WorldWideScience

Sample records for safety program technical

  1. Technical specification optimization program - engineered safety features

    International Nuclear Information System (INIS)

    Andre, G.R.; Jansen, R.L.

    1986-01-01

    The Westinghouse Technical Specification Program (TOP) was designed to evaluate on a quantitative basis revisions to Nuclear Power Plant Technical Specifications. The revisions are directed at simplifying plant operation, and reducing unnecessary transients, shutdowns, and manpower requirements. In conjunction with the Westinghouse Owners Group, Westinghouse initiated a program to develop a methodology to justify Technical Specification revisions; particularly revisions related to testing and maintenance requirements on plant operation for instrumentation systems. The methodology was originally developed and applied to the reactor trip features of the reactor protection system (RPS). The current study further refined the methodology and applied it to the engineered safety features of the RPS

  2. 78 FR 43091 - Technical Operations Safety Action Program (T-SAP) and Air Traffic Safety Action Program (ATSAP)

    Science.gov (United States)

    2013-07-19

    ... Administration 14 CFR Part 193 [Docket No.: FAA-2013-0375] Technical Operations Safety Action Program (T-SAP) and... Disclosure. SUMMARY: The FAA is proposing that safety information provided to it under the T-SAP, established... to the FAA under the T-SAP and ATSAP, so the FAA can learn about and address aviation safety hazards...

  3. Training and qualification program for nuclear criticality safety technical staff. Revision 1

    International Nuclear Information System (INIS)

    Taylor, R.G.; Worley, C.A.

    1997-01-01

    A training and qualification program for nuclear criticality safety technical staff personnel has been developed and implemented. All personnel who are to perform nuclear criticality safety technical work are required to participate in the program. The program includes both general nuclear criticality safety and plant specific knowledge components. Advantage can be taken of previous experience for that knowledge which is portable such as performance of computer calculations. Candidates step through a structured process which exposes them to basic background information, general plant information, and plant specific information which they need to safely and competently perform their jobs. Extensive documentation is generated to demonstrate that candidates have met the standards established for qualification

  4. Training and qualification program for nuclear criticality safety technical staff

    International Nuclear Information System (INIS)

    Taylor, R.G.; Worley, C.A.

    1996-01-01

    A training and qualification program for nuclear criticality safety technical staff personnel has been developed and implemented. The program is compliant with requirements and provides evidence that a systematic approach has been taken to indoctrinate new technical staff. Development involved task analysis to determine activities where training was necessary and the standard which must be attained to qualify. Structured mentoring is used where experienced personnel interact with candidates using checksheets to guide candidates through various steps and to provide evidence that steps have been accomplished. Credit can be taken for the previous experience of personnel by means of evaluation boards which can credit or modify checksheet steps. Considering just the wealth of business practice and site specific information a new person at a facility needs to assimilate, the program has been effective in indoctrinating new technical staff personnel and integrating them into a productive role. The program includes continuing training

  5. Technical Excellence and Communication: The Cornerstones for Successful Safety and Mission Assurance Programs

    Science.gov (United States)

    Malone, Roy W.; Livingston, John M.

    2010-01-01

    The paper describes the role of technical excellence and communication in the development and maintenance of safety and mission assurance programs. The Marshall Space Flight Center (MSFC) Safety and Mission Assurance (S&MA) organization is used to illustrate philosophies and techniques that strengthen safety and mission assurance efforts and that contribute to healthy and effective organizational cultures. The events and conditions leading to the development of the MSFC S&MA organization are reviewed. Historic issues and concerns are identified. The adverse effects of resource limitations and risk assessment roles are discussed. The structure and functions of the core safety, reliability, and quality assurance functions are presented. The current organization s mission and vision commitments serve as the starting points for the description of the current organization. The goals and objectives are presented that address the criticisms of the predecessor organizations. Additional improvements are presented that address the development of technical excellence and the steps taken to improve communication within the Center, with program customers, and with other Agency S&MA organizations.

  6. Technical Excellence and Communication, the Cornerstones for Successful Safety and Mission Assurance Programs

    Science.gov (United States)

    Malone, Roy W.; Livingston, John M.

    2010-09-01

    The paper describes the role of technical excellence and communication in the development and maintenance of safety and mission assurance programs. The Marshall Space Flight Center(MSFC) Safety and Mission Assurance(S&MA) organization is used to illustrate philosophies and techniques that strengthen safety and mission assurance efforts and that contribute to healthy and effective organizational cultures. The events and conditions leading to the development of the MSFC S&MA organization are reviewed. Historic issues and concerns are identified. The adverse effects of resource limitations and risk assessment roles are discussed. The structure and functions of the core safety, reliability, and quality assurance functions are presented. The current organization’s mission and vision commitments serve as the starting points for the description of the current organization. The goals and objectives are presented that address the criticisms of the predecessor organizations. Additional improvements are presented that address the development of technical excellence and the steps taken to improve communication within the Center, with program customers, and with other Agency S&MA organizations.

  7. ATR Technical Specification Upgrade Program

    International Nuclear Information System (INIS)

    McCracken, R.T.; Durney, J.L.; Freund, G.A.

    1990-01-01

    The Advanced Test Reactor (ATR) is a 250 MW, uranium-aluminum fueled test reactor which began full power operation in 1969. The initial operation was controlled by an Operating Limits document based on the original Safety Analysis Report. Additional safety bases were later developed to support Technical Specifications which were approved and implemented in 1977. The Technical Specifications which were initially developed with content and format specified in ANSI/ANS--15.1, ''The Development of Technical Specifications for Research Reactors.'' The safety basis documentation and the Technical Specifications have been updated as required to maintain them current with the ATR facility configuration. All revisions have been made with a content, format and style consistent with the original. A major, two-phase program to upgrade the content, format and style is in progress. This paper describes the first phase of this program

  8. Stressing the Need for Safety in Technical Education

    Science.gov (United States)

    Defore, Jesse j.

    1974-01-01

    Discusses the importance of a safety orientation program in technical education and major components of a safety-conscious working enviroment. Suggests every institution take such measures as appointment of a safety officer, maintenance of a safety posture, inclusion of safety in curricula, and application of good safety practices. (CC)

  9. Fusion safety program Annual report, Fiscal year 1995

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Carmack, W.J.

    1995-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY-95. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and the technical support for commercial fusion facility conceptual design studies. A final activity described is work to develop DOE Technical Standards for Safety of Fusion Test Facilities

  10. Commercial Crew Program and the Safety Technical Review Board

    Science.gov (United States)

    Mullen, Macy

    2016-01-01

    The Commercial Crew Program (CCP) is unique to any other program office at NASA. After the agency suffered devastating budget cuts and the Shuttle Program retired, the U.S. gave up its human spaceflight capabilities. Since 2011 the U.S. has been dependent on Russia to transport American astronauts and cargo to the International Space Station (ISS) and back. NASA adapted and formed CCP, which gives private, domestic, aerospace companies unprecedented reign over America's next ride to space. The program began back in 2010 with 5 companies and is now in the final phase of certification with 2 commercial partners. The Commercial Crew Program is made up of 7 divisions, each working rigorously with the commercial providers to complete the certification phase. One of these 7 divisions is Systems Engineering and Integration (SE&I) which is partly comprised of the Safety Technical Review Board (STRB). The STRB is primarily concerned with mitigating improbable, but catastrophic hazards. It does this by identifying, managing, and tracking these hazards in reports. With the STRB being in SE&I, it significantly contributes to the overall certification of the partners' vehicles. After the partners receive agency certification approval, they will have the capability to provide the U.S. with a reliable, safe, and cost-effective means of human spaceflight and cargo transport to the ISS and back.

  11. Technical Safety Appraisal of the Rocky Flats Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Blake P.

    1989-01-01

    This report provides the results of a Technical Safety Appraisal (TSA) of the Rocky Flats Plant (RFP) conducted November 14 to 18 and November 28 to December 9, 1988. This appraisal covered the effectiveness and improvements in the RFP safety program across the site, evaluating progress to date against standards of accepted practice. The appraisal included coverage of the timeliness and effectiveness of actions taken in response to the recommendations/concerns in three previous Technical Safety Appraisals (TSAs) of RFP Bldg. 707 conducted in July 1986, Bldgs. 771/774 conducted in October/November 1986, and Bldgs. 776/777 conducted in January/February 1988. Results of this appraisal are given in Section IV for each of 14 technical safety areas at RFP. These results include a discussion, conclusions and any new safety concerns for each technical safety area. Appendix A contains a description of the system for categorizing concerns, and the concerns are tabulated in Appendix B. Appendix C reports on the evaluation of the contractor's actions and the current status of each of the 230 recommendations and concerns contained in the three previous TSA reports.

  12. Fusion Safety Program annual report, fiscal year 1994

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1995-03-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities

  13. Development of French technical safety regulations: safety fundamental rules

    International Nuclear Information System (INIS)

    Lebouleux, P.

    1982-09-01

    The technical regulation related to nuclear safety in France is made of a set of regulation texts, of a different nature, that define the requirements for the construction, commissioning and operations of nuclear facilities. Simultaneously, the safety authorities (Service Central de Surete des Installations Nucleaires: SCSIN) issue recommendations or guides which are not strictly speaking regulations in the juridical sense; they are called ''Regles Fondamentales de Surete'' (RFS). The RFS set up and detail the conditions, the respect of which is deemed to be complying with the French regulation pratice, for the subject to which they relate. Their purpose is to make known rules judged acceptable by safety authorities, thus making the safety review easier. The RFS program is described. A RFS -or a letter- can also give the result of the examination of the constructor and operator code (RCC) by safety authorities

  14. Development of French technical safety regulations: safety fundamental rules

    International Nuclear Information System (INIS)

    Lebouleux, P.

    1983-01-01

    The technical regulation related to nuclear safety in France is made of a set of regulation texts, of a different nature, that define the requirements for the construction, commissioning and operating of nuclear facilities. Simultaneously, the safety authorities (Service Central de Surete des Installations Nucleaires: SCSIN) issue recommendations or guides which are not strictly speaking regulations in the juridicial sense; they are called Regles Fondamentales de Surete (RFS). The RFS set up and detail the conditions, the respect of which is deemed to be complying with the French regulation practice, for the subject to which they relate. Their purpose is to make known rules judged acceptable by safety authorities, thus making the safety review easier. The RFS program is described. A RFS - or a letter - can also give the result of the examination of the constructor and operator codes (RCC) by safety authorities

  15. Aviation Safety/Automation Program Conference

    Science.gov (United States)

    Morello, Samuel A. (Compiler)

    1990-01-01

    The Aviation Safety/Automation Program Conference - 1989 was sponsored by the NASA Langley Research Center on 11 to 12 October 1989. The conference, held at the Sheraton Beach Inn and Conference Center, Virginia Beach, Virginia, was chaired by Samuel A. Morello. The primary objective of the conference was to ensure effective communication and technology transfer by providing a forum for technical interchange of current operational problems and program results to date. The Aviation Safety/Automation Program has as its primary goal to improve the safety of the national airspace system through the development and integration of human-centered automation technologies for aircraft crews and air traffic controllers.

  16. Pulsed power safety and technical training at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Goldstein, S.A.; Zawadzkas, G.A.; Donovan, G.L.; Mikkelson, K.A.; Sharpe, A.W.; Johnston, R.R.

    1987-01-01

    The expansion of pulsed power applications research at Sandia National Labs requires increasing technician-level support from individuals trained in high voltage, short pulse technology. Large superpower generators need a broad-based training curriculum in all aspects of accelerator operation to satisfy recent Department of Energy (DOE) desires for formal certification of accelerator operators. This paper discusses the status of Sandia's safety and technical training program in pulsed power technology directed mainly towards high school graduate and technical school level students. Present safety training methodology requires that hazards for experimental facilities are identified first, a specific curriculum is then tailored to individuals' background experiences and hazards involved with their current assignments. In the technical training program, certification requirements are being established and a coursework program has been initiated in which subjects are organized into two sections. The first covers electrical principles and physical properties of pulsed power components. The second presents various support-type subsystems for accelerators

  17. Technical Safety Appraisal of the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    This report documents the results of the Technical Safety Appraisal (TSA) of the Lawrence Livermore National Laboratory (LLNL) (including the Site 300 area), Livermore, California, conducted from February 26 to April 5, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status of Environment, Safety and Health (ES H) Programs at LLNL. LLNL is operated by the University of California for the Department of Energy (DOE), and is a multi-program, mission-oriented institution engaged in fundamental and applied research programs that require a multidisciplinary approach. 1 fig.

  18. Fusion Safety Program Annual Report, Fiscal Year 1996

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C.

    1996-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1996. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. The objective is to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, chemical reactions and activation product release, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Work done for ITER this year has focused on developing the needed information for the Non- Site- Specific Safety Report (NSSR-1). A final area of activity described is development of the new DOE Technical Standards for Safety of Magnetic Fusion Facilities

  19. Elements of a nuclear criticality safety program

    International Nuclear Information System (INIS)

    Hopper, C.M.

    1995-01-01

    Nuclear criticality safety programs throughout the United States are quite successful, as compared with other safety disciplines, at protecting life and property, especially when regarded as a developing safety function with no historical perspective for the cause and effect of process nuclear criticality accidents before 1943. The programs evolved through self-imposed and regulatory-imposed incentives. They are the products of conscientious individuals, supportive corporations, obliged regulators, and intervenors (political, public, and private). The maturing of nuclear criticality safety programs throughout the United States has been spasmodic, with stability provided by the volunteer standards efforts within the American Nuclear Society. This presentation provides the status, relative to current needs, for nuclear criticality safety program elements that address organization of and assignments for nuclear criticality safety program responsibilities; personnel qualifications; and analytical capabilities for the technical definition of critical, subcritical, safety and operating limits, and program quality assurance

  20. Westinghouse Hanford Company safety analysis reports and technical safety requirements upgrade program

    International Nuclear Information System (INIS)

    Busche, D.M.

    1995-09-01

    During Fiscal Year 1992, the US Department of Energy, Richland Operations Office (RL) separately transmitted the following US Department of Energy (DOE) Orders to Westinghouse Hanford Company (WHC) for compliance: DOE 5480.21, ''Unreviewed Safety Questions,'' DOE 5480.22, ''Technical Safety Requirements,'' and DOE 5480.23, ''Nuclear Safety Analysis Reports.'' WHC has proceeded with its impact assessment and implementation process for the Orders. The Orders are closely-related and contain some requirements that are either identical, similar, or logically-related. Consequently, WHC has developed a strategy calling for an integrated implementation of the three Orders. The strategy is comprised of three primary objectives, namely: Obtain DOE approval of a single list of DOE-owned and WHC-managed Nuclear Facilities, Establish and/or upgrade the ''Safety Basis'' for each Nuclear Facility, and Establish a functional Unreviewed Safety Question (USQ) process to govern the management and preservation of the Safety Basis for each Nuclear Facility. WHC has developed policy-revision and facility-specific implementation plans to accomplish near-term tasks associated with the above strategic objectives. This plan, which as originally submitted in August 1993 and approved, provided an interpretation of the new DOE Nuclear Facility definition and an initial list of WHC-managed Nuclear Facilities. For each current existing Nuclear Facility, existing Safety Basis documents are identified and the plan/status is provided for the ISB. Plans for upgrading SARs and developing TSRs will be provided after issuance of the corresponding Rules

  1. Fusion Safety Program annual report, fiscal year 1992

    International Nuclear Information System (INIS)

    Holland, D.F.; Cadwallader, L.C.; Herring, J.S.; Longhurst, G.R.; McCarthy, K.A.; Merrill, B.J.; Piet, S.J.

