WorldWideScience

Sample records for safety regulations transportation

  1. Australian Experience in Implementing Transport Safety Regulations and Transport Security Recommendations

    International Nuclear Information System (INIS)

    Sarkar, S.

    2016-01-01

    Australian transport safety and security regulatory framework is governed by Commonwealth, State and Territory legislations. There are eleven competent authorities in Australia that includes three Commonwealth authorities, six states and two territory authorities. IAEA Regulations for Safe Transport of Radioactive Material (TS-R-1, 2005 edition) is applied through Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) Code of Practice for Transport of Radioactive Material 2008 by road, rail and waterways not covered by marine legislations. All states and territories apply this Transport Code through their regulatory system. For air transport, the Civil Aviation Act 1988 adopts the requirements of the ICAO Technical Instructions for the Safe Transport of Dangerous Goods by Air DOC 9284, which also adopts TS-R-1. The security of radioactive material in air transport is achieved via the Aviation Transport Security Act 2004. For sea transport Australian Marine Order 41 applies the requirements of IMDG (International Maritime Dangerous Goods) Code which also adopts TS-R-1. The security of radioactive material (nuclear material) is governed by two Commonwealth Agencies namely, ARPANSA and ASNO (Australian Safeguards and Non-proliferation Office) . ARPANSA regulates the security of radioactive sources through ARPANSA Code of Practice for the Security of Radioactive Sources 2007 which is based on the IAEA Draft Security Series. ASNO regulates security of nuclear material including U, Th and Pu through the Nuclear Non-Proliferation (Safeguards) Act, and the object of which is to give effect to certain obligations that Australia has as a party to the NPT, Australia’s safeguards agreement with the IAEA, and other bilateral safeguards agreements and certain obligations that Australia has as a party to the Convention for the Physical Protection of Nuclear Materials (CPPNM). This paper presents the effectiveness of regulatory approaches for safe and secure

  2. Advisory material for the IAEA regulations for the safe transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    Since the first edition in 1961, the Regulations for the Safe Transport of Radioactive Material of the IAEA (IAEA Regulations) have served as the basis of safety for the transport of radioactive material worldwide. In the discussions leading to the first edition of the IAEA Regulations, it was realized that there was need for a publication to supplement the Regulations which could give information of individual provisions as to their purpose, their scientific background and how to apply them in practice. In response, the Agency published Safety Series No. 7, entitled, in its first edition in 1961, 'Notes on Certain Aspects of the Regulations'. An additional source of information on the Regulations, providing advice on 'how' the user should comply with them which could be augmented from time to time in the light of latest experience, was provided by the Agency, initially in relation to the 1973 edition of the Regulations. This was entitled 'Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material' and designated Safety Series No. 37. This document is the result of combining the two Safety Series in a single publication. Thus the primary purpose of this publication is to provide guidance to users on proven and acceptable ways of complying with the Regulations. This Advisory Material is not a stand-alone text and it only has significance when used as a companion to the IAEA Safety Standards Series No. ST-1, Regulations for the Safe Transport of Radioactive Material (1996 edition)

  3. Transports of radioactive materials. Legal regulations, safety and security concepts, experience

    International Nuclear Information System (INIS)

    Schwarz, Guenther

    2012-01-01

    In Germany, approximately 650,000 to 750,000 units containing radioactive materials for scientific, medical and technical applications are shipped annually by surface, air and water transports. Legally speaking, radioactive materials are dangerous goods which can cause hazards to life, health, property and the environment as a result of faulty handling or accidents in transit. For protection against these hazards, their shipment therefore is regulated in extensive national and international rules of protection and safety. The article contains a topical review of the international and national transport regulations and codes pertaining to shipments of radioactive materials, and of the protection concepts underlying these codes so as to ensure an adequate standard of safety and security in shipping radioactive materials in national and international goods traffic. (orig.)

  4. Schedules of Provisions of the IAEA Regulations for the Safe Transport of Radioactive Material (2009 Ed.). Safety Guide

    International Nuclear Information System (INIS)

    2014-01-01

    This Safety Guide is issued in support of Regulations for the Safe Transport of Radioactive Material (IAEA Safety Standards Series No. TS-R-1, 2009 Edition). It lists the paragraph numbers of the Transport Regulations that are relevant for specified types of consignment, classified according to their UN numbers. It does not provide additional recommendations. The intended users are consignors and consignees, carriers, shippers, regulators, and end users involved in the transport of radioactive material. A person or organization intending to transport a particular type of consignment of radioactive material must meet requirements in all sections of the Transport Regulations. This Safety Guide aids users by providing a listing of the relevant requirements of the Transport Regulations for each type of radioactive material, package or shipment. Once a consignor has classified the radioactive material to be shipped, the appropriate UN number can be assigned and the paragraph numbers of the requirements that apply for the shipment can be found in the corresponding schedule

  5. Transportation of radioactive materials. Safety and regulation

    International Nuclear Information System (INIS)

    Niel, Jean-Christophe

    2013-01-01

    This engineering-oriented publication first presents fluxes and risks related to the transportation of radioactive materials: fluxes, risks, in-depth defence, and parcel typology. The author then describes the elaboration process for transportation regulations: IAEA recommendations for the transportation of radioactive materials and their review process, IAEA recommendations for modal regulations. He presents the French transportation regulation framework: evolutions of IAEA recommendations, case of aerial transport, and case of maritime transport. The next part addresses the specific case of the transportation of uranium hexafluoride. The last part addresses incidents and accidents occurring during transportation: declarations to be made, brief presentations of several examples of incidents and accidents

  6. The transport safety programme

    International Nuclear Information System (INIS)

    Selling, H.A.

    1994-01-01

    The transport safety programme is one of the smaller technical sub-programmes in the Radiation Safety Section of the Division of Nuclear Safety, in terms of both regular budget and professional staff allocations. The overall aim of the programme is to promote the safe movement of radioactive material worldwide. The specific objectives are the development, review and maintenance of the Regulations for the Safe Transport of Radioactive Material, Safety Series No 6, and its supporting documents Safety Series Nos 7, 37 and 80 and the assistance to Member States and International Organizations in the proper implementation of the Regulations. One of the important issues that emerged during an ongoing Review/Revision process is the transport of Low-Specific Activity (LSA) material and Surface Contaminated Objects (SCO). Many of the radioactive waste materials fall in one of these categories. The subject has gained substance because it is expected that in the next decade radioactive waste could become available in so far unprecedented quantities and volumes due to decontamination and decommissioning of nuclear facilities. (author)

  7. Transportation safety training

    International Nuclear Information System (INIS)

    Jones, E.

    1990-01-01

    Over the past 25 years extensive federal legislation involving the handling and transport of hazardous materials/waste has been passed that has resulted in numerous overlapping regulations administered and enforced by different federal agencies. The handling and transport of hazardous materials/waste involves a significant number of workers who are subject to a varying degree of risk should an accident occur during handling or transport. Effective transportation training can help workers address these risks and mitigate them, and at the same time enable ORNL to comply with the federal regulations concerning the transport of hazardous materials/waste. This presentation will outline how the Environmental and Health Protection Division's Technical Resources and Training Section at the Oak Ridge National Laboratory, working with transportation and waste disposal personnel, have developed and implemented a comprehensive transportation safety training program to meet the needs of our workers while satisfying appropriate federal regulations. 8 refs., 3 tabs

  8. Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide provides recommendations on achieving and demonstrating compliance with IAEA Safety Standards Series No. TS-R-1, Regulations for the Safe Transport of Radioactive Material, 2005 Edition, establishing safety requirements to be applied to the national and international transport of radioactive material. Transport is deemed to comprise all operations and conditions associated with and involved in the movement of radioactive material; these include the design, fabrication and maintenance of packaging, and the preparation, consigning, handling, carriage, storage in transit and receipt at the final destination of packages. This publication supersedes IAEA Safety Series No. TS-G-1.1, 2002 Edition

  9. 49 CFR 176.4 - Port security and safety regulations.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Port security and safety regulations. 176.4... SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL General § 176.4 Port security and safety regulations. (a) Each carrier, master, agent, and charterer of a...

  10. International cooperation for the development of consistent and stable transportation regulations to promote and enhance safety and security

    International Nuclear Information System (INIS)

    Strosnider, J.

    2004-01-01

    International commerce of radioactive materials crosses national boundaries, linking separate regulatory institutions with a common purpose and making it necessary for these institutions to work together in order to achieve common safety goals in a manner that does not place an undue burden on industry and commerce. Widespread and increasing use of radioactive materials across the world has led to increases in the transport of radioactive materials. The demand for consistency in the oversight of international transport has also increased to prevent unnecessary delays and costs associated with incongruent or redundant regulatory requirements by the various countries through which radioactive material is transported. The International Atomic Energy Agency (IAEA) is the authority for international regulation of transportation of radioactive materials responsible for promulgation of regulations and guidance for the establishment of acceptable methods of transportation for the international community. As such, the IAEA is seen as the focal point for consensus building between its Member States to develop consistency in transportation regulations and reviews and to ensure the safe and secure transport of radioactive material. International cooperation is also needed to ensure stability in our regulatory processes. Changes to transportation regulations should be based on an anticipated safety benefit supported by risk information and insights gained from continuing experience, evaluation, and research studies. If we keep safety as the principle basis for regulatory changes, regulatory stability will be enhanced. Finally, as we endeavour to maintain consistency and stability in our international regulations, we must be mindful of the new security challenges that lay before the international community as a result of a changing terrorist environment. Terrorism is a problem of global concern that also requires international cooperation and support, as we look for ways to

  11. Safety of transport of radioactive material. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Radioactive material has been transported for decades within and between countries as the use of radioactive material to benefit mankind has expanded. The transport can involve many types of materials (radionuclides and radiation sources for applications in agriculture, energy production, industry, and medicine) and all modes of transport (road, rail, sea and waterways, and air). Among the organizations in the United Nations system, the International Atomic Energy Agency (IAEA) has the statutory function to establish or adopt standards of safety for protection of health against exposure to ionizing radiation. Within its statutory mandate and pursuant to this request, in 1961, the IAEA issued Regulations for the Safe Transport of Radioactive Material (the IAEA Transport Regulations). The Transport Regulations were periodically reviewed and, as appropriate, have been amended or revised. The latest version of the Transport Regulations was issued in 2000 by the IAEA as Publication TS-R-1 (ST-1, Revised). In addition, the IAEA is entrusted by its Statute to provide for the application of its standards at the request of States. The objective of the Conference is to foster the exchange of information on issues related to the safety of transport of radioactive material by providing an opportunity for representatives from sponsoring international organizations and their Member States and from other co-operating and participating organizations to discuss critical issues relating to the safety of transport of radioactive material by all modes and to formulate recommendations, as appropriate, regarding further international co-operation in this area. The following topics have been identified by the Technical Programme Committee as the subjects to be covered in the background briefing sessions: History and Status of the IAEA Transport Regulation Development; Experience in adoption of the IAEA Transport Regulations at the international level; Implementation of the IAEA Transport

  12. Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material (2012 Ed.). Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-06-15

    This Safety Guide provides recommendations and guidance on achieving and demonstrating compliance with IAEA Safety Standards Series No. SSR-6, Regulations for the Safe Transport of Radioactive Material (2012 Edition), which establishes the requirements to be applied to the national and international transport of radioactive material. Transport is deemed to comprise all operations and conditions associated with and involved in the movement of radioactive material, including the design, fabrication and maintenance of packaging, and the preparation, consigning, handling, carriage, storage in transit and receipt at the final destination of packages. This publication supersedes IAEA Safety Standards Series No. TS-G-1.1 Rev. 1, which was issued in 2008.

  13. Regulations and classification advice: transport safety

    International Nuclear Information System (INIS)

    Davies, M.; Owen, K.

    1990-01-01

    The packaging of radioactive material for transport must conform with the regulations of the International Atomic Energy Agency (IAEA). These regulations are extensive and complex and require specialist interpretation. Packaging must be designed to contain the material, to limit radiation to safe levels, and to maintain the material in a safe state under both normal and accident conditions. British Nuclear Fuels Ltd. (BNFL) developed the TRANAID expert system to provide automated expert advice on the subject. It is used at BNFL and by other users internationally. The system was produced to meet an internal BNFL emphasis on accurate consistent and reliable interpretation of the complex IAEA regulations; and to provide a commercial product which would meet an external need. TRANAID provides reliable and consistent advice on safe transport procedures which reduce the workload on scarce skilled personnel, and allows them to concentrate on their primary task of packaging design. TRANAID also avoids overclassifying radioactive shipments, which would lead to the use of more expensive packaging than strictly is required. The IAEA regulations are applied internationally, and so there is a large potential worldwide market. The indications from the initial response are that future sales and use are expected to more than cover the investment. Other non-quantifiable benefits include the provision of consistent advice within a uniform approach, the safe-guarding of knowledge of the IAEA regulations, training and improvement in the expertise of users, improved management control, and enhancement of the professional image of BNFL. (author)

  14. The IAEA Transport Safety Appraisal Service (TranSAS)

    International Nuclear Information System (INIS)

    Dicke, G.J.

    2004-01-01

    Representatives of all Member States of the IAEA meet once a year in September at the General Conference in Vienna, Austria, to consider and approve the Agency's programme and budget and to address matters brought before it by the Board of Governors, the Director General, or Member States. In September 1998 the General Conference adopted resolution GC(42)/RES/13 on the Safety of Transport of Radioactive Materials. In adopting that resolution the General Conference recognized that compliance with regulations that take account of the IAEA Regulations for the Safe Transport of Radioactive Material (the IAEA Transport Regulations) is providing a high level of safety during the transport of radioactive material. Good compliance requires that the regulations are implemented effectively. The General Conference therefore requested the IAEA Secretariat to provide a service for carrying out, at the request of any State, an appraisal of the implementation of the Transport Regulations by that State. In response to this request the Director General of the IAEA offered such an appraisal service to all States in letter J1.01.Circ, dated 10 December 1998. The first Transport Safety Appraisal Service (TranSAS) was undertaken and completed at the request of Slovenia in 1999. A report on the results of that appraisal was published and released for general distribution in the early fall of 1999. In each of the General Conferences since 1998, resolutions focused on transport safety have commended the Secretariat for establishing the TranSAS, commended those States that have requested the appraisal service and encouraged other States to avail themselves of this service see GC(43)/RES/11, GC(44)/RES/17, GC(45)/RES/10, GC(46)/RES/9 and GC(47)/RES/7. Six appraisals have been carried out to date as follows: Slovenia, Brazil, United Kingdom, Turkey, Panama and France. This presentation provides an overview of the Transport Safety Appraisal Service and summarizes the major findings from the

  15. The IAEA Transport Safety Appraisal Service (TranSAS)

    Energy Technology Data Exchange (ETDEWEB)

    Dicke, G.J. [International Atomic Energy Agency, Vienna (Austria)

    2004-07-01

    Representatives of all Member States of the IAEA meet once a year in September at the General Conference in Vienna, Austria, to consider and approve the Agency's programme and budget and to address matters brought before it by the Board of Governors, the Director General, or Member States. In September 1998 the General Conference adopted resolution GC(42)/RES/13 on the Safety of Transport of Radioactive Materials. In adopting that resolution the General Conference recognized that compliance with regulations that take account of the IAEA Regulations for the Safe Transport of Radioactive Material (the IAEA Transport Regulations) is providing a high level of safety during the transport of radioactive material. Good compliance requires that the regulations are implemented effectively. The General Conference therefore requested the IAEA Secretariat to provide a service for carrying out, at the request of any State, an appraisal of the implementation of the Transport Regulations by that State. In response to this request the Director General of the IAEA offered such an appraisal service to all States in letter J1.01.Circ, dated 10 December 1998. The first Transport Safety Appraisal Service (TranSAS) was undertaken and completed at the request of Slovenia in 1999. A report on the results of that appraisal was published and released for general distribution in the early fall of 1999. In each of the General Conferences since 1998, resolutions focused on transport safety have commended the Secretariat for establishing the TranSAS, commended those States that have requested the appraisal service and encouraged other States to avail themselves of this service see GC(43)/RES/11, GC(44)/RES/17, GC(45)/RES/10, GC(46)/RES/9 and GC(47)/RES/7. Six appraisals have been carried out to date as follows: Slovenia, Brazil, United Kingdom, Turkey, Panama and France. This presentation provides an overview of the Transport Safety Appraisal Service and summarizes the major findings from

  16. Radioactive materials transport: worldwide excellence in safety, past, present and future

    International Nuclear Information System (INIS)

    Heywood, J.D.; Blenkin, J.J.; Wilkinson, H.L.; Murray, M.

    1997-01-01

    The safety record of the transport of radioactive material (RAM) is excellent. This level of safety has been achieved on a global scale principally through the adoption into national legislation of the International Atomic Energy Agency (IAEA) Transport Regulations by all countries which participate in the movement of RAM. The engineered and operational controls address containment of the RAM, radiation emitted from the package, dissipation of heat and prevention of criticality. The nuclear industry and its regulators have constantly sought to improve the safety of RAM transport operations, and also to measure the degree of safety compared with other industries and with generic safety criteria. Because of the extremely low incident rate and the consequent absence of direct historical data, probabilistic methods have been applied to provide a conservative assessment of the risks associated with specific transport operations. This paper illustrates the effectiveness of the IAEA Regulations in ensuring safety by reference to UK and worldwide experience, the results of quantified risk assessments and the mechanisms in place for continued review and improvement of the Regulations. The following topics are explored: (1) The controls controls embodied in the IAEA Regulations and how they minimise the consequences of accidents. (2) A review of quantified risk assessments carried out in this country and abroad. (3) A summary of the RAM transport incident record and a brief review of the results of surveys of RAM transport operations in the UK and worldwide. (4) Discussion of the risks associated with RAM transport compared with other industries. The paper concludes that the IAEA Regulations provide a robust and effective framework for the safe transport of RAM, ensuring that risks are kept at very low levels compared to relevant accepted criteria and other dangerous goods transport operations. The provisions for review and revision of the IAEA Regulations ensure that they

  17. Role IAEA implementation of ICRP-60 on regulations the safe transport of radioactive material

    International Nuclear Information System (INIS)

    Elshinawy, R.K.M.; Gomaa, M.A.

    1994-01-01

    In november 1990, the (ICRP) adopted its 1990 recommendations (ICRP-60) ( 1). These recommendations will significantly influence not only IAEA's basic safety standards (safety series 9) ( 2), but also the IAEA regulations for the safe transport of radioactive material ( 3) and its supporting documents ( 4-6). IAEA experts are currently engaged in the revision of the transport regulations. This revision process led to the publication of the revised transport regulations of 1966. The transport regulations are developed to ensure safety during movement of radioactive materials, and to provide reasonable assurance that the transport activities comply with the basic safety standards for radiation protection

  18. 49 CFR 397.2 - Compliance with Federal motor carrier safety regulations.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Compliance with Federal motor carrier safety...) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS TRANSPORTATION OF HAZARDOUS MATERIALS; DRIVING AND PARKING RULES General § 397.2 Compliance with...

  19. New basic safety regulations of radioactive material transport in Russia

    International Nuclear Information System (INIS)

    Ananiev, V.V.; Ershov, V.N.; Shvedov, M.O.

    2004-01-01

    In the paper the system of normative regulation of radioactive material transport in Russia, basic principles and provisions of the new Russian regulations, available deviations from rules IAEA regulations are briefly considered. The problems, connected with putting in force of the new regulations in practice of transport, including problems of usage earlier designed and manufactured packages are considered as well

  20. Regulations related to the transport of radioactive material in Brazil

    International Nuclear Information System (INIS)

    Sahyun, Adelia; Sordi, Gian-Maria A.A.; Sanches, Matias P.

    2001-01-01

    The transport of radioactive material has raised great interest on the part of national regulatory authorities, thus resulting in a safety measures improvement for all kinds of transportation. The transport of radioactive material is regulated by safety criteria much more than those applied to conventional hazardous material. All radioactive material transportation run in Brazilian territory must be in accordance with what is established by the CNEN-NE 5.01 - Transport of Radioactive Material. There are other national and international regulations for radioactive material transportation, which have to be accomplished with and adopted during the operation of radioactive material transportation. The aim of this paper is to verify the criteria set up in the existing regulations and propose a consensus for all the intervening organizations in the regulation process for land, air or sea transportation. This kind of transportation can not depend on the efforts of only one person, a group of workers or even any governmental body, but must be instead a shared responsibility among workers, transport firms and all regulative transportation organizations. (author)

  1. Regulations related to the transport of radioactive material in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Sahyun, Adelia; Sordi, Gian-Maria A.A. [ATOMO Radioprotecao e Seguranca Nuclear, Sao Paulo, SP (Brazil)]. E-mail: atomo@atomo.com.br; Sanches, Matias P. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: msanches@net.ipen.br

    2001-07-01

    The transport of radioactive material has raised great interest on the part of national regulatory authorities, thus resulting in a safety measures improvement for all kinds of transportation. The transport of radioactive material is regulated by safety criteria much more than those applied to conventional hazardous material. All radioactive material transportation run in Brazilian territory must be in accordance with what is established by the CNEN-NE 5.01 - Transport of Radioactive Material. There are other national and international regulations for radioactive material transportation, which have to be accomplished with and adopted during the operation of radioactive material transportation. The aim of this paper is to verify the criteria set up in the existing regulations and propose a consensus for all the intervening organizations in the regulation process for land, air or sea transportation. This kind of transportation can not depend on the efforts of only one person, a group of workers or even any governmental body, but must be instead a shared responsibility among workers, transport firms and all regulative transportation organizations. (author)

  2. The industry commitment to global transport safety standards

    International Nuclear Information System (INIS)

    Green, L.

    2004-01-01

    Standards and regulations have no intrinsic practical effect without taking into account those who are the object of such standards and regulations. Standards and regulations do not become operationally effective until they are implemented by the entities which are subject to them. Accordingly, there is a necessary synergy between the regulator and the regulated - the regulators whose task it is to make and enforce the rules for safe, efficient and reliable transport, and those whose job it is to transport within the rules. One has no full meaning without the other. Harmonisation issues which can impede efficient and timely implementation of regulations can occur at any stage of the process, starting with the timely publication of the IAEA Regulations, incorporation by the modal organisations, adoption by national competent authorities and finally, rendered operational by industrial transport organisations. Both, the regulator and the transporter, can be more effective in achieving their purposes when they co-operate in the interest of mutual understanding. PATRAM provides one excellent opportunity for such exchange between the regulator and the regulated - there are other important opportunities within the IAEA and international modal organisations. I suggest, however, that more could be done between the regulators and the regulated collectively to share real-life experiences with actually implementing the regulations and operating within them, and to draw appropriate lessons. In the case of the international transport safety regulatory regime, it is the nuclear transport industry, such as represented by the World Nuclear Transport Institute (WNTI), which is, of course, the object of transport safety standards and regulations. And as such, the nuclear transport industry is a principal stakeholder in the regime. Regulatory compliance is a cornerstone of the nuclear transport industry. The international nature of the fuel cycle mandates transnational movement of

  3. The industry commitment to global transport safety standards

    International Nuclear Information System (INIS)

    Green, L.

    2004-01-01

    Standards and regulations have no intrinsic practical effect without taking into account those who are the object of such standards and regulations. Standards and regulations do not become operationally effective until they are implemented by the entities which are subject to them. Accordingly, there is a necessary synergy between the regulator and the regulated-the regulators whose task it is to make and enforce the rules for safe, efficient and reliable transport, and those whose job it is to transport within the rules. One has no full meaning without the other. Harmonisation issues which can impede efficient and timely implementation of regulations can occur at any stage of the process, starting with the timely publication of the IAEA regulations, incorporation by the modal organisations, adoption by national competent authorities and finally, rendered operational by industrial transport organisations. Both the regulator and the transporter can be more effective in achieving their purposes when they cooperate in the interest of mutual understanding. PATRAM provides one excellent opportunity for such exchange between the regulator and the regulated-there are other important opportunities within the IAEA and international modal organisations. It is suggested, however, that more could be done between the regulators and the regulated collectively to share real-life experiences with actually implementing the regulations and operating within them, and to draw appropriate lessons. In the case of the international transport safety regulatory regime, it is the nuclear transport industry, such as represented by the World Nuclear Transport Institute (WNTI), which is, of course, the object of transport safety standards and regulations. And as such, the nuclear transport industry is a principal stakeholder in the regime. Regulatory compliance is a cornerstone of the nuclear transport industry. The international nature of the fuel cycle mandates transnational movement of

  4. The industry commitment to global transport safety standards

    Energy Technology Data Exchange (ETDEWEB)

    Green, L. [World Nuclear Transport Inst., London (United Kingdom)

    2004-07-01

    Standards and regulations have no intrinsic practical effect without taking into account those who are the object of such standards and regulations. Standards and regulations do not become operationally effective until they are implemented by the entities which are subject to them. Accordingly, there is a necessary synergy between the regulator and the regulated - the regulators whose task it is to make and enforce the rules for safe, efficient and reliable transport, and those whose job it is to transport within the rules. One has no full meaning without the other. Harmonisation issues which can impede efficient and timely implementation of regulations can occur at any stage of the process, starting with the timely publication of the IAEA Regulations, incorporation by the modal organisations, adoption by national competent authorities and finally, rendered operational by industrial transport organisations. Both, the regulator and the transporter, can be more effective in achieving their purposes when they co-operate in the interest of mutual understanding. PATRAM provides one excellent opportunity for such exchange between the regulator and the regulated - there are other important opportunities within the IAEA and international modal organisations. I suggest, however, that more could be done between the regulators and the regulated collectively to share real-life experiences with actually implementing the regulations and operating within them, and to draw appropriate lessons. In the case of the international transport safety regulatory regime, it is the nuclear transport industry, such as represented by the World Nuclear Transport Institute (WNTI), which is, of course, the object of transport safety standards and regulations. And as such, the nuclear transport industry is a principal stakeholder in the regime. Regulatory compliance is a cornerstone of the nuclear transport industry. The international nature of the fuel cycle mandates transnational movement of

  5. Radiation safety in sea transport of radioactive material in Japan

    International Nuclear Information System (INIS)

    Odano, N.; Yanagi, H.

    2004-01-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured

  6. Radiation safety in sea transport of radioactive material in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Odano, N. [National Maritime Research Inst., Tokyo (Japan); Yanagi, H. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)

    2004-07-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured.

  7. Transports of radioactive materials. Legal regulations, safety and security concepts, experience; Befoerderung radioaktiver Stoffe. Rechtsvorschriften, Sicherheits- und Sicherungskonzept, Erfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Guenther

    2012-07-15

    In Germany, approximately 650,000 to 750,000 units containing radioactive materials for scientific, medical and technical applications are shipped annually by surface, air and water transports. Legally speaking, radioactive materials are dangerous goods which can cause hazards to life, health, property and the environment as a result of faulty handling or accidents in transit. For protection against these hazards, their shipment therefore is regulated in extensive national and international rules of protection and safety. The article contains a topical review of the international and national transport regulations and codes pertaining to shipments of radioactive materials, and of the protection concepts underlying these codes so as to ensure an adequate standard of safety and security in shipping radioactive materials in national and international goods traffic. (orig.)

  8. Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.

    2008-01-01

    Beside new Ordinance on the control of nuclear material and special equipment ('Official Gazette' No. 15/08), from 2006 State Office for Nuclear Safety (SONS) adopted Ordinance on performing nuclear activities ('Official Gazette' No. 74/06) and Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety ('Official Gazette' No. 74/06), based on Nuclear Safety Act ('Official Gazette' No. 173/03). The Ordinance on performing nuclear activities regulates the procedure of notification of the intent to perform nuclear activities, submitting the application for the issue of a licence to perform nuclear activities, and the procedure for issuing decisions on granting a licence to perform a nuclear activity. The Ordinance also regulates the content of the forms for notification of the intent to perform nuclear activities, as well as of the application for the issue of a licence to perform the nuclear activity and the method of keeping the register of nuclear activities. According to the Nuclear Safety Act, nuclear activities are the production, processing, use, storage, disposal, transport, import, export, possession or other handling of nuclear material or specified equipment. The Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety regulates these mentioned conditions, whereas compliance is established by a decision passed by the SONS. Special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety are organizational, technical, technological conditions and established system of quality assurance. In 2007, State Office for Nuclear Safety finalized the text of new Ordinance on conditions for nuclear safety and protection with regard to the siting, design, construction, use and decommissioning of a facility in which a nuclear activity is

  9. Safe Transport of Radioactive Material, International Regulations and its Supporting Documents

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.

    2005-01-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1 ( ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series No 7 and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series No 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS=113), compliance assurance (SS=112), the training manual and other

  10. Safe Transport of Radioactive Material, International Regulations and its Supporting Documents

    Energy Technology Data Exchange (ETDEWEB)

    El-Shinawy, R M.K. [Radiation Protection Dept., NRC, Atomic Energy Authority, Cairo (Egypt)

    2005-04-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1 ( ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series No 7 and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series No 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS=113), compliance assurance (SS=112), the training manual and other.

  11. The international radioactive transportation regulations: A model for national regulations

    International Nuclear Information System (INIS)

    Pope, R.B.; Rawl, R.R.

    1990-06-01

    The International Atomic Energy Agency's (IAEA) Regulations for the Safe Transport of Radioactive Material, Safety Series No. 6 (herein after denoted as the ''International Regulations'') serve as the model for the regulations for individual countries and international modal organizations controlling the packaging and transportation of radioactive materials. The purpose of this paper is to outline the background and history of the International Regulations, the general principles behind the requirements of the International Regulations, the structure and general contents of the latest edition of the International Regulations, and the roles of various international bodies in the development and implementation of the International Regulations and the current status of regulatory and supportive document development at both the international and domestic level. This review will provide a basis for users and potential users to better understand the source and application of the International Regulations. 1 tab

  12. Radiation protection programmes for the transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide provides guidance on meeting the requirements for the establishment of radiation protection programmes (RPPs) for the transport of radioactive material, to optimize radiation protection in order to meet the requirements for radiation protection that underlie the Regulations for the Safe Transport of Radioactive Material. This Guide covers general aspects of meeting the requirements for radiation protection, but does not cover criticality safety or other possible hazardous properties of radioactive material. The annexes of this Guide include examples of RPPs, relevant excerpts from the Transport Regulations, examples of total dose per transport index handled, a checklist for road transport, specific segregation distances and emergency instructions for vehicle operators

  13. International Regulations for Transport of Radioactive Materials, History and Security

    International Nuclear Information System (INIS)

    EL-Shinawy, R.M.K.

    2013-01-01

    International Regulations for the transport of radioactive materials have been published by International Atomic Energy Agency (IAEA) since 1961. These Regulations have been widely adopted into national Regulations. Also adopted into different modal Regulations such as International Air Transport Association (IATA) and International Martime Organization (IMO). These Regulations provide standards for insuring a high level of safety of general public, transport workers, property and environment against radiation, contamination, criticality hazard and thermal effects associated with the transport of radioactive wastes and materials. Several reviews conducted in consultation with Member States (MS) and concerned international organizations, resulted in comprehensive revisions till now. Radioactive materials are generally transported by specialized transport companies and experts. Shippers and carriers have designed their transport operations to comply with these international Regulations. About 20 million consignments of radioactive materials take place around the world each year. These materials were used in different fields such as medicine, industry, agriculture, research, consumer product and electric power generation. After September 11,2001, the IAEA and MS have worked together to develop a new guidance document concerning the security in the transport of radioactive materials. IAEA have initiated activities to assist MS in addressing the need for transport security in a comprehensive manner. The security guidance and measures were mentioned and discussed. The transport security becomes more developed and integrated into national Regulations of many countries beside the safety Regulations. IAEA and other International organizations are working with MS to implement transport security programs such as guidance, training, security assessments and upgrade assistance in these fields.

  14. Compliance assurance for the safe transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2009-01-01

    The objectives of this Safety Guide are to assist competent authorities in the development and maintenance of compliance assurance programmes in connection with the transport of radioactive material, and to assist applicants, licensees and organizations in their interactions with competent authorities. In order to increase cooperation between competent authorities and to promote the uniform application of international regulations and recommendations, it is desirable to adopt a common approach to regulatory activities. This Safety Guide is intended to assist in accomplishing such a uniform application by recommending most of the actions for which competent authorities need to provide in their programmes for ensuring compliance with the Transport Regulations. This Safety Guide addresses radiation safety aspects of the transport of radioactive material; that is, the subjects that are covered by the Transport Regulations. Radioactive material may have other dangerous properties, however, such as explosiveness, flammability, pyrophoricity, chemical toxicity and corrosiveness; these properties are required to be taken into account in the regulatory control of the design and transport of packages. Physical protection and systems for accounting for and control of nuclear material are also discussed in this Safety Guide. These subjects are not within the scope of the Transport Regulations, but information on them is included here because they must be taken into account in the overall regulatory control of transport, especially when the regulatory framework is being established. Section 1 informs about the background, the objective, the scope and the structure of this publication. Section 2 provides recommendations on the responsibilities and functions of the competent authority. Section 3 provides information on the various national and international regulations and guides for the transport of radioactive material. Section 4 provides recommendations on carrying out

  15. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt... standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  16. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt... standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  17. Regulations for the safe transport of radioactive materials. 1973 rev. ed

    International Nuclear Information System (INIS)

    1973-01-01

    The purpose of these Regulations is to establish standards of safety which provide an acceptable level of control of the radiation hazards to persons, property and the environment that are associated with the transport of radioactive material. These Regulations shall apply to the transport by land, water or air, including transport on own account, of radioactive material other than that which is an integral part of the means of transport. Transport shall be deemed to include any operation incidental to the whole course of carriage, such as loading, unloading and storage in transit. The term includes both normal transport and that under accident conditions. These Regulations do not apply within establishments where the radioactive material is produced, used or stored, other than in the course of transport, and in respect of which other appropriate safety regulations are in force. In the transport of radioactive materials, any other hazardous characteristics of these materials such as explosiveness, inflammability, pyrophoricity, chemical toxicity, and corrosiveness must be taken into account in such a manner as to be in compliance with the relevant transport regulations for dangerous goods of each of the countries through or into which the materials will be transported, as well as in compliance with these Regulations.

  18. Safety assessment of ammonia as a transport fuel

    Energy Technology Data Exchange (ETDEWEB)

    Duijm, N.J.; Markert, F.; Lundtang paulsen, Jette

    2005-02-01

    This report describes the safety study performed as part of the EU supported project 'Ammonia Cracking for Clean Electric Power Technology' The study addresses the following activities: safety of operation of the ammonia-powered vehicle under normal and accident (collision) conditions, safety of transport of ammonia to the refuelling stations and safety of the activities at the refuelling station (unloading and refuelling). Comparisons are made between the safety of using ammonia and the safety of other existing or alternative fuels. The conclusion is that the hazards in relation to ammonia need to be controlled by a combination of technical and regulatory measures. The most important requirements are: - Advanced safety systems in the vehicle - Additional technical measures and regulations are required to avoid releases in maintenance workshops and unauthorised maintenance on the fuel system - Road transport of ammonia to refuelling stations in refrigerated form - Sufficient safety zones between refuelling stations and residential or otherwise public areas. When these measures are applied, the use of ammonia as a transport fuel wouldnt cause more risks than currently used fuels (using current practice). (au)

  19. Safety in transport and storage of radioactive materials

    International Nuclear Information System (INIS)

    Mezrahi, A.; Xavier, A.M.

    1987-01-01

    The increasing utilization of radioisotopes in Industrial, Medical and Research Facilities as well as the processing of Nuclear Materials involve transport activities in a routine basis. The present work has the following main objectives: I) the identification of the safety aspects related to handling, transport and storage of radioactive materials; II) the orientation of the personnel responsible for the radiological safety of Radioactive Installations viewing the elaboration and implementation of procedures to minimize accidents; III) the report of case-examples of accidents that have occured in Brazil due to non-compliance with Transport Regulations. (author) [pt

  20. The need for a public information program to promote understanding of the validity of the safety of IAEA transport regulations for shipment of radioactive material

    International Nuclear Information System (INIS)

    Kubo, M.

    2004-01-01

    It is important to convey basic knowledge that demonstrates to the general public and public officials that transport of radioactive materials is safe. Data, analysis, and testing for certification in member states of the IAEA as well as experience with packages involved in accidents demonstrate the margin of safety when radioactive material material is transported. In addition, the experience of TranSAS activity has shown it to be an effective and transparent means to the public people for Member States to demonstrate their commitment to the safe transport of RAM. Therefore, in the future, the IAEA must continue and expand its public efforts to make the public aware of the very high certainty of safe transport that is the consequence of following the regulations. I would like to ask IAEA to have the transportation specialist groups designated by each Member State. These transportation specialist groups, working with the IAEA transport regulations in each country, should have as a central activity an information program that conveys the margin of safety inherent in the IAEA transport regulations. Finally I would like to ask IAEA to produce a program relating to public perception of RAM transport for the public throughout the world. And also I would like to ask IAEA to send the transportation specialist groups to Member States and many concerned countries to explain and demonstrate the adequacy of the IAEA Regulations

  1. The need for a public information program to promote understanding of the validity of the safety of IAEA transport regulations for shipment of radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, M. [Japan Nuclear Cycle Development Inst., Ibaraki (Japan)

    2004-07-01

    It is important to convey basic knowledge that demonstrates to the general public and public officials that transport of radioactive materials is safe. Data, analysis, and testing for certification in member states of the IAEA as well as experience with packages involved in accidents demonstrate the margin of safety when radioactive material material is transported. In addition, the experience of TranSAS activity has shown it to be an effective and transparent means to the public people for Member States to demonstrate their commitment to the safe transport of RAM. Therefore, in the future, the IAEA must continue and expand its public efforts to make the public aware of the very high certainty of safe transport that is the consequence of following the regulations. I would like to ask IAEA to have the transportation specialist groups designated by each Member State. These transportation specialist groups, working with the IAEA transport regulations in each country, should have as a central activity an information program that conveys the margin of safety inherent in the IAEA transport regulations. Finally I would like to ask IAEA to produce a program relating to public perception of RAM transport for the public throughout the world. And also I would like to ask IAEA to send the transportation specialist groups to Member States and many concerned countries to explain and demonstrate the adequacy of the IAEA Regulations.

  2. National RAM transport regulations implementation in Russia

    International Nuclear Information System (INIS)

    Gubanov, V.A.

    1995-01-01

    A brief review is given of the main provisions of the state regulation and safety assurance of RAM transport in Russia. This appears to be useful to various persons and organisations abroad, concerned with such transport in Russia. Two aspects of the system are presented - regulatory documents (normative-technical documentation) and regulatory and control activities of state organisations. (Author)

  3. An architecture model for communication of safety in public transportation

    NARCIS (Netherlands)

    Rajabalinejad, Mohammad; Horváth, Imre; Pernot, Jean-Paul; Rusák, Zoltan

    2016-01-01

    Safety in transportation is under the influence of the rising complexity, increasing demands for capacity and decreasing cost. Furthermore, the interdisciplinary environment of operation and altered safety regulations invite for a centralized (integrated) modelling/ communication approach. This

  4. Draft of regulations for road transport of radioactive wastes

    International Nuclear Information System (INIS)

    Gese, J.; Zizka, B.

    1979-06-01

    A draft regulation is presented for the transport of solid and solidified radioactive wastes from nuclear power plants. The draft takes into consideration dosimetric, safety and fire-fighting directives, transport organization, anticipated amounts of radioactive wastes, characteristics of containers, maintenance of vehicles, and equipment of vehicles and personnel. The draft is based on the provisional regulations governing the transport on public roads issued in 1973, valid directives, decrees, acts and standards, and complies with 1973 IAEA requirements. (J.P.)

  5. Radioactive wastes transport. A safety logic

    International Nuclear Information System (INIS)

    2005-01-01

    The safety principle which applies to transport operations of radioactive wastes obeys to a very strict regulation. For the conditioning of wastes in package, the organisation of shipments and the qualification of carriers, the ANDRA, the French national agency of radioactive wastes, has implemented a rigorous policy based on the respect of a quality procedure and on the mastery of delivery fluxes. This brochure presents in a simple, illustrated and detailed manner the different steps of these transports. (J.S.)

  6. 78 FR 53790 - Public Forum-Safety Culture: Enhancing Transportation Safety

    Science.gov (United States)

    2013-08-30

    ... NATIONAL TRANSPORTATION SAFETY BOARD Public Forum--Safety Culture: Enhancing Transportation Safety On Tuesday and Wednesday, September 10-11, 2013, the National Transportation Safety Board (NTSB) will convene a forum titled, ``Safety Culture: Enhancing Transportation Safety.'' The forum will begin at 9:00...

  7. 78 FR 61251 - The National Public Transportation Safety Plan, the Public Transportation Agency Safety Plan, and...

    Science.gov (United States)

    2013-10-03

    ...-0030] RIN 2132-AB20; 2132-AB07 The National Public Transportation Safety Plan, the Public Transportation Agency Safety Plan, and the Public Transportation Safety Certification Training Program; Transit... Public Transportation Safety Program (National Safety Program) and the requirements of the new transit...

  8. Regulations for the Safe Transport of Radioactive Materials. Vietnam Standard (TCVN 4985-89)

    International Nuclear Information System (INIS)

    1989-01-01

    The regulations were prepared in line with the Safety Regulation for Ionizing Radiations 1988 of Vietnam. Its purpose is to provide requirements in transport of radioactive materials. The exposure levels of transport personnel are determined. The package for different types of materials is regulated. The orders and procedures in transport are defined. In addition, specific requirements for each mean of transport are given. (N.H.A)

  9. Regulations relevant to the transport of radioactive materials in Switzerland

    International Nuclear Information System (INIS)

    Smith, L.

    1996-01-01

    As is the case in many countries, the transport of radioactive materials in Switzerland is primarily regulated by the national regulations for the transport of dangerous goods. Currently these regulations, in the case of radioactive material, incorporate the 1985 IAEA Safety Series 6 Regulations for the Safe Transport of Radioactive Material (As amended 1990). However, as is also the case in some other countries, consignors, shippers and carriers of radioactive materials must also comply with additional laws when shipping radioactive materials. The most important of these other laws and their accompanying regulations are those concerned with radiation protection (import, export and carriers licences) and nuclear power (import, export, inland transport and transit licences). This paper sets out to describe the collective requirements resulting from all three of these sets of regulations. (Author)

  10. Planning and Preparing for Emergency Response to Transport Accidents Involving Radioactive Material. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide provides guidance on various aspects of emergency planning and preparedness for dealing effectively and safely with transport accidents involving radioactive material, including the assignment of responsibilities. It reflects the requirements specified in Safety Standards Series No. TS-R-1, Regulations for the Safe Transport of Radioactive Material, and those of Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Framework for planning and preparing for response to accidents in the transport of radioactive material; 3. Responsibilities for planning and preparing for response to accidents in the transport of radioactive material; 4. Planning for response to accidents in the transport of radioactive material; 5. Preparing for response to accidents in the transport of radioactive material; Appendix I: Features of the transport regulations influencing emergency response to transport accidents; Appendix II: Preliminary emergency response reference matrix; Appendix III: Guide to suitable instrumentation; Appendix IV: Overview of emergency management for a transport accident involving radioactive material; Appendix V: Examples of response to transport accidents; Appendix VI: Example equipment kit for a radiation protection team; Annex I: Example of guidance on emergency response to carriers; Annex II: Emergency response guide.

  11. Regulations for the Safe Transport of Radioactive Material, 2009 ed. Safety Requirements

    International Nuclear Information System (INIS)

    2009-01-01

    This publication establishes the regulations that are applied to the transport of radioactive material by all modes of transport on land, water or in the air, including transport that is incidental to the use of the radioactive material. The objective and scope of the regulations are described in detail as well as the range of their application. The publication provides requirements useful to governments, regulators, operators of nuclear and radiation facilities, carriers, users of radiation sources and cargo handling personnel. Contents: 1. Introduction; 2. Definitions; 3. General provisions; 4. Activity limits and classification; 5. Requirements and controls for transport; 6. Requirements for radioactive materials and for packagings and packages; 7. Test procedures; 8. Approval and administrative requirements; Annex I: Summary of approval and prior notification requirements; Annex II: Conversion factors and prefixes.

  12. Safety regulations for radioisotopes, etc. (interim report)

    International Nuclear Information System (INIS)

    1980-01-01

    An (interim) report by an ad hoc expert committee to the Nuclear Safety Commission, on the safety regulations for radioisotopes, etc., was presented. For the utilization of radioisotopes, etc., there is the Law Concerning Prevention of Radiation Injury Due to Radioisotopes, etc. with the advances in this field and the improvement in international standards, the regulations by the law have been examined. After explaining the basic ideas of the regulations, the problems and countermeasures in the current regulations are described: legal system, rationalization in permission procedures and others, inspection on RI management, the system of the persons in charge of radiation handling, RI transport, low-level radioactive wastes, consumer goods, definitions of RIs, radiation and sealed sources, regulations by group partitioning, RI facilities, system of personnel exposure registration, entrusting of inspection, etc. to private firms, and reduction in the works for permission among governmental offices. (author)

  13. SAFETY PLATFORM OF POLISH TRANSPORT

    Directory of Open Access Journals (Sweden)

    Katarzyna CHRUZIK

    2016-03-01

    Full Text Available Analyzing the level of Polish transport safety culture can be seen that it is now dependent on the culture of safety management within the organization and the requirements and recommendations of law in this field for different modes of transport (air, rail, road, water. Of the four basic types of transport requirements are widely developed in the aviation, rail, and water – the sea. In order to harmonize the requirements for transport safety so it appears advisable to develop a platform for exchange of safety information for different modes of transport, and the development of good practices multimodal offering the possibility of improving Polish transport safety. Described in the publication of the proposal in addition to the alignment platform experience and knowledge in the field of transport safety in all its kinds, it can also be a tool for perfecting new operators of public transport.

  14. Nuclear safety and regulation

    International Nuclear Information System (INIS)

    Kim, Hho Jung

    2000-03-01

    This book contains 12 chapters, which are atom and radiation, nuclear reactor and kinds of nuclear power plant, safeguard actuation system and stability evaluation for rock foundation of nuclear power plant, nuclear safety and principle, safety analysis and classification of incident, probabilistic safety assessment and major incident, nuclear safety regulation, system of nuclear safety regulation, main function and subject of safety regulation in nuclear facilities, regulation of fuel cycle and a nuclear dump site, protection of radiation and, safety supervision and, safety supervision and measurement of environmental radioactivity.

  15. Safety analysis report for radwaste foam transport cask

    International Nuclear Information System (INIS)

    Ku, J. H.; Lee, J. C.; Bang, K. S.; Seo, K. S.; Lee, D. W.; Kim, J. H.; Park, S. W.; Lee, J. W.; Kim, K. H.

    1999-08-01

    For the tests and examinations of radwaste foam which generated in domestic nuclear power plants a radioactive material transport cask is needed to transport the radwaste foam from the power plants to KAERI. This cask should be easy to handle in the facilities and safe to maintain the shielding safety of operators. According to the regulations, it should be verified that this cask maintains the thermal and structural integrities under prescribed load conditions by the regulations. The basic structural functions and the integrities of the cask under required load conditions were evaluated. Therefore, it was verified that the cask is suitable to transport radwaste foam from nuclear power plants to KAERI. (author). 11 refs., 10 tabs., 25 figs

  16. Safety and security in transportation of radioactive material- the perception of risk

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, A.M.; Jaernry, C. [AMC Konsult AB, Bromma (Sweden)

    2004-07-01

    Since the event of September 11, 2001, the way most people look at transportation risk has changed. There is now a lot more focusing on the security concerns related to the transportation of radioactive material. Most people are now more concerned about the risk of terrorist actions or sabotage than of accidents. This is probably due to the fact that the safety record for transportation of radioactive material has so far been very good and that most people experience terrorism and sabotage more scaring and less controllable than general accidents. This paper will compare the safety and the security regulations and discuss synergies and contradictions between the sets of regulations.

  17. Safety and security in transportation of radioactive material- the perception of risk

    International Nuclear Information System (INIS)

    Ericsson, A.M.; Jaernry, C.

    2004-01-01

    Since the event of September 11, 2001, the way most people look at transportation risk has changed. There is now a lot more focusing on the security concerns related to the transportation of radioactive material. Most people are now more concerned about the risk of terrorist actions or sabotage than of accidents. This is probably due to the fact that the safety record for transportation of radioactive material has so far been very good and that most people experience terrorism and sabotage more scaring and less controllable than general accidents. This paper will compare the safety and the security regulations and discuss synergies and contradictions between the sets of regulations

  18. Fostering member state implementation of the IAEA's transport regulations

    International Nuclear Information System (INIS)

    Brittinger, M.T.M.; Wangler, M.E.

