency and examines the network topology and evolution characteristics of food safety scare behavior in a numerical simulation. The main conclusions of this study are as follows. (1 Under the effect of information transparency, the network degree distribution of food safety scare behavior diffusion demonstrates the decreasing characteristics of diminishing margins. (2 Food safety scare behavior diffusion increases with the information dissemination rate and consumer concern about food safety incidents and shows the characteristics of monotone increasing. And with the increasing of the government food safety supervision information transparency and media food safety supervision information transparency, the whole is declining characteristic of diminishing marginal. In addition, the extinction of food safety scare behavior cannot be achieved gradually given a single regulation of government food safety supervision information transparency and media food safety supervision information transparency. (3 The interaction effects between improving government food safety supervision information transparency or media food safety supervision information transparency and declining consumer concerns about food safety incidents or information transmission rate can engender the suppression of food safety scare behavior diffusion.

  3. The roles of emotional intelligence, interpersonal skill, and transformational leadership on improving construction safety performance

    Directory of Open Access Journals (Sweden)

    Riza Yosia Sunindijo

    2013-09-01

    Full Text Available Due to the characteristics of the constructionindustry, human skills are essential for working with and through others inmanaging safety. Research has shown that emotional intelligence, interpersonalskill, and transformational leadership are human skill components that generatesuperior performance in today’s workplace. The aim of this research is toinvestigate the influence of project management personnel’s human skills on theimplementation of safety management tasks and development of safety climate inconstruction projects. The structural equation modelling (SEM method wasapplied to analyse the quantitative data collected and establishinterrelationship among the research variables. The results indicate thatemotional intelligence is a key factor for developing interpersonal skill andtransformational leadership, and for implementing safety management tasks whichleads to the development of safety climate. This research also found thatinterpersonal skill is needed for becoming transformational leaders whocontribute to the development of safety climate.

  4. Structural Equation Modelling in Behavioral Intention to Use Safety Helmet Reminder System

    Directory of Open Access Journals (Sweden)

    Rosli Naida

    2016-01-01

    Full Text Available Motorcycle is one of private transportation which has been widely used in many countries including Malaysia. However, motorcycles are the most dangerous form of motorized transport. Royal Malaysian Police (PDRM statistics recorded that motorcycle is the highest vehicle (45.9% involved in traffic accident compared to other vehicles. The potential cause of the death to the motorcyclist was due to the head injury. One of strategy to mitigate this problem is through proper usage of safety helmet. Therefore, this paper was introduce a new approach on motorcyclist safety by using the Technology Acceptance Model (TAM with additional determinants that contribute to behavioral intention and to increase the proper usage of safety helmets among Malaysian motorcyclists. The Structural Equation Modelling (SEM was used to test the structural TAM proposed. The evaluation for structural model showed the goodness of fit indices are excellent fit. This study found that perceived ease of use, perceived usefulness and social norm are significant towards behavioral intention to use Safety Helmet Reminder System (SHR.

  5. A soft-contact model for computing safety margins in human prehension.

    Science.gov (United States)

    Singh, Tarkeshwar; Ambike, Satyajit

    2017-10-01

    The soft human digit tip forms contact with grasped objects over a finite area and applies a moment about an axis normal to the area. These moments are important for ensuring stability during precision grasping. However, the contribution of these moments to grasp stability is rarely investigated in prehension studies. The more popular hard-contact model assumes that the digits exert a force vector but no free moment on the grasped object. Many sensorimotor studies use this model and show that humans estimate friction coefficients to scale the normal force to grasp objects stably, i.e. the smoother the surface, the tighter the grasp. The difference between the applied normal force and the minimal normal force needed to prevent slipping is called safety margin and this index is widely used as a measure of grasp planning. Here, we define and quantify safety margin using a more realistic contact model that allows digits to apply both forces and moments. Specifically, we adapt a soft-contact model from robotics and demonstrate that the safety margin thus computed is a more accurate and robust index of grasp planning than its hard-contact variant. Previously, we have used the soft-contact model to propose two indices of grasp planning that show how humans account for the shape and inertial properties of an object. A soft-contact based safety margin offers complementary insights by quantifying how humans may account for surface properties of the object and skin tissue during grasp planning and execution. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The dual effects of leading for safety: The mediating role of employee regulatory focus.

    Science.gov (United States)

    Kark, Ronit; Katz-Navon, Tal; Delegach, Marianna

    2015-09-01

    This study examined the underlying mechanisms through which transformational and transactional leadership influence employee safety behaviors. Linking leadership theory with self-regulatory focus (SRF) theory, we examined a model of dual effects of leadership on safety initiative and safety compliance behaviors as mediated by promotion and prevention self-regulations. We conducted an experimental study (N = 107), an online study (N = 99) and a field study (N = 798 employees and 49 managers). Results demonstrated that followers' situational promotion focus mediated the positive relationship between transformational leadership and safety initiative behaviors. Through all 3 studies, transactional active leadership was positively associated with followers' situational prevention focus, however, the association between followers' prevention focus and safety compliance behaviors was inconsistent, showing the expected mediation relationships in the experimental setting, but not in the online and field studies. We discuss theoretical and practical implications of the findings. (c) 2015 APA, all rights reserved).

  7. Exploring the Role of Neuroticism and Insecure Attachment in Health Anxiety, Safety-Seeking Behavior Engagement, and Medical Services Utilization

    Directory of Open Access Journals (Sweden)

    Fotios Anagnostopoulos

    2016-06-01

    Full Text Available The purpose of this study was to explore an extended interpersonal model of health anxiety, according to which health-anxious individuals are trapped in a vicious circle of health-related reassurance-seeking, alienation from others, and worry about health, while somatic absorption with body sensations, insecure attachment, neuroticism, safety-seeking behaviors, and medical services utilization were also included in the model. Data were collected from 196 Greek university students using standardized instruments. Results indicated that anxious attachment was directly related to absorption (β = .163, p < .05 and alienation (β = .204, p < .05, while avoidant attachment was directly related to absorption (β = −.344, p < .001, reassurance-seeking (β = −.130, p < .05, and alienation (β = .148, p < .05. Neuroticism was positively and significantly associated with all dimensions of health anxiety. Absorption, alienation, and anxious attachment were related to medical services utilization, which, in turn, was related to safety-seeking behaviors (β = .200, p < .01. Neuroticism and anxious attachment were also indirectly and positively associated with worry. Moreover, absorption was positively related to worry and reassurance-seeking, worry was positively related to reassurance-seeking, and alienation was positively related to worry. Study results highlight the key role that interpersonal (e.g., alienation from others and perceptual factors (e.g., the tendency to focus on bodily sensations can play in health anxiety maintenance, and the importance of anxious and avoidant attachment in safety-seeking behavior engagement. Implications of the results and suggestions for future research and practice are outlined.

  8. Report by the Parliamentary mission on nuclear safety, the sector's role and its future. Stage report: nuclear safety. National Assembly nr 3614, Senate nr 701

    International Nuclear Information System (INIS)

    Birraux, Claude; Bataille, Christian; Sido, Bruno

    2011-01-01

    Completed by several contributions, re-transcriptions of hearings and meetings, this voluminous report first presents the rigorous management of safety in the French nuclear industry. It comments how it takes natural and industrial risks into account, how working conditions are controlled and how protection against malevolent acts is performed. It presents the safety organisation as a very complete one, and shows how this management is constantly improved. In a second part, it discusses which aspects should be reinforced in priority: the taking of other natural risks into account, a deeper anticipation of possible situations. The authors outline the State's role, efforts to be made in terms of means, personnel implication, and research. They also address the case of the EPR and outlines some lack of transparency on safety matters

  9. Safety verification of radiation shielding and heat transfer for a model for dry

    International Nuclear Information System (INIS)

    Yu, Haiyan; Tang, Xiaobin; Wang, Peng; Chen, Feida; Chai, Hao; Chen, Da

    2015-01-01

    Highlights: • New type of dry spent fuel storage was designed. • MC method and FEM were used to verify the reliability of new storage. • Radiation shield and heat transfer both meet IAEA standards: 2 mSv/h, 0.1 mSv/h and 190 °C, 85 °C. • Provided possibilities for future implementation of this type of dry storage. - Abstract: The goal of this research is to develop a type of dry spent fuel storage called CHN-24 container, which could contain an equivalent load of 45 GWD/MTU of spent fuel after 10 years cooling. Basically, radiation shielding performance and safe removal of decay heat, which play important roles in the safety performance, were checked and validated using the Monte Carlo method and finite element analysis to establish the radiation dose rate calculation model and three-dimensional heat transfer model for the CHN-24 container. The dose rates at the surface of the container and at a distance of 1 m from the surface were 0.42 mSv/h and 0.06 mSv/h, respectively. These conform to the International Atomic Energy Agency (IAEA) radioactive material transportation safety standards 2 mSv/h and 0.1 mSv/h. The results shows that the CHN-24 container maintains its structural and material integrity under the condition of normal thermal steady-state heat transfer as well as in case of extreme fire as evinced by transient-state analysis. The temperature inside and on the surface of the container were 150.91 °C and 80 °C under normal storage conditions, which indicated that the design also conform to IAEA heat transfer safety standards of 190 °C and 85 °C

  10. Operational characteristics of nuclear power plants - modelling of operational safety

    International Nuclear Information System (INIS)

    Studovic, M.

    1984-01-01

    By operational experience of nuclear power plants and realize dlevel of availability of plant, systems and componenst reliabiliuty, operational safety and public protection, as a source on nature of distrurbances in power plant systems and lessons drawn by the TMI-2, in th epaper are discussed: examination of design safety for ultimate ensuring of safe operational conditions of the nuclear power plant; significance of the adequate action for keeping proess parameters in prescribed limits and reactor cooling rquirements; developed systems for measurements detection and monitoring all critical parameters in the nuclear steam supply system; contents of theoretical investigation and mathematical modeling of the physical phenomena and process in nuclear power plant system and components as software, supporting for ensuring of operational safety and new access in staff education process; program and progress of the investigation of some physical phenomena and mathematical modeling of nuclear plant transients, prepared at faculty of mechanical Engineering in Belgrade. (author)

  11. 2008 EUROSAFE Forum. The role of TSOs in view of rising demand for safety expertise

    International Nuclear Information System (INIS)

    May, Horst; Jansen, Florian; Seubert, Armin; Kaulard, Joerg; Weber, Stefan; Sternkopf, Juergen

    2009-01-01

    Some 400 guests from 27 nations attended the 10 th EUROSAFE Forum for Nuclear Safety in Paris in early November 2008. In addition to the proven specialized seminars, the event this time focused on the role of TSOs in view of the rising demand for safety expertise. Jacques Repussard, Director General of IRSN; Lothar Hahn, Technical-Scientific Managing Director, GRS; Benoit de Boeck, Managing Director, Bel V; Ales John, Director General, UJV (Nuclear Research Institute Rez plc); and Seppo Vuori, Chief Scientist, VTT, stressed the importance of close cooperation among European TSOs. In Europe, the need was becoming more and more apparent to harmonize safety requirements and standardize licensing criteria. The four specialized seminars discussed these topics: - Seminar 1: Safety of nuclear installations assessment and research. - Seminar 2: Environmental protection and radiation protection. - Seminar 3: Waste management and the environment. - Seminar 4: Safeguarding nuclear materials and plants. The presentations can be found under www.eurosafe-forum.org. The 11 th EUROSAFE Forum will be held in Brussels on November 2 and 3, 2009. (orig.)

  12. Safety culture: analysis of the causal relationships between its key dimensions.

    Science.gov (United States)

    Fernández-Muñiz, Beatriz; Montes-Peón, José Manuel; Vázquez-Ordás, Camilo José

    2007-01-01

    Several fields are showing increasing interest in safety culture as a means of reducing accidents in the workplace. The literature shows that safety culture is a multidimensional concept. However, considerable confusion surrounds this concept, about which little consensus has been reached. This study proposes a model for a positive safety culture and tests this on a sample of 455 Spanish companies, using the structural equation modeling statistical technique. Results show the important role of managers in the promotion of employees' safe behavior, both directly, through their attitudes and behaviors, and indirectly, by developing a safety management system. This paper identifies the key dimensions of safety culture. In addition, a measurement scale for the safety management system is validated. This will assist organizations in defining areas where they need to progress if they wish to improve their safety. Also, we stress that managers need to be wholly committed to and personally involved in safety activities, thereby conveying the importance the firm attaches to these issues.

  13. A novel Bayesian hierarchical model for road safety hotspot prediction.

    Science.gov (United States)

    Fawcett, Lee; Thorpe, Neil; Matthews, Joseph; Kremer, Karsten

    2017-02-01

    In this paper, we propose a Bayesian hierarchical model for predicting accident counts in future years at sites within a pool of potential road safety hotspots. The aim is to inform road safety practitioners of the location of likely future hotspots to enable a proactive, rather than reactive, approach to road safety scheme implementation. A feature of our model is the ability to rank sites according to their potential to exceed, in some future time period, a threshold accident count which may be used as a criterion for scheme implementation. Our model specification enables the classical empirical Bayes formulation - commonly used in before-and-after studies, wherein accident counts from a single before period are used to estimate counterfactual counts in the after period - to be extended to incorporate counts from multiple time periods. This allows site-specific variations in historical accident counts (e.g. locally-observed trends) to offset estimates of safety generated by a global accident prediction model (APM), which itself is used to help account for the effects of global trend and regression-to-mean (RTM). The Bayesian posterior predictive distribution is exploited to formulate predictions and to properly quantify our uncertainty in these predictions. The main contributions of our model include (i) the ability to allow accident counts from multiple time-points to inform predictions, with counts in more recent years lending more weight to predictions than counts from time-points further in the past; (ii) where appropriate, the ability to offset global estimates of trend by variations in accident counts observed locally, at a site-specific level; and (iii) the ability to account for unknown/unobserved site-specific factors which may affect accident counts. We illustrate our model with an application to accident counts at 734 potential hotspots in the German city of Halle; we also propose some simple diagnostics to validate the predictive capability of our

  14. The complementary roles of fracture mechanics and non-destructive examination in the safety assessment of components

    International Nuclear Information System (INIS)

    1988-01-01

    This document presents the various speeches of the workshop of the Committee on Safety of Nuclear Installations (CSNI) that took place in Wuerenligen, Switzerland, in October 1988. The speeches deal with the roles of Non-Destructive Examination (NDE) and Fracture Mechanics (FM) in the safety assessment of reactor components, such as pressure vessels. Some calibration standards and reference values of defects are presented, and several NDE and FM methods for the assessment of components are described. Separate abstracts were prepared for all the papers in this volume. (TEC)

  15. The complementary roles of fracture mechanics and non-destructive examination in the safety assessment of components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-31

    This document presents the various speeches of the workshop of the Committee on Safety of Nuclear Installations (CSNI) that took place in Wuerenligen, Switzerland, in October 1988. The speeches deal with the roles of Non-Destructive Examination (NDE) and Fracture Mechanics (FM) in the safety assessment of reactor components, such as pressure vessels. Some calibration standards and reference values of defects are presented, and several NDE and FM methods for the assessment of components are described. Separate abstracts were prepared for all the papers in this volume. (TEC).

  16. Food irradiation: its role in food safety

    International Nuclear Information System (INIS)

    Qureshi, R. U.

    1985-01-01

    There are food safety criteria generally defined by international groups and specifically defined by individual countries. Food irradiation will be discussed in the light of food safety regulations. The merits and acceptability of food irradiation in promoting trade within and between countries will also be discussed. The need for public awareness and training of technical personnel will be highlighted

  17. Food irradiation: its role in food safety

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, R U

    1986-12-31

    There are food safety criteria generally defined by international groups and specifically defined by individual countries. Food irradiation will be discussed in the light of food safety regulations. The merits and acceptability of food irradiation in promoting trade within and between countries will also be discussed. The need for public awareness and training of technical personnel will be highlighted

  18. Modelling of contact problems involved in ensuring the safety of rail transport

    Directory of Open Access Journals (Sweden)

    Edward Rydygier

    2013-12-01

    Full Text Available Background: Mathematical modelling aids diagnostics the track and rolling stock, as it often for technical reasons it is not possible to obtain a complete set of measurement data required to diagnose the rail and wheel deformation caused by the impact of a rail vehicle on the track. The important issue in a railway diagnostics is to study the effects of contact wheel and rail. Diagnostics investigations of track and rolling stock have a fundamental role in ensuring the safety of transport of passengers and goods. The aim of the study presented in the paper was to develop simulation methods of mathematical modelling of the wheel-rail system useful in the diagnostics of the track and a railway vehicle. Methods: In the paper two ways of modelling were presented and discussed. One of these ways is the method which consists in reducing the contact issue to field issue and solving the identification of the field source in 2-D system. Also presented a different method designed on the basis of the methods using one period energy concept. This method is adapted for modelling the dynamics of the contact wheel-rail for the normal force. It has been shown that the developed modelling methods to effectively support the study on the effects of mechanical and thermal of contact wheel-rail and contribute to the safety of operations.  Results and conclusions:  In the case of field sources identifications two specific issues were examined: the issue of rail torsion and the identification of heat sources in the rail due to exposure the rolling contact wheel-rail. In the case of the method using one period energy concept it was demonstrated the usefulness of this method to the study of energy processes in the contact wheel-rail under the normal periodic force. The future direction of research is to establish cooperation with research teams entrusted with the diagnostic measurements of track and rolling stock.  

  19. Agent-Based Modelling and Simulation of Safety and Resilience in Air Transportation

    NARCIS (Netherlands)

    Bouarfa, S.

    2015-01-01

    Purpose: In order to improve the safety, capacity, economy, and sustainability of air transportation, revolutionary changes are required. These changes might range from the introduction of new technology and operational procedures to unprecedented roles of human operators and the way they interact.

  20. Study on Semi-Parametric Statistical Model of Safety Monitoring of Cracks in Concrete Dams

    Directory of Open Access Journals (Sweden)

    Chongshi Gu

    2013-01-01

    Full Text Available Cracks are one of the hidden dangers in concrete dams. The study on safety monitoring models of concrete dam cracks has always been difficult. Using the parametric statistical model of safety monitoring of cracks in concrete dams, with the help of the semi-parametric statistical theory, and considering the abnormal behaviors of these cracks, the semi-parametric statistical model of safety monitoring of concrete dam cracks is established to overcome the limitation of the parametric model in expressing the objective model. Previous projects show that the semi-parametric statistical model has a stronger fitting effect and has a better explanation for cracks in concrete dams than the parametric statistical model. However, when used for forecast, the forecast capability of the semi-parametric statistical model is equivalent to that of the parametric statistical model. The modeling of the semi-parametric statistical model is simple, has a reasonable principle, and has a strong practicality, with a good application prospect in the actual project.

  1. Modelling of Safety Factors in the Design of GRP Composite Products

    DEFF Research Database (Denmark)

    Babu, B.J.C.; Prabhakaran, R.T. Durai; Lystrup, Aage

    2010-01-01

    as independent, while in real applications these factors may interact/influence each other. Following the concept developed by the authors, a simple graph theoretic model has been used to determine overall factor of safety. This is described with the help of an example and it has been demonstrated......An attempt has been made in this paper to arrive at the safety factor design of glass fibre reinforced polymer (GRP) composite products using graph theoretic model. In the conventional design and recommendations of the standards, these design factors affecting properties have been considered...

  2. Developing a model for hospital inherent safety assessment: Conceptualization and validation.

    Science.gov (United States)

    Yari, Saeed; Akbari, Hesam; Gholami Fesharaki, Mohammad; Khosravizadeh, Omid; Ghasemi, Mohammad; Barsam, Yalda; Akbari, Hamed

    2018-01-01

    Paying attention to the safety of hospitals, as the most crucial institute for providing medical and health services wherein a bundle of facilities, equipment, and human resource exist, is of significant importance. The present research aims at developing a model for assessing hospitals' safety based on principles of inherent safety design. Face validity (30 experts), content validity (20 experts), construct validity (268 examples), convergent validity, and divergent validity have been employed to validate the prepared questionnaire; and the items analysis, the Cronbach's alpha test, ICC test (to measure reliability of the test), composite reliability coefficient have been used to measure primary reliability. The relationship between variables and factors has been confirmed at 0.05 significance level by conducting confirmatory factor analysis (CFA) and structural equations modeling (SEM) technique with the use of Smart-PLS. R-square and load factors values, which were higher than 0.67 and 0.300 respectively, indicated the strong fit. Moderation (0.970), simplification (0.959), substitution (0.943), and minimization (0.5008) have had the most weights in determining the inherent safety of hospital respectively. Moderation, simplification, and substitution, among the other dimensions, have more weight on the inherent safety, while minimization has the less weight, which could be due do its definition as to minimize the risk.

  3. Evaluation model for safety capacity of chemical industrial park based on acceptable regional risk

    Institute of Scientific and Technical Information of China (English)

    Guohua Chen; Shukun Wang; Xiaoqun Tan

    2015-01-01

    The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose of exploring the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity of chemical industrial park, and then by combining with the safety storage capacity, a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized in the regional risk control of the park effectively.

  4. The role of nuclear law in nuclear safety after Fukushima; El rol del derecho nuclear en seguridad nuclear luego de Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Cardozo, Diva E. Puig, E-mail: d.puig@adinet.com.uy [International Nuclear Law Association (INLA), Montevideo (Uruguay)

    2013-07-01

    The paper contains the following topics: nuclear law, origin and evolution, role of the legal instruments on nuclear safety, nuclear safety the impact of major nuclear accidents: Chernobyl and Fukushima. The response of the nuclear law post Fukushima. Safety and security. International framework for nuclear safety: nuclear convention joint convention on safety on spent fuel management and on the safety of radioactive waste management. The Fukushima World Conference on Nuclear Safety. Convention on Prompt Notification and Assistance in case of a Nuclear Accident or Radiological Emergency. Plan of Action for Nuclear Safety. IAEA recommendations for the safety transport of radioactive material. International framework for nuclear security. Convention on the Physical Protection of Nuclear Materials. International Convention for the Suppression of Acts Against Nuclear Terrorism. Resolution No. 1540 of the Security Council of United Nations (2004). Measures to strengthen international safety. Code of conduct on the safety research reactor.

  5. One in a Million Given the Accident: Assuring Nuclear Weapon Safety

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Jason [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-25

    Since the introduction of nuclear weapons, there has not been a single instance of accidental or unauthorized nuclear detonation, but there have been numerous accidents and “close calls.” As the understanding of these environments has increased, the need for a robust nuclear weapon safety philosophy has grown. This paper describes some of the methods used by the Nuclear Weapon Complex today to assure nuclear weapon safety, including testing, modeling, analysis, and design features. Lastly, it also reviews safety’s continued role in the future and examines how nuclear safety’s present maturity can play a role in strengthening security and other areas and how increased coordination can improve safety and reduce long-term cost.

  6. Using fuzzy self-organising maps for safety critical systems

    International Nuclear Information System (INIS)

    Kurd, Zeshan; Kelly, Tim P.

    2007-01-01

    This paper defines a type of constrained artificial neural network (ANN) that enables analytical certification arguments whilst retaining valuable performance characteristics. Previous work has defined a safety lifecycle for ANNs without detailing a specific neural model. Building on this previous work, the underpinning of the devised model is based upon an existing neuro-fuzzy system called the fuzzy self-organising map (FSOM). The FSOM is type of 'hybrid' ANN which allows behaviour to be described qualitatively and quantitatively using meaningful expressions. Safety of the FSOM is argued through adherence to safety requirements-derived from hazard analysis and expressed using safety constraints. The approach enables the construction of compelling (product-based) arguments for mitigation of potential failure modes associated with the FSOM. The constrained FSOM has been termed a 'safety critical artificial neural network' (SCANN). The SCANN can be used for non-linear function approximation and allows certified learning and generalisation for high criticality roles. A discussion of benefits for real-world applications is also presented

  7. [Establish research model of post-marketing clinical safety evaluation for Chinese patent medicine].

    Science.gov (United States)

    Zheng, Wen-ke; Liu, Zhi; Lei, Xiang; Tian, Ran; Zheng, Rui; Li, Nan; Ren, Jing-tian; Du, Xiao-xi; Shang, Hong-cai

    2015-09-01

    The safety of Chinese patent medicine has become a focus of social. It is necessary to carry out work on post-marketing clinical safety evaluation for Chinese patent medicine. However, there have no criterions to guide the related research, it is urgent to set up a model and method to guide the practice for related research. According to a series of clinical research, we put forward some views, which contained clear and definite the objective and content of clinical safety evaluation, the work flow should be determined, make a list of items for safety evaluation project, and put forward the three level classification of risk control. We set up a model of post-marketing clinical safety evaluation for Chinese patent medicine. Based this model, the list of items can be used for ranking medicine risks, and then take steps for different risks, aims to lower the app:ds:risksrisk level. At last, the medicine can be managed by five steps in sequence. The five steps are, collect risk signal, risk recognition, risk assessment, risk management, and aftereffect assessment. We hope to provide new ideas for the future research.

  8. Effects of the safety factor on ion temperature gradient modes

    International Nuclear Information System (INIS)

    Wang, A.K.; Dong, J.Q.; Sanuki, H.; Itoh, K.

    2003-01-01

    A model for the ion temperature gradient (ITG) driven instability is derived from Braginskii magnetohydrodynamic equations of ions. The safety factor q in a toroidal plasma is introduced into the model through the current density J parallel . The effects of q or J parallel on both the ITG instability in k perpendicular and k parallel spectra and the critical stability thresholds are studied. It is shown that the current density // J or the safety factor q plays an important role in stabilizing the ITG instability. (author)

  9. An Assessment of the VHTR Safety Distance Using the Reliability Physics Model

    International Nuclear Information System (INIS)

    Lee, Joeun; Kim, Jintae; Jae, Moosung

    2015-01-01

    In Korea planning the production of hydrogen using high temperature from nuclear power is in progress. To produce hydrogen from nuclear plants, supplying temperature above 800 .deg. C is required. Therefore, Very High Temperature Reactor (VHTR) which is able to provide about 950 .deg. C is suitable. In situation of high temperature and corrosion where hydrogen might be released easily, hydrogen production facility using VHTR has a danger of explosion. Moreover explosion not only has a bad influence upon facility itself but also on VHTR. Those explosions result in unsafe situation that cause serious damage. However, In terms of thermal-hydraulics view, long distance makes low efficiency Thus, in this study, a methodology for the safety assessment of safety distance between the hydrogen production facilities and the VHTR is developed with reliability physics model. Based on the standard safety criteria which is a value of 1 x 10 -6 , the safety distance between the hydrogen production facilities and the VHTR using reliability physics model are calculated to be a value of 60m - 100m. In the future, assessment for characteristic of VHTR, the capacity to resist pressure from outside hydrogen explosion and the overpressure for the large amount of detonation volume in detail is expected to identify more precise safety distance using this reliability physics model

  10. NUMO's approach for long-term safety assessment - 59404

    International Nuclear Information System (INIS)

    Ebashi, Takeshi; Kaku, Kenichi; Ishiguro, Katsuhiko

    2012-01-01

    measures for subsequent stages. In addition, in order to effectively enhance reliability, a concrete approach to managing the uncertainties associated with each procedure has been developed (scenario development, modelling, parameter selection, consequence analysis). Also, the role of safety assessment has been defined for each stage of the siting process (Literature Survey, Preliminary Investigations, Detailed Investigations). (authors)

  11. Role of frameworks, models, data, and judgment in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hannaman, G W

    1986-05-01

    Many advancements in the methods for treating human interactions in PRA studies have occurred in the last decade. These advancements appear to increase the capability of PRAs to extend beyond just the assessment of the human's importance to safety. However, variations in the application of these advanced models, data, and judgements in recent PRAs make quantitative comparisons among studies extremely difficult. This uncertainty in the analysis diminishes the usefulness of the PRA study for upgrading procedures, enhancing traning, simulator design, technical specification guidance, and for aid in designing the man-machine interface. Hence, there is a need for a framework to guide analysts in incorporating human interactions into the PRA systems analyses so that future users of a PRA study will have a clear understanding of the approaches, models, data, and assumptions which were employed in the initial study. This paper describes the role of the systematic human action reliability procedure (SHARP) in providing a road map through the complex terrain of human reliability that promises to improve the reproducibility of such analysis in the areas of selecting the models, data, representations, and assumptions. Also described is the role that a human cognitive reliability model can have in collecting data from simulators and helping analysts assign human reliability parameters in a PRA study. Use of these systematic approaches to perform or upgrade existing PRAs promises to make PRA studies more useful as risk management tools.