    1993-01-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1992. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and EG ampersand G Idaho, Inc. is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations including the Westinghouse Hanford Company at the Hanford Engineering Development Laboratory, the Massachusetts Institute of Technology, and the University of Wisconsin. The technical areas covered in the report include tritium safety, activation product release, reactions involving beryllium, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruptions, risk assessment failure rate data base, and computer code development for reactor transients. Also included in the report is a summary of the safety and environmental studies performed by the INEL for the Tokamak Physics Experiments and the Tokamak Fusion Test Reactor, the safety analysis for the International Thermonuclear Experimental Reactor design, and the technical support for the ARIES commercial reactor design study

  2. Nuclear Criticality Safety Organization qualification program. Revision 4

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-01-01

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSO technical and managerial qualification as required by the Y-12 Training Implementation Matrix (TIM). It is implemented through a combination of LMES plant-wide training courses and professional nuclear criticality safety training provided within the organization. This Qualification Program is applicable to technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who perform the NCS tasks or serve NCS-related positions as defined in sections 5 and 6 of this program

  3. Nuclear safety training program (NSTP) for dismantling

    International Nuclear Information System (INIS)

    Cretskens, Pieter; Lenie, Koen; Mulier, Guido

    2014-01-01

    European Control Services (GDF Suez) has developed and is still developing specific training programs for the dismantling and decontamination of nuclear installations. The main topic in these programs is nuclear safety culture. We therefore do not focus on technical training but on developing the right human behavior to work in a 'safety culture' environment. The vision and techniques behind these programs have already been tested in different environments: for example the dismantling of the BN MOX Plant in Dessel (Belgium), Nuclear Safety Culture Training for Electrabel NPP Doel..., but also in the non-nuclear industry. The expertise to do so was found in combining the know-how of the Training and the Nuclear Department of ECS. In training, ECS is one of the main providers of education in risky tasks, like elevation and manipulation of charges, working in confined spaces... but it does also develop training on demand to improve safety in a certain topic. Radiation Protection is the core business in the Nuclear Department with a presence on most of the nuclear sites in Belgium. Combining these two domains in a nuclear safety training program, NSTP, is an important stage in a dismantling project due to specific contamination, technical and other risks. It increases the level of safety and leads to a harmonization of different working cultures. The modular training program makes it possible to evaluate constantly as well as in group or individually. (authors)

  4. Technical assistance to Department of Energy/Office of Operational Safety Assurance Program for remedial action

    International Nuclear Information System (INIS)

    Denham, D.H.; Cross, F.T.; Kennedy, W.E. Jr.; Marks, S.; Soldat, J.K.; Stenner, R.D.

    1986-01-01

    This project was initiated in FY 1984 to provide technical assistance to the Department of Energy (DOE), Office of Operational Safety (OOS) in developing and implementing its Assurance Program for Remedial Action (APRA), i.e., overview of the DOE remedial action programs. During this second year of the project,* the technical assistance included report and procedure reviews, and assistance with conducting the Uranium Mill Tailings Remedial Action Program (UMTRAP) Office (DOE/AL) appraisal. This included participation in preappraisal visits to UMTRAP sites in Canonsburg, Pennsylvania; Grand Junction, Colorado; and Salt Lake City, Utah. Pacific Northwest Laboratory (PNL) also transferred the PNL-developed document review software to the Oak Ridge Associated Universities (ORAU) staff in Grand Junction, Colorado, in anticipation of future document reviews by the ORAU staff. Other accomplishments have included publication of two formal documents and three project reports, preparation and presentation of five topical reports at national and international meetings, two foreign trip reports, and comments on proposed draft standards of the Environmental Protection Agency (40 CFR 193). The project manager has also participated on National Council on Radiation Protection and Measurements (NCRP) and American Society for Testing and Materials (ASTM) subcommittees developing decommissioning standards, as well as International Atomic Energy Agency (IAEA) advisory groups developing environmental monitoring guidelines

  5. Technical Safety Appraisal of the Pinellas Plant

    International Nuclear Information System (INIS)

    1991-01-01

    This report presents the Technical Safety Appraisal (TSA) of the Pinellas Plant in Pinellas County, Florida. The plant is owned and controlled by the US Department of Energy and operated by General Electric Neutron Devices (GEND). The TSA was performed during the period January 15--31, 1989, in support of a Tiger Team Assessment which occurred during the period January 15 to February 2, 1989. The TSA provided the Safety and Health Subteam input to the Tiger Team Assessment. The completion of the assessment process includes: (1) submission of the Team's preliminary findings and concerns, in a Draft Report, to the Manager, Albuquerque Operations Office and to the site contractors at the conclusion of the onsite assessment; (2) review of the Draft Report for technical and factual accuracy; incorporation of the appropriate review comments, suggested changes, and modifications, as well as input from all interested Program Secretarial Offices; preparation of a draft Action Plan by the Albuquerque Operations Office to address the Concerns, and submittal of that Action Plan through the Program Office to ES ampersand H for their review and comment. The Secretary approved the final Action Plan on December 16, 1990, and directed its implementation. The comments and suggestions of the Program Secretarial Offices, the Operations Office, and the site contractor have been incorporated, as appropriate, in this report prior to its publication

  6. Fusion Safety Program annual report, Fiscal Year 1993

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1993-12-01

    This report summarizes the major activities of the Fusion Safety Program in Fiscal Year 1993. The Idaho National Engineering Laboratory (INEL) has been designated by DOE as the lead laboratory for fusion safety, and EG ampersand G Idaho, Inc., is the prime contractor for INEL operations. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations, including universities and private companies. Technical areas covered in the report include tritium safety, beryllium safety, activation product release, reactions involving potential plasma-facing materials, safety of fusion magnet systems, plasma disruptions and edge physics modeling, risk assessment failure rates, computer codes for reactor transient analysis, and regulatory support. These areas include work completed in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed at the INEL for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor projects at the Princeton Plasma Physics Laboratory and a summary of the technical support for the ARIES/PULSAR commercial reactor design studies

  7. Nuclear Criticality Safety Department Qualification Program

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSD technical and managerial qualification as required by the Y-1 2 Training Implementation Matrix (TIM). This Qualification Program is in compliance with DOE Order 5480.20A and applicable Lockheed Martin Energy Systems, Inc. (LMES) and Y-1 2 Plant procedures. It is implemented through a combination of WES plant-wide training courses and professional nuclear criticality safety training provided within the department. This document supersedes Y/DD-694, Revision 2, 2/27/96, Qualification Program, Nuclear Criticality Safety Department There are no backfit requirements associated with revisions to this document

  8. Fusion Safety Program annual report: Fiscal year 1987

    International Nuclear Information System (INIS)

    Holland, D.F.; Herring, J.S.; Longhurst, G.R.; Lyon, R.E.; Merrill, B.J.; Piet, S.J.

    1988-02-01

    This report summarizes the Fusion Safety Program major activities in fiscal year 1987. The Idaho National Engineering Laboratory (INEL) is the designated lead laboraotry and EG and G Idaho, Inc., is the prime contractor for this program, which was initiated in 1979. Activities are conducted at the INEL and in participating laboratories including the Hanford Engineering Development Laboratory (HEDL), the Massachusetts Institute of Technology (MIT), and the University of Wisconsin. The technical areas covered in the report include tritium safety, activation product release, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruptions, risk assessment methodology, computer codes development for reactor transients, and fusion waste management. Also included in the report is a summary of the safety and environmental analysis and conventional facilities design performed by INEL for the Compact Ignition Tokamak design project, the safety analysis and documentation performed for the Tokamak Ignition/Burn Experimental Reactor design, and the technical support provided to the Environmental Safety and Economics Committee (ESECOM). 42 refs., 17 figs., 4 tabs

  9. Risk-based technical specifications program: Site interview results

    International Nuclear Information System (INIS)

    Andre, G.R.; Baker, A.J.; Johnson, R.L.

    1991-08-01

    The Electric Power Research Institute and Pacific Gas and Electric Company are sponsoring a program directed at improving Technical Specifications using risk-based methods. The major objectives of the program are to develop risk-based approaches to improve Technical Specifications and to develop an Interactive Risk Advisor (IRA) prototype. The IRA is envisioned as an interactive system that is available to plant personnel to assist in controlling plant operation. Use of an IRA is viewed as a method to improve plant availability while maintaining or improving plant safety. In support of the program, interviews were conducted at several PWR and BWR plant sites, to elicit opinions and information concerning risk-based approaches to Technical Specifications and IRA requirements. This report presents the results of these interviews, including the functional requirements of an IRA. 2 refs., 6 figs., 2 tabs

  10. Program system RALLY - for probabilistic safety analysis of large technical systems

    International Nuclear Information System (INIS)

    Gueldner, W.; Polke, H.; Spindler, H.; Zipf, G.

    1982-03-01

    This report describes the program system RALLY to compute the reliability of large and intermeshed technical systems. In addition to a short explanation of the different programs, the possible applications of the program system RALLY are demonstrated. Finally, the most important studies carried out so far on RALLY are discussed. (orig.) [de

  11. Engineering and Safety Partnership Enhances Safety of the Space Shuttle Program (SSP)

    Science.gov (United States)

    Duarte, Alberto

    2007-01-01

    Project Management must use the risk assessment documents (RADs) as tools to support their decision making process. Therefore, these documents have to be initiated, developed, and evolved parallel to the life of the project. Technical preparation and safety compliance of these documents require a great deal of resources. Updating these documents after-the-fact not only requires substantial increase in resources - Project Cost -, but this task is also not useful and perhaps an unnecessary expense. Hazard Reports (HRs), Failure Modes and Effects Analysis (FMEAs), Critical Item Lists (CILs), Risk Management process are, among others, within this category. A positive action resulting from a strong partnership between interested parties is one way to get these documents and related processes and requirements, released and updated in useful time. The Space Shuttle Program (SSP) at the Marshall Space Flight Center has implemented a process which is having positive results and gaining acceptance within the Agency. A hybrid Panel, with equal interest and responsibilities for the two larger organizations, Safety and Engineering, is the focal point of this process. Called the Marshall Safety and Engineering Review Panel (MSERP), its charter (Space Shuttle Program Directive 110 F, April 15, 2005), and its Operating Control Plan emphasizes the technical and safety responsibilities over the program risk documents: HRs; FMEA/CILs; Engineering Changes; anomalies/problem resolutions and corrective action implementations, and trend analysis. The MSERP has undertaken its responsibilities with objectivity, assertiveness, dedication, has operated with focus, and has shown significant results and promising perspectives. The MSERP has been deeply involved in propulsion systems and integration, real time technical issues and other relevant reviews, since its conception. These activities have transformed the propulsion MSERP in a truly participative and value added panel, making a

  12. Technical standards in the law of technical safety

    International Nuclear Information System (INIS)

    Marburger, P.

    1985-01-01

    Technical standards are of great importance for the closer definition of inexact terms of law, for instance ''generally accepted technical rules'', ''state of the art'', ''state of science and technology'' or similar normative terms, in the law of technical safety. The paper discusses with whom the authority for regulating this sector of law rests, deals with the different ways of how technical standards are used by the law (''anticipated expert opinion'', reference to such standards in law and administration) and points out demands on the procedure of standardization. (orig.) [de

  13. Operating environment threats influence on the maritime ferry technical system safety – the numerical approach

    Directory of Open Access Journals (Sweden)

    Kuligowska Ewa

    2017-06-01

    Full Text Available The material given in this paper delivers the procedure for numerical approach that allows finding the main practically important safety characteristics of the complex technical systems at the variable operation conditions including operating environment threats. The obtained results are applied to the safety evaluation of the maritime ferry technical system. It is assumed that the conditional safety functions are different at various operation states and have the exponential forms. Using the procedure and the program written in Mathematica, the considered maritime ferry technical system main characteristics including: the conditional and the unconditional expected values and standard deviations of the system lifetimes, the unconditional safety function and the risk function are determined.

  14. Research and development program in reactor safety for NUCLEBRAS

    International Nuclear Information System (INIS)

    Pinheiro, R.B.; Resende Lobo, A.A. de; Horta, J.A.L.; Avelar Esteves, F. de; Lepecki, W.P.S.; Mohr, K.; Selvatici, E.

    1984-01-01

    With technical assistance from the IAEA, it was established recently an analytical and experimental Research and Development Program for NUCLEBRAS in the area of reactor safety. The main objectives of this program is to make possible, with low investments, the active participation of NUCLEBRAS in international PWR safety research. The analytical and experimental activities of the program are described with some detail, and the main results achieved up to now are presented. (Author) [pt

  15. Technical specification improvement through safety margin considerations

    International Nuclear Information System (INIS)

    Howard, R.C.; Jansen, R.L.

    1986-01-01

    Westinghouse has developed an approach for utilizing safety analysis margin considerations to improve plant operability through technical specification revision. This approach relies on the identification and use of parameter interrelations and sensitivities to identify acceptable operating envelopes. This paper summarizes technical specification activities to date and presents the use of safety margin considerations as another viable method to obtain technical specification improvement

  16. TWRS safety and technical integration risk management plan

    International Nuclear Information System (INIS)

    Fordham, R.A.

    1996-01-01

    The objectives of the Tank Waste Remediation System (TWRS) Safety and Technical Integration (STI) programmatic risk management program are to assess, analyze, and handle risks associated with TWRS STI responsibilities and to communicate information about the actions being taken and the results to enable decision making. The objective of this TWRS STI Risk Management Plan is to communicate a consistent approach to risk management that will be used by the organization

  17. Nuclear Criticality Safety Organization guidance for the development of continuing technical training. Revision 1

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-01-01

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in nuclear criticality safety at the Oak Ridge Y-12 Plant and throughout the DOE complex. Continuing technical training is training outside of the initial qualification program to address identified organization-wide needs. Typically, this training is used to improve organization performance in the conduct of business. This document provides guidelines for the development of the technical portions of the Continuing Training Program. It is not a step-by-step procedure, but a collection of considerations to be used during the development process

  18. Water reactor safety research program. A description of current and planned research

    International Nuclear Information System (INIS)

    1978-07-01

    The U.S. Nuclear Regulatory Commission (NRC) sponsors confirmatory safety research on lightwater reactors in support of the NRC regulatory program. The principal responsibility of the NRC, as implemented through its regulatory program is to ensure that public health, public safety, and the environment are adequately protected. The NRC performs this function by defining conditions for the use of nuclear power and by ensuring through technical review, audit, and follow-up that these conditions are met. The NRC research program provides technical information, independent of the nuclear industry, to aid in discharging these regulatory responsibilities. The objectives of NRC's research program are the following: (1) to maintain a confirmatory research program that supports assurance of public health and safety, and public confidence in the regulatory program, (2) to provide objectively evaluated safety data and analytical methods that meet the needs of regulatory activities, (3) to provide better quantified estimates of the margins of safety for reactor systems, fuel cycle facilities, and transportation systems, (4) to establish a broad and coherent exchange of safety research information with other Federal agencies, industry, and foreign organization. Current and planned research toward these goals is described

  19. Input of Lithuanian science into nuclear safety improvement, coordination of technical support organizations

    International Nuclear Information System (INIS)

    Maksimovas, G.