    2004-01-01

    Based on a 1959 mandate from the United Nations Economic and Social Council, international safety requirements are embodied in the ''Regulations for the Safe Transport of Radioactive Material'' that were first published by the International Atomic Energy Agency in 1961 and revised in 1967, 1973, 1985 and 1996 to keep them abreast of scientific and technical developments. The requirements are incorporated into the regulatory documents of the International Civil Aviation Organization for air transport, and the International Maritime Organization for marine transport. As the requirements of the latter documents are legally-binding for the member states of the corresponding organizations, the IAEA safety requirements thus also become mandatory in those countries. The same situation applies for the surface modes in Europe, by means of the regulatory documents of the European Community for rail, road and inland waterways. Nevertheless, the IAEA has not relaxed its efforts to ensure that its Transport Regulations stay abreast of scientific and technical developments; on the contrary, it has been undertaking a regular and vigorous review of its safety requirements, and continues to do so with the assistance of Member States and relevant international organizations. Beyond providing the regulatory basis for the safe transport of radioactive material, however, the IAEA also offers a work programme under which it assists Member States in complying with the regulatory requirements. This assistance comes in the form of providing training on the safety requirements, and publishing documents that facilitate the exchange of information

  19. Regulations of safe transport of radioactive material

    International Nuclear Information System (INIS)

    Patel, R.J.; Sumathi, E.

    2017-01-01

    BARC is a multi-disciplinary nuclear research organisation with facilities located at various parts of the country. The nuclear and radiological facilities in BARC include fuel fabrication facilities, nuclear research reactors, radiological laboratories, nuclear recycle facilities, waste management facilities and other associated facilities. RAdioactive Material (RAM) such as fresh nuclear fuel, irradiated fuel, radioactive sources, vitrified high level wastes, special nuclear material etc., are transported between these facilities either within the controlled premises or in public domain. In BARC the regulatory approval for the packages used for transport of RAM is issued by BARC Safety Council (BSC). Competent Authority for issuing the design approval for the BARC packages in public domain is Director, BARC. In this aspect BSC is assisted by Safety Review Committee-Transport of Radioactive Material (SRC-TRM) constituted by BSC entrusted with the mandate to ensure the packages are designed, manufactured and transported in accordance with the current regulations. This article summarizes the regulatory requirements for transport of RAM and experience in BARC facilities

  20. International regulations on labour health and safety applied to fishing and maritime transport sectors. Are maritime workers under-protected.

    Science.gov (United States)

    Rodríguez, Julio Louro; Portela, Rosa Mary de la Campa; Pardo, Guadalupe Martín

    2012-01-01

    The work activity developed on board is of great importance in our nearby environment, and it has a series of peculiarities that determine the service rendering of sea workers. On the other hand, work at sea is developed on an international basis. Nowadays such work becomes a completely globalised industrial sector in relation to the elements that make up the ship's operation, including manpower. For that reason several relevant international organisations have paid attention to this industrial sector and have adopted a broad regulation on this matter. In the case of the European Union, the Community procedure emphasises enormous interest in providing specific and comprehensive training to seafarers, as well as in regulating working time on board with the aim of minimising the safety problems caused by fatigue. In the present article a schematic presentation of regulations on workers' health and occupational safety protection derived from the European Union, the International Maritime Organisation, and the International Labour Organisation has been done. Also it shows what parts of these regulations are not applicable to the work on board, and it reveals how the workers of fishing and maritime transport sectors are under-protected with regard to the guarantee of their health and occupational safety compared to workers in other sectors.

  1. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (Arabic Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  2. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (Chinese Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  3. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA's Statute authorizes the Agency to ''establish or adopt standards of safety for protection of health and minimization of danger to life and property'' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  4. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (Chinese Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  5. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  6. Regulations for the safe transport of radioactive material. 1996 edition (revised)

    International Nuclear Information System (INIS)

    2000-01-01

    Following a comprehensive review by panels of experts convened by the IAEA starting in 1991, a revised version of the IAEA Regulations for the Safe Transport of Radioactive Material (formerly Safety Series No. 6) was approved by the Board of Governors in September 1996. This publication supersedes all editions of the Regulations issued under Safety Series No. 6. By 1969, the Regulations had been adopted by almost all international organizations concerned with transport and used by many Member States for their own regulations. Through the worldwide adoption of the IAEA Regulations for all modes of transport, a very high standard of safety in transport has been achieved. In the revisions since the first edition, attempts have been made to find a balance between the need to take account of technical advances and operational experience, and the desirability of providing a stable framework of regulatory requirements. One of the aims of this approach is to allow packages designed to previous versions of the Regulations to continue to be used for a reasonable period of time. It is recognized that not all regulatory changes can be implemented simultaneously; Member States and international organizations are therefore invited, in adopting this revision, to provide for use of both the 'old' requirements and the 'new' ones during a period of transition that may last for a few years. It is further recommended that adoption of these revised Regulations occur within a period of five years from publication to achieve worldwide harmonization of their application. In implementing the provisions of these Regulations, it may be necessary for Member States to issue complementary national regulations. Except as necessary for solely domestic purposes, such national regulations should not conflict with these Regulations. For convenience, the requirements to be met for the transport of specified types of consignments are included in an abbreviated form as Schedules in this publication

  7. Regulations for the safe transport of radioactive material. 1996 edition (revised)

    International Nuclear Information System (INIS)

    2002-01-01

    Following a comprehensive review by panels of experts convened by the IAEA starting in 1991, a revised version of the IAEA Regulations for the Safe Transport of Radioactive Material (formerly Safety Series No. 6) was approved by the Board of Governors in September 1996. This publication supersedes all editions of the Regulations issued under Safety Series No. 6. By 1969, the Regulations had been adopted by almost all international organizations concerned with transport and used by many Member States for their own regulations. Through the worldwide adoption of the IAEA Regulations for all modes of transport, a very high standard of safety in transport has been achieved. In the revisions since the first edition, attempts have been made to find a balance between the need to take account of technical advances and operational experience, and the desirability of providing a stable framework of regulatory requirements. One of the aims of this approach is to allow packages designed to previous versions of the Regulations to continue to be used for a reasonable period of time. It is recognized that not all regulatory changes can be implemented simultaneously. Member States and international organizations are therefore invited, in adopting this revision, to provide for use of both the 'old' requirements and the 'new' ones during a period of transition that may last for a few years. It is further recommended that adoption of these revised Regulations occur within a period of five years from publication to achieve worldwide harmonization of their application. In implementing the provisions of these Regulations, it may be necessary for Member States to issue complementary national regulations. Except as necessary for solely domestic purposes, such national regulations should not conflict with these Regulations. For convenience, the requirements to be met for the transport of specified types of consignments are included in an abbreviated form as Schedules in this publication

  8. Regulatory practices of radiation safety of SNF transportation in Russia

    International Nuclear Information System (INIS)

    Kuryndina, Lidia; Kuryndin, Anton; Stroganov, Anatoly

    2008-01-01

    This paper overviews current regulatory practices for the assurance of nuclear and radiation safety during railway transportation of SNF on the territory of Russian Federation from NPPs to longterm-storage of reprocessing sites. The legal and regulatory requirements (mostly compliant with IAEA ST-1), licensing procedure for NM transportation are discussed. The current procedure does not require a regulatory approval for each particular shipment if the SNF fully comply with the Rosatom's branch standard and is transported in approved casks. It has been demonstrated that SNF packages compliant with the branch standard, which is knowingly provide sufficient safety margin, will conform to the federal level regulations. The regulatory approval is required if a particular shipment does not comply with the branch standard. In this case, the shipment can be approved only after regulatory review of Applicant's documents to demonstrate that the shipment still conformant to the higher level (federal) regulations. The regulatory review frequently needs a full calculation test of the radiation safety assurance. This test can take a lot of time. That's why the special calculation tools were created in SEC NRS. These tools aimed for precision calculation of the radiation safety parameters by SNF transportation use preliminary calculated Green's functions. Such approach allows quickly simulate any source distribution and optimize spent fuel assemblies placement in cask due to the transport equation property of linearity relatively the source. The short description of calculation tools are presented. Also, the paper discusses foreseen implications related to transportation of mixed-oxide SNF. (author)

  9. Appraisal for France of the safety of the transport of radioactive material. Provision for the application of the IAEA safety standards

    International Nuclear Information System (INIS)

    2004-01-01

    The IAEA has the specific statutory function within the United Nations system of establishing standards of safety for the protection of health against exposure to ionizing radiation. As part of this mandate, the IAEA has issued Regulations for the Safe Transport of Radioactive Material, and has also established the Transport Safety Appraisal Service (TranSAS) to carry out, at the request of States, appraisals of the implementation of these regulations. The IAEA carried out such an appraisal in France from 27 March to 8 April 2004. The appraisal addressed all relevant transport activities in France, both national and international, for all modes of transport, with special emphasis on the maritime transport and air transport of radioactive material. This report summarizes the findings of the 13 independent experts who participated in the appraisal

  10. The regulation concerning transportation of radioactive materials by vehicles

    International Nuclear Information System (INIS)

    1978-01-01

    The Regulation is established on the basis of The law for the regulations of nuclear source materials, nuclear fuel materials and reactors'' and the ''Law for the prevention of radiation injuries due to radioisotopes.'' The prescriptions cover the transport of radioactive materials by railway, street rail way, ropeway, trolley buses, motorcars and light vehicles. Terms are explained, such as nuclear fuel materials, radioisotopes, radioactive substances, transported radioactive things, transported fissile things, vehicles, containers, exclusive loading, surrounding inspection area. Four types of transported radioactive things are specified, L and A types being less dangerous and BM and BU being more dangerous. Transported fissile things are classified to three kinds according to the safety to criticality of such things. Transported radioactive things except those of L type and containers with transported fissile things shall not be loaded or unloaded at the places where persons other than those concerned come in usually. Loading and unloading of such things shall be carried out so that the safety of such things is not injured. The maximum dose rate of radiation of the containers with transported radioactive things shall not be more than 200 millirem per hour on the surface and 10 millirem per hour at the distance of 1 meter. Specified transported radioactive things shall be particularly marked by the letter of ''radioactive'' or other signs indicating as such. (Okada, K.)

  11. Review of Regulatory Emphasis on Transportation Safety in the United States, 2002-2009: Public versus Private Modes.

    Science.gov (United States)

    Waycaster, Garrett C; Matsumura, Taiki; Bilotkach, Volodymyr; Haftka, Raphael T; Kim, Nam H

    2018-05-01

    The U.S. Department of Transportation is responsible for implementing new safety improvements and regulations with the goal of ensuring limited funds are distributed to where they can have the greatest impact on safety. In this work, we conduct a study of new regulations and other reactions (such as recalls) to fatal accidents in several different modes of transportation implemented from 2002 to 2009. We find that in the safest modes of commercial aviation and bus transport, the amount of spending on new regulations is high in relation to the number of fatalities compared to the regulatory attention received by less safe modes of general aviation and private automobiles. Additionally, we study two major fatal accident investigations from commercial aviation and two major automotive recalls associated with fatal accidents. We find differences in the cost per expected fatality prevented for these reactions, with the airline accident investigations being more cost effective. Overall, we observe trends in both the automotive and aviation sectors that suggest that public transportation receives more regulatory attention than private transport. We also observe that the types of safety remedies utilized, regulation versus investigation, have varying levels of effectiveness in different transport modes. We suggest that these differences are indicative of increased public demand for safety in modes where a third party may be held responsible, even for those not participating in the transportation. These findings have important implications for the transportation industry, policymakers, and for estimating the public demand for safety in new transport modes. © 2017 Society for Risk Analysis.

  12. Toward a federal/state/local partnership in hazardous materials transportation safety

    International Nuclear Information System (INIS)

    1982-09-01

    In recognition of the federal government's responsibility for initiating a national strategy for hazardous materials transportation safety, the Materials Transportation Bureau (MTB) prepared an internal strategy paper for creating a federal/state/local partnership in hazardous materials transportation safety in August 1981. The paper outlined the scope of the hazardous materials transportation problem and established MTB's approach for creating an intergovernmental partnership for its resolution. This paper represents an update and refinement of the original plan, and is designed to chart the direction of the emerging federal/state/local relationship. The cornerstone of the plan remains the establishment of a single national set of safety regulations. It is on achievement of this objective that MTB's plan for development of enforcement, training, and emergency response capabilities at all levels of government is based. Chapter I introduces the problem with a desription of the economic importance of hazardous materials and discusses its implications for public safety. Chapter II defines the appropriate role for each level of government in the areas of rulemaking, enforcement, emergency response, and education. Chapter III demonstrates the need for uniform national safety standards and describes the economic and safety benefits of this approach. Chapter IV contains a detailed description of MTB's program for developing a successful intergovernmental partnership in hazardous materials transportation safety

  13. Comparison between different regulations for transport of radioactive materials; Comparaison de differents reglements de transports des substances radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Pallier, Lucien

    1961-11-20

    This comparison is based on the study of several regulations and conventions: French regulations for transports (by rail, road, river, sea, air, and mail), international regulations applicable in France for transports (by rail, road, air, sea, and mail), the general regulation for transport of the International Atomic Energy Agency, and the convention on civil responsibility of the European Agency for Nuclear Energy. The author notices that IAEA regulation will probably prevail. He outlines the objectives and the necessity of regulations, identifies the risk factors (nature of radio-elements, physical condition of the material, type of packaging), discusses additional safety measures, outlines that risks must not be overestimated, and the importance of labelling, and then discusses the comparison of the different considered regulations. He addresses the determination of the risk associated with a transport, the issue of responsibility. The content of regulations is presented in several tables.

  14. The International Atomic Energy Agency (IAEA) standards and recommendations on radioactive waste and transport safety

    International Nuclear Information System (INIS)

    Warnecke, E.; Rawl, R.

    1996-01-01

    The International Atomic Energy Agency (IAEA) publishes standards and recommendations on all aspects of nuclear safety in its Safety Series, which includes radioactive waste management and transport of radioactive materials. Safety Series documents may be adopted by a State into its national legal framework. Most of the States used the IAEA transport regulations (Safety Series No. 6) as a basis for their national regulation. The two highest ranking documents of the Radioactive Waste Safety Standards (RADWASS) programme, the Safety Fundamentals and the Safety Standard on the national waste management system, have been published. Both provide impetus into the waste management safety convention, a legally binding document for signatory states, which is being drafted. The already existing Convention on Nuclear Safety covers the management of radioactive waste at land-based civil nuclear power plants. (author) 1 fig., 18 refs

  15. The amended regulations for the safe transport of radioactive materials in Japan

    International Nuclear Information System (INIS)

    Takemura, Yoshio

    1978-01-01

    To cope with the inadequacies of the laws and regulations including the Law Concerning Prevention of Radiation Injuries Due to Radioisotopes, Etc., the Amended Regulations for the Safe Transport of Radioactive Materials in Japan has been issued. It is based on the Regulations of IAEA for the Safe Transport of Radioactive Materials and the Technical Standards for the Transport of Radioactive Materials decided by the AEC of Japan. In the amended regulations, emphasis is placed on the safety design of transporting goods. They are classified in Types L, A and B according to shock resistance and fire resistance, and the quantities of radioisotopes allowed to be contained in respective types are specified. The following matters are described: basic ideas concerning the types of transporting goods, test standards for the goods, transport standards for the goods, and nondestructive test apparatuses in transport. (Mori, K.)

  16. Transportation Safety Excellence in Operations Through Improved Transportation Safety Document

    International Nuclear Information System (INIS)

    Dr. Michael A. Lehto; MAL

    2007-01-01

    A recent accomplishment of the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Nuclear Safety analysis group was to obtain DOE-ID approval for the inter-facility transfer of greater-than-Hazard-Category-3 quantity radioactive/fissionable waste in Department of Transportation (DOT) Type A drums at MFC. This accomplishment supported excellence in operations through safety analysis by better integrating nuclear safety requirements with waste requirements in the Transportation Safety Document (TSD); reducing container and transport costs; and making facility operations more efficient. The MFC TSD governs and controls the inter-facility transfer of greater-than-Hazard-Category-3 radioactive and/or fissionable materials in non-DOT approved containers. Previously, the TSD did not include the capability to transfer payloads of greater-than-Hazard-Category-3 radioactive and/or fissionable materials using DOT Type A drums. Previous practice was to package the waste materials to less-than-Hazard-Category-3 quantities when loading DOT Type A drums for transfer out of facilities to reduce facility waste accumulations. This practice allowed operations to proceed, but resulted in drums being loaded to less than the Waste Isolation Pilot Plant (WIPP) waste acceptance criteria (WAC) waste limits, which was not cost effective or operations friendly. An improved and revised safety analysis was used to gain DOE-ID approval for adding this container configuration to the MFC TSD safety basis. In the process of obtaining approval of the revised safety basis, safety analysis practices were used effectively to directly support excellence in operations. Several factors contributed to the success of MFC's effort to obtain approval for the use of DOT Type A drums, including two practices that could help in future safety basis changes at other facilities. (1) The process of incorporating the DOT Type A drums into the TSD at MFC helped to better integrate nuclear safety

  17. Regulations for the safe transport of radioactive material, 2005 edition. Safety requirements

    International Nuclear Information System (INIS)

    2005-01-01

    This publication includes amendments to the 1996 Edition (As Amended 2003) arising from the second cycle of the biennial review and revision process, as agreed by the Transport Safety Standards Committee (TRANSSC) at its ninth meeting in March 2004, as endorsed by the Commission on Safety Standards at its meeting in June 2004 and as approved by the IAEA Board of Governors in November 2004. Although this publication is identified as a new edition, there are no changes that affect the administrative and approval requirements in Section VIII. The fields covered are General Provisions (radiation protection; emergency response; quality assurance; compliance assurance; non-compliance; special arrangement and training); Activity Limits and Materials Restrictions, Requirement and Controls for Transport , Requirements for Radioactive Materials and for Packagings and Packages, Test Procedures, Approval and Administrative Requirements

  18. International antiterrorist conventions concerning the safety of air transport

    Directory of Open Access Journals (Sweden)

    Jacek BARCIK

    2008-01-01

    Full Text Available In this article the international law regulations are presented concerning the civilian safety of the air transport. The history concerning air terrorism and international antiterrorist conventions was described in detail, involving The Chicago Convention, The Tokyo Convention, The Hague Convention and Montreal Convention.

  19. Appraisal for Japan of the safety of transport of radioactive material. Provision for the application of the IAEA safety standards

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA's Statute authorizes it to provide for the application of its standards at the request of any State. The objective of a TranSAS appraisal is to assist any requesting State to achieve a high level of safety in the transport of radioactive material by reviewing its implementation of the Transport Regulations and by making recommendations for improvement where appropriate.The IAEA discharges this statutory function through a number of mechanisms, including rendering independent peer review appraisal services to determine the status of compliance with its standards. The appraisal for Japan in December 2005 on the safety of the transport of radioactive material is the seventh TranSAS mission since the inception of the service. This report presents its findings. The TranSAS appraisal team completed a comprehensive appraisal of the implementation of the Transport Regulations in Japan. The cooperation of the authorities in Japan, and of all those who participated in the discussions, was excellent and contributed to the success of the appraisal. The comprehensive legal framework, with responsibilities identified in considerable detail and with clear lines of authority to minimize overlap of responsibilities, provides a sound basis for the implementation of the Transport Regulations. Generally, the Transport Regulations are implemented in accordance with IAEA requirements. Some areas for possible improvement have been identified. These areas relate mainly to reduction of regulations, quality management systems, training, compliance assurance and lessening the administrative burden for incorporating amendments to the IMDG Code. The findings include a considerable number of good practices, in particular in the area of maritime transport

  20. Fostering member state implementation of the IAEA's transport regulations

    Energy Technology Data Exchange (ETDEWEB)

    Brittinger, M.T.M.; Wangler, M.E. [International Atomic Energy Agency, Vienna (Austria)

    2004-07-01

    Based on a 1959 mandate from the United Nations Economic and Social Council, international safety requirements are embodied in the ''Regulations for the Safe Transport of Radioactive Material'' that were first published by the International Atomic Energy Agency in 1961 and revised in 1967, 1973, 1985 and 1996 to keep them abreast of scientific and technical developments. The requirements are incorporated into the regulatory documents of the International Civil Aviation Organization for air transport, and the International Maritime Organization for marine transport. As the requirements of the latter documents are legally-binding for the member states of the corresponding organizations, the IAEA safety requirements thus also become mandatory in those countries. The same situation applies for the surface modes in Europe, by means of the regulatory documents of the European Community for rail, road and inland waterways. Nevertheless, the IAEA has not relaxed its efforts to ensure that its Transport Regulations stay abreast of scientific and technical developments; on the contrary, it has been undertaking a regular and vigorous review of its safety requirements, and continues to do so with the assistance of Member States and relevant international organizations. Beyond providing the regulatory basis for the safe transport of radioactive material, however, the IAEA also offers a work programme under which it assists Member States in complying with the regulatory requirements. This assistance comes in the form of providing training on the safety requirements, and publishing documents that facilitate the exchange of information.

  1. Manpower analysis in transportation safety. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.S.; Bowden, H.M.; Colford, C.A.; DeFilipps, P.J.; Dennis, J.D.; Ehlert, A.K.; Popkin, H.A.; Schrader, G.F.; Smith, Q.N.

    1977-05-01

    The project described provides a manpower review of national, state and local needs for safety skills, and projects future manning levels for transportation safety personnel in both the public and private sectors. Survey information revealed that there are currently approximately 121,000 persons employed directly in transportation safety occupations within the air carrier, highway and traffic safety, motor carrier, pipeline, rail carrier, and marine carrier transportation industry groups. The projected need for 1980 is over 145,000 of which over 80 percent will be in highway safety. An analysis of transportation tasks is included, and shows ten general categories about which the majority of safety activities are focused. A skills analysis shows a generally high level of educational background and several years of experience are required for most transportation safety jobs. An overall review of safety programs in the transportation industry is included, together with chapters on the individual transportation modes.

  2. Safety in the Transport Sector

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2012-01-01

    In EU the transport sector has an incident rate of accidents at work at 40 pr 1000 employees. The Danish insurance company CODAN has insured a big part of this sector concerning transport of gods on shore. The purpose of the project is to document the safety problems in the sector and to develop...... a strategy for a preventive intervention in transport enterprises. The results will in the end be included in a new strategy for the insurance company and the transport sectores organization towards a better safety performance. The safety problems for the employees are the activities carried out by loading......, unloading or work with transport equipment carried out at many different work places. The main safety problems are falls, heavy lifting, poor ergonomic working conditions, hits or collisions with gods, equipments or falling objects, the traffic risk situations, work with animals and finally the risk...

  3. Regulation of Transportation of Radioactive Material in Indonesia

    International Nuclear Information System (INIS)

    Nirwono, Muttaqin Margo; Choi, Kwang Sik

    2011-01-01

    1.1. Background Indonesia is a biggest archipelago country with 17,508 islands in 33 provinces. In transportation Indonesia has large number of airports, railways, roadways, waterways, and merchant marines. Since nuclear and radiation utilizations are expanding on whole country, the mobilization of these is usually placed outside of controlled facilities, in the public domain, and often entails movement between countries. The Indonesian Nuclear Energy Regulatory Agency (BAPETEN) is responsible for supervision and also authorization of the transport of radioactive material (TRM). TRM is the specific movement of a radioactive material consignment from origin to destination by public transportation (road or rail, water and air). This study aims to determine whether national regulation is harmonized with international practice in ensuring safety and security of TRM. The finding of this study will provide recommendation for enhancement of regulation on TRM. 1.2. Regulation of TRM in Indonesia Government Regulation (GR) No. 26, 2002 on the Safe Transport of Radioactive Material is implemented pursuant to Act 10, 1997 on Nuclear Energy. This GR was repealed GR 13, 1975 on TRM. The GR 26 consist of 16 chapters and 39 articles, included licensing: authority and responsibilities: packaging: radiation protection programme; training: quality assurance programme: type and activity limit of radioactive materials: radioactive materials with other dangerous properties: emergency preparedness: administrative sanction: and penal provisions. Principally, this GR adopted IAEA-TS-R-1, 'Regulations for the Safe Transport of Radioactive Material', 1996's Edition

  4. Structural and Thermal Safety Analysis Report for the Type B Radioactive Waste Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Seo, K. S.; Lee, J. C.; Bang, K. S

    2007-09-15

    We carried out structural safety evaluation for the type B radioactive waste transport package. Requirements for type B packages according to the related regulations such as IAEA Safety Standard Series No. TS-R-1, Korea Most Act. 2001-23 and US 10 CFR Part 71 were evaluated. General requirements for packages such as those for a lifting attachment, a tie-down attachment and pressure condition were considered. For the type B radioactive waste transport package, the structural, thermal and containment analyses were carried out under the normal transport conditions. Also the safety analysis were conducted under the accidental transport conditions. The 9 m drop test, 1 m puncture test, fire test and water immersion test under the accidental transport conditions were consecutively done. The type B radioactive waste transport packages were maintained the structural and thermal integrities.

  5. Study Regarding the Provision of Security and Safety in the International Maritime Transport

    Directory of Open Access Journals (Sweden)

    Liliana POPA

    2011-11-01

    Full Text Available The security in transport has become a crucial issue internationally, especially after the terrorist attacks of September 2001 and even more recently. Maritime, along with aviation, is considered a sensitive and of high-risk transport sector, in terms of security. Moreover, topics related to safety in maritime transport have become very important over the past decades mostly because of the numerous maritime accidents putting in danger both human lives and the environment. Taking into account the global dimension of maritime transport along with the fact that the participation of Asia in the world trade during the past decade has been substantial, the current maritime safety and security practices apply for all areas. This can only be achieved through the application of high standards and regulations setting the prerequisites for safe and secure navigation. In this direction, a significant number of Directives, Regulations and Initiatives on maritime safety and security have been introduced by international and European organizations, such as the International Maritime Organization, (I.M.O., the International Labour Organization (I.L.O. and the European Union (EU. In the framework of this analysis, the levels of compliance of European and Asian countries, regarding the international legislation, is examined while special emphasis is given on the problems and difficulties encountered during the implementation processes. Furthermore, a number of recommendations aiming to enhance the existing levels of safety and security in maritime transport in both examined area is provided.

  6. 41 CFR 50-204.75 - Transportation safety.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Transportation safety. 50... Transportation Safety § 50-204.75 Transportation safety. Any requirements of the U.S. Department of Transportation under 49 CFR Parts 171-179 and Parts 390-397 and 14 CFR Part 103 shall be applied to...

  7. Regulations for the safe transport of radioactive material. 1996 ed.

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is the revised version of the IAEA's Regulations for the Safe Transport of Radioactive Materials as approved by the Board of Governors in September 1996. It establishes standards of safety which provide an acceptable level of control of the radiation, criticality and thermal hazards to persons, property and the environment that are associated with the transport of radioactive material. After an introductory section, the publication is structured as follows: Section 2 defines the terms that are required for the purposes of the Regulations; Section 3 provides general provisions; Section 4 gives the activity limits and material restrictions used throughout these Regulations; Section 5 provides requirements and controls for transport; Section 6 provides requirements for radioactive materials and for packagings and packages; Section 7 provides requirements for test procedures; Section 8 provides approval and administrative requirements. The requirements for the transport of specified types of consignments are included in an abbreviated form as Schedules. Refs, figs, tabs

  8. Dossier: transport of radioactive materials; Dossier: le transport des matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Mignon, H. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Direction du Cycle du Combustible; Niel, J.Ch. [CEA Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Canton, H. [CEA Cesta, 33 - Bordeaux (France); Brachet, Y. [Transnucleaire, 75 - Paris (France); Turquet de Beauregard, G.; Mauny, G. [CIS bio international, France (France); Robine, F.; Plantet, F. [Prefecture de la Moselle (France); Pestel Lefevre, O. [Ministere de l`Equipement, des transports et du logement, (France); Hennenhofer, G. [BMU, Ministere de l`environnement, de la protection de la nature et de la surete des reacteurs (Germany); Bonnemains, J. [Association Robin des Bois (France)

    1997-12-01

    This dossier is entirely devoted to the transportation of radioactive and fissile materials of civil use. It comprises 9 papers dealing with: the organization of the control of the radioactive materials transport safety (safety and security aspects, safety regulations, safety analysis and inspection, emergency plans, public information), the technical aspects of the regulation concerning the transport of radioactive materials (elaboration of regulations and IAEA recommendations, risk assessments, defense in depth philosophy and containers, future IAEA recommendations, expertise-research interaction), the qualification of containers (regulations, test facilities), the Transnucleaire company (presentation, activity, containers for spent fuels), the packages of radioactive sources for medical use (flux, qualification, safety and transport), an example of accident during radioactive materials transportation: the Apach train derailment (February 4, 1997), the sea transport of radioactive materials (international maritime organization (OMI), international maritime dangerous goods (IMDG) code, irradiated nuclear fuel (INF) safety rules), the transport of radioactive materials in Germany, and the point of view from an external observer. (J.S.)

  9. Nuclear safety regulations

    International Nuclear Information System (INIS)

    1998-01-01

    The Departmental Rules and The Safety Guides were issued by the NNSA in 1998. The NNSA performed the activities of propagation and implementation of nuclear safety regulations at QTNPP in order to improve the nuclear safety culture of operating organization and construct and contract organizations

  10. Regulations for the safe transport of radioactive materials. 1973 revised edition (as amended).

    International Nuclear Information System (INIS)

    1979-01-01

    On the basis of a comprehensive review carried out by a panel of experts, a revised version of the International Atomic Energy Agency's Regulations for the Safe Transport of Radioactive Materials was approved by the Board of Governors in September 1972 and published in April 1973 as Safety Series No.6 - 1973 Revised Edition. Minor amendments, together with a number of changes of detail were promulgated by the Director General in 1975 and 1977. In October 1978, the Standing Advisory Group on the Safe Transport of Radioactive Materials, established by the Director General in 1977, reviewed and recommended a small number of additional amendments. The recommendations of SAGSTRAM were subsequently accepted by the Director General. All these minor amendments and changes of detail are incorporated in the present text of the Regulations. The purpose of these Regulations is to establish standards of safety which provide an acceptable level of control of the radiation hazards to persons, property and the environment that are associated with the transport of radioactive material. They apply to the transport by land, water or air, including transport on own account, of radioactive material other than that which is an integral part of the means of transport. Transport includes any operation incidental to the whole course of carriage, such as loading, unloading and storage in transit. The term includes both normal transport and that under accident conditions

  11. State of bus safety in the U.S. : summary of federal and state regulations.

    Science.gov (United States)

    2014-06-01

    This report provides a comprehensive overview of transit bus safety regulations and standards developed by all 50 states, as well as : information on how state departments of transportation (DOT) regulate the maintenance or operation of transit/parat...

  12. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (French Edition); Reglement de transport des matieres radioactives. Edition de 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    The IAEA's Statute authorizes the Agency to ''establish or adopt standards of safety for protection of health and minimization of danger to life and property'' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  13. Evaluation of safety margin of packaging for radioactive materials transport during a severe fire

    International Nuclear Information System (INIS)

    Gilles, P.; Ringot, C.; Warniez, P.; Grall, L.; Perrot, J.

    1986-06-01

    A high safety is obtained by International regulations on radioactive materials transport. It is obtained by packaging design adapted to the potential risk. An important accident to consider is fire for two reasons: the probability of fire occuring for time and temperature higher than conditions applied to type B packaging (800 deg C, 1/2 hr) is not negligible, particularly for air or maritime transport. Safety margins are studied by computation and experimental tests. This report presents results obtained for different types of packagings. Results show a large safety margin [fr

  14. General Approaches and Requirements on Safety and Security of Radioactive Materials Transport in Russian Federation

    International Nuclear Information System (INIS)

    Ershov, V.N.; Buchel'nikov, A.E.; Komarov, S.V.

    2016-01-01

    Development and implementation of safety and security requirements for transport of radioactive materials in the Russian Federation are addressed. At the outset it is worth noting that the transport safety requirements implemented are in full accordance with the IAEA's ''Regulations for the Safe Transport of Radioactive Material (2009 Edition)''. However, with respect to security requirements for radioactive material transport in some cases the Russian Federation requirements for nuclear material are more stringent compared to IAEA recommendations. The fundamental principles of safety and security of RM managements, recommended by IAEA documents (publications No. SF-1 and GOV/41/2001) are compared. Its correlation and differences concerning transport matters, the current level and the possibility of harmonization are analysed. In addition a reflection of the general approaches and concrete transport requirements is being evaluated. Problems of compliance assessment, including administrative and state control problems for safety and security provided at internal and international shipments are considered and compared. (author)

  15. Safety supervision on high-pressure gas regulations

    International Nuclear Information System (INIS)

    Lee, Won Il

    1991-01-01

    The first part lists the regulation on safety supervision of high-pressure gas, enforcement ordinance on high-pressure gas safety supervision and enforcement regulations about high-pressure gas safety supervision. The second part indicates safety regulations on liquefied petroleum gas and business, enforcement ordinance of safety on liquefied petroleum gas and business, enforcement regulation of safety supervision over liquefied petroleum gas and business. The third part lists regulation on gas business, enforcement ordinance and enforcement regulations on gas business. Each part has theory and explanation for questions.

  16. 49 CFR 385.107 - The safety audit.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false The safety audit. 385.107 Section 385.107 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS SAFETY FITNESS PROCEDURES Safety Monitoring System for Mexico-Domicile...

  17. Development of French technical safety regulations: safety fundamental rules

    International Nuclear Information System (INIS)

    Lebouleux, P.

    1982-09-01

    The technical regulation related to nuclear safety in France is made of a set of regulation texts, of a different nature, that define the requirements for the construction, commissioning and operations of nuclear facilities. Simultaneously, the safety authorities (Service Central de Surete des Installations Nucleaires: SCSIN) issue recommendations or guides which are not strictly speaking regulations in the juridical sense; they are called ''Regles Fondamentales de Surete'' (RFS). The RFS set up and detail the conditions, the respect of which is deemed to be complying with the French regulation pratice, for the subject to which they relate. Their purpose is to make known rules judged acceptable by safety authorities, thus making the safety review easier. The RFS program is described. A RFS -or a letter- can also give the result of the examination of the constructor and operator code (RCC) by safety authorities

  18. Regulations for the safe transport of radioactive material. 1985 ed. (As amended 1990)

    International Nuclear Information System (INIS)

    1990-01-01

    This publication is an updated version of the 1985 Edition of the Transport Regulations and replaces all previous publications of IAEA Safety Series No. 6. It includes the Supplements 1986 and 1988 to the Regulations, the minor changes adopted by the Review Panel meeting which convened in Vienna, 10-14 July 1989, and also the changes of detail which survived the ''ninety day rule'' procedure which authorizes the Director General of the IAEA to promulgate such changes after giving Member States not less than ninety days notice and taking into account any comments they make. Since this publication is an updated version of the 1985 Edition of the Transport Regulations, the old IAEA Safety Series style is maintained for the convenience of the user, although the old style has now generally been superseded by a new one. It should be noted that subsequent editions of the Regulations will be published in the new style.

  19. Development of French technical safety regulations: safety fundamental rules

    International Nuclear Information System (INIS)

    Lebouleux, P.

    1983-01-01

    The technical regulation related to nuclear safety in France is made of a set of regulation texts, of a different nature, that define the requirements for the construction, commissioning and operating of nuclear facilities. Simultaneously, the safety authorities (Service Central de Surete des Installations Nucleaires: SCSIN) issue recommendations or guides which are not strictly speaking regulations in the juridicial sense; they are called Regles Fondamentales de Surete (RFS). The RFS set up and detail the conditions, the respect of which is deemed to be complying with the French regulation practice, for the subject to which they relate. Their purpose is to make known rules judged acceptable by safety authorities, thus making the safety review easier. The RFS program is described. A RFS - or a letter - can also give the result of the examination of the constructor and operator codes (RCC) by safety authorities

  20. Effect of the proposed adoption of the International Atomic Energy Agency regulations, 1985 revision, on the U.S. radioactive waste transportation industry

    International Nuclear Information System (INIS)

    Benda, G.A.; Lewis, M.S.; Allen, J.H.

    1989-01-01

    The Nuclear Regulatory Commission (NRC) is proposing changes to 10CFR 71 transportation regulations to achieve compatibility with the 1985 IAEA regulations. The intent of these changes is to be more compatible with the international standard on shipping containers, package requirements, and performance criteria. The NRC has, however, modified part of its regulations to restrict the packaging of LSA by limiting the total activity rather than adopting the IAEA standard. This paper addresses how the proposed regulations will affect the low-level radioactive waste transportation industry. It describes the impacts on the transportation industry in three major areas-IAEA consistency, economic impact, and risk assessment. Available transport data from the Barnwell disposal site was used in the analysis of the proposed changes. The impacts addressed include possible increased radiation exposures, transportation risks and liability, transportation and processing costs, and waste disposal costs resulting in little health and safety benefit. Although the health and safety benefits of any change to the current regulations are minimal, suggested alternatives to the proposed regulations are discussed that more closely conform with the international standards while still maintaining health and safety

  1. The impact of the new IAEA transport regulations for the safe transport of radioactive materials on package design and transport

    International Nuclear Information System (INIS)

    Schneider, K.

    1989-01-01

    In April 1985 the 1985 Edition of the IAEA Safety Series No. 6, Regulations for the Safe Transport of Radioactive Materials, was issued. This is a completely revised edition which shall come into force internationally in the late eighties. This edition will supersede the 1973 (As Amended, 1979) edition. A paragraph by paragraph comparison is carried through, followed by a consideration on the impact on general requirements for packaging and transport. A detailed estimate on packaging design and transport is performed for typical products of the nuclear fuel cycle. The major practical consequences likely to be encountered are presented

  2. Brief review: sleep health and safety for transportation workers

    Directory of Open Access Journals (Sweden)

    Quan SF

    2015-03-01

    Full Text Available Accidents related to sleepiness related fatigue are an important concern in transportation related industries. This brief review outlines the public safety concerns with sleepiness related fatigue in the railroad, aviation and motor vehicle transportation fields. In addition, the common causes of sleepiness related fatigue, and impact on operators and their families are highlighted. It is suggested that in addition to greater recognition and changes in duty hour regulations, there should be a greater emphasis on the education of operators on the importance of sleep and circadian factors in causing fatigue, as well as strategies to mitigate their impact.

  3. Nuclear regulation and safety

    International Nuclear Information System (INIS)

    Hendrie, J.M.

    1982-01-01

    Nuclear regulation and safety are discussed from the standpoint of a hypothetical country that is in the process of introducing a nuclear power industry and setting up a regulatory system. The national policy is assumed to be in favor of nuclear power. The regulators will have responsibility for economic, reliable electric production as well as for safety. Reactor safety is divided into three parts: shut it down, keep it covered, take out the afterheat. Emergency plans also have to be provided. Ways of keeping the core covered with water are discussed

  4. Dossier: transport of radioactive materials

    International Nuclear Information System (INIS)

    Mignon, H.; Brachet, Y.; Turquet de Beauregard, G.; Mauny, G.; Robine, F.; Plantet, F.; Pestel Lefevre, O.; Hennenhofer, G.; Bonnemains, J.

    1997-01-01

    This dossier is entirely devoted to the transportation of radioactive and fissile materials of civil use. It comprises 9 papers dealing with: the organization of the control of the radioactive materials transport safety (safety and security aspects, safety regulations, safety analysis and inspection, emergency plans, public information), the technical aspects of the regulation concerning the transport of radioactive materials (elaboration of regulations and IAEA recommendations, risk assessments, defense in depth philosophy and containers, future IAEA recommendations, expertise-research interaction), the qualification of containers (regulations, test facilities), the Transnucleaire company (presentation, activity, containers for spent fuels), the packages of radioactive sources for medical use (flux, qualification, safety and transport), an example of accident during radioactive materials transportation: the Apach train derailment (February 4, 1997), the sea transport of radioactive materials (international maritime organization (OMI), international maritime dangerous goods (IMDG) code, irradiated nuclear fuel (INF) safety rules), the transport of radioactive materials in Germany, and the point of view from an external observer. (J.S.)

  5. 48 CFR 1252.217-80 - Department of Labor Safety and Health Regulations for Ship Repairing.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Department of Labor Safety and Health Regulations for Ship Repairing. 1252.217-80 Section 1252.217-80 Federal Acquisition Regulations System DEPARTMENT OF TRANSPORTATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 1252.217-80...

  6. Regulations for the Safe Transport of Radioactive Materials. 1964 Revised Edition

    International Nuclear Information System (INIS)

    1965-01-01

    In 1961 the International Atomic Energy Agency, within the framework of its statutory functions and in accordance with recommendations made by its Preparatory Commission and by the Economic and Social Council of the United Nations, published safety regulations which could be applied to the national and international transport of radio active materials by all means of transport. At the same time, the Director General of the Agency indicated that these regulations would be revised at appropriate intervals in consultation with Member States and the organizations concerned and invited suggestions for their improvement in the light of experience and increased knowledge. In preparing the revised regulations presented in this document, the Agency has received considerable support from its Member States and the organizations concerned, which have made extensive studies and suggestions in order to assist in its work. The Agency also convened several meetings of experts from its Member States and of representatives of a number of international organizations, and has been represented in several meetings convened by those organizations. In publishing the revised transport regulations which result from that co-ordinated effort, the Agency aims at proposing a lasting framework of principles and rules, complemented by appropriate technical data, acceptable for the safe transport of radio active materials by air, land and water. In particular, the developments which have been introduced concerning the packaging requirements, the nuclear safety criteria for the transport of fissile materials and the methods for testing packages should facilitate the international acceptance of packages by the authorities concerned. The Board of Governors of the Agency approved the revised regulations in June and September 1964. It authorized the Director General to apply them, as appropriate, to Agency operations and Agency assisted operations and to recommend to Member States and to the

  7. New Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.; Cizmek, A.

    2008-01-01

    Beside new Ordinance on the control of nuclear material and special equipment (Official Gazette No. 15/08), from 2006 State Office for Nuclear Safety (SONS) adopted Ordinance on performing nuclear activities (Official Gazette No. 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (Official Gazette No. 74/06), based on Nuclear Safety Act (Official Gazette No. 173/03). The Ordinance on performing nuclear activities regulates the procedure of announcing the intention to perform nuclear activity, submitting an application for the issue of a license to perform nuclear activity, and the procedure for adoption a decision on issuing a nuclear activity license. The Ordinance also regulates the contents of the application form for the announcement of the intention to perform nuclear activity, as well as of the application for the issue of a nuclear activity license and the method of keeping a nuclear activity register. The Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety regulates these mentioned conditions, whereas compliance is established by a decision passed by the SONS. Special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety are organizational, technical, technological conditions and established system of quality assurance. In 2007, SONS finalized the text of new Ordinance on nuclear safety and protection conditions for location, design, construction, operation and decommissioning of facility in which nuclear activity is performed. This Ordinance regulates nuclear safety and protection conditions for location, design, construction, operation and decommissioning of facility in which nuclear activity is performed. This Ordinance defines facilities in which nuclear activity is

  8. Regulations for the transport of radioactive material in Italy: the role of the Italian Competent Authority (ANPA)

    International Nuclear Information System (INIS)

    Orsini, A.; Trivelloni, S.

    1995-01-01

    In Italy four Ministries, Industry, Transport, Marine Merchandise and Interior, have the legal responsibility to issue and apply the transport safety regulations for radioactive material. ANPA, the National Agency for Environmental Protection, has the technical duty to issue the approval certificates and to support the various Ministries in authorizing carriers for all modes of transport, in updating the regulations and advising in the case of emergency conditions. ANPA is monitoring the quantity of radioactive material transported in Italy, the radiation doses of workers and public, and verifying the implementation of transport regulations through inspections of the carriers and during storage in transit and handling. (Author)

  9. Regulations for the transport of radioactive material in Italy: the role of the Italian Competent Authority (ANPA)

    International Nuclear Information System (INIS)

    Orsini, A.; Trivelloni, S.

    1995-01-01

    In Italy four Ministries, Industry, Transport, Marine Merchandise and Interior, have the legal responsibility to issue and apply the transport safety regulations for radioactive material. ANPA, the National Agency for Environmental Protection, has the technical duty to issue the approval certificates and to support the various Ministries in authorising carriers for all modes of transport, in updating the regulations and advising in the case of emergency conditions. ANPA is monitoring the quantity of radioactive material transported in Italy, the radiation doses of workers and public, and verifying the implementation of transport regulations through inspection of the carriers and during storage in transit and handling. (author)

  10. Transport of radioactive material in Sudan practice and regulations

    International Nuclear Information System (INIS)

    Abdalla, M. K. E.

    2010-12-01

    In the last couple of decades there has been an impressive increase in applications of radioactive material. Such an extensive and widely spread usage of radioactive materials demands safe transportation of radioactive material from the production site to the application location, as well as quick and effective response in a case of an unexpected transportation event according to Sudan Atomic Energy Commission (SAEC) regulation. The thesis described the local practice for transport of radioactive material as compared to the international standards for radiation protection, and also discussed the emergency procedures that must be follow in case of accident during transport of radioactive material. Furthermore, the objective of this study was also to set proposals for how to cope in the event of a radiological accident. The study methods included survey of current literature on safe transport of radioactive material, survey of national regulations on the subjects in additional to case studies aimed at investigating the practical issues pertinent to transport of radioactive materials in Sudan. A comprehensive review was presented on how to classification of radioactive packages and general requirement for all packaging and packages according to international standard. transport of number of radioactive sources from Khartoum airport to the field was evaluated with regard transport index, category of source, type of package, dose rate around the source, time to destination and means of transport of doses to public, worker are be made. All results were within the limit specified in the national as well as international regulation. The study has addressed for the first time the practice of transport of radioactive material in Sudan. It is anticipated that the results will encourage national organizational and professional bodies to enhance radiation protection and safety of radioactive sources. (Author)

  11. Greater-than-Class C low-level radioactive waste transportation regulations and requirements study

    International Nuclear Information System (INIS)

    Tyacke, M.; Schmitt, R.

    1993-07-01

    The purpose of this report is to identify the regulations and requirements for transporting greater-than-Class C (GTCC) low-level radioactive waste (LLW) and to identify planning activities that need to be accomplished in preparation for transporting GTCC LLW. The regulations and requirements for transporting hazardous materials, of which GTCC LLW is included, are complex and include several Federal agencies, state and local governments, and Indian tribes. This report is divided into five sections and three appendices. Section 1 introduces the report. Section 2 identifies and discusses the transportation regulations and requirements. The regulations and requirements are divided into Federal, state, local government, and Indian tribes subsections. This report does not identify the regulations or requirements of specific state, local government, and Indian tribes, since the storage, treatment, and disposal facility locations and transportation routes have not been specifically identified. Section 3 identifies the planning needed to ensure that all transportation activities are in compliance with the regulations and requirements. It is divided into (a) transportation packaging; (b) transportation operations; (c) system safety and risk analysis, (d) route selection; (e) emergency preparedness and response; and (f) safeguards and security. This section does not provide actual planning since the details of the Department of Energy (DOE) GTCC LLW Program have not been finalized, e.g., waste characterization and quantity, storage, treatment and disposal facility locations, and acceptance criteria. Sections 4 and 5 provide conclusions and referenced documents, respectively

  12. Statement to the International Conference on the Safety of Transport of Radioactive Material. Vienna, 7 July 2003

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2003-01-01

    The transport of radioactive material has been subject to regulation for many decades, and the International Atomic Energy Agency, working with its Member States and all relevant international governmental organizations, has played a key role in fostering the establishment of those regulations and providing for their application. First published in 1961, the IAEA's Regulations for the Safe Transport of Radioactive Material are periodically revised to incorporate technical advances, operational experience and the latest radiation protection principles. These Transport Regulations address all categories of radioactive material. Although recommendatory in nature, they constitute the basis for national regulations in many Member States, and generally become mandatory through the legally binding instruments of the relevant modal bodies, such as the International Maritime Organization or the International Civil Aviation Organization. In some cases, these instruments take the form of universal conventions, such as the Convention on International Civil Aviation or the International Convention for the Safety of Life at Sea; in other cases, they take the form of regional agreements, such as the European Agreement Concerning the International Carriage of Dangerous Goods by Road. Overall, there are 21 universal instruments and 22 regional instruments in force that apply, directly or indirectly, to the safe transport of radioactive material. This current worldwide system of regulatory control, while not without shortcomings, has achieved an excellent safety record. Over several decades of transporting radioactive material, there has not been an in-transit accident with serious human health, economic or environmental consequences attributable to the radioactive nature of the transported goods. In recognition of this fact, the United Nations Committee on the Effects of Atomic Radiation has noted these transport activities as having no radiological impact. This excellent record

  13. Transport of radioactive substances; Der Transport radioaktiver Stoffe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-12-15

    The report on the transport of radioactive substances covers the following topics: facts on radioactive materials transport, safety of the transport of radioactive substances, legal regulations and guidelines: a multiform but consistent system, transport of nuclear fuels, safety during the transport of nuclear fuel, future transport of spent fuel elements and high-level radioactive wastes in Germany.