  12. Verification of Overall Safety Factors In Deterministic Design Of Model Tested Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    2001-01-01

    The paper deals with concepts of safety implementation in design. An overall safety factor concept is evaluated on the basis of a reliability analysis of a model tested rubble mound breakwater with monolithic super structure. Also discussed are design load identification and failure mode limit...

  13. Formal model-based development for safety-critical embedded software

    International Nuclear Information System (INIS)

    Kim, Jin Hyun; Choi, Jin Young

    2005-01-01

    Safety-critical embedded software for nuclear I and C system is developed under the safety and reliability regulation. Programmable logic controller(PLC) is a computer system for instrumentation and control (I and C) system of nuclear power plants. PLC consists of various I and C logics in software, including real-time operating system (RTOS). Hence, errors related with RTOS should be detected and eliminated in development processes. Practically, the verification and validation for errors in RTOS is performed in test procedure, in which a lot of tasks for testing are embedded in RTOS and are running under a test environments. But the test process can not be enough to guarantee the safety and reliability of RTOS. Therefore, in this paper, we introduce to applying formal methods with the development of software for the PLC. We particularity apply formal methods to a development of RTOS for PLC, which is a safety critical level. In this development, we use the state charts of I-Logix to specify and verification and model checking to verify the specification

  14. Formal model-based development for safety-critical embedded software

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hyun; Choi, Jin Young [Korea University, seoul (Korea, Republic of)

    2005-11-15

    Safety-critical embedded software for nuclear I and C system is developed under the safety and reliability regulation. Programmable logic controller(PLC) is a computer system for instrumentation and control (I and C) system of nuclear power plants. PLC consists of various I and C logics in software, including real-time operating system (RTOS). Hence, errors related with RTOS should be detected and eliminated in development processes. Practically, the verification and validation for errors in RTOS is performed in test procedure, in which a lot of tasks for testing are embedded in RTOS and are running under a test environments. But the test process can not be enough to guarantee the safety and reliability of RTOS. Therefore, in this paper, we introduce to applying formal methods with the development of software for the PLC. We particularity apply formal methods to a development of RTOS for PLC, which is a safety critical level. In this development, we use the state charts of I-Logix to specify and verification and model checking to verify the specification.

  15. From Safety Critical Java Programs to Timed Process Models

    DEFF Research Database (Denmark)

    Thomsen, Bent; Luckow, Kasper Søe; Thomsen, Lone Leth

    2015-01-01

    frameworks, we have in recent years pursued an agenda of translating hard-real-time embedded safety critical programs written in the Safety Critical Java Profile [33] into networks of timed automata [4] and subjecting those to automated analysis using the UPPAAL model checker [10]. Several tools have been...... built and the tools have been used to analyse a number of systems for properties such as worst case execution time, schedulability and energy optimization [12–14,19,34,36,38]. In this paper we will elaborate on the theoretical underpinning of the translation from Java programs to timed automata models...... and briefly summarize some of the results based on this translation. Furthermore, we discuss future work, especially relations to the work in [16,24] as Java recently has adopted first class higher order functions in the form of lambda abstractions....

  16. Behavioral integrity for safety, priority of safety, psychological safety, and patient safety : a team-level study

    NARCIS (Netherlands)

    Leroy, H.; Dierynck, B.; Anseel, F.; Simons, T.; Halbesleben, J.R.; McCaughey, D.; Savage, G.T.; Sels, L.

    2012-01-01

    This article clarifies how leader behavioral integrity for safety helps solve follower's double bind between adhering to safety protocols and speaking up about mistakes against protocols. Path modeling of survey data in 54 nursing teams showed that head nurse behavioral integrity for safety

  17. Insights on in vitro models for safety and toxicity assessment of cosmetic ingredients.

    Science.gov (United States)

    Almeida, Andreia; Sarmento, Bruno; Rodrigues, Francisca

    2017-03-15

    According to the current European legislation, the safety assessment of each individual cosmetic ingredient of any formulation is the basis for the safety evaluation of a cosmetic product. Also, animal testing in the European Union is prohibited for cosmetic ingredients and products since 2004 and 2009, respectively. Additionally, the commercialization of any cosmetic products containing ingredients tested on animal models was forbidden in 2009. In consequence of these boundaries, the European Centre for the Validation of Alternative Methods (ECVAM) proposes a list of validated cell-based in vitro models for predicting the safety and toxicity of cosmetic ingredients. These models have been demonstrated as valuable and effective tools to overcome the limitations of animal in vivo studies. Although the use of in vitro cell-based models for the evaluation of absorption and permeability of cosmetic ingredients is widespread, a detailed study on the properties of these platforms and the in vitro-in vivo correlation compared with human data are required. Moreover, additional efforts must be taken to develop in vitro models to predict carcinogenicity, repeat dose toxicity and reproductive toxicity, for which no alternative in vitro methods are currently available. This review paper summarizes and characterizes the most relevant in vitro models validated by ECVAM employed to predict the safety and toxicology of cosmetic ingredients. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Integrated care: an Information Model for Patient Safety and Vigilance Reporting Systems.

    Science.gov (United States)

    Rodrigues, Jean-Marie; Schulz, Stefan; Souvignet, Julien

    2015-01-01

    Quality management information systems for safety as a whole or for specific vigilances share the same information types but are not interoperable. An international initiative tries to develop an integrated information model for patient safety and vigilance reporting to support a global approach of heath care quality.

  19. Regulatory Body Safety Culture in Non-nuclear HROs: Lessons for Nuclear Regulators

    International Nuclear Information System (INIS)

    Fleming, M.; Bowers, K.

    2016-01-01

    Regulator safety culture is a relatively new area of investigation, even though deficiencies in regulatory oversight have been identified in a number of public inquiries (e.g., Piper Alpha, Deep Water Horizon). More recently the IAEA report into the Fukushima disaster specifically identified the need for regulatory bodies to have a positive safety culture. While there are clear parallels between duty holder safety culture and regulator safety culture there are also likely to be differences. To date they have been no published studies investigating regulator safety culture. In order to develop a framework to understand regulator safety culture we conducted a literature review and interviewed safety culture subject matter experts from a range of HRO domains (e.g., offshore oil and gas). There was general consensus among participants that regulatory safety culture was an important topic that was worthy of further investigation. That there was general agreement that regulatory safety culture was multi-dimensional and that some of the elements of existing safety culture models applied to regulator culture (e.g., learning and leadership). The participants also identified unique dimensions of regulator safety culture including commitment to high standards and ethics, transparency and perceived role of the regulator. In this paper we will present the results of the interviews and present a model of regulator safety culture. This model will be contrasted with models being used in the nuclear industry. Implications for assessing regulatory safety culture will be discussed. (author)

  20. Toward the modelling of safety violations in healthcare systems.

    Science.gov (United States)

    Catchpole, Ken

    2013-09-01

    When frontline staff do not adhere to policies, protocols, or checklists, managers often regard these violations as indicating poor practice or even negligence. More often than not, however, these policy and protocol violations reflect the efforts of well intentioned professionals to carry out their work efficiently in the face of systems poorly designed to meet the diverse demands of patient care. Thus, non-compliance with institutional policies and protocols often signals a systems problem, rather than a people problem, and can be influenced among other things by training, competing goals, context, process, location, case complexity, individual beliefs, the direct or indirect influence of others, job pressure, flexibility, rule definition, and clinician-centred design. Three candidates are considered for developing a model of safety behaviour and decision making. The dynamic safety model helps to understand the relationship between systems designs and human performance. The theory of planned behaviour suggests that intention is a function of attitudes, social norms and perceived behavioural control. The naturalistic decision making paradigm posits that decisions are based on a wider view of multiple patients, expertise, systems complexity, behavioural intention, individual beliefs and current understanding of the system. Understanding and predicting behavioural safety decisions could help us to encourage compliance to current processes and to design better interventions.

  1. Enhancing Nursing Staffing Forecasting With Safety Stock Over Lead Time Modeling.

    Science.gov (United States)

    McNair, Douglas S

    2015-01-01

    In balancing competing priorities, it is essential that nursing staffing provide enough nurses to safely and effectively care for the patients. Mathematical models to predict optimal "safety stocks" have been routine in supply chain management for many years but have up to now not been applied in nursing workforce management. There are various aspects that exhibit similarities between the 2 disciplines, such as an evolving demand forecast according to acuity and the fact that provisioning "stock" to meet demand in a future period has nonzero variable lead time. Under assumptions about the forecasts (eg, the demand process is well fit as an autoregressive process) and about the labor supply process (≥1 shifts' lead time), we show that safety stock over lead time for such systems is effectively equivalent to the corresponding well-studied problem for systems with stationary demand bounds and base stock policies. Hence, we can apply existing models from supply chain analytics to find the optimal safety levels of nurse staffing. We use a case study with real data to demonstrate that there are significant benefits from the inclusion of the forecast process when determining the optimal safety stocks.

  2. Consequence model of the German reactor safety study

    International Nuclear Information System (INIS)

    Bayer, A.; Aldrich, D.; Burkart, K.; Horsch, F.; Hubschmann, W.; Schueckler, M.; Vogt, S.

    1979-01-01

    The consequency model developed for phase A of the German Reactor Safety Study (RSS) is similar in many respects to its counterpart in WASH-1400. As in that previous study, the model describes the atmosphere dispersion and transport of radioactive material released from the containment during a postulated reactor accident, and predicts its interaction with and influence on man. Differences do exist between the two models however, for the following reasons: (1) to more adequately reflect central European conditions, (2) to include improved submodels, and (3) to apply additional data and knowledge that have become available since publication of WASH-1400. The consequence model as used in phase A of the German RSS is described, highlighting differences between it and the U.S. model

  3. Commuter Train Passenger Safety Model Using Positive Behavior Approach: The Case Study in Suburban Area

    Science.gov (United States)

    Suryanto, D. A.; Adisasmita, S. A.; Hamid, S.; Hustim, M.

    2018-04-01

    Currently, Train passanger safety measures are more predominantly measurable using negative dimensions in user mode behavior, such as accident rate, accident intensity and accident impact. This condition suggests that safety improvements aim only to reduce accidents. Therefore, this study aims to measure the safety level of light train transit modes (KRL) through the dimensions of traveling safety on commuters based on positive safety indicators with severel condition departure times and returns for work purposes and long trip rates above KRL. The primary survey were used in data collection methods. Structural Equation Modeling (SEM) were used in data analysis. The results show that there are different models of the safety level of departure and return journey. The highest difference is in the security dimension which is the internal variable of KRL users.

  4. Safety-barrier diagrams as a tool for modelling safety of hydrogen applications

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan; Markert, Frank

    2009-01-01

    Safety-barrier diagrams have proven to be a useful tool in documenting the safety measures taken to prevent incidents and accidents in process industry. Especially during the introduction of new hydrogen technologies or applications, as e.g. hydrogen refuelling stations, safety-barrier diagrams...... are considered a valuable supplement to other traditional risk analysis tools to support the communication with authorities and other stakeholders during the permitting process. Another advantage of safety-barrier diagrams is that they highlight the importance of functional and reliable safety barriers in any...... system and here is a direct focus on those barriers that need to be subject to safety management in terms of design and installation, operational use, inspection and monitoring, and maintenance. Safety-barrier diagrams support both quantitative and qualitative approaches. The paper will describe...

  5. Analysis of third-party certification approaches using an occupational health and safety conformity-assessment model.

    Science.gov (United States)

    Redinger, C F; Levine, S P

    1998-11-01

    The occupational health and safety conformity-assessment model presented in this article was developed (1) to analyze 22 public and private programs to determine the extent to which these programs use third parties in conformity-assessment determinations, and (2) to establish a framework to guide future policy developments related to the use of third parties in occupational health and safety conformity-assessment activities. The units of analysis for this study included select Occupational Safety and Health Administration programs and standards, International Organization for Standardization-based standards and guidelines, and standards and guidelines developed by nongovernmental bodies. The model is based on a 15-cell matrix that categorizes first-, second-, and third-party activities in terms of assessment, accreditation, and accreditation-recognition activities. The third-party component of the model has three categories: industrial hygiene/safety testing and sampling; product, equipment, and laboratory certification; and, occupational health and safety management system registration/certification. Using the model, 16 of the 22 programs were found to have a third-party component in their conformity-assessment structure. The analysis revealed that (1) the model provides a useful means to describe and analyze various third-party approaches, (2) the model needs modification to capture aspects of traditional governmental conformity-assessment/enforcement activities, and (3) several existing third-party conformity-assessment systems offer robust models that can guide future third-party policy formulation and implementation activities.

  6. Present state of the safety concept of natural-draught cooling towers

    International Nuclear Information System (INIS)

    Kraetzig, W.B.

    1977-01-01

    Safety and reliability of a building depend on the mechanical model chosen, on the shape deviations of the structure, as well as on the distribution functions and fractile values of the main influences and strength properties of the materials. For the shell, the supports, and the foundation of a natural-draught cooling tower, the wind plays a special, safety-reducing role due to the fact that its upper limit remains unknown. This role is still enhanced by the dead weight of the concrete which partially exceeds the tensile load. This requires a dimensioning concept with partial safety coefficients which is established in the present paper. So far, it has been successfully used in the construction of more than 50 cooling towers. (orig.) [de

  7. The use of a basic safety investment model in a practical risk management context

    International Nuclear Information System (INIS)

    Aven, Terje; Hiriart, Yolande

    2011-01-01

    We consider a basic model in economic safety analysis: a firm is willing to invest an amount x in safety measures to avoid an accident A, which in the case of occurrence, leads to a loss of size L. The probability of an accident is a function of x. The optimal value of x is determined by minimizing the expected costs. In the paper, we re-examine this model by adopting a practical risk/safety management perspective. We question how this model can be used for guiding the firm and regulators in determining the proper level of investment in safety. Attention is given to issues like how to determine the probability of an accident and how to take into account uncertainties that extend beyond the expected value. It is concluded that the model, with suitable extensions and if properly implemented, provides a valuable decision support tool. By focusing on investment levels and stimulating thereby the generation of alternative risk-reducing measures, the model is considered particularly useful in risk reduction (ALARP) processes. - Highlights: → It is shown how to use a basic investment model in a practical risk management setting. → The model may be a valuable decision support tool if properly implemented. → It guides decision makers on risk reduction and how to determine what is ALARP. → The model stimulates the generation of alternative risk-reducing measures.

  8. Nuclear safety in Slovak Republic. Regulatory aspects of NPP nuclear safety

    International Nuclear Information System (INIS)

    Lipar, M.

    1999-01-01

    Regulatory Authority (UJD) is appointed by the Slovak Republic National Council as an Executive Authority for nuclear safety supervision. Nuclear safety legislation, organisation and resources of UJD, its role and responsibilities are described together with its inspection and licensing functions and International cooperation concerning improvements of safety effectiveness. Achievements of UJD are listed in detail

  9. Agent-based organizational modelling for analysis of safety culture at an air navigation service provider

    International Nuclear Information System (INIS)

    Stroeve, Sybert H.; Sharpanskykh, Alexei; Kirwan, Barry

    2011-01-01

    Assessment of safety culture is done predominantly by questionnaire-based studies, which tend to reveal attitudes on immaterial characteristics (values, beliefs, norms). There is a need for a better understanding of the implications of the material aspects of an organization (structures, processes, etc.) for safety culture and their interactions with the immaterial characteristics. This paper presents a new agent-based organizational modelling approach for integrated and systematic evaluation of material and immaterial characteristics of socio-technical organizations in safety culture analysis. It uniquely considers both the formal organization and the value- and belief-driven behaviour of individuals in the organization. Results are presented of a model for safety occurrence reporting at an air navigation service provider. Model predictions consistent with questionnaire-based results are achieved. A sensitivity analysis provides insight in organizational factors that strongly influence safety culture indicators. The modelling approach can be used in combination with attitude-focused safety culture research, towards an integrated evaluation of material and immaterial characteristics of socio-technical organizations. By using this approach an organization is able to gain a deeper understanding of causes of diverse problems and inefficiencies both in the formal organization and in the behaviour of organizational agents, and to systematically identify and evaluate improvement options.

  10. Does company size matter? Validation of an integrative model of safety behavior across small and large construction companies.

    Science.gov (United States)

    Guo, Brian H W; Yiu, Tak Wing; González, Vicente A

    2018-02-01

    Previous safety climate studies primarily focused on either large construction companies or the construction industry as a whole, while little is known about whether company size has significant effects on workers' understanding of safety climate measures and relationships between safety climate factors and safety behavior. Thus, this study aims to: (a) test the measurement equivalence (ME) of a safety climate measure across workers from small and large companies; (b) investigate if company size alters the causal structure of the integrative model developed by Guo, Yiu, and González (2016). Data were collected from 253 construction workers in New Zealand using a safety climate measure. This study used multi-group confirmatory factor analyses (MCFA) to test the measurement equivalence of the safety climate measure and structure invariance of the integrative model. Results indicate that workers from small and large companies understood the safety climate measure in a similar manner. In addition, it was suggested that company size does not change the causal structure and mediational processes of the integrative model. Both measurement equivalence of the safety climate measure and structural invariance of the integrative model were supported by this study. Practical applications: Findings of this study provided strong support for a meaningful use of the safety climate measure across construction companies in different sizes. Safety behavior promotion strategies designed based on the integrative model may be well suited for both large and small companies. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  11. Health safety nets can break cycles of poverty and disease: a stochastic ecological model.

    Science.gov (United States)

    Plucinski, Mateusz M; Ngonghala, Calistus N; Bonds, Matthew H

    2011-12-07

    The persistence of extreme poverty is increasingly attributed to dynamic interactions between biophysical processes and economics, though there remains a dearth of integrated theoretical frameworks that can inform policy. Here, we present a stochastic model of disease-driven poverty traps. Whereas deterministic models can result in poverty traps that can only be broken by substantial external changes to the initial conditions, in the stochastic model there is always some probability that a population will leave or enter a poverty trap. We show that a 'safety net', defined as an externally enforced minimum level of health or economic conditions, can guarantee ultimate escape from a poverty trap, even if the safety net is set within the basin of attraction of the poverty trap, and even if the safety net is only in the form of a public health measure. Whereas the deterministic model implies that small improvements in initial conditions near the poverty-trap equilibrium are futile, the stochastic model suggests that the impact of changes in the location of the safety net on the rate of development may be strongest near the poverty-trap equilibrium.

  12. Development of System Model for Level 1 Probabilistic Safety Assessment of TRIGA PUSPATI Reactor

    International Nuclear Information System (INIS)

    Tom, P.P; Mazleha Maskin; Ahmad Hassan Sallehudin Mohd Sarif; Faizal Mohamed; Mohd Fazli Zakaria; Shaharum Ramli; Muhamad Puad Abu

    2014-01-01

    Nuclear safety is a very big issue in the world. As a consequence of the accident at Fukushima, Japan, most of the reactors in the world have been reviewed their safety of the reactors including also research reactors. To develop Level 1 Probabilistic Safety Assessment (PSA) of TRIGA PUSPATI Reactor (RTP), three organizations are involved; Nuclear Malaysia, AELB and UKM. PSA methodology is a logical, deductive technique which specifies an undesired top event and uses fault trees and event trees to model the various parallel and sequential combinations of failures that might lead to an undesired event. Fault Trees (FT) methodology is use in developing of system models. At the lowest level, the Basic Events (BE) of the fault trees (components failure and human errors) are assigned probability distributions. In this study, Risk Spectrum software used to construct the fault trees and analyze the system models. The results of system models analysis such as core damage frequency (CDF), minimum cut set (MCS) and common cause failure (CCF) uses to support decision making for upgrading or modification of the RTP?s safety system. (author)

  13. FY2017 Updates to the SAS4A/SASSYS-1 Safety Analysis Code

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, T. H. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-30

    The SAS4A/SASSYS-1 safety analysis software is used to perform deterministic analysis of anticipated events as well as design-basis and beyond-design-basis accidents for advanced fast reactors. It plays a central role in the analysis of U.S. DOE conceptual designs, proposed test and demonstration reactors, and in domestic and international collaborations. This report summarizes the code development activities that have taken place during FY2017. Extensions to the void and cladding reactivity feedback models have been implemented, and Control System capabilities have been improved through a new virtual data acquisition system for plant state variables and an additional Block Signal for a variable lag compensator to represent reactivity feedback for novel shutdown devices. Current code development and maintenance needs are also summarized in three key areas: software quality assurance, modeling improvements, and maintenance of related tools. With ongoing support, SAS4A/SASSYS-1 can continue to fulfill its growing role in fast reactor safety analysis and help solidify DOE’s leadership role in fast reactor safety both domestically and in international collaborations.

  14. Rapid prototyping of the Central Safety System for Nuclear Risk in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Scibile, L. [ITER Organization, CS 90 046, St. Paul-lez-Durance, Cedex (France); Ambrosino, G. [Consorzio CREATE, Universita degli Studi di Napoli Federico II, via Claudio 21, 80125, Napoli (Italy); De Tommasi, G., E-mail: detommas@unina.i [Consorzio CREATE, Universita degli Studi di Napoli Federico II, via Claudio 21, 80125, Napoli (Italy); Pironti, A. [Consorzio CREATE, Universita degli Studi di Napoli Federico II, via Claudio 21, 80125, Napoli (Italy)

    2010-07-15

    The Central Safety System for Nuclear Risk (CSS-N) coordinates the safety control systems to ensure nuclear safety for the ITER complex. Since the CSS-N is a safety critical system, its validation and commissioning play a very important role; in particular the required level of reliability must be demonstrated. In such a scenario, it is strongly recommended to use modeling and simulation tools since the early design phase. Indeed, the modeling tools will help in the definition of the control system requirements. Furthermore the models can than be used for the rapid prototyping of the safety system. Hardware-in-the-loop simulations can also be performed in order to assess the performance of the control hardware against a plant simulator. The proposed approach relies on the availability of a plant simulator to develop the prototype of the control system. This paper introduces the methodology used to design and develop both the CSS-N Oriented Plant Simulator and the CSS-N Prototype.

  15. Rapid prototyping of the Central Safety System for Nuclear Risk in ITER

    International Nuclear Information System (INIS)

    Scibile, L.; Ambrosino, G.; De Tommasi, G.; Pironti, A.

    2010-01-01

    The Central Safety System for Nuclear Risk (CSS-N) coordinates the safety control systems to ensure nuclear safety for the ITER complex. Since the CSS-N is a safety critical system, its validation and commissioning play a very important role; in particular the required level of reliability must be demonstrated. In such a scenario, it is strongly recommended to use modeling and simulation tools since the early design phase. Indeed, the modeling tools will help in the definition of the control system requirements. Furthermore the models can than be used for the rapid prototyping of the safety system. Hardware-in-the-loop simulations can also be performed in order to assess the performance of the control hardware against a plant simulator. The proposed approach relies on the availability of a plant simulator to develop the prototype of the control system. This paper introduces the methodology used to design and develop both the CSS-N Oriented Plant Simulator and the CSS-N Prototype.

  16. Safety of modifications at nuclear power plants - the role of minor modifications and human and organisational factors

    International Nuclear Information System (INIS)

    2005-01-01

    Operating experience repeatedly shows that changes and modifications at nuclear power plants (NPPs) may lead to safety significant events. At the same time, modifications are necessary to ensure a safe and economic functioning of the NPPs. To ensure safety in all plant configurations it is important that modification processes are given proper attention both by the utilities and the regulators. The operability, maintainability and testability of every modification should be thoroughly assessed from different points of view to ensure that no safety problems are introduced. The OECD/NEA Committee on Safety of Nuclear Installations (CSNI) has recently addressed the issue of modifications by organising a 'Workshop on Modifications at Nuclear Power Plants Operating Experience, Safety Significance and Role of Human Factors'. This workshop was undertaken as a joint effort of the Working Group on Operating Experience (WGOE) and the Special Experts Group on Human and Organisational Factors (SEGHOF), and it was held at the OECD Headquarters in Paris on October 6 to 8, 2003. The initiative to organise the workshop was taken by the WGOE and the SEGHOF based on findings from events and incidents due to modifications at nuclear power plants in the world and weaknesses experienced in modification processes. During the workshop, the WGOE focused on the theme of 'Minor Modifications and their Safety Significance', while the SEGHOF focused on the topic 'Human and Organisational Factors in NPP Modifications'. This report is based on material collected before the workshop, the workshop proceedings, discussions of the group of experts responsible for the arrangement of the workshop, and additional material collected by a consultant. The workshop was preceded by extensive preparations, which included collection of national surveys in response to questionnaires on modifications at the NPPs. Not all of these surveys were available at the workshop, but their findings have now been included

  17. Using Modeling and Rehearsal to Teach Fire Safety to Children with Autism

    Science.gov (United States)

    Garcia, David; Dukes, Charles; Brady, Michael P.; Scott, Jack; Wilson, Cynthia L.

    2016-01-01

    We evaluated the efficacy of an instructional procedure to teach young children with autism to evacuate settings and notify an adult during a fire alarm. A multiple baseline design across children showed that an intervention that included modeling, rehearsal, and praise was effective in teaching fire safety skills. Safety skills generalized to…

  18. Role and tasks of the Mine Safety and Health Administration

    Energy Technology Data Exchange (ETDEWEB)

    Bradecki, W. (Wyzszy Urzad Gorniczy, Katowice (Poland))

    1992-01-01

    Discusses the visit of 2 representatives of the Mine Safety and Health Administration and the West Mining Company from the United States to Poland in November 1991. During the visit, occupational safety in underground coal mines in Upper Silesia was evaluated. Selected aspects of experience and organization schemes of the Mine Safety and Health Administration are evaluated from the point of view of their use in Poland to increase occupational safety in coal mining. The following aspects are discussed: Mine Safety and Health Administration and its budget (US$ 186 million), personnel (2,700), research institutes that specialize in mine safety (the National Institute of Occupational Safety and Health, Bureau of Mines), natural hazards associated with mining, mine safety in underground and surface coal mines in the USA in relation to number of coal miners and coal output, job safety analysis as a key to the success of the MSHA, increased hazards in small mines (Pennsylvania, West Virginia, Virginia and Kentucky), problems of drug addiction and alcoholism among coal miners.

  19. Radiological Safety Officer (RSO): role and responsibilities

    International Nuclear Information System (INIS)

    Joshi, M.L.; Yadav, J.S.; Gopalakrishnan, R.K.; Ansari, I.A.

    2017-01-01

    The fundamental safety objective in a radiological facility (RF) is to protect people and the environment from harmful effects of ionising radiation. The radiation risks to people and the environment that may arise from the use of radiation and radioactive material must be assessed and must be controlled by means of the application of the relevant standards of safety. Thus, all facilities handling radioactive material must have experts, who are responsible for assisting the plant management in radiation protection programme

  20. Impact of individual resilience and safety climate on safety performance and psychological stress of construction workers: A case study of the Ontario construction industry.