    1999-01-01

    VATESI in its activities is very much supported by Lithuanian scientific and technical organizations which are doing expertise of safety analyses of Ignalina NPP. Description of these organizations is presented. Broad international cooperation and assistance programs is underway helping Lithuanians scientific organizations to build own capacity in making nuclear safety research

  20. The socio-technical system and nuclear safety

    International Nuclear Information System (INIS)

    Stefanescu, Petre; Mihailescu, Nicolae; Dragusin, Octavian

    1999-01-01

    In the field of nuclear safety there have been defined notions like 'technical factors' and 'human factors'. The technical factors depend on designing and manufacturing of components/equipment, actually depend on the people's work. The study of human factors consists in analyzing and recommending the terms that allow an individual to be a reliable and safety agent. Accordingly, he/she is placed in working conditions corresponding to human abilities, associating the means of three levels: - designing, i.e. the action upon the technical system and upon work organization; - correction, i.e. the action upon the evolution of the technical system and organizing; - formation/training, i.e. action upon operators. The paper presents a characterization of the socio-technical system and on this basis discusses the issue of individual adjustment to the socio-technical system and reciprocally, the issue of the socio-technical system adjustment to the individual. Concepts as: ergonomics, physical medium, man/machine interface and support of the operator, man/machine task sharing, the work organizing are put in relation with the central subject, the nuclear safety

  1. The USERDA transport R and D program for environment and safety

    International Nuclear Information System (INIS)

    Sisler, J.A.

    1976-01-01

    This paper describes the U.S. Energy Research and Development Administration's (ERDA) transportation environment and safety research and development program for energy fuels and wastes, including background, current activities, and future plans. It will serve as an overview and integrating factor for the several related technical papers to be presented at this meeting which will enlarge on the detail of specific projects. The transportation R and D program provides for the environmental and safety review of transport systems and procedures; standards development; and package, vehicle, and systems testing for nuclear materials transport. A primary output of the program is the collection, processing, and dissemination of transport environment and safety data, shipment statistics, and technical information. Special transport projects which do not easily fit elsewhere in ERDA are usually done as a part of this program. (author)

  2. Fusion safety program annual report fiscal year 1997

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C.

    1998-01-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1997. The Idaho National Engineering and Environmental Laboratory (INEEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in FY 1979 to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEEL, different DOE laboratories, and other institutions. The technical areas covered in this report include chemical reactions and activation product release, tritium safety, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER) project. Work done for ITER this year has focused on developing the needed information for the Non-site Specific Safety Report (NSSR-2)

  3. Fusion safety program annual report fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C. [and others

    1998-01-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1997. The Idaho National Engineering and Environmental Laboratory (INEEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in FY 1979 to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEEL, different DOE laboratories, and other institutions. The technical areas covered in this report include chemical reactions and activation product release, tritium safety, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER) project. Work done for ITER this year has focused on developing the needed information for the Non-site Specific Safety Report (NSSR-2).

  4. Technical safety requirements control level verification

    International Nuclear Information System (INIS)

    STEWART, J.L.

    1999-01-01

    A Technical Safety Requirement (TSR) control level verification process was developed for the Tank Waste Remediation System (TWRS) TSRs at the Hanford Site in Richland, WA, at the direction of the US. Department of Energy, Richland Operations Office (RL). The objective of the effort was to develop a process to ensure that the TWRS TSR controls are designated and managed at the appropriate levels as Safety Limits (SLs), Limiting Control Settings (LCSs), Limiting Conditions for Operation (LCOs), Administrative Controls (ACs), or Design Features. The TSR control level verification process was developed and implemented by a team of contractor personnel with the participation of Fluor Daniel Hanford, Inc. (FDH), the Project Hanford Management Contract (PHMC) integrating contractor, and RL representatives. The team was composed of individuals with the following experience base: nuclear safety analysis; licensing; nuclear industry and DOE-complex TSR preparation/review experience; tank farm operations; FDH policy and compliance; and RL-TWRS oversight. Each TSR control level designation was completed utilizing TSR control logic diagrams and TSR criteria checklists based on DOE Orders, Standards, Contractor TSR policy, and other guidance. The control logic diagrams and criteria checklists were reviewed and modified by team members during team meetings. The TSR control level verification process was used to systematically evaluate 12 LCOs, 22 AC programs, and approximately 100 program key elements identified in the TWRS TSR document. The verification of each TSR control required a team consensus. Based on the results of the process, refinements were identified and the TWRS TSRs were modified as appropriate. A final report documenting key assumptions and the control level designation for each TSR control was prepared and is maintained on file for future reference. The results of the process were used as a reference in the RL review of the final TWRS TSRs and control suite. RL

  5. 1996 DOE technical standards program workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The workshop theme is `The Strategic Standardization Initiative - A Technology Exchange and Global Competitiveness Challenge for DOE.` The workshop goal is to inform the DOE technical standards community of strategic standardization activities taking place in the Department, other Government agencies, standards developing organizations, and industry. Individuals working on technical standards will be challenged to improve cooperation and communications with the involved organizations in response to the initiative. Workshop sessions include presentations by representatives from various Government agencies that focus on coordination among and participation of Government personnel in the voluntary standards process; reports by standards organizations, industry, and DOE representatives on current technology exchange programs; and how the road ahead appears for `information superhighway` standardization. Another session highlights successful standardization case studies selected from several sites across the DOE complex. The workshop concludes with a panel discussion on the goals and objectives of the DOE Technical Standards Program as envisioned by senior DOE management. The annual workshop on technical standards has proven to be an effective medium for communicating information related to standards throughout the DOE community. Technical standards are used to transfer technology and standardize work processes to produce consistent, acceptable results. They provide a practical solution to the Department`s challenge to protect the environment and the health and safety of the public and workers during all facility operations. Through standards, the technologies of industries and governments worldwide are available to DOE. The DOE Technical Standards Program, a Department-wide effort that crosscuts all organizations and disciplines, links the Department to those technologies.

  6. Technical mechanics in constructional reactor safety

    International Nuclear Information System (INIS)

    Matthees, W.

    1979-01-01

    Reactor safety is based on close cooperation between a number of technical and scientific disciplines; most problems of reactor technology can be solved with the aid of technical mechanics. At the 5th International Conference on Structural Mechanics in Reactor Technology (5th SMIRT), one of the biggest conferences in the field of applied technical mechanics, about 800 papers were read giving the latest state of knowledge in the field of constructional reactor safety. The main subject of the conference was the analysis of material behaviour under high loads; the information and methods of these analysis go far beyond what is required in the conventional field. (orig./UA) [de

  7. 76 FR 29333 - Pipeline Safety: Meetings of the Technical Pipeline Safety Standards Committee and the Technical...

    Science.gov (United States)

    2011-05-20

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Technical Hazardous Liquid Pipeline Safety Standards Committee AGENCY: Pipeline and Hazardous Materials... for natural gas pipelines and for hazardous liquid pipelines. Both committees were established under...

  8. Fusion Safety Program annual report: Fiscal year 1986

    International Nuclear Information System (INIS)

    Holland, D.F.; Merrill, B.J.; Herring, J.S.; Piet, S.J.; Longhurst, G.R.

    1987-06-01

    This report summarizes the Fusion Safety Program's (FSP) major activities in fiscal year 1986. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and EG and G Idaho, Inc., is the prime contractor for FSP, which was initiated in 1979. Activities are conducted at the INEL and in participating facilities, including the Hanford Engineering Development Laboratory (HEDL), the Massachusetts Institute of Technology (MIT), and the University of Wisconsin. The technical areas covered in this report include tritium safety, activation product release, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruption, risk assessment methodology, and computer code development for reactor transients. Contributions to the Technical Planning Activity (TPA) and the ''white paper'' study by the Environmental, Safety,and Economics Committee (ESECOM) are summarized. The report also includes a summary of the safety and environmental analysis and documentation performed by the INEL for the Compact Ignition Tokamak (CIT) design project

  9. Flammable gas tank safety program: Technical basis for gas analysis and monitoring

    International Nuclear Information System (INIS)

    Estey, S.D.

    1998-01-01

    Several Hanford waste tanks have been observed to exhibit periodic releases of significant quantities of flammable gases. Because potential safety issues have been identified with this type of waste behavior, applicable tanks were equipped with instrumentation offering the capability to continuously monitor gases released from them. This document was written to cover three primary areas: (1) describe the current technical basis for requiring flammable gas monitoring, (2) update the technical basis to include knowledge gained from monitoring the tanks over the last three years, (3) provide the criteria for removal of Standard Hydrogen Monitoring System(s) (SHMS) from a waste tank or termination of other flammable gas monitoring activities in the Hanford Tank farms

  10. TMI-2 Technical Information and Examination Program. 1982 annual report

    International Nuclear Information System (INIS)

    1983-04-01

    The Department of Energy's Technical Information and Examination Program at Three Mile Island Unit 2 continued the research and development work begun on the island in 1980. The work concentrated in seven major areas: instrumentation and electrical components, radiation and environment, core activities, information and industry coordination, configuration and document control, waste immobilization, and reactor evaluation. The program assists in resolving specific problems at TMI-2 while developing techniques and broadening understanding of accident consequences to improve the overall safety and reliability of nuclear power. The Technical Information and Examination Program aims to communicate applicable information to the nuclear power industry to ensure that the industry can avail itself of the maximum amount of information possible

  11. TMI-2 Technical Information and Examination Program 1983 annual report

    International Nuclear Information System (INIS)

    Scardena, D.E.

    1984-04-01

    The Department of Energy's Technical Information and Examination Program at Three Mile Island Unit 2 continued the research and development work begun on the Island in 1980. The work concentrated in six major areas: waste immobilization, reactor evaluation, data acquisition, information and industry coordination, core activities, and EPICOR II and waste research and disposition. The program assists in resolving specific problems at TMI-2 while developing techniques and broadening understanding of accident consequences to improve the overall safety and reliability of nuclear power. The Technical Information and Examination Program aims to communicate applicable information to the nuclear power industry to ensure that the industry can avail itself to the maximum amount of information possible

  12. MORT: a safety management program developed for ERDA

    International Nuclear Information System (INIS)

    1977-03-01

    ERDA's System Safety Development Center (SSDC) is located at the Idaho National Engineering Laboratory under the EG and G Idaho, Inc., contract administered by the Idaho Operations Office. The SSDC performs a variety of tasks for ERDA's Division of Safety, Standards, and Compliance, for the purpose of improvement and application of safety program elements. Primary among these tasks are development and demonstration of new methodologies, training, consultation, and technical writing. This information package (ERDA 77-38) is an example of the later task, aimed at communicating to a general audience the nature and purpose of major features of the Management Oversight and Risk Tree (MORT) program. The SSDC also originates a guideline series of monographs (the ERDA 76-45 series) for individuals who desire more specific explanations of the MORT program

  13. Safety of RBMK reactors: Setting the technical framework

    International Nuclear Information System (INIS)

    Lederman, L.

    1996-01-01

    This article reviews major efforts for improving the safety of RBMK reactors through a co-operative IAEA programme initiated in 1992. Specifically covered are technical findings of safety reviews related to the design and operation of the plants, and the documentation of findings through an Agency database intended to facilitate the technical co-ordination of ongoing national and international efforts for improving RBMK safety

  14. Technical safety appraisal of buildings 9206 and 9212, Oak Ridge Y-12 plant

    International Nuclear Information System (INIS)

    1989-03-01

    This report covers the results of a Safety Performance Review of the Y-12 Plant conducted during the period July 25 through August 3, 1988. A Safety Performance Review is a followup to assess changes in performance since the 1986 Technical Safety Appraisal (TSA). This review is patterned after a TSA and covered the overall safety performance at Y-12, evaluating progress to date against standards of accepted practice. The review included coverage of actions taken in response to recommendations in the TSA conducted in July--August 1986. Remaining issues were identified through an assessment of safety program deficiencies and their root causes. For each of the 14 safety-related functional areas at the Y-12 Plant, results of this review are listed in Section V. These results include a discussion, conclusions, and any new safety concerns for each program. Appendix A contains a description of the system for categorizing concerns, and the concerns are summarily tabulated in Appendix B for all programs. Appendix C describes the contractor's response and current status of each of the 59 recommendations contained in the 1986 TSA

  15. Requirements on the provisional safety analyses and technical comparison of safety measures

    International Nuclear Information System (INIS)

    2010-04-01

    The concept of a Geological Underground Repository (SGT) was adopted by the Swiss Federal Council on April 2 nd , 2008. It fixes the goals and the safety technical criteria as well as the procedures for the choice of the site for an underground repository. Those responsible for waste management evaluate possible site regions according to the present status of geological knowledge and based on the safety criteria defined in SGT as well as on technical feasibility. In a first step, they propose geological repository sites for high level (HAA) and for low and intermediate level (SMA) radioactive wastes and justify their choice in a report delivered to the Swiss Federal Office of Energy. The Swiss Federal Council reviews the choices presented and, in the case of positive evaluation, approves them and considers them as an initial orientation. In a second step, based on the possible sites according to step 1, the waste management institution responsible has to reduce the repositories chosen for HAA and SMA by taking into account safety aspects, technical feasibility as well as space planning and socio-economical aspects. In making this choice, safety aspects have the highest priority. The criteria used for the evaluation in the first step have to be defined using provisional quantitative safety analyses. On the basis of the whole appraisal, including space planning and socio-economical aspects, those responsible for waste management propose at least two repository sites for HAA- and SMA-waste. Their selection is then reviewed by the authorities and, in the case of a positive assesment, the selection is taken as an intermediate result. The remaining sites are further studied to examine site choice and the delivery of a request for a design license. If necessary, the requested geological knowledge has to be confirmed by new investigations. Based on the results of the choosing process and a positive evaluation by the safety authorities, the Swiss Federal Council has to