  14. Implementation of the 1996 edition of the IAEA regulations for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    Rawl, R.R.; Kervella, O.

    1998-01-01

    The International Atomic Energy Agency (IAEA) completed a 10 year and revision of its 'Regulations for the Safe Transport of Radioactive Material' with approval of the amendments by its Board of Governors in September 1996. The revised edition contains some important changes in the regulations, including: type C package requirements; provisions for low dispersible material; uranium hexafluoride packaging; exemption value specifications; operational requirements, including the creation of a criticality safety index and new proper shipping names/UN numbers. The 1996 edition of the IAEA regulations has been published and corresponding revisions now being considered by the international transport safety organizations and Member States. In particular, the United Nations Committee of Experts on the Transport of Dangerous Goods, International Civil Aviation Organization and International Maritime Organization and preparing revisions to take into account the revised Class 7 requirements. An effective date of 1 January 2001 has been recommended so that international and domestic requirements might come into force simultaneously, thereby avoiding disruptive out-of-phase implementation. (authors)

  15. Relevant documents to IAEA regulations for the safe transport of radioactive materials

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.; Sabek, M.G.; Gomma, M.

    1998-01-01

    IAEA regulations for the safe transport of radioactive materials provide standards for insuring a high level of safety of people, property, and environment against radiation, contamination, and criticality hazards as well as thermal effects associated with the transport of radioactive materials. IAEA routinely publishes technical reports which are relevant to radioactive material transportation such as INTERTRAN, directory of transport packaging test facilities, and others. A case study was performed to assess the impact of transporting radioactive materials through the suez canal using the two computer codes namely INTERTRAN and RADTRAN-4 which are part of IAEA technical documents. A comparison of the results of these two codes is given

  16. The IRSN experience feedback for the transport package design safety appraisals

    International Nuclear Information System (INIS)

    Sert, G.

    2007-01-01

    The activity of transportation of radioactive materials is in constant evolution; air transport of radio elements for medical use is growing rapidly as well as transport of instruments equipped with radioactive sources for inspections of buildings (controls of presence of lead in paintings) and in industry (non destructive examination of welding by gammagraphy, controls of density on building sites). Transports associated with the recycling of plutonium for the production of electricity by nuclear energy are now accomplished in routine. Globally, 900.000 packages are shipped each year in France; among them, approximately 100.000 packages belong to the category for which design approval is required. To maintain a high level of safety for this activity by limiting the probability of occurrence, the severity and consequences of the incidents and accidents, strict rules are implemented by users under the control of the Safety Authority According to the systematic approach of defence in depth, which is defined by the three principles of safety in design, of operational reliability and of effectiveness of emergency response, the robustness of the design of the package is of primary importance. It is based on regulatory requirements relating to the functions of safety (containment of radioactivity, protection against radiation and prevention of the risks of criticality) that must be ensured by the package in conditions of transport as well as in accident conditions. These rules and the way of applying them evolve with time. Indeed, on the one hand the regulation is reexamined periodically; on the other hand, the technical knowledge on the behaviour of the packages subject to the above mentioned conditions and the means of evaluation of this behaviour progress permanently

  17. GENERAL CONSIDERATIONS ON REGULATIONS AND SAFETY REQUIREMENTS FOR QUADRICYCLES

    Directory of Open Access Journals (Sweden)

    Ana Pavlovic

    2015-12-01

    Full Text Available In recent years, a new class of compact vehicles has been emerging and wide-spreading all around Europe: the quadricycle. These four-wheeled motor vehicles, originally derived from motorcycles, are a small and fuel-efficient mean of transportation used in rural or urban areas as an alternative to motorbikes or city cars. In some countries, they are also endorsed by local authorities and institutions which support small and environmentally-friendly vehicles. In this paper, several general considerations on quadricycles will be provided including the vehicle classification, evolution of regulations (as homologation, driver licence, emissions, etc, technical characteristics, safety requirements, most relevant investigations, and other additional useful information (e.g. references, links. It represents an important and actual topic of investigation for designers and manufacturers considering that the new EU regulation on the approval and market surveillance of quadricycles will soon enter in force providing conclusive requirements for functional safety environmental protection of these promising vehicles.

  18. Safety criteria for spent-fuel transport. Final report

    International Nuclear Information System (INIS)

    Goldmann, K.; Gekler, W.C.

    1986-10-01

    The focus of this study is on the question, ''Do current regulations provide reasonable assurance of safety for a transport scenario of spent fuel, as presently anticipated by the Department of Energy, under the Nuclear Waste Policy Act.'' This question has been addressed by developing a methodology for identifying the expected frequency of Accidents Which Exceed Regulatory Conditions in Severity (AWERCS) for spent fuel transport casks and then assessing the health effects resulting from that frequency. By applying the methodology to an illustrative case of road transports, it was found that the accidental release of radioactive material from impact AWERCS would make negligible contributions to health effects associated with spent fuel transports by road. It is also concluded that the current regulatory drop test requirements in 10 CFR 71.51 which form the basis for cask design and were used to establish AWERCS screening criteria for this study are adequate, and that no basis was found to conclude that cask performance under expected road accident conditions represents an undue risk to the public

  19. 77 FR 48460 - Transportation of Household Goods in Interstate Commerce; Consumer Protection Regulations

    Science.gov (United States)

    2012-08-14

    ..., direct final rule concerning household goods consumer protection. The direct final rule amended the... No. FMCSA-2012-0119] RIN 2126-AB52 Transportation of Household Goods in Interstate Commerce; Consumer Protection Regulations AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Direct final...

  20. Safety culture in transport

    International Nuclear Information System (INIS)

    Decobert, V.

    1998-01-01

    'Safety culture' is a wording that appeared first in 1986, during the evaluation of what happened during the Tchernobyl accident. Safety culture is defined in the IAEA 75-INSAG-4 document as the characteristics and attitude which, in organizations and in men behaviours, make that questions related to safety of nuclear power plants benefits, in priority, of the attention that they need in function of their importance. The INSAG-4 document identifies three different elements necessary to the development of the safety culture: commitment of the policy makers, commitment of the managers of the industry, and commitment of individuals. This paper gives examples to show how safety culture is existing in the way Transnucleaire performs the activities in the field of transport of nuclear materials. (author)

  1. Exemption, exception and other criteria for transport criticality safety

    International Nuclear Information System (INIS)

    Mennerdahl, D.

    2004-01-01

    Many strange concepts, requirements and specifications related to criticality safety are present in the Regulations. Some earlier problems have been corrected but, going back to 1961 and the first edition of the Regulations, it seems as many changes have been to the worse. Fissile material was defined correctly as a material that could consist of or contain fissile nuclides. Materials consisting of pure fissile nuclides don't exist but are important in package designs. 238 Pu was included as a fissile nuclide only as an emergency, because there was no alternative, but this caused some people to think that all nuclides supporting criticality are fissile. Neutron interaction between different (non-identical) packages had to be evaluated, making the transport index or allowable number of packages a credible safety control. That is not true anymore. The 15 gram exception limit for fissile nuclides was combined with a transport mode limit, similar to but more restrictive than the current consignment limit. The confinement system was introduced to help with formulation of a single requirement for safety of the containment system but is becoming something very different. Controls before the first use of a packaging have become controls of the first use of a package, supporting multiple shipments of the same package. The lack of exemption limits for fissile material essentially makes all radioactive materials fissile (all radioactive material contains some fissile atoms). Radioactive material seems to be defined without consideration of the criticality hazard of the material. LSA materials are defined with consideration of criticality, but only relates to quantities in fissile exceptions when other properties can be equally or more important. In July 2004, a number of proposals to IAEA have been submitted by Sweden to improve and expand the criticality safety control of the Regulations. Essential is the introduction of the fissionable nuclide and material concepts in

  2. Exemption, exception and other criteria for transport criticality safety

    Energy Technology Data Exchange (ETDEWEB)

    Mennerdahl, D. [E Mennerdahl Systems, Taeby (Sweden)

    2004-07-01

    Many strange concepts, requirements and specifications related to criticality safety are present in the Regulations. Some earlier problems have been corrected but, going back to 1961 and the first edition of the Regulations, it seems as many changes have been to the worse. Fissile material was defined correctly as a material that could consist of or contain fissile nuclides. Materials consisting of pure fissile nuclides don't exist but are important in package designs. {sup 238}Pu was included as a fissile nuclide only as an emergency, because there was no alternative, but this caused some people to think that all nuclides supporting criticality are fissile. Neutron interaction between different (non-identical) packages had to be evaluated, making the transport index or allowable number of packages a credible safety control. That is not true anymore. The 15 gram exception limit for fissile nuclides was combined with a transport mode limit, similar to but more restrictive than the current consignment limit. The confinement system was introduced to help with formulation of a single requirement for safety of the containment system but is becoming something very different. Controls before the first use of a packaging have become controls of the first use of a package, supporting multiple shipments of the same package. The lack of exemption limits for fissile material essentially makes all radioactive materials fissile (all radioactive material contains some fissile atoms). Radioactive material seems to be defined without consideration of the criticality hazard of the material. LSA materials are defined with consideration of criticality, but only relates to quantities in fissile exceptions when other properties can be equally or more important. In July 2004, a number of proposals to IAEA have been submitted by Sweden to improve and expand the criticality safety control of the Regulations. Essential is the introduction of the fissionable nuclide and material

  3. Knowledge Management for Safety Regulators: Cooperation to Achieve a Much Needed Product

    International Nuclear Information System (INIS)

    Mallick, S.

    2016-01-01

    Full text: Knowledge management (KM) has been identified by a number of IAEA documents as one of the key factors that can contribute to the safe and efficient operation of nuclear facilities in Member States. The IAEA Strategic Approaches to Education and Training in Nuclear and Radiation, Transport and Waste Safety identify and underline KM as an important line of action for effective national and organizational strategies in education and training. The capacity building “umbrella concept”, developed within the Action Plan in Nuclear Safety, also recognizes KM as one of the main four pillars (Education and Training, Human Resource Development, Knowledge Management and Knowledge Networks) of capacity building. Within existing IAEA publications, there is currently no specific practical guidance on how to develop and implement KM programmes for regulators. As such, in 2014, the IAEA Steering Committee on Regulatory Capacity Building and Knowledge Management requested the IAEA to develop a publication providing such practical guidance. The objective of the publication is to provide practical guidance to Member States on how to plan, establish and maintain an effective safety KM programme for regulators of facilities and activities. The report will identify benefits and uses of KM by regulators and will describe how a regulator could use KM in support of its functions. This presentation will provide an overview of the Knowledge Management for Safety Regulators document while highlighting the cross-departmental cooperation (i.e., NS and NE) used in its development. Furthermore, this presentation will provide insight into the challenges currently being faced by safety regulators vis-à-vis KM programmes and present potential paths forward with respect to the definition of efficient and effective KM indicators. (author

  4. Boron transport in plants: co-ordinated regulation of transporters

    Science.gov (United States)

    Miwa, Kyoko; Fujiwara, Toru

    2010-01-01

    Background The essentiality of boron (B) for plant growth was established >85 years ago. In the last decade, it has been revealed that one of the physiological roles of B is cross-linking the pectic polysaccharide rhamnogalacturonan II in primary cell walls. Borate cross-linking of pectic networks serves both for physical strength of cell walls and for cell adhesion. On the other hand, high concentrations of B are toxic to plant growth. To avoid deficiency and toxicity problems, it is important for plants to maintain their tissue B concentrations within an optimum range by regulating transport processes. Boron transport was long believed to be a passive, unregulated process, but the identification of B transporters has suggested that plants sense and respond to the B conditions and regulate transporters to maintain B homeostasis. Scope Transporters responsible for efficient B uptake by roots, xylem loading and B distribution among leaves have been described. These transporters are required under B limitation for efficient acquisition and utilization of B. Transporters important for tolerating high B levels in the environment have also been identified, and these transporters export B from roots back to the soil. Two types of transporters are involved in these processes: NIPs (nodulin-26-like intrinsic proteins), boric acid channels, and BORs, B exporters. It is demonstrated that the expression of genes encoding these transporters is finely regulated in response to B availability in the environment to ensure tissue B homeostasis. Furthermore, plants tolerant to stress produced by low B or high B in the environment can be generated through altered expression of these transporters. Conclusions The identification of the first B transporter led to the discovery that B transport was a process mediated not only by passive diffusion but also by transporters whose activity was regulated in response to B conditions. Now it is evident that plants sense internal and external B

  5. Discussion about risk-informed regulations on the nuclear safety

    International Nuclear Information System (INIS)

    Gu Yeyi

    2008-01-01

    The article introduces the background and status quo of regulations on the nuclear safety in China, and points out the inadequacies existing with the current regulations. The author explains the risk-informed safety management concerning its development, status quo, and achievements made, in an attempt to make out the trend of improving regulations on the nuclear safety through risk-informed methods. Combining the U.S. development program of establishing risk-informed regulations on the nuclear safety, the author narrates principles and features of the new regulations system, and provides suggestions for the promotion of risk-informed safety management and establishment of risk-informed regulations on the nuclear safety. (author)

  6. Example of a single national regulator responsible for both transport safety and security

    International Nuclear Information System (INIS)

    Karhu, P.; Lahkola, A.; Markkanen, M.; Hellstén, S.

    2016-01-01

    Safety and security in the use of nuclear energy and in the use of radiation, including the transport of nuclear and other radioactive material, share a common objective: to protect people, society, environment, and future generations from the harmful effects of ionizing radiation. Some measures for safety contribute to those for security, and vice versa, while some requirements of one conflict with those of the other. The differences in the requirements arise from the difference in the threat against which the measures are designed: accident vs. intent. A coordinated approach endeavours to take advantage of the similarities and to avoid the problems caused by the differences. One way to implement it is to have one competent authority responsible for the regulatory control of safety and security. It is the experience in Finland that this enables an efficient regulatory system. From the operators’ point of view, a one-stop shop regulatory authority ensures that requirements for safety and security are consistent. Both safety and security require the involvement of and cooperation between several authorities—regulatory, rescue, law enforcement—and operators. The approach in Finland is built on cooperation and a clear division of competences and responsibilities. One regulatory authority provides a fixed point of contact within the professional cooperation network as well as for the public. The one regulatory authority is also easily identifiable, as appropriate, as a point of contact in international cooperation in implementing nuclear and radiation safety and security. Whatever the national regulatory framework and the assignment of responsibilities between authorities, cooperation is essential in house, nationally, and internationally. (author)

  7. RISK MANAGEMENT AS TRANSPORTATION SAFETY PROVISION INSTRUMENT IN RUSSIA

    OpenAIRE

    V. A. Nikolayev

    2012-01-01

    Safety of transportation in Russia is subject to a variety of threats. Discussed in the article are characteristics of major threats to transportation security. State transportation policy directions that make it possible to ensure the security of cargo and passenger transportation are shown. A listof activities and innovative risk management tools that provide for improved safety of railway transportation is proposed.

  8. Radiation sources safety and radioactive materials security regulation in Ukraine

    International Nuclear Information System (INIS)

    Smyshliaiev, A.; Holubiev, V.; Makarovska, O.

    2001-01-01

    Radiation sources are widely used in Ukraine. There are about 2500 users in industry, science, education and about 2800 in medicine. About 80,000 sealed radiation sources with total kerma-equivalent of 450 Gy*M 2 /sec are used in Ukraine. The exact information about the radiation sources and their users will be provided in 2001 after the expected completion of the State inventory of radiation sources in Ukraine. In order to ensure radiation source safety in Ukraine, a State System for regulation of activities dealing with radiation sources has been established. The system includes the following elements: establishment of norms, rules and standards of radiation safety; authorization activity, i.e. issuance of permits (including those in the form of licences) for activities dealing with radiation sources; supervisory activity, i.e. control over observance of norms, rules and standards of radiation safety and fulfilment of conditions of licences for activities dealing with radiation sources, and also enforcement. Comprehensive nuclear legislation was developed and implemented from 1991 to 2000. Radiation source safety is regulated by three main nuclear laws in Ukraine: On the use of nuclear energy and radiation safety (passed on 8 February 1995); On Human Protection from Impact of Ionizing Radiation (passed on 14 January 1998); On permissive activity in the area of nuclear energy utilization (passed on 11 January 2000). The regulatory authorities in Ukraine are the Ministry for Ecology and Natural Resources (Nuclear Regulatory Department) and the Ministry of Health (State sanitary-epidemiology supervision). According to the legislation, activities dealing with radiation sources are forbidden without an officially issued permit in Ukraine. Permitted activities with radiation sources are envisaged: licensing of production, storage and maintenance of radiation sources; licensing of the use of radiation sources; obligatory certification of radiation sources and transport

  9. Radiation shielding and criticality safety assessment for KN-12 spent nuclear fuel transport cask

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Kyung; Shin, Chang Ho; Kim, Gi Hwan [Hanyang Univ., Seoul (Korea, Republic of)

    2001-08-15

    Because SNFs involve TRU (Transuranium), fission products, and fissile materials, they are highly radioactive and also have a possibility to be critical. Therefore, radiation shielding and criticality safety for transport casks containing the SNFs should be guaranteed through reliable valuation procedure. IAEA safety standard series No ST-1 recommends regulation for safe transportation of the SNFs by transport casks, and United States is carrying out it according to the regulation guide, 10 CFR parts 71 and 72. Present research objective is to evaluate the KN-12 spent nuclear fuel transport cask that is designed for transportation of up to 12 assemblies and is standby status for being licensed in accordance with Korea Atomic Energy Act. Both radiation shielding and criticality analysis using the accurate Monte Carlo transport code, MCNP-4B are carried out for the KN-12 SNF cask as a benchmark calculation. Source terms for radiation shielding calculation are obtained using ORIGEN-S computer code. In this work, for normal transport conditions, the results from MCNP-4B shows the maximum dose rate of 0.557 mSv/hr at the side surface. And the maximum dose rate of 0.0871 mSv/hr was resulted at the 2 m distance from the cask. The level of calculated dose rate is 27.9% of the limit at the cask surface, 87.1% at 2 m from the cask surface for normal transport condition. For hypothetical accident conditions, the maximum rate of 2.5144 mSv/hr was resulted at the 1 m distance from the cask and this level is 25.1% of the limit for hypothetical accident conditions. In criticality calculations using MCNP-4B, the k{sub eff} values yielded for 5.0 w/o U-235 enriched fresh fuel are 0.92098 {+-} 0.00065. This result confirms subcritical condition of the KN-12 SNF cask and gives 96.95% of recommendations for criticality safety evaluation by US NRC these results will be useful as a basis for approval for the KN-12 SNF cask.

  10. Transport of radioactive material by air, proposal for a revision of the regulation

    International Nuclear Information System (INIS)

    Devillers, C.; Ringot, C.

    1989-01-01

    The regulation should be modified in such a way that the packages used for the air transport of radioactive material presenting a high level of potential danger be designed to fulfill their safety functions for a large fraction of the conditions likely to be encountered in an aircraft accident

  11. Towards confidence in transport safety

    International Nuclear Information System (INIS)

    Robison, R.W.

    1992-01-01

    The U.S. Department of Energy (US DOE) plans to demonstrate to the public that high-level waste can be transported safely to the proposed repository. The author argues US DOE should begin now to demonstrate its commitment to safety by developing an extraordinary safety program for nuclear cargo it is now shipping. The program for current shipments should be developed with State, Tribal, and local officials. Social scientists should be involved in evaluating the effect of the safety program on public confidence. The safety program developed in cooperation with western states for shipments to the Waste Isolation Pilot plant is a good basis for designing that extraordinary safety program

  12. 49 CFR 41.119 - DOT regulated buildings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false DOT regulated buildings. 41.119 Section 41.119 Transportation Office of the Secretary of Transportation SEISMIC SAFETY § 41.119 DOT regulated buildings. (a) Each DOT Operating Administration with responsibility for regulating the structural safety of buildings...

  13. Classification of transportation packaging and dry spent fuel storage system components according to importance to safety

    International Nuclear Information System (INIS)

    Tyacke, M.J.; McConnell, J.W. Jr.; Ayers, A.L. Jr.; O'Connor, S.C.; Jankovich, J.P.

    1996-01-01

    The Idaho National Engineering Laboratory prepared a technical report for the Office of Nuclear Material Safety and Safeguards of the US Nuclear Regulatory Commission, entitled Classification of Transportation Packaging and Dry Spent Fuel Storage System Components According to Importance to Safety, NUREG/CR-6407. This paper provides the results of that report. It also presents the graded approach for classification of components used in transportation packagings and dry spent fuel storage systems. This approach provides a method for identifying the classification of components according to importance to safety within transportation packagings and dry spent fuel storage systems. Record retention requirements are discussed to identify the documentation necessary to validate that the individual components were fabricated in accordance with their assigned classification. A review of the existing regulations pertaining to transportation packagings and dry storage systems was performed to identify current requirements. The general types of transportation packagings and dry storage systems are identified. The methodology used in this paper is based on Regulatory Guide 7.10, Establishing Quality Assurance Programs for Packaging Used in the Transport of Radioactive Material. This paper also includes a list of generic components for each of the general types of transportation packagings and spent fuel storage systems, with a classification category assigned to each component. Several examples concerning the safety importance of components are presented

  14. RISK MANAGEMENT AS TRANSPORTATION SAFETY PROVISION INSTRUMENT IN RUSSIA

    Directory of Open Access Journals (Sweden)

    V. A. Nikolayev

    2012-01-01

    Full Text Available Safety of transportation in Russia is subject to a variety of threats. Discussed in the article are characteristics of major threats to transportation security. State transportation policy directions that make it possible to ensure the security of cargo and passenger transportation are shown. A listof activities and innovative risk management tools that provide for improved safety of railway transportation is proposed.

  15. Circadian Regulation of Glutamate Transporters

    Directory of Open Access Journals (Sweden)

    Donají Chi-Castañeda

    2018-06-01

    Full Text Available L-glutamate is the major excitatory amino acid in the mammalian central nervous system (CNS. This neurotransmitter is essential for higher brain functions such as learning, cognition and memory. A tight regulation of extra-synaptic glutamate levels is needed to prevent a neurotoxic insult. Glutamate removal from the synaptic cleft is carried out by a family of sodium-dependent high-affinity transporters, collectively known as excitatory amino acid transporters. Dysfunction of glutamate transporters is generally involved in acute neuronal injury and neurodegenerative diseases, so characterizing and understanding the mechanisms that lead to the development of these disorders is an important goal in the design of novel treatments for the neurodegenerative diseases. Increasing evidence indicates glutamate transporters are controlled by the circadian system in direct and indirect manners, so in this contribution we focus on the mechanisms of circadian regulation (transcriptional, translational, post-translational and post-transcriptional regulation of glutamate transport in neuronal and glial cells, and their consequence in brain function.

  16. Safety Analysis Report for the KRI-ALM Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, D. H.; Park, H. Y.; Kim, J. B.; Kim, H. J.; Seo, K. S

    2005-11-15

    Safety evaluation for the KRI-ALM transport package to transport safely I-123, which is produced at Cyclotron in KIRAMS, was carried out. In the safety analyses results for the KRI-ALM transport package, all the maximum stresses as well as the maximum temperature of the surface are lower than their allowable limits. The safety tests were performed by using the test model of the KRI-ALM transport package. Leak Test was performed after drop test, the measured leakage rate was lower than allowable leakage rate. It is revealed that the containment integrity of the KRI-ALM transport package is maintained. Therefore, it shows that the integrity of the KRI-ALM transport package is well maintained.

  17. The safe transport of radioactive materials

    CERN Document Server

    Gibson, R

    1966-01-01

    The Safe Transport of Radioactive Materials is a handbook that details the safety guidelines in transporting radioactive materials. The title covers the various regulations and policies, along with the safety measures and procedures of radioactive material transport. The text first details the 1963 version of the IAEA regulation for the safe transport of radioactive materials; the regulation covers the classification of radionuclides for transport purposes and the control of external radiation hazards during the transport of radioactive materials. The next chapter deals with concerns in the im

  18. Nuclear Waste Transportation Safety Act of 1979. Hearings before the Subcommittee on Science, Technology, and Space of the Committee on Commerce, Science, and Transportation, United States Senate, Ninety-Sixth Congress, first session on S. 535, July 18-20, 1979

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The Nuclear Waste Transportation Safety Act of 1979 provides for the safe transportation of nuclear waste and nuclear fuel. The issues evaluated during the hearing included: (1) The Energy Reorganization Act of 1974 conveyed to the NRC the prior existing authority of the former Atomic Energy Commission to regulate transportation of radioactive nuclear fuel and nuclear waste. The Hazardous Material Transportation Act of 1974 consolidated within the Department of Transportation the regulatory authority for safety and transportation of all hazardous substances, including radioactive materials; should consultation and coordination between these regulating authorities continue to be used. (2) The specific areas of transportation regulation involved in this combination; (3) Should the Department of Transportation (DOT) become a separate office; (4) Is security against theft and sabotage necessary and realistically attainable; (5) Should DOT be responsible for assuring a coordinated Federal-State emergency response plan for possible nuclear related transportation emergencies; and (6) Is the Federal grant program of S. 535 necessary and adequate

  19. Pesticide regulations and farm worker safety: the need to improve pesticide regulations in Viet Nam.

    Science.gov (United States)

    Phung, Dung Tri; Connell, Des; Miller, Greg; Rutherford, Shannon; Chu, Cordia

    2012-06-01

    Agricultural pesticide use in Viet Nam has more than tripled since 1990. However, pesticide legislation and regulations have not been developed in response to this large increase in usage, as a result of which pesticides pose a serious threat to human health and the environment. This paper identifies the need to improve pesticide regulations in Viet Nam through a comparative analysis of pesticide regulations in Viet Nam and the United States of America, where the rate of acute poisoning among agricultural workers is much lower than in Viet Nam and where information pertaining to pesticide regulations is made accessible to the public. The analysis identified several measures that would help to improve Viet Nam's pesticide regulations. These include enhancing pesticide legislation, clarifying the specific roles and active involvement of both the environmental and health sectors; performing a comprehensive risk-benefit evaluation of pesticide registration and management practices; improving regulations on pesticide suspension and cancellation, transport, storage and disposal; developing import and export policies and enhancing pesticide-related occupational safety programmes.

  20. Safety Analysis Report for the KRI-ASM Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, D. H.; Park, H. Y.; Kim, J. B.; Kim, H. J.; Seo, K. S

    2005-11-15

    Safety evaluation for the KRI-ASM transport package to transport safely I-131, which is produced at HANARO research reactor in KAERI, was carried out. In the safety analyses results for the KRI-ASM transport package, all the maximum stresses as well as the maximum temperature of the surface are lower than their allowable limits. The safety tests were performed by using the test model of the KRI-ASM transport package. Leak Test was performed after drop test and penetration test, the measured leakage rate was lower than allowable leakage rate. It is revealed that the containment integrity of the KRI-ASM transport package is maintained. Therefore, it shows that the integrity of the KRI-ASM transport package is well maintained.

  1. The issue of safety in the transports of radioactive materials

    International Nuclear Information System (INIS)

    Pallier, Lucien

    1961-01-01

    This report addresses and discusses the various hazards associated with transports of radioactive materials, their prevention, intervention measures, and precautions to be taken by rescuers, notably how these issues are addressed in regulations. For each of these issues, this report proposes guidelines, good practices, or procedures to handle the situation. The author first addresses hazards related to a transport of radioactive products: multiplicity of hazards, different hazards due to radioactivity, hazards due to transport modes, scale of dangerous doses. The second part addresses precautionary measures: for road transports, for air transports, for maritime transports, control procedures. The third part addresses the intervention in case of accident: case of a road accident with an unhurt or not vehicle crew, role of the first official rescuers, other kinds of accidents. The fourth part briefly addresses the case of transport of fissile materials. The fifth part discusses the implications of safety measures. Appendices indicate standards, and give guidelines for the construction of a storage building for radioactive products, for the control and storage of parcels containing radioactive products, and for the establishment of instructions for the first aid personnel

  2. 49 CFR 192.65 - Transportation of pipe.

    Science.gov (United States)

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.65 Transportation of pipe. (a) Railroad...

  3. Auditors of safety in hazardous materials transportation

    International Nuclear Information System (INIS)

    Manas Lahoz, J.L.

    1993-01-01

    The author describes the methodology for safety auditory and control, prevention, risks of hazardous materials transport through ship, airplane, rail, etc. In this way, The author presents the classification of damage materials transport, characteristic damage and different transport methods

  4. Experiences in certification of packages for transportation of fresh nuclear fuel in the context of new safety requirements established by IAEA regulations (IAEA-96 regulations, ST-1) for air transportation of nuclear materials (requirements to C-type packages)

    Energy Technology Data Exchange (ETDEWEB)

    Dudai, V.I.; Kovtun, A.D.; Matveev, V.Z.; Morenko, A.I.; Nilulin, V.M.; Shapovalov, V.I.; Yakushev, V.A.; Bobrovsky, V.S.; Rozhkov, V.V.; Agapov, A.M.; Kolesnikov, A.S. [Russian Federal Nuclear Centre - All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)]|[JSC ' ' MSZ' ' , Electrostal (Russian Federation)]|[JSC ' ' NPCC' ' , Novosibirsk (Russian Federation)]|[Minatom of Russia, Moscow (Russian Federation)]|[Gosatomnadzor of Russia, Moscow (Russian Federation)

    2004-07-01

    Every year in Russia, a large amount of domestic and international transportation of fresh nuclear fuel (FNF) used in Russian and foreign energy and research atomic reactors and referred to fissile materials based on IAEA Regulations is performed. Here, bulk transportation is performed by air, and it concerns international transportation in particular. According to national ''Main Regulations for Safe Transport and physical Protection of Nuclear Materials (OPBZ- 83)'' and ''Regulations for the Safe Transport of Radioactive Materials'' of the International Atomic Energy Agency (IAEA Regulations), nuclear and radiation security under normal (accident free) and accident conditions of transport must be completely provided by the package design. In this context, high requirements to fissile packages exposed to heat and mechanical loads in transport accidents are imposed. A long-standing experience in accident free transportation of FM has shown that such approach to provide nuclear and radiation security pays for itself completely. Nevertheless, once in 10 years the International Atomic Energy Agency on every revision of the ''Regulations for the Safe Transport of Radioactive Materials'' places more stringent requirements upon the FM and transportation thereof, resulting from the objectively increasing risk associated with constant rise in volume and density of transportation, and also strained social and economical situation in a number of regions in the world. In the new edition of the IAEA Regulations (ST-1), published in 1996 and brought into force in 2001 (IAEA-96 Regulations), the requirements to FM packages conveyed by aircraft were radically changed. These requirements are completely presented in new Russian ''Regulations for the Safe Transport of Radioactive Materials'' (PBTRM- 2004) which will be brought into force in the time ahead.

  5. Explanatory material for the IAEA regulations for the safe transport of radioactive material (1985 edition). 2. ed. (as amended 1990)

    International Nuclear Information System (INIS)

    1990-01-01

    This publication is an updated version of the Second Edition of the Explanatory Material for the IAEA Regulations for the Safe Transport of Radioactive Material (1985 Edition) and replaces all previous versions of Safety Series No. 7. This publication includes the changes to Safety Series No. 7 contained in the Regulations for the Safe Transport of Radioactive Material, 1985 Edition, Supplement 1988, as well as modifications adopted by the Review Panel that was convened in Vienna, 10-14 July 1989. For the convenience of the user, the old Safety Series style adopted in the original publication has been retained, although the old style has now been superseded by a new one, affecting the structure, the format and the cover of the Safety Series. It should be noted, however, that future editions will be published in the new style.

  6. Transport of radioactive substances

    International Nuclear Information System (INIS)

    2014-12-01

    The report on the transport of radioactive substances covers the following topics: facts on radioactive materials transport, safety of the transport of radioactive substances, legal regulations and guidelines: a multiform but consistent system, transport of nuclear fuels, safety during the transport of nuclear fuel, future transport of spent fuel elements and high-level radioactive wastes in Germany.

  7. Regulations for the safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Kgogo, Obonye

    2016-04-01

    The report provides insight and investigates whether Transport Regulations in Botswana follow international standards for transport of radioactive material. Radioactive materials are very useful in most of our activities and are manufactured in different countries, therefore end up traversing from one country to another and being transported in national roads .The IAEA regulation for the Transport of radioactive material is used as the reference guideline in this study. The current Regulations for Transport of radioactive material in Botswana do not cover all factors which need to be considered when transporting radioactive although they refer to IAEA regulations. Basing on an inadequacy of the regulations and category of radioactive materials in the country recommendations were made concerning security, packaging and worker training's. The regulations for the Transport of radioactive material in Botswana need to be reviewed and updated so that they can relate to international standard. (au)

  8. 49 CFR 244.11 - Contents of a Safety Integration Plan.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Contents of a Safety Integration Plan. 244.11 Section 244.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS ON SAFETY INTEGRATION PLANS GOVERNING RAILROAD...

  9. Status of the Regulation for safe and secure transport of radioactive materials in Madagascar

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Zafimanjato, J.L.R.; Solofoarisina, W.C.; Randriantseheno, H.F.

    2011-01-01

    Radioactive sources are widely used in medicine, in industrial exploration and development, as well as in basic scientific research and education in Madagascar. The ability to use such radioactive materials in these sectors depends on their safe and secure transport both within and between countries. Transport safety of radioactive materials within the country is regulated. The law No. 97-041 on radiation protection and radioactive waste management in Madagascar promulgated in January 1998 and the decree No.2735/94 dealing the transport of radioactive materials promulgated in June 1994 govern all activities related to the transport of radioactive material. This law was established to meet the requirements of the International Basic Safety Standards (BSS, IAEA Safety Series 115). It is not fully consistent with current international standards (GS-R-1). Indeed, in order to enhance the security of radioactive sources, Madagascar has implemented the Code of Conduct and the Guidance on the Import and Export of Radioactive Sources. Faced with delays and denials of shipment of radioactive materials issues, the National Focal Point has been appointed to work with ISC members and the regional networks on the global basis.

  10. Status of the regulation for safe and secure transport of radioactive materials in Madagascar

    International Nuclear Information System (INIS)

    Andriambololona, Raoelina; Zafimanjato, J.L.R.; Solofoarisina, W.C.; Randriantseheno, H.F.

    2016-01-01

    Radioactive sources are widely used in medicine, in industrial exploration and development, as well as in basic scientific research and education in Madagascar. The ability to use such radioactive materials in these sectors depends on their safe and secure transport both within and between countries. Transport safety of radioactive materials within the country is regulated. The law n° 97-041 on radiation protection and radioactive waste management in Madagascar promulgated in January 1998 and the decree n° 2735/94 dealing the transport of radioactive materials promulgated in June 1994 govern all activities related to the transport of radioactive material. This law was established to meet the requirements of the International Basic Safety Standards (BSS, IAEA Safety Series 115). It is not fully consistent with current international standards (GS-R-1). Indeed, in order to enhance the security of radioactive sources, Madagascar has implemented the Code of Conduct and the Guidance on the Import and Export of Radioactive Sources. Faced with delays and denials of shipment of radioactive materials issues, the National Focal Point has been appointed to work with ISC members and the regional networks on the global basis. (author)

  11. Transport regulation for radioactive materials

    International Nuclear Information System (INIS)

    Ha Vinh Phuong.

    1986-01-01

    Taking into account the specific dangers associated with the transport of radioactive materials (contamination, irradiation, heat, criticality), IAEA regulations concerning technical specifications and administrative procedures to ward off these dangers are presented. The international agreements related to the land transport, maritime transport and air transport of radioactive materials are also briefly reviewed

  12. Schedules of Provisions of the IAEA Regulations for the Safe Transport of Radioactive Material (2005 Ed.). Safety Guide (Spanish Edition); Listas de disposiciones del reglamento del OIEA para el transporte seguro de materiales radiactivos (Edicion de 2005 corregida)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  13. Assessment of safety regulation using an artificial society

    International Nuclear Information System (INIS)

    Furuta, Kazuo; Nagase, Masaya

    2005-01-01

    This study proposes using an artificial society to assess impacts of safety regulation on the society. The artificial society used in this study is a multi-agent system, which consists of many agents representing companies. The agents cannot survive unless they get profits by producing some products. Safety regulation functions as the business environment, which the agents will evolve to fit to. We modeled this process of survival and adaptation by the genetic algorithm. Using the proposed model, case simulations were performed to compare various regulation styles, and some interesting insights were obtained how regulation style influences behavior of the agents and then productivity and safety level of the industry. In conclusion, an effective method for assessment of safety regulation has been developed, and then several insights were shown in this study

  14. Preparing Safety Cases for Operating Outside Prescriptive Fatigue Risk Management Regulations.

    Science.gov (United States)

    Gander, Philippa; Mangie, Jim; Wu, Lora; van den Berg, Margo; Signal, Leigh; Phillips, Adrienne

    2017-07-01

    Transport operators seeking to operate outside prescriptive fatigue management regulations are typically required to present a safety case justifying how they will manage the associated risk. This paper details a method for constructing a successful safety case. The method includes four elements: 1) scope (prescriptive rules and operations affected); 2) risk assessment; 3) risk mitigation strategies; and 4) monitoring ongoing risk. A successful safety case illustrates this method. It enables landing pilots in 3-pilot crews to choose the second or third in-flight rest break, rather than the regulatory requirement to take the third break. Scope was defined using a month of scheduled flights that would be covered (N = 4151). These were analyzed in the risk assessment using existing literature on factors affecting fatigue to estimate the maximum time awake at top of descent and sleep opportunities in each break. Additionally, limited data collected before the new regulations showed that pilots flying at landing chose the third break on only 6% of flights. A prospective survey comparing subjective reports (N = 280) of sleep in the second vs. third break and fatigue and sleepiness ratings at top of descent confirmed that the third break is not consistently superior. The safety case also summarized established systems for fatigue monitoring, risk assessment and hazard identification, and multiple fatigue mitigation strategies that are in place. Other successful safety cases have used this method. The evidence required depends on the expected level of risk and should evolve as experience with fatigue risk management systems builds.Gander P, Mangie J, Wu L, van den Berg M, Signal L, Phillips A. Preparing safety cases for operating outside prescriptive fatigue risk management regulations. Aerosp Med Hum Perform. 2017; 88(7):688-696.

  15. Study on transport safety of refresh MOX fuel. Radiation dose from package hypothetically submerged into sea

    International Nuclear Information System (INIS)

    Tsumune, Daisuke; Suzuki; Hiroshi; Saegusa, Toshiari; Maruyama, Koki; Ito, Chihiro; Watabe, Naoto

    1999-01-01

    The sea transport of fresh MOX fuel from Europe to Japan is under planning. For the structure and equipment of transport ships for fresh MOX fuels, there is a special safety standard called the INF Code of IMO (International Maritime Organization). For transport of radioactive materials, there is a safety standard stipulated in Regulations for the Safe Transport of Radioactive Material issued by IAEA (International Atomic Energy Agency). Under those code and standard, fresh MOX fuel will be transported safely on the sea. However, a dose assessment has been made by assuming that a fresh MOX fuel package might be sunk into the sea by unexpected reasons. In the both cases for a package sunk at the coastal region and for that sunk at the ocean, the evaluated result of the dose equivalent by radiation exposure to the public are far below the dose equivalent limit of the ICRP recommendation (1 mSv/year). (author)

  16. Safety regulation on high-pressure gas and gas business

    International Nuclear Information System (INIS)

    Kim, Du Yeoung; An, Dae Jun

    1978-09-01

    This book is divided into two parts. The first part introduces safety regulation on high-pressure gas, enforcement ordinance on safety regulation about high-pressure gas and enforcement regulation on safety regulation about high-pressure gas. The second part indicates regulations on gas business such as general rules, gas business gas supplies, using land, supervision, supple mentary rules and penalty. It has two appendixes on expected questions and questions during last years.

  17. Federal, state, and local regulation of radioactive-waste transportation: Progress toward a definition of regulatory authority

    International Nuclear Information System (INIS)

    Livingston-Behan, E.A.

    1986-01-01

    The supremacy clause, the commerce clause, and the equal-protection guarantees of the U.S. Constitution establish the basic framework for defining the authority of Federal, State, and local governments to regulate the transportation of radioactive waste. Court decisions and advisory rulings of the U.S. Department of Transportation (DOT) suggest that State and local regulation of the transportation of spent nuclear fuel and high-level radioactive waste is precluded under supremacy-clause principles to the extent that such regulation addresses nuclear safety or aspects of transportation that are already specifically regulated by the Federal government. Even where State and local requirements are found to be valid under the supremacy clause, they must still satisfy constitutional requirements under the commerce and equal-protection clauses. Despite stringent standards of review, State and local transportation requirements have been upheld where directly related to the traditional exercise of police powers in the area of transportation. Legitimate State and local police-power activities identified to date by the DOT and the courts include inspection and enforcement, immediate accident reporting, local regulation of traffic, and certain time-of-day curfews. The extent to which State and local permitting requirements and license fees may be determined valid by the DOT and the courts remains unclear. Continued clarification by the DOT and the courts as to the validity of permits and fees will serve to further define the appropriate balance for Federal, State, and local regulation of radioactive-waste transportation

  18. Managing for safety and safety culture within the UK nuclear industry. A regulator's perspective

    International Nuclear Information System (INIS)

    Tyrer, M.J.

    2002-01-01

    This paper outlines the basis of the legal system for the regulation of health and safety at work within the United Kingdom (UK), and in particular, the regulation of the nuclear industry. The framework, formulated by the regulator, which has been published as a practical guide for directors, managers, health and safety professionals and employee representatives for the successful management of health and safety is explained. This guidance, however, concentrates, to a large extent, on management systems and only addresses in part the types of issues, such as behaviours, values, attitudes and beliefs which contribute to the safety culture of an organization. The regulator of the UK nuclear industry has considered research, and other work, carried out by several organizations in this area, notably the Advisory Committee on the Safety of Nuclear Installations (ACSNI) and the International Atomic Energy Agency (IAEA), and produced its own framework for managing for safety at nuclear installations. As a regulator, the Health and Safety Executive (HSE), and its inspectorate responsible for regulation of the nuclear industry, HM Nuclear Installations Inspectorate (HMNII), are not the appropriate organization to assess the safety culture of an organization, but positively encourage organizations to both carry out this assessment themselves and to monitor their performance. To this end, HSE has developed, and made available, the Health and Safety Climate Tool which is aimed at providing organizations with information which can be used as part of a continuous improvement process. (author)

  19. Generalized railway tank car safety design optimization for hazardous materials transport: Addressing the trade-off between transportation efficiency and safety

    International Nuclear Information System (INIS)

    Saat, Mohd Rapik; Barkan, Christopher P.L.

    2011-01-01

    North America railways offer safe and generally the most economical means of long distance transport of hazardous materials. Nevertheless, in the event of a train accident releases of these materials can pose substantial risk to human health, property or the environment. The majority of railway shipments of hazardous materials are in tank cars. Improving the safety design of these cars to make them more robust in accidents generally increases their weight thereby reducing their capacity and consequent transportation efficiency. This paper presents a generalized tank car safety design optimization model that addresses this tradeoff. The optimization model enables evaluation of each element of tank car safety design, independently and in combination with one another. We present the optimization model by identifying a set of Pareto-optimal solutions for a baseline tank car design in a bicriteria decision problem. This model provides a quantitative framework for a rational decision-making process involving tank car safety design enhancements to reduce the risk of transporting hazardous materials.

  20. Changes in the regulations for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    Lopez Vietri, Jorge R.; Vidal, Dora N.; Piumetti, Elsa H.; Capadona, Nancy M.

    2000-01-01

    The objective of this paper is to describe and to analyze the relevant changes, dealing with the design, operation and administrative requirements, to be introduced in the Revision 1 of the AR 10.16.1 standard 'Transport of radioactive material' that will be put into force on July, 1st 2001 by the Nuclear Regulatory Authority (competent authority of Argentina). In that way, the Revision 1 of the mentioned standard will be coincident with the 1996 edition (revised) of the 'Regulations for the safe transport of radioactive material', Safety Standards Series No. TS-R-1 (ST-1, revised) issued by the International Atomic Energy Agency (IAEA). (author)

  1. Rapid transporter regulation prevents substrate flow traffic jams in boron transport

    Science.gov (United States)

    Sotta, Naoyuki; Duncan, Susan; Tanaka, Mayuki; Sato, Takafumi

    2017-01-01

    Nutrient uptake by roots often involves substrate-dependent regulated nutrient transporters. For robust uptake, the system requires a regulatory circuit within cells and a collective, coordinated behaviour across the tissue. A paradigm for such systems is boron uptake, known for its directional transport and homeostasis, as boron is essential for plant growth but toxic at high concentrations. In Arabidopsis thaliana, boron uptake occurs via diffusion facilitators (NIPs) and exporters (BORs), each presenting distinct polarity. Intriguingly, although boron soil concentrations are homogenous and stable, both transporters manifest strikingly swift boron-dependent regulation. Through mathematical modelling, we demonstrate that slower regulation of these transporters leads to physiologically detrimental oscillatory behaviour. Cells become periodically exposed to potentially cytotoxic boron levels, and nutrient throughput to the xylem becomes hampered. We conclude that, while maintaining homeostasis, swift transporter regulation within a polarised tissue context is critical to prevent intrinsic traffic-jam like behaviour of nutrient flow. PMID:28870285

  2. Toward introduction of risk informed safety regulation. Nuclear Safety Commission taskforce's interim report

    International Nuclear Information System (INIS)

    2006-01-01

    Nuclear Safety Commission's taskforce on 'Introduction of Safety Regulation Utilizing Risk Information' completed the interim report on its future subjects and directions in December 2005. Although current safety regulatory activities have been based on deterministic approach, this report shows the risk informed approach is expected to be very useful for making nuclear safety regulation and assurance activities reasonable and also for appropriate allocation of regulatory resources. For introduction of risk informed regulation, it also recommends pileups of experiences with gradual introduction and trial of the risk informed approach, improvement of plant maintenance rules and regulatory requirements utilizing risk information, and establishment of framework to assure quality of risk evaluation. (T. Tanaka)

  3. The transport safety of radioactive matters

    International Nuclear Information System (INIS)

    Landier, D.; Louet, Ch.A.; Robert, Ch.; Binet, J.; Malesys, P.; Pourade, C.; Le Meur, A.; Robert, M.; Turquet de Beauregard, G.Y.; Hello, E.; Laumond, A.; Regnault, Ph.; Gourlay, M.; Bruhl, G.; Malvache, P.; Dumesnil, J.; Cohen, B.; Sert, G.; Pain, M.; Green, L.; Hartenstein, M.; Stewart, J.; Cottens, E.; Liebens, M.; Marignac, Y.

    2007-01-01

    Since the control of transport of radioactive materials was given to A.S.N. 10 years ago, A.S.N. has strengthened the radioactive material transport inspections, in particular of the designers, manufacturers, carriers and consignors. A.S.N. has implemented INES scale for incidents during transport. It has participated as much as possible to IAEA working groups in order to improve the international regulatory framework. And, supported by I.R.S.N., A.S.N. has performed a periodic safety review of existing package models and has approved new models incorporating innovative design features. Finally, A.S.N. has tested its emergency responses to procedures to an accident involving the transport of radioactive materials. All these actions taken together have led to improvement in and reinforcement of the safety culture among the transport operators; this has been acknowledged by a recent audit T.R.A.N.S.A.S. performed by IAEA. In spite of all these actions, there are not approved by the competent authority. As A.S.N. is in charge of every field in radioprotection, this should help to intensify the control. In addition, the different kinds of transport are also tackled as rail transport with S.N.C.F. radiological risk training, air transport through nuclear medicine. Some experience feedback are given such radioactive waste transport to the storage facilities in the Aube or how to protect the population after a nuclear transport incident with the O.R.S.E.C.-T.M.S. plans. (N.C.)