    Science.gov (United States)

    Chen, Yuting; McCabe, Brenda; Hyatt, Douglas

    2017-06-01

    The construction industry has hit a plateau in terms of safety performance. Safety climate is regarded as a leading indicator of safety performance; however, relatively little safety climate research has been done in the Canadian construction industry. Safety climate may be geographically sensitive, thus it is necessary to examine how the construct of safety climate is defined and used to improve safety performance in different regions. On the other hand, more and more attention has been paid to job related stress in the construction industry. Previous research proposed that individual resilience may be associated with a better safety performance and may help employees manage stress. Unfortunately, few empirical research studies have examined this hypothesis. This paper aims to examine the role of safety climate and individual resilience in safety performance and job stress in the Canadian construction industry. The research was based on 837 surveys collected in Ontario between June 2015 and June 2016. Structural equation modeling (SEM) techniques were used to explore the impact of individual resilience and safety climate on physical safety outcomes and on psychological stress among construction workers. The results show that safety climate not only affected construction workers' safety performance but also indirectly affected their psychological stress. In addition, it was found that individual resilience had a direct negative impact on psychological stress but had no impact on physical safety outcomes. These findings highlight the roles of both organizational and individual factors in individual safety performance and in psychological well-being. Construction organizations need to not only monitor employees' safety performance, but also to assess their employees' psychological well-being. Promoting a positive safety climate together with developing training programs focusing on improving employees' psychological health - especially post-trauma psychological

  1. Improvement of sweating model in 2-Node Model and its application to thermal safety for hot environments

    Energy Technology Data Exchange (ETDEWEB)

    Ooka, Ryozo [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153 8505 (Japan); Minami, Yuriko [Tokyo Electric Power Company, Tokyo (Japan); Sakoi, Tomonori [International Young Researchers Empowerment Center, Shinshu University, Nagano (Japan); Tsuzuki, Kazuyo [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Rijal, H.B. [Integrated Research System for Sustainability Science, The University of Tokyo, Tokyo (Japan)

    2010-07-15

    Recently, due to global warming and the heat-island effect, more and more people are exposed to the dangers of heat disorders. A hot thermal environment can be evaluated using various indices, such as new Standard Effective Temperature (SET{sup *}) using the 2-Node Model (2 NM), Wet Bulb Globe Temperature (WBGT), Predicted Heat Strain (PHS) model, and so on. The authors aim to develop a safety evaluation approach for hot environments. Subject experiments are performed in a laboratory to comprehend the physiological response of the human body. The results are compared with the computed values from the 2 NM and PHS models, and improved the sweating model in 2 NM in order to take into account the relationship with metabolic rate. A demonstration is provided of using the new sweating model for evaluating thermal safety in a hot environment. (author)

  2. Standard model for safety analysis report of fuel fabrication plants

    International Nuclear Information System (INIS)

    1980-09-01

    A standard model for a safety analysis report of fuel fabrication plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  3. Standard model for safety analysis report of fuel reprocessing plants

    International Nuclear Information System (INIS)

    1979-12-01

    A standard model for a safety analysis report of fuel reprocessing plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  4. Standard model for the safety analysis report of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    1980-02-01

    This norm establishes the Standard Model for the Safety Analysis Report of Nuclear Fuel Reprocessing Plants, comprehending the presentation format, the detailing level of the minimum information required by the CNEN for evaluation the requests of Construction License or Operation Authorization, in accordance with the legislation in force. This regulation applies to the following basic reports: Preliminary Safety Analysis Report - PSAR, integrating part of the requirement of Construction License; and Final Safety Analysis Report (FSAR) which is the integrating part of the requirement for Operation Authorization

  5. Research on Evaluation Model for Secondary Task Driving Safety Based on Driver Eye Movements

    Directory of Open Access Journals (Sweden)

    Lisheng Jin

    2014-01-01

    Full Text Available This study was designed to gain insight into the influence of performing different types of secondary task while driving on driver eye movements and to build a safety evaluation model for secondary task driving. Eighteen young drivers were selected and completed the driving experiment on a driving simulator. Measures of fixations, saccades, and blinks were analyzed. Based on measures which had significant difference between the baseline and secondary tasks driving conditions, the evaluation index system was built. Method of principal component analysis (PCA was applied to analyze evaluation indexes data in order to obtain the coefficient weights of indexes and build the safety evaluation model. Based on evaluation scores, the driving safety was grouped into five levels (very high, high, average, low, and very low using K-means clustering algorithm. Results showed that secondary task driving severely distracts the driver and the evaluation model built in this study could estimate driving safety effectively under different driving conditions.

  6. FMCSA safety program effectiveness measurement: intervention model fiscal year 2009.

    Science.gov (United States)

    2013-04-01

    The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the researcher, has developed an analytic model to measure the effectiveness of roadside inspections and traffic enforcements in terms of crashes avoided, injuries avoided, ...

  7. Safety Metrics for Human-Computer Controlled Systems

    Science.gov (United States)

    Leveson, Nancy G; Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems.This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  8. An Integrated Approach of Model checking and Temporal Fault Tree for System Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kwang Yong; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-10-15

    Digitalization of instruments and control systems in nuclear power plants offers the potential to improve plant safety and reliability through features such as increased hardware reliability and stability, and improved failure detection capability. It however makes the systems and their safety analysis more complex. Originally, safety analysis was applied to hardware system components and formal methods mainly to software. For software-controlled or digitalized systems, it is necessary to integrate both. Fault tree analysis (FTA) which has been one of the most widely used safety analysis technique in nuclear industry suffers from several drawbacks as described in. In this work, to resolve the problems, FTA and model checking are integrated to provide formal, automated and qualitative assistance to informal and/or quantitative safety analysis. Our approach proposes to build a formal model of the system together with fault trees. We introduce several temporal gates based on timed computational tree logic (TCTL) to capture absolute time behaviors of the system and to give concrete semantics to fault tree gates to reduce errors during the analysis, and use model checking technique to automate the reasoning process of FTA.

  9. Defining safety culture and the nexus between safety goals and safety culture. 3. A Methodology for Identifying Deficiencies in Safety Culture

    International Nuclear Information System (INIS)

    Apostolakis, George; Weil, Rick

    2001-01-01

    At present, the drivers of performance problems at nuclear power plants (NPPs) are organizational in nature. Organizational deficiencies and other 'latent' conditions cause human errors, resulting in incidents that impact the performance of NPPs. Therefore, the human reliability community, regulators, and others concerned with NPP safety express the view that safety culture and organizational factors play an important role in plant safety. However, we have yet to identify one complete set of organizational factors, establish links between deficient safety culture and performance, or develop adequate tools to measure safety culture. This paper will contribute to the resolution of these issues. Safety culture is not a single factor but rather is a collection of several distinct factors. This paper asserts that in order to pro-actively manage safety culture at NPPs, leading indicators and appropriate measurements must be identified and developed. Central to this effort are the identification of the distinct factors comprising safety culture and the relationships between those factors and performance. We have identified several factors important to safety culture. We have developed a methodology that is a combination of traditional root-cause analysis and theories of human error, most notably Reason's theory of accident causation. In addition to this methodology's usefulness in identifying deficiencies in safety culture, it could also be used as a starting point to identify leading indicators of deteriorating safety performance. We have identified six organizational factors as being important: communication, formalization, goal prioritization, problem identification, roles and responsibilities, and technical knowledge. In addition, we have found that certain organizational factors, although pervasive throughout the organization, have a much greater influence on the successful outcome of particular tasks of work processes, rather than being equally important to all

  10. An overview of modeling methods for thermal mixing and stratification in large enclosures for reactor safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Per F. Peterson

    2010-10-01

    Thermal mixing and stratification phenomena play major roles in the safety of reactor systems with large enclosures, such as containment safety in current fleet of LWRs, long-term passive containment cooling in Gen III+ plants including AP-1000 and ESBWR, the cold and hot pool mixing in pool type sodium cooled fast reactor systems (SFR), and reactor cavity cooling system behavior in high temperature gas cooled reactors (HTGR), etc. Depending on the fidelity requirement and computational resources, 0-D steady state models (heat transfer correlations), 0-D lumped parameter based transient models, 1-D physical-based coarse grain models, and 3-D CFD models are available. Current major system analysis codes either have no models or only 0-D models for thermal stratification and mixing, which can only give highly approximate results for simple cases. While 3-D CFD methods can be used to analyze simple configurations, these methods require very fine grid resolution to resolve thin substructures such as jets and wall boundaries. Due to prohibitive computational expenses for long transients in very large volumes, 3-D CFD simulations remain impractical for system analyses. For mixing in stably stratified large enclosures, UC Berkeley developed 1-D models basing on Zuber’s hierarchical two-tiered scaling analysis (HTTSA) method where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. This paper will present an overview on important thermal mixing and stratification phenomena in large enclosures for different reactors, major modeling methods and their advantages and limits, potential paths to improve simulation capability and reduce analysis uncertainty in this area for advanced reactor system analysis tools.

  11. Relationships between road safety, safety measures and external factors : a scan of the literature in view of model development and topics for further research.

    NARCIS (Netherlands)

    Churchill, T. & Norden, Y. van

    2010-01-01

    The purpose of this literature scan is to examine where literature on the effect of external factors and road safety measures on road safety exists and where it is lacking. This scan will help us to decide which factors to include in a comprehensive road safety model as SWOV is working on, and at

  12. Effectiveness of maritime safety control in different navigation zones using a spatial sequential DEA model: Yangtze River case.

    Science.gov (United States)

    Wu, Bing; Wang, Yang; Zhang, Jinfen; Savan, Emanuel Emil; Yan, Xinping

    2015-08-01

    This paper aims to analyze the effectiveness of maritime safety control from the perspective of safety level along the Yangtze River with special considerations for navigational environments. The influencing variables of maritime safety are reviewed, including ship condition, maritime regulatory system, human reliability and navigational environment. Because the former three variables are generally assumed to be of the same level of safety, this paper focuses on studying the impact of navigational environments on the level of safety in different waterways. An improved data envelopment analysis (DEA) model is proposed by treating the navigational environment factors as inputs and ship accident data as outputs. Moreover, because the traditional DEA model cannot provide an overall ranking of different decision making units (DMUs), the spatial sequential frontiers and grey relational analysis are incorporated into the DEA model to facilitate a refined assessment. Based on the empirical study results, the proposed model is able to solve the problem of information missing in the prior models and evaluate the level of safety with a better accuracy. The results of the proposed DEA model are further compared with an evidential reasoning (ER) method, which has been widely used for level of safety evaluations. A sensitivity analysis is also conducted to better understand the relationship between the variation of navigational environments and level of safety. The sensitivity analysis shows that the level of safety varies in terms of traffic flow. It indicates that appropriate traffic control measures should be adopted for different waterways to improve their safety. This paper presents a practical method of conducting maritime level of safety assessments under dynamic navigational environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Models and role models.

    Science.gov (United States)

    ten Cate, Jacob M

    2015-01-01

    Developing experimental models to understand dental caries has been the theme in our research group. Our first, the pH-cycling model, was developed to investigate the chemical reactions in enamel or dentine, which lead to dental caries. It aimed to leverage our understanding of the fluoride mode of action and was also utilized for the formulation of oral care products. In addition, we made use of intra-oral (in situ) models to study other features of the oral environment that drive the de/remineralization balance in individual patients. This model addressed basic questions, such as how enamel and dentine are affected by challenges in the oral cavity, as well as practical issues related to fluoride toothpaste efficacy. The observation that perhaps fluoride is not sufficiently potent to reduce dental caries in the present-day society triggered us to expand our knowledge in the bacterial aetiology of dental caries. For this we developed the Amsterdam Active Attachment biofilm model. Different from studies on planktonic ('single') bacteria, this biofilm model captures bacteria in a habitat similar to dental plaque. With data from the combination of these models, it should be possible to study separate processes which together may lead to dental caries. Also products and novel agents could be evaluated that interfere with either of the processes. Having these separate models in place, a suggestion is made to design computer models to encompass the available information. Models but also role models are of the utmost importance in bringing and guiding research and researchers. 2015 S. Karger AG, Basel

  14. Hospital board oversight of quality and safety: a stakeholder analysis exploring the role of trust and intelligence.

    Science.gov (United States)

    Millar, Ross; Freeman, Tim; Mannion, Russell

    2015-06-16

    Hospital boards, those executive members charged with developing appropriate organisational strategies and cultures, have an important role to play in safeguarding the care provided by their organisation. However, recent concerns have been raised over boards' ability to enact their duty to ensure the quality and safety of care. This paper offers critical reflection on the relationship between hospital board oversight and patient safety. In doing so it highlights new perspectives and suggestions for developing this area of study. The article draws on 10 interviews with key informants and policy actors who form part of the 'issue network' interested in the promotion of patient safety in the English National Health Service. The interviews surfaced a series of narratives regarding hospital board oversight of patient safety. These elaborated on the role of trust and intelligence in highlighting the potential dangers and limitations of approaches to hospital board oversight which have been narrowly focused on a risk-based view of organisational performance. In response, a need to engage with the development of trust based organisational relationships is identified, in which effective board oversight is built on 'trust' characterised by styles of leadership and behaviours that are attentive to the needs and concerns of both staff and patients. Effective board oversight also requires the gathering and triangulating of 'intelligence' generated from both national and local information sources. We call for a re-imagination of hospital board oversight in the light of these different perspectives and articulate an emerging research agenda in this area.

  15. Screening of external hazards for NPP with bank type reactor. Modeling of safety related systems and equipment for RBMK. Probabilistic assessment of NPP safety on aircraft impact. Progress report

    International Nuclear Information System (INIS)

    Kostarev, V.

    1999-01-01

    This progress report was produced within the frame of IAEA research project on screening the hazards for NPP with bank type reactor. It covers the following tasks; development of the model for the primary loop system of RBMK; developing the models for safety related equipment of RBMK; developing of models for safety related models of EGP-6 type reactor (Bilibinskaya Nuclear Co-generated heat and Power Plant); and probabilistic assessment of NPP safety on aircraft impact

  16. Analytical modeling of bwr safety relief valve blowdown phenomenon

    International Nuclear Information System (INIS)

    Hwang, J.G.; Singh, A.

    1984-01-01

    An analytical, qualitative understanding of the pool pressures measured during safety relief valve discharge in boiling water reactors equipped with X-quenchers has been developed and compared to experimental data. A pressure trace typically consists of a brief 25-35 Hz. oscillation followed by longer 5-15 Hz. oscillation. In order to explain the pressure response, a discharge line vent clearing model has been coupled with a Rayleigh bubble dynamic model. The local conditions inside the safety relief valve discharge lines and inside of the X-quencher were simulated successfully with RELAP5. The simulation allows one to associate the peak pressure inside the quencher arm with the onset of air discharge into the suppression pool. Using the pressure and thermodynamic quality at quencher exit of RELAP5 calculation as input, a Rayleigh model of pool bubble dynamics has successfully explained both the higher and lower frequency pressure oscillations. The higher frequency oscillations are characteristic of an air bubble emanating from a single row of quencher holes. The lower frequency pressure oscillations are characteristic of a larger air bubble containing all the air expelled from one side of an X-quencher arm

  17. Safety behavior: Job demands, job resources, and perceived management commitment to safety.

    Science.gov (United States)

    Hansez, Isabelle; Chmiel, Nik

    2010-07-01

    The job demands-resources model posits that job demands and resources influence outcomes through job strain and work engagement processes. We test whether the model can be extended to effort-related "routine" safety violations and "situational" safety violations provoked by the organization. In addition we test more directly the involvement of job strain than previous studies which have used burnout measures. Structural equation modeling provided, for the first time, evidence of predicted relationships between job strain and "routine" violations and work engagement with "routine" and "situational" violations, thereby supporting the extension of the job demands-resources model to safety behaviors. In addition our results showed that a key safety-specific construct 'perceived management commitment to safety' added to the explanatory power of the job demands-resources model. A predicted path from job resources to perceived management commitment to safety was highly significant, supporting the view that job resources can influence safety behavior through both general motivational involvement in work (work engagement) and through safety-specific processes.

  18. Development of multipurpose regulatory PSA model

    International Nuclear Information System (INIS)

    Lee, Chang Ju; Sung, Key Yong; Kim, Hho Jung; Yang, Joon Eon; Ha, Jae Joo

    2004-01-01

    Generally, risk information for nuclear facilities comes from the results of Probabilistic safety assessment (PSA). PSA is a systematic tool to ensure the safety of nuclear facilities, since it is based on thorough and consistent application of probability models. In particular, the PSA has been widely utilized for risk-informed regulation (RIR), including various licensee-initiated risk-informed applications (RIA). In any regulatory decision, the main goal is to make a sound safety decision based on technically defensible information. Also, due to the increased public requests for giving a safety guarantee, the regulator should provide the visible means of safety. The use of PSA by the regulator can give the answer on this problem. Therefore, in order to study the applicability of risk information for regulatory safety management, it is a demanding task to prepare a well-established regulatory PSA model and tool. In 2002, KINS and KAERI together made a research cooperation to form a working group to develop the regulatory PSA model - so-called MPAS model. The MPAS stands for multipurpose probabilistic analysis of safety. For instance, a role of the MPAS model is to give some risk insights in the preparation of various regulatory programs. Another role of this model is to provide an independent risk information to the regulator during regulatory decision-making, not depending on the licensee's information

  19. The Relationship among School Safety, School Liking, and Students' Self-Esteem: Based on a Multilevel Mediation Model

    Science.gov (United States)

    Zhang, Xinghui; Xuan, Xin; Chen, Fumei; Zhang, Cai; Luo, Yuhan; Wang, Yun

    2016-01-01

    Background: Perceptions of school safety have an important effect on students' development. Based on the model of "context-process-outcomes," we examined school safety as a context variable to explore how school safety at the school level affected students' self-esteem. Methods: We used hierarchical linear modeling to examine the link…

  20. MNR's role in public safety around dams

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, Jennifer [Ministry of Natural Resources, Peterborough, ON (Canada)

    2011-07-01

    The Ministry of Natural Resources (MNR) is the largest dam owner in Ontario with around 400 dams located all across the province. MNR works to exercise stewardship of Ontario's water resources in a context of public safety, employee safety and environmental awarenes. This presentation shows the different measures MNR implemented to reduce risks. Warning signs, safety booms, barrel buoys and pedestrian fencing have been installed around dams to alert the public to possible dangers. In addition, MNR employees receive training in how to inspect dams for safety concerns, how to identify problems which could result in hazards to the public and how to work safely.

  1. OSHA and Experimental Safety Design.

    Science.gov (United States)

    Sichak, Stephen, Jr.

    1983-01-01

    Suggests that a governmental agency, most likely Occupational Safety and Health Administration (OSHA) be considered in the safety design stage of any experiment. Focusing on OSHA's role, discusses such topics as occupational health hazards of toxic chemicals in laboratories, occupational exposure to benzene, and role/regulations of other agencies.…

  2. Safety constraints applied to an adaptive Bayesian condition-based maintenance optimization model

    International Nuclear Information System (INIS)

    Flage, Roger; Coit, David W.; Luxhøj, James T.; Aven, Terje

    2012-01-01

    A model is described that determines an optimal inspection and maintenance scheme for a deteriorating unit with a stochastic degradation process with independent and stationary increments and for which the parameters are uncertain. This model and resulting maintenance plans offers some distinct benefits compared to prior research because the uncertainty of the degradation process is accommodated by a Bayesian approach and two new safety constraints have been applied to the problem: (1) with a given subjective probability (degree of belief), the limiting relative frequency of one or more failures during a fixed time interval is bounded; or (2) the subjective probability of one or more failures during a fixed time interval is bounded. In the model, the parameter(s) of a condition-based inspection scheduling function and a preventive replacement threshold are jointly optimized upon each replacement and inspection such as to minimize the expected long run cost per unit of time, but also considering one of the specified safety constraints. A numerical example is included to illustrate the effect of imposing each of the two different safety constraints.

  3. China's nuclear safety regulatory body: The national nuclear safety administration

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1991-04-01

    The establishment of an independent nuclear safety regulatory body is necessary for ensuring the safety of nuclear installations and nuclear fuel. Therefore the National Nuclear Safety Administration was established by the state. The aim, purpose, organization structure and main tasks of the Administration are presented. At the same time the practical examples, such as nuclear safety regulation on the Qinshan Nuclear Power Plant, safety review and inspections for the Daya Bay Nuclear Power Plant during the construction, and nuclear material accounting and management system in the nuclear fuel fabrication plant in China, are given in order to demonstrate the important roles having been played on nuclear safety by the Administration after its founding

  4. Unravelling safety compliance in the mining industry: examining the role of work stress, job insecurity, satisfaction and commitment as antecedents

    Directory of Open Access Journals (Sweden)

    Uanda Masia

    2011-11-01

    Research purpose: The objective of this study was to investigate the relationship of work stress, job insecurity, satisfaction and commitment to safety compliance in a mine. Motivation for the study: The study aims to predict safety compliance through work-related variables in order to manage safety better. Research design, approach and method: The researchers used a cross-sectional survey design with a convenience sample (n = 158. They distributed a survey booklet. It included a biographical questionnaire, scales for job insecurity, satisfaction, affective organisational commitment, workplace accidents and safety compliance as well as a work stress measure that comprised dimensions of role clarity, conflict and overload. Main findings: The results showed that work stress and job insecurity had a negative relationship with safety compliance. The researchers found that only job satisfaction was a significant predictor of safety. Practical/managerial implications: Although exploratory, this study suggests that promoting job satisfaction may improve safety compliance whilst job stress and job insecurity also relate negatively to safety compliance. Contribution/value-add: This study shows that job satisfaction is more important than organisational commitment, job security and work stress for predicting safety compliance.

  5. Model-based Development of Safety-critical Functions and ISO 26262 Work Products using modified EAST-ADL

    Directory of Open Access Journals (Sweden)

    Bülent Sari

    2017-07-01

    Full Text Available Safety is becoming more and more important with the ever increasing level of safety related E/E Systems built into the cars. Increasing functionality of vehicle systems through electrification of power train, in future even more by autonomous driving, leads to complexity in designing system, software and safety architecture. ISO 26262 aims to reduce the complexity and to approve the traceability of the different safety activities. This paper presents an approach about model-based development of system, software and safety architecture using Electronics Architecture and Software Technology – Architecture Description Language (EAST-ADL, being in line with the relevant standard ISO 26262. In particular, we briefly discuss how the main safety related activities, such as hazard analysis and risk assessment, developing functional and technical safety concepts and performing safety analysis can be performed model-based and how the activities can be related with system and software development. The state-of-art is also provided and compared with the proposed approach.

  6. Evaluation of repository safety

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, B.; Patrick, W.; Dasgupta, B.; Mohanty, S. [Center for Nuclear Waste Regulatory Analyses, San Antonio (United States)

    2002-07-01

    The United States high-level waste program requires evaluation of radiological safety during two distinct time intervals. The first interval, commonly referred to as the preclosure period, deals with receipt of waste at the site, transfer into disposal containers, if needed, emplacement in the underground openings, monitoring and maintenance activities, backfill and closure of the underground openings, and decontamination and decommissioning of the surface facilities of the geologic repository. The preclosure period may extend from a few tens of years to as long as a few hundred of years, depending on repository design and societal norms regarding a final decision to permanently seal the repository. During the preclosure or operational period, performance confirmation studies are conducted to provide a basis for updating and reevaluating estimates of postclosure performance and, finally, to provide a basis for a closure decision. The postclosure period during which expected repository performance must meet certain standards may range from ten thousands years, as it does in the United States, to millions of years, as it does in some European nations. Waste handling operations in the preclosure period are to be evaluated in relation to their potential effect on workers, members of general public, and the general environment. During this period, releases of radioactivity are to be monitored and appropriate actions taken whenever established limits are approached or exceeded. Preclosure safety is highly dependent on facility design, operational hardware and automated systems, operational sequences, and reliability of humans involved in operations. Preclosure safety analyses conducted before operations begin play a major role in the design process, selection of equipment, and development of operational procedures. Because of the complexity, duration, and spatial scales of the operations, analyses are conducted using mathematical models implemented in computer codes

  7. Evaluation of repository safety

    International Nuclear Information System (INIS)

    Sagar, B.; Patrick, W.; Dasgupta, B.; Mohanty, S.

    2002-01-01

    The United States high-level waste program requires evaluation of radiological safety during two distinct time intervals. The first interval, commonly referred to as the preclosure period, deals with receipt of waste at the site, transfer into disposal containers, if needed, emplacement in the underground openings, monitoring and maintenance activities, backfill and closure of the underground openings, and decontamination and decommissioning of the surface facilities of the geologic repository. The preclosure period may extend from a few tens of years to as long as a few hundred of years, depending on repository design and societal norms regarding a final decision to permanently seal the repository. During the preclosure or operational period, performance confirmation studies are conducted to provide a basis for updating and reevaluating estimates of postclosure performance and, finally, to provide a basis for a closure decision. The postclosure period during which expected repository performance must meet certain standards may range from ten thousands years, as it does in the United States, to millions of years, as it does in some European nations. Waste handling operations in the preclosure period are to be evaluated in relation to their potential effect on workers, members of general public, and the general environment. During this period, releases of radioactivity are to be monitored and appropriate actions taken whenever established limits are approached or exceeded. Preclosure safety is highly dependent on facility design, operational hardware and automated systems, operational sequences, and reliability of humans involved in operations. Preclosure safety analyses conducted before operations begin play a major role in the design process, selection of equipment, and development of operational procedures. Because of the complexity, duration, and spatial scales of the operations, analyses are conducted using mathematical models implemented in computer codes

  8. Dynamic modeling of the tradeoff between productivity and safety in critical engineering systems

    International Nuclear Information System (INIS)

    Cowing, Michelle M.; Elisabeth Pate-Cornell, M.; Glynn, Peter W.

    2004-01-01

    Short-term tradeoffs between productivity and safety often exist in the operation of critical facilities such as nuclear power plants, offshore oil platforms, or simply individual cars. For example, interruption of operations for maintenance on demand can decrease short-term productivity but may be needed to ensure safety. Operations are interrupted for several reasons: scheduled maintenance, maintenance on demand, response to warnings, subsystem failure, or a catastrophic accident. The choice of operational procedures (e.g. timing and extent of scheduled maintenance) generally affects the probabilities of both production interruptions and catastrophic failures. In this paper, we present and illustrate a dynamic probabilistic model designed to describe the long-term evolution of such a system through the different phases of operation, shutdown, and possibly accident. The model's parameters represent explicitly the effects of different components' performance on the system's safety and reliability through an engineering probabilistic risk assessment (PRA). In addition to PRA, a Markov model is used to track the evolution of the system and its components through different performance phases. The model parameters are then linked to different operations strategies, to allow computation of the effects of each management strategy on the system's long-term productivity and safety. Decision analysis is then used to support the management of the short-term trade-offs between productivity and safety in order to maximize long-term performance. The value function is that of plant managers, within the constraints set by local utility commissions and national (e.g. energy) agencies. This model is illustrated by the case of outages (planned and unplanned) in nuclear power plants to show how it can be used to guide policy decisions regarding outage frequency and plant lifetime, and more specifically, the choice of a reactor tripping policy as a function of the state of the

  9. Review of Leadership for Safety and Role in abnormal situation

    International Nuclear Information System (INIS)

    Kim, Chang Rae; Yoon, Myung Hyun; Choi, Young Sung

    2017-01-01

    In the wake of an event in Fukushima, the importance of leadership that is able to increase responses and retain safety in unexpected accidents and disasters is emerged and it is increased interest in a systemic approach to leadership. Experts of international community urge to pay attention to humans and organizations because decision making, understanding the situation and communications affect the progress of accident significantly in the extreme condition. The individual as a leader should be able to carry out a central role to coordinate in the central, to take responsibility for ethical decisions, to earn the trust of employees by taking initiative, and to order by using empirical knowledge. However it is not desirable to limit the flexible response of the organization to the individual role of the leader. It should also be emphasized that leadership is a characteristic of the organization that is required by all levels in order to achieve the goal and it is important to develop the ability in organizational level. Therefore it is necessary to constantly modify situational awareness while interacting with the entire organization and all employees must carry out as a leader in the ever-changing field because the leader's recognition ability is limited. Also, leadership can function only through followership in ethical situations.