  16. Technical safety appraisal of the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    1992-05-01

    On June 27, 1989, Secretary of Energy, Admiral James D. Watkins, US Navy (Retired), announced a 10-point initiative to strengthen environment, safety, and health (ES ampersand H) programs and waste management operations in the Department of Energy (DOE). One of the initiatives involved conducting independent Tiger Team Assessments (TTA) at DOE operating facilities. A TTA of the Idaho National Engineering Laboratory (INEL) was performed during June and July 1991. Technical Safety Appraisals (TSA) were conducted in conjunction with the TTA as its Safety and Health portion. However, because of operational constraints the the Idaho Chemical Processing Plant (ICPP), operated for the DOE by Westinghouse Idaho Nuclear Company, Inc. (WINCO), was not included in the Safety and Health Subteam assessment at that time. This TSA, conducted April 12 - May 8, 1992, was performed by the DOE Office of Performance Assessment to complete the normal scope of the Safety and Health portion of the Tiger Team Assessment of the Idaho National Engineering Laboratory. The purpose of TSAs is to evaluate and strengthen DOE operations by verifying contractor compliance with DOE Orders, to assure that lessons learned from commercial operations are incorporated into facility operations, and to stimulate and encourage pursuit of excellence; thus, the appraisal addresses more issues than would be addressed in a strictly compliance-oriented appraisal. A total of 139 Performance Objectives have been addressed by this appraisal in 19 subject areas. These 19 areas are: organization and administration, quality verification, operations, maintenance, training and certification, auxiliary systems, emergency preparedness, technical support, packaging and transportation, nuclear criticality safety, safety/security interface, experimental activities, site/facility safety review, radiological protection, worker safety and health compliance, personnel protection, fire protection, medical services and natural

  17. AEC sets five year nuclear safety research program

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The research by the government for the establishment of means of judging the adequacy of safety measures incorporated in nuclear facilities, including setting safety standards and collecting documents of general criteria, and the research by the industry on safety measures and the promotion of safety-related technique are stated in the five year program for 1976-80 reported by subcommittees, Atomic Energy Commission (AEC). Four considerations on the research items incorporated in the program are 1) technical programs relating to the safety of nuclear facilities and the necessary criteria, 2) priority of the relevant items decided according to their impact on circumstances, urgency, the defence-indepth concept and so on, 3) consideration of all relevant data and documents collected, and research subjects necessary to quantify safety measurement, and 4) consideration of technological actualization, the capability of each research body, the budget and the time schedule. In addition, seven major themes decided on the basis of these points are 1) reactivity-initiated accident, 2) LOCA, 3) fuel behavior, 4) structural safety, 5) radioactive release, 6) statistical method of safety evaluation, and 7) seismic characteristics. The committee has deliberated the appropriate division of researches between the government and the industry. A set of tables showing the nuclear safety research plan for 1976-80 are attached. (Iwakiri, K.)

  18. OSH technical reference manual

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinent to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.

  19. Technical safety requirements control level verification; TOPICAL

    International Nuclear Information System (INIS)

    STEWART, J.L.

    1999-01-01

    A Technical Safety Requirement (TSR) control level verification process was developed for the Tank Waste Remediation System (TWRS) TSRs at the Hanford Site in Richland, WA, at the direction of the US. Department of Energy, Richland Operations Office (RL). The objective of the effort was to develop a process to ensure that the TWRS TSR controls are designated and managed at the appropriate levels as Safety Limits (SLs), Limiting Control Settings (LCSs), Limiting Conditions for Operation (LCOs), Administrative Controls (ACs), or Design Features. The TSR control level verification process was developed and implemented by a team of contractor personnel with the participation of Fluor Daniel Hanford, Inc. (FDH), the Project Hanford Management Contract (PHMC) integrating contractor, and RL representatives. The team was composed of individuals with the following experience base: nuclear safety analysis; licensing; nuclear industry and DOE-complex TSR preparation/review experience; tank farm operations; FDH policy and compliance; and RL-TWRS oversight. Each TSR control level designation was completed utilizing TSR control logic diagrams and TSR criteria checklists based on DOE Orders, Standards, Contractor TSR policy, and other guidance. The control logic diagrams and criteria checklists were reviewed and modified by team members during team meetings. The TSR control level verification process was used to systematically evaluate 12 LCOs, 22 AC programs, and approximately 100 program key elements identified in the TWRS TSR document. The verification of each TSR control required a team consensus. Based on the results of the process, refinements were identified and the TWRS TSRs were modified as appropriate. A final report documenting key assumptions and the control level designation for each TSR control was prepared and is maintained on file for future reference. The results of the process were used as a reference in the RL review of the final TWRS TSRs and control suite. RL

  20. Light Water Reactor Sustainability Program Technical Basis Guide Describing How to Perform Safety Margin Configuration Risk Management

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Smith; James Knudsen; Bentley Harwood

    2013-08-01

    The INL has carried out a demonstration of the RISMC approach for the purpose of configuration risk management. We have shown how improved accuracy and realism can be achieved by simulating changes in risk – as a function of different configurations – in order to determine safety margins as the plant is modified. We described the various technical issues that play a role in these configuration-based calculations with the intent that future applications can take advantage of the analysis benefits while avoiding some of the technical pitfalls that are found for these types of calculations. Specific recommendations have been provided on a variety of topics aimed at improving the safety margin analysis and strengthening the technical basis behind the analysis process.

  1. Light Water Reactor Sustainability Program Reactor Safety Technologies Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L. [Univ. of Wisconsin, Madison, WI (United States); Peko, D. [US Dept. of Energy, Washington, DC (United States); Farmer, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Rempe, J. [Rempe and Associates LLC, Idaho Falls, ID (United States); Humrickhouse, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robb, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauntt, R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Osborn, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary

  2. Light Water Reactor Sustainability Program: Reactor Safety Technologies Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary

  3. UMTRA technical assistance contractor quality assurance program plan

    International Nuclear Information System (INIS)

    1994-10-01

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAc Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements

  4. The Nordic safety program on accident consequence assessment

    International Nuclear Information System (INIS)

    Tveten, U.

    1988-01-01

    One important part of Nordic cooperation is partially funded by the Nordic Council of Ministers, namely the work performed within the Nordic Safety Program (often referred to as the NKA projects). NKA is the Nordic abbreviation of the Nordic Liaison Committee on Atomic Energy. One program area in the present four-year period is concerned with problems related to reactor accident consequence assessment, and contains almost twenty projects covering a wide range of subjects. The author is program coordinator for this program area. The program will be completed in 1989. The program was strongly influenced by Chernobyl, and a number of new projects were included in the program in 1986. Involved in the program are these Nordic institutions: Riso National Laboratory (Denmark). Technical Research Centre of Finland. Finnish Centre for Radiation and Nuclear Safety. Finnish Meteorological Institute. Institute for Energy Technology (Norway). Agricultural University of Norway. Meteorological Institute of Norway. Studsvik Energiteknik AB (Sweden). National Defence Research Laboratory (Sweden)

  5. Analysis of Aviation Safety Reporting System Incident Data Associated With the Technical Challenges of the Vehicle Systems Safety Technology Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This analysis was conducted to support the Vehicle Systems Safety Technology (VSST) Project of the Aviation Safety Program (AVsP) milestone VSST4.2.1.01, "Identification of VSST-Related Trends." In particular, this is a review of incident data from the NASA Aviation Safety Reporting System (ASRS). The following three VSST-related technical challenges (TCs) were the focus of the incidents searched in the ASRS database: (1) Vechicle health assurance, (2) Effective crew-system interactions and decisions in all conditions; and (3) Aircraft loss of control prevention, mitigation, and recovery.

  6. Safety Standards Plan for Middlesex County Vocational & Technical High Schools.

    Science.gov (United States)

    Sommer, Cy

    This vocational education safety standards plan outlines rules and regulations adopted by the Board of Education of Middlesex County Vocational and Technical High Schools. The first of eleven chapters presents demographics and a safety organization table for Middlesex County Vocational and Technical Schools. In chapter 2, six safety program…

  7. Ferrocyanide Safety Program: Safety criteria for ferrocyanide watch list tanks

    International Nuclear Information System (INIS)

    Postma, A.K.; Meacham, J.E.; Barney, G.S.

    1994-01-01

    This report provides a technical basis for closing the ferrocyanide Unreviewed Safety Question (USQ) at the Hanford Site. Three work efforts were performed in developing this technical basis. The efforts described herein are: 1. The formulation of criteria for ranking the relative safety of waste in each ferrocyanide tank. 2. The current classification of tanks into safety categories by comparing available information on tank contents with the safety criteria; 3. The identification of additional information required to resolve the ferrocyanide safety issue

  8. EUROSAFE Forum for nuclear safety. Towards Convergence of Technical Nuclear Safety Practices in Europe. Safety Improvements - Reasons, Strategies, Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Erven, Ulrich (ed.) [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS mbH, Schwertnergasse 1, 50667 Koeln (Germany); Cherie, Jean-Bernard (ed.) [Institut de Radioprotection et de Surete Nucleaire, IRSN, BP 17, 92262 Fontenay-aux-Roses Cedex (France); Boeck, Benoit De (ed.) [Association Vincotte Nuclear, AVN, Rue Walcourt 148, 1070 Bruxelles (Belgium)

    2005-07-01

    The EUROSAFE Forum for Nuclear Safety is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE Web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety. The goal is to share experiences, to exchange technical and scientific opinions, and to conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum on 2005 focused on Safety Improvements, Reasons - Strategies - Implementation, from the point of view of the authorities, TSOs and industry. Latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe are presented. A high level of nuclear safety is a priority for the countries of Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining

  9. EUROSAFE Forum for nuclear safety. Towards Convergence of Technical Nuclear Safety Practices in Europe. Safety Improvements - Reasons, Strategies, Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Erven, Ulrich [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS mbH, Schwertnergasse 1, 50667 Koeln (Germany); Cherie, Jean-Bernard [Institut de Radioprotection et de Surete Nucleaire, IRSN, BP 17, 92262 Fontenay-aux-Roses Cedex (France); Boeck, Benoit De [Association Vincotte Nuclear, AVN, Rue Walcourt 148, 1070 Bruxelles (Belgium)

    2005-07-01

    The EUROSAFE Forum for Nuclear Safety is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE Web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety. The goal is to share experiences, to exchange technical and scientific opinions, and to conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum on 2005 focused on Safety Improvements, Reasons - Strategies - Implementation, from the point of view of the authorities, TSOs and industry. Latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe are presented. A high level of nuclear safety is a priority for the countries of Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining

  10. 1994 DOE Technical Standards Program Workshop: Proceedings

    International Nuclear Information System (INIS)

    Spellman, D.J.

    1994-01-01

    The DOE Technical Standards Program has been structured to provide guidance and assistance for the development, adoption, and use of voluntary standards within the Department. OMB Circular A-119, ''Federal Participation in the Development and Use of Voluntary Standards'' establishes the policy to be followed in working with voluntary standards bodies, and in adopting and using voluntary standards whenever feasible. The DOE Technical Standards Program is consistent with this policy and is dedicated to the task of promoting its implementation. The theme of this year's workshop is ''Standards Initiatives in Environmental Management fostering the development and use of industry standards for safe, environmentally responsible operations.'' The objective of the workshop is to increase the participant's awareness of the standardization activities taking place nationally and internationally and the impact of these activities on their efforts, and to facilitate the exchange of experiences, processes, and tools for implementing the program. Workshop sessions will include presentations by industry and Government notables in the environment, safety, and health arena with ample opportunity for everyone to ask questions and share experiences. There will be a breakout session which will concentrate on resolution of issues arising from the implementation of the DOE Technical Standards Program and a plenary session to discuss the plans developed by the breakout groups. Many organizations provide services and products which support the development, processing, distribution, and retrieval of standards. Those organizations listed at the end of the agenda will have exhibits available for your perusal throughout the workshop. Last year's workshop was very successful in stimulating an understanding of an interest in the standards program. This year, we hope to build on that success and provide an environment for the synergism of ideas to enhance the program and advance its implementation

  11. Lessons learned from the safety assistance program for soviet-designed reactors

    International Nuclear Information System (INIS)

    Steinberg, N.

    1999-01-01

    Two examples of nuclear power situation were compared in this conference paper - the situation in Lithuania and the situation in the Ukraine. Based on the examples mentioned, author conclude that the effectiveness of the Multi-National Safety Assistance Program for Soviet -Designed Reactors in a given recipient country does not depend, in practice, on engineering issues. The principal aspects that determine this effectiveness are: first, the level of safety culture in the country, beginning at the Governmental level but also at the level of the senior managers of nuclear power. The other important factor which contributes is the availability of a well-developed national program for upgrading NPP safety. The economical well-being of nuclear power and of the country as a whole also has a major effect on the effectiveness of the western technical assistance programs that are trying to upgrade reactor safety in a particular recipient country. And finally, international community should have well coordinated and well substantiated safety assistance program for specific country

  12. Glovebox glove change program at Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Olivas, J.D.; Burkett, B.O.; Weier, D.R.

    1992-01-01

    A formal glovebox glove change program is planned for the the gloveboxes in technical area 55 at the Los Alamos National laboratory. The program will increase worker safety by reducing the chance of having worn out gloves in service. The Los Alamos program is based on a similar successful program at the Rocky Flats Plant in Golden, Colorado. Glove change frequencies at Rocky Flats were determined statistically, and are based on environmental factors the glovebox gloves are subjected to

  13. Space Nuclear Safety Program. Progress report, March 1984

    International Nuclear Information System (INIS)

    Zocher, R.W.; George, T.G.

    1985-08-01

    This technical monthly report covers studies related to the use of 238 PuO 2 in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos Laboratory. They are divided into: general-purpose heat source, lightweight radioisotope heater unit, and safety technology program. 43 figs., 2 tabs

  14. Technical safety appraisal of the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    1989-09-01

    This report presents the results of one in a series of Technical Safety Appraisals (TSAs) being conducted of DOE nuclear operations by the Assistant Secretary for Environment, Safety, and Health Office of Safety Appraisals TSAs are one of the ititiatives announced by the Secretary of Energy on September 18, 1985, to enhance the DOE environment, safety and health program. This report presents the results of a TSA of the West Valley Demonstration Project (WVDP). The appraisal was conducted by a team of exerts assembled by the DOE Office of Safety Appraisal and was conducted during onsite visits of June 26-30 and July 10-21, 1989. West Valley, about 30 miles south of Buffalo, New York is the location of the only commercial nuclear fuel reprocessing facility operated in the United States. Nuclear Fuels Services, Inc. (NFS) operated the plant from 1966 to 1972 and processed about 640 metric tons of spent reactor fuel. The reprocessing operation generated about 560,000 gallons of high-level radioactive waste, which was transferred into underground tanks for storage. In 1972 NFS closed the plant and subsequently decided not to reopen it

  15. The International Technical Safety Forum

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    The International Technical Safety Forum is a meeting of safety experts from several physics labs in Europe and the US. Since 1998 participants have been meeting every couple of years to discuss common challenges in safety matters. The Forum helps them define best practices and learn from the important lessons learned by others.   The Forum's participants in front of building 40. This year, the meeting took place at CERN from 12 to 16 April. “This year's meeting covered subjects ranging from communication and training in matters of safety, to cryogenic safety, emergency preparedness and risk analysis”, explains Ralf Trant, head of the CERN Safety Commission and organiser of this year’s Forum. Radiation protection issues are not discussed at the meeting since they involve different expertise. The goal of the Forum is to allow participants to share experience, learn lessons and acquire specific knowledge in a very open way. Round-table discussions, dedicated time for ...