  4. Radioactive material air transportation; Transporte aereo de material radioativo

    Energy Technology Data Exchange (ETDEWEB)

    Pader y Terry, Claudio Cosme [Varig Logistica (VARIGLOG), Sao Paulo, SP (Brazil)

    2002-07-01

    As function of the high aggregated value, safety regulations and the useful life time, the air transportation has been used more regularly because is fast, reliable, and by giving great security to the cargo. Based on the International Atomic Energy Agency (IAEA), the IATA (International Air Transportation Association) has reproduced in his dangerous goods manual (Dangerous Goods Regulations - DGR IATA), the regulation for the radioactive material air transportation. Those documents support this presentation.

  5. Arrangements for transition from the 1985 edition (as amended 1990) to the 1996 edition of the IAEA Transport Regulations

    International Nuclear Information System (INIS)

    2001-03-01

    The purpose of this publication is to provide guidance to National Competent Authorities to facilitate compliance during, and after, transition from the previous edition of the International Atomic Energy Agency's (IAEA's) Transport Regulations (Safety Series No. 6, 1985 Edition, as Amended 1990) to the 1996 editions (TS-R-1 [ST-1, Revised], in English; ST-1 in French, Russian and Spanish) of the regulations. This may also provide guidance to other users of the IAEA's Transport Regulations such as consignors, carriers, consignees, owners and designers and fabricators of radioactive material and package designers and fabrications

  6. Evaluation of intelligent transport systems impact on school transport safety

    Directory of Open Access Journals (Sweden)

    Jankowska-Karpa Dagmara

    2017-01-01

    Full Text Available The integrated system of safe transport of children to school using Intelligent Transport Systems was developed and implemented in four locations across Europe under the Safeway2School (SW2S project, funded by the EU. The SW2S system evaluation included speed measurements and an eye-tracking experiment carried out among drivers who used the school bus route, where selected elements of the system were tested. The subject of the evaluation were the following system elements: pedestrian safety system at the bus stop (Intelligent Bus Stop and tags for children, Driver Support System, applications for parents’ and students’ mobile phones, bus stop inventory tool and data server. A new sign designed for buses and bus stops to inform about child transportation/children waiting at the bus stop was added to the system. Training schemes for system users were also provided. The article presents evaluation results of the impact of selected elements of the SW2S system on school transport safety in Poland.

  7. Potential impacts of ICRP 60 and 61 on transportation

    International Nuclear Information System (INIS)

    Rawl, R.R.

    1992-01-01

    The International Commission on Radiological Protection (ICRP) has issued its ''1990 Recommendations of the International Commission on Radiation Protection'' that provide guidance on controlling exposure to ionizing radiation (1). The ICRP recommendations and their incorporation into the International Atomic Energy Agency's (IAEA) ''Basic Safety Standards,'' Safety Series No. 9, provide the basis on which the IAEA ''Regulation for the Safe Transport of Radioactive Materials,'' Safety Series No. 6, are built. The transportation regulations are developed to ensure safety during the movement of radioactive materials and to provide reasonable assurance the transportation activities comply with the basic radiation protection principles of Safety Series No. 9. During the 1985 revision of the IAEA transport regulations, a comprehensive model was developed to derive Type A (non-accident resistant) package contents limits that were consistent with Safety Series No.9 and, consequently, the earlier ICRP recommendations (2). Now that ICRP 60 has been published, the IAEA and Member States are faced with the task of evaluating how the transport regulations need to be revised to conform with the new recommendations. Several potentially significant issues need to be addressed to determine whether the old linkages between the recommendations and the transport regulations require modification. This paper addresses the issues that arise from the revisions to the ICRP recommendations and how the transportation regulations may be affected

  8. Potential impacts of ICRP 60 and 61 on transportation

    International Nuclear Information System (INIS)

    Rawl, Richard R.

    1992-01-01

    The International Commission on Radiological Protection (IGRP) has issued its '1990 Recommendations of the International Commission on Radiation Protection' that provide guidance on controlling exposure to ionizing radiation. The ICRP recommendations and their incorporation into the International Atomic Energy Agency's (IAEA) 'Basic Safety Standards', Safety Series No. 9, provide the basis on which the IAEA 'Regulations for the Safe Transport of Radioactive Materials', Safety Series No. 6, are built. The transportation regulations are developed to ensure safety during the movement of radioactive materials and to provide reasonable assurance the transportation activities comply with the basic radiation protection principles of Safety Series No. 9. During the 1985 revision of the IAEA transport regulations, a comprehensive model was developed to derive Type A (non-accident resistant) package contents limits that were consistent with Safety Series No. 9 and, consequently, the earlier ICRP recommendations. Now that ICRP 60 has been published, the IAEA and Member States are faced with the task of evaluating how the transport regulations need to be revised to conform with the new recommendations. Several potentially significant issues need to be addressed to determine whether the old linkages between the recommendations and the transport regulations require modification. This paper addresses the issues that arise from the revisions to the ICRP recommendations and how the transportation regulations may be affected. (author)

  9. Classification of transportation packaging and dry spent fuel storage system components according to importance to safety

    International Nuclear Information System (INIS)

    McConnell, J.W., Jr; Ayers, A.L. Jr; Tyacke, M.J.

    1996-02-01

    This report provides a graded approach for classification of components used in transportation packaging and dry spent fuel storage systems. This approach provides a method for identifying, the classification of components according to importance to safety within transportation packagings and dry spent fuel storage systems. Record retention requirements are discussed to identify the documentation necessary to validate that the individual components were fabricated in accordance with their assigned classification. A review of the existing regulations pertaining to transportation packagings and dry storage systems was performed to identify current requirements The general types of transportation packagings and dry storage systems were identified. Discussions were held with suppliers and fabricators of packagings and storage systems to determine current practices. The methodology used in this report is based on Regulatory Guide 7.10, Establishing Quality Assurance Programs for Packaging Used in the Transport of Radioactive Material. This report also includes a list of generic components for each of the general types of transportation packagings and spent fuel storage systems. The safety importance of each component is discussed, and a classification category is assigned

  10. Regulation of auxin transport during gravitropism

    Science.gov (United States)

    Rashotte, A.; Brady, S.; Kirpalani, N.; Buer, C.; Muday, G.

    Plants respond to changes in the gravity vector by differential growth across the gravity-stimulated organ. The plant hormone auxin, which is normally basipetally transported, changes in direction and auxin redistribution has been suggested to drive this differential growth or gravitropism. The mechanisms by which auxin transport directionality changes in response to a change in gravity vector are largely unknown. Using the model plant, Arabidopsis thaliana, we have been exploring several regulatory mechanisms that may control auxin transport. Mutations that alter protein phosphorylation suggest that auxin transport in arabidopsis roots may be controlled via phosphorylation and this signal may facilitate gravitropic bending. The protein kinase mutant pinoid (pid9) has reduced auxin transport; whereas the protein phosphatase mutant, rcn1, has elevated transport, suggesting reciprocal regulation of auxin transport by reversible protein phosphorylation. In both of these mutants, the auxin transport defects are accompanied by gravitropic defects, linking phosphorylation signaling to gravity-induced changes in auxin transport. Additionally, auxin transport may be regulated during gravity response by changes in an endogenous auxin efflux inhibitor. Flavonoids, such as quercetin and kaempferol, have been implicated in regulation of auxin transport in vivo and in vitro. Mutants that make no flavonoids have reduced root gravitropic bending. Furthermore, changes in auxin-induced gene expression and flavonoid accumulation patterns have been observed during gravity stimulation. Current studies are examining whether there are spatial and temporal changes in flavonoid accumulation that precede gravitropic bending and whether the absence of these changes are the cause of the altered gravity response in plants with mutations that block flavonoid synthesis. These results support the idea that auxin transport may be regulated during gravity response by several mechanisms including

  11. 49 CFR 195.207 - Transportation of pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Transportation of pipe. 195.207 Section 195.207 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY...

  12. 49 CFR 193.2511 - Personnel safety.

    Science.gov (United States)

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... or a means of escape. (c) Each LNG plant must be equipped with suitable first-aid material, the...

  13. Coal Mine Health and Safety Regulation 2006 under the Coal Mine Health and Safety Act 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-22

    The aim of the Act is to secure the health, safety and welfare of people in connection with coal operations (which include all places of work where coal is mined and certain other places). The Regulation contains provisions about the following matters: (a) places of work to which the Act does not apply, (b) duties relating to health, welfare and safety at coal operations, including the following: (i) the nomination of the operator of a coal operation and the provision of health and safety information for incoming operators, (ii) the contents of health and safety management systems for coal operations, (iii) major hazards and the contents of major hazard management plans for coal operations, (iv) duties relating to contractors, (v) the contents of management structures and emergency management systems for coal operations, escape and rescue plans and fire fighting plans and high risk activities, (c) notifications, including (i) notification of incidents, (ii) inquiries, (iii) notification of other matters to the Chief Inspector), (d) aspects of safety at coal operations, including the following: (i) controlled materials, plants and practices, (ii) coal dust explosion prevention and suppression, (iii) ventilation at coal operations, (iv) escape from coal operations, (v) the operation of transport at coal operations, (vi) surveys and certified plans, (vii) employment at coal operations, (e) the licensing of certain activities, (f) competence standards, (g) the Coal Competence Board, (h) check inspectors, (i) exemptions from provisions of this Regulation, (j) the following miscellaneous matters concerning coal mine health and safety: (i) the keeping of records and reporting, (ii) penalties, the review of decisions by the Administrative Decisions Tribunal, fees and charges, consultation, information and other miscellaneous matters, (k) savings and transitional provisions.

  14. Regulators of Slc4 bicarbonate transporter activity

    Directory of Open Access Journals (Sweden)

    Ian M. Thornell

    2015-06-01

    Full Text Available The Slc4 family of transporters is comprised of anion exchangers (AE1-4, Na-coupled bicarbonate transporters (NCBTs including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2, electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2, and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE, as well as a borate transporter (BTR1. These transporters regulate intracellular pH (pHi and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO3– either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO3– transporter contributes to a cell’s ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s (e.g., Na+ or Cl–. In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both classical and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.

  15. Regulatory requirements for the transport of radioactive materials in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Garg, R. [Canadian Nuclear Safety Commission, Ottawa (Canada)

    2004-07-01

    Canada is a major producer and shipper of radioactive material. Each year more than a million packages are transported in Canada. The safety record with the transport of RAM in Canada has historically been excellent. There have never been any serious injuries, overexposure or fatality or environmental consequences attributable to the radioactive nature of such material being transported or being involved in a transport accident. In Canada, the Canadian Nuclear Safety Commission (CNSC) is the prime agency of the federal government entrusted with regulating all activities related to the use of nuclear energy and nuclear substances including the packaging and transport of nuclear substances. The mission of the CNSC is to regulate the use of nuclear energy and materials to protect health, safety, security of the person and the environment and to respect Canada's international commitments on the peaceful use of nuclear energy. The division of responsibility for the regulation of transport of radioactive material has been split between Transport Canada and the CNSC. The governing Transport Canada's regulations are Transport of Dangerous Goods (TDG) Regulations and the CNSC regulations are Packaging and Transport of Nuclear Substances Regulations (PTNSR). Canada has actively participated in the development of the IAEA regulations for the safe transport of radioactive material since 1960. As an IAEA member state, Canada generally follows the requirements of IAEA regulations with few deviations. The Nuclear Safety and Control Act (NSCA) strongly supports Canada's international obligations to ensure safe packaging, transport, storage and disposal of nuclear substances, prescribed equipment and prescribed information. Prescribed equipment and prescribed information are defined in the CNSC General Nuclear Safety and Control Regulations. This paper presents the current CNSC regulatory requirements and initiatives taken by the CNSC to improve its effectiveness and

  16. Regulatory requirements for the transport of radioactive materials in Canada

    International Nuclear Information System (INIS)

    Garg, R.

    2004-01-01

    Canada is a major producer and shipper of radioactive material. Each year more than a million packages are transported in Canada. The safety record with the transport of RAM in Canada has historically been excellent. There have never been any serious injuries, overexposure or fatality or environmental consequences attributable to the radioactive nature of such material being transported or being involved in a transport accident. In Canada, the Canadian Nuclear Safety Commission (CNSC) is the prime agency of the federal government entrusted with regulating all activities related to the use of nuclear energy and nuclear substances including the packaging and transport of nuclear substances. The mission of the CNSC is to regulate the use of nuclear energy and materials to protect health, safety, security of the person and the environment and to respect Canada's international commitments on the peaceful use of nuclear energy. The division of responsibility for the regulation of transport of radioactive material has been split between Transport Canada and the CNSC. The governing Transport Canada's regulations are Transport of Dangerous Goods (TDG) Regulations and the CNSC regulations are Packaging and Transport of Nuclear Substances Regulations (PTNSR). Canada has actively participated in the development of the IAEA regulations for the safe transport of radioactive material since 1960. As an IAEA member state, Canada generally follows the requirements of IAEA regulations with few deviations. The Nuclear Safety and Control Act (NSCA) strongly supports Canada's international obligations to ensure safe packaging, transport, storage and disposal of nuclear substances, prescribed equipment and prescribed information. Prescribed equipment and prescribed information are defined in the CNSC General Nuclear Safety and Control Regulations. This paper presents the current CNSC regulatory requirements and initiatives taken by the CNSC to improve its effectiveness and efficiency

  17. Wheeled mobility device transportation safety in fixed route and demand-responsive public transit vehicles within the United States.

    Science.gov (United States)

    Frost, Karen L; van Roosmalen, Linda; Bertocci, Gina; Cross, Douglas J

    2012-01-01

    An overview of the current status of wheelchair transportation safety in fixed route and demand-responsive, non-rail, public transportation vehicles within the US is presented. A description of each mode of transportation is provided, followed by a discussion of the primary issues affecting safety, accessibility, and usability. Technologies such as lifts, ramps, securement systems, and occupant restraint systems, along with regulations and voluntary industry standards have been implemented with the intent of improving safety and accessibility for individuals who travel while seated in their wheeled mobility device (e.g., wheelchair or scooter). However, across both fixed route and demand-responsive transit systems a myriad of factors such as nonuse and misuse of safety systems, oversized wheeled mobility devices, vehicle space constraints, and inadequate vehicle operator training may place wheeled mobility device (WhMD) users at risk of injury even under non-impact driving conditions. Since WhMD-related incidents also often occur during the boarding and alighting process, the frequency of these events, along with factors associated with these events are described for each transit mode. Recommendations for improving WhMD transportation are discussed given the current state of

  18. Fire safety regulations and licensing

    International Nuclear Information System (INIS)

    Berg, H.P.

    1998-01-01

    Experience of the past tow decades of nuclear power plant operation and results obtained from modern analytical techniques confirm that fires may be a real threat to nuclear safety and should receive adequate attention from the design phase throughout the life of the plant. Fire events, in particular influence significantly plant safety due to the fact that fires have the potential to simultaneously damage components of redundant safety-related equipment. Hence, the importance of fire protection for the overall safety of a nuclear power plant has to be reflected by the fire safety regulations and to be checked during the licensing process of a plant as well as during the continuous supervision of the operating plant

  19. Improving the rationality of nuclear safety regulations

    International Nuclear Information System (INIS)

    Choi, Byung Sun; Choi, Y. G.; Mun, G. H.

    2005-03-01

    This study focuses on human nature and institutions around the risk management in Korean Nuclear Installations. Nuclear safety regulatory system in Korea has had a tendency to overvalue the technical or engineering areas. But just like other risk management system, the knowledge of social science is also required to design more valid safety regulatory system. As a result of analysis, this study suggest that performance regulation need to be introduced to current nuclear safety regulation system. In this advanced regulatory system, each nuclear generation unit have to be evaluated by performance of its own regulatory implementation and would be treated differently by the performance. Additionally, self-regulation could be very effective was to guarantee nuclear safety. Because KHNP could be judged to have an considerable capabilities to manage its own regulatory procedures. To make self-regulatory system established successfully, it is also important to arrange the appropriate incentive and compensate structures

  20. The safety of radioactive materials transport; La surete des transports de matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The rule of the radioactive materials transport contains two different objectives: the safety, or physical protection, consists in preventing the losses, the disappearances, the thefts and the diversions of the nuclear materials (useful materials for weapons); the high civil servant of defence near the Minister of Economy, Finance and Industry is the responsible authority; the safety consists in mastering the risks of irradiation, contamination and criticality presented by the radioactive and fissile materials transport, in order that man and environment do not undergo the nuisances. The control of the safety is within the competence of the Asn. (N.C.)

  1. Strategic regulation of gas transport

    International Nuclear Information System (INIS)

    Nese, Gjermund; Straume, Odd Rune

    2005-01-01

    The basis of the article has been the steadily increasing focus particularly from EU, on increased competition in the natural gas markets. This could influence the profit distribution between the gas producing and consuming counties which is an important problem situation for Norway as a gas producer. The gas market value chain consist of three parts (production, transport and distribution). How the countries may use strategic regulation of the transport tariff for the transport and distribution systems in order to move as much as possible of the total profit to the part of the value chain in control is studied. The focus has been on how increased competition influences the incentives of the authorities through low or high transport tariff and to what extent increased competition influences the welfare level in the producer and consumer counties when strategic regulations of the transport occur. The analysis is based on a theoretical model developed in 2005. Some central mechanisms related to the natural gas market are mapped and Norway may counteract some negative effects of liberalisation of the European gas market through strategic adaptation of the transport tariff to the Norwegian gas transport systems

  2. Instilling safety culture in the passenger rail transport industry within the South African context

    Directory of Open Access Journals (Sweden)

    Khulumane (John Maluleke

    2013-07-01

    Full Text Available South Africa has two major rail operators that constitute the rail transport industry. These are Transnet Freight Rail (TFR, which operates freight and the Passenger Rail Agency of South Africa (PRASA. Although the Railway Safety Regulator (2011:29 reported the year on year declining trend of collisions, the main concern is that the costs incurred for each year’s incidents is escalating. This article is concerned with the declining safety standards of these operators as evidenced by 742 collisions recorded during the 2011/2012 financial year for both operators. The focus is mainly on collisions during the movement of rolling stock within the PRASA environment. The analysis of the occurrences is narrowed down, with the emphasis on the province of Gauteng. In the analysis of the causes of these collisions, the problems that led to the root causes of these collisions is reported. Of critical importance is that every transport operator is faced with the challenges of how to effectively respond to the basic transport needs and requirements of the travelling public. The transport users’ need is to travel between the two geographical points. During the journey between these geographical points, the operator has safety and security requirements and must provide a reliable, accessible and affordable transport system. As the travelling public becomes more affluent, the transport needs become open ended and require much more rational public choices. The rail transport system remains a vital or indispensable business sector of the economy. By investing in new technology, rolling stock and infrastructure, we woud see an increase in innovation, competitiveness, and an elevated standard of living.

  3. New safety and security requirements for the transport of nuclear and other radioactive materials in Hungary

    International Nuclear Information System (INIS)

    Katona, T.; Horvath, K.; Safar, J.

    2016-01-01

    In addition to the promulgation of mode-specific regulations of international transport of dangerous goods, some Hungarian governmental and ministerial decrees impose further conditions upon the transport of nuclear and other radioactive materials. One of these ministerial decrees on the transport, carriage and packaging of radioactive materials is under revision and it will require • approval of emergency response plan (including security and safety contingency plan); • report on transport incidents and accidents for classifying them in accordance with the INES scale; • the competent authority to request experts’ support for the approval of package designs, radioactive material designs and shipments. Regarding the security of the transport of nuclear and other radioactive materials a new Hungarian governmental decree and a related guidance are about to be published which will supply additional requirements in the field of the transport security especially concerning radioactive materials, implementing - among others - IAEA recommendations of the NSS No9 and No14. The main and relevant features of the Hungarian nuclear regulatory system and the details of both new decrees regarding the safety and security issues of transport of nuclear and other radioactive materials will be discussed. (author)

  4. Assessment of the application of the IAEA regulations for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    1986-12-01

    The IAEA, working with the individual Member States, undertook to examine the manner in which domestic, import, export and through-country shipments of radioactive materials are controlled and regulated worldwide. The information to be examined was collected by a questionnaire, which was sent to Member States in July 1984. Copies of the letter and the questionnaire are in Appendix I of this document. The follow-up letters, repeating the request to provide the IAEA with data and asking authorization to publish the data obtained through the questionnaire, were sent in February 1985 (Appendix II and III). By the end of June 1986 completed questionnaires had been received from 53 Member States. These Member States are listed in Appendix IV. The results of the examination are summarized in this report. The results indicate the important role the international organizations play in the transport of radioactive material. All the Member States involved in this examination regulate the transport of radioactive material within their country on the basis of international agreements, regulations and recommendations. The IAEA Regulations for the Safe Transport of Radioactive Material, Safety Series No. 6, is the ultimately controlling document since it serves as the basis for the radioactive material portions of other international transport documents (Appendix V) and since it is made directly binding in the regulations of many countries. In addition to the questions concerning the adoption of the regulations, some questions on the implementation of the transport regulations, e.g. on competent authorities and other regulatory bodies as well as quality assurance, were presented in the questionnaire. This report concerns only the adoption of the regulations

  5. Use of risk information to safety regulation. Reprocessing facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    A procedure of probabilistic risk assessment (PRA) for a reprocessing facility has been under the development aiming to utilize risk information for safety regulations in this project. Activities in the fiscal year 2012 are summarized in the paper. A major activity is a fundamental study on a concept of serious accidents, requirements of serious accident management, and a policy of utilizing risk information for fabrication and reprocessing facilities. Other than the activity a study on release and transport of aerial radioactive materials at a serious accident in a reprocessing facility has been conducted. The outline and results are provided in the chapter 1 and 2 respectively. (author)

  6. National competent authorities. List no. 4. Regulations for the safe transport of radioactive materials. 1967 edition (Safety series no. 6)

    International Nuclear Information System (INIS)

    1971-06-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness

  7. National competent authorities. List no. 17. Regulations for the safe transport of radioactive material. 1985 edition (Safety series no.6 )

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-12-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness.

  8. National competent authorities. List no. 5. Regulations for the safe transport of radioactive materials. 1967 edition (Safety series no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-09-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness.

  9. National competent authorities. List no. 4. Regulations for the safe transport of radioactive materials. 1967 edition (Safety series no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1971-06-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness.

  10. National competent authorities. List no. 1. Regulations for the safe transport of radioactive materials. 1967 edition (Safety series no. 6)

    International Nuclear Information System (INIS)

    1967-04-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness

  11. National competent authorities. List no. 2. Regulations for the safe transport of radioactive materials. 1967 edition (Safety series no. 6)

    International Nuclear Information System (INIS)

    1968-08-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness

  12. National competent authorities. List no. 3. Regulations for the safe transport of radioactive materials. 1967 edition (Safety series no. 6)

    International Nuclear Information System (INIS)

    1970-06-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness

  13. National competent authorities. List no. 17. Regulations for the safe transport of radioactive material. 1985 edition (Safety series no.6 )

    International Nuclear Information System (INIS)

    1985-12-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness

  14. National competent authorities. List no. 3. Regulations for the safe transport of radioactive materials. 1967 edition (Safety series no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-06-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness.

  15. National competent authorities. List no. 2. Regulations for the safe transport of radioactive materials. 1967 edition (Safety series no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-08-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness.

  16. National competent authorities. List no. 5. Regulations for the safe transport of radioactive materials. 1967 edition (Safety series no. 6)

    International Nuclear Information System (INIS)

    1972-09-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness

  17. National competent authorities. List no. 1. Regulations for the safe transport of radioactive materials. 1967 edition (Safety series no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-04-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness.

  18. The safety of radioactive materials transport

    International Nuclear Information System (INIS)

    Niel, J.Ch.

    1997-01-01

    Five accidents in radioactive materials transport have been studied; One transport accident by road, one by ship, one by rail, and the two last in handling materials from ships in Cherbourg port and Le Havre port. All these accidents were without any important consequences in term of radiation protection, but they were sources of lessons to improve the safety. (N.C.)

  19. Some views on the two-year review/revision cycle of the IAEA ''regulations for the safe transport of radioactive material''

    International Nuclear Information System (INIS)

    Fasten, C.; Nitsche, F.

    2004-01-01

    The ''Regulations for the Safe Transport of Radioactive Material'' of the International Atomic Energy Agency (IAEA), Vienna were last issued as a complete revised edition in 1996 as Safety Standards Series No. ST-1 [1]. A modification to this edition was made in 2000 - only in English - incorporating minor editorial corrections published as Safety Standards Series No. TS-R-1 (ST-1, Revised). Issues in French, Russian and Spanish followed shortly. A continuos review/revision process of the transport regulations was initiated in 2000 to publish an amended or a revised edition every two years. This two-year review cycle has been established to harmonise it with the review cycles of the other United Nations dangerous goods regulatory bodies, namely - the UN Committee of Experts on the Transport of Dangerous Goods, Geneva - the International Civil Aviation Organisation (ICAO), Montreal - the International Maritime Organisation (IMO), London and - the United Nations Economic Commission for Europe (UN-ECE) - Inland Transport Committee, Geneva. - Intergovernmental Organisation for International Carriage by rail (OTIF), Bern. These bodies are responsible to issue the regulations for the transport of all classes of dangerous goods (where the class 7 is ''Radioactive Material''), for the international air transport (ICAO), for the international maritime transport (IMO) and the European road, rail and inland waterway transport (UN-ECE, OTIF). The regulations of the above mentioned bodies have been published for many years within a two year period with good experience. Since 2000 the IAEA has been using the two-year cycle also. Based on this relative short time of application first experiences with this two-year cycle will be discussed

  20. CLP Regulation and the transport of dangerous goods

    Directory of Open Access Journals (Sweden)

    Sergio Benassai

    2011-01-01

    Full Text Available Regulations concerning different modes of transport of dangerous goods are well harmonized at global level: they were then looked at as a model for developing Globally Harmonized System of Classification and Labelling of Chemicals (GHS, (on which CLP Regulations is based. Transport regulations do not cover some hazard classes, such as germ cell mutagenicity, carcinogenicity, reproductive toxicity, having been evaluated that such hazards are not relevant in transport because in general, in case of accident, no repeated and prolonged exposure takes place. Other differences with CLP Regulation are related to the use of "building block approach". Transport labels, which were used as a basis for GHS, can be used, instead of CLP pictograms, on packages during transport.

  1. Preparing regulations for radioactive waste transport

    International Nuclear Information System (INIS)

    Robles, Fernando

    2002-01-01

    The article describes the diferent stages in preparing the regulation on safe transport of radioactive materials. The first stage was the support given by the International Atomic Energy Agency in to provide expertise in drafting the national regulation on this matter. The draft is based on the publication from IAEA Regulation on the safe transport of radioactive materials. Also a description of activities made by the Radiation Protection Department of the Energy Directorate of Guatemala is made by the Chief of the Department Dr. Fernando Robles

  2. Coordination and collaboration between National Regulators for the Safety and Security of International Shipments of Radioactive Materials

    International Nuclear Information System (INIS)

    Whittingham, Stephen

    2016-01-01

    The safety record of transporting radioactive material is remarkable; globally with tens of millions of packages transported; each year with approximately 2-3% is related to the nuclear industry. Much of this success is due to the ongoing commitment made by the IAEA and its Member States to maintain over the past 50 years the prescriptive regulations for the transport of radioactive material (TS-R-1) and its associated guidance documents. TS-R-1 is by far the most popular IAEA document in terms of downloads and sales with some Member States adopting them directly into their domestic legal framework whilst others adopt them due to all of the TS-R-1 requirements being incorporated into the UN Model Regulations

  3. Economic consideration of nuclear safety and cost benefit analysis in nuclear safety regulation

    International Nuclear Information System (INIS)

    Choi, Y. S.; Choi, K. S.; Choi, K. W.; Song, I. J.; Park, D. K.

    2001-01-01

    For the optimization of nuclear safety regulation, understanding of economic aspects of it becomes increasingly important together with the technical approach used so far to secure nuclear safety. Relevant economic theories on private and public goods were reviewed to re-illuminate nuclear safety from the economic perspective. The characteristics of nuclear safety as a public good was reviewed and discussed in comparison with the car safety as a private safety good. It was shown that the change of social welfare resulted from the policy change induced can be calculated by the summation of compensating variation(CV) of individuals. It was shown that the value of nuclear safety could be determined in monetary term by this approach. The theoretical background and history of cost benefit analysis of nuclear safety regulation were presented and topics for future study were suggested

  4. Safety goals and safety culture opening plenary. 2. Safety Regulation Implemented by Gosatomnadzor of Russia

    International Nuclear Information System (INIS)

    Gutsalov, A.T.; Bukrinsky, A.M.

    2001-01-01

    This paper describes principles and approaches used by Gosatomnadzor of Russia in establishing safety goals. The link between safety goals and safety culture is demonstrated. The paper also contains information on nuclear regulatory activities in Russia. Regulatory documents of Gosatomnadzor of Russia do not provide precise definitions of safety goals as IAEA documents INSAG-3 or INSAG-12 do. However, overall activities of Gosatomnadzor of Russia are directed to the achievement of these safety goals, as Gosatomnadzor of Russia is a federal executive authority responsible for the regulation of nuclear and radiation safety in accordance with the Russian Federal Law 'On the Use of Nuclear Energy'. Thus, in the Statement of the Policy of the Russian Regulatory Authority, enacted in 1992, it was established that the overall activities of Gosatomnadzor of Russia are directed to the achievement of the main goal. This goal is to establish conditions that ensure that personnel, the public, and the environment are protected from unacceptable radiation and nonproliferation of nuclear materials. The practical application of such a method as given by the publication of Statements of Policy of Gosatomnadzor of Russia may be considered as a safety culture element. 'General Provisions of NPP Safety Ensuring' (OPB-88/ 97) is a regulatory document of the highest level in the hierarchy of regulatory documents of Gosatomnadzor of Russia. It establishes quantitative values of safety goals as do the foregoing IAEA documents. Thus, this regulatory document sets up the following: 1. The estimated total probability of severe accidents should not exceed 10 5 /reactor.yr. 2. The estimated probability of the worst possible radioactive release to the environment specified in the standards should not exceed 10 -7 /reactor.yr in the case of severe beyond-design-basis accidents. 3. The probability of a reactor vessel failure should not exceed 10 -7 /reactor.yr. The foregoing values are somehow

  5. The Design of Transportation Equipment in Terms of Human Capabilities. The Role of Engineering Psychology in Transport Safety.

    Science.gov (United States)

    McFarland, Ross A.

    Human factors engineering is considered with regard to the design of safety factors for aviation and highway transportation equipment. Current trends and problem areas are identified for jet air transportation and for highway transportation. Suggested solutions to transportation safety problems are developed by applying the techniques of human…

  6. Intermodal safety research needs report of the sixth workshop on national transportation problems

    Energy Technology Data Exchange (ETDEWEB)

    Warshawer, A.J. (ed.)

    1976-04-01

    This conference brought together DOT policymakers, university principal investigators and other professionals to consider the intermodal safety research requirements of the Department of Transportation. The objectives of the conference were: (1) to highlight safety problems and needed transportation safety research identified by DOT modal safety managers and to stimulate university or university/industry teams to respond with research proposals which emphasize multi-modal applicability and a system view; and (2) to provide a forum for university research groups to inform DOT safety managers of promising new directions in transportation safety research and new tools with which to address safety related problems. The conference addressed the research requirements for safety as identified by the Statement of National Transportation Policy and by the modal safety managers in three principal contexts, each a workshop panel: I, Inter-Institutional Problems of Transportation Safety. Problems were described as: Federal-State, local; Federal-Industry; Federal-Public, Consumer groups. II, Goal Setting and Planning for Transportation Safety Programs. Issues were: modifying risk behavior, safety as a social value, and involving citizens in development of standards as a way of increasing probability of achieving program objectives. III, DOT Information, Management, and Evaluation Systems Requirements. Needs were: data requirements and analytic tools for management of safety programs.

  7. Emergency Response to Radioactive Material Transport Accidents

    International Nuclear Information System (INIS)

    EL-shinawy, R.M.K.

    2009-01-01

    Although transport regulations issued by IAEA is providing a high degree of safety during transport opertions,transport accidents involving packages containing radioactive material have occurred and will occur at any time. Whenever a transport accident involving radioactive material accurs, and many will pose no radiation safety problems, emergency respnose actioms are meeded to ensure that radiation safety is maintained. In case of transport accident that result in a significant relesae of radioactive material , loss of shielding or loss of criticality control , that consequences should be controlled or mitigated by proper emergency response actions safety guide, Emergency Response Plamming and Prepardness for transport accidents involving radioactive material, was published by IAEA. This guide reflected all requirememts of IAEA, regulations for safe transport of radioactive material this guide provide guidance to the publicauthorites and other interested organziation who are responsible for establishing such emergency arrangements

  8. The assessment of the safety and the radiological risks associated with the transport of radioactive wastes in Romania

    International Nuclear Information System (INIS)

    Vieru, G.

    2000-01-01

    Problems related to the handling, treatment, packaging, storage, transportation, and disposal of radioactive wastes (radwastes) are very important and the responsibility for the safe management of radioactive wastes for the protection of human health and the environment has long been recognized. Safety and public welfare are to be considered within the radioactive waste management, particularly in the field of transportation because of the potential risk that it could pose to the public and to the environment. The IAEA regulations ensure safety in the transport of Radioactive Materials (RAM) by laying down detailed requirements, appropriate to the degree of hazard represented by the respective material, taking into account its form and quantity. Risk assessment provides a basis for routing radwastes and developing mitigation plans, prioritizing initiatives and enacting legislation to protect human beings and the environment. Factors such as shipment cost, distance, population exposed, environmental impacts or sensitivity, time in transit and infrastructure related issues, could be included in the terms of safety and risk. The paper presents risk assessment activities aimed to evaluate risk categories and the radiological consequences that may arise during normal (accident free) transport and those resulting from transport accidents involving waste shipments in Romania. (author)

  9. 49 CFR 192.357 - Customer meters and regulators: Installation.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Customer meters and regulators: Installation. 192... SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Customer Meters, Service Regulators, and Service Lines § 192.357 Customer meters and regulators: Installation. (a...

  10. Radiation Safety (Qualifications) Regulations 1980

    International Nuclear Information System (INIS)

    1980-01-01

    These Regulations, promulgated pursuant to the provisions of the Radiation Safety Act, 1975-1979, require persons engaged in activities involving radiation to pass a radiation safety examination or to possess an approved qualification in radiation. The National Health and Medical Research Council is authorised to exempt persons from compliance with these requirements or, conversely, to impose such requirements on persons other than those designated. (NEA) [fr

  11. Environmental Regulation and Food Safety: Studies of Protection ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Environmental Regulation and Food Safety: Studies of Protection and Protectionism. Book cover Environmental Regulation and Food Safety: Studies of Protection and Protectionism. Directeur(s) : Veena Jha. Maison(s) d'édition : Edward Elgar, IDRC. 1 janvier 2006. ISBN : 184542512X. 250 pages. e-ISBN : 155250185X.

  12. Study on the safety during transport of radioactive materials. Pt. 4. Events during transport. Final report work package 6; Untersuchungen zur Sicherheit bei der Befoerderung radioaktiver Stoffe. T. 4. Ereignisse bei der Befoerderung. Abschlussbericht zum Arbeitspaket 6

    Energy Technology Data Exchange (ETDEWEB)

    Sentuc, Florence-Nathalie

    2014-09-15

    This report presents the results from a data collection and an evaluation of the safety significance of events in the transportation of radioactive material by all modes on public routes in Germany. Systems for reporting and evaluation of the safety significance of events encountered in the transport of radioactive material are a central element in monitoring and judging the adequacy and effectiveness of the transport regulations and their underlying safety philosophy, this allows for revision by experience feedback (lessons learned). The nationwide survey performed covering the period from the mid 1990s through 2013 identified and analysed a total of 670 transport events varying in type and severity. The vast majority of recorded transport events relate to minor deviations from the provisions of the transport regulations (e.g. improper markings and error in transport documents) or inappropriate practices and operational procedures resulting in material damage of packages and equipment such as handling incidents. Severe traffic accidents and fires represented only a small fraction (ca. 3 percent) of the recorded transport events. Four transport events were identified in the reporting period to have given rise to environmental radioactive releases. Three transport events have reportedly resulted in minor radiation exposures to the transport personnel; in one case an exposure in excess of the statutory annual dose limit for the public seems possible. Based on the EVTRAM scale, with seven significance levels, the broad majority of transport events has been classified as ''non-incidents'' (Level 0) and ''events without affecting the safety functions of the package'' (Level 1). On the INES scale most transport events would be classified as events with ''no safety significance'' (Below Scale/Level 0). The survey results show no serious deficiencies in the transport of radioactive material, supporting the

  13. How safety procedures can follow the evolution in transport of RAM

    International Nuclear Information System (INIS)

    Sousselier, Y.; Grenier, M.

    1983-05-01

    In 1968, in Gatlimburg, an universal Convention was pointed out. It should help to erase many of the legal difficulties encountered in the international Transportation of Radioactive Material. About 15 years later, they have changed a little, they are still changing, but their status stays the same, they are still a basis for Organizations and Countries, as for instance recently for the Regulation issued by ICAO. It seems interesting to examine, under the light of the practical evolution in transport of radioactive materials, whether such a convention is still wishable, and what are the discernible lines of force and overall the solutions we can imagine to the present problems. The present situation is mainly characterized by two essential features: an increasing internationalization of Transportation of Radioactive Materials; and a stronger desire of checking the safety not only in the design of the packaging but also to check and act on the real shipment and the real package

  14. Nuclear critical safety analysis for UX-30 transport of freight package

    International Nuclear Information System (INIS)

    Quan Yanhui; Zhou Qi; Yin Shenggui

    2014-01-01

    The nuclear critical safety analysis and evaluation for UX-30 transport freight package in the natural condition and accident condition were carried out with MONK-9A code and MCNP code. Firstly, the critical benchmark experiment data of public in international were selected, and the deflection and subcritical limiting value with MONK-9A code and MCNP code in calculating same material form were validated and confirmed. Secondly, the neutron efficiency multiplication factors in the natural condition and accident condition were calculated and analyzed, and the safety in transport process was evaluated by taking conservative suppose of nuclear critical safety. The calculation results show that the max value of k eff for UX-30 transport freight package is less than the subcritical limiting value, and the UX-30 transport freight package is in the state of subcritical safety. Moreover, the critical safety index (CSI) for UX-30 package can define zero based on the definition of critical safety index. (authors)

  15. 48 CFR 245.7311-2 - Safety, security, and fire regulations.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Safety, security, and fire regulations. 245.7311-2 Section 245.7311-2 Federal Acquisition Regulations System DEFENSE ACQUISITION... Inventory 245.7311-2 Safety, security, and fire regulations. ...

  16. Influence of Malfunctions of Selected Bus Subsystems on Bus Transportation Safety

    Directory of Open Access Journals (Sweden)

    Bojar Piotr

    2016-10-01

    Full Text Available This article introduces division of transport systems into land transport systems (road and rail as well as land and water transport systems (inland and sea, depending on the type of environment in which these systems carry out their tasks. Such systems comprise the class of social engineering systems of the Man – Technological Object – Environment (M – TO – E type. Such systems are influenced by forcing factors, leading to changes in their condition. Such factors may be divided into operational, external and anthropotechnical and they cause the degradation of the system on various levels, including a decrease of the degree of its safety. The article attempts to evaluate the safety of the operation of transport systems on the basis of the evaluation of the safety of the transport process carried out over a defined time interval Δt. The evaluation of the safety of the implemented transport process was prepared on the basis of a set of calculated index values determined depending on the type of transport.

  17. The French nuclear safety authority's experience with radioactive transport inspection

    International Nuclear Information System (INIS)

    Jacob, E.; Aguilar, J.

    2004-01-01

    About 300,000 radioactive material packages are transported annually in France. Most consist of radioisotopes for medical, pharmaceutical or industrial use. On the other hand, the nuclear industry deals with the transport of fuel cycle materials (uranium, fuel assemblies, etc.) and waste from power plants, reprocessing plants and research centers. France is also a transit country for shipments such as spent fuel packages from Switzerland or Germany, which are bound for Sellafield in Great Britain. The French nuclear safety authority (DGSNR: Directorate General for Nuclear Safety and Radioprotection) has been responsible since 1997 for the safety of radioactive material transport. This paper presents DGNSR's experience with transport inspection: a feedback of key points based on 300 inspections achieved during the past five years is given

  18. Risk assessment for transport operations

    International Nuclear Information System (INIS)

    Appleton, P.R.; Miles, J.C.

    1990-01-01

    The world-wide safety of the transport of radioactive material is based on the IAEA Transport Regulations. Risk assessment can provide quantitative data to help in the demonstration, understanding and improvement of the effectiveness of the Regulations in assuring safety. In this Paper the methodology, data and computer codes necessary and available for transport risk assessment are reviewed. Notable examples of assessments carried out over the past 15 years are briefly described along with current research, and the benefits and limitations of the techniques are discussed. (author)

  19. The politics of nuclear safety regulation

    International Nuclear Information System (INIS)

    Adam, G.

    2002-01-01

    The paper discusses political aspects of decision making about the safety of nuclear power plants especially in Eastern Europe and in connection with the enlargement of the European Union. The problem of the Kozloduy NPP safety is also discussed. Recommendations on the policy and tasks for nuclear regulators are given

  20. 77 FR 69899 - Public Conference on Geographic Information Systems (GIS) in Transportation Safety

    Science.gov (United States)

    2012-11-21

    ... NATIONAL TRANSPORTATION SAFETY BOARD Public Conference on Geographic Information Systems (GIS) in... Geographic Information Systems (GIS) in transportation safety on December 4-5, 2012. GIS is a rapidly... visualization of data. The meeting will bring researchers and practitioners in transportation safety and GIS...

  1. Regulation of transport processes across the tonoplast

    Science.gov (United States)

    Neuhaus, H. Ekkehard; Trentmann, Oliver

    2014-01-01

    In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g., due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation. PMID:25309559

  2. Test for radioactive material transport package safety

    International Nuclear Information System (INIS)

    Li Guoqiang; Zhao Bing; Zhang Jiangang; Wang Xuexin; Ma Anping

    2012-01-01

    Regulations on radioactive material transport in China were introduced. Test facilities and data acquiring instruments for radioactive material package in China Institute for Radiation Protection were also introduced in this paper, which were used in drop test and thermal test. Test facilities were constructed according to the requirements of IAEA's 'Regulations for the Safe Transport of Radioactive Material' (TS-R-l) and Chinese 'Regulations for the Safe Transport of Radioactive Material' (GB 11806-2004). Drop test facilities were used in free drop test, penetration test, mechanical test (free drop test Ⅰ, free drop test Ⅱ and free drop test Ⅲ) of type A and type B packages weighing less than thirteen tons. Thermal test of type B packages can be carried out in the thermal test facilities. Certification tests of type FCo70-YQ package, type 30A-HB-01 package, type SY-I package and type XAYT-I package according to regulations were done using these facilities. (authors)

  3. Regulations for the safe transport of radioactive material. 1985 ed. Supplement 1988

    International Nuclear Information System (INIS)

    1988-01-01

    A major revision of the Agency's Regulations for the Safe Transport of Radioactive Material, Safety Series No. 6, was undertaken during a period of several years, culminating in the publication of the 1985 Edition. In order to consider minor problems in the new edition, the Agency convened a panel of experts in January 1986. This panel recommended some amendments which were subsequently published as Supplement 1986 to the Regulations. A further review panel meeting took place in June 1987. The amendments which were recommended for early adoption were themselves divided into two kinds. The first of these are designated as minor changes. The second kind of amendment recommended for early adoption comprises actual changes to regulatory provisions. Several changes of this second type were recommended by the panel and are included in this Supplement. The Supplement also contains the amended texts of the supporting documents, Safety Series Nos 7, 37 and 80, which are necessary to correct minor errors as well as to provide complementary information for the changes introduced to the Regulations themselves. In addition, the Supplement embodies the contents of Supplement 1986, which is consequently superseded.

  4. ENSURING THE SAFETY OF ROAD TRANSPORTATION OF GOODS

    Directory of Open Access Journals (Sweden)

    Liudmila Nikolaevna Andronikova

    2017-05-01

    Full Text Available The article investigates Russian and foreign regulatory documents, governing the issues of cargo securing in road transport, and sets out recommendations to ensure the safety of road transportation of goods by means of their attachment.

  5. National competent authorities. List no. 11. Regulations for the safe transport of radioactive materials. 1973 revised edition (Safety series no. 6)

    International Nuclear Information System (INIS)

    1979-04-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness

  6. National competent authorities. List no. 11. Regulations for the safe transport of radioactive materials. 1973 revised edition (Safety series no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-04-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness.

  7. National competent authorities. List no. 10. Regulations for the safe transport of radioactive materials. 1973 revised edition (Safety series no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-04-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness.

  8. National competent authorities. List no. 9. Regulations for the safe transport of radioactive materials. 1973 revised edition (Safety series no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-08-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness.

  9. National competent authorities. List no. 7. Regulations for the safe transport of radioactive materials. 1973 revised edition (Safety series no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-01-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness.

  10. National competent authorities. List no. 6. Regulations for the safe transport of radioactive materials. 1973 revised edition (Safety series no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-01-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness.

  11. National competent authorities. List no. 8. Regulations for the safe transport of radioactive materials. 1973 revised edition (Safety series no. 6)

    International Nuclear Information System (INIS)

    1976-01-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness

  12. National competent authorities. List no. 10. Regulations for the safe transport of radioactive materials. 1973 revised edition (Safety series no. 6)

    International Nuclear Information System (INIS)

    1978-04-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness

  13. National competent authorities. List no. 7. Regulations for the safe transport of radioactive materials. 1973 revised edition (Safety series no. 6)

    International Nuclear Information System (INIS)

    1975-01-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness

  14. National competent authorities. List no. 9. Regulations for the safe transport of radioactive materials. 1973 revised edition (Safety series no. 6)

    International Nuclear Information System (INIS)

    1977-08-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness

  15. National competent authorities. List no. 6. Regulations for the safe transport of radioactive materials. 1973 revised edition (Safety series no. 6)

    International Nuclear Information System (INIS)

    1974-01-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness

  16. National competent authorities. List no. 8. Regulations for the safe transport of radioactive materials. 1973 revised edition (Safety series no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-01-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness.

  17. Safety first. Status reports on the IAEA's safety standards

    International Nuclear Information System (INIS)

    Webb, G.; Karbassioun, A.; Linsley, G.; Rawl, R.

    1998-01-01

    Documents in the IAEA's Safety Standards Series known as RASS (Radiation Safety Standards) are produced to develop an internally consistent set of regulatory-style publications that reflects an international consensus on the principles of radiation protection and safety and their application through regulation. In this article are briefly presented the Agency's programmes on Nuclear Safety Standards (NUSS), Radioactive Waste Safety Standards (RADWASS), and Safe Transport of Radioactive Materials

  18. Space transportation main engine reliability and safety

    Science.gov (United States)

    Monk, Jan C.

    1991-01-01

    Viewgraphs are used to illustrate the reliability engineering and aerospace safety of the Space Transportation Main Engine (STME). A technology developed is called Total Quality Management (TQM). The goal is to develop a robust design. Reducing process variability produces a product with improved reliability and safety. Some engine system design characteristics are identified which improves reliability.

  19. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements. (Russian Edition); Pravila bezopasnoj perevozki radioaktivnykh materialov. Izdanie 2012 goda. Konkretnye trebovaniya bezopasnosti

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  20. Radioactive material air transportation

    International Nuclear Information System (INIS)

    Pader y Terry, Claudio Cosme

    2002-01-01

    As function of the high aggregated value, safety regulations and the useful life time, the air transportation has been used more regularly because is fast, reliable, and by giving great security to the cargo. Based on the International Atomic Energy Agency (IAEA), the IATA (International Air Transportation Association) has reproduced in his dangerous goods manual (Dangerous Goods Regulations - DGR IATA), the regulation for the radioactive material air transportation. Those documents support this presentation

  1. Regulatory Body Safety Culture in Non-nuclear HROs: Lessons for Nuclear Regulators

    International Nuclear Information System (INIS)

    Fleming, M.; Bowers, K.