  10. Linking green space to neighborhood social capital in older adults: The role of perceived safety.

    Science.gov (United States)

    Hong, Andy; Sallis, James F; King, Abby C; Conway, Terry L; Saelens, Brian; Cain, Kelli L; Fox, Eric H; Frank, Lawrence D

    2018-06-01

    This study examines the moderating effect of perceived safety on the association of green space with neighborhood social capital in older adults. Green space may play an important role for promoting neighborhood social capital and health for older adults; however, safety remains a significant challenge in maximizing the benefits of green space. Data were drawn from 647 independent-living seniors who participated in the Senior Neighborhood Quality of Life Study in the Seattle/King County and Baltimore/Washington DC region. The results suggest that certain green space elements, such as natural sights, may be beneficial to neighborhood social capital of older adults. However, other types of green space, such as parks and street trees, may be less advantageous to older adults who perceive their neighborhoods as unsafe for pedestrians. Findings highlight the importance of pedestrian safety in examining associations of green space with neighborhood social capital in older adults. Further studies using a longitudinal design are warranted to confirm the causality of the findings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Flooding Experiments and Modeling for Improved Reactor Safety

    International Nuclear Information System (INIS)

    Solmos, M.; Hogan, K.J.; VIerow, K.

    2008-01-01

    Countercurrent two-phase flow and 'flooding' phenomena in light water reactor systems are being investigated experimentally and analytically to improve reactor safety of current and future reactors. The aspects that will be better clarified are the effects of condensation and tube inclination on flooding in large diameter tubes. The current project aims to improve the level of understanding of flooding mechanisms and to develop an analysis model for more accurate evaluations of flooding in the pressurizer surge line of a Pressurized Water Reactor (PWR). Interest in flooding has recently increased because Countercurrent Flow Limitation (CCFL) in the AP600 pressurizer surge line can affect the vessel refill rate following a small break LOCA and because analysis of hypothetical severe accidents with the current flooding models in reactor safety codes shows that these models represent the largest uncertainty in analysis of steam generator tube creep rupture. During a hypothetical station blackout without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. The flooding model heavily influences the pressurizer emptying rate and the potential for surge line structural failure due to overheating and creep rupture. The air-water test results in vertical tubes are presented in this paper along with a semi-empirical correlation for the onset of flooding. The unique aspects of the study include careful experimentation on large-diameter tubes and an integrated program in which air-water testing provides benchmark knowledge and visualization data from which to conduct steam-water testing

  12. A quantitative assessment of organizational factors affecting safety using a system dynamics model

    International Nuclear Information System (INIS)

    Yoo, J. K.; Yoon, T. S.

    2003-01-01

    The purpose of this study is to develop a system dynamics model for the assessment of organizational and human factors in the nuclear power plant safety. Previous studies are classified into two major approaches. One is the engineering approach such as ergonomics and Probabilistic Safety Assessment (PSA). The other is socio-psychology one. Both have contributed to find organizational and human factors and increased nuclear safety However, since these approaches assume that the relationship among factors is independent they do not explain the interactions between factors or variables in NPP's. To overcome these restrictions, a system dynamics model, which can show causal relations between factors and quantify organizational and human factors, has been developed. Operating variables such as degree of leadership, adjustment of number of employee, and workload in each department, users can simulate various situations in nuclear power plants in the organization side. Through simulation, user can get an insight to improve safety in plants and to find managerial tools in the organization and human side

  13. The role of KURT and A-KRS in the development of generic safety cases in Korea

    International Nuclear Information System (INIS)

    Jeong, Jong-Tae; Choi, Heui-Joo; Koh, Yong-Kwon; Kim, Geon-Young; Kim, Kyung-Su

    2014-01-01

    According to the draft guidelines for a deep geological disposal system for high-level wastes in Korea, the total annual risk for the average person resulting from the radiation exposure should not exceed 1.0 x 10 -6 /yr and the expected radiation exposure to the average person for each scenario should not exceed 10 mSv/yr (NSSC, 2012). Regulatory compliance should be supported by multiple lines of reasoning such as probabilistic analysis of exposure dose and risk, uncertainty analysis, natural analogue, complementary safety indicators such as radionuclide concentration and release rates, secure of defence-in-depth. The integrated safety assessment should also be made and updated consistently based on up-to-date data and information for each stage of deep geological disposal of high-level waste (HLW) such as basic studies, site characterisation, design, construction, operation, closure, environmental monitoring after closure and so on. These are the bases for the development of a safety case in Korea. The Korea Atomic Energy Research Institute (KAERI) is now developing generic safety cases based on the Advanced Korean Reference Repository System (A-KRS) and the KAERI Underground Research Tunnel (KURT). The A-KRS is a geological disposal system for radioactive wastes from the pyro-processing of PWR spent nuclear fuels in Korea. KURT is a small-scale underground research laboratory constructed and operated to assess the feasibility, safety, appropriateness and stability of the disposal concept by making various in situ tests and experiments. In this paper, the concept and long-term safety assessment of the A-KRS design, the role of the KURT in the development of safety cases, and the development of complex scenarios to support the development of generic safety cases in Korea are described. (authors)

  14. A Study on the Construct Validity of Safety Culture Oversight Model for Nuclear Power Operating Organization

    International Nuclear Information System (INIS)

    Jung, Su Jin; Choi, Young Sung; Oh, Jang Jin

    2015-01-01

    In Korea, the safety policy statement declared in 1994 by government stressed the importance of safety culture and licensees were encouraged to manage and conduct their self-assessments. A change in regulatory position about safety culture oversight was made after the event of SBO cover-up in Kori unit 1 and several subsequent falsification events. Since then KINS has been developing licensee's safety culture oversight system including conceptual framework of oversight, prime focus area for oversight, and specific details on regulatory expectations, all of which are based on defence-in-depth (DiD) safety enhancement approach. Development and gathering of performance data which is related to actual 'safety' of nuclear power plant are needed to identify the relationship between safety culture and safety performance. Authors consider this study as pilot which has a contribution on verifying the construct validity of the model and the effectiveness of survey based research. This is the first attempt that the validity of safety culture oversight model has been investigated with empirical data obtained from Korean nuclear power operating organization

  15. A Study on the Construct Validity of Safety Culture Oversight Model for Nuclear Power Operating Organization

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Su Jin; Choi, Young Sung; Oh, Jang Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    In Korea, the safety policy statement declared in 1994 by government stressed the importance of safety culture and licensees were encouraged to manage and conduct their self-assessments. A change in regulatory position about safety culture oversight was made after the event of SBO cover-up in Kori unit 1 and several subsequent falsification events. Since then KINS has been developing licensee's safety culture oversight system including conceptual framework of oversight, prime focus area for oversight, and specific details on regulatory expectations, all of which are based on defence-in-depth (DiD) safety enhancement approach. Development and gathering of performance data which is related to actual 'safety' of nuclear power plant are needed to identify the relationship between safety culture and safety performance. Authors consider this study as pilot which has a contribution on verifying the construct validity of the model and the effectiveness of survey based research. This is the first attempt that the validity of safety culture oversight model has been investigated with empirical data obtained from Korean nuclear power operating organization.

  16. Opportunities for Using Building Information Modeling to Improve Worker Safety Performance

    Directory of Open Access Journals (Sweden)

    Kasim Alomari

    2017-02-01

    Full Text Available Building information modelling (BIM enables the creation of a digital representation of a designed facility combined with additional information about the project attributes, performance criteria, and construction process. Users of BIM tools point to the ability to visualize the final design along with the construction process as a beneficial feature of using BIM. Knowing the construction process in relationship to a facility’s design benefits both safety professionals when planning worker safety measures for a project and designers when creating a project’s design. Success in using BIM to enhance safety partly depends on the familiarity of project personnel with BIM tools and the extent to which the tools can be used to identify and eliminate safety hazards. In a separate, ongoing study, the authors investigated the connection between BIM and safety to document the opportunities, barriers, and impacts. Utilizing an on-line survey of project engineers who work for construction firms together with a comprehensive literature review, the study found those who use BIM feel that it aids in communication of project information and project delivery, both of which have been found to have positive impacts on construction site safety. Further, utilizing the survey results, the authors apply the binary logistic regression econometric framework to better understand the factors that lead to safety professionals believing that BIM increases safety in the work place. In addition, according to the survey results, a large percentage of the engineers who use BIM feel that ultimately it helps to eliminate safety hazards and improve worker safety. The study findings suggest that improvements in safety performance across the construction industry may be due in part to increased use of BIM in the construction industry.

  17. Relationship of safety climate perceptions and job satisfaction among employees in the construction industry: the moderating role of age.

    Science.gov (United States)

    Stoilkovska, Biljana Blaževska; Žileska Pančovska, Valentina; Mijoski, Goran

    2015-01-01

    This study examines the degree to which construction sector employees perceive that safety is important in their organizations/sites and how job satisfaction affects these perceptions when age is introduced as a moderator variable. Two-way analysis of variance demonstrated that job satisfaction has a strong effect on perceived management commitment to work safety and that this relationship was moderated by respondents' age. Job satisfaction was associated with perceived accident rate and safety inspection frequency, but the proposed role of age in this linkage was not confirmed. Consequently, the findings indicated that by increasing the level of job satisfaction, perceptions of these safety climate aspects proved to be more positive. The conclusion is that these relationships could further lead to a lower percentage of accidents and injuries in the workplace and better health among employees. A significant relationship between job satisfaction, age and perceived co-workers' commitment to work safety was not found.

  18. Regulatory role and approach of BARC Safety Council in safety and occupational health in BARC facilities

    International Nuclear Information System (INIS)

    Rajdeep; Jayarajan, K.; Taly, Y.K.

    2016-01-01

    Bhabha Atomic Research Centre is involved in multidisciplinary research and developmental activities, related to peaceful use of nuclear energy and its societal benefits. In order to achieve high level of performance of these facilities, the best efforts are made to maintain good health of the plant personnel and good working conditions. BARC Safety Council (BSC), which is the regulatory body for BARC facilities, regulates radiation safety, industrial safety and surveillance of occupational health, by implementing various rules and guidelines in BARC facilities. BARC Safety framework consists of various committees in a 3-tier system. The first tier is BSC, which is the apex body authorized for issuing directives, permissions, consents and authorizations. It is having responsibility of ensuring protection and safety of public, environment, personnel and facilities of BARC through enforcement of radiation protection and industrial safety programmes. Besides the 18 committees in 2"n"d tier, there are 6 other expert committees which assist in functioning of BSC. (author)

  19. The role of paediatric nurses in medication safety prior to the implementation of electronic prescribing: a qualitative case study.

    Science.gov (United States)

    Farre, Albert; Heath, Gemma; Shaw, Karen; Jordan, Teresa; Cummins, Carole

    2017-04-01

    Objectives To explore paediatric nurses' experiences and perspectives of their role in the medication process and how this role is enacted in everyday practice. Methods A qualitative case study on a general surgical ward of a paediatric hospital in England, one year prior to the planned implementation of ePrescribing. Three focus groups and six individual semi-structured interviews were conducted, involving 24 nurses. Focus groups and interviews were audio-recorded, transcribed, anonymized and subjected to thematic analysis. Results Two overarching analytical themes were identified: the centrality of risk management in nurses' role in the medication process and the distributed nature of nurses' medication risk management practices. Nurses' contribution to medication safety was seen as an intrinsic feature of a role that extended beyond just preparing and administering medications as prescribed and placed nurses at the heart of a dynamic set of interactions, practices and situations through which medication risks were managed. These findings also illustrate the collective nature of patient safety. Conclusions Both the recognized and the unrecognized contributions of nurses to the management of medications needs to be considered in the design and implementation of ePrescribing systems.

  20. The role of CFD combustion modeling in hydrogen safety management-II: Validation based on homogeneous hydrogen-air experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: sathiah@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Haren, Steven van, E-mail: vanharen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Komen, Ed, E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Roekaerts, Dirk, E-mail: d.j.e.m.roekaerts@tudelft.nl [Department of Multi-Scale Physics, Delft University of Technology, P.O. Box 5, 2600 AA Delft (Netherlands)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A CFD based method is proposed for the simulation of hydrogen deflagration. Black-Right-Pointing-Pointer A dynamic grid adaptation method is proposed to resolve turbulent flame brush thickness. Black-Right-Pointing-Pointer The predictions obtained using this method is in good agreement with the static grid method. Black-Right-Pointing-Pointer TFC model results are in good agreement with large-scale homogeneous hydrogen-air experiments. - Abstract: During a severe accident in a PWR, large quantities of hydrogen can be generated and released into the containment. The generated hydrogen, when mixed with air, can lead to hydrogen combustion. The dynamic pressure loads resulting from hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. Therefore, accurate prediction of these pressure loads is an important safety issue. In a previous article, we presented a CFD based method to determine these pressure loads. This CFD method is based on the application of a turbulent flame speed closure combustion model. The validation analyses in our previous paper demonstrated that it is of utmost importance to apply successive mesh and time step refinement in order to get reliable results. In this article, we first determined to what extent the required computational effort required for our CFD approach can be reduced by the application of adaptive mesh refinement, while maintaining the accuracy requirements. Experiments performed within a small fan stirred explosion bomb were used for this purpose. It could be concluded that adaptive grid adaptation is a reliable and efficient method for usage in hydrogen deflagration analyses. For the two-dimensional validation analyses, the application of dynamic grid adaptation resulted in a reduction of the required computational effort by about one order of magnitude. In a second step, the considered CFD approach including adaptive

  1. Evaluating Models of Human Performance: Safety-Critical Systems Applications

    Science.gov (United States)

    Feary, Michael S.

    2012-01-01

    This presentation is part of panel discussion on Evaluating Models of Human Performance. The purpose of this panel is to discuss the increasing use of models in the world today and specifically focus on how to describe and evaluate models of human performance. My presentation will focus on discussions of generating distributions of performance, and the evaluation of different strategies for humans performing tasks with mixed initiative (Human-Automation) systems. I will also discuss issues with how to provide Human Performance modeling data to support decisions on acceptability and tradeoffs in the design of safety critical systems. I will conclude with challenges for the future.

  2. Modeling issues associated with production reactor safety assessment

    International Nuclear Information System (INIS)

    Stack, D.W.; Thomas, W.R.

    1990-01-01

    This paper describes several Probabilistic Safety Assessment (PSA) modeling issues that are related to the unique design and operation of the production reactors. The identification of initiating events and determination of a set of success criteria for the production reactors is of concern because of their unique design. The modeling of accident recovery must take into account the unique operation of these reactors. Finally, a more thorough search and evaluation of common-cause events is required to account for combinations of unique design features and operation that might otherwise not be included in the PSA. It is expected that most of these modeling issues also would be encountered when modeling some of the other more unique reactor and nonreactor facilities that are part of the DOE nuclear materials production complex. 9 refs., 2 figs

  3. Quality and safety of nuclear installations: the role of administration, and, nuclear safety and regulatory procedures

    International Nuclear Information System (INIS)

    Queniart, D.

    1979-12-01

    In the first paper the author defines the concepts of safety and quality and describes the means of intervention by the Public Authorities in safety matters of nuclear installations. These include individual authorisations, definition and application of technical rules and surveillance of installations. In the second paper he defines the distinction between radiation protection and safety and presents the legislative and regulatory plan for nuclear safety in France. A central safety service for nuclear installations was created in March 1973 within the Ministry of Industrial and Scientific Development, where, amongst other tasks, it draws up regulatory procedures and organizes inspections of the installations. The main American regulations for light water reactors are outlined and the French regulatory system for different types of reactors discussed

  4. Driving safety and adolescent behavior.

    Science.gov (United States)

    Brown, R C; Sanders, J M; Schonberg, S K

    1986-04-01

    Accidents, and mainly automotive accidents, are currently the leading cause of mortality and morbidity among young people. Understanding and addressing the issue of automotive accident prevention requires an awareness of the multiple psychodynamic, familial, and societal influences that affect the development and behavior of adolescents. Risk-taking behavior is the product of complex personal and environmental factors. As pediatricians, we have the obligation and the opportunity to improve the safety of our youth who drive and ride. This opportunity is available to us not only in our roles as counselors to youth and families, but also as we serve as role models, educators, and agents for change within our communities.

  5. Early Safety Assessment of Automotive Systems Using Sabotage Simulation-Based Fault Injection Framework

    OpenAIRE

    Juez, Garazi; Amparan, Estíbaliz; Lattarulo, Ray; Ruíz, Alejandra; Perez, Joshue; Espinoza, Huascar

    2017-01-01

    As road vehicles increase their autonomy and the driver reduces his role in the control loop, novel challenges on dependability assessment arise. Model-based design combined with a simulation-based fault injection technique and a virtual vehicle poses as a promising solution for an early safety assessment of automotive systems. To start with, the design, where no safety was considered, is stimulated with a set of fault injection simulations (fault forecasting). By doing so, safety strategies ...

  6. Thermal safety of ultrasound-enhanced ocular drug delivery: A modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Nabili, Marjan, E-mail: mnabili@gwmail.gwu.edu [Department of Electrical and Computer Engineering, The George Washington University, 800 22nd Street NW, Room 5000, Washington, DC 20052 (United States); Geist, Craig, E-mail: cgeist@mfa.gwu.edu, E-mail: zderic@gwu.edu [Department of Ophthalmology, The George Washington University, 2150 Pennsylvania Avenue NW, Floor 2A, Washington, DC 20037 (United States); Zderic, Vesna, E-mail: cgeist@mfa.gwu.edu, E-mail: zderic@gwu.edu [Department of Biomedical Engineering, The George Washington University, 800 22nd Street NW, Room 6670, Washington, DC 20052 (United States)

    2015-10-15

    Purpose: Delivery of sufficient amounts of therapeutic drugs into the eye for treatment of various ocular diseases is often a challenging task. Ultrasound was shown to be effective in enhancing ocular drug delivery in the authors’ previous in vitro and in vivo studies. Methods: The study reported here was designed to investigate the safety of ultrasound application and its potential thermal effects in the eye using PZFlex modeling software. The safety limit in this study was set as a temperature increase of no more than 1.5 °C based on regulatory recommendations and previous experimental safety studies. Acoustic and thermal specifications of different human eye tissues were obtained from the published literature. The tissues of particular interest in this modeling safety study were cornea, lens, and the location of optic nerve in the posterior eye. Ultrasound application was modeled at frequencies of 400 kHz–1 MHz, intensities of 0.3–1 W/cm{sup 2}, and exposure duration of 5 min, which were the parameters used in the authors’ previous drug delivery experiments. The baseline eye temperature was 37 °C. Results: The authors’ results showed that the maximal tissue temperatures after 5 min of ultrasound application were 38, 39, 39.5, and 40 °C in the cornea, 39.5, 40, 42, and 43 °C in the center of the lens, and 37.5, 38.5, and 39 °C in the back of the eye (at the optic nerve location) at frequencies of 400, 600, 800 kHz, and 1 MHz, respectively. Conclusions: The ocular temperatures reached at higher frequencies were considered unsafe based on current recommendations. At a frequency of 400 kHz and intensity of 0.8 W/cm{sup 2} (parameters shown in the authors’ previous in vivo studies to be optimal for ocular drug delivery), the temperature increase was small enough to be considered safe inside different ocular tissues. However, the impact of orbital bone and tissue perfusion should be included in future modeling efforts to determine the safety

  7. Thermal safety of ultrasound-enhanced ocular drug delivery: A modeling study

    International Nuclear Information System (INIS)

    Nabili, Marjan; Geist, Craig; Zderic, Vesna

    2015-01-01

    Purpose: Delivery of sufficient amounts of therapeutic drugs into the eye for treatment of various ocular diseases is often a challenging task. Ultrasound was shown to be effective in enhancing ocular drug delivery in the authors’ previous in vitro and in vivo studies. Methods: The study reported here was designed to investigate the safety of ultrasound application and its potential thermal effects in the eye using PZFlex modeling software. The safety limit in this study was set as a temperature increase of no more than 1.5 °C based on regulatory recommendations and previous experimental safety studies. Acoustic and thermal specifications of different human eye tissues were obtained from the published literature. The tissues of particular interest in this modeling safety study were cornea, lens, and the location of optic nerve in the posterior eye. Ultrasound application was modeled at frequencies of 400 kHz–1 MHz, intensities of 0.3–1 W/cm 2 , and exposure duration of 5 min, which were the parameters used in the authors’ previous drug delivery experiments. The baseline eye temperature was 37 °C. Results: The authors’ results showed that the maximal tissue temperatures after 5 min of ultrasound application were 38, 39, 39.5, and 40 °C in the cornea, 39.5, 40, 42, and 43 °C in the center of the lens, and 37.5, 38.5, and 39 °C in the back of the eye (at the optic nerve location) at frequencies of 400, 600, 800 kHz, and 1 MHz, respectively. Conclusions: The ocular temperatures reached at higher frequencies were considered unsafe based on current recommendations. At a frequency of 400 kHz and intensity of 0.8 W/cm 2 (parameters shown in the authors’ previous in vivo studies to be optimal for ocular drug delivery), the temperature increase was small enough to be considered safe inside different ocular tissues. However, the impact of orbital bone and tissue perfusion should be included in future modeling efforts to determine the safety of this

  8. Video Modeling to Teach Social Safety Skills to Young Adults with Intellectual Disability

    Science.gov (United States)

    Spivey, Corrine E.; Mechling, Linda C.

    2016-01-01

    This study evaluated the effectiveness of video modeling with a constant time delay procedure to teach social safety skills to three young women with intellectual disability. A multiple probe design across three social safety skills (responding to strangers who: requested personal information; requested money; and entered the participant's…

  9. Relationships among Safety Climate, Safety Behavior, and Safety Outcomes for Ethnic Minority Construction Workers

    Directory of Open Access Journals (Sweden)

    Sainan Lyu

    2018-03-01

    Full Text Available In many countries, it is common practice to attract and employ ethnic minority (EM or migrant workers in the construction industry. This primarily occurs in order to alleviate the labor shortage caused by an aging workforce with a lack of new entrants. Statistics show that EM construction workers are more likely to have occupational fatal and nonfatal injuries than their local counterparts; however, the mechanism underlying accidents and injuries in this vulnerable population has been rarely examined. This study aims to investigate relationships among safety climate, safety behavior, and safety outcomes for EM construction workers. To this end, a theoretical research model was developed based on a comprehensive review of the current literature. In total, 289 valid questionnaires were collected face-to-face from 223 Nepalese construction workers and 56 Pakistani construction workers working on 15 construction sites in Hong Kong. Structural equation modelling was employed to validate the constructs and test the hypothesized model. Results show that there were significant positive relationships between safety climate and safety behaviors, and significant negative relationships between safety behaviors and safety outcomes for EM construction workers. This research contributes to the literature regarding EM workers by providing empirical evidence of the mechanisms by which safety climate affects safety behaviors and outcomes. It also provides insights in order to help the key stakeholders formulate safety strategies for EM workers in many areas where numerous EM workers are employed, such as in the U.S., the UK, Australia, Singapore, Malaysia, and the Middle East.

  10. Relationships among Safety Climate, Safety Behavior, and Safety Outcomes for Ethnic Minority Construction Workers.

    Science.gov (United States)

    Lyu, Sainan; Hon, Carol K H; Chan, Albert P C; Wong, Francis K W; Javed, Arshad Ali

    2018-03-09

    In many countries, it is common practice to attract and employ ethnic minority (EM) or migrant workers in the construction industry. This primarily occurs in order to alleviate the labor shortage caused by an aging workforce with a lack of new entrants. Statistics show that EM construction workers are more likely to have occupational fatal and nonfatal injuries than their local counterparts; however, the mechanism underlying accidents and injuries in this vulnerable population has been rarely examined. This study aims to investigate relationships among safety climate, safety behavior, and safety outcomes for EM construction workers. To this end, a theoretical research model was developed based on a comprehensive review of the current literature. In total, 289 valid questionnaires were collected face-to-face from 223 Nepalese construction workers and 56 Pakistani construction workers working on 15 construction sites in Hong Kong. Structural equation modelling was employed to validate the constructs and test the hypothesized model. Results show that there were significant positive relationships between safety climate and safety behaviors, and significant negative relationships between safety behaviors and safety outcomes for EM construction workers. This research contributes to the literature regarding EM workers by providing empirical evidence of the mechanisms by which safety climate affects safety behaviors and outcomes. It also provides insights in order to help the key stakeholders formulate safety strategies for EM workers in many areas where numerous EM workers are employed, such as in the U.S., the UK, Australia, Singapore, Malaysia, and the Middle East.

  11. Role modeling excellence in clinical nursing practice.

    Science.gov (United States)

    Perry, R N Beth

    2009-01-01

    Role modeling excellence in clinical nursing practice is the focus of this paper. The phenomenological research study reported involved a group of 8 nurses identified by their colleagues as exemplary. The major theme revealed in this study was that these exemplary nurses were also excellent role models in the clinical setting. This paper details approaches used by these nurses that made them excellent role models. Specifically, the themes of attending to the little things, making connections, maintaining a light-hearted attitude, modeling, and affirming others are presented. These themes are discussed within the framework of Watson [Watson, J., 1989. Human caring and suffering: a subjective model for health services. In: Watson, J., Taylor, R. (Eds.), They Shall Not Hurt: Human Suffering and Human Caring. Colorado University, Boulder, CO] "transpersonal caring" and [Bandura, A., 1997. Social Learning Theory. Prentice Hall, Englewood Cliffs, NJ] "Social Learning Theory." Particular emphasis in the discussion is on how positive role modeling by exemplary practitioners can contribute to the education of clinical nurses in the practice setting.

  12. A SIL quantification approach based on an operating situation model for safety evaluation in complex guided transportation systems

    International Nuclear Information System (INIS)

    Beugin, J.; Renaux, D.; Cauffriez, L.