  16. Needs, requirements and challenges for technical support to nuclear safety authority

    International Nuclear Information System (INIS)

    Madonna, A.; Orsini, G.

    2010-01-01

    To face the very broad range of technical matters on which the regulatory and licensing activity are based, and related research and development activity, the Nuclear Safety Authorities (NSA) may need to rely upon external technical and scientific support. In providing technical support to NSA, the experience shows, from one side, the importance to have technical support organizations (TSO) with recognized competence, independence and appropriate regulatory view, and from the other side, the importance to have within the NSAs well developed management and technical capability to address, coordinate and use the results of the external technical support. Retaining the NSA the full responsibility for the final decision. Under which conditions and modus operandi the external support shall be provided in order to comply with requirements of being independent, competent and timely provided, fulfilling the administrative procedures, is the subject of attention and consideration of TSO function today. The Italian regulatory body is currently going to be institutionally re-established according to new law approved in 2009 /1/ and it needs to be resourced and fully organized with necessary capacities in the nearest future. The perspective of a new nuclear program, recently launched by the government, with significant incoming tasks for regulation and licensing, against the existing limited resources, let foresee a substantial potential need for technical support and advice. ITER-Consult (Ltd), created in 2003 in Italy, has well developed capabilities to provide independent technical evaluation and support to NSAs, to maintain safety culture and updated knowledge, to transfer know how and to establish international cooperation and networking. This mission is guided assuming as values the independence, the professional competence, the transparency, the credibility and the establishment of respectful relationship with the partners. Challenges exist for funding and operational

  17. Sixth ITER technical meeting on safety and environment

    International Nuclear Information System (INIS)

    Saji, G.; Baker, D.

    1997-01-01

    The article summarizes the topics of the Sixth Technical Meeting on Safety and Environment which was held to review the first draft of the Non-Site Specific Safety Report (NSSR-2) and the draft of the ITER Final Design Report Safety Assessment (FDR-Safety) during October 27 - November 4, 1997 at the ITER San Diego Joint Work Site

  18. Technical methods for a risk-informed, performance-based fire protection program at nuclear power plants

    International Nuclear Information System (INIS)

    Dey, M.K.

    1998-01-01

    This paper presents a technical review and examination of technical methods that are available for developing a risk-informed, performance-based fire protection program at a nuclear plant. The technical methods include ''engineering tools'' for examining the fire dynamics of fire protection problems, reliability techniques for establishing an optimal fire protection surveillance program, fire computer codes for analyzing important fire protection safety parameters, and risk-informed approaches that can range from drawing qualitative insights from risk information to quantifying the risk impact of alternative fire protection approaches. Based on this technical review and examination, it is concluded that methods for modeling fires, and reliability and fire PRA analyses are currently available to support the initial implementation of simple risk-informed, performance-based approaches in fire protection programs. (author)

  19. Technical methods for a risk-informed, performance-based fire protection program at nuclear power plants

    International Nuclear Information System (INIS)

    Dey, M.K.

    2000-01-01

    This paper presents a technical review and examination of technical methods that are available for developing a risk-informed, performance-based fire protection program at a nuclear plant. The technical methods include 'engineering tools' for examining the fire dynamics of fire protection problems, reliability techniques for establishing an optimal fire protection surveillance program, fire computer codes for analyzing important fire protection safety parameters, and risk-informed approaches that can range from drawing qualitative insights from risk information to quantifying the risk impact of alternative fire protection approaches. Based on this technical review and examination, it is concluded that methods for modeling fires, and reliability and fire probabilistic risk analyses (PRA) are currently available to support the initial implementation of simple risk-informed, performance-based approaches in fire protection programs. (orig.) [de

  20. Technical safety requirements for the Annular Core Research Reactor Facility (ACRRF)

    International Nuclear Information System (INIS)

    Boldt, K.R.; Morris, F.M.; Talley, D.G.; McCrory, F.M.

    1998-01-01

    The Technical Safety Requirements (TSR) document is prepared and issued in compliance with DOE Order 5480.22, Technical Safety Requirements. The bases for the TSR are established in the ACRRF Safety Analysis Report issued in compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports. The TSR identifies the operational conditions, boundaries, and administrative controls for the safe operation of the facility

  1. 2011 Annual Criticality Safety Program Performance Summary

    Energy Technology Data Exchange (ETDEWEB)

    Andrea Hoffman

    2011-12-01

    The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The

  2. Technical nuclear safety in France. Control by the governmental authority

    International Nuclear Information System (INIS)

    1991-12-01

    In publishing this latest edition, we have endeavoured to provide the reader with the information necessary to obtain a full understanding of the regulatory system applied to ensure technical nuclear safety in France. As the reader will discover in the following pages, technical nuclear safety is a matter which must be settled in advance of the actual operation of civil nuclear installations; the primary requirement is to mobilize those involved to anticipate and prevent. The fundamental options on which the French system is based, the relationship between the operator and the safety authority must be clearly stated: independence of judgement and decision, complementarity of responsibilities. It is for the governmental authorities to determine the technical nuclear safety objectives, which are becoming more and more consistent if not unified throughout the world. It is for the operator to propose technical provisions in order to achieve these objectives. It is for the governmental authorities to verify, by technical safety analyses, the adequacy of the provisions in terms of the defined objectives. It is for the operator to properly implement these approved provisions. And, finally, it is for the governmental authorities to verify, by sampling, the quality of their implementation and to make from them the necessary regulatory inferences. This sequence of events requires permanent frank in-depth dialogue. The effectiveness of the regulatory action must therefore reside not in close technical restraint but in the interactions between responsible partners

  3. Technical nuclear safety in France. Control by the governmental authority

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-15

    In publishing this latest edition, we have endeavoured to provide the reader with the information necessary to obtain a full understanding of the regulatory system applied to ensure technical nuclear safety in France. As the reader will discover in the following pages, technical nuclear safety is a matter which must be settled in advance of the actual operation of civil nuclear installations; the primary requirement is to mobilize those involved to anticipate and prevent. The fundamental options on which the French system is based, the relationship between the operator and the safety authority must be clearly stated: independence of judgement and decision, complementarity of responsibilities. It is for the governmental authorities to determine the technical nuclear safety objectives, which are becoming more and more consistent if not unified throughout the world. It is for the operator to propose technical provisions in order to achieve these objectives. It is for the governmental authorities to verify, by technical safety analyses, the adequacy of the provisions in terms of the defined objectives. It is for the operator to properly implement these approved provisions. And, finally, it is for the governmental authorities to verify, by sampling, the quality of their implementation and to make from them the necessary regulatory inferences. This sequence of events requires permanent frank in-depth dialogue. The effectiveness of the regulatory action must therefore reside not in close technical restraint but in the interactions between responsible partners.

  4. Fieldcrest Cannon, Inc. Advanced Technical Preparation. Statistical Process Control (SPC). Safety Section: Modules 1-3. Instructor Book.

    Science.gov (United States)

    Averitt, Sallie D.

    These three modules, which were developed for use by instructors in a manufacturing firm's advanced technical preparation program, contain the materials required to present the safety section of the plant's adult-oriented, job-specific competency-based training program. The 3 modules contain 12 lessons on the following topics: lockout/tagout…

  5. Non-technical skills training to enhance patient safety.

    Science.gov (United States)

    Gordon, Morris

    2013-06-01

      Patient safety is an increasingly recognised issue in health care. Systems-based and organisational methods of quality improvement, as well as education focusing on key clinical areas, are common, but there are few reports of educational interventions that focus on non-technical skills to address human factor sources of error. A flexible model for non-technical skills training for health care professionals has been designed based on the best available evidence, and with sound theoretical foundations.   Educational sessions to improve non-technical skills in health care have been described before. The descriptions lack the details to allow educators to replicate and innovate further.   A non-technical skills training course that can be delivered as either a half- or full-day intervention has been designed and delivered to a number of mixed groups of undergraduate medical students and doctors in postgraduate training. Participant satisfaction has been high and patient safety attitudes have improved post-intervention.   This non-technical skills educational intervention has been built on a sound evidence base, and is described so as to facilitate replication and dissemination. With the key themes laid out, clinical educators will be able to build interventions focused on numerous clinical issues that pay attention to human factor contributors to safety. © 2013 John Wiley & Sons Ltd.

  6. Bridging the Divide between Safety and Risk Management for your Project or Program

    Science.gov (United States)

    Lutomski, Mike

    2005-01-01

    This presentation will bridge the divide between these separate but overlapping disciplines and help explain how to use Risk Management as an effective management decision support tool that includes safety. Risk Management is an over arching communication tool used by management to prioritize and effectively mitigate potential problems before they concur. Risk Management encompasses every kind of potential problem that can occur on a program or project. Some of these are safety issues such as hazards that have a specific likelihood and consequence that need to be controlled and included to show an integrated picture of accepted) mitigated, and residual risk. Integrating safety and other assurance disciplines is paramount to accurately representing a program s or projects risk posture. Risk is made up of several components such as technical) cost, schedule, or supportability. Safety should also be a consideration for every risk. The safety component can also have an impact on the technical, cost, and schedule aspect of a given risk. The current formats used for communication of safety and risk issues are not consistent or integrated. The presentation will explore the history of these disciplines, current work to integrate them, and suggestions for integration for the future.

  7. Lessons learned - development of the tritium facilities 5480.23 safety analysis report and technical safety requirements

    International Nuclear Information System (INIS)

    Cappucci, A.J. Jr.; Bowman, M.E.; Goff, L.

    1997-01-01

    A review was performed which identified open-quotes Lessons Learnedclose quotes from the development of the 5480.23 Tritium Safety Analysis Report (SAR) and the Technical Safety Requirements (TSR) for the Tritium Facilities (TF). The open-quotes Lessons Learnedclose quotes were based on an evaluation of the use of the SRS procedures, processes, and work practices which contributed to the success or lack thereof. This review also identified recommendations and suggestions for improving the development of SARs and TSRs at SRS. The 5480.23 SAR describes the site for the TF, the various process systems in the process buildings, a complete hazards and accident analysis of the most significant hazards affecting the nearby offsite population, and the selection of safety systems, structures, and components to protect both the public and site workers. It also provides descriptions of important programs and processes which add defense in depth to public and worker protection

  8. Non-technical issues in safety assessments for nuclear disposal facilities

    International Nuclear Information System (INIS)

    Kallenbach-Herbert, Beate; Brohmann, Bettina

    2010-09-01

    The paper highlights that a comprehensive approach to safety affords the consideration of technology, organisation, personnel and social environment. In several safety relevant contexts of nuclear waste disposal these fields are closely interrelated. The approach for the consideration of socio-scientific aspects which is sketched in this paper supports the systematic treatment of safety relevant non-technical issues in the safety case or in safety assessments for a disposal project. Furthermore it may foster the dialogue among specialists from the technical, the natural- and the socio-scientific field on questions of disposal safety. In this way it may contribute to a better understanding among the affected scientific disciplines in nuclear waste disposal.

  9. Price-Anderson Nuclear Safety Enforcement Program. 1996 Annual report

    International Nuclear Information System (INIS)

    1996-01-01

    This first annual report on DOE's Price Anderson Amendments Act enforcement program covers the activities, accomplishments, and planning for calendar year 1996. It also includes the infrastructure development activities of 1995. It encompasses the activities of the headquarters' Office of Enforcement in the Office of Environment, Safety and Health (EH) and Investigation and the coordinators and technical advisors in DOE's Field and Program Offices and other EH Offices. This report includes an overview of the enforcement program; noncompliances, investigations, and enforcement actions; summary of significant enforcement actions; examples where enforcement action was deferred; and changes and improvements to the program

  10. Price-Anderson Nuclear Safety Enforcement Program. 1997 annual report

    International Nuclear Information System (INIS)

    1998-01-01

    This report summarizes activities in the Department of Energy's Price-Anderson Amendments Act (PAAA) Enforcement Program in calendar year 1997 and highlights improvements planned for 1998. The DOE Enforcement Program involves the Office of Enforcement and Investigation in the DOE Headquarters Office of Environment, Safety and Health, as well as numerous PAAA Coordinators and technical advisors in DOE Field and Program Offices. The DOE Enforcement Program issued 13 Notices of Violation (NOV's) in 1997 for cases involving significant or potentially significant nuclear safety violations. Six of these included civil penalties totaling $440,000. Highlights of these actions include: (1) Brookhaven National Laboratory Radiological Control Violations / Associated Universities, Inc.; (2) Bioassay Program Violations at Mound / EG ampersand G, Inc.; (3) Savannah River Crane Operator Uptake / Westinghouse Savannah River Company; (4) Waste Calciner Worker Uptake / Lockheed-Martin Idaho Technologies Company; and (5) Reactor Scram and Records Destruction at Sandia / Sandia Corporation (Lockheed-Martin). Sandia / Sandia Corporation (Lockheed-Martin)

  11. Application of quality assurance program to safety related aging equipment or components

    International Nuclear Information System (INIS)

    Papaiya, N.C.

    1990-01-01

    This paper addresses how quality assurance programs and their criteria are applied to safety related and aging equipment or components used in commercial nuclear plant applications. The QA Programs referred to are 10CFR50 Appendix B and EPRI NP-5652. The QA programs as applicable are applied to equipment/component aging qualification, preventive maintenance, surveillance testing and procurement engineering. The intent of this paper is not the technical issues, methods and research of aging. The paper addresses QA program's application to age-related equipment or components in safety related applications. Quality Assurance Program 10CFR50 Appendix B applies to all safety related aging components or equipment related to the qualification program and associated preventive maintenance and surveillance testing programs. Quality Assurance involvement with procurement engineering for age-related commercial grade items supports EPRI NP-5652 and assures that the dedicated OGI is equal to the item purchased as a basic component to 10CFR50 Appendix B requirements

  12. Laws on technical safety. Vol. 1

    International Nuclear Information System (INIS)

    Eberstein, H.H.; Strecker, A.