    2016-01-01

    Regulator safety culture is a relatively new area of investigation, even though deficiencies in regulatory oversight have been identified in a number of public inquiries (e.g., Piper Alpha, Deep Water Horizon). More recently the IAEA report into the Fukushima disaster specifically identified the need for regulatory bodies to have a positive safety culture. While there are clear parallels between duty holder safety culture and regulator safety culture there are also likely to be differences. To date they have been no published studies investigating regulator safety culture. In order to develop a framework to understand regulator safety culture we conducted a literature review and interviewed safety culture subject matter experts from a range of HRO domains (e.g., offshore oil and gas). There was general consensus among participants that regulatory safety culture was an important topic that was worthy of further investigation. That there was general agreement that regulatory safety culture was multi-dimensional and that some of the elements of existing safety culture models applied to regulator culture (e.g., learning and leadership). The participants also identified unique dimensions of regulator safety culture including commitment to high standards and ethics, transparency and perceived role of the regulator. In this paper we will present the results of the interviews and present a model of regulator safety culture. This model will be contrasted with models being used in the nuclear industry. Implications for assessing regulatory safety culture will be discussed. (author)

  2. Development of NPP safety regulation in Russia

    International Nuclear Information System (INIS)

    Vishnevsky, Y.G.; Gutsalov, A.T.; Bukrinsky, A.M.; Gordon, B.G.

    1999-01-01

    The presentation describes the organisation scheme of Russian safety regulatory bodies, their tasks and responsibilities. Legislative and regulatory basis of NPP safety regulations rely on the federal laws: Law on the Use of Nuclear Energy and Law on Radiation Safety of the Population. Role of international cooperation and Improvement of regulatory activities in Russia are emphasised

  3. The USERDA transport R and D program for environment and safety

    International Nuclear Information System (INIS)

    Sisler, J.A.

    1976-01-01

    This paper describes the U.S. Energy Research and Development Administration's (ERDA) transportation environment and safety research and development program for energy fuels and wastes, including background, current activities, and future plans. It will serve as an overview and integrating factor for the several related technical papers to be presented at this meeting which will enlarge on the detail of specific projects. The transportation R and D program provides for the environmental and safety review of transport systems and procedures; standards development; and package, vehicle, and systems testing for nuclear materials transport. A primary output of the program is the collection, processing, and dissemination of transport environment and safety data, shipment statistics, and technical information. Special transport projects which do not easily fit elsewhere in ERDA are usually done as a part of this program. (author)

  4. Compilation of comments concerning the 3rd draft revision of the IAEA regulations for safety transport of radioactive materials

    International Nuclear Information System (INIS)

    1983-08-01

    The report contains comments made by Member States and International Organizations to the third draft revision of the International Energy Agency's regulations for the safe transport of radioactive materials. The comments are compiled in logical groups referring to various aspects of the regulations

  5. 49 CFR 209.501 - Review of rail transportation safety and security route analysis.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Review of rail transportation safety and security....820 § 209.501 Review of rail transportation safety and security route analysis. (a) Review of route... establish that the route chosen by the carrier poses the least overall safety and security risk, the...

  6. Recent developments in the regulation of nuclear transportation

    International Nuclear Information System (INIS)

    Grella, A.W.

    1978-01-01

    In the past four years, almost all nations and international or intergovernmental transport organizations have effected transitions from the 1967 to 1973 IAEA standards as their basis for regulatory requirements for the safe transport of radioactive materials. One major exception to this transition is the USA itself, where this transition has not yet taken place. Major amendments to revise 49 CFR Parts 100-199 of the Department of Transportation regulations and 10 CFR Part 71 of the Nuclear Regulatory Commission regulations are required to effect this transition. The notices of proposed rulemaking to effect this transition in the USA are expected to be published by DOT and NRC concurrently sometime in 1978. Final amendments can be expected later, after the public comment period on the notices and considerations of those comments. This paper summarizes the status of current thinking on US adoption of the 1973 IAEA standards, as well as the status of adoption of those standards by international intergovernmental organizations, such as the Intergovernmental Maritime Consultative Organization, International Civil Aviation Organization, etc. A number of the differences between the expected US regulations and other regulations based on the 1973 IAEA standards are explained. This paper also discusses a number of other events or matters which have been taking place in the US in the past four years which have or may have an effect on transport of nuclear materials and its regulation, including air transport of plutonium, rail transport of spent fuel and other regulations by state or political subdivisions. The paper also discusses changes to US regulations accomplished in the past four years, which are not related to 1973 IAEA standards, as well as some other possible areas where regulatory proposals might be anticipated, such as control of radiation exposures to certain transport workers and other matters

  7. Critical evaluation of safety and radiological protection requirements adopted for the transport of uranium and thorium ores and concentrates

    International Nuclear Information System (INIS)

    Mezrahi, Arnaldo; Crispim, Verginia R.

    2009-01-01

    This work evaluates in a critical way the safety and radiological protection recommendations established by the International Atomic Energy Agency - IAEA and adopted national and internationally, for the transport of uranium and thorium ores and concentrates, known according the transport regulations, as being of the Low Specific Activity Material Type-I, LSA-I, basing on more realistic scenarios than the presently existent, aiming at the determination of maximum exposure levels of radiation as well as the maximal contents of those materials in packages and conveyance. A general overview taking into account the scenarios foreseen by the regulations of the IAEA pointed out for a need of a better justification of the requirements edited by the Agency or should be used to support a request of revision of those regulations, national and internationally adopted, in the pertinent aspects to the transport of uranium and thorium ores and concentrates. (author)

  8. Legislation for the countermeasures on special issues of nuclear safety regulations

    International Nuclear Information System (INIS)

    Cho, Byung Sun; Lee, Mo Sung; Chung, Gum Chun; Kim, Hak Man; Oh, Ho Chul

    2003-02-01

    Since the present legal system on nuclear safety regulation has some problems that refer to contents of regulatory provisions, this mid-report has preformed research on the legal basic theory of nuclear safety regulation. And then secondly this report analyzed the problems of each provisions and suggested the revision drafts on the basis of analyzing problems and the undergoing theory of nuclear safety regulation. In order to interpret easily this report finally took the cases of judicial precedents on nuclear safety regulation in USA, Germany, Japan and Korea

  9. Legislation for the countermeasures on special issues of nuclear safety regulations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byung Sun; Lee, Mo Sung; Chung, Gum Chun; Kim, Hak Man; Oh, Ho Chul [Chongju Univ., Cheongju (Korea, Republic of)

    2003-02-15

    Since the present legal system on nuclear safety regulation has some problems that refer to contents of regulatory provisions, this mid-report has preformed research on the legal basic theory of nuclear safety regulation. And then secondly this report analyzed the problems of each provisions and suggested the revision drafts on the basis of analyzing problems and the undergoing theory of nuclear safety regulation. In order to interpret easily this report finally took the cases of judicial precedents on nuclear safety regulation in USA, Germany, Japan and Korea.

  10. The IAEA regulations for the safe transport of radioactive material; new strategies for the future

    International Nuclear Information System (INIS)

    Selling, H.A.; Brittinger, M.T.M.

    1993-01-01

    This paper presents a historic review of 30 years experience with the IAEA's Regulations for the Safe Transport of Radioactive Material as the basis for regulatory control of those materials worldwide. It is demonstrated that the underlying principles and fundamental philosophy have proven their validity and have been the main reason for the excellent safety record of transport operations. The IAEA Regulations are currently halfway a comprehensive revision process aiming at the publication of a new edition by 1996. Although the main principles are likely to be maintained in the next edition of the Regulations, some developments in this area will undoubtedly have an effect on their structure. The main new developments are: the air transport of large quantities of radioactive material, requiring that a risk basis be established which is comparable with other modes of transport, transport of uranium hexafluoride requiring provisions which include the associated chemical hazards, the transport of large volumes of radioactive waste originating from decommissioning of nuclear power stations, and the influence of the new risk estimates for exposure to ionizing radiation and consequently the lower dose limits as recommended by ICRP. This paper will make an attempt to identify the problems associated with those developments, to outline its programme of activities intended to address the problems and to suggest possible solutions as recommended by the IAEA senior advisory group in this subject area. (J.P.N.)

  11. Active transportation: do current traffic safety policies protect non-motorists?

    Science.gov (United States)

    Mader, Emily M; Zick, Cathleen D

    2014-06-01

    This study investigated the impact that state traffic safety regulations have on non-motorist fatality rates. Data obtained from the National Highway Traffic Safety Administration (NHTSA), the Federal Highway Administration (FHWA), and the National Institute on Alcohol Abuse and Alcoholism (NIAAA) were analyzed through a pooled time series cross-sectional model using fixed effects regression for all 50 states from 1999 to 2009. Two dependent variables were used in separate models measuring annual state non-motorist fatalities per million population, and the natural log of state non-motorist fatalities. Independent variables measuring traffic policies included state expenditures for highway law enforcement and safety per capita; driver cell phone use regulations; graduated driver license regulations; driver blood alcohol concentration regulations; bike helmet regulations; and seat belt regulations. Other control variables included percent of all vehicle miles driven that are urban and mean per capita alcohol consumption per year. Non-motorist traffic safety was positively impacted by state highway law enforcement and safety expenditures per capita, with a decrease in non-motorist fatalities occurring with increased spending. Per capita consumption of alcohol also influenced non-motorist fatalities, with higher non-motorist fatalities occurring with higher per capita consumption of alcohol. Other traffic safety covariates did not appear to have a significant impact on non-motorist fatality rates in the models. Our research suggests that increased expenditures on state highway and traffic safety and the initiation/expansion of programs targeted at curbing both driver and non-motorist intoxication are a starting point for the implementation of traffic safety policies that reduce risks for non-motorists. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Technical regulations for road transport of radioactive materials

    International Nuclear Information System (INIS)

    Juul-Jensen, P.; Ulbak, K.

    1990-01-01

    The technical regulations for the transport of radioactive materials in Denmark are set down by the (Danish) National Board of Health in collaboration with the (Danish) National Institute for Radiation Hygiene in accordance with paragraph 3 of the Danish Ministry of Justice's Executive Order no. 2 of 2, January 1985 on the national road transport of dangerous goods by road, as amended by exutive order no. 251 of April 29th 1987 and no. 704 of November 1989. These regulations are presented here. They are almost identical, with only very few exceptions indicated in the publication, with the rules for Class 7 of the European convention on international transport of dangerous goods by road (ADR). In addition to the aforementioned regulations for national road transport of radioactive materials the general rules for the transport of radioactive materials found in the National Board of Health's executive order no. 721 of November 27th 1989 on the transport of radioactive materials are valid. The abovementioned executive orders, with the exception of certain supplements which are not part of the technical regulations, are also contained in this publication. (AB)

  13. On the Regulation of Life Safety Risk

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Sørensen, John Dalsgaard; Vrouwenvelder, A.C.W.M.

    2015-01-01

    . Starting point is taken in a short outline of what is considered to comprise the present best practice rationale for life safety and health risk regulation. Thereafter, based on selected principal examples from different application areas, inconsistencies in present best practice risk quantification...... absolute level of individual life safety risk subject to assessment of acceptability. It is highlighted that a major cause of inconsistency in risk quantifications and comparisons originates from the fact that present regulations partly address societal activities and partly address applied technologies...

  14. STATE REGULATION OF CARGO SECURING FOR ROAD TRANSPORT

    Directory of Open Access Journals (Sweden)

    Nikolay Anatolievich Atrokhov

    2015-09-01

    Full Text Available This article examines the legal documents governing the securing of cargo in road transport, provides an overview of international experience in the safety of road transport of goods by means of securing.

  15. Safety regulations: Implications of the new risk perspectives

    International Nuclear Information System (INIS)

    Aven, T.; Ylönen, M.

    2016-01-01

    The current safety regulations for industrial activities are to a large extent functionally oriented and risk-based (informed), expressing what to achieve rather than the means and solutions needed. They are founded on a probability-based perspective on risk, with the use of risk assessment, risk acceptance criteria and tolerability limits. In recent years several risk researchers have argued for the adoption of some new types of risk perspectives which highlight uncertainties rather than probabilities in the way risk is defined, the point being to better reflect the knowledge, and lack of knowledge, dimension of risk. The Norwegian Petroleum Safety Authority has recently implemented such a perspective. The new ISO standard 31000 is based on a similar thinking. In this paper we discuss the implications of these perspectives on safety regulation, using the oil & gas and nuclear industries as illustrations. Several suggestions for how to develop the current safety regulations in line with the ideas of the new risk perspectives are outlined, including some related to the use of risk acceptance criteria (tolerability limits). We also point to potential obstacles and incentives that the larger societal and institutional setting may impose on industry as regards the adoption of the new risk perspectives. - Highlights: • Some new types of risk perspectives have been promoted. • They have been implemented for example by the Norwegian Petroleum Safety Authority. • The paper studies the implication of these perspectives on the risk regulation. • Suggestions for how to develop the regulations are provided • Obstacles and incentives for the implementation of the perspectives are pointed to.

  16. NEA activities in safety and regulation

    International Nuclear Information System (INIS)

    Stadie, K.B.

    1983-01-01

    The NEA programme on Safety and Regulations is briefly reviewed. It encompasses four main areas - nuclear safety technology; nuclear licensing; radiation protection; and waste management - with three principal objectives: to promote exchanges of technical information in order to enlarge the data base for national decision making; to improve co-ordination of national R and D activities with emphasis on international standard problem exercises, and to promote international projects; to develop common technical, administrative and legal approaches to improve compatibility of safety and regulatory practices

  17. Transport safety research abstracts. No. 1

    International Nuclear Information System (INIS)

    1991-07-01

    The Transport Safety Research Abstracts is a collection of reports from Member States of the International Atomic Energy Agency, and other international organizations on research in progress or just completed in the area of safe transport of radioactive material. The main aim of TSRA is to draw attention to work that is about to be published, thus enabling interested parties to obtain further information through direct correspondence with the investigators. Information contained in this issue covers work being undertaken in 6 Member States and contracted by 1 international organization; it is hoped with succeeding issues that TSRA will be able to widen this base. TSRA is modelled after other IAEA publications describing work in progress in other programme areas, namely Health Physics Research Abstracts (No. 14 was published in 1989), Waste Management Research Abstracts (No. 20 was published in 1990), and Nuclear Safety Research Abstracts (No. 2 was published in 1990)

  18. 49 CFR 1106.4 - The Safety Integration Plan process.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false The Safety Integration Plan process. 1106.4 Section 1106.4 Transportation Other Regulations Relating to Transportation (Continued) SURFACE... CONSIDERATION OF SAFETY INTEGRATION PLANS IN CASES INVOLVING RAILROAD CONSOLIDATIONS, MERGERS, AND ACQUISITIONS...

  19. The Transport of Radioactive Materials under special arrangement

    International Nuclear Information System (INIS)

    Biaggio, A.L.; Vietri, J.R.L.

    1993-01-01

    The Agency's Regulations for the Safe Transport of Radioactive Material rule the international transport of these materials and provide the basis of national and regional regulations. The Regulations establish the technical, operational and administrative requirements which shall be accomplished to carry out the transport of radioactive materials (RAM). They also allow the transport in different conditions of those currently applicable and, in such cases, establish that the transport shall be made under special arrangement. To approve a transport under special arrangement the involved Competent Authority shall be satisfied that the alternative provisions are adequate to ensure that the overall level of safety in transport and in-transit storage is at least equivalent to that which would be provided if all the applicable requirements had been met (para. 2ll of the International Atomic Energy Agency Safety Series No. 6). This paper explains some difficulties the Argentine Competent. Authority has experienced trying by comparing the equivalence between the level of safety resulting from the compliance with current requirements and the overall level of safety which is provided by the application of alternative provisions. As most of the experience gained come from the transport of RAM by road, only this mode of transport is considered. (J.P.N.)

  20. Radiation safety and gynaecological brachytherapy

    International Nuclear Information System (INIS)

    Crawford, L.

    1985-01-01

    In 1983, the Radiation Control Section of the South Australian Health Commission conducted an investigation into radiation safety practices in gynaecological brachytherapy. Part of the investigation included a study of the transportation of radioactive sources between hospitals. Several deficiences in radiation safety were found in the way these sources were being transported. New transport regulations came into force in South Australia in July 1984 and since then there have been many changes in the transportation procedure

  1. Review of the Federal Motor Carrier Safety Regulations for Automated Commercial Vehicles: Preliminary Assessment of Interpretation and Enforcement Challenges, Questions, and Gaps

    Science.gov (United States)

    2018-03-01

    The Volpe National Transportation Systems Center (Volpe) reviewed the Federal Motor Carrier Safety Regulations (FMCSRs) to identify compliance and enforcement challenges related to the operation of automated commercial vehicles (CMVs) in interstate c...

  2. Transportation of nuclear materials

    International Nuclear Information System (INIS)

    Brobst, W.A.

    1977-01-01

    Twenty years of almost accident-free transport of nuclear materials is pointed to as evidence of a fundamentally correct approach to the problems involved. The increased volume and new technical problems in the future will require extension of these good practices in both regulations and packaging. The general principles of safety in the transport of radioactive materials are discussed first, followed by the transport of spent fuel and of radioactive waste. The security and physical protection of nuclear shipments is then treated. In discussing future problems, the question of public understanding and acceptance is taken first, thereafter transport safeguards and the technical bases for the safety regulations. There is also said to be a need for a new technology for spent fuel casks, while a re-examination of the IAEA transport standards for radiation doses is recommended. The IAEA regulations regarding quality assurance are said to be incomplete, and more information is required on correlations between engineering analysis, scale model testing and full scale crash testing. Transport stresses on contents need to be considered while administrative controls have been neglected. (JIW)

  3. Regulations concerning the transport of nuclear fuel materials outside the works or the enterprise

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the order for execution of the law. Basic concepts and terms are explained, such as: vehicle transport; easy transport; nuclear fuel material load, exclusive loading, employee, accumulative dose and exposure dose. Technical standards of vehicle transport are specified in detail on nucler fuel materials as nuclear fuel load, L,A, EM and BU type of load, nuclear fuel load of fission substances, the second and third type of fission load and materials contaminated by nuclear fuel substances to be carried not as nuclear fuel loads. Special exceptional measures to such transport and technical standards of easy transport are also designated. The application for confirmation of the transport shall be filed to the Director General of Science and Technology Agency according to the form attached with documents explaining nuclear fuel materials to be transferred, the vessel of such materials and construction, material and method of production of such a vessel, safety of nuclear materials contained, etc. Measures in dangerous situations shall be taken to fight a fire or prohibit the entrance of persons other than the staff concerned. Reports shall be presented in 10 days to the Director, when theft, loss or irregular leaking of nuclear fuel materials or personal troubles occur on the way. (Okada, K.)

  4. Regulatory Framework for the Safe and Secure Transport of Nuclear Material in Japan

    International Nuclear Information System (INIS)

    Konnai, A.; Shibasaki, N.; Ikoma, Y.; Kato, M.; Yamauchi, T.; Iwasa, T.

    2016-01-01

    Regulations for nuclear material transport in Japan are based on international regulations. Safety and security regulations, however, have sometime different aspects which have caused a conflict of operations. This paper aims to introduce framework of safety and security regulations for nuclear material transport in Japan, and shows some issues in cooperation of these regulations. (author)

  5. An updated status of Department of Energy safety reviews of packages for transporting radioactive material

    International Nuclear Information System (INIS)

    Kapoor, A.

    1995-01-01

    The Department of Energy conducts conformance reviews and issues Certificates of Compliance for Type B packaging for radioactive materials. Several offices within DOE perform these reviews which are required by the Department of Transportation to be to the regulations promulgated by the Nuclear Regulatory Commission or their safety equivalent. This paper focuses on one of these offices, the Office of Facility Safety Analysis, EH-32, which is responsible for reviewing and certifying packages other than those used for weapons and weapons component, for Naval Reactors, and for Civilian Radioactive Waste Management. This paper gives the background and organizational history of EH-32, discusses the version of regulations to which the packaging is reviewed, updates the status of these reviews, describes the effectiveness of the reviews, updates the training courses sponsored by EH-32, and mentions the new Quality Assurance Evaluations being started by EH-32

  6. The issue of safety in the transports of radioactive materials; Le probleme de la securite dans les transports de substances radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Pallier, Lucien

    1961-11-20

    This report addresses and discusses the various hazards associated with transports of radioactive materials, their prevention, intervention measures, and precautions to be taken by rescuers, notably how these issues are addressed in regulations. For each of these issues, this report proposes guidelines, good practices, or procedures to handle the situation. The author first addresses hazards related to a transport of radioactive products: multiplicity of hazards, different hazards due to radioactivity, hazards due to transport modes, scale of dangerous doses. The second part addresses precautionary measures: for road transports, for air transports, for maritime transports, control procedures. The third part addresses the intervention in case of accident: case of a road accident with an unhurt or not vehicle crew, role of the first official rescuers, other kinds of accidents. The fourth part briefly addresses the case of transport of fissile materials. The fifth part discusses the implications of safety measures. Appendices indicate standards, and give guidelines for the construction of a storage building for radioactive products, for the control and storage of parcels containing radioactive products, and for the establishment of instructions for the first aid personnel.

  7. Strategy for public understanding and participation in nuclear safety regulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J.; Chung, Yun Hyung

    2004-02-15

    The objective of this study is to help the general public and local residents to better understand and trust nuclear safety regulation. In order to obtain public confidence in nuclear safety regulation, the emotion and demand of public should be first understood and the change in an attitude to meet the present circumstances actively is requisite. Hence it is intended that a genuine communication shall be newly arranged and accomplished on the basis of mutual understanding. To achieve this, a series of public opinion poll have performed periodically and symposium for the public acceptance is held in order to frame a policy based on the understanding of nuclear safety and regulation of the general public and local residents. Besides nuclear safety indicators including safety sentiment indicators are being developed as a means to understand the safety of operating nuclear power plants from the viewpoint of the general public, a plan for the harmonious communication of nuclear safety information is established, and handbooks of nuclear terminologies and report-writing are under development in part. Finally plans for convergence of the public opinions and a wide public involvement in nuclear safety regulation are formulated and their applicability as organization and administration program is now under consideration.

  8. Safe Transport of Radioactive Material, Philosophy and Overview

    Energy Technology Data Exchange (ETDEWEB)

    EL-Shinawy, R M.K. [Radiation Protection Dept., Nuclear Rasearch Center, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international and national regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1(ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series Nos 7and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series Nos 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS no.113), compliance assurance (SS no. 112), the training manual and others.

  9. Safe Transport of Radioactive Material, Philosophy and Overview

    International Nuclear Information System (INIS)

    EL-Shinawy, R.M.K.

    2008-01-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international and national regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1(ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series Nos 7and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series Nos 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS no.113), compliance assurance (SS no. 112), the training manual and others

  10. The transport system approval concept

    International Nuclear Information System (INIS)

    Pettersson, B.G.

    1991-01-01

    The needs for, and merits of, a new concept for the safety assessment and approval of shipments of radioactive materials is introduced and discussed. The purpose of the new concept is to enable and encourage integration of analysis and review of transport safety with similar safety analysis and review of the handling operations involving the radioactive material at the despatching and receiving ends of a shipment. Safety contributing elements or functions of the means of transport (the Transport System) can thus readily be taken into account in the assessment. The objective is to avoid constraints -experienced or potential - introduced by the package functional provisions contained in the transport regulations, whilst maintaining safety during transport, as well as during facility handling operations, at least at the level at the level currently established. (author)

  11. Alternative development and action plan for the atomic safety regulation instruments

    International Nuclear Information System (INIS)

    Kim, J. Y.; Ahn, S. K.; Ham, Y. S.

    2004-01-01

    The goal of this study to provide highly practical model to regulation agency. Since nuclear power safety regulation has different characteristics, compared to general regulation, it is important to have new point of view and approach. But application possibility for regulation that guarantees the 'perfect safety' is very low. Therefore, it is important establish nuclear power safety regulation that is realistic as well as safety securing. In order to establish high quality regulation, evaluation of existing regulation must be done first. Thus in this study, 6 standards to evaluate existing regulation are suggested. They are clearness, efficiency, flexibility, reliability, responsibility and political consideration. Also, strategies to complement the weak points of regulatory governance, regulatory sunset, regulatory map, regulatory negotiation, regulatory benefit cost analysis, etc. These strategies can be applied all in one regulation, and can strategically be selected for application. After analyzing the result if case analysis on nuclear furnace regulation for research study, agreement was made that it is most efficient to consider in the order if clearness reliability, flexibility, confidence, political consideration, administrative efficiency and economic efficiency

  12. Transport fire safety engineering in the European Union - project TRANSFEU

    Directory of Open Access Journals (Sweden)

    Jolanta Maria RADZISZEWSKA-WOLIŃSKA

    2011-01-01

    Full Text Available Article presents European Research project (of FP7-SST-2008-RTD-1 for Surface transportation TRANSFEU. Projects undertakes to deliver both a reliable toxicity measurement methodology and a holistic fire safety approach for all kind of surface transport. It bases on a harmonized Fire Safety Engineering methodology which link passive fire security with active fire security mode. This all embracing system is the key to attain optimum design solutions in respect to fire safety objectives as an alternative to the prescriptive approach. It will help in the development of innovative solutions (design and products used for the building of the surface transport which will better respect the environment.In order to reach these objectives new toxicity measurement methodology and related classification of materials, new numerical fire simulation tools, fire test methodology (laboratory and full scale and a decisive tool to optimize or explore new design in accordance to the fire safety requirements will be developed.

  13. 49 CFR 385.317 - Will a safety audit result in a safety fitness determination by the FMCSA?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Will a safety audit result in a safety fitness... SAFETY REGULATIONS SAFETY FITNESS PROCEDURES New Entrant Safety Assurance Program § 385.317 Will a safety audit result in a safety fitness determination by the FMCSA? A safety audit will not result in a safety...

  14. 76 FR 38267 - The Federal Motor Carrier Safety Administration's 2011-2016 Strategic Plan: Raising the Safety Bar

    Science.gov (United States)

    2011-06-29

    ... Federal Docket Management System (FDMS) address: http://www.regulations.gov . Fax: 202-493-2251. Mail: Docket Management Facility (M-30), U.S. Department of Transportation, West Building Ground Floor, Room... transport and logistics supply chain in improving CMV safety factors. This is a holistic view of safety that...

  15. Development of Comprehensive Nuclear Safety Regulation Plan for 2007-2011

    International Nuclear Information System (INIS)

    Choi, Young Sung; Kim, Woong Sik; Park, Dong Keuk; Kim, Ho Ki

    2006-01-01

    The Article 8-2 of Atomic Energy Act requires the government to establish Atomic Energy Promotion Plan every five years. It sets out national nuclear energy policies in a systematic and consistent way. The plan presents the goals and basic directions of national nuclear energy policies on the basis of current status and prospects. Both areas of utilization and safety management of nuclear energy are included and various projects and schedules are delineated based on the national policy directions. The safety management area in this plan deals with the overall safety and regulation policy. Its detail projects and schedule should be developed in separate plans by responsible ministries under the mediation of the MOST. As a regulatory authority, MOST is responsible for safety management area and its technical support organization, KINS has developed Comprehensive Nuclear Safety Regulation Plan as an implementation plan of safety area. This paper presents the development process and specific projects contained in the Comprehensive Nuclear Safety Regulation Plan which is under development now

  16. The transport safety of radioactive matters; La surete des transports des matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Landier, D.; Louet, Ch.A.; Robert, Ch. [Autorite de Surete Nucleaire, 75 - Paris (France); Binet, J. [Commission europeenne, DG Energie et transports, Bruxelles (Belgium); Malesys, P. [TN International, 75 - Paris (France); Pourade, C. [Societe Dangexpress, 78 - St Remy l' Honore (France); Le Meur, A.; Robert, M. [Societe Nationale des Chemins de fer Francais, 75 - Paris (France); Turquet de Beauregard, G.Y.; Hello, E. [CIS bio, 91 - Gif sur Yvette (France); Laumond, A. [Electricite de France (EDF), 75 - Paris (France); Regnault, Ph.; Gourlay, M. [AREVA NC, 78 - Velizy Villacoublay (France); Bruhl, G. [CEA Fontenay-aux-Roses, Dir. de la Protection et de la Surete Nucleaire, 92 (France); Malvache, P.; Dumesnil, J. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), 91 - Gif sur Yvette (France); Cohen, B. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France); Sert, G. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France); Pain, M. [Ministere de l' Interieur, et de l' Amenagement du Territoire, Dir. de la Defense et la Securite Civiles, 75 - Paris (France); Green, L.; Hartenstein, M. [World Nuclear Transport Institute, London (United Kingdom); Stewart, J. [Ministere des Transport, Royaume Uni (United Kingdom); Cottens, E.; Liebens, M. [Agence Federale de Controle Nucleaire (Belgium); Marignac, Y. [Wise, 75 - Paris (France)

    2007-02-15

    Since the control of transport of radioactive materials was given to A.S.N. 10 years ago, A.S.N. has strengthened the radioactive material transport inspections, in particular of the designers, manufacturers, carriers and consignors. A.S.N. has implemented INES scale for incidents during transport. It has participated as much as possible to IAEA working groups in order to improve the international regulatory framework. And, supported by I.R.S.N., A.S.N. has performed a periodic safety review of existing package models and has approved new models incorporating innovative design features. Finally, A.S.N. has tested its emergency responses to procedures to an accident involving the transport of radioactive materials. All these actions taken together have led to improvement in and reinforcement of the safety culture among the transport operators; this has been acknowledged by a recent audit T.R.A.N.S.A.S. performed by IAEA. In spite of all these actions, there are not approved by the competent authority. As A.S.N. is in charge of every field in radioprotection, this should help to intensify the control. In addition, the different kinds of transport are also tackled as rail transport with S.N.C.F. radiological risk training, air transport through nuclear medicine. Some experience feedback are given such radioactive waste transport to the storage facilities in the Aube or how to protect the population after a nuclear transport incident with the O.R.S.E.C.-T.M.S. plans. (N.C.)

  17. 78 FR 11092 - Safety and Health Regulations for Construction

    Science.gov (United States)

    2013-02-15

    ... LABOR DEPARTMENT Occupational Safety and Health Administration 29 CFR Part 1926 Safety and Health Regulations for Construction CFR Correction In Title 29 of the Code of Federal Regulations, Part 1926, revised as of July 1, 2012, on page 225, in Sec. 1926.152, paragraph (c)(16) is added to read as follows: Sec...

  18. Guide to Radiation Safety regulations and guidelines (SSMFS 2012:3) on the management of contaminated ash

    International Nuclear Information System (INIS)

    Moere, Hans

    2012-06-01

    Energy producers burning peat or wood fuel can obtain ash that is contaminated with cesium-137 from Tjernobyl accident or naturally occurring uranium, thorium and potassium, from some peat bogs. Regulations (SSMFS 2012:3) have been developed which regulates how the contaminated ash should be handled. The regulations affect all who handle contaminated ash in incinerators, landfills, public works, ash recycling, transportation or recycling of ash in other ways. Radiation Safety regulations and guidelines (SSMFS 2012:3) on the management of contaminated ash will apply from 1 September 2012. At that time Regulations (SSMFS 2008:16) on the management of ash that is contaminated with cesium-137, ceases to apply. The contents have been incorporated into the new regulations. This report provides explanations and guidance to the Regulations in order to facilitate the practical application. This guidance is not legally binding

  19. Transport safety of irradiated fuel; Seguridad en el transporte de combustible irradiado.

    Energy Technology Data Exchange (ETDEWEB)

    Rosa Giménez, R. de la

    2016-07-01

    The complication of the transport of spent fuel is significant not only because of the danger of the transported good itself but also for the size of the package. The number of this kind of expeditions are supposed to increase considerably in the coming years, for that reason is necessary for specialized companies such as ETSA be prepared. To this end, ETSA has already implemented most of the measures necessary to ensure safety - security of transport, not only during its execution but throughout the preparation.

  20. Resolution 12/2004 Guideline for implementation of safety regulations in the practice of industrial radiography

    International Nuclear Information System (INIS)

    2004-01-01

    1. This guide is intended to clarify, in relation to its application in practice Industrial Radiography, the provisions of: a) Joint Resolution CITMA-MINSAP, of December 15, 2002, Regulation: B asic Radiation Safety Standards , hereinafter Regulation NBS; b) Resolution No. 25/98 of CITMA Regulation. A uthorization Practices Associated with the use of ionizing radiation , hereinafter Resolution 25/98; c) Resolution 121/2000 CITMA Regulation: F or the Safe Transport of Radioactive materials , hereinafter Resolution 121/2000; and in d) Joint Resolution CITMA-MINSAP, Regulation: S election, Training and Authorization of personnel performing Employment Practices Associated Radiation Ionizing . 2. For the purposes of applying this Guide considers the practice of Industrial Radiography includes the following techniques: a) Industrial Radiography with use of gamma radiation sources; b) crawler radiography equipment; and c) Industrial Radiography with X-rays

  1. 49 CFR 384.221 - Out-of-service regulations (intoxicating beverage).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Out-of-service regulations (intoxicating beverage...) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY... Compliance by States § 384.221 Out-of-service regulations (intoxicating beverage). The State shall adopt, and...

  2. Review of Policy Documents for Nuclear Safety and Regulation

    International Nuclear Information System (INIS)

    Kim, Woong Sik; Choi, Kwang Sik; Choi, Young Sung; Kim, Hho Jung; Kim, Ho Ki

    2006-01-01

    The goal of regulation is to protect public health and safety as well as environment from radiological hazards that may occur as a result of the use of atomic energy. In September 1994, the Korean government issued the Nuclear Safety Policy Statement (NSPS) to establish policy goals of maintaining and achieving high-level of nuclear safety and also help the public understand the national policy and a strong will of the government toward nuclear safety. It declares the importance of establishing safety culture in nuclear community and also specifies five nuclear regulatory principles (Independence, Openness, Clarity, Efficiency and Reliability) and provides the eleven regulatory policy directions. In 2001, the Nuclear Safety Charter was declared to make the highest goal of safety in driving nuclear business clearer; to encourage atomic energy- related institutions and workers to keep in mind the mission and responsibility for assuring safety; to guarantee public confidence in related organizations. The Ministry of Science and Technology (MOST) also issues Yearly Regulatory Policy Directions at the beginning of every year. Recently, the third Atomic Energy Promotion Plan (2007-2011) has been established. It becomes necessary for the relevant organizations to prepare the detailed plans on such areas as nuclear development, safety management, regulation, etc. This paper introduces a multi-level structure of nuclear safety and regulation policy documents in Korea and presents some improvements necessary for better application of the policies

  3. Review of Policy Documents for Nuclear Safety and Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woong Sik; Choi, Kwang Sik; Choi, Young Sung; Kim, Hho Jung; Kim, Ho Ki [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2006-07-01

    The goal of regulation is to protect public health and safety as well as environment from radiological hazards that may occur as a result of the use of atomic energy. In September 1994, the Korean government issued the Nuclear Safety Policy Statement (NSPS) to establish policy goals of maintaining and achieving high-level of nuclear safety and also help the public understand the national policy and a strong will of the government toward nuclear safety. It declares the importance of establishing safety culture in nuclear community and also specifies five nuclear regulatory principles (Independence, Openness, Clarity, Efficiency and Reliability) and provides the eleven regulatory policy directions. In 2001, the Nuclear Safety Charter was declared to make the highest goal of safety in driving nuclear business clearer; to encourage atomic energy- related institutions and workers to keep in mind the mission and responsibility for assuring safety; to guarantee public confidence in related organizations. The Ministry of Science and Technology (MOST) also issues Yearly Regulatory Policy Directions at the beginning of every year. Recently, the third Atomic Energy Promotion Plan (2007-2011) has been established. It becomes necessary for the relevant organizations to prepare the detailed plans on such areas as nuclear development, safety management, regulation, etc. This paper introduces a multi-level structure of nuclear safety and regulation policy documents in Korea and presents some improvements necessary for better application of the policies.

  4. Implementation of the new regulation on radiological safety in Peru

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    1997-01-01

    Since its creation in 1975, the Peruvian Institute of Nuclear Energy (IPEN) has enacted three regulations of national importance on the norms of protection against ionizing radiation. The first regulation, which is called regulation of radiological protection (1980) approved by a resolution of IPEN, is the result of the work of a committee constituted by IPEN and the Ministry of Health. Its implementation caused some problems as result of which, in 1989, a new regulation on radiological protection was enacted through a supreme decree. Taking into account the new recommendation of the International Commission on Radiological Protection and the International Basic Safety Standard for Protection against Ionizing Radiation and for the Safety of Radiation Sources, approved in May 1997, the regulation of radiological safety also considers evolving aspects in the Project ARCAL XVII/IAEA. This regulation includes various topics such as exclusions, requirements of protection (medical exposure, occupational exposure, public exposure, chronic exposure), requirements of source safety, interventions and emergencies, control of sources and practices (exemptions, authorizations, inspections) etc. The implementation of this regulation at the national level falls to IPEN, the unique authority commissioned to control nuclear installations, radioactivity and x ray facilities in medicine, industry and research

  5. Education and Training of Safety Regulation for Nuclear Safety Infrastructure: Its Necessity and Unique Features

    International Nuclear Information System (INIS)

    Choi, Young Sung; Choi, Young Joon; Lee, Jae Cheon

    2009-01-01

    Faced with global warming and electricity demands, countries over the world recognize the comparative advantages of nuclear energy. It is estimated that about 300 nuclear power plants (NPPs) expect to be constructed until 2030 worldwide. In addition, according to the IAEA, approximately 20 new countries might have their first NPP in operation by 2030 in the high projection compared with bout 5 new countries in the low projection. When introducing nuclear power, the implementation of an appropriate infrastructure to address all of the relevant issues is a central concern of international community. In particular, nuclear power program requires, at an earlier stage than when construction starts, the development of a legal and regulatory framework and training of regulators and safety experts whose combined knowledge adequately covers all areas of nuclear safety and regulation applied at a NPP construction and operation. As an essential component of such human resource development, special attention was paid to the provision of education and training to regulators of which countries plan to introduce NPPs. In term of education theory, safety regulation has some unique features in learning and teaching, which are different from those of nuclear engineering or development. This paper overviews nuclear safety infrastructure, explores the roles of exporting countries, and presents features and components in education of nuclear safety regulation

  6. Safety and Health Perceptions in Work-related Transport Activities in Ghanaian Industries

    Directory of Open Access Journals (Sweden)

    Charles Atombo

    2017-06-01

    Conclusion: OSH culture is not fully complied in industries transport activities. This study, therefore, supports the use of safety seminars and training sessions for industry workers responsible for transport operations for better integration of safety standards.

  7. Legislation for the countermeasures on special issues of nuclear safety regulations

    International Nuclear Information System (INIS)

    Cho, Byung Sun; Lee, Mo Sung; Chung, Gum Chun; Kim, Heon Jin; Oh, Ho Chul

    2004-02-01

    Since the present nuclear safety regulation has some legal problems that refer to special issues and contents of regulatory provisions, this report has preformed research on the legal basic theory of nuclear safety regulation to solve the problems. In addition, this report analyzed the problems of each provisions and suggested the revision drafts on the basis of analyzing problems and the undergoing theory of nuclear safety regulation

  8. Legislation for the countermeasures on special issues of nuclear safety regulations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byung Sun; Lee, Mo Sung; Chung, Gum Chun; Kim, Heon Jin; Oh, Ho Chul [Chongju Univ., Cheongju (Korea, Republic of)

    2004-02-15

    Since the present nuclear safety regulation has some legal problems that refer to special issues and contents of regulatory provisions, this report has preformed research on the legal basic theory of nuclear safety regulation to solve the problems. In addition, this report analyzed the problems of each provisions and suggested the revision drafts on the basis of analyzing problems and the undergoing theory of nuclear safety regulation.

  9. Regulation of transport processes across the tonoplast membrane

    Directory of Open Access Journals (Sweden)

    Oliver eTrentmann

    2014-09-01

    Full Text Available In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g. due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation.

  10. Regulation of organic anion transport in the liver

    NARCIS (Netherlands)

    Roelofsen, H; Jansen, PLM

    1997-01-01

    In several liver diseases the biliary transport is disturbed, resulting in, for example, jaundice and cholestasis. Many of these symptoms can be attributed to altered regulation of hepatic transporters. Organic anion transport, mediated by the canalicular multispecific organic anion transporter

  11. Arrangements for transition from the 1985 edition (as amended 1990) to the 1996 edition of the IAEA Transport Regulations

    International Nuclear Information System (INIS)

    2001-01-01

    In December 1996 the International Atomic Energy Agency published the 1996 Edition of the Regulations for the Safe Transport of Radioactive Material (formerly Safety Series No. 6) in a document called ST-1. That document has served as the basis for revising the UN Committee of Experts Recommendations on the Safe Transport of Dangerous Goods (published in 1999 as ''Model Regulations''), and as the basis for the Class 7 portions of the forthcoming revisions of RID, ADR, IMO (IMDG Code), ICAO (Technical Instructions) and IATA modal dangerous goods regulations. ST-1 was subsequently reviewed and revised with minor editorial corrections, and in 2000, a revised English version of the regulations called TS-R-1 (ST-1, Revised) was published. Difficulties may arise when applying the Regulations during the transition from the 1985 Edition of the Transport Regulations to the 1996 Edition of these regulations. These difficulties come mainly from the differences between the two sets of regulations, e.g. the definition of radioactive material with the new nuclide specific exemption levels, the new values of A 1 /A 2 , the annual dose limits, the related documentation, the labelling requirements for fissile material package, the changes in UN numbers and proper shipping names, the shipment of fissile material by air, etc. This TECDOC is intended to provide guidance on the implementation of changes in the Regulations for the Safe Transport of Radioactive Material. This guidance may be used to facilitate compliance with the Regulations. This guidance is aimed at all users of the regulations including National Competent Authorities, consignors, consignees and carriers

  12. Sensor technology for hazardous cargo transportation safety.

    Science.gov (United States)

    2013-08-01

    The overall goal of this research project was to develop oxidant vapor detection devices that can be : used to ensure the safety of hazardous freight transportation systems. Two nanotechnology-based : systems originally developed for improvised explo...

  13. Leadership for Safety in Practice: Perspectives from a Nuclear Regulator

    International Nuclear Information System (INIS)

    Tyobeka, B. M.

    2016-01-01

    The principal responsibility for a nuclear regulator is to assure compliance with regulations and safety standards by operators. One of these requirements is demonstration of, and adherence to, nuclear safety culture by the operators. At the same time, the regulators themselves are expected to live the talk and practice what they preach, i.e., demonstrate highest levels of nuclear safety culture within their organizations. Consequently, it is recognised that leadership is important in the creation of a culture that supports and promotes a strong nuclear safety performance of an organization. The leaders of a regulatory body are vital in inspiring employees to a higher level of safety and productivity, which means that they must apply good leadership attributes on a daily basis. This paper will attempt to bring forth and share attributes for strong leadership role in promoting a safety culture within a nuclear regulatory body by surveying world-wide practices and examples in developing and advanced nuclear countries. (author)

  14. Explanatory material for the IAEA regulations for the safe transport of radioactive material (1985 edition). 2. ed

    International Nuclear Information System (INIS)

    1987-01-01

    This document pertains to Safety Series No. 7 of the IAEA, which is to explain the provisions of the IAEA Safety Series No. 6 in order to help comprehension of the regulatory standards and to promote compliance, public acceptance and further development of the Regulations. The document also reflects corrections and changes implemented by the 1986 Supplement to the Regulations for the Safe Transport of Radioactive Material. The intent of the document is to show why certain provisions of Safety Series No. 6 exist, why they are so formed (including any relevant history) and the rationale behind the provisions. Definitions are presented, basic principles established, activity and fissile material limits as well as computational techniques are presented. The detailed requirements (the latter sections are built on this information) concern: shipping and storage, material packagings and packages which govern design. Test requirements are provided. Approval and administrative requirements are stated. Heavy emphasis is placed on providing safety through design. It contains the cornerstone of the basic requirements for packagings, packages and material-related aspects.

  15. Regulations for the safe transport of radioactive material. 1985 ed. Supplement 1986

    International Nuclear Information System (INIS)

    1986-01-01

    Following a six-year effort, a major revision to the Agency's Regulations for the Safe Transport of Radioactive Material (Safety Series No. 6) was issued in 1985. In order to address minor problems with the 1985 Edition of Safety Series No. 6, a panel of experts convened by the International Atomic Energy Agency met from 13 to 17 January 1986. This panel considered minor inconsistencies, omissions or errors that had occurred in the course of preparing the 1985 Edition of Safety Series No. 6, and recommended that two types of change be made. First, changes which will correct errors in the presentation of the text, translation errors (in the French, Russian and Spanish versions of the 1985 Edition), and drafting which failed to express the intent of the panels which reviewed the previous edition of the Regulations; these minor changes are promulgated herewith by the authority of the Director General. Secondly, changes of detail which can only be introduced in accordance with the procedure approved by the Board of Governors on 22 September 1972, which authorizes the Director General to promulgate such changes after giving Governments not less than ninety days' notice and taking into account any comments that they make. Three changes of this second type were recommended by the panel, and were circulated according to the 'ninety-day rule' amendment procedure on 3 February 1986. Those changes which received unanimous support by Member States are included in this Supplement. Corrected text to the 1985 Edition of Safety Series No. 6 (paragraphs, tables, etc.) is provided in this Supplement, and this corrected text supersedes the corresponding portions of the 1985 Edition of Safety Series No. 6.

  16. Improving the regulation of safety at DOE nuclear facilities. Final report

    International Nuclear Information System (INIS)

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by DOE itself. The three major recommendations are: under any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE's nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation

  17. Nuclear safety: risks and regulation

    International Nuclear Information System (INIS)

    Wood, W.C.

    1983-01-01

    Taking a fresh look at nuclear safety regulations, this study finds that the mandate and organization of the Nuclear Regulatory Commission (NRC) militate against its making sound decisions. The author criticizes failures to make hard decisions on societal risk, to clarify responsibility, and to implement cost-effective safety measures. Among his recommendations are reorganization of the NRC under a single authoritative administrator, separation of technical issues from social ones, and reform of the Price-Anderson Act. The author concludes that the worst eventuality would be to continue the current state of indecision. 161 references, 6 figures, 4 tables

  18. Domestic Regulation for Periodic Safety Review of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Daesik; Ahn, Seunghoon; Auh, Geunsun; Lee, Jonghyeok

    2015-01-01

    The so-called Periodic Safety Review (PSR) has been carried out such safety assessment throughout its life, on a periodic basis. In January 2001, the Atomic Energy Act and related regulations were amended to adopt the PSR institutional scheme from IAEA Nuclear Safety Guide 50-SG-O12. At that time the safety assessment was made to review the plant safety on 10 safety factors, such as aging management and emergency planning, where the safety factor indicates the important aspects of safety of an operating NPP to be addressed in the PSR. According to this legislation, the domestic utility, the KHNP has conducted the PSR for the operating NPP of 10 years coming up from operating license date, starting since May 2000. Some revisions in the PSR rule were made to include the additional safety factors last year. This paper introduces the current status of the PSR review and regulation, in particular new safety factors and updated technical regulation. Comprehensive safety assessment for Korea Nuclear Power Plants have performed a reflecting design and procedure changes and considering the latest technology every 10 years. This paper also examined the PSR system changes in Korea. As of July 2015, reviews for PSR of 18 units have been completed, with 229 nuclear safety improvement items. And implementation have been completed for 165 of them. PSR system has been confirmed that it has contributed to improvement of plant safety. In addition, this paper examined the PSR system change in Korea

  19. R and D perspectives on the advanced nuclear safety regulation system

    International Nuclear Information System (INIS)

    Lee, Chang Ju; Ahn, Sang Kyu; Park, Jong Seuk; Chung, Dae Wook; Han, Sang Hoon; Lee, Jung Won

    2009-01-01

    As current licensing process is much desired to be optimized both plant safety and regulatory efficiency, an advanced safety regulation such as risk informed regulation has been come out. Also, there is a need to have a future oriented safety regulation since a lot of new reactors are conceptualized. Keeping pace with these needs, since early 2007, Korean government has launched a new project for preparing an advanced and future oriented nuclear safety regulation system. In order to get practical achievements, the project team sets up such specific research objectives for the development of: implementation program for graded regulation using risk and performance information; multi purpose PSA models for regulatory uses; a technology neutral regulatory framework for future innovative reactors; evaluation procedure of proliferation resistance; and, performance based fire hazard analysis method and evaluation system. This paper introduces major R and D outputs of this project, and provides some perspectives for achieving effectiveness and efficiency of the nuclear regulation system in Korea

  20. R and D perspectives on the advanced nuclear safety regulation system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Ju; Ahn, Sang Kyu; Park, Jong Seuk; Chung, Dae Wook [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Han, Sang Hoon; Lee, Jung Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-04-15

    As current licensing process is much desired to be optimized both plant safety and regulatory efficiency, an advanced safety regulation such as risk informed regulation has been come out. Also, there is a need to have a future oriented safety regulation since a lot of new reactors are conceptualized. Keeping pace with these needs, since early 2007, Korean government has launched a new project for preparing an advanced and future oriented nuclear safety regulation system. In order to get practical achievements, the project team sets up such specific research objectives for the development of: implementation program for graded regulation using risk and performance information; multi purpose PSA models for regulatory uses; a technology neutral regulatory framework for future innovative reactors; evaluation procedure of proliferation resistance; and, performance based fire hazard analysis method and evaluation system. This paper introduces major R and D outputs of this project, and provides some perspectives for achieving effectiveness and efficiency of the nuclear regulation system in Korea.