    2007-01-01

    Safety analysis in guided transportation systems is essential to avoid rare but potentially catastrophic accidents. This article presents a quantitative probabilistic model that integrates Safety Integrity Levels (SIL) for evaluating the safety of such systems. The standardized SIL indicator allows the safety requirements of each safety subsystem, function and/or piece of equipment to be specified, making SILs pivotal parameters in safety evaluation. However, different interpretations of SIL exist, and faced with the complexity of guided transportation systems, the current SIL allocation methods are inadequate for the task of safety assessment. To remedy these problems, the model developed in this paper seeks to verify, during the design phase of guided transportation system, whether or not the safety specifications established by the transport authorities allow the overall safety target to be attained (i.e., if the SIL allocated to the different safety functions are sufficient to ensure the required level of safety). To meet this objective, the model is based both on the operating situation concept and on Monte Carlo simulation. The former allows safety systems to be formalized and their dynamics to be analyzed in order to show the evolution of the system in time and space, and the latter make it possible to perform probabilistic calculations based on the scenario structure obtained

  13. Probabilistic safety assessment model in consideration of human factors based on object-oriented bayesian networks

    International Nuclear Information System (INIS)

    Zhou Zhongbao; Zhou Jinglun; Sun Quan

    2007-01-01

    Effect of Human factors on system safety is increasingly serious, which is often ignored in traditional probabilistic safety assessment methods however. A new probabilistic safety assessment model based on object-oriented Bayesian networks is proposed in this paper. Human factors are integrated into the existed event sequence diagrams. Then the classes of the object-oriented Bayesian networks are constructed which are converted to latent Bayesian networks for inference. Finally, the inference results are integrated into event sequence diagrams for probabilistic safety assessment. The new method is applied to the accident of loss of coolant in a nuclear power plant. the results show that the model is not only applicable to real-time situation assessment, but also applicable to situation assessment based certain amount of information. The modeling complexity is kept down and the new method is appropriate to large complex systems due to the thoughts of object-oriented. (authors)

  14. A chief safety officer as the driver and guardian of a great safety rating.

    Science.gov (United States)

    Steck, Oliver; Zenker, Daniel; Beatty, Tom

    2013-02-01

    If the Pharmaceutical Industry were to align to broad metrics that objectively state each product's "Safety Rating" two things would happen. First, Life Sciences companies would refocus dramatically on safety (followed by outcomes). Second, companies that have the highest aggregate "Safety Rating" would enjoy a significant competitive advantage. To achieve and maintain a high safety rating, the role of Safety officer needs to be elevated to the C-Suite.

  15. Work Pressure and Safety Behaviors among Health Workers in Ghana: The Moderating Role of Management Commitment to Safety

    Directory of Open Access Journals (Sweden)

    Kwesi Amponsah-Tawaih

    2016-12-01

    Conclusion: When employees perceive safety communication, safety systems and training to be positive, they seem to comply with safety rules and procedures than voluntarily participate in safety activities.

  16. Directions for model building from asymptotic safety

    Science.gov (United States)

    Bond, Andrew D.; Hiller, Gudrun; Kowalska, Kamila; Litim, Daniel F.

    2017-08-01

    Building on recent advances in the understanding of gauge-Yukawa theories we explore possibilities to UV-complete the Standard Model in an asymptotically safe manner. Minimal extensions are based on a large flavor sector of additional fermions coupled to a scalar singlet matrix field. We find that asymptotic safety requires fermions in higher representations of SU(3) C × SU(2) L . Possible signatures at colliders are worked out and include R-hadron searches, diboson signatures and the evolution of the strong and weak coupling constants.

  17. Role of effective nurse-patient relationships in enhancing patient safety.

    Science.gov (United States)

    Conroy, Tiffany; Feo, Rebecca; Boucaut, Rose; Alderman, Jan; Kitson, Alison

    2017-08-02

    Ensuring and maintaining patient safety is an essential aspect of care provision. Safety is a multidimensional concept, which incorporates interrelated elements such as physical and psychosocial safety. An effective nurse-patient relationship should ensure that these elements are considered when planning and providing care. This article discusses the importance of an effective nurse-patient relationship, as well as healthcare environments and working practices that promote safety, thus ensuring optimal patient care.

  18. Counterfactual simulations applied to SHRP2 crashes: The effect of driver behavior models on safety benefit estimations of intelligent safety systems.

    Science.gov (United States)

    Bärgman, Jonas; Boda, Christian-Nils; Dozza, Marco

    2017-05-01

    As the development and deployment of in-vehicle intelligent safety systems (ISS) for crash avoidance and mitigation have rapidly increased in the last decades, the need to evaluate their prospective safety benefits before introduction has never been higher. Counterfactual simulations using relevant mathematical models (for vehicle dynamics, sensors, the environment, ISS algorithms, and models of driver behavior) have been identified as having high potential. However, although most of these models are relatively mature, models of driver behavior in the critical seconds before a crash are still relatively immature. There are also large conceptual differences between different driver models. The objective of this paper is, firstly, to demonstrate the importance of the choice of driver model when counterfactual simulations are used to evaluate two ISS: Forward collision warning (FCW), and autonomous emergency braking (AEB). Secondly, the paper demonstrates how counterfactual simulations can be used to perform sensitivity analyses on parameter settings, both for driver behavior and ISS algorithms. Finally, the paper evaluates the effect of the choice of glance distribution in the driver behavior model on the safety benefit estimation. The paper uses pre-crash kinematics and driver behavior from 34 rear-end crashes from the SHRP2 naturalistic driving study for the demonstrations. The results for FCW show a large difference in the percent of avoided crashes between conceptually different models of driver behavior, while differences were small for conceptually similar models. As expected, the choice of model of driver behavior did not affect AEB benefit much. Based on our results, researchers and others who aim to evaluate ISS with the driver in the loop through counterfactual simulations should be sure to make deliberate and well-grounded choices of driver models: the choice of model matters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Food Safety & Standards

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ An increasing number of people have realized that food safety is an important issue for public health. It not only concerns public health and safety, but also has direct influence on national economic progress and social development. The development and implementation of food safety standards play a vital role in protecting public health, as well as in standardizing and facilitating the sound development of food production and business.

  20. Can role models boost entrepreneurial attitudes?

    Science.gov (United States)

    Fellnhofer, Katharina; Puumalainen, Kaisu

    2017-01-01

    This multi-country study used role models to boost perceptions of entrepreneurial feasibility and desirability. The results of a structural equation model based on a sample comprising 426 individuals who were primarily from Austria, Finland and Greece revealed a significant positive influence on perceived entrepreneurial desirability and feasibility. These findings support the argument for embedding entrepreneurial role models in entrepreneurship education courses to promote entrepreneurial activities. This direction is not only relevant for the academic community but also essential for nascent entrepreneurs, policymakers and society at large.

  1. MODELS AND METHODS OF SAFETY-ORIENTED PROJECT MANAGEMENT OF DEVELOPMENT OF COMPLEX SYSTEMS: METHODOLOGICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Олег Богданович ЗАЧКО

    2016-03-01

    Full Text Available The methods and models of safety-oriented project management of the development of complex systems are proposed resulting from the convergence of existing approaches in project management in contrast to the mechanism of value-oriented management. A cognitive model of safety oriented project management of the development of complex systems is developed, which provides a synergistic effect that is to move the system from the original (pre condition in an optimal one from the viewpoint of life safety - post-project state. The approach of assessment the project complexity is proposed, which consists in taking into account the seasonal component of a time characteristic of life cycles of complex organizational and technical systems with occupancy. This enabled to take into account the seasonal component in simulation models of life cycle of the product operation in complex organizational and technical system, modeling the critical points of operation of systems with occupancy, which forms a new methodology for safety-oriented management of projects, programs and portfolios of projects with the formalization of the elements of complexity.

  2. The role of simulation in mixed-methods research: a framework & application to patient safety.

    Science.gov (United States)

    Guise, Jeanne-Marie; Hansen, Matthew; Lambert, William; O'Brien, Kerth

    2017-05-04

    Research in patient safety is an important area of health services research and is a national priority. It is challenging to investigate rare occurrences, explore potential causes, and account for the complex, dynamic context of healthcare - yet all are required in patient safety research. Simulation technologies have become widely accepted as education and clinical tools, but have yet to become a standard tool for research. We developed a framework for research that integrates accepted patient safety models with mixed-methods research approaches and describe the performance of the framework in a working example of a large National Institutes of Health (NIH)-funded R01 investigation. This worked example of a framework in action, identifies the strengths and limitations of qualitative and quantitative research approaches commonly used in health services research. Each approach builds essential layers of knowledge. We describe how the use of simulation ties these layers of knowledge together and adds new and unique dimensions of knowledge. A mixed-methods research approach that includes simulation provides a broad multi-dimensional approach to health services and patient safety research.

  3. A Diverging View of Role Modeling in Medical Education

    Directory of Open Access Journals (Sweden)

    Gurjit Sandhu

    2015-03-01

    Full Text Available Research in the area of role modeling has primarily focused on the qualities and attributes of exceptional role models, and less attention has been given to the act of role modeling itself (Elzubeir & Rizk, 2001; Jochemsen-van der Leeuw, van Dijk, van Etten-Jamaludin, & Wieringa-de Waard, 2013; Wright, 1996; Wright, Wong, & Newill, 1997. A standardized understanding of role modeling in medical education remains elusive (Kenny, Mann, & MacLeod, 2003. This is problematic given that role modeling is pervasively documented as an approach to teaching (Reuler & Nardone, 1994. Our study attempts to fill a void in this body of research by looking at what faculty are thinking, saying, and doing when they say they are role modeling. Individual semi-structured interviews with faculty members were conducted in the Department of General Surgery at Queen’s University, Kingston, Ontario, Canada. Interviews were recorded, transcribed, and analyzed using qualitative methods for themes surrounding teaching and role modeling. Three major themes emerged from the data: (1 faculty members think they are teaching when they are acting professionally; (2 faculty members become aware of teaching opportunities and act on them; and (3 faculty members employ evidence-based teaching methods, but they are incorrectly labeling them as “role modeling.” As a whole, our findings should help distinguish between role modeling as roles and responsibilities enacted while doing one’s job well, and teaching as facilitated instruction that helps connect knowledge with action (Clayton, 2006; Fassbinder, 2007. Contributing to a better understanding of how teaching is separate from role modeling has the potential to improve the scope and quality of teaching, ultimately enhancing the learning experience for trainees.

  4. Occupational driver safety: conceptualising a leadership-based intervention to improve safe driving performance.

    Science.gov (United States)

    Newnam, Sharon; Lewis, Ioni; Watson, Barry

    2012-03-01

    Occupational driving crashes are the most common cause of death and injury in the workplace. The physical and psychological outcomes following injury are also very costly to organizations. Thus, safe driving poses a managerial challenge. Some research has attempted to address this issue through modifying discrete and often simple target behaviours (e.g., driver training programs). However, current intervention approaches in the occupational driving field generally consider the role of organizational factors in workplace safety. This study adopts the A-B-C framework to identify the contingencies associated with an effective exchange of safety information within the occupational driving context. Utilizing a sample of occupational drivers and their supervisors, this multi-level study examines the contingencies associated with the exchange of safety information within the supervisor-driver relationship. Safety values are identified as an antecedent of the safety information exchange, and the quality of the leader-member exchange relationship and safe driving performance is identified as the behavioural consequences. We also examine the function of role overload as a factor influencing the relationship between safety values and the safety information exchange. Hierarchical linear modelling found that role overload moderated the relationship between supervisors' perceptions of the value given to safety and the safety information exchange. A significant relationship was also found between the safety information exchange and the subsequent quality of the leader-member exchange relationship. Finally, the quality of the leader-member exchange relationship was found to be significantly associated with safe driving performance. Theoretical and practical implications of these results are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. The role of neural networks in nuclear power plant safety systems

    International Nuclear Information System (INIS)

    Boger, Z.

    1993-01-01

    Neural networks (NN) techniques have been applied in recent years to many systems by researchers in the nuclear power industry, mainly for modeling and sensor validation. Recent results are reviewed, including new directions in applications to control systems, safety analysis, and ''virtual'' instruments. As new fast learning algorithms become available, large systems may be learned effectively, even with few training examples. The nuclear industry hesitates to include NN in safety related systems, but it seems that the obstacles could be overcome with the demonstration of successful applications, even from other industries. Coupling of full-scale reactor simulators, as fault database generators, with neural networks learning should be explored. The integration of Expert System technology with NN should improve the Validation and Verification tasks, and also help overcome psychological barriers. It may prove that the potential of NN to help operators, compared with the existing and proposed alternatives, outweigh the risks. (author). 58 refs, 2 figs

  6. The mediating role of integration of safety by activity versus operator between organizational culture and safety climate.

    Science.gov (United States)

    Auzoult, Laurent; Gangloff, Bernard

    2018-04-20

    In this study, we analyse the impact of the organizational culture and introduce a new variable, the integration of safety, which relates to the modalities for the implementation and adoption of safety in the work process, either through the activity or by the operator. One hundred and eighty employees replied to a questionnaire measuring the organizational climate, the safety climate and the integration of safety. We expected that implementation centred on the activity or on the operator would mediate the relationship between the organizational culture and the safety climate. The results support our assumptions. A regression analysis highlights the positive impact on the safety climate of organizational values of the 'rule' and 'support' type, as well as of integration by the operator and activity. Moreover, integration mediates the relation between these variables. The results suggest to take into account organizational culture and to introduce different implementation modalities to improve the safety climate.

  7. A prediction model for the radiation safety management behavior of medical cyclotrons

    International Nuclear Information System (INIS)

    Jung, Ji Hye; Han, Eun Ok; Kim, Ssang Tae

    2008-01-01

    This study attempted to provide reference materials for improving the behavior level in radiation safety managements by drawing a prediction model that affects the radiation safety management behavior because the radiation safety management of medical Cyclotrons, which can be used to produce radioisotopes, is an important factor that protects radiation caused diseases not only for radiological operators but average users. In addition, this study obtained follows results through the investigation applied from January 2 to January 30, 2008 for the radiation safety managers employed in 24 authorized organizations, which have already installed Cyclotrons, through applying a specific form of questionnaire in which the validity was guaranteed by reference study, site investigation, and focus discussion by related experts. The radiation safety management were configured as seven steps: step 1 is a production preparation step, step 2 is an RI production step, step 3 is a synthesis step, step 4 is a distribution step, step 5 is a quality control step, step 6 is a carriage container packing step, and step 7 is a transportation step. It was recognized that the distribution step was the most exposed as 15 subjects (62.5%), the items of 'the sanction and permission related works' and 'the guarantee of installation facilities and production equipment' were the most difficult as 9 subjects (37.5%), and in the trouble steps in such exposure, the item of 'the synthesis and distribution' steps were 4 times, respectively (30.8%). In the score of the behavior level in radiation safety managements, the minimum and maximum scores were 2.42 and 4.00, respectively, and the average score was 3.46 ± 0.47 out of 4. Prosperity and well-being programs in the behavior and job in radiation safety managements (r=0.529) represented a significant correlation statistically. In the drawing of a prediction model based on the factors that affected the behavior in radiation safety managements, general

  8. Driving behaviours, traffic risk and road safety: comparative study between Malaysia and Singapore.

    Science.gov (United States)

    Khan, Saif ur Rehman; Khalifah, Zainab Binti; Munir, Yasin; Islam, Talat; Nazir, Tahira; Khan, Hashim

    2015-01-01

    The present study aims to investigate differences in road safety attitude, driver behaviour and traffic risk perception between Malaysia and Singapore. A questionnaire-based survey was conducted among a sample of Singaporean (n = 187) and Malaysian (n = 313) road users. The data was analysed using confirmatory factor analysis and structural equation modelling applied to measure comparative fit indices of Malaysian and Singaporean respondents. The results show that the perceived traffic risk of Malaysian respondents is higher than Singaporean counterparts. Moreover, the structural equation modelling has confirmed perceived traffic risk performing the role of full mediation between perceived driving skills and perceived road safety for both the countries, while perceived traffic skills was found to perform the role of partial mediation between aggression and anxiety, on one hand, and road safety, on the other hand, in Malaysia and Singapore. In addition, in both countries, a weak correlation between perceived driving skills, aggression and anxiety with perceived road safety was found, while a strong correlation exists with traffic risk perception. The findings of this study have been discussed in terms of theoretical, practical and conceptual implications for both scholars and policy-makers to better understand the young drivers' attitude and behaviour relationship towards road safety measures with a view to future research.

  9. Challenging patient safety culture: survey results

    NARCIS (Netherlands)

    Hellings, Johan; Schrooten, Ward; Klazinga, Niek; Vleugels, Arthur

    2007-01-01

    PURPOSE: The purpose of this paper is to measure patient safety culture in five Belgian general hospitals. Safety culture plays an important role in the approach towards greater patient safety in hospitals. DESIGN/METHODOLOGY/APPROACH: The Patient Safety Culture Hospital questionnaire was

  10. Self assessment of safety culture in HANARO using the code of conduct on the safety of research reactor by IAEA

    International Nuclear Information System (INIS)

    Lim, I.C.; Hwang, S.Y.; Woo, J.S.; Lee, M.; Jun, B.J.

    2003-01-01

    Full text: The safety culture in HANARO was self-assessed in accordance with the Code of Conduct on the Safety of Research Reactor drafted by IAEA. From 2002, IAEA has worked on the development of the Code of Conduct to achieve and maintain high level of nuclear safety in research reactors worldwide through the enhancement of national measures and international co-operation including, where appropriate, safety related technical cooperation. It defines the role of the state, the role of the regulatory body, the role of the operating organization and the role of the IAEA. As for the role of operating organization, the code specifies general requirements in assessment and verification of safety, financial and human resources, quality assurance, human factors, radiation protection and emergency preparedness. It also defines the role of operating organization for safety of research reactor in siting, design, operation, maintenance, modification and utilization as well. All of these items are the subjects for safety culture implementation, which means the Code could be a guideline for an operating organization to assess its safety culture. The self-assessment of safety culture in HANARO was made by using the sections of the Code describing the role of the operating organization for safety of research reactor. The major assessment items and the practices in HANARO for each items are as follow: The SAR of HANARO was reviewed by the regulatory body before the construction and the fuel loading of HANARO. Major design modifications and new installation of utilization facility needs the approval from regulatory body and safety assessment is a requirement for the approval. The Tech. Spec. for HANARO Operation specifies the analysis, surveillance, testing and inspection for HANARO operation. The reactor operation is mainly supported by the government and partly by nuclear R and D fund. The education and training of operation staff are one of major tasks of operating organization

  11. Linking empowering leadership to safety participation in nuclear power plants: a structural equation model.

    Science.gov (United States)

    Martínez-Córcoles, Mario; Schöbel, Markus; Gracia, Francisco J; Tomás, Inés; Peiró, José M

    2012-07-01

    Safety participation is of paramount importance in guaranteeing the safe running of nuclear power plants. The present study examined the effects of empowering leadership on safety participation. Based on a sample of 495 employees from two Spanish nuclear power plants, structural equation modeling showed that empowering leadership has a significant relationship with safety participation, which is mediated by collaborative team learning. In addition, the results revealed that the relationship between empowering leadership and collaborative learning is partially mediated by the promotion of dialogue and open communication. The implications of these findings for safety research and their practical applications are outlined. An empowering leadership style enhances workers' safety performance, particularly safety participation behaviors. Safety participation is recommended to detect possible rule inconsistencies or misunderstood procedures and make workers aware of critical safety information and issues. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  12. Patient participation in patient safety still missing: Patient safety experts' views.

    Science.gov (United States)

    Sahlström, Merja; Partanen, Pirjo; Rathert, Cheryl; Turunen, Hannele

    2016-10-01

    The aim of this study was to elicit patient safety experts' views of patient participation in promoting patient safety. Data were collected between September and December in 2014 via an electronic semi-structured questionnaire and interviews with Finnish patient safety experts (n = 21), then analysed using inductive content analysis. Patient safety experts regarded patients as having a crucial role in promoting patient safety. They generally deemed the level of patient safety as 'acceptable' in their organizations, but reported that patient participation in their own safety varied, and did not always meet national standards. Management of patient safety incidents differed between organizations. Experts also suggested that patient safety training should be increased in both basic and continuing education programmes for healthcare professionals. Patient participation in patient safety is still lacking in clinical practice and systematic actions are needed to create a safety culture in which patients are seen as equal partners in the promotion of high-quality and safe care. © 2016 John Wiley & Sons Australia, Ltd.

  13. A meta-model for computer executable dynamic clinical safety checklists.

    Science.gov (United States)

    Nan, Shan; Van Gorp, Pieter; Lu, Xudong; Kaymak, Uzay; Korsten, Hendrikus; Vdovjak, Richard; Duan, Huilong

    2017-12-12

    Safety checklist is a type of cognitive tool enforcing short term memory of medical workers with the purpose of reducing medical errors caused by overlook and ignorance. To facilitate the daily use of safety checklists, computerized systems embedded in the clinical workflow and adapted to patient-context are increasingly developed. However, the current hard-coded approach of implementing checklists in these systems increase the cognitive efforts of clinical experts and coding efforts for informaticists. This is due to the lack of a formal representation format that is both understandable by clinical experts and executable by computer programs. We developed a dynamic checklist meta-model with a three-step approach. Dynamic checklist modeling requirements were extracted by performing a domain analysis. Then, existing modeling approaches and tools were investigated with the purpose of reusing these languages. Finally, the meta-model was developed by eliciting domain concepts and their hierarchies. The feasibility of using the meta-model was validated by two case studies. The meta-model was mapped to specific modeling languages according to the requirements of hospitals. Using the proposed meta-model, a comprehensive coronary artery bypass graft peri-operative checklist set and a percutaneous coronary intervention peri-operative checklist set have been developed in a Dutch hospital and a Chinese hospital, respectively. The result shows that it is feasible to use the meta-model to facilitate the modeling and execution of dynamic checklists. We proposed a novel meta-model for the dynamic checklist with the purpose of facilitating creating dynamic checklists. The meta-model is a framework of reusing existing modeling languages and tools to model dynamic checklists. The feasibility of using the meta-model is validated by implementing a use case in the system.

  14. Implementation of an enlarged model of the safety valves and relief in the plant integral model for the code RELAP/SCDAPSIM

    International Nuclear Information System (INIS)

    Amador G, R.; Ortiz V, J.; Castillo D, R.; Hernandez L, E. J.; Galeana R, J. C.; Gutierrez, V. H.

    2013-10-01

    The present work refers to the implementation of a new model on the logic of the safety valves and relief in the integral model of the Nuclear Power Plant of Laguna Verde of the thermal-hydraulic compute code RELAP/SCDAPSIM Mod. 3.4. The new model was developed with the compute package SIMULINK-MATLAB and contemplates all the operation options of the safety valves and relief, besides including the availability options of the valves in all the operation ways and of blockage in the ways of relief and low-low. The implementation means the elimination of the old model of the safety valves and to analyze the group of logical variables, of discharge and available control systems to associate them to the model of package SIMULINK-MATLAB. The implementation has been practically transparent and 27 cases corresponding to a turbine discharge were analyzed with the code RELAP/SCDAPSIM Mod. 3.4. The results were satisfactory. (Author)

  15. Fundamental Safety Principles

    International Nuclear Information System (INIS)

    Abdelmalik, W.E.Y.

    2011-01-01

    This work presents a summary of the IAEA Safety Standards Series publication No. SF-1 entitled F UDAMENTAL Safety PRINCIPLES p ublished on 2006. This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purposes. Safety measures and security measures have in common the aim of protecting human life and health and the environment. These safety principles are: 1) Responsibility for safety, 2) Role of the government, 3) Leadership and management for safety, 4) Justification of facilities and activities, 5) Optimization of protection, 6) Limitation of risks to individuals, 7) Protection of present and future generations, 8) Prevention of accidents, 9)Emergency preparedness and response and 10) Protective action to reduce existing or unregulated radiation risks. The safety principles concern the security of facilities and activities to the extent that they apply to measures that contribute to both safety and security. Safety measures and security measures must be designed and implemented in an integrated manner so that security measures do not compromise safety and safety measures do not compromise security.

  16. [Establishment of model of traditional Chinese medicine injections post-marketing safety monitoring].

    Science.gov (United States)

    Guo, Xin-E; Zhao, Yu-Bin; Xie, Yan-Ming; Zhao, Li-Cai; Li, Yan-Feng; Hao, Zhe

    2013-09-01

    To establish a nurse based post-marketing safety surveillance model for traditional Chinese medicine injections (TCMIs). A TCMIs safety monitoring team and a research hospital team engaged in the research, monitoring processes, and quality control processes were established, in order to achieve comprehensive, timely, accurate and real-time access to research data, to eliminate errors in data collection. A triage system involving a study nurse, as the first point of contact, clinicians and clinical pharmacists was set up in a TCM hospital. Following the specified workflow involving labeling of TCM injections and using improved monitoring forms it was found that there were no missing reports at the ratio of error was zero. A research nurse as the first and main point of contact in post-marketing safety monitoring of TCM as part of a triage model, ensures that research data collected has the characteristics of authenticity, accuracy, timeliness, integrity, and eliminate errors during the process of data collection. Hospital based monitoring is a robust and operable process.

  17. IRSN safety research carried out for reviewing safety cases

    International Nuclear Information System (INIS)

    Serres, Ch.

    2010-01-01

    Christophe Serres from IRSN (France) described the independent role of the IRSN regarding research related to nuclear safety in the context of the French Planning Act of 28 June 2006 foreseeing a licence application to be submitted in 2015 for the creation of a deep geological repository. IRSN research programme is organised along research activities devoted to addressing independently-identified k ey safety issues . These 'key issues' should also be of prime concern for the implementer since they relate to the demonstration of the overall safety of the repository, and the level of funding that the implementer should afford to research activities of concern for safety. He explained that the quality and independency of the research programme carried out by IRSN allow building and improving a set of scientific knowledge and technical skills that serves the public mission of delivering technical appraisal and advice, e.g., on behalf of the national safety authority. In particular they contribute to improving the decisional process by making possible scientific dialogue with stakeholders independently from regulator or implementer. The current IRSN R and D programme is developed along the following lines: - Test the adequacy of experimental methods for which feedback is not sufficient. - Develop basic scientific knowledge in the fields where there is a need for better understanding of complex phenomena and interactions. - Develop and use numerical modelling tools to support studies on complex phenomena and interactions. - Perform specific experimental tests aiming at assessing the key parameters that may warrant the performances of the different components of the repository. These studies are carried out by means of experiments performed either at IRSN surface laboratories, or in the Tournemire Experimental Station (TES), an underground facility operated by IRSN in the south-east of France. Targeted actions on research related to operational safety and reversibility

  18. Responding to vaccine safety signals during pandemic influenza: a modeling study.

    Directory of Open Access Journals (Sweden)

    Judith C Maro

    Full Text Available Managing emerging vaccine safety signals during an influenza pandemic is challenging. Federal regulators must balance vaccine risks against benefits while maintaining public confidence in the public health system.We developed a multi-criteria decision analysis model to explore regulatory decision-making in the context of emerging vaccine safety signals during a pandemic. We simulated vaccine safety surveillance system capabilities and used an age-structured compartmental model to develop potential pandemic scenarios. We used an expert-derived multi-attribute utility function to evaluate potential regulatory responses by combining four outcome measures into a single measure of interest: 1 expected vaccination benefit from averted influenza; 2 expected vaccination risk from vaccine-associated febrile seizures; 3 expected vaccination risk from vaccine-associated Guillain-Barre Syndrome; and 4 expected change in vaccine-seeking behavior in future influenza seasons.Over multiple scenarios, risk communication, with or without suspension of vaccination of high-risk persons, were the consistently preferred regulatory responses over no action or general suspension when safety signals were detected during a pandemic influenza. On average, the expert panel valued near-term vaccine-related outcomes relative to long-term projected outcomes by 3:1. However, when decision-makers had minimal ability to influence near-term outcomes, the response was selected primarily by projected impacts on future vaccine-seeking behavior.The selected regulatory response depends on how quickly a vaccine safety signal is identified relative to the peak of the pandemic and the initiation of vaccination. Our analysis suggested two areas for future investment: efforts to improve the size and timeliness of the surveillance system and behavioral research to understand changes in vaccine-seeking behavior.

  19. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.

    Science.gov (United States)

    Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil

    2013-05-21

    Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of

  20. Safety analysis report on Model UC-609 shipping package

    International Nuclear Information System (INIS)

    Sandberg, R.R.