    1981-01-01

    Loose-leaf collection containing the full text of 1) Law on the safety of technical equipment and materials, with administrative regulations and ordinances; 2) Section 24 of the Trading and Industrial Code, and ordinance on the use of compressed air; 3) Ordinance on the handling of hazardous materials; 4) Working Site Ordinance; 5) Law concerning works doctors, safety engineers and other personnel responsible for occupational safety; 6) Law for the protection of minors in working conditions; 7) Atomic Energy Law; 8) Radiation Protection Ordinance; 9) X-ray Ordinance; 10) Law on hazardous chemical substances; 11) Law on the carriage of dangerous goods. (HP) [de

  13. Training Programs on Radiological Safety for users of Ionizing Radiations in Peru

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    2003-01-01

    In Peru, people who work with ionizing radiations must have an authorization (Individual License) as established in the Radiological Safety Regulations, which are the mandatory rules. The Technical Office of the National Authority (OTAN), which is the technical organ of the Peruvian Institute of Nuclear Energy (IPEN) in charge of controlling radiations within the country , grants the authorization after the candidate demonstrates that he/she knows the specific use of the technique using radiations, as well a s the aspects related to safety and radiological protection. Since it was created in 1972, the Superior Center of Nuclear Studies (VSEN) from IPEN has carried out different training courses so that people can work safety with ionizing radiations in medicine, industry and investigation. The analysis of the radiological safety programs carried out by CSEN during the last 30 years, which allowed the training of more than 2200 people in the country and, at the same time, made possible the securing of the respective Individual License, is presented in this work. The courses, nuclear medicine, radiotherapy, industrial radiography, nuclear gauges gamma irradiator, etc...) and are part of the continuous education program of CSEN. (Author)

  14. Final report of the UMTRA independent technical review of TAC audit programs

    International Nuclear Information System (INIS)

    1994-10-01

    This report details the findings of an Independent Technical Review (ITR) of practices and procedures for the Uranium Mill Tailings Remedial Action (UMTRA) Project audit program. The audit program is conducted by Jacobs Engineering Group Inc., the Technical Assistance Contractor (TAC) for the UMTRA Project. The purpose of the ITR was to ensure that the TAC audit program is effective and is conducted efficiently. The ITR was conducted from May 16-20, 1994. A review team observed audit practices in the field, reviewed the TAC audit program's documentation, and discussed the program with TAC staff and management. The format of this report has been developed around EPA guidelines; they comprise most of the major section headings. Each section begins by identifying the criteria that the TAC program is measured against, then describing the approach used by the ITR team to measure each TAC audit program against the criteria. An assessment of each type of audit is then summarized for each component in the following order: Radiological audit summary; Health and safety audit summary; Environmental audit summary; Quality assurance audit summary

  15. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE`s overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program.

  16. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    International Nuclear Information System (INIS)

    1994-02-01

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE's overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program

  17. Eighth ITER technical meeting on safety and environment

    International Nuclear Information System (INIS)

    Gordon, C.; Raeder, J.

    2000-01-01

    From November 27 to 30, 2000 the Eighth ITER Technical Meeting on Safety and Environment was held by the ITER Joint Central Team (JCT) at the Garching Joint Work Site, which also hosts the ITER Safety, Environment and Health Group (SEHG). At this meeting, safety experts from the Home Teams (HT) worked together with the SEHG members towards the following main objectives: review of Generic Site Safety Report (GSSR) results and drafts; review of the Plant Design Description (PDD) summary of safety; update on the status of the R and D tasks contributing to GSSR

  18. Summary of Tiger Team Assessment and Technical Safety Appraisal recurring concerns in the Operations Area

    International Nuclear Information System (INIS)

    1993-01-01

    Fourteen Tiger Team Assessment and eight Technical Safety Appraisal (TSA) final reports have been received and reviewed by the DOE Training Coordination Program during Fiscal Year 1992. These assessments and appraisals included both reactor and non-reactor nuclear facilities in their reports. The Tiger Team Assessments and TSA reports both used TSA performance objectives, and list ''concerns'' as a result of their findings. However, the TSA reports categorized concerns into the following functional areas: (1) Organization and Administration, (2) Radiation Protection, (3) Nuclear Criticality Safety, (4) Occupational Safety, (5) Engineering/Technical Support, (6) Emergency Preparedness, (7) Safety Assessments, (8) Quality Verification, (9) Fire Protection, (10) Environmental Protection, and (11) Energetic Materials Safety. Although these functional areas match most of the TSA performance objectives, not all of the TSA performance objectives are addressed. For example, the TSA reports did not include Training, Maintenance, and Operations as functional areas. Rather, they included concerns that related to these topics throughout the 11 functional areas identified above. For consistency, the Operations concerns that were identified in each of the TSA report functional areas have been included in this summary with the corresponding TSA performance objective

  19. Refinement of nuclear safety education reinforcing technical succession

    International Nuclear Information System (INIS)

    Yokobori, Seiichi

    2008-01-01

    In April 2008, Musashi Institute of Technology established another faculty, the Faculty of Nuclear Safety Engineering, to educate students for nuclear engineering to meet the demands of personnel for nuclear business. At this new faculty, students mainly obtain professional knowledge and skills related to nuclear safety issues. This article described refinement of nuclear safety education by reinforcing technical succession topics, such as Rankine cycle, fission, two-phase flow, defense in depth in safety. LOCA/ECCS, seismic effects, reactor maintenance. (T. Tanaka)

  20. Technical safety appraisal of the N-Reactor

    International Nuclear Information System (INIS)

    1986-07-01

    This report presents the results of a Technical Safety Appraisal conducted at the Hanford N-Reactor. A team of specialists gathered information for about three weeks on all areas related to safety at the plant. Operational practices, maintenance practices, training drills, and hardware condition were observed. Several recommendations are made in order to correct incomplete rule implementation, to correct hazardous practices, and to promote improvement in satisfactory areas

  1. Tank Farms Technical Safety Requirements. Volume 1 and 2

    International Nuclear Information System (INIS)

    CASH, R.J.

    2000-01-01

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR)

  2. Tank Farms Technical Safety Requirements [VOL 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    CASH, R.J.

    2000-12-28

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR).

  3. Technical Standards for Nursing Education Programs in the 21st Century.

    Science.gov (United States)

    Ailey, Sarah H; Marks, Beth

    The Institute of Medicine (2000, 2002) exposed serious safety problems in the health system and called for total qualitative system change. The Institute of Medicine (2011, 2015) also calls for improving the education of nurses to provide leadership for a redesigned health system. Intertwined with improving education is the need to recruit and retain diverse highly qualified students. Disability is part of diversity inclusion, but current technical standards (nonacademic requirements) for admission to many nursing programs are a barrier to the entry of persons with disabilities. Rehabilitation nurse leaders are in a unique position to improve disability diversity in nursing. The purpose of this paper is to discuss the importance of disability diversity in nursing. The history of existing technical standards used in many nursing programs is reviewed along with examples. On the basis of the concept that disability inclusion is a part of diversity inclusion, we propose a new model of technical standards for nursing education. Rehabilitation nurse leaders can lead in eliminating barriers to persons with disabilities entering nursing.

  4. Highway Safety Program Manual: Volume 3: Motorcycle Safety.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 3 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) concentrates on aspects of motorcycle safety. The purpose and specific objectives of a State motorcycle safety program are outlined. Federal authority in the highway safety area and general policies…

  5. Technical changes that would contribute to success in the civilian radioactive waste management program

    International Nuclear Information System (INIS)

    Ramspott, L.D.

    1993-01-01

    Many changes have taken place since the SCP safety strategy was formulated; it needs to be revised or replaced. Four concepts would aid in the shift from a rigid, ecelctic, schedule-driven, all-or-nothing program to an incremental, evolving, and experimental but integrated program. These are a simple safety case, reversability, demonstrability, and decoupling operations of a repository from operation of reactors. A simple safety case based on containment can be made for a repository at Yucca Mountain. This containment strategy is based on the dryness of openings at Yucca Mountain, Extended Dry heat management, and long-lived containers. Reversibility is technically believable at Yucca Mountain because of extended retrievability and drift emplacement, if an MRS were co-located with the repository. Because the rock is unsaturated, extended retrievability is technically feasible at Yucca Mountain. Demonstrability could be improved at Yucca Mountain by planning for incremental progression toward operation and closure of a repository, possibly including a shift to underground retrievable storage. Demonstrability can also be improved by using natural analogs. Repository operation can be decoupled from reactor operation by use of an unconstrained MRS facility or at-reactor dry storage and multipurpose storage canister/casks

  6. Annual technical meeting of the NRC cooperative severe accident research program

    International Nuclear Information System (INIS)

    Silver, E.G.

    1993-01-01

    This brief report summarizes the 1992 annual technical meeting of the NRC Cooperative Severe Accident Research Program (CSARP-92) held at the Hyatt Regency Hotel in Bethesda, Maryland, May 4-8, 1992. The report is taken mainly from coverage of the meeting published in the June 5, 1992, issue of Atomic Energy Clearinghouse. Results of this meeting are formalized at the Water Reactor Safety Information Meetings (WRSIM) that are held annually in October. Nuclear Safety summarizes the annual WRSIM meetings and provides a list of the presentations that were given. Interested readers are encouraged to review listed topics to identify specific topic areas in severe accident research. Sessions were held on in-vessel core melt progression; fuel-coolant interactions; fission-product behavior; direct containment heating; and severe accident code development, assessment, and validation. Summaries of the individual technical sessions and the current state of the art in these areas were given by the chairmen

  7. Challenges in developing TSO to provide technical support in nuclear safety and security to Pakistan Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Mallick, Shahid A.; Sherwani, Uzman Habib; Mehdi, M. Ammar

    2010-01-01

    This paper highlights the needs for the establishment of a technical support organization (TSO) in Pakistan Nuclear Regulatory Authority (PNRA), challenges faced during its development, application of training need assessment required for the competency development of its technical manpower and difficulties encountered after its evolution. Key issues addressed include recruitment of technical manpower and enhancing their competencies, acquisition of proper tools required for safety review and assessment, development of a sustainable education and training program consistent with the best international practices and taking the measures to get confidence of the regulatory body. (author)

  8. Draft 1992 Resource Program : Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-01-01

    The 1992 Resource Program will propose actions to meet future loads placed on the Bonneville Power Administration (BPA). It will also discuss and attempt to resolve resource-related policy issues. The Resource Program assesses resource availability and costs, and analyzes resource requirements and alternative ways of meeting those requirements through both conservation and generation resources. These general resource conclusions are then translated to actions for both conservation and generation. The Resource Program recommends budgets for the Office of Energy Resources for Fiscal Years (FY) 1994 and 1995. BPA's Resource Program bears directly on an important BPA responsibility: the obligation under the Northwest Power Act{sup 3} to meet the power requirements of public and private utility and direct service industrial (DSI) customers according to their contractual agreements. BPA's Draft 1992 Resource Program is contained in four documents: (1) 1992 Resource Program Summary; (2) Technical Report; (3) Technical Assumptions Appendix; and, (4) Conservation Implementation Plan. This volume is the Draft 1992 Resource Program Technical Report, a comprehensive document that provides supporting data and analyses for Resource Program recommendations.

  9. Draft 1992 Resource Program : Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-01-01

    The 1992 Resource Program will propose actions to meet future loads placed on the Bonneville Power Administration (BPA). It will also discuss and attempt to resolve resource-related policy issues. The Resource Program assesses resource availability and costs, and analyzes resource requirements and alternative ways of meeting those requirements through both conservation and generation resources. These general resource conclusions are then translated to actions for both conservation and generation. The Resource Program recommends budgets for the Office of Energy Resources for Fiscal Years (FY) 1994 and 1995. BPA`s Resource Program bears directly on an important BPA responsibility: the obligation under the Northwest Power Act{sup 3} to meet the power requirements of public and private utility and direct service industrial (DSI) customers according to their contractual agreements. BPA`s Draft 1992 Resource Program is contained in four documents: (1) 1992 Resource Program Summary; (2) Technical Report; (3) Technical Assumptions Appendix; and, (4) Conservation Implementation Plan. This volume is the Draft 1992 Resource Program Technical Report, a comprehensive document that provides supporting data and analyses for Resource Program recommendations.

  10. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the System-Wide Safety and Assurance Technologies Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2015-01-01

    The Aviation Safety Program (AvSP) System-Wide Safety and Assurance Technologies (SSAT) Project asked the AvSP Systems and Portfolio Analysis Team to identify SSAT-related trends. SSAT had four technical challenges: advance safety assurance to enable deployment of NextGen systems; automated discovery of precursors to aviation safety incidents; increasing safety of human-automation interaction by incorporating human performance, and prognostic algorithm design for safety assurance. This report reviews incident data from the NASA Aviation Safety Reporting System (ASRS) for system-component-failure- or-malfunction- (SCFM-) related and human-factor-related incidents for commercial or cargo air carriers (Part 121), commuter airlines (Part 135), and general aviation (Part 91). The data was analyzed by Federal Aviation Regulations (FAR) part, phase of flight, SCFM category, human factor category, and a variety of anomalies and results. There were 38 894 SCFM-related incidents and 83 478 human-factorrelated incidents analyzed between January 1993 and April 2011.

  11. Safety options for the 1300 MWe program

    International Nuclear Information System (INIS)

    Cayol, A.; Dupuis, M.C.; Fourest, B.; Oury, J.M.

    1980-04-01

    Standardization of the nuclear plants built in France implies an examination of the main technical safety options to be taken for a given type of reactor. By this procedure the subjects for which detailed studies will be needed to confirm the decisions made for the project can be defined in advance. In this context the technical safety option analysis for the 1300 MWe plants was conducted from the end of 1975 to the middle of 1978 according to usual regulation examination practice. The main conclusions are presented on the following subjects: safety methods; technical options concerning the containment vessel, primary fluid activity, fuel elements, steam generators; general organization of the lay-out [fr

  12. Middlesex Community College Software Technical Writing Program.

    Science.gov (United States)

    Middlesex Community Coll., Bedford, MA.

    This document describes the Software Technical Writing Program at Middlesex Community College (Massachusetts). The program is a "hands-on" course designed to develop job-related skills in three major areas: technical writing, software, and professional skills. The program was originally designed in cooperation with the Massachusetts High…

  13. Low-level waste management program: technical program overview

    International Nuclear Information System (INIS)

    Lowrie, R.S.

    1981-01-01

    The mission of the technical program is to develop the technology component of the Department of Energy's Low-Level Waste Management Program and to manage research and development, demonstration, and documentation of the technical aspects of the program. Some of the major technology objectives are: develop and demonstrate techniques for waste generation reduction; develop and demonstrate waste treatment, handling and packaging techniques; develop and demonstrate the technology for greater confinement; and develop the technology for remedial action at existing sites. In addition there is the technology transfer objective which is to compile and issue a handbook documenting the technology for each of the above technology objectives

  14. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    Energy Technology Data Exchange (ETDEWEB)

    GARVIN, L. J.; JENSEN, M. A.

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  15. Structural Aging Program to evaluate continued performance of safety-related concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1994-01-01

    This report discusses the Structural Aging (SAG) Program which is being conducted at the Oak Ridge National Laboratory (ORNL) for the United States Nuclear Regulatory commission (USNRC). The SAG Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved technical bases for their continued service. The program is organized into three technical tasks: Materials Property Data Base, Structural Component Assessment/Repair Technologies, and Quantitative Methodology for continued Service Determinations. Objectives and a summary of recent accomplishments under each of these tasks are presented

  16. Safety research programs sponsored by Office of Nuclear Regulatory Research

    International Nuclear Information System (INIS)

    Weiss, A.J.; Azarm, A.; Baum, J.W.