  1. National competent authorities. List no. 16. Regulations for the safe transport of radioactive materials. 1973 revised edition (as amended) (Safety series no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-10-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness.

  2. National competent authorities. List no. 13. Regulations for the safe transport of radioactive materials. 1973 revised edition (as amended) (Safety series no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-10-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness.

  3. National competent authorities. List no. 12. Regulations for the safe transport of radioactive materials. 1973 revised edition (as amended) (Safety series no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness.

  4. National competent authorities. List no. 15. Regulations for the safe transport of radioactive materials. 1973 revised edition (as amended) (Safety series no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-10-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness.

  5. National competent authorities. List no. 14. Regulations for the safe transport of radioactive materials. 1973 revised edition (as amended) (Safety series no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-10-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness.

  6. National competent authorities. List no. 13. Regulations for the safe transport of radioactive materials. 1973 revised edition (as amended) (Safety series no. 6)

    International Nuclear Information System (INIS)

    1981-10-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness

  7. National competent authorities. List no. 16. Regulations for the safe transport of radioactive materials. 1973 revised edition (as amended) (Safety series no. 6)

    International Nuclear Information System (INIS)

    1984-10-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness

  8. National competent authorities. List no. 15. Regulations for the safe transport of radioactive materials. 1973 revised edition (as amended) (Safety series no. 6)

    International Nuclear Information System (INIS)

    1983-10-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness

  9. National competent authorities. List no. 12. Regulations for the safe transport of radioactive materials. 1973 revised edition (as amended) (Safety series no. 6)

    International Nuclear Information System (INIS)

    1980-07-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness

  10. National competent authorities. List no. 14. Regulations for the safe transport of radioactive materials. 1973 revised edition (as amended) (Safety series no. 6)

    International Nuclear Information System (INIS)

    1982-10-01

    Any national or international authority designated or otherwise recognised as such for any purpose in connection with the transport Regulations is known as a competent authority. In the Member States such a body has the responsibility for establishing national legislation to bring the Agency's transport Regulations into effect and for assuring compliance with its requirements. Depending on the national regulatory or institutional framework the functions of the competent authority may be assigned to one or more bodies. To assist Member States in implementing the transport Regulations and carrying out responsibility for compliance assurance, the IAEA continues to maintain this updated list of designated national competent authorities. Member States are annually requested to verify the list for correctness and completeness

  11. Macro-Level Modeling of Urban Transportation Safety: Case-Study of Mashhad (Iran

    Directory of Open Access Journals (Sweden)

    Mohammadi Mehdi

    2017-12-01

    Full Text Available Transportation safety can be aimed at the planning stage in order to adopt safety management and evaluate the long-time policies. The main objective of this research was to make use of crash prediction models in urban transportation planning process. As such, it was attempted to gather data on the results of transportation master plan as well as Mashhad urban crash database. Two modelling method, generalized linear model with negative binomial distribution and geographically weighted regression, were considered as the methods used in this research. Trip variables, including trip by car, trip by bus, trip by bus services and trip by school services, were significant at 95%. The results indicated that both finalized models were competent in predicting urban crashes in Mashhad. Regarding to results urban transportation safety will be improved by changing the modal share for example from private car to bus. The application of the process presented in this study can improve the urban transportation safety management processes and lead to more accurate prediction in terms of crashes across urban traffic areas.

  12. Reliability on the move: safety and reliability in transportation

    International Nuclear Information System (INIS)

    Guy, G.B.

    1989-01-01

    The development of transportation has been a significant factor in the development of civilisation as a whole. Our technical ability to move people and goods now seems virtually limitless when one considers for example the achievements of the various space programmes. Yet our current achievements rely heavily on high standards of safety and reliability from equipment and the human component of transportation systems. Recent failures have highlighted our dependence on equipment and human reliability. This book represents the proceedings of the 1989 Safety and Reliability Society symposium held at Bath on 11-12 October 1989. The structure of the book follows the structure of the symposium itself and the papers selected represent current thinking the the wide field of transportation, and the areas of rail (6 papers, three on railway signalling), air including space (two papers), road (one paper), road and rail (two papers) and sea (three papers) are covered. There are four papers concerned with general transport issues. Three papers concerned with the transport of radioactive materials are indexed separately. (author)

  13. Safety demonstration analyses at JAERI for severe accident during overland transport of fresh nuclear fuel

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Kitao, Kohichi; Karasawa, Kiyonori; Yamada, Kenji; Takahashi, Satoshi; Watanabe, Kohji; Okuno, Hiroshi; Miyoshi, Yoshinori

    2005-01-01

    It is expected in the near future that more and more fresh nuclear fuel will be transported in a variety of transport packages to cope with increasing demand from nuclear fuel cycle facilities. Accordingly, safety demonstration analyses are planned and conducted at JAERI under contract with the Ministry of Economy, Trade and Industry of Japan. These analyses are conducted in a four year plan from 2001 to 2004 to verify integrity of packaging against leakage of radioactive material in the case of a severe accident postulated to occur during transportation, for the purpose of gaining acceptance of such nuclear fuel activities. In order to create the accident scenarios, actual transportation routes were surveyed, accident or incident records were tracked, international radioactive material transport regulations such as IAEA rules were investigated and thus, accident conditions leading to mechanical damages and thermal failure were determined to characterize the scenarios. As a result, the worst-case conditions of run-off-the-road accidents were set up to define the impact against a concrete or asphalt surface. For fire accident scenarios to be set up, collisions were assumed to occur with an oil tanker carrying lots of inflammable material in open air, or with a commonly used two-ton-truck inside a tunnel without ventilation. Then the cask models were determined for these safety demonstration analyses to represent those commonly used for fresh nuclear fuel transported throughout Japan. Following the postulated accident scenarios, the mechanical damages were analyzed by using the general-purpose finite element code LS-DYNA with three-dimensional elements. It was found that leak tightness of the package be maintained even in the severe impact scenario. Then the thermal safety was analyzed by using the general-purpose finite element code ABAOUS with three-dimensional elements to describe cask geometry. As a result of the thermal analyses, the integrity of the containment

  14. The basics in transportation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Allred, W.E.

    1998-06-01

    This bulletin gives a basic understanding about issues and safety standards that are built into the transportation system for radioactive material and waste in the US. An excellent safety record has been established for the transport of commercial low-level radioactive waste, or for that matter, all radioactive materials. This excellent safety record is primarily because of people adhering to strict regulations governing the transportation of radioactive materials. This bulletin discusses the regulatory framework as well as the regulations that set the standards for packaging, hazard communications (communicating the potential hazard to workers and the public), training, inspections, routing, and emergency response. The excellent safety record is discussed in the last section of the bulletin

  15. The WIPP transportation system: Dedicated to safety

    International Nuclear Information System (INIS)

    Ward, T.; McFadden, M.

    1993-01-01

    When developing a transportation system to transport transuranic (TRU) waste from ten widely-dispersed generator sites, the Department of Energy (DOE) recognized and addressed many challenges. Shipments of waste to the Waste Isolation Pilot Plant (WIPP) were to cover a twenty-five year period and utilize routes covering over twelve thousand miles in twenty-three states. Enhancing public safety by maximizing the payload, thus reducing the number of shipments, was the primary objective. To preclude the requirement for overweight permits, the DOE started with a total shipment weight limit of 80,000 pounds and developed an integrated transportation system consisting of a Type ''B'' package to transport the material, a lightweight tractor and trailer, stringent driver requirements, and a shipment tracking system referred to as ''TRANSCOM''

  16. 49 CFR 1106.3 - Actions for which Safety Integration Plan is required.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Actions for which Safety Integration Plan is required. 1106.3 Section 1106.3 Transportation Other Regulations Relating to Transportation (Continued... TRANSPORTATION BOARD CONSIDERATION OF SAFETY INTEGRATION PLANS IN CASES INVOLVING RAILROAD CONSOLIDATIONS...

  17. Radiation Safety of Accelerator Facility with Regard to Regulation

    International Nuclear Information System (INIS)

    Dedi Sunaryadi; Gloria Doloresa

    2003-01-01

    The radiation safety of accelerator facility and the status of the facilities according to licensee in Indonesia as well as lesson learned from the accidents are described. The atomic energy Act No. 10 of 1997 enacted by the Government of Indonesia which is implemented in Radiation Safety Government Regulation No. 63 and 64 as well as practice-specific model regulation for licensing request are discussed. (author)

  18. Regulations concerning marine transport and storage of dangerous things (abridged)

    International Nuclear Information System (INIS)

    1987-01-01

    This report shows the Ordinances No.84 (1967) and No.30 (1957) of the Ministry of transport. The Ordinance No.84 has been published in detail elsewhere. The provisions concerning shipping transport and storage of dangerous substances deal with isolation of each dangerous substance, method for loading (cleaning of container, etc.), certificate for ship for transporting dangerous substances, renewal of certificate for ship for transporting dangerous substances, return of certificate, fee (for renewal and reissue of certificate), definition of terms, type of radioactive cargo (L-type cargo, A-type cargo, BM-type cargo, BU type cargo), transport of radioactive substances, type of fissionable cargo (Type I, Type II and Type III), confirmation of safety concerning radioactive cargo (conformity to standards, inspection, approval, etc.), limit of cargo volume, transport index, marking (type of cargo), confirmation of safety of transport, inspection of contamination, notice of transport, special measures, inspection of cargo (radioactive substances), requirements for container and package, etc. (Nogami, K.)

  19. Legal principles of regulatory administration and nuclear safety regulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyeong Hui; Cheong, Sang Kee [Hannam Univ., Taejon (Korea, Republic of)

    2000-12-15

    This research presents a critical analysis and evaluation of principles of administrative laws in order to provide framework of structural reform on the nuclear safety regulation system. The focus of this analysis and evaluation is centered around the area of origin of regulatory administrative laws; authorities of regulation; procedures of regulatory actions; regulatory enforcement; and administrative relief system. In chapter 2 the concept of regulatory administration is analysed. Chapter 3 identifies the origin of regulatory administration and the principles of administration laws. It also examines legal nature of the nuclear safety standard. In relation to regulatory authorities. Chapter 4 identifies role and responsibility of administration authorities and institutions. It also examines fundamental principles of delegation of power. Then the chapter discusses the nuclear safety regulation authorities and their roles and responsibilities. Chapter 5 classifies and examines regulatory administration actions. Chapter 6 evaluates enforcement measure for effectiveness of regulation. Finally, chapter 7 discusses the administrative relief system for reviewing unreasonable regulatory acts.

  20. Safety analysis of sea transportation of solidified reactor wastes

    International Nuclear Information System (INIS)

    Devell, L.; Edlund, O.; Kjellbert, N.; Grundfelt, B.; Milchert, T.

    1980-06-01

    A central handling and storage facility (ALMA) for low- and medium-level reactor waste from Swedish nuclear power plants is being planned and the transportation to it will be by sea. A safety assessment devoted to the potential environmental impacts from the transportation is presented. (Auth.)

  1. Offshore regulators focus on incentives for safety

    Energy Technology Data Exchange (ETDEWEB)

    Reid, W.

    2000-11-27

    Strict safety regulations in effect at offshore drilling sites are discussed. The guiding principle in all existing regulation is that while economic or industrial considerations are important, the value and the concern for human life is paramount. Should some tragic event occur at an offshore drilling site that is shown to have been caused by negligence of an operator, there is no question at all that the regulatory authority, in this case the Canada-Newfoundland Offshore Petroleum Board (CNOPB), would take the negligent operator to court. Nevertheless, Canadian authorities remain confident that encouragement of maintaining a safe working environment is likely to be more successful in ensuring workplace safety than threats of punishment. Indeed, Canadian regulators have, in recent times, shown a tendency to move towards performance-based systems, as opposed to the more usual prescriptive or rule-bound regulatory regime. This new approach involves setting targets and giving companies the responsibility to implement measures to reach the targets rather than relying on government instructions. Still, performance-based regulation in Canada is relatively new and some regulations remain prescriptive. Examples are the requirement for two immersion suits and two lifeboat seats for every worker on a drilling unit.

  2. 14 CFR 1300.3 - Supplementary regulations of the Air Transportation Stabilization Board.

    Science.gov (United States)

    2010-01-01

    ... Transportation Stabilization Board. 1300.3 Section 1300.3 Aeronautics and Space AIR TRANSPORTATION SYSTEM... General § 1300.3 Supplementary regulations of the Air Transportation Stabilization Board. (a) The regulations in this part are supplemented by the regulations of the Air Transportation Stabilization Board in...

  3. Safety and security considerations for the transport of spent teletherapy units

    International Nuclear Information System (INIS)

    Mallaupoma, Mario; Paez, Jose; Huatay, Luis; Cruz, Walter

    2008-01-01

    Among the applications of nuclear technology, a practice widely used and generates many benefits to society are teletherapy applications. Many of the teletherapy units used contain a source of cobalt-60 and after their useful life they have to be dismantled and transported to a safe place. In this case were transported two units with an activity of more than 75 TBq . This paper presents safety and security considerations for the transport of the teletherapy units according to the recommendations of actual state of art. It is described all facets of safe transport by means of a set of technical and administrative safety requirements and controls, including the actions required by the consignor and carrier. The main emphasis was put on the stages of transport operations that give rise to exposure to radiation like packing, preparation, loading, handling, storage in transit and movement of packages of radioactive material. On the other side some security actions were considered in order to prevent theft, sabotage or other malicious acts during the transport of the packages. As a conclusion it must be mentioned that both safety and security considerations are very important aspects that must be taking in account for the transport of high activity radioactive material. (author)

  4. Safety culture in nuclear installations - The role of the regulator

    International Nuclear Information System (INIS)

    Karigi, Alice W.

    2002-01-01

    Safety culture is an amalgamation of values, standards, morals and norms of acceptable behavior by the licensees, Radiation workers and the Regulator. The role played by a Regulator in establishing safety culture in a nuclear installation is that related to Authorization, review, assessment, inspection and enforcement. The regulator is to follow the development of a facility or activity from initial selection of the site through design, construction, commissioning, radioactive waste management through to decommissioning and closure. He is to ensure safety measures are followed through out the operation of the facility by laying down in the license conditions of controlling construction of nuclear installations and ensuring competence of the operators. (author)

  5. Safety evaluations required in the safety regulations for Monju and the validity confirmation of safety evaluation methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The purposes of this study are to perform the safety evaluations of the fast breeder reactor 'Monju' and to confirm the validity of the safety evaluation methods. In JFY 2012, the following results were obtained. As for the development of safety evaluation methods needed in the safety examination achieved for the reactor establishment permission, development of the analysis codes, such as a core damage analysis code, were carried out according to the plan. As for the development of the safety evaluation method needed for the risk informed safety regulation, the quantification technique of the event tree using the Continuous Markov chain Monte Carlo method (CMMC method) were studied. (author)

  6. Integrated risk management of safety and development on transportation corridors

    International Nuclear Information System (INIS)

    Thekdi, Shital A.; Lambert, James H.

    2015-01-01

    Prioritization of investments to protect safety and performance of multi-regional transportation networks from adjacent land development is a key concern for infrastructure agencies, land developers, and other stakeholders. Despite ample literature describing relationships between transportation and land use, no evidence-based methods exist for monitoring corridor needs on a large scale. Risk analysis is essential to the preservation of system safety and capacity, including avoidance of costly retrofits, regret, and belated action. This paper introduces the Corridor Trace Analysis (CTA) for prioritizing corridor segments that are vulnerable to adjacent land development. The method integrates several components: (i) estimation of likelihood of adjacent land development, using influence diagram and rule-based modeling, (ii) characterization of access point density using geospatial methods, and (iii) plural-model evaluation of corridors, monitoring indices of land development likelihood, access point densities, and traffic volumes. The results inform deployment of options that include closing access points, restricting development, and negotiation of agencies and developers. The CTA method is demonstrated on a region encompassing 6000 centerline miles (about 10,000 km) of transportation corridors. The method will be of interest to managers investing in safety and performance of infrastructure systems, balancing safety, financial, and other criteria of concern for diverse stakeholders. - Highlights: • The Corridor Trace Analysis (CTA) method for prioritizing transportation corridors. • The CTA method studies corridors vulnerable to adjacent land development. • The CTA method quantifies the influence of risk scenarios on agency priorities. • The CTA method is demonstrated on 6000 miles of critical transportation corridor

  7. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2c, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Europe via the Regional Project RER/9/109 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Greece and Belarus are key partners in the European region.

  8. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2d, June 2013

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Latin America via the Regional Project RLA/9/070 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Argentina and Brazil are key partners in the Latin-American region.

  9. Improved safety for drivers and couriers of coaches

    NARCIS (Netherlands)

    Coo, P.J.A. de; Hazelebach, R.; Oorschot, E. van; Wessels, J.

    2001-01-01

    According to general accidents statistics a coach is the safest means of transportation with respect to fatalities per billion traveller kilometers. Reasons for this include the existing regulations related to coach safety and the self regulation of the coach building industry. Most passive safety

  10. Transport of hazardous goods

    International Nuclear Information System (INIS)

    1989-01-01

    The course 'Transport of hazardous goods' was held in Berlin in November 1988 in cooperation with the Bundesanstalt fuer Materialforschung und -pruefung. From all lecturs, two are recorded separately: 'Safety of tank trucks - requirements on the tank, development possibiities of active and passive safety' and 'Requirements on the transport of radioactive materials - possible derivations for other hazardous goods'. The other lectures deal with hazardous goods law, requirements on packinging, risk assessment, railroad transport, hazardous goods road network, insurance matters, EC regulations, and waste tourism. (HSCH) [de

  11. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  12. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    International Nuclear Information System (INIS)

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE's nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation

  13. Radiation Safety (General) Regulations 1983 (Western Australia)

    International Nuclear Information System (INIS)

    1983-01-01

    The provisions of the Regulations cover, inter alia, the general precautions and requirements relating to radiation safety of the public and radiation workers and registration of irradiating apparatus or premises on which such apparatus is operated. In addition, the Regulations set forth requirements for the operation of such apparatus and for the premises involved. (NEA) [fr

  14. The role of parental risk judgements, transport safety attitudes, transport priorities and accident experiences on pupils' walking to school.

    Science.gov (United States)

    Mehdizadeh, Milad; Nordfjaern, Trond; Mamdoohi, Amir Reza; Shariat Mohaymany, Afshin

    2017-05-01

    Walking to school could improve pupils' health condition and might also reduce the use of motorized transport modes, which leads to both traffic congestion and air pollution. The current study aims to examine the role of parental risk judgements (i.e. risk perception and worry), transport safety attitudes, transport priorities and accident experiences on pupils' walking and mode choices on school trips in Iran, a country with poor road safety records. A total of 1078 questionnaires were randomly distributed among pupils at nine public and private schools in January 2014 in Rasht, Iran. Results from valid observations (n=711) showed that parents with high probability assessments of accidents and strong worry regarding pupils' accident risk while walking were less likely to let their children walk to school. Parents with high safety knowledge were also more likely to allow their pupils to walk to school. Parents who prioritized convenience and accessibility in transport had a stronger tendency to choose motorized modes over walking modes. Also, parents who prioritized safety and security in transport were less likely to allow pupils to walk to school. Elasticities results showed that a one percent increase in priorities of convenience and accessibility, priorities of safety and security, car ownership and walking time from home to school reduced walking among pupils by a probability of 0.62, 0.20, 0.86 and 0.57%, respectively. A one percent increase in parental safety knowledge increased the walking probability by around 0.25%. A 1 unit increase in parental probability assessment and worry towards pupils' walking, decreased the probability of choosing walking mode by 0.11 and 0.05, respectively. Policy-makers who aim to promote walking to schools should improve safety and security of the walking facilities and increase parental safety knowledge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Impact of Construction Health & Safety Regulations on Project ...

    African Journals Online (AJOL)

    Impact of Construction Health & Safety Regulations on Project Parameters in Nigeria: Consultants and Contractors View. ... The study recommends that better attention is given to health and safety should as a project parameter and that related practice notes and guidelines should be evolved for all project stakeholders.

  16. Hanford Site Wide Transportation Safety Document [SEC 1 Thru 3

    Energy Technology Data Exchange (ETDEWEB)

    MCCALL, D L

    2002-06-01

    This safety evaluation report (SER) documents the basis for the US Department of Energy (DOE), Richland Operations Office (RL) to approve the Hanford Sitewide Transportation Safety Document (TSD) for onsite Transportation and Packaging (T&P) at Hanford. Hanford contractors, on behalf of DOE-RL, prepared and submitted the Hanford Sitewide Transportation Safety Document, DOE/RL-2001-0036, Revision 0, (DOE/RL 2001), dated October 4, 2001, which is referred to throughout this report as the TSD. In the context of the TSD, Hanford onsite shipments are the activities of moving hazardous materials, substances, and wastes between DOE facilities and over roadways where public access is controlled or restricted and includes intra-area and inter-area movements. The TSD sets forth requirements and standards for onsite shipment of radioactive and hazardous materials and wastes within the confines of the Hanford Site on roadways where public access is restricted by signs, barricades, fences, or other means including road closures and moving convoys controlled by Hanford Site security forces.

  17. Development of an expert system for radioactive material transportation

    International Nuclear Information System (INIS)

    Tamanoi, K.; Ishitobi, M.; Shinohara, Y.

    1990-01-01

    An expert system to deal with radioactive material transportation was developed. This expert system is based on 'Regulations for the Safe Transport of Radioactive Material' by IAEA issued 1985. IAEA published the regulations under such environments that safety transportation has become increasingly being focused as uses of radioactive materials are more pervasive, not only in nuclear field but also in non-nuclear purposes. Attentions are payed for operators and environment to establish safety in handling radioactive materials. In the 1985 regulations, detailed categorization of radioactive materials and, correspondingly, new classification of packages are introduced. This categorization is more complicated than old regulations, leading us to develop an expert system to evaluate easily the packages categorization. (author)

  18. The experience of WNTI with Safety and Security Worldwide

    International Nuclear Information System (INIS)

    Neau, Henry-Jacques

    2016-01-01

    This paper gives an industrial perspective on safety and security issues based on the experience of WNTI members. It describes how safety is invested primarily in the package; not how the package is transported. Transport safety is therefore an engineering challenge, and all necessary technical information is available to enable this to be met. Security in transport involves various measures to guard against intentional malicious acts. The paper describes the international instruments relevant to security in the transport of nuclear fuel cycle materials and how both safety and security regulations must be coordinated and simplified to avoid conflicts. It considers potential risks, which must not be underestimated. However, the assessment of risks must be realistic and quantified, and the requirements placed on the industry appropriate. It is important to dispel exaggerated perceptions of danger in the minds of the public, politicians and regulators. (author)

  19. International Safety Regulation and Standards for Space Travel and Commerce

    Science.gov (United States)

    Pelton, J. N.; Jakhu, R.

    The evolution of air travel has led to the adoption of the 1944 Chicago Convention that created the International Civil Aviation Organization (ICAO), headquartered in Montreal, Canada, and the propagation of aviation safety standards. Today, ICAO standardizes and harmonizes commercial air safety worldwide. Space travel and space safety are still at an early stage of development, and the adoption of international space safety standards and regulation still remains largely at the national level. This paper explores the international treaties and conventions that govern space travel, applications and exploration today and analyzes current efforts to create space safety standards and regulations at the national, regional and global level. Recent efforts to create a commercial space travel industry and to license commercial space ports are foreseen as means to hasten a space safety regulatory process.

  20. Evaluation of safety in the transportation of natural uranium hexafluoride

    International Nuclear Information System (INIS)

    Maitre, P.; Meslin, T.; Pages, P.

    A general model developed for the safety of transporting radioactive materials is applied to UF 6 . Results given concern only the container contents during an accident; harmful consequences to the environment are not considered. It is shown that railroad transport is safer than road transport, particularly with regard to fire. 13 figs., 12 tables

  1. Assessment of policy issues in nuclear safety regulation according to circumstantial changes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Lee, Byong Ho; Baek, Won Pil; Lee, Kwang Gu; Huh, Gyun Young; Hahn, Young Tae [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2000-03-15

    The objective of the work is to assess various issues in nuclear safety regulation in consideration of circumstantial changes. Emphasis is given to the safety of operating NPPs. It is concluded that the Periodic Safety Review (PSR) should be implemented in Korea as soon as possible, in harmonization with the regulation for life extension of NPPs. The IAEA guidelines, including 10 year intervals and 11 safety factors, should be used as the basic guidelines. The approach to improve regulatory effectiveness is also reviewed and a transition to 'knowledge-based regulation' is suggested.

  2. Assessment of policy issues in nuclear safety regulation according to circumstantial changes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Chang, Soon Heung; Lee, Byong Ho; Baek, Won Pil; Roh, Chang Hyun; Lee, Kwang Gu; Kim, Hong Chae; Lee, Yong Ho [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1999-03-15

    The objective of the work is to assess various issues in nuclear safety regulation in consideration of circumstantial changes. Emphasis is given to the safety of operating NPPs. It is concluded that the Periodic Safety Review (PSR) should be implemented in Korea as soon as possible, in harmonization with the regulation for life extension of NPPs. The IAEA guidelines, including 10 year intervals and 11 safety factors, should be used as the basic guidelines. Efforts are also required to cope with other circumstantial changes such as the establishment of International Nuclear Regulators Association (INRA)

  3. 49 CFR 244.15 - Subjects to be addressed in a Safety Integration Plan not involving an amalgamation of operations.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Subjects to be addressed in a Safety Integration... Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS ON SAFETY INTEGRATION PLANS GOVERNING RAILROAD CONSOLIDATIONS, MERGERS, AND...

  4. The ICRP 60 and the agency's regulations for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    Biaggio, A.L.; Novo, R.G.

    1993-01-01

    The International Commission on Radiological Protection (ICRP) has adopted its new '1990 Recommendations of the International Commission on Radiological Protection' in November 1990, they were published in 1991 as 'ICRP Publication 60.' Two main scenarios are considered by the new ICRP's recommendations: a) Protection in proposed and continuing practices (further subdivided as protection against actual exposures and protection against potential exposures); and b) Protection by intervention. Although intervention means any activity in order to decrease the overall exposure, removing existing sources, modifying pathways or reducing the number of exposed individuals, in relation to the transport of radioactive materials, protection by intervention is related mainly to emergency planning, while protection against actual and potential exposures can be considered as the subject of most of the requirements of the 'Regulations for the Safe Transport of Radioactive Material', of the International Atomic Energy Agency (IAEA). The on-going revision of the IAEA Safety Series No. 9, which is aimed at putting this publication in line with the new ICRP recommendations will, for the first time, provide a convalidated radiological framework for the 1996 revision of the Agency Transport Regulations. However, to adapt to the transport area the radiological principles and criteria will require a significant effort and a carefully evaluation of the overall impact of each change proposed. (J.P.N.)

  5. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2b, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Asia and the Pacific via the Regional project RAS/9/066 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Malaysia and Syrian Arabic Republic are key partners in the Asian and the Pacific region.

  6. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2a, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Africa via the Regional project RAF/9/04 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. AFRA Regional Designated Centres, in Algeria, Ghana and Morocco, equivalent to the IAEA's Regional Training Centres (RTCs) present in all the other regions, are key partners in the African region.

  7. Legal bases of safety regulations in electrical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jeiter, W

    1981-12-01

    Apart from the governmental regulations the rule for the prevention of accidents 'Electric plants and equipment' must be observed in order to protect the insurants. Actually, all these regulations do not contain any independent instructions. They rather utilize the VDE regulations and refer to them. The laws of electrical safety engineering are strongly influenced by harmonization efforts particularly within the European Communitties.

  8. Pakistan nuclear safety and radiation protection regulation 1990

    International Nuclear Information System (INIS)

    1990-01-01

    In this act regulations of nuclear safety and radiation protection in Pakistan has been explained. A legal and licensing procedure to handle protection of nuclear materials, processing storage of radioactive products has been described under this regulation. In these regulations full explanation of accidental exposure, delegation of powers and record keeping/waste disposal of radioactive has been given. (A.B.)

  9. Worker safety for occupations affected by the use, transportation and storage of radioactive and hazardous materials

    International Nuclear Information System (INIS)

    1994-07-01

    A study group under the auspices of the National Conference of State Legislatures (NCSL) Labor Committee and the High-level Radioactive Waste/Hazardous Materials Transportation Task Force examined worker protection and safety programs for occupations affected by the use, transportation and storage of radioactive and hazardous materials. Concern about the risks posed to people who live along spent nuclear fuel transportation routes has led to demands for redundant inspections of the transported spent fuel. It would also be prudent to examine the radiological risk to the inspectors themselves before state of federal regulations are promulgated which require redundant inspections. Other workers may also come close to a spent fuel cask during normal operations. The dose rate to which these inspectors and handlers are exposed is higher than the dose rate to which any other group is exposed during incident-free truck transportation and higher than the dose rate to the drivers when they are in the truck cab. This report consists of miscellaneous papers covering topics related to determining radiation doses to workers involved in the transport of radioactive materials

  10. Decomobil, Deliverable 3.6, Human Centred Design for Safety Critical Transport Systems

    OpenAIRE

    PAUZIE, Annie; MENDOZA, Lucile; SIMOES, Anabela; BELLET, Thierry; MOREAU, Fabien

    2014-01-01

    The scientific seminar on 'Human Centred Design for Safety Critical Transport Systems' organized in the framework of DECOMOBIL has been held the 8th of September 2014 in Lisbon, Portugal, hosted by ADI/ISG. The aims of the event were to present the scientific problematic related to the safety of the complex transport systems and the increasing importance of human-­centred design, with a specific focus on Resilience Engineering concept, a new approach to safety management in highly complex sys...

  11. Safety analysis report for packaging: the ORNL loop transport cask

    International Nuclear Information System (INIS)

    Evans, J.H.; Chipley, K.K.; Nelms, H.A.; Crowley, W.K.; Just, R.A.

    1977-11-01

    An evaluation of the ORNL loop transport cask demonstrating its compliance with the regulations governing the transportation of radioactive and fissile materials is presented. A previous review of the cask is updated to demonstrate compliance with current regulations, to present current procedures, and to reflect the more recent technology

  12. Oregon Pupil Transportation Manual. Revised Regulations and Responsibilities.

    Science.gov (United States)

    Oregon State Dept. of Education, Salem.

    Designed for use by Oregon school bus drivers and administrators, this manual answers common questions about school bus transportation in Oregon, including those about the laws governing pupil transportation, the regulations governing pupil transportation administration, and the laws on school bus operation. A chapter of advisory materials covers…

  13. Food suppliers' perceptions and practical implementation of food safety regulations in Taiwan

    OpenAIRE

    Ko, Wen-Hwa

    2015-01-01

    The relationships between the perceptions and practical implementation of food safety regulations by food suppliers in Taiwan were evaluated. A questionnaire survey was used to identify individuals who were full-time employees of the food supply industry with at least 3 months of experience. Dimensions of perceptions of food safety regulations were classified using the constructs of attitude of employees and corporate concern attitude for food safety regulation. The behavior dimension was cla...

  14. Safety Culture for Regulator Competence Management in Embarking States

    International Nuclear Information System (INIS)

    Kandil, M.

    2016-01-01

    Full text: Safety is based on preventive actions where the ability of a regulatory body to fulfill its responsibilities depends largely on the competence of its staff. Building employees’ skills and knowledge is an investment for each employee and in the future of the organization. This building must be the competence of its staff integration with their safety culture, the essential to ensure competent human resources as required in the IAEA safety standards and other documents, in which the need and importance of ensuring regulatory competence is emphasized. As it involves both operational and management issues, safety culture is a sensitive topic for regulators whose role is to ensure compliance with safety requirements and not to intervene in management decisions. A number of embarking States are aspiring to develop nuclear power generation and this means that, among other things, regulatory bodies have to be established and rapidly expanded. This paper reports major considerations on the integration of safety culture with an adequate competence management system for regulators in embarking states. (author

  15. The application of dangerous goods regulations to the transport of radioactive wastes

    International Nuclear Information System (INIS)

    Blenkin, J.J.; Darby, W.P.; Heywood, J.D.; Wikinson, H.L.; Carrington, C.K.; Murray, M.A.

    1998-01-01

    Some radioactive materials to be transported, including certain radioactive wastes, contain materials that qualify as dangerous goods as defined by the United Nations Recommendations on the Transport of Dangerous Goods (United Nations 1997). The regulations governing the transport of radioactive and dangerous goods in the UK are largely based on the IAEA Regulations for the Safe Transport of Radioactive Material (IAEA 1990) and the UN Recommendations (United Nations 1993). Additional legislation will also apply including the Carriage of Dangerous Goods by Road (Driver Training) Regulations 1996 (UK 1996). The IAEA Transport Regulations are clear that where radioactive materials have other dangerous properties the requirements of other relevant transport regulations for dangerous goods must also be met. They require that consignments are appropriately segregated from other dangerous goods, in accordance with relevant legislation, and that dangerous properties such as explosiveness, flammability etc. are taken into account in packing, labelling, marking, placarding, storage and transport. In practice, however, it requires a clear understanding of the relationship between the IAEA Transport Regulations and other dangerous goods legislation in order to avoid a number of problems in the approval of package design. This paper discusses the regulations applying to the transport of dangerous goods and explores practical problems associated with implementing them. It highlights a number of opportunities for developing the regulations, to make them easier to apply to radioactive materials that also have other potentially dangerous properties. (authors)

  16. Investigation and consideration on the framework of oversight-based safety regulation. U.S. NRC 'Risk-Informed, Performance-Based' Regulation

    International Nuclear Information System (INIS)

    Saji, Gen

    2001-01-01

    Regulation on safety, environment and health in Japan has before today been intended to correspond with an accident at forms of reinforcement of national standards and monitoring, if any. However, as it was thought that such regulation reinforcement was afraid to bring some social rigidity, and to weaken independent responsibility, as a result, because of anxiety of losing peoples' merits inversely, some fundamental directivity such as respect of self-responsibility principle' and 'necessary and least limit of regulation' were selected as a part of political innovation. On the other hand, at a background of wide improvements on various indexing values showing operation results of nuclear power stations in U.S.A., private independent effort on upgrading of safety is told to largely affect at beginning of INPO (Institute of Nuclear Power Operations), without regulation reinforcement of NRC side. This is a proof of concrete effect of transfer to oversight-based safety regulation. Here were introduced on nuclear safety in U.S.A. at a base of some references obtained on entering the 'MIT summer specialist program. Nuclear system safety', on focussing at new safety regulation of NRC and its effect and so on, and adding some considerations based on some knowledge thereafter. (G.K.)

  17. Perceived safety of transporting hazardous materials

    International Nuclear Information System (INIS)

    Reese, R.T.; Shepherd, E.W.

    1981-01-01

    A framework for relating the variables involved in the public perception of hazardous materials transportation was presented. The framework consisted of a conditional mathematical equation in which perceived safety was described by six basic terms (technical feasibility, political palatability, social responsibility, utility assessment, media interpretation, and familiarity as a function of time). The resulting framework provides the technologist with an initial formulation to better understand public perception

  18. Safety factors for neutron fluences in NPP safety assessment

    International Nuclear Information System (INIS)

    Demekhin, V.L.; Bukanov, V.N.; Il'kovich, V.V.; Pugach, A.M.

    2016-01-01

    In accordance with global practice and a number of existing regulations, the use of conservative approach is required for the calculations related to nuclear safety assessment of NPP. It implies the need to consider the determination of neutron fluence errors that is rather complicated. It is proposed to carry out the consideration by the way of multiplying the neutron fluences obtained with transport calculations by safety factors. The safety factor values are calculated by the developed technique based on the theory of errors, features of the neutron transport calculation code and the results obtained with the code. It is shown that the safety factor value is equal 1.18 with the confidence level of not less than 0.95 for the majority of VVER-1000 reactor places where neutron fluences are determined by MCPV code, and its maximum value is 1.25

  19. State statutes and regulations on radioactive materials transportation

    International Nuclear Information System (INIS)

    Foster, B.

    1981-11-01

    The transport of radioactive material is controlled by numerous legislative and regulatory actions at the federal, state, and local levels. This document is a compilation of the state level laws and regulations. The collected material is abstracted and indexed by states. Each state section contains three divisions: (1) abstracts of major statutes, (2) legislative rules, and (3) photocopies of relevant paragraphs from the law or regulation. This document was prepared for use by individuals who are involved in the radioactive material transportation process. This document will not be updated. The legislative rules section contains the name of the state agency primarily responsible for monitoring the transport of radioactive materials

  20. Integrated risk reduction framework to improve railway hazardous materials transportation safety.

    Science.gov (United States)

    Liu, Xiang; Saat, M Rapik; Barkan, Christopher P L

    2013-09-15

    Rail transportation plays a critical role to safely and efficiently transport hazardous materials. A number of strategies have been implemented or are being developed to reduce the risk of hazardous materials release from train accidents. Each of these risk reduction strategies has its safety benefit and corresponding implementation cost. However, the cost effectiveness of the integration of different risk reduction strategies is not well understood. Meanwhile, there has been growing interest in the U.S. rail industry and government to best allocate resources for improving hazardous materials transportation safety. This paper presents an optimization model that considers the combination of two types of risk reduction strategies, broken rail prevention and tank car safety design enhancement. A Pareto-optimality technique is used to maximize risk reduction at a given level of investment. The framework presented in this paper can be adapted to address a broader set of risk reduction strategies and is intended to assist decision makers for local, regional and system-wide risk management of rail hazardous materials transportation. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Nuclear safety: economic analysis of American, French and Japanese regulations

    International Nuclear Information System (INIS)

    Leveque, Francois

    2013-05-01

    While discussing and comparing the American, Japanese and French approaches and practices, and identifying the strengths and weaknesses of each of them, the author discusses why self-regulation and civil responsibility cannot guarantee a sufficient nuclear safety level, why the safety regulation authority must be independent from industry and government, whether a figure must be put to the safety objective (for example with a risk threshold), whether it is better to define detailed standards to be applied by manufacturers and operators or to define general performance criteria to be reached

  2. Nuclear safety regulations in the Republic of Croatia

    International Nuclear Information System (INIS)

    Cizmek, A.; Horvatic, M.; Ilijas, B.; Medakovic, S.

    2009-01-01

    Based on Nuclear Safety Act (Official Gazette No. 173/03) in 2006 State Office for Nuclear Safety (SONS) adopted beside Ordinance on performing nuclear activities (Official Gazette No. 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (Official Gazette No. 74/06) the new Ordinance on the control of nuclear material and special equipment (Official Gazette No. 15/08) and Ordinance on conditions for nuclear safety and protection with regard to the sitting, design, construction, use and decommissioning of a facility in which a nuclear activity is to be performed (Official Gazette No. 71/08). The Ordinance on performing nuclear activities regulates the procedure of notification of the intent to perform nuclear activities, submitting the application for the issue of a licence to perform nuclear activities, and the procedure for issuing decisions on granting a license to perform nuclear activity. The Ordinance also regulates the content of the form for notification of the intent to perform nuclear activities, as well as of the application for the issue of a licence to perform the nuclear activity and the method of keeping the register of nuclear conditions, whereas compliance is established by the decision passed by SONS. Ordinance on special conditions (requirements) for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety regulates these mentioned activities Ordinance on the control of nuclear material and special equipment lays down the list of nuclear materials and special equipment as well as of nuclear activities covered by the system of control of production of special equipment and non-nuclear material, the procedure for notifying the intention to and filing the application for a licence to carry out nuclear activities, and the format and contents of the forms for doing so. This Ordinance

  3. The future of the transport regulations

    International Nuclear Information System (INIS)

    Boyle, R.W.

    2004-01-01

    In September, 2000 the IAEA formally began a two year, continuing regulatory review process. To no one's surprise, the initial review process has evolved and corrections and improvements have been implemented with each successive cycle. To the credit of both the agency and the participants from Member States and industry, the first cycles have created a viable and stable review process which is more efficient and far simpler than the previous review process. Unfortunately, problems still exist in the transport community. It is my opinion that these issues have little to do with review process and more to do with program management and the culture of the community. I believe it is time for IAEA transport division (IAEA) and the Transport Safety Series Committee (TRANSSC) to recognize the transport program is more than just a regulatory development program and begin to face the difficult issues in front of them. Toward that end, this paper will identify the five largest issues facing the radioactive material transport industry and recommend how the IAEA, TRANSSC, Member States, industry and the general public can address these issues

  4. 78 FR 66801 - Motor Carrier Safety Advisory Committee; Charter Renewal

    Science.gov (United States)

    2013-11-06

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee; Charter Renewal AGENCY: Federal Motor Carrier Safety... and recommendations on motor carrier safety programs and motor carrier safety regulations through a...

  5. DOE/DOE Tight Oil Flammability & Transportation Spill Safety

    Energy Technology Data Exchange (ETDEWEB)

    Lord, David L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    This presentation describes crude oils, their phase behavior, the SPR vapor pressure program, and presents data comparisons from various analytical techniques. The overall objective is to describe physical properties of crude oil relevant to flammability and transport safety

  6. Regulation on the transport of nuclear fuel materials by vehicles

    International Nuclear Information System (INIS)

    1984-01-01

    The regulations applying to the transport of nuclear fuel materials by vehicles, mentioned in the law for the regulations of nuclear source materials, nuclear fuel materials and reactors. The transport is for outside of the factories and the site of enterprises by such modes of transport as rail, trucks, etc. Covered are the following: definitions of terms, places of fuel materials handling, loading methods, limitations on mix loading with other cargo, radiation dose rates concerning the containers and the vehicles, transport indexes, signs and indications, limitations on train linkage during transport by rail, security guards, transport of empty containers, etc. together with ordinary rail cargo and so on. (Mori, K.)

  7. Investment in transport infrastructure, regulation, and gas-gas competition

    Energy Technology Data Exchange (ETDEWEB)

    Gasmi, Farid [Toulouse School of Economics (ARQADE and IDEI), Universite Toulouse 1 Capitole (France); Oviedo, Juan Daniel [Universidad del Rosario (Colombia)

    2010-05-15

    This paper develops a simple model in which a regulated (upstream) transporter provides capacity to a marketer competing in output with an incumbent in the (downstream) gas commodity market. The equilibrium outcome of the firms' interaction in the downstream market is explicitly taken into account by the regulator when setting the transport charge. We consider various forms of competition in this market and derive the corresponding optimal transport charge policies. We then run simulations that allow us to perform a comparative welfare analysis of these transport infrastructure investment policies based on different assumptions about the intensity of the competition that prevails in the gas commodity market. (author)

  8. Investment in transport infrastructure, regulation, and gas-gas competition

    International Nuclear Information System (INIS)

    Gasmi, Farid; Oviedo, Juan Daniel

    2010-01-01

    This paper develops a simple model in which a regulated (upstream) transporter provides capacity to a marketer competing in output with an incumbent in the (downstream) gas commodity market. The equilibrium outcome of the firms' interaction in the downstream market is explicitly taken into account by the regulator when setting the transport charge. We consider various forms of competition in this market and derive the corresponding optimal transport charge policies. We then run simulations that allow us to perform a comparative welfare analysis of these transport infrastructure investment policies based on different assumptions about the intensity of the competition that prevails in the gas commodity market. (author)

  9. Regulations for ionizing radiation protection

    International Nuclear Information System (INIS)

    1999-01-01

    General regulations and principles of radiation protection and safety are presented. In addition, the regulations for licensing and occupational and medical exposure as well as for safe transport of radioactive materials and wastes are given

  10. Who regulates food? Australians' perceptions of responsibility for food safety.

    Science.gov (United States)

    Henderson, Julie; Coveney, John; Ward, Paul

    2010-01-01

    Food scares have diminished trust in public institutions to guarantee food safety. Food governance after the food scare era is concerned with institutional independence and transparency leading to a hybrid of public and private sector management and to mechanisms for consumer involvement in food governance. This paper explores Australian consumers' perceptions of who is, and should be responsible for food safety. Forty-seven participants were interviewed as part of a larger study on trust in the food system. Participants associate food governance with government, industry, and the individual. While few participants can name the national food regulator, there is a strong belief that the government is responsible for regulating the quality and safety of food. Participants are wary of the role of the food industry in food safety, believing that profit motives will undermine effective food regulation. Personal responsibility for food safety practices was also identified. While there are fewer mechanisms for consumer involvement and transparency built into the food governance system, Australian consumers display considerable trust in government to protect food safety. There is little evidence of the politicisation of food, reflecting a level of trust in the Australian food governance system that may arise from a lack of exposure to major food scares.

  11. Regulatory measures for traffic safety

    International Nuclear Information System (INIS)

    Veerapur, R.D.; Bharambe, S.D.; Patnaik, S.K.; Tandle, A.K.; Sonawane, K.A.; Kumar, Rajesh; Venkat Subramanian, K.

    2017-01-01

    Traffic safety is an issue related to occupational safety not restricted alone to the transportation but extends beyond. BARC has many facilities spread across large area in Mumbai and outside Mumbai. BARC deploys large number of buses, mini buses, jeeps and cars for commuting its employees to reach BARC and for commuting within BARC premises. Additionally, trucks, fire tenders, trailers etc. are also deployed for transportation of materials. No moving vehicle is ever free of the possibility of involvement in an accident. Vehicular accidents and the fatalities on road are the result of inter-play of a number of factors. The vehicle population has been steadily increasing with the pace picking up significantly in recent past. Increase in vehicle population in the face of limited road space used by a large variety of traffic has heightened the need and urgency for a well-thought-out road safety. Therefore, existence of regulatory authority to regulate traffic and vehicles to ensure safety of its employees and vehicles is very essential. BARC Traffic Safety Committee (BTSC), which is the regulating body for traffic safety is responsible for ensuring overall traffic safety. (author)

  12. 49 CFR 385.337 - What happens if a new entrant refuses to permit a safety audit to be performed on its operations?

    Science.gov (United States)

    2010-10-01

    ... safety audit to be performed on its operations? 385.337 Section 385.337 Transportation Other Regulations... TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS SAFETY FITNESS PROCEDURES New Entrant Safety Assurance Program § 385.337 What happens if a new entrant refuses to permit a safety audit to be performed on its...

  13. Fusion safety regulations in the United States: Progress and trends

    International Nuclear Information System (INIS)

    DeLooper, J.

    1994-01-01

    This paper explores the issue of regulations as they apply to current and future fusion experimental machines. It addresses fusion regulatory issues, current regulations used for fusion, the Tokamak Fusion Test Reactor experience with regulations, and future regulations to achieve fusion's safety and environmental potential

  14. Transport safety and struggle against malevolent acts: a synergy to be developed - Protecting transports against malevolent acts, Synergies between security and safety: lessons learned from the IAEA international conference, Role of the IRSN transport operational level in the field of safety, Transparency and secret in the field of nuclear material transport

    International Nuclear Information System (INIS)

    Riac, Christian; Flory, Denis; Loiseau, Olivier; Mermaz, Frederic; Demolins, Laurent

    2012-01-01

    The first article proposes an interview with the chief of the security department within the French ministry of Ecology, Sustainable Development, Transports and Housing who comments his missions and his relationships with the ASN and the French Home Office for the protection and control of nuclear materials. A second article discusses the lessons learned from an IAEA international conference about the relationship between the approaches to security and to safety. The third article briefly describes the role of the IRSN transport operational level in the field of safety. The last article discusses how opposite notions like transparency and secret are managed in the case of nuclear material transport

  15. Combined evaluation. Plutonium transports in France. Problems of safety and reliability of transport container FS47

    International Nuclear Information System (INIS)

    Marignac, Y.; Coeytaux, X.; Large, J.H.