    1977-08-01

    This Safety Analysis Report for Packaging demonstrates that model UC-609 shipping package can safely transport tritium in any of its forms. The package and its contents are described. The package when subjected to the transport conditions specified in the Code of Federal Regulations, Title 10, Part 71 is evaluated. Finally, compliance with these regulations is discussed

  1. Defining role models for staff orientation.

    Science.gov (United States)

    Kinley, H

    This article examines the need for a formal role model to help integrate new staff within a unit. While acknowledging the range of titles and functions ascribed to such a role in the literature, the author suggests that the essence of the role and its formal recognition has benefits for experienced staff and orientees alike.

  2. [Role of some psycho-physiological factors on driving safety].

    Science.gov (United States)

    Bergomi, M; Vivoli, G; Rovesti, S; Bussetti, P; Ferrari, A; Vivoli, R

    2010-01-01

    Within a research project on the role played by human factors on road accidents, the aim of the present study is to evaluate, in young adults, the relationships between driver behaviour and personality factors as well as to assess the neuroendocrine correlates of psychological and behavioural factors investigated. Another aim is to estimate in what measure the performance levels are affected by demographic, psychological and chronobiological variables. It has been found a positive relation between highway code violations, extroversion trait of personality and Sensation Seeking scores, so confirming that this component of personality can affect risky behaviour. Furthermore the subjects more oriented to morningness chronotype were found to be prone to adopt safe driving behaviour. Regarding the relations of the neuroendocrine parameters and driving behaviour a positive correlation was observed between dopamine levels and frequency of driving violations while a negative relationship was found between adrenaline levels and frequency of driving errors. In conclusion the identification of psycho-physiological variables related to driving risky behaviour might be a useful instrument to design traffic safety programs tailored to high risk subjects.

  3. Transformational leadership in nursing and medication safety education: a discussion paper.

    Science.gov (United States)

    Vaismoradi, Mojtaba; Griffiths, Pauline; Turunen, Hannele; Jordan, Sue

    2016-10-01

    This paper discusses the application of transformational leadership to the teaching and learning of safe medication management. The prevalence of adverse drug events (ADEs) and medication-related hospitalisations (one hundred thousand each year in the USA) are of concern. This discussion is based on a narrative literature review and scrutiny of international nursing research to synthesise pedagogical strategies for the application of transformational leadership to teaching medication safety. The four elements relating transformational leadership to medication safety education are: 'Idealised influence' or role modelling, both actual and exemplary, 'Inspirational motivation' providing students with commitment to medication safety, 'Intellectual stimulation' encouraging students to value improvement and change, and 'Individualised consideration' of individual students' educational goals, practice development and patient outcomes. The model lends itself to experiential learning and a case-study approach to teaching, offering an opportunity to reduce nursing's theory-practice gap. Transformational leadership for medication safety education is characterised by a focus on the role of nurse educators and mentors in the development of students' abilities, creation of a supportive culture, and enhancement of students' creativity, motivation and ethical behaviour. This will prepare nursing graduates with the competencies necessary to be diligent about medication safety and the prevention of errors. Teaching medication safety through transformational leadership requires the close collaboration of educators, managers and policy makers. Investigation of strategies to reduced medication errors and consequent patient harm should include exploration of the application of transformational leadership to education and its impact on the number and severity of medication errors. © 2016 John Wiley & Sons Ltd.

  4. A quantitative assessment of organizational factors affecting safety using a system dynamics model

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J. K. [Systemix Company, Seoul (Korea, Republic of); Yoon, T. S. [Korea Electric Power Research Institute (Korea, Republic of)

    2003-07-01

    The purpose of this study is to develop a system dynamics model for the assessment of organizational and human factors in the nuclear power plant safety. Previous studies are classified into two major approaches. One is the engineering approach such as ergonomics and Probabilistic Safety Assessment (PSA). The other is socio-psychology one. Both have contributed to find organizational and human factors and increased nuclear safety However, since these approaches assume that the relationship among factors is independent they do not explain the interactions between factors or variables in NPP's. To overcome these restrictions, a system dynamics model, which can show causal relations between factors and quantify organizational and human factors, has been developed. Operating variables such as degree of leadership, adjustment of number of employee, and workload in each department, users can simulate various situations in nuclear power plants in the organization side. Through simulation, user can get an insight to improve safety in plants and to find managerial tools in the organization and human side.

  5. Characteristics of the safety climate in teams with world-class safety ...

    African Journals Online (AJOL)

    interact to deliver a project successfully in terms of cost .... small-scale accidents occurring at high frequency and from diverse ... the team dynamics of role players in a construction project and .... modified safety pyramid to measure the impact of the safety climate ...... Methodological Centre for Vocational Education and.

  6. Validation study of safety assessment model for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Munakata, Masahiro; Takeda, Seiji; Kimura, Hideo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    The JAERI-AECL collaboration research program has been conducted to validate a groundwater flow and radionuclide transport models for safety assessment. JAERI have developed a geostatistical model for radionuclide transport through a heterogeneous geological media and verify using experimental results of field tracer tests. The simulated tracer plumes explain favorably the experimental tracer plumes. A regional groundwater flow and transport model using site-scale parameter obtained from tracer tests have been verified by comparing simulation results with observation ones of natural environmental tracer. (author)

  7. Reactor safety research. The CEC contribution

    International Nuclear Information System (INIS)

    Krischer, W.

    1990-01-01

    The involvement of the EC Commission in the reactor safety research dates back almost to the implementation of the EURATOM Treaty and has thus lasted for thirty years. The need for close collaboration and for general consensus on some crucial problems of concern to the public, has made the role of international organizations and, as far as Europe is concerned, the role of the European Community particularly important. The areas in which the CEC has been active during the last five years are widespread. This is partly due to the fact that, after TMI and Chernobyl, the effort and the interest of the different countries in reactor safety was considerable. Reactor Safety Research represents the proceedings of a seminar held by the Commission at the end of its research programme 1984-88 on reactor safety. As such it gives a comprehensive overview of the recent activities and main results achieved in the CEC Joint Research Centre and in national laboratories throughout Europe on the basis of shared cost actions. In a concluding chapter the book reports on the opinions, expressed during a panel by a group of major exponents, on the needs for future research. The main topics addressed are, with particular reference to Light Water Reactors (LWRS): reliability and risk evaluation, inspection of steel components, primary circuit components end-of-life prediction, and abnormal behaviour of reactor cooling systems. As far as LMFBRs are concerned, the topics covered are: severe accident modelling, material properties and structural behaviour studies. There are 67 pages, all of which are indexed separately. Reactor Safety Research will be of particular interest to reliability and safety engineers, nuclear engineers and technicians, and mechanical and structural engineers. (author)

  8. Influence of workplace demands on nurses' perception of patient safety.

    Science.gov (United States)

    Ramanujam, Rangaraj; Abrahamson, Kathleen; Anderson, James G

    2008-06-01

    Patient safety is an ongoing challenge in the design and delivery of health-care services. As registered nurses play an integral role in patient safety, further examination of the link between nursing work and patient safety is warranted. The present study examines the relationship between nurses' perceptions of job demands and nurses' perceptions of patient safety. Structural equation modeling is used to analyze the data collected from a survey of 430 registered nurses at two community hospitals in the USA. As hypothesized, nurses' perception of patient safety decreases as the job demands increase. The level of personal control over practice directly affects nurses' perception of the ability to assure patient well-being. Nurses who work full-time and are highly educated have a decreased perception of patient safety, as well. The significant relationship between job demands and patient safety confirms that nurses make a connection between their working conditions and the ability to deliver safe care.

  9. The role of the nuclear safety regulator

    International Nuclear Information System (INIS)

    Mellado, I.

    2007-01-01

    The Consejo de Seguridad Nuclear (CSN), or Nuclear Safety Council, is the only Spanish institution qualified in nuclear safety and radiological protection. Created in 1980, the CSN is independent of the Central State Administration, and possesses its own legal standing, estate and resources acquired directly from tax revenues. The CSN proposes regulations and advises the government on subjects within its competence, including the criteria for siting nuclear facilities once the autonomous regions have been informed. The CSN is responsible for issuing mandatory and binding reports to the Ministry of Industry. Tourism and Commerce, and for inspections and evaluation of the facilities included within its realm of competence throughout their phases (construction, start-up, operating and decommissioning). It is also responsible for the radiological control and surveillance of workers, the general public and the environment, as described below. In 1999, a new responsibility was assigned to the CSN to perform studies, assessment and inspections in relation to all phases of radioactive waste and spent fuel management. The CSN reports to the Spanish Parliament and is not subject to the hierarchy or auspices of the Government or the organisations in charge of promoting nuclear energy. The Council itself is an Associative Body comprised of 5 members, appointed by Parliament for a 6 year term (these members cannot be removed). Under this Council is situated an extensive technical body. A General Secretary is seconded by Technical Directors in the area of Nuclear Safety and Radiological Protection. As well there are a R and D Office, an Inspection Office, and a Technical Standards Office. The CSN counts 446 workers, of which 191 are university graduate specialists in nuclear safety or radiological protection. The average age is 45 years. Ongoing training is provided in technical specialties and management. (author)

  10. Validation of a functional model for integration of safety into process system design

    DEFF Research Database (Denmark)

    Wu, J.; Lind, M.; Zhang, X.

    2015-01-01

    with the process system functionalities as required for the intended safety applications. To provide the scientific rigor and facilitate the acceptance of qualitative modelling, this contribution focuses on developing a scientifically based validation method for functional models. The Multilevel Flow Modeling (MFM...

  11. The Relationship Among School Safety, School Liking, and Students' Self-Esteem: Based on a Multilevel Mediation Model.

    Science.gov (United States)

    Zhang, Xinghui; Xuan, Xin; Chen, Fumei; Zhang, Cai; Luo, Yuhan; Wang, Yun

    2016-03-01

    Perceptions of school safety have an important effect on students' development. Based on the model of "context-process-outcomes," we examined school safety as a context variable to explore how school safety at the school level affected students' self-esteem. We used hierarchical linear modeling to examine the link between school safety at the school level and students' self-esteem, including school liking as a mediator. The data were from the National Children's Study of China (NCSC), in which 6618 fourth- to fifth-grade students in 79 schools were recruited from 100 counties in 31 provinces in China. Multilevel mediation analyses showed that the positive relationship between school safety at the school level and self-esteem was partially mediated by school liking, controlling for demographics at both student and school levels. Furthermore, a sex difference existed in the multilevel mediation model. For boys, school liking fully mediated the relationship between school safety at the school level and self-esteem. However, school liking partially mediated the relationship between school safety at the school level and self-esteem among girls. School safety should receive increasing attention from policymakers because of its impact on students' self-esteem. © 2016, American School Health Association.

  12. THE ROLE OF NAVIGATIONAL AIDS IN FLIGHT SAFETY MANAGEMENT WITHIN ICAO GLOBAL AIR NAVIGATION PLAN

    Directory of Open Access Journals (Sweden)

    Vadim V. Vurobyov

    2017-01-01

    Full Text Available The development of the global civil aviation is provided on the basis of the ICAO Communication and Surveillance/Air Traffic Management Concept, which has determined the basic strategy for further commercial flight management effectiveness improvement. On the basis of this concept a Global Air Navigation Plan has been developed by ICAO recently. The core strategies of CNS/ATM concept were specified and combined into so-called blocks. Thus the term Global Aviation System block upgrade has been introduced. At the same time, GANP states that the introduction of new procedures and flight management systems will inevitably affect flight safety. Accordingly, there is a task of flight safety management level maintaining, or even increasing within the Global Air Navigation Plan implementation. Various air navigational aids play a significant role in the process as they are directly associated with the new systems and structures introduction.This breeds the new global challenge of flight safety management level change assessment during the introduction of new procedures and systems connected with the use of both navigational aids and instruments. Some aspects of this problem solution are covered in the article.

  13. Towards A Model of Identity and Role Exit

    Directory of Open Access Journals (Sweden)

    Jason S. Milne

    2011-11-01

    Full Text Available Explanations of role exit often focus on how factors associated with a specific role that affect whether the individual will exit a role or not. Other research explains how identities affect our performance in a role. However, no one has yet to demonstrate the connection between role-set factors and identities, and role exit. Using data from a survey of 940 current and former soccer referees, this paper provides a model of role exit that involves a complex of processes that include role-set factors (structural and cultural factors associated with a specific role and identity processes. Specifically, this paper demonstrates that, other than role conflict, identity processes explain the relationship between role-set factors and role exit. The model provides a beginning method for understanding the connection between identities and role exit.

  14. An expert judgment model applied to estimating the safety effect of a bicycle facility.

    Science.gov (United States)

    Leden, L; Gårder, P; Pulkkinen, U

    2000-07-01

    This paper presents a risk index model that can be used for assessing the safety effect of countermeasures. The model estimates risk in a multiplicative way, which makes it possible to analyze the impact of different factors separately. Expert judgments are incorporated through a Bayesian error model. The variance of the risk estimate is determined by Monte-Carlo simulation. The model was applied to assess the safety effect of a new design of a bicycle crossing. The intent was to gain safety by raising the crossings to reduce vehicle speeds and by making the crossings more visible by painting them in a bright color. Before the implementations, bicyclists were riding on bicycle crossings of conventional Swedish type, i.e. similar to crosswalks but delineated by white squares rather than solid lines or zebra markings. Automobile speeds were reduced as anticipated. However, it seems as if the positive effect of this was more or less canceled out by increased bicycle speeds. The safety per bicyclist was still improved by approximately 20%. This improvement was primarily caused by an increase in bicycle flow, since the data show that more bicyclists at a given location seem to benefit their safety. The increase in bicycle flow was probably caused by the new layout of the crossings since bicyclists perceived them as safer and causing less delay. Some future development work is suggested. Pros and cons with the used methodology are discussed. The most crucial parameter to be added is probably a model describing the interaction between motorists and bicyclists, for example, how risk is influenced by the lateral position of the bicyclist in relation to the motorist. It is concluded that the interaction seems to be optimal when both groups share the roadway.

  15. Elements of the safety case for the Morsleben repository based on probabilistic modelling

    International Nuclear Information System (INIS)

    Wollrath, J.; Niemeyer, M.; Resele, G.; Becker, D.A.; Hirsekorn, P.

    2008-01-01

    The Morsleben nuclear waste repository (ERAM) for low- and intermediate-level mainly short-lived waste is located in a former salt mine. The closure concept was developed in parallel and interacting with the safety assessment. The safety concept is based on extensive backfilling with salt concrete complemented with seals between the main disposal areas and the rest of the mine building. Thus, the entire system exhibits a barrier effect through a partially redundant combination of several processes. However, in the formal safety assessment no credit is taken from the barrier effect of the extensive backfill. In the safety assessments, the different possibilities of system development, the resulting array of potential fluid movement and a large number of potential radionuclide migration pathways are mapped in the bandwidth of derived parameters. The calculated response of the system to parameter variations is non-linear. Different processes may compete and compensate each other. Hence, the common practice to choose a conservative parameter set for the safety assessment is a priori impossible. The safety assessment has been performed independently by two groups with different computer models, for the same closure concept and the same basic parameters but independent conceptual approaches. Both groups have performed deterministic and probabilistic dose calculations. The results match well; the differences can be explained on basis of the model approaches. Although a large bandwidth is considered for a number of parameters the maximum radiation exposure remains clearly below the applicable dose limit for nearly all calculations, demonstrating the robustness of the system. These aspects significantly contribute to confidence building in the Safety Case for ERAM. (authors)

  16. Fourth Annual Nursing Leadership Congress: "Driving Patient Safety Through Transformation" Conference proceedings.

    Science.gov (United States)

    Pinakiewicz, Diane; Smetzer, Judy; Thompson, Pamela; Navarra, Mary Beth; Lambert, Monique

    2009-06-01

    In September 2008, nurse executives from around the country met in Scottsdale, Ariz, to develop practical tools and recommendations for "Driving Patient Safety Through Transformation," the theme of the fourth annual Nursing Leadership Congress. The Congress was made possible through an educational grant from McKesson and Intel in collaboration with sponsorship from the American Organization of Nurse Executives, Institute for Safe Medication Practices and National Patient Safety Foundation. This paper summarizes the Congress plenary sessions and roundtable discussions. Plenaries included the following: *Transformational Leadership: The Role of Leaders in Managing Complex Problems *Using the Baldrige Business Model as the Infrastructure for Creating a Culture of Patient Safety *Prospects for Structural Reform in Health Care Roundtables included the following: *Joy and Meaning in Work *Managing Chronic Care Across the Continuum *The Future of Acute Care Delivery in Light of Changing Reimbursement* Leveraging Transparency to Drive Patient Safety *Collaborative Partnerships for Driving a Patient Safety Agenda *Innovative Solutions for Patient Safety *Implementing the Fundamentals of the Toyota Production Model forHealthcare

  17. Analysis on evaluation ability of nonlinear safety assessment model of coal mines based on artificial neural network

    Institute of Scientific and Technical Information of China (English)

    SHI Shi-liang; LIU Hai-bo; LIU Ai-hua

    2004-01-01

    Based on the integration analysis of goods and shortcomings of various methods used in safety assessment of coal mines, combining nonlinear feature of mine safety sub-system, this paper establishes the neural network assessment model of mine safety, analyzes the ability of artificial neural network to evaluate mine safety state, and lays the theoretical foundation of artificial neural network using in the systematic optimization of mine safety assessment and getting reasonable accurate safety assessment result.

  18. A prediction model for the radiation safety management behavior of medical cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ji Hye; Han, Eun Ok [Daegu Health College, Daegu (Korea, Republic of); Kim, Ssang Tae [CareCamp Inc., Seoul (Korea, Republic of)

    2008-06-15

    This study attempted to provide reference materials for improving the behavior level in radiation safety managements by drawing a prediction model that affects the radiation safety management behavior because the radiation safety management of medical Cyclotrons, which can be used to produce radioisotopes, is an important factor that protects radiation caused diseases not only for radiological operators but average users. In addition, this study obtained follows results through the investigation applied from January 2 to January 30, 2008 for the radiation safety managers employed in 24 authorized organizations, which have already installed Cyclotrons, through applying a specific form of questionnaire in which the validity was guaranteed by reference study, site investigation, and focus discussion by related experts. The radiation safety management were configured as seven steps: step 1 is a production preparation step, step 2 is an RI production step, step 3 is a synthesis step, step 4 is a distribution step, step 5 is a quality control step, step 6 is a carriage container packing step, and step 7 is a transportation step. It was recognized that the distribution step was the most exposed as 15 subjects (62.5%), the items of 'the sanction and permission related works' and 'the guarantee of installation facilities and production equipment' were the most difficult as 9 subjects (37.5%), and in the trouble steps in such exposure, the item of 'the synthesis and distribution' steps were 4 times, respectively (30.8%). In the score of the behavior level in radiation safety managements, the minimum and maximum scores were 2.42 and 4.00, respectively, and the average score was 3.46 {+-} 0.47 out of 4. Prosperity and well-being programs in the behavior and job in radiation safety managements (r=0.529) represented a significant correlation statistically. In the drawing of a prediction model based on the factors that affected the behavior in

  19. IAEA activities in nuclear safety: future perspectives. Spanish Nuclear Safety Council, Madrid, 28 May 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document represents the conference given by the Director General of the IAEA at the Spanish Nuclear Safety Council in Madrid, on 28 May 1998, on Agency's activities in nuclear safety. The following aspects are emphasized: Agency's role in creating a legally binding nuclear safety regime, non-binding safety standards, services provided by the Agency to assist its Member States in the Application of safety standards, Agency's nuclear safety strategy, and future perspective concerning safety aspects related to radioactive wastes, residues of past nuclear activities, and security of radiological sources

  20. Present status of education for radiation safety during clinical examinations and the role of the radiological technologist

    International Nuclear Information System (INIS)

    Satou, Yukimitsu

    1988-01-01

    The applications of radiation to the medical field are increasing steadily, along with advances in radiation technology and development of new medical equipment. Medical applications of radiation differ from applications in other fields, because the patient is exposed to radiation during examination and radiotherapy. Consequently, it is important that training courses in radiation safety for radiological technologists, medical doctors and nurses be periodically carried out to ensure a more effective and safe utilization of radiation. Furthermore, it is important that such training be based on a practical education curriculum, including basic knowledge, technical training, and safe habits. In this paper, we discuss the appropriate role and attitudes of the radiological technologist in radiation safety education. (author)

  1. Present status of education for radiation safety during clinical examinations and the role of the radiological technologist

    Energy Technology Data Exchange (ETDEWEB)

    Satou, Yukimitsu

    1988-10-01

    The applications of radiation to the medical field are increasing steadily, along with advances in radiation technology and development of new medical equipment. Medical applications of radiation differ from applications in other fields, because the patient is exposed to radiation during examination and radiotherapy. Consequently, it is important that training courses in radiation safety for radiological technologists, medical doctors and nurses be periodically carried out to ensure a more effective and safe utilization of radiation. Furthermore, it is important that such training be based on a practical education curriculum, including basic knowledge, technical training, and safe habits. In this paper, we discuss the appropriate role and attitudes of the radiological technologist in radiation safety education.

  2. Provisional safety analyses for SGT stage 2 -- Models, codes and general modelling approach

    International Nuclear Information System (INIS)

    2014-12-01

    In the framework of the provisional safety analyses for Stage 2 of the Sectoral Plan for Deep Geological Repositories (SGT), deterministic modelling of radionuclide release from the barrier system along the groundwater pathway during the post-closure period of a deep geological repository is carried out. The calculated radionuclide release rates are interpreted as annual effective dose for an individual and assessed against the regulatory protection criterion 1 of 0.1 mSv per year. These steps are referred to as dose calculations. Furthermore, from the results of the dose calculations so-called characteristic dose intervals are determined, which provide input to the safety-related comparison of the geological siting regions in SGT Stage 2. Finally, the results of the dose calculations are also used to illustrate and to evaluate the post-closure performance of the barrier systems under consideration. The principal objective of this report is to describe comprehensively the technical aspects of the dose calculations. These aspects comprise: · the generic conceptual models of radionuclide release from the solid waste forms, of radionuclide transport through the system of engineered and geological barriers, of radionuclide transfer in the biosphere, as well as of the potential radiation exposure of the population, · the mathematical models for the explicitly considered release and transport processes, as well as for the radiation exposure pathways that are included, · the implementation of the mathematical models in numerical codes, including an overview of these codes and the most relevant verification steps, · the general modelling approach when using the codes, in particular the generic assumptions needed to model the near field and the geosphere, along with some numerical details, · a description of the work flow related to the execution of the calculations and of the software tools that are used to facilitate the modelling process, and · an overview of the

  3. Provisional safety analyses for SGT stage 2 -- Models, codes and general modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-12-15

    In the framework of the provisional safety analyses for Stage 2 of the Sectoral Plan for Deep Geological Repositories (SGT), deterministic modelling of radionuclide release from the barrier system along the groundwater pathway during the post-closure period of a deep geological repository is carried out. The calculated radionuclide release rates are interpreted as annual effective dose for an individual and assessed against the regulatory protection criterion 1 of 0.1 mSv per year. These steps are referred to as dose calculations. Furthermore, from the results of the dose calculations so-called characteristic dose intervals are determined, which provide input to the safety-related comparison of the geological siting regions in SGT Stage 2. Finally, the results of the dose calculations are also used to illustrate and to evaluate the post-closure performance of the barrier systems under consideration. The principal objective of this report is to describe comprehensively the technical aspects of the dose calculations. These aspects comprise: · the generic conceptual models of radionuclide release from the solid waste forms, of radionuclide transport through the system of engineered and geological barriers, of radionuclide transfer in the biosphere, as well as of the potential radiation exposure of the population, · the mathematical models for the explicitly considered release and transport processes, as well as for the radiation exposure pathways that are included, · the implementation of the mathematical models in numerical codes, including an overview of these codes and the most relevant verification steps, · the general modelling approach when using the codes, in particular the generic assumptions needed to model the near field and the geosphere, along with some numerical details, · a description of the work flow related to the execution of the calculations and of the software tools that are used to facilitate the modelling process, and · an overview of the

  4. The role of CFD combustion modeling in hydrogen safety management – III: Validation based on homogeneous hydrogen–air–diluent experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: pratap.sathiah78@gmail.com [Shell Global Solutions Ltd., Brabazon House, Concord Business Park, Threapwood Road, Manchester M220RR (United Kingdom); Komen, Ed [Nuclear Research and Consultancy Group – NRG, P.O. Box 25, 1755 ZG Petten (Netherlands); Roekaerts, Dirk [Delft University of Technology, P.O. Box 5, 2600 AA Delft (Netherlands)

    2015-08-15

    Highlights: • A CFD based method proposed in the previous article is used for the simulation of the effect of CO{sub 2}–He dilution on hydrogen deflagration. • A theoretical study is presented to verify whether CO{sub 2}–He diluent can be used as a replacement for H{sub 2}O as diluent. • CFD model used for the validation work is described. • TFC combustion model results are in good agreement with large-scale homogeneous hydrogen–air–CO{sub 2}–He experiments. - Abstract: Large quantities of hydrogen can be generated and released into the containment during a severe accident in a PWR. The generated hydrogen, when mixed with air, can lead to hydrogen combustion. The dynamic pressure loads resulting from hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. Therefore, accurate prediction of these pressure loads is an important safety issue. In our previous article, a CFD based method to determine these pressure loads was presented. This CFD method is based on the application of a turbulent flame speed closure combustion model. The method was validated against three uniform hydrogen–air deflagration experiments with different blockage ratio performed in the ENACCEF facility. It was concluded that the maximum pressures were predicted within 13% accuracy, while the rate of pressure rise dp/dt was predicted within about 30%. The eigen frequencies of the residual pressure wave phenomena were predicted within a few %. In the present article, we perform additional validation of the CFD based method against three uniform hydrogen–air–CO{sub 2}–He deflagration experiments with three different concentrations of the CO{sub 2}–He diluent. The trends of decrease in the flame velocity, the intermediate peak pressure, the rate of pressure rise dp/dt, and the maximum value of the mean pressure with an increase in the CO{sub 2}–He dilution are captured well in the simulations. From the

  5. Model summary report for the safety assessment SR-Site

    International Nuclear Information System (INIS)

    Vahlund, Fredrik; Zetterstroem Evins, Lena; Lindgren, Maria

    2010-12-01

    This document is the model summary report for the safety assessment SR-Site. In the report, the quality assurance (QA) measures conducted for assessment codes are presented together with the chosen QA methodology. In the safety assessment project SR-Site, a large number of numerical models are used to analyse the system and to show compliance. In order to better understand how the different models interact and how information are transferred between the different models Assessment Model Flowcharts, AMFs, are used. From these, different modelling tasks can be identify and the computer codes used. As a large number of computer codes are used in the assessment the complexity of these differs to a large extent, some of the codes are commercial while others are developed especially for the assessment at hand. QA requirements must on the one hand take this diversity into account and on the other hand be well defined. In the methodology section of the report the following requirements are defined for all codes: - It must be demonstrated that the code is suitable for its purpose. - It must be demonstrated that the code has been properly used. - It must be demonstrated that the code development process has followed appropriate procedures and that the code produces accurate results. - It must be described how data are transferred between the different computational tasks. Although the requirements are identical for all codes in the assessment, the measures used to show that the requirements are fulfilled will be different for different types of codes (for instance due to the fact that for some software the source-code is not available for review). Subsequent to the methodology section, each assessment code is presented together with a discussion on how the requirements are met

  6. Model summary report for the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Vahlund, Fredrik; Zetterstroem Evins, Lena (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Lindgren, Maria (Kemakta Konsult AB, Stockholm (Sweden))

    2010-12-15

    This document is the model summary report for the safety assessment SR-Site. In the report, the quality assurance (QA) measures conducted for assessment codes are presented together with the chosen QA methodology. In the safety assessment project SR-Site, a large number of numerical models are used to analyse the system and to show compliance. In order to better understand how the different models interact and how information are transferred between the different models Assessment Model Flowcharts, AMFs, are used. From these, different modelling tasks can be identify and the computer codes used. As a large number of computer codes are used in the assessment the complexity of these differs to a large extent, some of the codes are commercial while others are developed especially for the assessment at hand. QA requirements must on the one hand take this diversity into account and on the other hand be well defined. In the methodology section of the report the following requirements are defined for all codes: - It must be demonstrated that the code is suitable for its purpose. - It must be demonstrated that the code has been properly used. - It must be demonstrated that the code development process has followed appropriate procedures and that the code produces accurate results. - It must be described how data are transferred between the different computational tasks. Although the requirements are identical for all codes in the assessment, the measures used to show that the requirements are fulfilled will be different for different types of codes (for instance due to the fact that for some software the source-code is not available for review). Subsequent to the methodology section, each assessment code is presented together with a discussion on how the requirements are met

  7. Safety Culture: A Requirement for New Business Models — Lessons Learned from Other High Risk Industries

    International Nuclear Information System (INIS)

    Kecklund, L.