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988

  17. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Science.gov (United States)

    2010-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; technical information in final safety analysis report. 52.157 Section 52.157 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES...

  18. 10 CFR 52.79 - Contents of applications; technical information in final safety analysis report.

    Science.gov (United States)

    2010-01-01

    ...; technical information in final safety analysis report. (a) The application must contain a final safety... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; technical information in final safety analysis report. 52.79 Section 52.79 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES...

  19. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    International Nuclear Information System (INIS)

    KRAHN, D.E.

    2000-01-01

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt of multi-canister overpacks (MCOs) containing spent nuclear fuel. removal of free water from the MCOs using the cold vacuum drying process, and inerting and testing of the MCOs before transport to the Canister Storage Building. Controls required for public safety, significant defense in depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included

  20. Seventh ITER technical meeting on safety and environment

    International Nuclear Information System (INIS)

    Raeder, J.; Gordon, C.

    2000-01-01

    From February 15 to 18, 2000, the Seventy Technical Meeting on Safety and Environment was held at the Garching Joint Work Site which now hosts the Safety, Environment and Health Group of the ITER Joint Central Team. At this meeting, safety experts from the Home Teams worked with the SEHG members on reviews and agreements on the contents of GSSR and on the tasks and the schedule for the production of GSSR as well as the design information to be used and for the analyses to be done

  1. Technical Safety Requirements for the Waste Storage Facilities May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  2. Technical Safety Requirements for the Waste Storage Facilities May 2014

    International Nuclear Information System (INIS)

    Laycak, D. T.

    2014-01-01

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  3. Instrumentation and electrical program at the Three Mile Island Unit 2, Technical Integration Office

    International Nuclear Information System (INIS)

    Hecker, L.A.

    1982-01-01

    The Three Mile Island Unit 2 accident of March 28, 1979 presents unique research opportunities that can provide valuable information on nuclear power plant safety philosophy and safety systems performance. The Technical Integration Office at Three Mile Island was established by the Department of Energy to manage a broad-based research and development program. One significant part of this effort is the Instrumentation and Electrical Program, which operates: (1) to identify instruments and electrical components that failed during or since the accident; (2) to test and analyze them in order to identify the causes of failure; and (3) to assess the survivability of those that did not fail. The basis for selection of equipment is discussed, and the testing methodology is described. Also, some results of Instrumentation and Electrical Program work to date are presented

  4. Technical self reliance of digital safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon; Lee, Dong Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Kook Hun [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of); Choi, Seung Gap [POSCON, Pohang (Korea, Republic of)

    2009-04-15

    This paper summarizes the development results of the Korea Nuclear Instrumentation and Control System (KNICS) project sponsored by the Korean government. In this project, Man Machine Interface System (MMIS) architecture, two digital platforms, and several control systems are developed. One platform is a programmable Logic Controller (PLC) for a safety system and another platform is a Distributed Control System (DCS) for a non safety system. With the POSAFE Q PLC, a Reactor Protection System (RPS) and an Engineered Safety Feature Component Control System (ESF CCS) are developed. A Power Control System (PCS) is developed based on the DCS. The safety grade platform and the digital safety systems obtained approval for the Topical Report from the Korean regulatory body in February of 2009. Also a Korean utility and a vendor company determined KNICS results to apply them to the planned Nuclear Power Plant (NPP) in March 2009. This paper introduces the technical self reliance experiences of the safety grade platform and the digital safety systems developed in the KNICS R and D project.

  5. Evaluating Safety Culture Under the Socio-Technical Complex Systems Perspective

    International Nuclear Information System (INIS)

    Lemos, F. L. de

    2016-01-01

    Since the term “safety culture” was coined, it has gained more and more attention as an effort to achieve higher levels of system safety. A good deal of effort has been done in order to better define, evaluate and implement safety culture programs in organizations throughout all industries, and especially in the Nuclear Industry. Unfortunately, despite all those efforts, we continue to witness accidents that are, in great part, attributed to flaws in the safety culture of the organization. Fukushima nuclear accident is one example of a serious accident in which flaws in the safety culture has been pointed to as one of the main contributors. In general, the definitions of safety culture emphasise the social aspect of the system. While the definitions also include the relations with the technical aspects, it does so in a general sense. For example, the International Nuclear Safety Advisory Group (INSAG) defines safety culture as: “The assembly of characteristics and attitudes in organizations and individuals which establishes that, as an overriding priority, nuclear plant safety issues receives the attention warranted by their significance.” By the way safety culture is defined we can infer that it represents a property of a social system, or a property of the social aspect of the system. In this sense, the social system is a component of the whole system. Where, “system” is understood to be comprised of a social (humans) and technical (equipment) aspects, as a Nuclear Power Plant, for example. Therefore, treating safety culture as an identity on its own right, finding and fixing flaws in the safety culture may not be enough to improve safety of the system. We also needed to evaluate all the interactions between the components that comprise all the aspects of the system. In some cases a flaw in the safety culture can easily be detected, such as an employee not wearing appropriate individual protection equipment, e.g., dosimeter, or when basic safety

  6. Recent Experiences of the NASA Engineering and Safety Center (NESC) GN and C Technical Discipline Team (TDT)

    Science.gov (United States)

    Dennehy, Cornelius J.

    2010-01-01

    The NASA Engineering and Safety Center (NESC), initially formed in 2003, is an independently funded NASA Program whose dedicated team of technical experts provides objective engineering and safety assessments of critical, high risk projects. The GN&C Technical Discipline Team (TDT) is one of fifteen such discipline-focused teams within the NESC organization. The TDT membership is composed of GN&C specialists from across NASA and its partner organizations in other government agencies, industry, national laboratories, and universities. This paper will briefly define the vision, mission, and purpose of the NESC organization. The role of the GN&C TDT will then be described in detail along with an overview of how this team operates and engages in its objective engineering and safety assessments of critical NASA projects. This paper will then describe selected recent experiences, over the period 2007 to present, of the GN&C TDT in which they directly performed or supported a wide variety of NESC assessments and consultations.

  7. Illustration of an analytical method for quantification of the safety of technical appliances

    International Nuclear Information System (INIS)

    Tegel, M.

    1981-01-01

    The safety analysis of technical products will in future be required more and more also for simple technical systems. The fault-tree analysis is a method for safety judgement used in particular in aviation and space engineering as well as in energy engineering. This analytical method can also be applied to simple technical constructions, as the article shows, using as example an acially rotatable load hook. (orig.) [de

  8. Technical safety Organisations (TSO) contribute to European Nuclear Safety

    International Nuclear Information System (INIS)

    Repussard, J.

    2010-01-01

    Nuclear safety and radiation protection rely on science to achieve high level prevention objectives, through the analysis of safety files proposed by the licensees. The necessary expertise needs to be exercised so as to ensure adequate independence from nuclear operators, appropriate implementation of state of the art knowledge, and a broad spectrum of analysis, adequately ranking the positive and negative points of the safety files. The absence of a Europe-wide nuclear safety regime is extremely costly for an industry which has to cope with a highly competitive and open international environment, but has to comply with fragmented national regulatory systems. Harmonization is therefore critical, but such a goal is difficult to achieve. Only a gradual policy, made up of planned steps in each of the three key dimensions of the problem (energy policy at EU level, regulatory harmonization, consolidation of Europe-wide technical expertise capability) can be successful to achieve the required integration on the basis of the highest safety levels. TSO's contribute to this consolidation, with the support of the EC, in the fields of research (EURATOM-Programmes), of experience feedback analysis (European Clearinghouse), of training and knowledge management (European Training and Tutoring Institute, EUROSAFE). The TSO's network, ETSON, is becoming a formal organisation, able to enter into formal dialogue with EU institutions. However, nuclear safety nevertheless remains a world wide issue, requiring intensive international cooperation, including on TSO issues. (author)

  9. Range Flight Safety Requirements

    Science.gov (United States)

    Loftin, Charles E.; Hudson, Sandra M.

    2018-01-01

    The purpose of this NASA Technical Standard is to provide the technical requirements for the NPR 8715.5, Range Flight Safety Program, in regards to protection of the public, the NASA workforce, and property as it pertains to risk analysis, Flight Safety Systems (FSS), and range flight operations. This standard is approved for use by NASA Headquarters and NASA Centers, including Component Facilities and Technical and Service Support Centers, and may be cited in contract, program, and other Agency documents as a technical requirement. This standard may also apply to the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements to the extent specified or referenced in their contracts, grants, or agreements, when these organizations conduct or participate in missions that involve range flight operations as defined by NPR 8715.5.1.2.2 In this standard, all mandatory actions (i.e., requirements) are denoted by statements containing the term “shall.”1.3 TailoringTailoring of this standard for application to a specific program or project shall be formally documented as part of program or project requirements and approved by the responsible Technical Authority in accordance with NPR 8715.3, NASA General Safety Program Requirements.

  10. K Basin Fuel Characterization Program Technical Baseline Summary

    International Nuclear Information System (INIS)

    SUYAMA, R.M.

    1999-01-01

    This document provides a summary of the systematic process used by the SNF Project to characterize K-Basin spent fuel, and to develop and apply the appropriate conservative safety margins to the resulting parameters for technical designs and safety analyses

  11. Technical basis for environmental qualification of microprocessor-based safety-related equipment in nuclear power plants

    International Nuclear Information System (INIS)

    Korsah, K.; Wood, R.T.; Hassan, M.; Tanaka, T.J.

    1998-01-01

    This document presents the results of studies sponsored by the Nuclear Regulatory Commission (NRC) to provide the technical basis for environmental qualification of computer-based safety equipment in nuclear power plants. The studies were conducted by Oak Ridge National Laboratory (ORNL), Sandia National Laboratories (SNL), and Brookhaven National Laboratory (BNL). The studies address the following: (1) adequacy of the present test methods for qualification of digital I and C systems; (2) preferred (i.e., Regulatory Guide-endorsed) standards; (3) recommended stressors to be included in the qualification process during type testing; (4) resolution of need for accelerated aging for equipment to be located in a benign environment; and (5) determination of an appropriate approach for addressing the impact of smoke in digital equipment qualification programs. Significant findings from the studies form the technical basis for a recommended approach to the environmental qualification of microprocessor-based safety-related equipment in nuclear power plants

  12. Technical basis for environmental qualification of microprocessor-based safety-related equipment in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, K.; Wood, R.T. [Oak Ridge National Lab., TN (United States); Hassan, M. [Brookhaven National Lab., Upton, NY (United States); Tanaka, T.J. [Sandia National Labs., Albuquerque, NM (United States)

    1998-01-01

    This document presents the results of studies sponsored by the Nuclear Regulatory Commission (NRC) to provide the technical basis for environmental qualification of computer-based safety equipment in nuclear power plants. The studies were conducted by Oak Ridge National Laboratory (ORNL), Sandia National Laboratories (SNL), and Brookhaven National Laboratory (BNL). The studies address the following: (1) adequacy of the present test methods for qualification of digital I and C systems; (2) preferred (i.e., Regulatory Guide-endorsed) standards; (3) recommended stressors to be included in the qualification process during type testing; (4) resolution of need for accelerated aging for equipment to be located in a benign environment; and (5) determination of an appropriate approach for addressing the impact of smoke in digital equipment qualification programs. Significant findings from the studies form the technical basis for a recommended approach to the environmental qualification of microprocessor-based safety-related equipment in nuclear power plants.

  13. Safety performance indicators program

    International Nuclear Information System (INIS)

    Vidal, Patricia G.

    2004-01-01

    In 1997 the Nuclear Regulatory Authority (ARN) initiated a program to define and implement a Safety Performance Indicators System for the two operating nuclear power plants, Atucha I and Embalse. The objective of the program was to incorporate a set of safety performance indicators to be used as a new regulatory tool providing an additional view of the operational performance of the nuclear power plants, improving the ability to detect degradation on safety related areas. A set of twenty-four safety performance indicators was developed and improved throughout pilot implementation initiated in July 1998. This paper summarises the program development, the main criteria applied in each stage and the results obtained. (author)

  14. Technical evaluation of seismic qualification of safety-related equipment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yang Hui; Park, Heong Gee; Park, Yeong Seok [Univ. of Incheon, Incheon (Korea, Republic of)

    1994-04-15

    This study is purposed to evaluate the technical acceptability of the procedures and techniques of seismic qualifications which were performed for the YGN 3 and 4 safety-related equipment.This study is also targeted to suggest a systematized technical procedure guide for the effective performance and review of the seismic qualification, which reflects the most up-to-date licensing requirements and state-of the-art.

  15. Reliability and safety program plan outline for the operational phase of a waste isolation facility

    International Nuclear Information System (INIS)

    Ammer, H.G.; Wood, D.E.

    1977-01-01

    A Reliability and Safety Program plan outline has been prepared for the operational phase of a Waste Isolation Facility. The program includes major functions of risk assessment, technical support activities, quality assurance, operational safety, configuration monitoring, reliability analysis and support and coordination meetings. Detailed activity or task descriptions are included for each function. Activities are time-phased and presented in the PERT format for scheduling and interactions. Task descriptions include manloading, travel, and computer time estimates to provide data for future costing. The program outlined here will be used to provide guidance from a reliability and safety standpoint to design, procurement, construction, and operation of repositories for nuclear waste. These repositories are to be constructed under the National Waste Terminal Storage program under the direction of the Office of Waste Isolation, Union Carbide Corp. Nuclear Division

  16. Recent Experiences of the NASA Engineering and Safety Center (NESC) Guidance Navigation and Control (GN and C) Technical Discipline Team (TDT)

    Science.gov (United States)

    Dennehy, Cornelius J.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) is an independently funded NASA Program whose dedicated team of technical experts provides objective engineering and safety assessments of critical, high risk projects. NESC's strength is rooted in the diverse perspectives and broad knowledge base that add value to its products, affording customers a responsive, alternate path for assessing and preventing technical problems while protecting vital human and national resources. The Guidance Navigation and Control (GN&C) Technical Discipline Team (TDT) is one of fifteen such discipline-focused teams within the NESC organization. The TDT membership is composed of GN&C specialists from across NASA and its partner organizations in other government agencies, industry, national laboratories, and universities. This paper will briefly define the vision, mission, and purpose of the NESC organization. The role of the GN&C TDT will then be described in detail along with an overview of how this team operates and engages in its objective engineering and safety assessments of critical NASA.

  17. Technical and Political Assessment of Peaceful Nuclear Power Program Prospects in North Africa and the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Windsor, Lindsay K.; Kessler, Carol E.