    2004-09-01

    This report concerns the safety and the protection of plutonium dioxide transported from Cogema La Hague to the mixed oxide fuel plant of Marcoule and Cadarache. The French approach of the transport safety is based on the combining of two essential principles: the first one affirms that the performances of the FS47 container in regard of containment (norms TS-R-1 from IAEA for the accidental conditions) is conceived to resist in any situation even terrorism or sabotage. In fact, the IAEA norm follows a probabilistic study without a voluntary attack such a terrorist one. The second principle rests on the ability to prevent the treat of terrorism acts, because of a secrecy policy on the plutonium transport. It appeared that the Green peace association has succeeded several times to know exactly the hours, the trips of the plutonium transport and this simple thing raises more questions than it solves. (N.C.)

  16. The IAEA recommendations for providing protection during the transport of uranium hexafluoride

    International Nuclear Information System (INIS)

    Levin, I.; Wieser, K.

    1988-01-01

    The Regulations for the safe transport of radioactive materials, are the basis of national and international regulations concerning this subject throughout the world. These regulations require that subsidiary hazards associated with radioactive materials should also be considered. Other national and international regulations concerning the transport of dangerous materials consider that a radioactive material having other dangerous properties should be classified as class 7. Following this line and acting upon the recommendations of SAGSTRAM (Standing Advisory Committee on the Safe Transport of Radioactive Materials) that the Agency should take the lead in providing guidance to Member States with respect to UF 6 packaging and transport, the Agency convened two expert meetings during 1986 and 1987 in order to look into the special problems associated with the transport of uranium hexafluoride. The experts identified several areas in which additional safety measures should be considered if the transport of UF 6 is to have a non-radiological safety level consistent with that of its radiological risks. In this presentation the new recommendations are described. The main safety issues to be discussed are fire resistance, valve protection and compatibility with service and structural equipment. Another aspect of importance is the interface between the process and the transport phases, bearing in mind that the same containers are used in both. This paper also reveals how far the new recommendations concerning UF 6 have already been endorsed in the forthcoming European Transport Regulations (ADR/RID) together with the 1985 revised Edition of IAEA Safety Series No. 6

  17. The safety and reliability of the electricity transportation network, and the opening of markets

    International Nuclear Information System (INIS)

    Merlin, A.

    2003-01-01

    Following a decade in which the electricity sector was concerned by the opening of markets the world over, the year 2003 highlighted the challenges of secure supply and of the safety of electrical systems. Major incidents are nothing new throughout history, and occurred well before the trend towards opening the markets dot underway. However, it is necessary to verify that the rules for the organisation, clarification of responsibilities and regulation make it possible to control the growing complexity of interconnected systems related to opening the market up to competition. Faced with such situations, changes are necessary in Europe. Firstly, it is important to have the second European directive on the internal electricity market introduced everywhere, this directive providing common rules to be met by all key players to ensure greater safety within the electricity system, and strengthening the role of the electricity transport network manager, who is separate from the other players in the market. It is also necessary to draft a third directive, focusing on both security of supply and the operational safety of the European electricity system. (authors)

  18. A study in improvement of administrative system in the nuclear safety regulation

    International Nuclear Information System (INIS)

    Yook, Dong Il; Kuk, Doe Hyeong; Lee, Seong Min; Kim, Jong Sam; Hwang, Sun Ho

    2001-03-01

    One of the most important tasks to improve nuclear safety regulation system is to separate nuclear regulatory institutes from public agencies which promote the development nuclear power. Moreover, nuclear safety regulation should be not only specialized but optimized to be adapted for new environments such as high-tech information age. Especially, it is necessary to reform the current nuclear safety regulation systems both to be effective under the local self-administration which began to operate in recent years and to be supported by local residents

  19. A study in improvement of administrative system in the nuclear safety regulation

    Energy Technology Data Exchange (ETDEWEB)

    Yook, Dong Il; Kuk, Doe Hyeong; Lee, Seong Min; Kim, Jong Sam; Hwang, Sun Ho [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-03-15

    One of the most important tasks to improve nuclear safety regulation system is to separate nuclear regulatory institutes from public agencies which promote the development nuclear power. Moreover, nuclear safety regulation should be not only specialized but optimized to be adapted for new environments such as high-tech information age. Especially, it is necessary to reform the current nuclear safety regulation systems both to be effective under the local self-administration which began to operate in recent years and to be supported by local residents.

  20. System certification progress in concept recognition in IAEA regulation

    International Nuclear Information System (INIS)

    Luna, R.E.; Pollog, T.

    1995-01-01

    System Certification is a regulatory concept which is intended to expand the scope of radioactive material transport regulations by allowing alternative means for proving compliance with the requisite standards of safety set out in transport regulations. In practice it may allow more stringent requirements in one aspect of the regulations to be substituted for less stringent application in other areas so long as the safety standard provided by regulation is preserved. The concept is widely perceived as the imposition of operational controls in exchange for relaxation of packaging standards, but that is only one possibility in the spectrum of potential actions under a System Certification provision in IAEA or national regulations

  1. Safety demonstration analyses for severe accident of fresh nuclear fuel transport packages at JAERI

    International Nuclear Information System (INIS)

    Yamada, K.; Watanabe, K.; Nomura, Y.; Okuno, H.; Miyoshi, Y.

    2004-01-01

    It is expected in the near future that more and more fresh nuclear fuel will be transported in a variety of transport packages to cope with increasing demand from nuclear fuel cycle facilities. Accordingly, safety demonstration analyses of these methods are planned and conducted at JAERI under contract with the Ministry of Economy, Trade and Industry of Japan. These analyses are conducted part of a four year plan from 2001 to 2004 to verify integrity of packaging against leakage of radioactive material in the case of a severe accident envisioned to occur during transportation, for the purpose of gaining public acceptance of such nuclear fuel activities. In order to create the accident scenarios, actual transportation routes were surveyed, accident or incident records were tracked, international radioactive material transport regulations such as IAEA rules were investigated and, thus, accident conditions leading to mechanical damage and thermal failure were selected for inclusion in the scenario. As a result, the worst-case conditions of run-off-the-road accidents were incorporated, where there is impact against a concrete or asphalt surface. Fire accidents were assumed to occur after collision with a tank truck carrying lots of inflammable material or destruction by fire after collision inside a tunnel. The impact analyses were performed by using three-dimensional elements according to the general purpose impact analysis code LS-DYNA. Leak-tightness of the package was maintained even in the severe impact accident scenario. In addition, the thermal analyses were performed by using two-dimensional elements according to the general purpose finite element method computer code ABAQUS. As a result of these analyses, the integrity of the inside packaging component was found to be sufficient to maintain a leak-tight state, confirming its safety

  2. Public opinion poll on safety and regulations of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Park, M. I.; Park, B. I.; Lee, S. M. [Gallup Korea, Seoul (Korea, Republic of)

    2004-02-15

    The purpose of this poll is not only to research understanding on safety and regulations of nuclear energy and to compare the result by time series followed 2003 to 2002 years, also to establish the public relations strategies and to offer information for developing long-term policies. The contents of the study are on the general perception, safety, management of nuclear power station, regulations and surroundings about nuclear energy.

  3. Insights into the post-transcriptional regulation of the mitochondrial electron transport chain.

    Science.gov (United States)

    Sirey, Tamara M; Ponting, Chris P

    2016-10-15

    The regulation of the mitochondrial electron transport chain is central to the control of cellular homeostasis. There are significant gaps in our understanding of how the expression of the mitochondrial and nuclear genome-encoded components of the electron transport chain are co-ordinated, and how the assembly of the protein complexes that constitute the electron transport chain are regulated. Furthermore, the role post-transcriptional gene regulation may play in modulating these processes needs to be clarified. This review summarizes the current knowledge regarding the post-transcriptional gene regulation of the electron transport chain and highlights how noncoding RNAs may contribute significantly both to complex electron transport chain regulatory networks and to mitochondrial dysfunction. © 2016 The Author(s).

  4. Transport of radioactive material in Canada

    International Nuclear Information System (INIS)

    1997-09-01

    In this report, the Advisory Committee on Nuclear Safety (ACNS) presents the results of its study on how the system of the transport of radioactive material (TRM) in Canada is regulated, how it operates, and how it performs. The report deals with the transport of packages, including Type B packages which are used to carry large quantities of radioactive material, but not with the transport of spent nuclear fuel or with the transport of low-level historical waste. The ACNS has examined the Canadian experience in the TRM area, the regulatory framework in Canada with respect to the TRM some relevant aspects of training workers and monitoring compliance with regulatory requirements, the state of the emergency preparedness of organizations involved in the TRM and the process of updating present regulations by the Atomic Energy Control Board (AECB). As a result of this study, the ACNS concludes that the current Canadian regulatory system in the TRM is sound and that the TRM is, for the most part, conducted safely. However, improvements can be made in a number of areas, such as: determining the exposures of workers who transport radioactive material; rewording the proposed Transport Regulations in plain language; training all appropriate personnel regarding the AECB and Transport Canada (TC) Regulations; enforcing compliance with the regulations; and increasing the level of cooperation between the federal agencies and provincial authorities involved in the inspection and emergency preparedness aspects of the TRM. It is also noted that Bill C-23, the Nuclear Safety and Control Act, imposes a new requirement, subject to the Regulations, for a licence for a carrier to transport some types of radioactive material

  5. Transport of radioactive material in Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    In this report, the Advisory Committee on Nuclear Safety (ACNS) presents the results of its study on how the system of the transport of radioactive material (TRM) in Canada is regulated, how it operates, and how it performs. The report deals with the transport of packages, including Type B packages which are used to carry large quantities of radioactive material, but not with the transport of spent nuclear fuel or with the transport of low-level historical waste. The ACNS has examined the Canadian experience in the TRM area, the regulatory framework in Canada with respect to the TRM some relevant aspects of training workers and monitoring compliance with regulatory requirements, the state of the emergency preparedness of organizations involved in the TRM and the process of updating present regulations by the Atomic Energy Control Board (AECB). As a result of this study, the ACNS concludes that the current Canadian regulatory system in the TRM is sound and that the TRM is, for the most part, conducted safely. However, improvements can be made in a number of areas, such as: determining the exposures of workers who transport radioactive material; rewording the proposed Transport Regulations in plain language; training all appropriate personnel regarding the AECB and Transport Canada (TC) Regulations; enforcing compliance with the regulations; and increasing the level of cooperation between the federal agencies and provincial authorities involved in the inspection and emergency preparedness aspects of the TRM. It is also noted that Bill C-23, the Nuclear Safety and Control Act, imposes a new requirement, subject to the Regulations, for a licence for a carrier to transport some types of radioactive material.

  6. United Kingdom experience in plutonium transportation

    International Nuclear Information System (INIS)

    1978-11-01

    This paper describes the extensive experience of the UKAEA and British Nuclear Fuels Limited in transporting plutonium within the UK over the last 20 years and to destinations overseas since the early 1960s. The aspects covered include: the form of plutonium transported (nitrate, oxide, mixed oxide etc.); UK and international regulations (e.g. covering safety and safeguards matters); insurance; container design; mode of transport; physical protection; and a safety analysis. Costs are estimated to be largely independent of quantity

  7. Present situation and influence of new ICRP recommendations on radioactive material transport regulations

    International Nuclear Information System (INIS)

    Hamard, J.; Ringot, C.

    1991-01-01

    The publication of new ICRP recommendations will involve the revision of IAEA standards and consequently the revision of transport regulations for radioactive materials. Transport regulations are briefly reviewed and application for radiation protection of workers and public is examined. Influence of new recommendations on transport regulations and eventual modifications on classification and transport of materials, packaging design and permissible exposure for workers and public in the prospect of regulation revision forecasted for 1995

  8. Regulator Loss Functions and Hierarchical Modeling for Safety Decision Making.

    Science.gov (United States)

    Hatfield, Laura A; Baugh, Christine M; Azzone, Vanessa; Normand, Sharon-Lise T

    2017-07-01

    Regulators must act to protect the public when evidence indicates safety problems with medical devices. This requires complex tradeoffs among risks and benefits, which conventional safety surveillance methods do not incorporate. To combine explicit regulator loss functions with statistical evidence on medical device safety signals to improve decision making. In the Hospital Cost and Utilization Project National Inpatient Sample, we select pediatric inpatient admissions and identify adverse medical device events (AMDEs). We fit hierarchical Bayesian models to the annual hospital-level AMDE rates, accounting for patient and hospital characteristics. These models produce expected AMDE rates (a safety target), against which we compare the observed rates in a test year to compute a safety signal. We specify a set of loss functions that quantify the costs and benefits of each action as a function of the safety signal. We integrate the loss functions over the posterior distribution of the safety signal to obtain the posterior (Bayes) risk; the preferred action has the smallest Bayes risk. Using simulation and an analysis of AMDE data, we compare our minimum-risk decisions to a conventional Z score approach for classifying safety signals. The 2 rules produced different actions for nearly half of hospitals (45%). In the simulation, decisions that minimize Bayes risk outperform Z score-based decisions, even when the loss functions or hierarchical models are misspecified. Our method is sensitive to the choice of loss functions; eliciting quantitative inputs to the loss functions from regulators is challenging. A decision-theoretic approach to acting on safety signals is potentially promising but requires careful specification of loss functions in consultation with subject matter experts.

  9. 76 FR 70220 - New Jersey Regulations on Transportation of Regulated Medical Waste

    Science.gov (United States)

    2011-11-10

    ...., Director, Healthcare Waste Institute, 4301 Connecticut Avenue NW., Suite 300, Washington, DC 20008, and (2... Hazardous Waste Management Program, Mail Code 401-02C, P.O. Box 420, Trenton, NJ 08625-0420. A certification.... PHMSA-2011-0294 (PDA-35(R)] New Jersey Regulations on Transportation of Regulated Medical Waste AGENCY...

  10. Transport and storage of spent fuel in Germany - possibilities for more safety

    International Nuclear Information System (INIS)

    Brennecke, P.; Fasten, Ch.; Nitsche, F.

    2004-01-01

    The safe transport of spent fuel from nuclear power plants in Germany is ensured by compliance with the dangerous goods transport regulations of class 7 which are fully consistent with the IAEA Transport Regulations and in parallel with the regulations of the German Atomic Energy Act. The purpose of this paper is to give an overview of this legal basis and the appropriate regulations applicable to spent fuel transport in Germany. Some aspects of the status and the future development of spent fuel shipments are described including experiences since resumption of those shipments in 2001. Furthermore, the status of licensing of on-site interim storage, assessments of an terrorist attack as well as consequences resulting from changes in energy policy are given

  11. Radiological safety assessment of transporting radioactive waste to the Gyeongju disposal facility in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Baik, Min Hoon; Kang, Mun Ja; Ahn, Hong Joo; Hwang, Doo Seong; Hong, Dae Seok; Jeong, Yong Hwan; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI), Daejeon, Korea. We considered two kinds of wastes: (1) operation wastes generated from the routine operation of facilities; and (2) decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal) transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  12. Radiological Safety Assessment of Transporting Radioactive Wastes to the Gyeongju Disposal Facility in Korea

    Directory of Open Access Journals (Sweden)

    Jongtae Jeong

    2016-12-01

    Full Text Available A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI, Daejeon, Korea. We considered two kinds of wastes: (1 operation wastes generated from the routine operation of facilities; and (2 decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  13. 75 FR 35366 - Pipeline Safety: Applying Safety Regulation to All Rural Onshore Hazardous Liquid Low-Stress Lines

    Science.gov (United States)

    2010-06-22

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... Onshore Hazardous Liquid Low-Stress Lines AGENCY: Pipeline and Hazardous Materials Safety Administration... to the risks that hazardous liquid and natural gas pipelines pose to the environment. In the Pipeline...

  14. Evolution of nuclear safety regulation for BARC Facilities

    International Nuclear Information System (INIS)

    Jayarajan, K.; Taly, Y.K.

    2017-01-01

    Safety programmes in BARC stared during the formative years and grown its stature, as the years passed by. Seventeen years of BSC, with one hundred meetings, have been quite eventful with several achievements. BSC could bring all facilities of BARC under its safety umbrella and could streamline many safety and regulatory activities. BSC aims at incident free operation of all facilities and protection of the workers, the public, the environment from radiation and other hazards. Although, incidents could not be entirely prevented, BSC have taken every event as a lesson and used the experience for improving safety. Safety enhancement is an endless journey, which has to be performed by joining hands of the managers, designers, manufacturers, inspectors and operators, in addition to the regulators

  15. Study of accident environment during sea transport of nuclear material: Probabilistic safety analysis of plutonium transport from Europe to Japan. Annex 4

    International Nuclear Information System (INIS)

    Yamamoto, K.; Shibata, H.; Ouchi, Y.; Kitamura, T.; Ito, T.; McClure, J.D.; Pierce, J.D.; Hohnstreiter, G.F.; Smith, J.D.

    2001-01-01

    This study describes and analyzes the safety of a large amount of plutonium transportation operations for the international transportation of plutonium by maritime cargo vessels for selected routes. The analysis centers on conventional cargo vessels and their accident history in order to provide an estimate of the probability of accident occurrences for such vessels. This is an ultra-conservative study since the radioactive materials described in this study will, in all likelihood, be transported in purpose-built ships that incorporate many safety features not found in regular cargo vessels. Follow-on studies can use the information developed in this study, for conventional cargo vessels, provide a conservative bounding estimate of the probabilities for accidents involving purpose-built ships. This study estimates the safety of transporting plutonium from Europe to Japan. This includes estimating the probability of a severe transportation accident during marine transport over three separate roots

  16. Radionuclide transport report for the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    This document compiles radionuclide transport calculations of a KBS-3 repository for the safety assessment SR-Site. The SR-Site assessment supports the licence application for a final repository at Forsmark, Sweden

  17. 75 FR 51392 - Federal Management Regulation; Transportation Management

    Science.gov (United States)

    2010-08-20

    ...; Docket Number 2010-0011, sequence 1] RIN 3090-AJ03 Federal Management Regulation; Transportation Management AGENCY: Office of Governmentwide Policy, General Services Administration (GSA). ACTION: Final rule. SUMMARY: The General Services Administration (GSA) is amending the Federal Management Regulation (FMR) by...

  18. Germany: Exposure of Transport Workers During the Transport of Most Frequently Transported NORM in Germany

    International Nuclear Information System (INIS)

    2013-01-01

    The German national report to this CRP was focused on the following services according to the research agreement: (1) Status review, analysis and evaluation of the radiation exposure imposed by shipment and expected exposure of the shipment staff of the most relevant NORM in Germany; (2) Development of evaluation criteria and safety requirements to provide adequate safety standards for the transportation of NORM; (3) Development and application of procedures to determine the limits for exempt materials/consignments for transportation according to German Transport Regulations for all NORM. For the analysis and evaluation of the radiation exposure imposed by shipment of NORM for the following materials, a couple of transport scenarios were defined and the dose to transport workers was calculated. - Tantalum raw materials; - Raw phosphate; - Pipe scales and sludge from oil and gas exploitation; - Coal ash; - Waste rock material from uranium mining; - Zircon raw materials; - Titanium dioxide raw materials; - Filter gravel from waterworks

  19. N-MYC DOWN-REGULATED-LIKE Proteins Regulate Meristem Initiation by Modulating Auxin Transport and MAX2 Expression

    OpenAIRE

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M.

    2013-01-01

    Background N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the G? subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the presen...

  20. Activation of ion transport systems during cell volume regulation

    International Nuclear Information System (INIS)

    Eveloff, J.L.; Warnock, D.G.

    1987-01-01

    This review discusses the activation of transport pathways during volume regulation, including their characteristics, the possible biochemical pathways that may mediate the activation of transport pathways, and the relations between volume regulation and transepithelial transport in renal cells. Many cells regulate their volume when exposed to an anisotonic medium. The changes in cell volume are caused by activation of ion transport pathways, plus the accompanying osmotically driven water movement such that cell volume returns toward normal levels. The swelling of hypertonically shrunken cells is termed regulatory volume increase (RVI) and involves an influx of NaCl into the cell via either activation of Na-Cl, Na-K-2Cl cotransport systems, or Na + -H + and Cl - -HCO 3 - exchangers. The reshrinking of hypotonically swollen cells is termed regulatory volume decrease (RVD) and involves an efflux of KCl and water from the cell by activation of either separate K + and Cl - conductances, a K-Cl cotransport system, or parallel K + -H + and Cl - -HCO 3 - exchangers. The biochemical mechanisms involved in the activation of transport systems are largely unknown, however, the phosphoinositide pathway may be implicated in RVI; phorbol esters, cGMP, and Ca 2+ affect the process of volume regulation. Renal tubular cells, as well as the blood cells that transverse the medulla, are subjected to increasing osmotic gradients from the corticomedullary junction to the papillary tip, as well as changing interstitial and tubule fluid osmolarity, depending on the diuretic state of the animal. Medullary cells from the loop of Henle and the papilla can volume regulate by activating Na-K-2Cl cotransport or Na + -H + and Cl - -HCO 3 - exchange systems

  1. International transport of incandescent gas mantles - an incident

    International Nuclear Information System (INIS)

    Singh, Khaidem R.K.

    2004-01-01

    Consumer products, though contain small quantities of radioactive material, are designed and manufactured with reference to prescribed safety standards; and supplied for use in public domain. On the basis of the nature of the exposures associated with such practices, which are quite low, the Regulatory Authority exempts the practices from many of the regulatory requirements. As they are inherently safe for handling, transporting and use, they are exempted from some of the requirements under the provisions of the regulations on the transport of radioactive material. Though the basic meaning and purpose of a radioactivity-based consumer product are similar to other commodities, there is a need to transport the former as per the regulations for safe transport of radioactive material till the product reaches at end user. The strict adherence to the transport regulations during transport of the radioactivity-based consumer product would ensure smooth carriage particularly in international arena. On the basis of an incident that happened during the transport of consumer products, this paper analyzes the provisions relating to radioactivity-based consumer products as envisaged in the basic safety standards of IAEA and their transport, particularly for natural thorium based consumer product gas mantles. (author)

  2. 75 FR 50700 - Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, and Drawbridge...

    Science.gov (United States)

    2010-08-17

    ...] Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, and Drawbridge Operation... notice lists temporary safety zones, security zones, special local regulations, and drawbridge operation... responsive to the safety and security needs within their jurisdiction; therefore, District Commanders and...

  3. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption

    Science.gov (United States)

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Gao, Nan; Ferraris, Ronaldo P.

    2015-01-01

    Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.—Patel, C., Douard, V., Yu, S., Gao, N., Ferraris, R. P. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. PMID:26071406

  4. [EDRP public local inquiry] Statement by the Department of Transport

    International Nuclear Information System (INIS)

    1985-01-01

    The safety responsibilities of the UK Secretary of State for Transport, in relation to radioactive materials under normal and accident conditions of transport, are outlined. The basic regulatory requirements necessitated by the IAEA regulations for safe transport of radioactive materials are summarised. A list of national and international regulations concerning the safe transport of radioactive materials to, from, or within the UK is provided. (U.K.)

  5. Extracellular creatine regulates creatine transport in rat and human muscle cells.

    OpenAIRE

    Loike, J D; Zalutsky, D L; Kaback, E; Miranda, A F; Silverstein, S C

    1988-01-01

    Muscle cells do not synthesize creatine; they take up exogenous creatine by specific Na+-dependent plasma membrane transporters. We found that extracellular creatine regulates the level of expression of these creatine transporters in L6 rat muscle cells. L6 myoblasts maintained for 24 hr in medium containing 1 mM creatine exhibited 1/3rd of the creatine transport activity of cells maintained for 24 hr in medium without creatine. Down-regulation of creatine transport was partially reversed whe...

  6. Road safety issues for bus transport management.

    Science.gov (United States)

    Cafiso, Salvatore; Di Graziano, Alessandro; Pappalardo, Giuseppina

    2013-11-01

    Because of the low percentage of crashes involving buses and the assumption that public transport improves road safety by reducing vehicular traffic, public interest in bus safety is not as great as that in the safety of other types of vehicles. It is possible that less attention is paid to the significance of crashes involving buses because the safety level of bus systems is considered to be adequate. The purpose of this study was to evaluate the knowledge and perceptions of bus managers with respect to safety issues and the potential effectiveness of various technologies in achieving higher safety standards. Bus managers were asked to give their opinions on safety issues related to drivers (training, skills, performance evaluation and behaviour), vehicles (maintenance and advanced devices) and roads (road and traffic safety issues) in response to a research survey. Kendall's algorithm was used to evaluate the level of concordance. The results showed that the majority of the proposed items were considered to have great potential for improving bus safety. The data indicated that in the experience of the participants, passenger unloading and pedestrians crossing near bus stops are the most dangerous actions with respect to vulnerable users. The final results of the investigation showed that start inhibition, automatic door opening, and the materials and internal architecture of buses were considered the items most strongly related to bus passenger safety. Brake assistance and vehicle monitoring systems were also considered to be very effective. With the exception of driver assistance systems for passenger and pedestrian safety, the perceptions of the importance of other driver assistance systems for vehicle monitoring and bus safety were not unanimous among the bus company managers who participated in this survey. The study results showed that the introduction of new technologies is perceived as an important factor in improving bus safety, but a better understanding

  7. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Science.gov (United States)

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M

    2013-01-01

    N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  8. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Directory of Open Access Journals (Sweden)

    Yashwanti Mudgil

    Full Text Available N-MYC down-regulated-like (NDL proteins interact with the Gβ subunit (AGB1 of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development.Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem.NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  9. A study on enforcement effects of radiation safety control regulations for diagnostic X-ray equipment

    International Nuclear Information System (INIS)

    Sung, Mo IL; Park, Myeong Hwan; Kwon, Duk Moon; Lee, Joon IL

    1999-01-01

    The purposes of this study are to analyze the realities after enforcements of safety control regulations for diagnostic X-ray equipment and to suggest means for an improvement of low radiation safety control. A questionnaire survey for medical radiologic technologists was carried out to determine enforcement effects of the safety control regulations. The results of analysis from the survey are as follows. That is, most of he respondents realized the importance of the radiation safety control system, but about a half of them revealed that regulations were not well observed in accordance with their purposes. Only 43.9 percent of the respondents took an active part in quality control of radiation. And responsibility, sex, age, and knowledge for safety control were important indicators for observations of the regulations. Training for the safety control regulations are needed to ensure safety control and proper usage of diagnostic X-ray equipment. And management of organizations using diagnostic X-ray equipment have to understand and stress the importance of radiation safety control system. (author)

  10. The UK nuclear regulator's view of external influences on safety

    International Nuclear Information System (INIS)

    Summers, J.L.

    2001-01-01

    Over the past forty or so years, significant changes have taken place in the UK nuclear industry and the pace of change is continually increasing. As a consequence, the Nuclear Installations Inspectorate (NII), the UK's nuclear regulator, has also had to change. This paper describes some of the challenges to safety that have arisen in recent years and how NII's style of regulation has had to adapt to ensure that safety is maintained and improved. NII's approach has been to: be proactive in its relations with Government and market regulators; adopt new competencies to equip it for the challenges it faces; strive to improve its efficiency and effectiveness; and develop new approaches to regulating changes in licensees' organisations and ways of working. Importantly, NII seeks to anticipate change rather than react to it. (author)

  11. Safety performance indicators used by the Russian Safety Regulatory Authority in its practical activities on nuclear power plant safety regulation

    International Nuclear Information System (INIS)

    Khazanov, A.L.

    2005-01-01

    The Sixth Department of the Nuclear, Industrial and Environmental Regulatory Authority of Russia, Scientific and Engineering Centre for Nuclear and Radiation Safety process, analyse and use the information on nuclear power plants (NPPs) operational experience or NPPs safety improvement. Safety performance indicators (SPIs), derived from processing of information on operational violations and analysis of annual NPP Safety Reports, are used as tools to determination of trends towards changing of characteristics of operational safety, to assess the effectiveness of corrective measures, to monitor and evaluate the current operational safety level of NPPs, to regulate NPP safety. This report includes a list of the basic SPIs, those used by the Russian safety regulatory authority in regulatory activity. Some of them are absent in list of IAEA-TECDOC-1141 ('Operational safety performance indicators for nuclear power plants'). (author)

  12. Compliance assurance in the field of radioactive material transport in Russia

    International Nuclear Information System (INIS)

    Ershov, V.; Syssoev, M.

    1999-01-01

    The main provisions of the system of compliance assurance, as understood in the IAEA Safety Regulations, are presented in this article as they are applied in Russia in the field of transport of radioactive materials. The urgency of the development and enactment of the uniform programme of compliance assurance in this area is underlined since it is foreseen by the new national regulations for the safety of radioactive material transport in Russia. (author)

  13. Transport of radioactive materials by post

    International Nuclear Information System (INIS)

    1984-11-01

    The objective of the Seminar was to encourage safe and efficient carriage of radioactive material by post. Adequate, up-to-date regulations for international and domestic shipment of radioactive material by all modes of transport, including by mail, have been published by the IAEA. UPU, ICAO, IATA and other international organizations as well as a majority of the countries of the world have adopted most sections of the Agency's Regulations for the Safe Transport of Radioactive Material. Although there is an apparent need for shipping radioactive material by mail, some countries allow only domestic shipments and the postal regulations applied in these countries often differs from the international regulations. Only about 25 countries are known to allow international (as well as domestic) shipments. From the discussions and comments at the Seminar, it appears that the option of shipment by post would be advantageous to enhance both the safety and economy of transporting, as well as to increase availability of, radioactive materials. The Agency's Regulations for transport by post as adopted by the UPU and ICAO are considered to provide a high level of safety and ensure a negligible element of risk. A more uniform application of these regulations within UPU Member States should be encouraged. The competent authority for implementation of the other parts of the Agency's Regulations in each of the Member States should be invited to advise the Postal Administrators and assist in applying the requirements to national as well as international postal shipments

  14. 49 CFR 385.313 - Who will conduct the safety audit?

    Science.gov (United States)

    2010-10-01

    ... FITNESS PROCEDURES New Entrant Safety Assurance Program § 385.313 Who will conduct the safety audit? An individual certified under the FMCSA regulations to perform safety audits will conduct the safety audit. ... 49 Transportation 5 2010-10-01 2010-10-01 false Who will conduct the safety audit? 385.313 Section...

  15. A German perspective on advances in safety standards and regulations

    International Nuclear Information System (INIS)

    Berg, H.P.; Herttrich, P.M.

    1993-01-01

    At present, different proposals for evolutionary or innovative reactors are under consideration. Therefore, it is necessary that the regulators give guidance on the required safety characteristics of future designs of nuclear power plants. On the one hand, existing regulations have to be updated according to the current state of science and technology. Best available and adequately approved technology has to be used as a yardstick for the acceptability of future basic design features. On the other hand, potential safety features of innovative or revolutionary designs must be considered as serious competitors and potential technical solutions taking the state of maturity of the concepts, the extent of practical experience and the level of effort needed for realization into due account. On this background, recent developments of the Atomic Energy Act, of safety regulations and investigations of requirements for future designs in the Federal Republic of Germany and current projects of international cooperation are presented. (author)

  16. Assessment of policy issues in nuclear safety regulation according to circumstantial changes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Lee, Byong Ho; Baek, Woon Pil; Lee, Seong Wook; Choi, Seong Soo; Roh, Chang Hyun; Lee, Kwang Gu [Korea Advanced Institute of Scienc and Technology, Taejon (Korea, Republic of)

    1998-03-15

    The objective of the work is to assess various issues in nuclear safety regulation in consideration of circumstantial changes. Emphasis is given to the safety of operating NPPs. The derivation of an effective regulation system considering 'Rhodic Safety Review (PSR)', 'operating License Renewal (LR)', 'backfitting' and 'maintenance rule' is the main objective of the first two years. It is found that those approaches should be introduced in Korea as soon as possible, with cross lingkage to maximize the effectiveness of regulation. In particular, the approaches for PSR are discussed with consultation of IAEA document and foreign practices.

  17. Rab proteins: The key regulators of intracellular vesicle transport

    International Nuclear Information System (INIS)

    Bhuin, Tanmay; Roy, Jagat Kumar

    2014-01-01

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future

  18. Rab proteins: The key regulators of intracellular vesicle transport

    Energy Technology Data Exchange (ETDEWEB)

    Bhuin, Tanmay [Cell and Developmental Biology Unit, Department of Zoology, The University of Burdwan, Golapbag 713104 (India); Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in [Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 (India)

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.

  19. Need to increase public awareness of the safety of radioactive materials transport

    International Nuclear Information System (INIS)

    Bishop, R.W.

    1983-01-01

    There are two aspects to the problem of the public perception of radioactive materials transport: the first is a lack of knowledge on the part of the public about the facts, and the second is the distorted presentation by the media. These two problems are obviously interrelated - the more unaware the public is of the actual safety of radioactive materials transport, the more it is likely to be influenced, and frightened, by inaccurate reporting. The obvious question is, what can we as an industry do to educate the public and to facilitate more neutral reporting about the facts involving radioactive materials transport. This question is answered by describing an excellent example of a situation where the industry acted cohesively and effectively to respond to fallacious allegations concerning the safety of the transportation of radioactive materials

  20. ELECTROMAGNETIC SAFETY OF ELECTRIC TRANSPORT SYSTEMS: MAIN SOURCES AND PARAMETERS OF MAGNETIC FIELDS

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-03-01

    Full Text Available Magnetic fields produced by electric drive vehicles may break electromagnetic safety. For electromagnetic safety and electromagnetic compatibility knowledge about characteristics and sources of magnetic fields in the electric transport is necessary. The article deals with analysis of available data about magnetic fields in electric cars and comparison with results of our measurements carried out in the other types of electrified transport systems.

  1. The transport of hazardous materials

    International Nuclear Information System (INIS)

    Goemmel, F.

    1987-01-01

    The rapid development of all kinds of transports has been leading to a continuously increasing number of accidents involving the release and escape of hazardous materials. The risks involved for men and the environment have to be realized and reduced to a minimum. Efforts in this field have meanwhile been accumulating an enormous quantity of rules, recommendations and regulations. They comprise, among others, both national and international rail transport, maritime transport, inland shipping, air and road transport regulations adding up to a total of about 5000 pages. The publication discusses the necessity and justification of the existing quantity of regulations, it deals with their possible simplification and modified user-oriented arrangement as well as with a possible international harmonization of regulations. Apart from giving a general survey of the transport of hazardous materials the author reviews the intensive efforts which are going into the safety of the transport of hazardous materials and points out technical and legal problems which have remained unsolved so far. The publication essentially contributes to clearing up the background, perspectives and prospects of the complex regulations controlling the transport of hazardous materials. (orig./HP) [de

  2. Transport of radioactive waste from nuclear facilities

    International Nuclear Information System (INIS)

    Keese, H.

    1976-01-01

    A transport system for spent fuel elements and radioactive waste is reported on. The construction of appropriate transport containers, safety regulations, as well as future developments in transport systems and transport containers are discussed in detail. The volume of the spent fuel elements to be moved and the number of transport containers needed is gone into, too. (HR/LN) [de

  3. Development in France of nuclear safety technical regulations and standards used in the licensing procedure

    International Nuclear Information System (INIS)

    Lebouleux, P.

    1983-04-01

    Initially, the Commissariat a l'Energie Atomique was the overall structure which encompassed all nuclear activities in France, including those connected with radiological protection and nuclear safety. As other partners appeared, the Authorities have laid down national regulations relative to nuclear installations since 1963. These regulations more particularly provide for the addition of prescriptions with which the applicant must comply to obtain the necessary licenses and the establishment of General Technical Regulations pertaining to nuclear safety. The technical regulation related to nuclear safety in France is made of a set of regulation texts, of a different nature, that define the requirements for the construction, commissioning and operation of nuclear facilities. Simultaneously, the safety authorities (Service Central de Surete des Installations Nucleaires: SCSIN) issue recommendations or guides which are not strictly speaking regulations in the juridical sense; they are called ''Regles Fondamentales de Surete'' (RFS). The RFS set up and detail the conditions, the respect of which is deemed to be complying with the French regulation practice, for the subject to which they relate. Their purpose is to make known rules judged acceptable by safety authorities, thus making the safety review easier. A RFS, or a letter, can also give the result of the examination of the constructor and operator codes (RCC) by safety authorities

  4. Safety And Promotion in the Federal Aviation Administration- Enabling Safe and Successful Commercial Space Transportation

    Science.gov (United States)

    Repcheck, Randall J.

    2010-09-01

    The United States Federal Aviation Administration’s Office of Commercial Space Transportation(AST) authorizes the launch and reentry of expendable and reusable launch vehicles and the operation of launch and reentry sites by United States citizens or within the United States. It authorizes these activities consistent with public health and safety, the safety of property, and the national security and foreign policy interests of the United States. In addition to its safety role, AST has the role to encourage, facilitate, and promote commercial space launches and reentries by the private sector. AST’s promotional role includes, among other things, the development of information of interest to industry, the sharing of information of interest through a variety of methods, and serving as an advocate for Commercial Space Transportation within the United States government. This dual safety and promotion role is viewed by some as conflicting. AST views these two roles as complementary, and important for the current state of commercial space transportation. This paper discusses how maintaining a sound safety decision-making process, maintaining a strong safety culture, and taking steps to avoid complacency can together enable safe and successful commercial space transportation.

  5. Radioactive materials and nuclear fuel transport requirements in Poland in the light of international regulations

    International Nuclear Information System (INIS)

    Musialowicz, T.

    1977-01-01

    National regulations for the transport of radioactive materials and nuclear fuel in Poland are discussed. Basic transport requirements and regulations, transport experience including transport accidents and emergency service are described. The comparison with international regulations is given

  6. NRC safety research in support of regulation, 1988

    International Nuclear Information System (INIS)

    1989-05-01

    This report, the fourth in a series of annual reports, was prepared in response to Congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during 1988. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  7. Transport of radioactive sources-an environmental problem

    International Nuclear Information System (INIS)

    Merckaert, G.

    1996-01-01

    Full text: The transport of dangerous goods is submitted to various regulations. These can be international, national or regional and they can differ from country to country. The basis for the regulations for dangerous goods can be found in the recommendations on the transport of dangerous goods, issued by the United Nations committee of experts on the transport of dangerous goods (orange book). For radioactive material the regulations for the safe transport of radioactive material, issued by the International Atomic Energy Agency (IAEA), are applied. The UN recommendations provide for 9 classes of dangerous goods. With regard to class 7, specifically related to the transport of radioactive material special recommendation relating to class 70, the IAEA regulations are referred to. These IAEA regulations for their part provide for 13 schedules, varying between weakly and highly radioactive. The radioactive sources which are used for non-destructive testing or for medical purposes are mostly sealed sources, i.e. the radioactive material is contained in a metallic shell. According to the nature of the isotope and their activity, the sources are transported either in industrial packagings, type A or type B packagings. According to the mode of transport, either air, sea, rail or road, various specific rules are applied, which however, are fortunately nearly completely harmonized. Special attention is paid to radiation protection, heat removal and the testing and fabrication of packagings. As a general rule, the safety of transport is based on the safety of the packagings, i.e. their ability to maintain, even in accident conditions, their capacity of tightness, shielding against radiation and removing the heat generated by the transported material

  8. Safety analysis report on Model UC-609 shipping package

    International Nuclear Information System (INIS)

    Sandberg, R.R.

    1977-08-01

    This Safety Analysis Report for Packaging demonstrates that model UC-609 shipping package can safely transport tritium in any of its forms. The package and its contents are described. The package when subjected to the transport conditions specified in the Code of Federal Regulations, Title 10, Part 71 is evaluated. Finally, compliance with these regulations is discussed

  9. Advisory material for the IAEA Regulations for the safe transport of radioactive material (1985 Edition). 3. ed.

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of this document is to provide advice on the application of the provisions of the 1985 Edition of Safety Series No. 6 (concerning the IAEA Regulations for the Safe Transport of Radioactive Material) in order to help achieve compliance with the regulatory standards. This document also reflects the corrections and changes implemented by the 1986 Supplement to the Regulations for the Safe Transport of Radioactive Material. Its intent is to describe methods, techniques and practices (citing any appropriate national and international standards) which can be considered a means of satisfying certain requirements. It should always be read as offering 'a way' or 'ways' rather than 'the unique way' of achieving compliance. The information provided is to be considered purely advisory and never mandatory, except where a competent authority may require use of any part or parts of the text. This document provides information about the technical requirements of the Regulations and about the methods and technology which may be employed to satisfy them, for the benefit of designers and manufacturers of packagings, consignors, carriers, competent authorities and others, i.e. it provides 'how' information

  10. Production, regulation and transportation of bacillibactin in bacillus subtilis

    International Nuclear Information System (INIS)

    Raza, W.; Hussain, Q.; Shen, Q.

    2012-01-01

    Bacillus subtilis produces a catecholate type siderophore 'Bacillibactin'. This review focuses on the non-ribosomal synthesis, transport and regulation of bacillibactin. Bacillibactin biosynthetic operon contains five genes (dhbACEBF). The uptake of bacillibactin requires the FeuABC transporter, inner-membrane permease, FepDG and YusV ATPase and an esterase encoding gene, besA and while export required YmfE major facilitator super-family (MFS)-type transporter. Fur is the major iron-controlled transcriptional regulator in B. subtilis, which acts as an iron-dependent repressor of the dhb operon in vivo while an iron-independent repressor in vitro. Knowledge of the Fur regulon will be useful in interpreting other global analysis of transcriptional responses. (author)

  11. The improvement of nuclear safety regulation : American, European, Japanese, and South Korean experiences

    International Nuclear Information System (INIS)

    Cho, Byung Sun

    2005-01-01

    Key concepts in South Korean nuclear safety regulation are safety and risk. Nuclear regulation in South Korea has required reactor designs and safeguards that reduce the risk of a major accident to less than one in a million reactor-years-a risk supposedly low enough to be acceptable. To data, in South Korean nuclear safety regulation has involved the establishment of many technical standards to enable administration enforcement. In scientific lawsuits in which the legal issue is the validity of specialized technical standards that are used for judge whether a particular nuclear power plant is to be licensed, the concept of uncertainty law is often raised with regard to what extent the examination and judgement by the judicial power affects a discretion made by the administrative office. In other words, the safety standards for nuclear power plants has been adapted as a form of the scientific technical standards widely under the idea of uncertainty law. Thus, the improvement of nuclear safety regulation in South Korea seems to depend on the rational lawmaking and a reasonable, judicial examination of the scientific standards on nuclear safety

  12. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  13. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  14. Transport of hazardous goods. Befoerderung gefaehrlicher Gueter

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The course 'Transport of hazardous goods' was held in Berlin in November 1988 in cooperation with the Bundesanstalt fuer Materialforschung und -pruefung. From all lecturs, two are recorded separately: 'Safety of tank trucks - requirements on the tank, development possibiities of active and passive safety' and 'Requirements on the transport of radioactive materials - possible derivations for other hazardous goods'. The other lectures deal with hazardous goods law, requirements on packinging, risk assessment, railroad transport, hazardous goods road network, insurance matters, EC regulations, and waste tourism. (HSCH).

  15. Integrated model of port oil piping transportation system safety including operating environment threats

    Directory of Open Access Journals (Sweden)

    Kołowrocki Krzysztof

    2017-06-01

    Full Text Available The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  16. Integrated model of port oil piping transportation system safety including operating environment threats

    OpenAIRE

    Kołowrocki, Krzysztof; Kuligowska, Ewa; Soszyńska-Budny, Joanna

    2017-01-01

    The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  17. Quality assurance requirements for packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    Barker, R.F.; MacDonald, C.E.; Doda, R.J.

    1978-01-01

    This paper discusses the new quality assurance regulations of the Nuclear Regulatory Commission (NRC) for packaging and transportation of radioactive materials. These regulations became effective on October 18, 1977. Background information concerning these regulations and packaging and transportation history is included. The quality assurance program is described with indications of how it is composed of general (administrative) provisions which must meet the 18 quality assurance criteria and be approved by the NRC; specific provisions which appear in the DOT and NRC regulations and in the individual package design approval; and other specific procedures which are not required by regulations but which are necessary for the proper control of quality. The quality assurance program is to be developed using a graded approach for the application of pertinent criteria and optimizing the required degree of safety and control efforts involved in achieving this level of safety. The licensee-user is responsible for all phases of quality assurance for packaging activities including: design, manufacture, test, use, maintenance and repair. The package design phase is considered to be particularly important in producing adequate safety in operational activities concerning packaging and transportation of radioactive materials

  18. FOOD SAFETY REGULATIONS BASED ON REAL SCIENCE

    Directory of Open Access Journals (Sweden)

    Huub LELIEVELD

    2015-10-01

    Full Text Available Differences in regulations result in needless destruction of safe food and hamper food trade. The differences are not just the result of the history of food safety regulations, often developed in times before global cooperation, but are also built in new regulations. It may be responses to media hypes or for other reasons, but in most cases the differences cannot be justified scientifically. A major difficulty is that, due to the developments in analytical techniques the number of chemicals that are found in food is increasing rapidly and chemicals are always suspected to be a safety risk. By far most chemicals are of natural origin but could not be detected in the past because the methods available in the past were not sensitive enough. Demanding the absence of chemicals because the risk they present is unknown, however, would eventually make all food unacceptable. The general public should be shown that everything they eat is chemical, and all food components will be toxic if the amount is too high. It should also be shown that many of these chemicals will also cause illness and death if there is not enough of it as is the case with vitamins and minerals.

  19. Ecological Design of Cooperative Human-Machine Interfaces for Safety of Intelligent Transport Systems

    Directory of Open Access Journals (Sweden)

    Orekhov Aleksandr

    2016-01-01

    Full Text Available The paper describes research results in the domain of cooperative intelligent transport systems. The requirements for human-machine interface considering safety issue of for intelligent transport systems (ITSare analyzed. Profiling of the requirements to cooperative human-machine interface (CHMI for such systems including requirements to usability and safety is based on a set of standards for ITSs. An approach and design technique of cooperative human-machine interface for ITSs are suggested. The architecture of cloud-based CHMI for intelligent transport systems has been developed. The prototype of software system CHMI4ITSis described.

  20. Legal status of minister's notices and technology standards of 'Korea institute of nuclear safety'(KINS) to regulate nuclear safety

    International Nuclear Information System (INIS)

    Jung, S. K.; Jung, M. M.; Kim, S. W.; Jang, K. H.; Oh, B. J.

    2003-01-01

    Concerning nuclear safety or technology standards, each of 'notices' issued by minister of science and technology(MOST) empowered by law of its regulation is obviously forceful as a law, if not all. But the standards made by the chief of Korea institute of nuclear safety(KINS) to meet the tasks entrusted to KINS by MOST is only conditionally forceful as a law, that is, on the condition that law or regulation empowered the chief of KINS to make nuclear safety and/or technology standards

  1. The Swedish sea transportation system for safety reasons

    International Nuclear Information System (INIS)

    Dybeck, P.

    1993-01-01

    Sweden began to design and build a sea transportation system. The ship M/S SIGYN is specially designed for transports of radioactive waste. It is a combined roll-on/roll-off and lift-on/lift-off vessel. It is built for world wide operation and with the highest requirements of two independent classification societies, Lloyds Register of Shipping and Bureau Veritas. The ship is also designed to conform to the Swedish/Finish ice class 1A. The transport cask for spent fuel, TN 17/2, and core component TN 17-CC are designed as type (B) casks and manufactured to comply with the IAEA Regulations for the Safe Transport of Radioactive Materials, 1973. (J.P.N.)

  2. Environmental Regulation and Food Safety: Studies of Protection ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2006-01-01

    Jan 1, 2006 ... Book cover Environmental Regulation and Food Safety: Studies of ... are sometimes perceived in developing countries as nontariff barriers to trade. ... In some cases, products that had initially been refused access to a ...

  3. Third meeting of the advisory group for the comprehensive review of the IAEA regulations for the safe transport of radioactive materials, Vienna, 7-11 November 1983

    International Nuclear Information System (INIS)

    Rawl, R.R.

    This meeting was the third and final planned stage in the process to revise the Agency's Regulations for the Safe Transport of Radioactive Materials, Safety Series No. 6. Its task was to consider comments which had been submitted in response to the Agency's circulation of the third draft revision of Safety Series No. 6 and to make any necessary changes to the draft that the Advisory Group felt were necessary

  4. Transportation of irradiated fuel elements

    International Nuclear Information System (INIS)

    Preece, A.H.