    2016-01-01

    Technical development and changes on global markets affects all high risk industries creating opportunities as well as risks related to the achievement of safety and business goals. Changes in legal and regulatory frameworks as well as in market demands create a need for major changes. Several high risk industries are facing a situation where they have to develop new business models. Within the transportation domain, e.g., aviation and railways, there is a growing concern related to how the new business models may affects safety issues. New business models in aviation and railways include extensive use of outsourcing and subcontractors to reduce costs resulting in, e.g., negative changes in working conditions, work hours, employment conditions and high turnover rates. The energy sector also faces pressures to create new business models for transition to renewable energy production to comply with new legal and regulatory requirements and to make best use of new reactor designs. In addition, large scale phase out and decommissioning of nuclear facilities have to be managed by the nuclear industry. Some negative effects of new business models have already arisen within the transportation domain, e.g., the negative effects of extensive outsourcing and subcontractor use. In the railway domain the infrastructure manager is required by European and national regulations to assure that all subcontractors are working according to the requirements in the infrastructure managers SMS (Safety Management System). More than ten levels of subcontracts can be working in a major infrastructure project making the system highly complex and thus difficult to control. In the aviation domain, tightly coupled interacting computer networks supplying airport services, as well as air traffic control, are managed and maintained by several different companies creating numerous interfaces which must be managed by the SMS. There are examples where a business model with several low

  8. Contrasting safety assessments of a runway incursion scenario: Event sequence analysis versus multi-agent dynamic risk modelling

    International Nuclear Information System (INIS)

    Stroeve, Sybert H.; Blom, Henk A.P.; Bakker, G.J.

    2013-01-01

    In the safety literature it has been argued, that in a complex socio-technical system safety cannot be well analysed by event sequence based approaches, but requires to capture the complex interactions and performance variability of the socio-technical system. In order to evaluate the quantitative and practical consequences of these arguments, this study compares two approaches to assess accident risk of an example safety critical sociotechnical system. It contrasts an event sequence based assessment with a multi-agent dynamic risk model (MA-DRM) based assessment, both of which are performed for a particular runway incursion scenario. The event sequence analysis uses the well-known event tree modelling formalism and the MA-DRM based approach combines agent based modelling, hybrid Petri nets and rare event Monte Carlo simulation. The comparison addresses qualitative and quantitative differences in the methods, attained risk levels, and in the prime factors influencing the safety of the operation. The assessments show considerable differences in the accident risk implications of the performance of human operators and technical systems in the runway incursion scenario. In contrast with the event sequence based results, the MA-DRM based results show that the accident risk is not manifest from the performance of and relations between individual human operators and technical systems. Instead, the safety risk emerges from the totality of the performance and interactions in the agent based model of the safety critical operation considered, which coincides very well with the argumentation in the safety literature.

  9. Assessment of freeway work zone safety with improved cellular automata model

    Directory of Open Access Journals (Sweden)

    Guohua Liang

    2014-08-01

    Full Text Available To accurately assess the safety of freeway work zones, this paper investigates the safety of vehicle lane change maneuvers with improved cellular automata model. Taking the traffic conflict and standard deviation of operating speed as the evaluation indexes, the study evaluates the freeway work zone safety. With improved deceleration probability in car-following raies and the addition of lanechanging rules under critical state, the lane-changing behavior under critical state is defined as a conflict count. Through 72 schemes of simulation runs, the possible states of the traffic flow are carefully studied. The results show that under the condition of constant saturation traffic conflict count and vehicle speed standard deviation reach their maximums when the mixed rate of heave vehicles is 40%. Meanwhile, in the case of constant heavy vehicles mix, traffic conflict count and vehicle speed standard deviation reach maximum values when saturation rate is 0. 75. Integrating ail simulation results, it is known the traffic safety in freeway work zones is classified into four levels : safe, relatively safe, relatively dangerous, and dangerous.

  10. Creating Role models for Japanese Learners

    OpenAIRE

    Brown, Howard

    2009-01-01

    English classes in Japan are often taught through the medium of Japanese. This sends the message that English is a subject of study rather than a means of communication. A great deal of recent research and pedagogical work has gone into encouraging more classroom English use by Japanese Teachers of English in order to provide positive role models of language use to students. Along with this, other content area faculty members can become role models for students' English success. Results of th...

  11. A task force model for statewide change in nursing education: building quality and safety.

    Science.gov (United States)

    Mundt, Mary H; Clark, Margherita Procaccini; Klemczak, Jeanette Wrona

    2013-01-01

    The purpose of this article was to describe a statewide planning process to transform nursing education in Michigan to improve quality and safety of patient care. A task force model was used to engage diverse partners in issue identification, consensus building, and recommendations. An example of a statewide intervention in nursing education and practice that was executed was the Michigan Quality and Safety in Nursing Education Institute, which was held using an integrated approach to academic-practice partners from all state regions. This paper describes the unique advantage of leadership by the Michigan Chief Nurse Executive, the existence of a nursing strategic plan, and a funding model. An overview of the Task Force on Nursing Education is presented with a focus on the model's 10 process steps and resulting seven recommendations. The Michigan Nurse Education Council was established to implement the recommendations that included quality and safety. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Hospital safety climate surveys: measurement issues.

    Science.gov (United States)

    Jackson, Jeanette; Sarac, Cakil; Flin, Rhona

    2010-12-01

    Organizational safety culture relates to behavioural norms in the workplace and is usually assessed by safety climate surveys. These can be a diagnostic indicator on the state of safety in a hospital. This review examines recent studies using staff surveys of hospital safety climate, focussing on measurement issues. Four questionnaires (hospital survey on patient safety culture, safety attitudes questionnaire, patient safety climate in healthcare organizations, hospital safety climate scale), with acceptable psychometric properties, are now applied across countries and clinical settings. Comparisons for benchmarking must be made with caution in case of questionnaire modifications. Increasing attention is being paid to the unit and hospital level wherein distinct cultures may be located, as well as to associated measurement and study design issues. Predictive validity of safety climate is tested against safety behaviours/outcomes, with some relationships reported, although effects may be specific to professional groups/units. Few studies test the role of intervening variables that could influence the effect of climate on outcomes. Hospital climate studies are becoming a key component of healthcare safety management systems. Large datasets have established more reliable instruments that allow a more focussed investigation of the role of culture in the improvement and maintenance of staff's safety perceptions within units, as well as within hospitals.

  13. Transparent reliability model for fault-tolerant safety systems

    International Nuclear Information System (INIS)

    Bodsberg, Lars; Hokstad, Per

    1997-01-01

    A reliability model is presented which may serve as a tool for identification of cost-effective configurations and operating philosophies of computer-based process safety systems. The main merit of the model is the explicit relationship in the mathematical formulas between failure cause and the means used to improve system reliability such as self-test, redundancy, preventive maintenance and corrective maintenance. A component failure taxonomy has been developed which allows the analyst to treat hardware failures, human failures, and software failures of automatic systems in an integrated manner. Furthermore, the taxonomy distinguishes between failures due to excessive environmental stresses and failures initiated by humans during engineering and operation. Attention has been given to develop a transparent model which provides predictions which are in good agreement with observed system performance, and which is applicable for non-experts in the field of reliability

  14. Emerging Infectious Diseases and Blood Safety: Modeling the Transfusion-Transmission Risk.

    Science.gov (United States)

    Kiely, Philip; Gambhir, Manoj; Cheng, Allen C; McQuilten, Zoe K; Seed, Clive R; Wood, Erica M

    2017-07-01

    While the transfusion-transmission (TT) risk associated with the major transfusion-relevant viruses such as HIV is now very low, during the last 20 years there has been a growing awareness of the threat to blood safety from emerging infectious diseases, a number of which are known to be, or are potentially, transfusion transmissible. Two published models for estimating the transfusion-transmission risk from EIDs, referred to as the Biggerstaff-Petersen model and the European Upfront Risk Assessment Tool (EUFRAT), respectively, have been applied to several EIDs in outbreak situations. We describe and compare the methodological principles of both models, highlighting their similarities and differences. We also discuss the appropriateness of comparing results from the two models. Quantitating the TT risk of EIDs can inform decisions about risk mitigation strategies and their cost-effectiveness. Finally, we present a qualitative risk assessment for Zika virus (ZIKV), an EID agent that has caused several outbreaks since 2007. In the latest and largest ever outbreak, several probable cases of transfusion-transmission ZIKV have been reported, indicating that it is transfusion-transmissible and therefore a risk to blood safety. We discuss why quantitative modeling the TT risk of ZIKV is currently problematic. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  15. Two-field and drift-flux models with application to nuclear reactor safety

    International Nuclear Information System (INIS)

    Travis, J.R.

    1986-01-01

    The ideas of the two-field (6 equation model) and drift-flux (4 equation model) description of two-phase flows are presented. Several example calculations relating to reactor safety are discussed and comparisons of the numerical results and experimental data are shown to be in good agreement. 16 refs., 32 figs

  16. [The role of safety climate and the relationship with job satisfaction: an exploratory study across three different occupational contexts.

    Science.gov (United States)

    Emanuel, Federica; Colombo, Lara; Cortese, Claudio G; Ghislieri, Chiara

    2017-12-01

    This study examined the role of the "safety climate", or the organization's attention to health and safety of workers, and of job demand and resources in relation with job satisfaction. Wellbeing at work is a topic of growing interest, in line with the legislation and the programs on health and safety of workers and management and the evaluation of psychosocial risks. Several studies show that organizational actions concerning health and safety can be an indicator of the attention to employees' wellbeing, even if studies about the relationship between safety climate and some psychosocial outcomes are scant. The study analysed the relationship between job demand, job resources, safety climate and job satisfaction in three different occupational contexts (public authority, N = 224; social care organization, N = 115; pharmaceutical company, N = 127); workers were divided into groups based on the risk level appeared in the objective assessment of work-related stress, in order to identify differences. The self-report questionnaire gathered information about: job satisfaction, work efforts, supervisors' support, colleagues support, safety climate (α between .72 and .93). Data analysis provided: Cronbach α, analysis of variance, correlations, stepwise multiple regressions. The results showed that job satisfaction (R2 between .23 and .88) had a negative relationship with efforts and a positive relationship with job resources and safety climate. It emerges the importance of safety climate: to support and promote wellbeing at work, organizations could endorse training and information programs on health and safety for all workers and management, not only for professional groups with high-risk level. Future studies could explore the relation between safety climate and other outcomes, such as emotional exhaustion or objective indicators of organizational health (e.g. absenteeism, accidents, etc.). Copyright© by Aracne Editrice, Roma, Italy.

  17. Model extension and improvement for simulator-based software safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.-W. [Department of Engineering and System Science, National Tsing Hua University (NTHU), 101 Section 2 Kuang Fu Road, Hsinchu, Taiwan (China) and Institute of Nuclear Energy Research (INER), No. 1000 Wenhua Road, Chiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China)]. E-mail: hwhwang@iner.gov.tw; Shih Chunkuan [Department of Engineering and System Science, National Tsing Hua University (NTHU), 101 Section 2 Kuang Fu Road, Hsinchu, Taiwan (China); Yih Swu [Department of Computer Science and Information Engineering, Ching Yun University, 229 Chien-Hsin Road, Jung-Li, Taoyuan County 320, Taiwan (China); Chen, M.-H. [Institute of Nuclear Energy Research (INER), No. 1000Wenhua Road, Chiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Lin, J.-M. [Taiwan Power Company (TPC), 242 Roosevelt Road, Section 3, Taipei 100, Taiwan (China)

    2007-05-15

    One of the major concerns when employing digital I and C system in nuclear power plant is digital system may introduce new failure mode, which differs with previous analog I and C system. Various techniques are under developing to analyze the hazard originated from software faults in digital systems. Preliminary hazard analysis, failure modes and effects analysis, and fault tree analysis are the most extensive used techniques. However, these techniques are static analysis methods, cannot perform dynamic analysis and the interactions among systems. This research utilizes 'simulator/plant model testing' technique classified in (IEEE Std 7-4.3.2-2003, 2003. IEEE Standard for Digital Computers in Safety Systems of Nuclear Power Generating Stations) to identify hazards which might be induced by nuclear I and C software defects. The recirculation flow system, control rod system, feedwater system, steam line model, dynamic power-core flow map, and related control systems of PCTran-ABWR model were successfully extended and improved. The benchmark against ABWR SAR proves this modified model is capable to accomplish dynamic system level software safety analysis and better than the static methods. This improved plant simulation can then further be applied to hazard analysis for operator/digital I and C interface interaction failure study, and the hardware-in-the-loop fault injection study.

  18. Plant functional modelling as a basis for assessing the impact of management on plant safety

    International Nuclear Information System (INIS)

    Rasmussen, Birgitte; Petersen, Kurt E.

    1999-01-01

    A major objective of the present work is to provide means for representing a chemical process plant as a socio-technical system, so as to allow hazard identification at a high level in order to identify major targets for safety development. The main phases of the methodology are: (1) preparation of a plant functional model where a set of plant functions describes coherently hardware, software, operations, work organization and other safety related aspects. The basic principle is that any aspect of the plant can be represented by an object based upon an Intent and associated with each Intent are Methods, by which the Intent is realized, and Constraints, which limit the Intent. (2) Plant level hazard identification based on keywords/checklists and the functional model. (3) Development of incident scenarios and selection of hazardous situation with different safety characteristics. (4) Evaluation of the impact of management on plant safety through interviews. (5) Identification of safety critical ways of action in the management system, i.e. identification of possible error- and violation-producing conditions

  19. Safety culture evaluation and asset root cause analysis

    International Nuclear Information System (INIS)

    Okrent, D.; Xiong, Y.

    1995-01-01

    This paper examines the role of organizational and management factors in nuclear power plant safety through the use of operating experiences. The ASSET (Assessment of Safety Significant Events Team) reports of thirteen plants (total thirty events) have been analyzed in term of twenty organizational dimensions (factors) identified by Brookhaven National Laboratory and Pennsylvania State University. For three plants detailed results are reported in this paper. The results of thirteen plants are summarized in the form of a table. The study tends to confirm that organizational and management factors play an important role in plant safety. The twenty organizational dimensions and their definitions, in general, were adequate in this study. Formalization, Safety Culture, Technical Knowledge, Training, Roles-Responsibilities and Problem Identification appear to be key organizational factors which influence the safety of nuclear power plants studied

  20. A preliminary CATHENA thermalhydraulic model of the Canadian SCWR for safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.F.; Wang, S., E-mail: wangd@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2014-06-15

    The supercritical water-cooled reactor (SCWR) is one of six reactor concepts under development in the Generation-IV International Forum (GIF). As a member of GIF, Canada is developing a pressure-tube type SCWR, which has the potential to fulfill all major GIF goals on enhanced safety, sustainability, economics, and proliferation resistance. The system thermalhydraulics code CATHENA will be used in the safety analyses for the Canadian SCWR. Based on the current conceptual design of the Canadian SCWR, a CATHENA idealization has been developed. This model includes all 336 fuel channels with a detailed model of heat transfer in the reactor core. Also modeled are the main pumps, inlet plenum, outlet plenum, turbines, and heavy water moderator. In this paper, the CATHENA idealization of the Canadian SCWR conceptual design is described. Simulation results for steady-state normal operations are also presented for the current Canadian SCWR conceptual design. (author)

  1. The influence of role models in undergraduate nurse education.

    Science.gov (United States)

    Jack, Kirsten; Hamshire, Claire; Chambers, Alison

    2017-12-01

    To explore the concept of role modelling in undergraduate nurse education and its effect on the personal and professional development of student nurses. Effective educative strategies are important for student nurses, who have to cope with learning in both clinical and university settings. Given the contemporary issues facing nurse education and practice in the United Kingdom (UK), it is timely and important to undertake pedagogical research into the concept of role modelling as an effective educative method. A descriptive narrative approach. Unstructured interviews were conducted with 14 current/recently discontinued students from Adult and Mental Health branches of nursing degree programmes in the north-west region of England, United Kingdom (UK). Data were thematically analysed. Students valued exposure to positive role models in clinical and university settings and viewed them as beneficial to their learning. Exposure to negative role models occurred, and this provided students with opportunities to consider the type of nurse they aspired to become. In some cases, students' exposure to perceived poor practice had an adverse effect on their learning and led to negative feelings about nursing work. Clinical staff might be perceived as more relevant role models than those in the university setting although there were still opportunities for academic staff to model professional behaviours. The study found that role modelling is an effective way to support learning and led to student satisfaction across both clinical and university settings. The findings support the use of role models in nurse education, and further research about conscious positive modelling of practice is required. Exploring the use of role models is important when examining ways in which the quality of nurse education might be developed. © 2017 John Wiley & Sons Ltd.

  2. Crash risk and aberrant driving behaviors among bus drivers: the role of personality and attitudes towards traffic safety.

    Science.gov (United States)

    Mallia, Luca; Lazuras, Lambros; Violani, Cristiano; Lucidi, Fabio

    2015-06-01

    Several studies have shown that personality traits and attitudes toward traffic safety predict aberrant driving behaviors and crash involvement. However, this process has not been adequately investigated in professional drivers, such as bus drivers. The present study used a personality-attitudes model to assess whether personality traits predicted aberrant self-reported driving behaviors (driving violations, lapses, and errors) both directly and indirectly, through the effects of attitudes towards traffic safety in a large sample of bus drivers. Additionally, the relationship between aberrant self-reported driving behaviors and crash risk was also assessed. Three hundred and one bus drivers (mean age=39.1, SD=10.7 years) completed a structured and anonymous questionnaire measuring personality traits, attitudes toward traffic safety, self-reported aberrant driving behaviors (i.e., errors, lapses, and traffic violations), and accident risk in the last 12 months. Structural equation modeling analysis revealed that personality traits were associated to aberrant driving behaviors both directly and indirectly. In particular altruism, excitement seeking, and normlessness directly predicted bus drivers' attitudes toward traffic safety which, in turn, were negatively associated with the three types of self-reported aberrant driving behaviors. Personality traits relevant to emotionality directly predicted bus drivers' aberrant driving behaviors, without any mediation of attitudes. Finally, only self-reported violations were related to bus drivers' accident risk. The present findings suggest that the hypothesized personality-attitudes model accounts for aberrant driving behaviors in bus drivers, and provide the empirical basis for evidence-based road safety interventions in the context of public transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Establishing a culture for patient safety - the role of education.

    Science.gov (United States)

    Milligan, Frank J

    2007-02-01

    This paper argues that the process of making significant moves towards a patient safety culture requires changes in healthcare education. Improvements in patient safety are a shared international priority as too many errors and other forms of unnecessary harm are currently occurring in the process of caring for and treating patients. A description of the patient safety agenda is given followed by a brief analysis of human factors theory and its use in other safety critical industries, most notably aviation. The all too common problem of drug administration errors is used to illustrate the relevance of human factors theory to healthcare education with specific mention made of the Human Factors Analysis and Classification System (HFACS).

  4. Design an optimum safety policy for personnel safety management - A system dynamic approach

    International Nuclear Information System (INIS)

    Balaji, P.

    2014-01-01

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making

  5. Design an optimum safety policy for personnel safety management - A system dynamic approach

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, P. [The Glocal University, Mirzapur Pole, Delhi- Yamuntori Highway, Saharanpur 2470001 (India)

    2014-10-06

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  6. Design an optimum safety policy for personnel safety management - A system dynamic approach

    Science.gov (United States)

    Balaji, P.

    2014-10-01

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  7. PKPD modelling of PR and QRS intervals in conscious dogs using standard safety pharmacology data.

    Science.gov (United States)

    Bergenholm, Linnéa; Collins, Teresa; Evans, Neil D; Chappell, Michael J; Parkinson, Joanna

    2016-01-01

    Pharmacokinetic-pharmacodynamic (PKPD) modelling can improve safety assessment, but few PKPD models describing drug-induced QRS and PR prolongations have been published. This investigation aims to develop and evaluate PKPD models for describing QRS and PR effects in routine safety studies. Exposure and telemetry data from safety pharmacology studies in conscious beagle dogs were acquired. Mixed effects baseline and PK-QRS/PR models were developed for the anti-arrhythmic compounds AZD1305, flecainide, quinidine and verapamil and the anti-muscarinic compounds AZD8683 and AZD9164. RR interval correction and circadian rhythms were investigated for predicting baseline variability. Individual PK predictions were used to drive the pharmacological effects evaluating linear and non-linear direct and effect compartment models. Conduction slowing induced by the tested anti-arrhythmics was direct and proportional at low exposures, whilst time delays and non-linear effects were evident for the tested anti-muscarinics. AZD1305, flecainide and quinidine induced QRS widening with 4.2, 10 and 5.6% μM(-1) unbound drug. AZD1305 and flecainide also prolonged PR with 13.5 and 11.5% μM(-1). PR prolongations induced by the anti-muscarinics and verapamil were best described by Emax models with maximal effects ranging from 55 to 95%. RR interval correction and circadian rhythm improved PR but not QRS modelling. However, circadian rhythm had minor impact on estimated drug effects. Baseline and drug-induced effects on QRS and PR intervals can be effectively described with PKPD models using routine data, providing quantitative safety information to support drug discovery and development. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Testing the effects of safety climate and disruptive children behavior on school bus drivers performance: A multilevel model.

    Science.gov (United States)

    Zohar, Dov; Lee, Jin

    2016-10-01

    The study was designed to test a multilevel path model whose variables exert opposing effects on school bus drivers' performance. Whereas departmental safety climate was expected to improve driving safety, the opposite was true for in-vehicle disruptive children behavior. The driving safety path in this model consists of increasing risk-taking practices starting with safety shortcuts leading to rule violations and to near-miss events. The study used a sample of 474 school bus drivers in rural areas, driving children to school and school-related activities. Newly developed scales for measuring predictor, mediator and outcome variables were validated with video data taken from inner and outer cameras, which were installed in 29 buses. Results partially supported the model by indicating that group-level safety climate and individual-level children distraction exerted opposite effects on the driving safety path. Furthermore, as hypothesized, children disruption moderated the strength of the safety rule violation-near miss relationship, resulting in greater strength under high disruptiveness. At the same time, the hypothesized interaction between the two predictor variables was not supported. Theoretical and practical implications for studying safety climate in general and distracted driving in particular for professional drivers are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Consumer Control Points: Creating a Visual Food Safety Education Model for Consumers.

    Science.gov (United States)

    Schiffman, Carole B.

    Consumer education has always been a primary consideration in the prevention of food-borne illness. Using nutrition education and the new food guide as a model, this paper develops suggestions for a framework of microbiological food safety principles and a compatible visual model for communicating key concepts. Historically, visual food guides in…

  10. The critical safety functions and plant operation

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Church, J.F.; Porter, N.J.; Cross, M.T.; Guinn, W.M.

    1981-01-01

    The paper outlines the operator's role in nuclear safety and introduces the concept of ''safety functions''. Safety functions are a group of actions that prevent core melt or minimize radiation releases to the general public. They can be used to provide a hierarchy of practical plant protection that an operator should use. ''An accident identical to that at Three Mile Island is not going to happen again'', said the Rogovin investigators. The concepts put forward in this paper are intended to help the operator avoid serious consequence from the next unexpected threat. On the basis of the safety evaluation, the operator has three roles in assuring that the consequences of an event will be no worse than the predicted acceptable results. These three operator roles are: first, maintain plant setup in readiness to properly respond; second, operate the plant in a manner such that fewer, milder events minimize the frequency and the severity of adverse events; third, the operator needs to monitor the plant to verify that the safety functions are accomplished. The operator needs a systematic approach to mitigating the consequences of an event. The concept of ''safety function'' introduces that systematic approach and prevents a hierarchy of protection. If the operator has difficulty in identifying an event for any reason, the systematic safety function approach allows ones to accomplish the overall path of mitigating consequences. There are ten identified functions designed to protect against core melt, preserve containment integrity, prevent indirect release of radioactivity, and maintain vital auxiliaries needed to support the other safety functions. The paper describes in detail the operator's role and the safety functions, and provides many examples of the use of alternative success paths to accomplish the safety function

  11. Building Nuclear Safety and Security Culture Within Regulatory Body

    International Nuclear Information System (INIS)

    Huda, K.

    2016-01-01

    To achieve a higher level of nuclear safety and security, it needs to develop the safety and security culture not only in the facility but also in the regulatory body. The regulatory body, especially needs to develop the safety and security culture within the organization, because it has a function to promote and oversee the culture in the facilities. In this sense, the regulatory body should become a role model. Development of the nuclear safety and security culture should be started by properly understanding its concept and awakening the awareness of individual and organization on the importance of nuclear safety and security. For effectiveness of the culture development in the regulatory body, the following steps are suggested to be taken: setting up of the regulatory requirements, self-assessment, independent assessment review, communication with the licensee, oversight of management system implementation, and integration with regulatory activities. The paper discusses those steps in the framework of development of nuclear safety and security culture in the regulatory body, as well as some important elements in building of the culture in the nuclear facilities. (author)

  12. The spread model of food safety risk under the supply-demand disturbance

    OpenAIRE

    Wang, Jining; Chen, Tingqiang

    2016-01-01

    In this paper, based on the imbalance of the supply-demand relationship of food, we design a spreading model of food safety risk, which is about from food producers to consumers in the food supply chain. We use theoretical analysis and numerical simulation to describe the supply-demand relationship and government supervision behaviors? influence on the risk spread of food safety and the behaviors of the food producers and the food retailers. We also analyze the influence of the awareness of c...

  13. Microbial food safety - modeling and applications

    Science.gov (United States)

    Microbial food safety is a key issue for the food processing industry, and enhancing food safety is everyone’s responsibility from food producers to consumers. Financial losses to the economy due to foodborne illness are in the billions of dollars, annually. Foodborne illness can be caused by patho...

  14. Toward risk assessment 2.0: Safety supervisory control and model-based hazard monitoring for risk-informed safety interventions

    International Nuclear Information System (INIS)

    Favarò, Francesca M.; Saleh, Joseph H.