    1980-01-01

    The report falls under the headings: introduction (explaining the special interest of the London Borough of Brent, as forming part of the route for transportation of irradiated fuel elements); nuclear power (with special reference to transport of spent fuel and radioactive wastes); the flask aspect (design, safety regulations, criticisms, tests, etc.); the accident aspect (working manual for rail staff, train formation, responsibility, postulated accident situations); the emergency arrangements aspect; the monitoring aspect (health and safety reports); legislation; contingency plans; radiation - relevant background information. (U.K.)

  5. Safety analysis report for packaging (onsite) sample pig transport system

    International Nuclear Information System (INIS)

    MCCOY, J.C.

    1999-01-01

    This Safety Analysis Report for Packaging (SARP) provides a technical evaluation of the Sample Pig Transport System as compared to the requirements of the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1, Change 1, Chapter III. The evaluation concludes that the package is acceptable for the onsite transport of Type B, fissile excepted radioactive materials when used in accordance with this document

  6. Safety analysis report for packaging (onsite) sample pig transport system

    Energy Technology Data Exchange (ETDEWEB)

    MCCOY, J.C.

    1999-03-16

    This Safety Analysis Report for Packaging (SARP) provides a technical evaluation of the Sample Pig Transport System as compared to the requirements of the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1, Change 1, Chapter III. The evaluation concludes that the package is acceptable for the onsite transport of Type B, fissile excepted radioactive materials when used in accordance with this document.

  7. Collaborative Approaches in Developing Environmental and Safety Management Systems for Commercial Space Transportation

    Science.gov (United States)

    Zee, Stacey; Murray, D.

    2009-01-01

    The Federal Aviation Administration (FAA), Office of Commercial Space Transportation (AST) licenses and permits U.S. commercial space launch and reentry activities, and licenses the operation of non-federal launch and reentry sites. ASTs mission is to ensure the protection of the public, property, and the national security and foreign policy interests of the United States during commercial space transportation activities and to encourage, facilitate, and promote U.S. commercial space transportation. AST faces unique challenges of ensuring the protection of public health and safety while facilitating and promoting U.S. commercial space transportation. AST has developed an Environmental Management System (EMS) and a Safety Management System (SMS) to help meet its mission. Although the EMS and SMS were developed independently, the systems share similar elements. Both systems follow a Plan-Do-Act-Check model in identifying potential environmental aspects or public safety hazards, assessing significance in terms of severity and likelihood of occurrence, developing approaches to reduce risk, and verifying that the risk is reduced. This paper will describe the similarities between ASTs EMS and SMS elements and how AST is building a collaborative approach in environmental and safety management to reduce impacts to the environment and risks to the public.

  8. Food suppliers' perceptions and practical implementation of food safety regulations in Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Hwa Ko

    2015-12-01

    Full Text Available The relationships between the perceptions and practical implementation of food safety regulations by food suppliers in Taiwan were evaluated. A questionnaire survey was used to identify individuals who were full-time employees of the food supply industry with at least 3 months of experience. Dimensions of perceptions of food safety regulations were classified using the constructs of attitude of employees and corporate concern attitude for food safety regulation. The behavior dimension was classified into employee behavior and corporate practice. Food suppliers with training in food safety were significantly better than those without training with respect to the constructs of perception dimension of employee attitude, and the constructs of employee behavior and corporate practice associated with the behavior dimension. Older employees were superior in perception and practice. Employee attitude, employee behavior, and corporate practice were significantly correlated with each other. Satisfaction with governmental management was not significantly related to corporate practice. The corporate implementation of food safety regulations by suppliers was affected by employees' attitudes and behaviors. Furthermore, employees' attitudes and behaviors explain 35.3% of corporate practice. Employee behavior mediates employees' attitudes and corporate practices. The results of this study may serve as a reference for governmental supervision and provide training guidelines for workers in the food supply industry.

  9. The Competence Promoting by NNSA for Keeping High Level Nuclear Safety: The Corner Stone of the Nuclear Safety Regulation Edifice

    International Nuclear Information System (INIS)

    Hu, L.

    2016-01-01

    Facing the fast development of the nuclear power industry and the application of radioactive sources, The MEP(NNSA) is endeavoured to promoting its competency, including: complementing the law system, training and recruiting staff to keep a capable team, constructing the R&D base to keep the basic capability, promoting safety culture both for the industry and the regulator. After the Fukushima nuclear accident, the MEP(NNSA) planned to construct R&D base, in which the Platform Nuclear Safety Monitoring and Emergency Responding, the Platform of Safety Technology of PWR Testing, the Laboratory of Safety Management Technology of Nuclear Waste Verification, the Laboratory of Environmental Radiation Monitoring and the Center of International Cooperation are included. On the other hand, the MEP(NNSA) issued Chinese nuclear safety culture policy declaration in 2014, and carried out a large scale Specialized Action for Nuclear Safety Promotion to promote the nuclear safety culture both for the industry and herself. For the nuclear regulator, It is essential to conduct the competence promoting by both “hardware” and “software”, the former is the material foundation of regulation authority, which will be effectively functioning under the facilitating of the latter. (author)

  10. Safety evaluation and regulation of chemicals. 2. Impact of regulations - improvement of methods

    Energy Technology Data Exchange (ETDEWEB)

    Homburger, F [ed.

    1985-01-01

    This volume assesses the impact of new scientific knowledge on the testing and regulation of chemicals, including food additives, drugs, cosmetics, pesticides, and other commercial substances. Apart from describing the newest tests, regulations, and risk assessment strategies, chapters reflect changes forced by both the growing need for cost containment and the mounting pressure to find alternatives to animal testing. Based on an international congress, the book also brings the advantage of diversity in the background and nationality of the authors, thus allowing a view of central problems according to the different interests of academics, industry scientists, government scientists, and regulators. The book opens with coverage of national and international regulations designed to prevent and control damage to human health and the environment. Topics range from basic problems of policy design and enforcement to the specific requirements for chemical regulation in developing countries. The next chapters cover new tests, systems, and assays used in in vivo safety testing. Readers will find a critical assessment of tests used to determine teratogenicity, mutagenicity, carcinogenicity, neurotoxicity and chemical lethality. Other topics include factors operating in the public perception of chemical hazards, guidelines for decision making in the management and regulation of risks, and future trends in the methodology of safety evaluation. The volume concludes with an overview of in vitro methods for testing hepatotoxicity. Several short-term in vitro test models and limited in vivo bioassays are presented and evaluated in terms of their capacity to substitute for long-term animal studies. Expert and thorough in its coverage, the book offers a wealth of technical and practical information for toxicologists, pharmacologists, industrial policy makers, and government regulators. (orig.). With 67 figs., 34 tabs.

  11. Safety assessment of ammonia as a transport fuel

    DEFF Research Database (Denmark)

    Duijm, N.J.; Markert, Frank; Paulsen, Jette Lundtang

    2005-01-01

    to be controlled by a combination of technical and regulatory measures. The most important requirements are: - Advanced safety systems in the vehicle -Additional technical measures and regulations are required to avoid releases in maintenance workshops and unauthorised maintenance on the fuel system. - Road...

  12. Status of radioactive material transport

    International Nuclear Information System (INIS)

    Kueny, Laurent

    2012-01-01

    As about 900.000 parcels containing radioactive materials are transported every year in France, the author recalls the main risks and safety principles associated with such transport. He indicates the different types of parcels defined by the regulation: excepted parcels, industrial non fissile parcels (type A), type B and fissile parcels, and highly radioactive type C parcels. He briefly presents the Q-system which is used to classify the parcels. He describes the role of the ASN in the control of transport safety, and indicates the different contracts existing between France or Areva and different countries (Germany, Japan, Netherlands, etc.) for the processing of used fuels in La Hague

  13. Regulation and roles of bicarbonate transport in cancer

    Directory of Open Access Journals (Sweden)

    Andrej eGorbatenko

    2014-04-01

    Full Text Available A unifying feature of solid tumors is a markedly altered pH profile compared to normal tissues. This reflects that solid tumors, despite completely different origins, often share several phenotypic properties with implications for intra- and extracellular pH. These include: a metabolic shift in most cancer cells towards more acid-producing pathways, reflecting both oncogenic signaling and the development of hypoxia in poorly perfused regions of the tumors; the poorly perfused and often highly dense tumor microenvironment, reducing the diffusive flux of acid equivalents compared to that in normal tissues; and the markedly altered regulation of the expression and activity of pH-regulatory transport proteins in the cancer cells. While some of these properties of tumors have been well described in recent years, the great majority of the research in this clinically important area has focused on proton transport, in particular via the Na+/H+-exchanger 1 (SLC9A1, NHE1 and various H+ ATPases. We have, however, recently demonstrated that at least under some conditions, including in vitro models of HER2 positive breast cancer, and measurements obtained directly in freshly dissected human mammary tumors, bicarbonate transporters such as the electroneutral Na+,HCO3--cotransporter (SLC4A7, NBCn1, are upregulated and play central roles in pH regulation. In this review, we summarize and discuss the current knowledge regarding the regulation and roles of bicarbonate transport in cancer.

  14. Recommendations on the transport of dangerous goods. Model regulations. 11. revised ed.

    International Nuclear Information System (INIS)

    1999-01-01

    The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with the regulation of the transport of dangerous goods. They have been prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, and they were first published in 1956 (ST/ECA/43-E/CN.2/170). Pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions, they have been regularly amended and updated at succeeding sessions of the Committee of Experts. At its eighteenth session (28 November-7 December 1994), the Committee of Experts considered that reformatting the Recommendations on the Transport of Dangerous Goods into Model Regulations that could be directly integrated into all modal national and international regulations would enhance harmonization, facilitate regular up-dating of all legal instruments concerned, and result in overall considerable resource savings for the Governments of the Member States, the United Nations, the specialized agencies and other international organizations. At its nineteenth session (2-10 December 1996), the Committee adopted a first version of the Model Regulations on the Transport of Dangerous Goods, which was annexed to the tenth revised edition of the Recommendations on the Transport of Dangerous Goods. At its twentieth session (7-16 December 1998), the Committee adopted various amendments to the Model Regulations and new provisions including, in particular, packing instructions for individual substances and articles and additional provisions for the transport of radioactive material. The additional provisions concerning the transport of radioactive material were developed in close cooperation with the International Atomic Energy Agency (IAEA) and are based on the 1996 Edition of the IAEA Regulations for the Safe Transport of Radioactive Material which have been reformatted so as to be

  15. 14 CFR 221.61 - Rules and regulations governing foreign air transportation.

    Science.gov (United States)

    2010-01-01

    ... governing foreign air transportation. Instead of being included in the fares tariffs, the rules and regulations governing foreign air transportation required to be filed by §§ 221.20 and 221.30 and/or... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Rules and regulations governing foreign air...

  16. Alternative risk-based criteria for transportation of radioactive materials on the United States Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Mercado, J.E.; Field, J.G.; Smith, R.J.; Wang, O.S.

    1993-01-01

    This paper presents the development of an alternative method to evaluate packaging safety for radioactive material transported solely within the boundaries of a restricted site; the method uses risk-based criteria to assess and document packaging safety. These criteria offer a standard against which the results of a risk assessment are compared to evaluate the safety of a transportation operation. Numerous payloads are transported entirely within the U.S. Department of Energy's Hanford Site boundaries. The U.S. Department of Energy requires that the safety of onsite transportation be equivalent to the safety provided for transporting radioactive materials in commerce as regulated by the U.S. Department of Transportation and the U.S. Nuclear Regulatory Commission. Some onsite packaging configurations do not meet the performance criteria that form the basis of these regulations, necessitating the establishment of alternative criteria to evaluate safety. Quantitatively defined criteria have been derived from the U.S. Department of Transportation limits for package radiation levels, curie content, activity release, and external contamination levels. Recommendations of the International Committee on Radiation Protection may further restrict the criteria. The proposed method documents packaging safety in a transportation risk assessment. The assessment estimates accident frequencies, conservatively evaluates the dose consequences of these accidents, and compares the results to the established risk acceptance criteria. Specific Hanford Site onsite packaging and transportation issues illustrate the alternative method. The paper compares the solutions resulting from the application of risk-based criteria to those resulting from strict compliance with commercial transportation regulations. (author)

  17. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1.

    Science.gov (United States)

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian; Richter, Erik A; Jensen, Thomas E

    2015-02-01

    Rac1 regulates stretch-stimulated (i.e. mechanical stress) glucose transport in muscle. Actin depolymerization decreases stretch-induced glucose transport in skeletal muscle. Rac1 is a required part of the mechanical stress-component of the contraction-stimulus to glucose transport in skeletal muscle. An alternative to the canonical insulin signalling pathway for glucose transport is muscle contraction/exercise. Mechanical stress is an integrated part of the muscle contraction/relaxation cycle, and passive stretch stimulates muscle glucose transport. However, the signalling mechanism regulating stretch-stimulated glucose transport is not well understood. We recently reported that the actin cytoskeleton regulating GTPase, Rac1, was activated in mouse muscle in response to stretching. Rac1 is a regulator of contraction- and insulin-stimulated glucose transport, however, its role in stretch-stimulated glucose transport and signalling is unknown. We therefore investigated whether stretch-induced glucose transport in skeletal muscle required Rac1 and the actin cytoskeleton. We used muscle-specific inducible Rac1 knockout mice as well as pharmacological inhibitors of Rac1 and the actin cytoskeleton in isolated soleus and extensor digitorum longus muscles. In addition, the role of Rac1 in contraction-stimulated glucose transport during conditions without mechanical load on the muscles was evaluated in loosely hanging muscles and muscles in which cross-bridge formation was blocked by the myosin ATPase inhibitors BTS and Blebbistatin. Knockout as well as pharmacological inhibition of Rac1 reduced stretch-stimulated glucose transport by 30-50% in soleus and extensor digitorum longus muscle. The actin depolymerizing agent latrunculin B similarly decreased glucose transport in response to stretching by 40-50%. Rac1 inhibition reduced contraction-stimulated glucose transport by 30-40% in tension developing muscle but did not affect contraction-stimulated glucose transport in

  18. Safety during sea transport of radioactive materials. Probabilistic safety analysis of package fro sea surface fire accident

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Obara, Isonori; Akutsu, Yukio; Aritomi, Masanori

    2000-01-01

    The ships carrying irradiated nuclear fuel, plutonium and high level radioactive wastes(INF materials) are designed to keep integrity of packaging based on the various safety and fireproof measures, even if the ship encounters a maritime fire accident. However, granted that the frequency is very low, realistic severe accidents should be evaluated. In this paper, probabilistic safety assessment method is applied to evaluate safety margin for severe sea fire accidents using event tree analysis. Based on our separate studies, the severest scenario was estimated as follows; an INF transport ship collides with oil tanker and induces a sea surface fire. Probability data such as ship's collision, oil leakage, ignition, escape from fire region, operations of cask cooling system and water flooding systems were also introduced from above mentioned studies. The results indicate that the probability of which packages cannot keep their integrity during the sea surface fire accident is very low and sea transport of INF materials is carried out very safely. (author)

  19. Regulation of transport in the connecting tubule and cortical collecting duct

    Science.gov (United States)

    Staruschenko, Alexander

    2012-01-01

    The central goal of this overview article is to summarize recent findings in renal epithelial transport, focusing chiefly on the connecting tubule (CNT) and the cortical collecting duct (CCD). Mammalian CCD and CNT are involved in fine tuning of electrolyte and fluid balance through reabsorption and secretion. Specific transporters and channels mediate vectorial movements of water and solutes in these segments. Although only a small percent of the glomerular filtrate reaches the CNT and CCD, these segments are critical for water and electrolyte homeostasis since several hormones, e.g. aldosterone and arginine vasopressin, exert their main effects in these nephron sites. Importantly, hormones regulate the function of the entire nephron and kidney by affecting channels and transporters in the CNT and CCD. Knowledge about the physiological and pathophysiological regulation of transport in the CNT and CCD and particular roles of specific channels/transporters has increased tremendously over the last two decades. Recent studies shed new light on several key questions concerning the regulation of renal transport. Precise distribution patterns of transport proteins in the CCD and CNT will be reviewed, and their physiological roles and mechanisms mediating ion transport in these segments will be also covered. Special emphasis will be given to pathophysiological conditions appearing as a result of abnormalities in renal transport in the CNT and CCD. PMID:23227301

  20. Frequent down-regulation of ABC transporter genes in prostate cancer

    International Nuclear Information System (INIS)

    Demidenko, Rita; Razanauskas, Deividas; Daniunaite, Kristina; Lazutka, Juozas Rimantas; Jankevicius, Feliksas; Jarmalaite, Sonata

    2015-01-01

    ATP-binding cassette (ABC) transporters are transmembrane proteins responsible for the efflux of a wide variety of substrates, including steroid metabolites, through the cellular membranes. For better characterization of the role of ABC transporters in prostate cancer (PCa) development, the profile of ABC transporter gene expression was analyzed in PCa and noncancerous prostate tissues (NPT). TaqMan Low Density Array (TLDA) human ABC transporter plates were used for the gene expression profiling in 10 PCa and 6 NPT specimens. ABCB1 transcript level was evaluated in a larger set of PCa cases (N = 78) and NPT (N = 15) by real-time PCR, the same PCa cases were assessed for the gene promoter hypermethylation by methylation-specific PCR. Expression of eight ABC transporter genes (ABCA8, ABCB1, ABCC6, ABCC9, ABCC10, ABCD2, ABCG2, and ABCG4) was significantly down-regulated in PCa as compared to NPT, and only two genes (ABCC4 and ABCG1) were up-regulated. Down-regulation of ABC transporter genes was prevalent in the TMPRSS2-ERG-negative cases. A detailed analysis of ABCB1 expression confirmed TLDA results: a reduced level of the transcript was identified in PCa in comparison to NPT (p = 0.048). Moreover, the TMPRSS2-ERG-negative PCa cases showed significantly lower expression of ABCB1 in comparison to NPT (p = 0.003) or the fusion-positive tumors (p = 0.002). Promoter methylation of ABCB1 predominantly occurred in PCa and was rarely detected in NPT (p < 0.001). The study suggests frequent down-regulation of the ABC transporter genes in PCa, especially in the TMPRSS2-ERG-negative tumors. The online version of this article (doi:10.1186/s12885-015-1689-8) contains supplementary material, which is available to authorized users

  1. Safety of Oversize Cargo in Ports and in the Sea Transport

    Directory of Open Access Journals (Sweden)

    Miroslaw Chmielinski

    2017-03-01

    Full Text Available Author of the paper analyzes problems related to the safety of the oversize cargo in ports and in the sea transport. Various modes of transport are used to carry oversized units that often include maritime transport. Transport of oversized cargo includes non-standard large and heavy pieces of cargo, such as electric transformers, reactor vessels, wind turbines, airplane fuselage or nuclear power plant components. The above paper is based on results of research oversized cargo in the Elpo Service Company and Pol-Mare Ltd. forwarding consulting agency.

  2. International Conference on the Safe and Secure Transport of Radioactive Material: The Next Fifty Years of Transport - Creating a Safe, Secure and Sustainable Framework. Papers and Presentations

    International Nuclear Information System (INIS)

    2011-01-01

    The objective of the conference is to encourage application of appropriate levels of safety and security during transport by: Promoting international discussion on the safety and security of radioactive material transport; Identifying and sharing best practices; Identifying issues and problems; Identifying opportunities, such as providing assistance, to support national adoption of comprehensive transport safety and security frameworks; Developing ideas for coordinating and enhancing transport safety and security. Scope of the Conference: Nuclear and other radioactive material in legal regulated transport (not illicit trafficking, smuggling, etc.); All modes of transport; Safety; Security; Domestic and international movements, including transit; Response to accidents and security events; Legislative and regulatory requirements and approaches; Practical issues such as transport logistics; Regional networks; and Information security and the need for transparency. The conference is not intended to cover the technical topics covered in the PATRAM conference (package design and analysis).

  3. Study on the development of safety regulations for geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Wei Fangxin

    2012-01-01

    The development of regulations under Regulations on Safety Management of Radioactive Waste has become necessary as the issuance of it. The regulations related to geological disposal of high-level radioactive waste can promote the progress of research and development on geological disposal of high-level radioactive waste in China. This paper has present suggestions on development of regulations on geological disposal of high-level radioactive waste by analyzing development of safety regulations on geological disposal of high-level radioactive waste in foreign countries and problems occurred in China and discussed important issues related to the development of safety regulations on geological disposal of high-level radioactive waste. (author)

  4. Advisory material for the IAEA regulations for the safe transport of radioactive material (1985 edition). 3. ed.

    International Nuclear Information System (INIS)

    1990-01-01

    The IAEA Regulations for the Safe Transport of Radioactive Material provide standards for ensuring a high level of safety of people, property and the environment against radiation and criticality hazards as well as thermal effects associated with the transport of radioactive material. The basic requirements to be met are: Effective containment of radioactive material; Effective control of radiation emitted from the package; A subcritical condition for any fissile material; and Adequate dissipation of any heat generated within the package. Effective quality assurance and compliance assurance programmes are required, for example: (a) Appropriate and sound packages are used; (b) The activity of radioactive material in each package does not exceed the regulatory activity limit for that material and that package type; (c) The radiation levels external to, and the contamination levels on, surfaces of packages do not exceed the appropriate limits; (d) Packages are properly marked and labelled and transport documents are completed; (e) the number of packages containing radioactive material in a conveyance is within the regulatory limits; (f) Packages of radioactive material are stowed in conveyances and are stored at a safe distance from persons and photosensitive materials; (g) Only those transport and lifting devices which have been tested are used in loading, conveying and unloading packages of radioactive material; and (h) Packages of radioactive material are properly secured for transport. The control of the transport of radioactive materials may be necessary also for other reasons, e.g. safeguards control and physical protection of nuclear materials and control of a property. For radioactive materials having other dangerous properties, the regulations of Member States, modal conventions and agreements, and other relevant documents of international organizations need to be applied. A Member State may require in its national regulations that an additional approval be

  5. Safety regulation for the design approval of special form radioactive sources

    International Nuclear Information System (INIS)

    Cho, Woon-Kap

    2009-01-01

    Several kinds of special form radioactive sources for industrial, medical applications are being produced in Korea. Special form radioactive sources should meet strict safety requirements specified in the domestic safety regulations and the design of the sources should be certified by the regulatory authority, the Ministry of Education, Science and Technology (MEST). Several safety tests such as impact, percussion, heating, and leak tests are performed on the sources according to the domestic regulations and the international safety standards such as ANSI N542-1977 and ISO 2919-1999(E). As a regulatory expert body, Korea Institute of Nuclear Safety (KINS) assesses various types of application documents, such as safety analysis report, quality assurance program, and other documents evidencing fulfillment of requirements for design approval of the special form radioactive sources, submitted by a legal person who intends to produce special form radioactive sources and then reports the assessment result to MEST. A design approval certificate is issued to the applicant by MEST on the basis of a technical evaluation report presented by KINS.

  6. Transportation of Organs by Air: Safety, Quality, and Sustainability Criteria.

    Science.gov (United States)

    Mantecchini, L; Paganelli, F; Morabito, V; Ricci, A; Peritore, D; Trapani, S; Montemurro, A; Rizzo, A; Del Sordo, E; Gaeta, A; Rizzato, L; Nanni Costa, A

    2016-03-01

    The outcomes of organ transplantation activities are greatly affected by the ability to haul organs and medical teams quickly and safely. Organ allocation and usage criteria have greatly improved over time, whereas the same result has not been achieved so far from the transport point of view. Safety and the highest level of service and efficiency must be reached to grant transplant recipients the healthiest outcome. The Italian National Transplant Centre (CNT), in partnership with the regions and the University of Bologna, has promoted a thorough analysis of all stages of organ transportation logistics chains to produce homogeneous and shared guidelines throughout the national territory, capable of ensuring safety, reliability, and sustainability at the highest levels. The mapping of all 44 transplant centers and the pertaining airport network has been implemented. An analysis of technical requirements among organ shipping agents at both national and international level has been promoted. A national campaign of real-time monitoring of organ transport activities at all stages of the supply chain has been implemented. Parameters investigated have been hospital and region of both origin and destination, number and type of organs involved, transport type (with or without medical team), stations of arrival and departure, and shipping agents, as well as actual times of activities involved. National guidelines have been issued to select organ storage units and shipping agents on the basis of evaluation of efficiency, reliability, and equipment with reference to organ type and ischemia time. Guidelines provide EU-level standards on technical equipment of aircrafts, professional requirements of shipping agencies and cabin crew, and requirements on service provision, including pricing criteria. The introduction in the Italian legislation of guidelines issuing minimum requirements on topics such as the medical team, packaging, labeling, safety and integrity, identification

  7. A comparison of some Mexican/U.S. safety regulations

    Energy Technology Data Exchange (ETDEWEB)

    Bunner, W.R. [Training Associates, Columbus, OH (United States)

    1994-12-31

    In the US, safety and hygiene began to be enforced broadly with the formation of the US Department of Labor`s, Occupational Safety and Health Administration (OSHA) in 1970. In Mexico, the 1917 Constitution required companies to protect their workers against safety and hygiene hazards in the workplace. Additional requirements were added with the Federal Labor Law of 1931. General safety and hygiene regulations were added in 1934. Modern-day federal labor law in Mexico requires the creation of mixed safety and hygiene commissions in all industries. However, only about 114,000 workplaces have registered mixed commissions. In a similar vein, the most favored OSHA reform bill in the US proposes to require safety and health committees in all work places. At this time such committees are common in larger companies but not in smaller ones.

  8. Spatiotemporal Regulation of Nuclear Transport Machinery and Microtubule Organization

    Science.gov (United States)

    Okada, Naoyuki; Sato, Masamitsu

    2015-01-01

    Spindle microtubules capture and segregate chromosomes and, therefore, their assembly is an essential event in mitosis. To carry out their mission, many key players for microtubule formation need to be strictly orchestrated. Particularly, proteins that assemble the spindle need to be translocated at appropriate sites during mitosis. A small GTPase (hydrolase enzyme of guanosine triphosphate), Ran, controls this translocation. Ran plays many roles in many cellular events: nucleocytoplasmic shuttling through the nuclear envelope, assembly of the mitotic spindle, and reorganization of the nuclear envelope at the mitotic exit. Although these events are seemingly distinct, recent studies demonstrate that the mechanisms underlying these phenomena are substantially the same as explained by molecular interplay of the master regulator Ran, the transport factor importin, and its cargo proteins. Our review focuses on how the transport machinery regulates mitotic progression of cells. We summarize translocation mechanisms governed by Ran and its regulatory proteins, and particularly focus on Ran-GTP targets in fission yeast that promote spindle formation. We also discuss the coordination of the spatial and temporal regulation of proteins from the viewpoint of transport machinery. We propose that the transport machinery is an essential key that couples the spatial and temporal events in cells. PMID:26308057

  9. CONFORMITY TO OCCUPATIONAL SAFETY AND HEALTH REGULATIONS IN MALAYSIAN SMALL AND MEDIUM ENTERPRISES

    OpenAIRE

    Baba Md Deros; Ahmad Rasdan Ismail; Jaharah A. Ghani; Mohd Yusri Mohd Yusof

    2014-01-01

    Regulation on occupational safety and health in Malaysia had evolved from the prescriptive factory and machinery act to a self-regulated occupational safety and health act. However, from the authors’ observation the high standards of occupational safety and health culture that surpass the legal requirement were not widely practiced by Small and Medium Enterprises (SMEs). The two main objectives of this study are: First, first, to identify and determine the level of conformity and second...

  10. Rolling towards a cleaner future: the development of Canadian locomotive emissions regulations

    International Nuclear Information System (INIS)

    2010-12-01

    In 2006, the Government of Canada published a notice of intent that it would develop regulations aimed at reducing anthropogenic criteria air contaminants and greenhouse gas emissions. The Government now intends to develop railway emissions regulations for criteria air contaminants under the Railway Safety Act. The Railway Safety Act not only provides the legislative basis for developing regulations governing railways, it also gives the authority for developing the rules governing federally regulated railroads to the Minister of Transport. For the future, Transport Canada will be responsible for developing regulations governing the rail sector. The transportation sector is a substantial emitter of criteria air contaminants, so rail transportation is a key element of the current work. This paper seeks to give a framework for consultations with stakeholders and facilitate dialogue. It collects feedback from stakeholders on the design of a Canadian regulatory regime for locomotive-generated criteria air contaminant emissions. Canadian railways have managed locomotive air contaminant emissions since 1995.

  11. System safety engineering in the development of advanced surface transportation vehicles

    Science.gov (United States)

    Arnzen, H. E.

    1971-01-01

    Applications of system safety engineering to the development of advanced surface transportation vehicles are described. As a pertinent example, the paper describes a safety engineering efforts tailored to the particular design and test requirements of the Tracked Air Cushion Research Vehicle (TACRV). The test results obtained from this unique research vehicle provide significant design data directly applicable to the development of future tracked air cushion vehicles that will carry passengers in comfort and safety at speeds up to 300 miles per hour.

  12. Transport of radioactive material

    International Nuclear Information System (INIS)

    Lombard, J.

    1996-01-01

    This work deals with the transport of radioactive materials. The associated hazards and potential hazards are at first described and shows the necessity to define specific safety regulations. The basic principles of radiological protection and of the IAEA regulations are given. The different types of authorized packages and of package labelling are explained. The revision, updating and the monitoring of the regulations effectiveness is the subject of the last part of this conference. (O.M.)

  13. Framework for applying probabilistic safety analysis in nuclear regulation

    International Nuclear Information System (INIS)

    Dimitrijevic, V.B.

    1997-01-01

    The traditional regulatory framework has served well to assure the protection of public health and safety. It has been recognized, however, that in a few circumstances, this deterministic framework has lead to an extensive expenditure on matters hat have little to do with the safe and reliable operation of the plant. Developments of plant-specific PSA have offered a new and powerful analytical tool in the evaluation of the safety of the plant. Using PSA insights as an aid to decision making in the regulatory process is now known as 'risk-based' or 'risk-informed' regulation. Numerous activities in the U.S. nuclear industry are focusing on applying this new approach to modify regulatory requirements. In addition, other approaches to regulations are in the developmental phase and are being evaluated. One is based on the performance monitoring and results and it is known as performance-based regulation. The other, called the blended approach, combines traditional deterministic principles with PSA insights and performance results. (author)

  14. Food suppliers' perceptions and practical implementation of food safety regulations in Taiwan.

    Science.gov (United States)

    Ko, Wen-Hwa

    2015-12-01

    The relationships between the perceptions and practical implementation of food safety regulations by food suppliers in Taiwan were evaluated. A questionnaire survey was used to identify individuals who were full-time employees of the food supply industry with at least 3 months of experience. Dimensions of perceptions of food safety regulations were classified using the constructs of attitude of employees and corporate concern attitude for food safety regulation. The behavior dimension was classified into employee behavior and corporate practice. Food suppliers with training in food safety were significantly better than those without training with respect to the constructs of perception dimension of employee attitude, and the constructs of employee behavior and corporate practice associated with the behavior dimension. Older employees were superior in perception and practice. Employee attitude, employee behavior, and corporate practice were significantly correlated with each other. Satisfaction with governmental management was not significantly related to corporate practice. The corporate implementation of food safety regulations by suppliers was affected by employees' attitudes and behaviors. Furthermore, employees' attitudes and behaviors explain 35.3% of corporate practice. Employee behavior mediates employees' attitudes and corporate practices. The results of this study may serve as a reference for governmental supervision and provide training guidelines for workers in the food supply industry. Copyright © 2015. Published by Elsevier B.V.

  15. Review of the DOE Packaging and Transportation Safety Program

    International Nuclear Information System (INIS)

    Snyder, B.J.; Cece, J.M.

    1992-12-01

    This report documents the results of a year-long self-assessment of DOE-EH transportation and packaging safety activities. The self-assessment was initiated in September 1991 and concluded in August 1992. The self-assessment identified several significant issues, some of which have been resolved by EH. Also, improvements in the EH program were made during the course of the self-assessment. The report reflects the status of the EH transportation and packaging safety activities at the conclusion of the self-assessment. This report consists of several sections which discuss background, objectives and description of the review. Another section includes summary discussion and key conclusions. Appendix A, Issues, Observations and Recommendations, lists fifteen issues, including appropriate observations and recommendations. A Corrective Action Plan, which documents EH managements resolve to implement the agreed-upon recommendations, is included. The Corrective Action Plan reflects the status of completed and planned actions as of the date of the report

  16. A SIL quantification approach based on an operating situation model for safety evaluation in complex guided transportation systems

    International Nuclear Information System (INIS)

    Beugin, J.; Renaux, D.; Cauffriez, L.

    2007-01-01

    Safety analysis in guided transportation systems is essential to avoid rare but potentially catastrophic accidents. This article presents a quantitative probabilistic model that integrates Safety Integrity Levels (SIL) for evaluating the safety of such systems. The standardized SIL indicator allows the safety requirements of each safety subsystem, function and/or piece of equipment to be specified, making SILs pivotal parameters in safety evaluation. However, different interpretations of SIL exist, and faced with the complexity of guided transportation systems, the current SIL allocation methods are inadequate for the task of safety assessment. To remedy these problems, the model developed in this paper seeks to verify, during the design phase of guided transportation system, whether or not the safety specifications established by the transport authorities allow the overall safety target to be attained (i.e., if the SIL allocated to the different safety functions are sufficient to ensure the required level of safety). To meet this objective, the model is based both on the operating situation concept and on Monte Carlo simulation. The former allows safety systems to be formalized and their dynamics to be analyzed in order to show the evolution of the system in time and space, and the latter make it possible to perform probabilistic calculations based on the scenario structure obtained

  17. The Role of the Regulator in the Field of Safety Culture to Shun Nuclear Accident

    International Nuclear Information System (INIS)

    Kandil, M.M.

    2016-01-01

    The 2011 accident at the Fukushima Daiichi nuclear power plant in Japan has, as might be expected, led to improvements in equipment at plants around the world that have fortified safety systems and allowed for better protection against rare, extreme natural events. Equally important to the process of improving nuclear safety is the emphasis placed on implementing quality improvements to the human side of nuclear safety, a crucial element that is often not considered by those outside the nuclear sector. Ensuring nuclear reactor safety is not only a question of physical protection against all credible threats, enhancing robustness of important safety systems and increasing redundancy of back-up power and water cooling systems, but also one of making certain that qualified and trained staff are supported by effective procedures. However, these assets are valued only in an organizational culture that places a premium on ensuring high levels of safety, or implementing what is called an effective “nuclear safety culture”. Principles, characteristics and factors for effective safety culture are to great extent similar between licencees and regulatory bodies and can be applied for developing RB’s safety. Safety is the primary purpose of the regulatory body, Regulator plays a significant role in the field of nuclear safety even though the prime responsibility for safety belongs to the operator, and it is the regulator which actually decides what is considered to be safe. In order to effectively implement the international principle of high level of nuclear safety, nuclear safety culture should be clearly named as an objective in international nuclear legal acts and the regulator’s responsibility for promotion of nuclear safety culture should be established. What is more difficult for the regulator is finding the right balance of firmness but fairness in dealing with the operator. In addition to enforcing safety regulations, the regulator should have a positive

  18. Natural gas transport, regulation in UK

    International Nuclear Information System (INIS)

    Goldoni, Giovanni

    2005-01-01

    The detailed analysis contained in this case history demonstrates the great efforts made in the field of incentive regulation in order to promote competition in the gas market and to improve the efficiency of the gas transport system. The next challenge will be to preserve competition and efficiency in a quite different gas-supply condition [it

  19. Neurofilament subunit (NFL) head domain phosphorylation regulates axonal transport of neurofilaments.

    LENUS (Irish Health Repository)

    Yates, Darran M

    2009-04-01

    Neurofilaments are the intermediate filaments of neurons and are synthesised in neuronal cell bodies and then transported through axons. Neurofilament light chain (NFL) is a principal component of neurofilaments, and phosphorylation of NFL head domain is believed to regulate the assembly of neurofilaments. However, the role that NFL phosphorylation has on transport of neurofilaments is poorly understood. To address this issue, we monitored axonal transport of phosphorylation mutants of NFL. We mutated four known phosphorylation sites in NFL head domain to either preclude phosphorylation, or mimic permanent phosphorylation. Mutation to preclude phosphorylation had no effect on transport but mutation of three sites to mimic permanent phosphorylation inhibited transport. Mutation of all four sites together to mimic permanent phosphorylation proved especially potent at inhibiting transport and also disrupted neurofilament assembly. Our results suggest that NFL head domain phosphorylation is a regulator of neurofilament axonal transport.

  20. Joint convention on the safety of spent fuel management and on the safety of radioactive waste management. Report of the Federal Republic of Germany for the sixth review meeting in May 2018

    International Nuclear Information System (INIS)

    2017-08-01

    The joint convention on the safety of spent fuel management and on the safety of radioactive waste management covers the following topics: historical development and actual status of the civil use of nuclear power, politics and the spent fuel management, inventories and listing, legislation and executive systems, other safeguard regulations, safety during spent fuel handling, safety during radioactive waste processing, transport across national borders, disused enclosed radioactive sources, general regulations for safety enhancement.

  1. 49 CFR 385.319 - What happens after completion of the safety audit?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false What happens after completion of the safety audit... REGULATIONS SAFETY FITNESS PROCEDURES New Entrant Safety Assurance Program § 385.319 What happens after completion of the safety audit? (a) Upon completion of the safety audit, the auditor will review the findings...

  2. Spent fuel transport in Romania by road: An approach considering safety, risk and radiological consequences

    International Nuclear Information System (INIS)

    Vieru, G.

    2001-01-01

    The transport of high-level radioactive wastes, involving Type B packages, is a part of the safety of the Romanian waste management programme and the overall aim of this activity is to promote the safe transport of radioactive materials in Romania. The paper presents a safety case analysis of the transport of a single spent fuel CANDU bundle, using a Romanian built Type B package, from the CANDU type nuclear power plant Cernavoda to the INR Pitesti, in order to be examined within INR's hot-cells facilities. The safety assessment includes the following main aspects: (1) evaluation and analysis of available data on road traffic accidents; (2) estimation of the expected frequency for severe road accident scenarios resulting in potential radionuclide release; and (3) evaluation of the expected radiological consequences and accident risks of transport operations. (author)

  3. National Transportation Safety Board : weak internal control impaired financial accountability

    Science.gov (United States)

    2001-09-28

    The U. S. General Accounting Office (GAO) was asked to review the National Transportation Safety Board's (NTSB) internal controls over selected types of fiscal year expenditures. They were asked to determine whether internal control weaknesses were a...

  4. Summary of Federal Aviation Administration Responses to National Transportation Safety Board Safety Recommendations.

    Science.gov (United States)

    1981-01-01

    i It: Wo. r (A’I) upr,;cl. ’ Vih t_’o a . hc pre-.ntal, i c ould (1lay a pilot’s t ;f,L..ion to a suit.bl, ba-ckup approach in th- event of radar or...analysis and your recommendation. Since y) ,anigh.ne Bond Admin ist rator 2 Enclosures NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, D.C. ISSUED: October

  5. The NSW Radiation Control Act and regulation

    International Nuclear Information System (INIS)

    Towson, J.

    1994-01-01

    The legal control of radiation safety in New South Wales has undergone substantial change in recent years. The long-awaited Regulation to the 1990 Radiation Control Act came into effect on 1 September 1993 (of necessity, as the Regulation to the previous 1957 Radioactive Substances Act expired on that date). It has not met with unanimous acclaim. The Regulation addresses three broad areas, namely - (a) legal controls - licensing, registration, radiation 'experts'; (b) safety matters - workplace management, monitoring, research exposures, transport/disposal, accidents; and (c) miscellaneous -radiation safety officers, committees, penalties, records, This article offers a personal view of the implications for nuclear medicine practice in New South Wales

  6. Compendium of federal and state radioactive materials transportation laws and regulations: Transportation Legislative Database (TLDB)

    International Nuclear Information System (INIS)

    1989-10-01

    The Transportation Legislative Database (TLDB) is an on-line information service containing detailed information on legislation and regulations regarding the transportation of radioactive materials in the United States. The system is dedicated to serving the legislative and regulatory information needs of the US Department of Energy and other federal agencies; state, tribal, and local governments; the hazardous materials transportation industry; and interested members of the general public. In addition to the on-line information service, quarterly and annual Legal Developments Reports are produced using information from the TLDB. These reports summarize important changes in federal and state legislation, regulations, administrative agency rulings, and judicial decisions over the reporting period. Information on significant legal developments at the tribal and local levels is also included on an as-available basis. Battelle's Office of Transportation Systems and Planning (OTSP) will also perform customized searches of the TLDB and produce formatted printouts in response to specific information requests

  7. Assessing risks and regulating safety standards in the oil and gas industry: the Peruvian experience.

    OpenAIRE

    Arturo Leonardo Vásquez Cordano; Julio Salvador Jácome; Raúl Lizardo García Carpio; Victor Fernández Guzman

    2013-01-01

    Environmental regulation has usually focused on controlling continuous sources of pollution such as CO2 emissions through carbon taxes. However, the 2010 oil spill in the Gulf of Mexico has shown that accidents associated to safety failures can also generate bursts of pollution with serious environmental consequences. Regulating safety conditions to prevent accidents in the oil and gas industry is challenging because public regulators cannot perfectly observe whether firms comply with safety ...

  8. Safety evaluation on MOX new fuel at marine transport

    International Nuclear Information System (INIS)

    Tsumune, Daisuke; Ito, Chihiro; Saegusa, Toshiari; Maruyama, Koki

    2000-01-01

    In the Central Research Institute of Electric Power Industry, in order to confirm effects of MOX new fuel on the public are as small as possible even when its marine transport goes down, some exposed radiation dose has previously conducted on imaginary shipwreck of marine transport on used nuclear fuel, plutonium dioxide, and high level return glass solid. Under a base of such informations, some investigations on safety on marine transport of the MOX new fuel was conducted. On September, 1999, five transport vessels of the MOX new fuel was at first transported on marine. The value of five times of estimated exposed radiation dose (max. 8.1 x 10 -8 mSv/y) corresponds to an evaluation result assumed by shipwreck in marine transport this time. As a result, it was found that the exposed radiation dose estimated on this case would be sufficiently less than an effective dose equivalent limit (1 mSv/y) of public exposure according to the recommendation of ICRP in both coastal and oceanic areas. (G.K.)

  9. Development and teaching of a graduate course in multimodal transportation safety and risk.

    Science.gov (United States)

    2014-03-01

    One of the U.S. Department of Transportation (DOT)s strategic goals is to enhance public health and : safety by working toward the elimination of transportation-related deaths and injuries. Near term : targets include reducing highway fatalities, ...

  10. 77 FR 54836 - Federal Motor Vehicle Safety Standards

    Science.gov (United States)

    2012-09-06

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 571 Federal Motor Vehicle Safety Standards CFR Correction 0 In Title 49 of the Code of Federal Regulations... read as follows: Sec. 571.119 Standard No. 119; New pneumatic tires for motor vehicles with a GVWR of...

  11. Regulatory considerations for computational requirements for nuclear criticality safety

    International Nuclear Information System (INIS)

    Bidinger, G.H.

    1995-01-01

    As part of its safety mission, the U.S. Nuclear Regulatory Commission (NRC) approves the use of computational methods as part of the demonstration of nuclear criticality safety. While each NRC office has different criteria for accepting computational methods for nuclear criticality safety results, the Office of Nuclear Materials Safety and Safeguards (NMSS) approves the use of specific computational methods and methodologies for nuclear criticality safety analyses by specific companies (licensees or consultants). By contrast, the Office of Nuclear Reactor Regulation approves codes for general use. Historically, computational methods progressed from empirical methods to one-dimensional diffusion and discrete ordinates transport calculations and then to three-dimensional Monte Carlo transport calculations. With the advent of faster computational ability, three-dimensional diffusion and discrete ordinates transport calculations are gaining favor. With the proper user controls, NMSS has accepted any and all of these methods for demonstrations of nuclear criticality safety

  12. The safety regulation of small-scale coal mines in China: Analysing the interests and influences of stakeholders

    International Nuclear Information System (INIS)

    Song, Xiaoqian; Mu, Xiaoyi

    2013-01-01

    Small scale coal mines (SCMs) have played an important role in China’s energy supply. At the same time, they also suffer from many social, economic, environmental, and safety problems. The Chinese government has made considerable efforts to strengthen the safety regulation of the coal mining industry. Yet, few of these efforts have proven to be very effective. This paper analyzes the interests and influences of key stakeholders in the safety regulation of SCMs, which includes the safety regulator, the local government, the mine owner, and mineworkers. We argue that the effective regulation of coal mine safety must both engage and empower mineworkers. - Highlights: ► Small scale coal mines have played an important role in China's energy supply. ► We analyze the interests and influences of key stakeholders in the safety regulation of small coal mines. ► The mineworkers have the strongest interest but least influence. ► An effective regulation must engage the mineworkers, organize, and empower them.

  13. NRC safety research in support of regulation--FY 1989

    International Nuclear Information System (INIS)

    1990-04-01

    This report, the fifth in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1989. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  14. NRC safety research in support of regulation, FY 1991

    International Nuclear Information System (INIS)

    1992-04-01

    This report, the seventh in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1991. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  15. NRC safety research in support of regulation, FY 1990

    International Nuclear Information System (INIS)

    1991-04-01

    This report, the sixth in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1990. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  16. Plant nutrient transporter regulation in arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, Stephen; Bechmann, I.E.

    2002-01-01

    of nutrition. Their down-regulation in mycorrhizal roots, therefore, would be predicted as a result of symbiotic function. A variety of studies on Pi- Zn- and ammonium- or nitrate-transporter genes from two plant species indirectly support this model. For example, one study showed that the expression...... of the high-affinity Pi-transporter MtPT2 within mycorrhizal roots of Medicago truncatula was inversely correlated with the concentration of P within the shoots, which suggested that P supply from the fungus influenced this gene's expression. However, there is some evidence that these plant nutrient...

  17. Road Transport Management System (RTMS): a self regulation initiative in heavy vehicle transport in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2007-07-01

    Full Text Available This paper describes the most recent developments of an initiative to introduce meaningful self-regulation in the heavy vehicle transport industry through a Road Transport Management System (RTMS) with the aim of contributing to the road authorities...

  18. Integrated risk reduction framework to improve railway hazardous materials transportation safety

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: liu94@illinois.edu; Saat, M. Rapik, E-mail: mohdsaat@illinois.edu; Barkan, Christopher P.L., E-mail: cbarkan@illinois.edu

    2013-09-15

    Highlights: • An integrated framework is developed to optimize risk reduction. • A negative binomial regression model is developed to analyze accident-cause-specific railcar derailment probability. • A Pareto-optimality technique is applied to determine the lowest risk given any level of resource. • A multi-attribute decision model is developed to determine the optimal amount of investment for risk reduction. • The models could aid the government and rail industry in developing cost-efficient risk reduction policy and practice. -- Abstract: Rail transportation plays a critical role to safely and efficiently transport hazardous materials. A number of strategies have been implemented or are being developed to reduce the risk of hazardous materials release from train accidents. Each of these risk reduction strategies has its safety benefit and corresponding implementation cost. However, the cost effectiveness of the integration of different risk reduction strategies is not well understood. Meanwhile, there has been growing interest in the U.S. rail industry and government to best allocate resources for improving hazardous materials transportation safety. This paper presents an optimization model that considers the combination of two types of risk reduction strategies, broken rail prevention and tank car safety design enhancement. A Pareto-optimality technique is used to maximize risk reduction at a given level of investment. The framework presented in this paper can be adapted to address a broader set of risk reduction strategies and is intended to assist decision makers for local, regional and system-wide risk management of rail hazardous materials transportation.

  19. Safety regulation: The lessons of workplace safety rule management for managing the regulatory burden

    OpenAIRE

    Hale, A.R.; Borys, D.; Adams, M.

    2012-01-01

    There is a strong political consensus in a number of countries that occupational safety and health regulation is stifling industrial innovation and development and is feeding a culture of damaging risk aversion and petty bureaucracy. In a number of countries this has led to proposals to repeal regulations and reduce the regulatory burden. The authors were commissioned to prepare a discussion paper on this issue by the Mercatus Center of George Mason University in Arlington, Virginia, aimed pa...

  20. Japan's regulatory and safety issues regarding nuclear materials transport

    International Nuclear Information System (INIS)

    Saito, T.; Yamanaka, T.

    2004-01-01

    This paper focuses on the regulatory and safety issues on nuclear materials transport which the Government of Japan (GOJ) faces and needs to well handle. Background information about the status of nuclear power plants (NPP) and nuclear fuel cycle (NFC) facilities in Japan will promote a better understanding of what this paper addresses