    2016-01-01

    Probabilistic Risk Assessment (PRA) is a staple in the engineering risk community, and it has become to some extent synonymous with the entire quantitative risk assessment undertaking. Limitations of PRA continue to occupy researchers, and workarounds are often proposed. After a brief review of this literature, we propose to address some of PRA's limitations by developing a novel framework and analytical tools for model-based system safety, or safety supervisory control, to guide safety interventions and support a dynamic approach to risk assessment and accident prevention. Our work shifts the emphasis from the pervading probabilistic mindset in risk assessment toward the notions of danger indices and hazard temporal contingency. The framework and tools here developed are grounded in Control Theory and make use of the state-space formalism in modeling dynamical systems. We show that the use of state variables enables the definition of metrics for accident escalation, termed hazard levels or danger indices, which measure the “proximity” of the system state to adverse events, and we illustrate the development of such indices. Monitoring of the hazard levels provides diagnostic information to support both on-line and off-line safety interventions. For example, we show how the application of the proposed tools to a rejected takeoff scenario provides new insight to support pilots’ go/no-go decisions. Furthermore, we augment the traditional state-space equations with a hazard equation and use the latter to estimate the times at which critical thresholds for the hazard level are (b)reached. This estimation process provides important prognostic information and produces a proxy for a time-to-accident metric or advance notice for an impending adverse event. The ability to estimate these two hazard coordinates, danger index and time-to-accident, offers many possibilities for informing system control strategies and improving accident prevention and risk mitigation

  15. Creation of a Sustainable Collaborative Transportation and Safety Model : Tech Transfer Summary

    Science.gov (United States)

    2018-03-23

    The objective of this project was to create a sustainable asset management transportation and safety model for a designated area of St. Louis, Missouri, that can be replicated in other municipalities.

  16. The ConCom Safety Management Scale: developing and testing a measurement instrument for control-based and commitment-based safety management approaches in hospitals.

    Science.gov (United States)

    Alingh, Carien W; Strating, Mathilde M H; van Wijngaarden, Jeroen D H; Paauwe, Jaap; Huijsman, Robbert

    2018-03-06

    Nursing management is considered important for patient safety. Prior research has predominantly focused on charismatic leadership styles, although it is questionable whether these best characterise the role of nurse managers. Managerial control is also relevant. Therefore, we aimed to develop and test a measurement instrument for control-based and commitment-based safety management of nurse managers in clinical hospital departments. A cross-sectional survey design was used to test the newly developed questionnaire in a sample of 2378 nurses working in clinical departments. The nurses were asked about their perceptions of the leadership behaviour and management practices of their direct supervisors. Psychometric properties were evaluated using confirmatory factor analysis and reliability estimates. The final 33-item questionnaire showed acceptable goodness-of-fit indices and internal consistency (Cronbach's α of the subscales range: 0.59-0.90). The factor structure revealed three subdimensions for control-based safety management: (1) stressing the importance of safety rules and regulations; (2) monitoring compliance; and (3) providing employees with feedback. Commitment-based management consisted of four subdimensions: (1) showing role modelling behaviour; (2) creating safety awareness; (3) showing safety commitment; and (4) encouraging participation. Construct validity of the scale was supported by high factor loadings and provided preliminary evidence that control-based and commitment-based safety management are two distinct yet related constructs. The findings were reconfirmed in a cross-validation procedure. The results provide initial support for the construct validity and reliability of our ConCom Safety Management Scale. Both management approaches were found to be relevant for managing patient safety in clinical hospital departments. The scale can be used to deepen our understanding of the influence of patient safety management on healthcare professionals

  17. Progress of nuclear safety research - 2005

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amaya, Masaki; Saito, Junichi; Sato, Atsushi; Sono, Hiroki; Tamaki, Hitoshi; Tonoike, Kotaro; Nemoto, Yoshiyuki; Motoki, Yasuo; Moriyama, Kiyofumi; Yamaguchi, Tetsuji; Araya, Fumimasa

    2006-03-01

    The Japan Atomic Energy Research Institute (JAERI), one of the predecessors of the Japan Atomic Energy Agency (JAEA), had conducted nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Five-Years Program for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI were the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI had conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI had taken a responsible role by providing experts in assistance to conducting accident investigations or emergency responses by the government or local government. These nuclear safety research and technical assistance to the government have been taken over as an important role by JAEA. This report summarizes the nuclear safety research activities of JAERI from April 2003 through September 2005 and utilized facilities. (author)

  18. Assessment of modelling needs for safety analysis of current HTGR concepts

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Van Tuyle, G.J.

    1985-12-01

    In view of the recent shift in emphasis of the DOE/Industry HTGR development efforts to smaller modular designs it became necessary to review the modelling needs and the codes available to assess the safety performance of these new designs. This report provides a final assessment of the most urgent modelling needs, comparing these to the tools available, and outlining the most significant areas where further modelling is required. Plans to implement the required work are presented. 47 refs., 20 figs

  19. Artificial neural network model for prediction of safety performance indicators goals in nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Souto, Kelling C.; Nunes, Wallace W. [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro, Nilopolis, RJ (Brazil). Lab. de Aplicacoes Computacionais; Machado, Marcelo D., E-mail: dornemd@eletronuclear.gov.b [ELETROBRAS Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Gerencia de Combustivel Nuclear - GCN.T

    2011-07-01

    Safety performance indicators have been developed to provide a quantitative indication of the performance and safety in various industry sectors. These indexes can provide assess to aspects ranging from production, design, and human performance up to management issues in accordance with policy, objectives and goals of the company. The use of safety performance indicators in nuclear power plants around the world is a reality. However, it is necessary to periodically set goal values. Such goals are targets relating to each of the indicators to be achieved by the plant over a predetermined period of operation. The current process of defining these goals is carried out by experts in a subjective way, based on actual data from the plant, and comparison with global indices. Artificial neural networks are computational techniques that present a mathematical model inspired by the neural structure of intelligent organisms that acquire knowledge through experience. This paper proposes an artificial neural network model aimed at predicting values of goals to be used in the evaluation of safety performance indicators for nuclear power plants. (author)

  20. Artificial neural network model for prediction of safety performance indicators goals in nuclear plants

    International Nuclear Information System (INIS)

    Souto, Kelling C.; Nunes, Wallace W.; Machado, Marcelo D.

    2011-01-01

    Safety performance indicators have been developed to provide a quantitative indication of the performance and safety in various industry sectors. These indexes can provide assess to aspects ranging from production, design, and human performance up to management issues in accordance with policy, objectives and goals of the company. The use of safety performance indicators in nuclear power plants around the world is a reality. However, it is necessary to periodically set goal values. Such goals are targets relating to each of the indicators to be achieved by the plant over a predetermined period of operation. The current process of defining these goals is carried out by experts in a subjective way, based on actual data from the plant, and comparison with global indices. Artificial neural networks are computational techniques that present a mathematical model inspired by the neural structure of intelligent organisms that acquire knowledge through experience. This paper proposes an artificial neural network model aimed at predicting values of goals to be used in the evaluation of safety performance indicators for nuclear power plants. (author)

  1. Validation of CFD models for hydrogen safety application

    International Nuclear Information System (INIS)

    Nikolaeva, Anna; Skibin, Alexander; Krutikov, Alexey; Golibrodo, Luka; Volkov, Vasiliy; Nechaev, Artem; Nadinskiy, Yuriy

    2015-01-01

    Most accidents involving hydrogen begin with its leakage and spreading in the air and spontaneous detonation, which is accompanied by fire or deflagration of hydrogen mixture with heat and /or shocks, which may cause harm to life and equipment. Outflow of hydrogen in a confined volume and its propagation in the volume is the worst option because of the impact of the insularity on the process of detonation. According to the safety requirements for handling hydrogen specialized systems (ventilation, sprinklers, burners etc.) are required for maintaining the hydrogen concentration less than the critical value, to eliminate the possibility of detonation and flame propagation. In this study, a simulation of helium propagation in a confined space with different methods of injection and ventilation of helium is presented, which is used as a safe replacement of hydrogen in experimental studies. Five experiments were simulated in the range from laminar to developed turbulent with different Froude numbers, which determine the regime of the helium outflow in the air. The processes of stratification and erosion of helium stratified layer were investigated. The study includes some results of OECD/NEA-PSI PANDA benchmark and some results of Gamelan project. An analysis of applicability of various turbulence models, which are used to close the system of equations of momentum transport, implemented in the commercial codes STAR CD, STAR CCM+, ANSYS CFX, was conducted for different mesh types (polyhedral and hexahedral). A comparison of computational studies results with experimental data showed a good agreement. In particular, for transition and turbulent regimes the error of the numerical results lies in the range from 5 to 15% for all turbulence models considered. This indicates applicability of the methods considered for some hydrogen safety problems. However, it should be noted that more validation research should be made to use CFD in Hydrogen safety applications with a wide

  2. Safety Assessment for LILW Near-Surface Disposal Facility Using the IAEA Reference Model and MASCOT Program

    International Nuclear Information System (INIS)

    Kim, Hyun Joo; Park, Joo Wan; Kim, Chang Lak

    2002-01-01

    A reference scenario of vault safety case prepared by the IAEA for the near-surface disposal facility of low-and intermediate-level radioactive wastes is assessed with the MASCOT program. The appropriate conceptual models for the MASCOT implementation is developed. An assessment of groundwater pathway through a drinking well as a geosphere-biosphere interface is performed first, then biosphere pathway is analysed to estimate the radiological consequences of the disposed radionuclides based on compartment modeling approach. The validity of conceptual modeling for the reference scenario is investigated where possible comparing to the results generated by the other assessment. The result of this study shows that the typical conceptual model for groundwater pathway represented by the compartment model can be satisfactorily used for safety assessment of the entire disposal system in a consistent way. It is also shown that safety assessment of a disposal facility considering complex and various pathways would be possible by the MASCOT program

  3. The critical role of nurses to the successful implementation of the National Safety and Quality Health Service Standards.

    Science.gov (United States)

    Twigg, Diane E; Duffield, Christine; Evans, Gemma

    2013-09-01

    The National Safety and Quality Health Service Standards requires health service compliance by 2013 and covers several areas including governance arrangements, partnerships with consumers and eight key clinical processes. Nurses in Australia comprise 62% of the hospital workforce, are the largest component and hence play a critical role in meeting these standards and improving the quality of patient care. Several of the standards are influenced by nursing interventions, which incorporate any direct-care treatment that the nurse performs for a patient that may be nurse or physician initiated. The ability for nurses to undertake these interventions is influenced by the hours of care available, the skill mix of the nursing workforce and the environment in which they practice. Taking into consideration the predicted nursing shortages, the challenge to successfully implement the National Safety and Quality Health Service Standards will be great. This paper examines the role of nursing in the delivery of the National Standards, analyses the evidence with regard to nursing-sensitive outcomes and discusses the implications for health service decision makers and policy.

  4. Guidance for implementing an environmental, safety, and health-assurance program. Volume 15. A model plan for line organization environmental, safety, and health-assurance programs

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, A.C.; Trauth, C.A. Jr.

    1982-01-01

    This is 1 of 15 documents designed to illustrate how an Environmental, Safety and Health (ES and H) Assurance Program may be implemented. The generic definition of ES and H Assurance Programs is given in a companion document entitled An Environmental, Safety and Health Assurance Program Standard. This particular document presents a model operational-level ES and H Assurance Program that may be used as a guide by an operational-level organization in developing its own plan. The model presented here reflects the guidance given in the total series of 15 documents.

  5. Application of life-cycle information for advancement in safety of nuclear fuel cycle facilities. Application of safety information to advanced safety management support system

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko; Ishida, Michihiko

    2005-08-01

    Risk management is major concern to nuclear energy reprocessing plants to improve plant and process reliability and ensure their safety. This is because we are required to predict potential risks before any accident or disaster occurs. The advancement of safety design and safety systems technologies showed large amount of useful safety-related knowledge that can be of great importance to plant operation to reduce operation risks and ensure safety. This research proposes safety knowledge modeling framework on the basis of ontology technologies to systematically construct plant knowledge model, which includes plant structure, operation, and the associated behaviors. In such plant knowledge model safety related information is defined and linked to the different elements of plant knowledge model. Ontology editor is employed to define the basic concepts and their inter-relations, which are used to capture and construct plant safety knowledge. In order to provide detailed safety knowledgebase, HAZOP results are analyzed and structured so that safety-related knowledge are identified and structured within the plant knowledgebase. The target safety knowledgebase includes: failures, deviations, causes, consequences, and fault propagation as mapped to plant knowledge. The proposed ontology-based safety framework is applied on case study nuclear plant to structure failures, causes, consequences, and fault propagation, which are used to support plant operation. (author)

  6. EUROSAFE Forum for nuclear safety. Towards Convergence of Technical Nuclear Safety Practices in Europe. Safety Improvements - Reasons, Strategies, Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Erven, Ulrich (ed.) [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS mbH, Schwertnergasse 1, 50667 Koeln (Germany); Cherie, Jean-Bernard (ed.) [Institut de Radioprotection et de Surete Nucleaire, IRSN, BP 17, 92262 Fontenay-aux-Roses Cedex (France); Boeck, Benoit De (ed.) [Association Vincotte Nuclear, AVN, Rue Walcourt 148, 1070 Bruxelles (Belgium)

    2005-07-01

    The EUROSAFE Forum for Nuclear Safety is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE Web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety. The goal is to share experiences, to exchange technical and scientific opinions, and to conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum on 2005 focused on Safety Improvements, Reasons - Strategies - Implementation, from the point of view of the authorities, TSOs and industry. Latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe are presented. A high level of nuclear safety is a priority for the countries of Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining

  7. EUROSAFE Forum for nuclear safety. Towards Convergence of Technical Nuclear Safety Practices in Europe. Safety Improvements - Reasons, Strategies, Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Erven, Ulrich [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS mbH, Schwertnergasse 1, 50667 Koeln (Germany); Cherie, Jean-Bernard [Institut de Radioprotection et de Surete Nucleaire, IRSN, BP 17, 92262 Fontenay-aux-Roses Cedex (France); Boeck, Benoit De [Association Vincotte Nuclear, AVN, Rue Walcourt 148, 1070 Bruxelles (Belgium)

    2005-07-01

    The EUROSAFE Forum for Nuclear Safety is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE Web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety. The goal is to share experiences, to exchange technical and scientific opinions, and to conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum on 2005 focused on Safety Improvements, Reasons - Strategies - Implementation, from the point of view of the authorities, TSOs and industry. Latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe are presented. A high level of nuclear safety is a priority for the countries of Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining

  8. Chronotype-dependent circadian rhythmicity of driving safety.

    Science.gov (United States)

    Del Rio-Bermudez, Carlos; Diaz-Piedra, Carolina; Catena, Andrés; Buela-Casal, Gualberto; Di Stasi, Leandro Luigi

    2014-05-01

    Among the factors associated with driving safety, sleep-related variables constitute a leading cause of road accidents. Circadian fluctuations of driver's somnolence has been previously linked to road safety. However, the role of chronotype in this relationship has been poorly investigated. Thus, the aim of the present work was to address whether driving performance is influenced by circadian patterns, in turn modulated by the driver's chronotype and the time of day (i.e. synchrony effect). We assessed 47 healthy young adults with specific chronotypes in several simulated driving sessions, both in the morning and in the evening. We collected driving performance data, along with self-reported levels of activation prior to each driving session and other sleep-related variables. Participants drove less safely when testing times took place outside their optimal time of day, as determined by their chronotype and confirmed by self-reported levels of activation. These differences were more pronounced in the morning, when morning types shown a better driving performance. Our results suggest that chronotype plays an important role as a modulator of the relationship between the time of day and driving safety. Therefore, it is necessary to acknowledge this variable in theoretical models of driving behavior, and for the improvement of occupational accidents prevention programs.

  9. Modeling Flight: The Role of Dynamically Scaled Free-Flight Models in Support of NASA's Aerospace Programs

    Science.gov (United States)

    Chambers, Joseph

    2010-01-01

    community, Leonardo da Vinci, George Cayley, and the Wright brothers are examples of early aviation pioneers who frequently used models during their scientific efforts to understand and develop flying machines. Progress in the technology associated with model testing in worldwide applications has firmly established model aircraft as a key element in new aerospace research and development programs. Models are now routinely used in many applications and roles, including aerodynamic data gathering in wind tunnel investigations for the analysis of full-scale aircraft designs, proof-of-concept demonstrators for radical aeronautical concepts, and problem-solving exercises for vehicles already in production. The most critical contributions of aerospace models are to provide confidence and risk reduction for new designs and to enhance the safety and efficiency of existing configurations.

  10. The roles of EBR-II and TREAT [Transient Reactor Test] in establishing liquid metal reactor safety

    International Nuclear Information System (INIS)

    Sackett, J.I.; Lehto, W.K.; Solbrig, C.W.

    1990-01-01

    This paper examines the role of the Experimental Breeder Reactor II (EBR-II) and Transient Reactor Test (TREAT) facilities in contributing to the understanding and resolution of key safety issues in liquid metal reactor safety during the decade of the 80's. Fuels and materials testing has been carried out to address questions on fuels behavior during steady-state and upset conditions. In addition, EBR-II has conducted plant tests to demonstrate passive response to ATWS events and to develop control and diagnostic strategies for safe operation of advanced LMRs. TREAT and EBR-II complement each other and between them provide a transient testing capability that covers the whole range of concerns during overpower conditions. EBR-II, with use of the special Automatic Control Rod Drive System, can generate power change rates that overlap the lower end of the TREAT capability. 21 refs

  11. Unraveling the organizational mechanism at the root of safety compliance in an Italian manufacturing firm.

    Science.gov (United States)

    Avanzi, Lorenzo; Savadori, Lucia; Fraccaroli, Franco

    2018-03-01

    Safety performance is recognized as the more proximal and effective precursor of safety outcomes. In particular, safety compliance significantly reduces workplace accidents and injuries. However, it is not entirely clear what role organizational factors play in determining workers' safety. The present study contributes to defining which organizational factors increase safety compliance by testing a mediational model in which supervisor support is related to safety climate, which in turn is related to organizational identification that finally is related to safety compliance. We tested our hypotheses in a sample of 186 production workers of an Italian manufacturing firm using a cross-sectional design. Findings confirm our hypotheses. Management should consider these organizational factors in order to implement primary prevention practices against work accidents.

  12. The role of international cooperation regarding safety assessment development in the SKB research program

    International Nuclear Information System (INIS)

    Eng, T.; Ahlstrom, P.

    1989-01-01

    Cooperation and exchange of information with organizations in foreign countries regarding nuclear waste management constitutes an important part of the overall research and development activities of SKB. In the safety assessment of a repository for spent nuclear fuel natural phenomena have to be described with different kinds of models based on both general and site specific data. The international cooperation efforts to achieve models and methods for this type of descriptions, and where SKB are largely part, is summarized in this paper

  13. Application of a structural model for advanced analysis in the evaluation of nuclear safety

    International Nuclear Information System (INIS)

    Landesmann, Alexandre; Barros, Francisco Claudio Pereira de; Batista, Eduardo de Miranda

    2003-01-01

    The Advanced Analysis concept, which means the direct consideration of both physical and geometric nonlinear effects in the analysis and design of steel buildings structures, represents the state-of-art in the field of structural analysis by this beginning of the 21 st century. In this context, the present paper presents an Advanced Analysis methodology applied to the Safety Evaluation of high hazardous civil structures. This Safety Evaluation plays an important part in the regulators position as a step in the licensing process performed by CNEN - Brazilian Nuclear Energy Commission. The proposed Advance Analysis procedure is implemented by a refined second-order plastic hinge model. The application of this model allows to carry out: the description of the inelastic structural behavior; the identification of the collapse mechanism; the ultimate load level; structural safety's level and the service ability limit. (author)

  14. Road safety forecasts in five European countries using structural time series models.

    Science.gov (United States)

    Antoniou, Constantinos; Papadimitriou, Eleonora; Yannis, George

    2014-01-01

    Modeling road safety development is a complex task and needs to consider both the quantifiable impact of specific parameters as well as the underlying trends that cannot always be measured or observed. The objective of this research is to apply structural time series models for obtaining reliable medium- to long-term forecasts of road traffic fatality risk using data from 5 countries with different characteristics from all over Europe (Cyprus, Greece, Hungary, Norway, and Switzerland). Two structural time series models are considered: (1) the local linear trend model and the (2) latent risk time series model. Furthermore, a structured decision tree for the selection of the applicable model for each situation (developed within the Road Safety Data, Collection, Transfer and Analysis [DaCoTA] research project, cofunded by the European Commission) is outlined. First, the fatality and exposure data that are used for the development of the models are presented and explored. Then, the modeling process is presented, including the model selection process, introduction of intervention variables, and development of mobility scenarios. The forecasts using the developed models appear to be realistic and within acceptable confidence intervals. The proposed methodology is proved to be very efficient for handling different cases of data availability and quality, providing an appropriate alternative from the family of structural time series models in each country. A concluding section providing perspectives and directions for future research is presented.

  15. The role of autonomy and social support in the relation between psychosocial safety climate and stress in health care workers.

    Science.gov (United States)

    Havermans, Bo M; Boot, Cécile R L; Houtman, Irene L D; Brouwers, Evelien P M; Anema, Johannes R; van der Beek, Allard J

    2017-06-08

    Health care workers are exposed to psychosocial work factors. Autonomy and social support are psychosocial work factors that are related to stress, and are argued to largely result from the psychosocial safety climate within organisations. This study aimed to assess to what extent the relation between psychosocial safety climate and stress in health care workers can be explained by autonomy and social support. In a cross-sectional study, psychosocial safety climate, stress, autonomy, co-worker support, and supervisor support were assessed using questionnaires, in a sample of health care workers (N = 277). Linear mixed models analyses were performed to assess to what extent social support and autonomy explained the relation between psychosocial safety climate and stress. A lower psychosocial safety climate score was associated with significantly higher stress (B = -0.21, 95% CI = -0.27 - -0.14). Neither co-worker support, supervisor support, nor autonomy explained the relation between psychosocial safety climate and stress. Taken together, autonomy and both social support measures diminished the relation between psychosocial safety climate and stress by 12% (full model: B = -0.18, 95% CI = -0.25 - -0.11). Autonomy and social support together seemed to bring about a small decrease in the relation between psychosocial safety climate and stress in health care workers. Future research should discern whether other psychosocial work factors explain a larger portion of this relation. This study was registered in the Netherlands National Trial Register, trial code: NTR5527 .

  16. FMCSA safety program effectiveness measurement : Roadside Intervention Effectiveness Model, fiscal year 2012.

    Science.gov (United States)

    2016-02-01

    The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the John A. Volpe National : Transportation Systems Center, has developed an analytic model to measure the effectiveness of roadside : inspections and traffic enforcements i...

  17. Meso-modeling of Carbon Fiber Composite for Crash Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shih-Po; Chen, Yijung; Zeng, Danielle; Su, Xuming

    2017-04-06

    In the conventional approach, the material properties for crash safety simulations are typically obtained from standard coupon tests, where the test results only provide single layer material properties used in crash simulations. However, the lay-up effects for the failure behaviors of the real structure were not considered in numerical simulations. Hence, there was discrepancy between the crash simulations and experimental tests. Consequently, an intermediate stage is required for accurate predictions. Some component tests are required to correlate the material models in the intermediate stage. In this paper, a Mazda Tube under high-impact velocity is chosen as an example for the crash safety analysis. The tube consists of 24 layers of uni-directional (UD) carbon fiber composite materials, in which 4 layers are perpendicular to, while the other layers are parallel to the impact direction. An LS-DYNA meso-model was constructed with orthotropic material models counting for the single-layer material behaviors. Between layers, a node-based tie-break contact was used for modeling the delamination of the composite material. Since fiber directions are not single-oriented, the lay-up effects could be an important effect. From the first numerical trial, premature material failure occurred due to the use of material parameters obtained directly from the coupon tests. Some parametric studies were conducted to identify the cause of the numerical instability. The finding is that the material failure strength used in the numerical model needs to be enlarged to stabilize the numerical model. Some hypothesis was made to provide the foundation for enlarging the failure strength and the corresponding experiments will be conducted to validate the hypothesis.

  18. Research on the evaluation model of the software reliability in nuclear safety class digital instrumentation and control system

    International Nuclear Information System (INIS)

    Liu Ying; Yang Ming; Li Fengjun; Ma Zhanguo; Zeng Hai

    2014-01-01

    In order to analyze the software reliability (SR) in nuclear safety class digital instrumentation and control system (D-I and C), firstly, the international software design standards were analyzed, the standards' framework was built, and we found that the D-I and C software standards should follow the NUREG-0800 BTP7-14, according to the NRC NUREG-0800 review of requirements. Secondly, the quantitative evaluation model of SR using Bayesian Belief Network and thirteen sub-model frameworks were established. Thirdly, each sub-models and the weight of corresponding indexes in the evaluation model were analyzed. Finally, the safety case was introduced. The models lay a foundation for review and quantitative evaluation on the SR in nuclear safety class D-I and C. (authors)

  19. Scientific basis for a safety case of deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Noseck, Ulrich; Becker, Dirk-Alexander; Brasser, Thomas [and others

    2012-11-15

    : - The current state-of-the-art in long-term safety assessment has been evaluated within a sub project of the Integration Group for the safety case (IGSC) of OECD/NEA. GRS has strongly contributed to this project called Methods for Safety Assessments (MeSA), by leading working groups and with contributions to selected chapters of the NEA state-of-the-art report. - As an outcome of the MeSA project it was decided to compile the status in the OECD member countries on the use of indicators complementary to dose and risk in the safety case. GRS played a leading role in drafting and finalizing a state-of-the-art report on indicators. Further the applicability of a specific set of indicators previously proposed in Germany was tested and evaluated for repositories in clay and rock salt formations. - GRS is involved in several international working groups to follow the state-of-the-art at the international level as well as to introduce results from German R and D into the international discussion. Important working groups are the Radioactive Waste Management Committee (RWMC) of OECD/NEA with the Integration Group for the Safety Case, its subgroups Clay Club and Salt Club and correlated projects like the NEA sorption project. - The current literature dealing with the role of microbial processes related to repositories in clay formations has been compiled. The potential negative and positive impact of microbes on the long-term integrity of the repository system in clay has been qualitatively evaluated. - Radionuclide inventories of CSD-V containers received from reprocessing in LA Hague have been evaluated and an updated data set for long-term safety assessment is proposed. - The non-isothermal re-saturation of bentonite is investigated by specific laboratory experiments accompanied by modelling with the code VIPER. In addition the model was applied to lab and field experiments provided by the EBS task force and all results have been discussed in this international working group

  20. Scientific basis for a safety case of deep geological repositories

    International Nuclear Information System (INIS)

    Noseck, Ulrich; Becker, Dirk-Alexander; Brasser, Thomas

    2012-11-01

    : - The current state-of-the-art in long-term safety assessment has been evaluated within a sub project of the Integration Group for the safety case (IGSC) of OECD/NEA. GRS has strongly contributed to this project called Methods for Safety Assessments (MeSA), by leading working groups and with contributions to selected chapters of the NEA state-of-the-art report. - As an outcome of the MeSA project it was decided to compile the status in the OECD member countries on the use of indicators complementary to dose and risk in the safety case. GRS played a leading role in drafting and finalizing a state-of-the-art report on indicators. Further the applicability of a specific set of indicators previously proposed in Germany was tested and evaluated for repositories in clay and rock salt formations. - GRS is involved in several international working groups to follow the state-of-the-art at the international level as well as to introduce results from German R and D into the international discussion. Important working groups are the Radioactive Waste Management Committee (RWMC) of OECD/NEA with the Integration Group for the Safety Case, its subgroups Clay Club and Salt Club and correlated projects like the NEA sorption project. - The current literature dealing with the role of microbial processes related to repositories in clay formations has been compiled. The potential negative and positive impact of microbes on the long-term integrity of the repository system in clay has been qualitatively evaluated. - Radionuclide inventories of CSD-V containers received from reprocessing in LA Hague have been evaluated and an updated data set for long-term safety assessment is proposed. - The non-isothermal re-saturation of bentonite is investigated by specific laboratory experiments accompanied by modelling with the code VIPER. In addition the model was applied to lab and field experiments provided by the EBS task force and all results have been discussed in this international working group