    2007-09-11

    An exceptional number of Middle Eastern and North African nations have recently expressed interest in developing nuclear energy for peaceful purposes. Many of these countries have explored nuclear research in limited ways in the past, but the current focused interest and application of resources towards developing nuclear-generated electricity and nuclear-powered desalination plants is unprecedented. Consequently, questions arise in response to this emerging trend: What instigated this interest? To what end(s) will a nuclear program be applied? Does the country have adequate technical, political, legislative, nonproliferation, and safety infrastructure required for the capability desired? If so, what are the next steps for a country in preparation for a future nuclear program? And if not, what collaboration efforts are possible with the United States or others? This report provides information on the capabilities and interests of 13 countries in the region in nuclear energy programs in light of safety, nonproliferation and security concerns. It also provides information useful for determining potential for offering technical collaboration, financial aid, and/or political support.

  18. Building technical and social confidence in the safety of geological disposal in Japan

    International Nuclear Information System (INIS)

    Tochiyama, Osamu; Masuda, Sumio

    2013-01-01

    Geological disposal has been adopted as the most feasible option for the method of long-term management of high-level radioactive waste (HLW) in every country in the world, regardless of the pros and cons of the nuclear power generation. Building stakeholders’ confidence in safety of geological disposal is indispensable to reach the point where the implementation of geological disposal is accepted by the current generation. The safety case is a key input to build confidence in geological disposal stepwise as the program progresses and regarded to play an important role as a common platform in the communication among stakeholders. The aim of this paper is to review arguments relevant to building technical and social confidence in the progress of Japanese research and development activities as well as international discussions. (author)

  19. Ninth ITER technical meeting on safety and environment

    International Nuclear Information System (INIS)

    Raeder, J.; Gordon, C.

    2001-01-01

    The ninth ITER Technical Meeting on safety and environment, the last in the course of the ITER Engineering Design Activities (EDA), was held at the ITER Garching Joint Work site, 8 to 10 May 2001. At this Meeting, safety experts from the House Teams worked together with the members of the Safety, Environment and Health Groups (SEHG) of the ITER Joint Central Team (JCT) in the following areas: finalization of the Generic Site Safety report (GSSR) which is considered to be the most important objective of the present work; summary of the safety related R and D work done by the Home Teams for ITER during EDA; review of verification and validation work done on computer codes being applied for Safety and Environment (S and E) analyses; outline of work considered necessary for improving the S and E database, quantifying uncertainties of the code results and preparing the adaptation of ITER to a specific site

  20. The official website of the U.S. department of energy's nuclear criticality safety program

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, B.; Heinrichs, D.; Lee, C. [Lawrence Livermore National Laboratory, CA (United States); Scott, L. [SAIC, Solana Beach, CA (United States)

    2014-07-01

    The U.S. Department of Energy (DOE) Nuclear Criticality Safety Program (NCSP) mission is to provide sustainable expert leadership, direction, and the technical infrastructure necessary to develop, maintain, and disseminate the essential technical tools, training, and data to support safe, efficient fissionable material operations within the DOE. The NCSP Website site makes a variety of information available to the criticality safety practitioner, including reference materials, training modules and links to related sites. It assists criticality safety personnel to keep abreast of NCSP activities or current developments in criticality safety via a 'What's New' section within the Website. Convenient access to the many useful features of the Website is available via drop-down menus. The Website is also available to non-DOE and international professionals tasked with ensuring safe operations involving fissionable nuclear materials. (author)

  1. Surgical Technical Evidence Review for Elective Total Joint Replacement Conducted for the AHRQ Safety Program for Improving Surgical Care and Recovery

    Science.gov (United States)

    Siletz, Anaar E.; Singer, Emily S.; Faltermeier, Claire; Hu, Q. Lina; Ko, Clifford Y.; Golladay, Gregory J.; Kates, Stephen L.; Wick, Elizabeth C.; Maggard-Gibbons, Melinda

    2018-01-01

    Background: Use of enhanced recovery pathways (ERPs) can improve patient outcomes, yet national implementation of these pathways remains low. The Agency for Healthcare Research and Quality (AHRQ; funder), the American College of Surgeons, and the Johns Hopkins Medicine Armstrong Institute for Patent Safety and Quality have developed the Safety Program for Improving Surgical Care and Recovery—a national effort to catalyze implementation of practices to improve perioperative care and enhance recovery of surgical patients. This review synthesizes evidence that can be used to develop a protocol for elective total knee arthroplasty (TKA) and total hip arthroplasty (THA). Study Design: This review focuses on potential components of the protocol relevant to surgeons; anesthesia components are reported separately. Components were identified through review of existing pathways and from consultation with technical experts. For each, a structured review of MEDLINE identified systematic reviews, randomized trials, and observational studies that reported on these components in patients undergoing elective TKA/THA. This primary evidence review was combined with existing clinical guidelines in a narrative format. Results: Sixteen components were reviewed. Of the 10 preoperative components, most were focused on risk factor assessment including anemia, diabetes mellitus, tobacco use, obesity, nutrition, immune-modulating therapy, and opiates. Preoperative education, venous thromboembolism (VTE) prophylaxis, and bathing/Staphylococcus aureus decolonization were also included. The routine use of drains was the only intraoperative component evaluated. The 5 postoperative components included early mobilization, continuous passive motion, extended duration VTE prophylaxis, early oral alimentation, and discharge planning. Conclusion: This review synthesizes the evidence supporting potential surgical components of an ERP for elective TKA/THA. The AHRQ Safety Program for Improving

  2. Surgical Technical Evidence Review for Elective Total Joint Replacement Conducted for the AHRQ Safety Program for Improving Surgical Care and Recovery.

    Science.gov (United States)

    Childers, Christopher P; Siletz, Anaar E; Singer, Emily S; Faltermeier, Claire; Hu, Q Lina; Ko, Clifford Y; Golladay, Gregory J; Kates, Stephen L; Wick, Elizabeth C; Maggard-Gibbons, Melinda

    2018-01-01

    Use of enhanced recovery pathways (ERPs) can improve patient outcomes, yet national implementation of these pathways remains low. The Agency for Healthcare Research and Quality (AHRQ; funder), the American College of Surgeons, and the Johns Hopkins Medicine Armstrong Institute for Patent Safety and Quality have developed the Safety Program for Improving Surgical Care and Recovery-a national effort to catalyze implementation of practices to improve perioperative care and enhance recovery of surgical patients. This review synthesizes evidence that can be used to develop a protocol for elective total knee arthroplasty (TKA) and total hip arthroplasty (THA). This review focuses on potential components of the protocol relevant to surgeons; anesthesia components are reported separately. Components were identified through review of existing pathways and from consultation with technical experts. For each, a structured review of MEDLINE identified systematic reviews, randomized trials, and observational studies that reported on these components in patients undergoing elective TKA/THA. This primary evidence review was combined with existing clinical guidelines in a narrative format. Sixteen components were reviewed. Of the 10 preoperative components, most were focused on risk factor assessment including anemia, diabetes mellitus, tobacco use, obesity, nutrition, immune-modulating therapy, and opiates. Preoperative education, venous thromboembolism (VTE) prophylaxis, and bathing/ Staphylococcus aureus decolonization were also included. The routine use of drains was the only intraoperative component evaluated. The 5 postoperative components included early mobilization, continuous passive motion, extended duration VTE prophylaxis, early oral alimentation, and discharge planning. This review synthesizes the evidence supporting potential surgical components of an ERP for elective TKA/THA. The AHRQ Safety Program for Improving Surgical Care and Recovery aims to guide hospitals and

  3. Safety analysis report upgrade program at the Plutonium Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pan, P.Y.

    1993-01-01

    Plutonium research and development activities have resided at the Los Alamos National Laboratory (LANL) since 1943. The function of the Plutonium Facility (PF-4) has been to perform basic special nuclear materials research and development and to support national defense and energy programs. The original Final Safety Analysis Report (FSAR) for PF-4 was approved by DOE in 1978. This FSAR analyzed design-basis and bounding accidents. In 1986, DOE/AL published DOE/AL Order 5481.1B, ''Safety Analysis and Review System'', as a requirement for preparation and review of safety analyses. To meet the new DOE requirements, the Facilities Management Group of the Nuclear Material Technology Division submitted a draft FSAR to DOE for approval in April 1991. This draft FSAR analyzed the new configurations and used a limited-scope probabilistic risk analysis for accident analysis. During the DOE review of the draft FSAR, DOE Order 5480.23 ''Nuclear Safety Analysis Reports'', was promulgated and was later officially released in April 1992. The new order significantly expands the scope, preparation, and maintenance efforts beyond those required in DOE/AL Order 5481.1B by requiring: description of institutional and human-factor safety programs; clear definitions of all facility-specific safety commitments; more comprehensive and detailed hazard assessment; use of new safety analysis methods; and annual updates of FSARs. This paper describes the safety analysis report (SAR) upgrade program at the Plutonium Facility in LANL. The SAR upgrade program is established to meet the requirements in DOE Order 5480.23. Described in this paper are the SAR background, authorization basis for operations, hazard classification, and technical program elements

  4. NPP Mochovce nuclear safety enhancement program

    International Nuclear Information System (INIS)

    Cech, J.; Baumester, P.

    1997-01-01

    Nuclear power plant Mochovce is currently under construction and an extensive nuclear safety enhancement programme is under way. The upgrading and modifications are based on IAEA documents and on those of the Nuclear Regulatory Authority of the Slovak Republic. Based on a contract concluded with Riskaudit from the CEC, safety examinations of the Mochovce design were performed. An extensive list of technical specifications of safety measures is given. (M.D.)

  5. Software Safety Risk in Legacy Safety-Critical Computer Systems

    Science.gov (United States)

    Hill, Janice L.; Baggs, Rhoda

    2007-01-01

    Safety Standards contain technical and process-oriented safety requirements. Technical requirements are those such as "must work" and "must not work" functions in the system. Process-Oriented requirements are software engineering and safety management process requirements. Address the system perspective and some cover just software in the system > NASA-STD-8719.13B Software Safety Standard is the current standard of interest. NASA programs/projects will have their own set of safety requirements derived from the standard. Safety Cases: a) Documented demonstration that a system complies with the specified safety requirements. b) Evidence is gathered on the integrity of the system and put forward as an argued case. [Gardener (ed.)] c) Problems occur when trying to meet safety standards, and thus make retrospective safety cases, in legacy safety-critical computer systems.

  6. Technical and institutional safety features of nuclear power plants in Brazil

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1986-01-01

    This work reports technical, political and institutional safety features of nuclear power plants in Brazil. It is mainly concerned with reactor accidents and personnel safety. The three mile Island and Chernobyl accidents are also discussed and taken as examples. (A.C.A.S.)

  7. Waste isolation safety assessment program. Task 4. Third contractor information meeting

    International Nuclear Information System (INIS)

    1980-06-01

    The Contractor Information Meeting (October 14 to 17, 1979) was part of the FY-1979 effort of Task 4 of the Waste Isolation Safety Assessment Program (WISAP): Sorption/Desorption Analysis. The objectives of this task are to: evaluate sorption/desorption measurement methods and develop a standardized measurement procedure; produce a generic data bank of nuclide-geologic interactions using a wide variety of geologic media and groundwaters; perform statistical analysis and synthesis of these data; perform validation studies to compare short-term laboratory studies to long-term in situ behavior; develop a fundamental understanding of sorption/desorption processes; produce x-ray and gamma-emitting isotopes suitable for the study of actinides at tracer concentrations; disseminate resulting information to the international technical community; and provide input data support for repository safety assessment. Conference participants included those subcontracted to WISAP Task 4, representatives and independent subcontractors to the Office of Nuclear Waste Isolation, representatives from other waste disposal programs, and experts in the area of waste/geologic media interaction. Since the meeting, WISAP has been divided into two programs: Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) (modeling efforts) and Waste/Rock Interactions Technology (WRIT) (experimental work). The WRIT program encompasses the work conducted under Task 4. This report contains the information presented at the Task 4, Third Contractor Information Meeting. Technical Reports from the subcontractors, as well as Pacific Northwest Laboratory (PNL), are provided along with transcripts of the question-and-answer sessions. The agenda and abstracts of the presentations are also included. Appendix A is a list of the participants. Appendix B gives an overview of the WRIT program and details the WRIT work breakdown structure for 1980

  8. Waste isolation safety assessment program. Task 4. Third contractor information meeting

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The Contractor Information Meeting (October 14 to 17, 1979) was part of the FY-1979 effort of Task 4 of the Waste Isolation Safety Assessment Program (WISAP): Sorption/Desorption Analysis. The objectives of this task are to: evaluate sorption/desorption measurement methods and develop a standardized measurement procedure; produce a generic data bank of nuclide-geologic interactions using a wide variety of geologic media and groundwaters; perform statistical analysis and synthesis of these data; perform validation studies to compare short-term laboratory studies to long-term in situ behavior; develop a fundamental understanding of sorption/desorption processes; produce x-ray and gamma-emitting isotopes suitable for the study of actinides at tracer concentrations; disseminate resulting information to the international technical community; and provide input data support for repository safety assessment. Conference participants included those subcontracted to WISAP Task 4, representatives and independent subcontractors to the Office of Nuclear Waste Isolation, representatives from other waste disposal programs, and experts in the area of waste/geologic media interaction. Since the meeting, WISAP has been divided into two programs: Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) (modeling efforts) and Waste/Rock Interactions Technology (WRIT) (experimental work). The WRIT program encompasses the work conducted under Task 4. This report contains the information presented at the Task 4, Third Contractor Information Meeting. Technical Reports from the subcontractors, as well as Pacific Northwest Laboratory (PNL), are provided along with transcripts of the question-and-answer sessions. The agenda and abstracts of the presentations are also included. Appendix A is a list of the participants. Appendix B gives an overview of the WRIT program and details the WRIT work breakdown structure for 1980.

  9. Critical experiments facility and criticality safety programs at JAERI

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Takeshita, Isao; Suzaki, Takenori; Miyoshi, Yoshinori; Nomura, Yasushi

    1985-10-01

    The nuclear criticality safety is becoming a key point in Japan in the safety considerations for nuclear installations outside reactors such as spent fuel reprocessing facilities, plutonium fuel fabrication facilities, large scale hot alboratories, and so on. Especially a large scale spent fuel reprocessing facility is being designed and would be constructed in near future, therefore extensive experimental studies are needed for compilation of our own technical standards and also for verification of safety in a potential criticality accident to obtain public acceptance. Japan Atomic Energy Research Institute is proceeding a construction program of a new criticality safety experimental facility where criticality data can be obtained for such solution fuels as mainly handled in a reprocessing facility and also chemical process experiments can be performed to investigate abnormal phenomena, e.g. plutonium behavior in solvent extraction process by using pulsed colums. In FY 1985 detail design of the facility will be completed and licensing review by the government would start in FY 1986. Experiments would start in FY 1990. Research subjects and main specifications of the facility are described. (author)

  10. Containment-emergency-sump performance. Technical findings related to Unresolved Safety Issue A-43

    International Nuclear Information System (INIS)

    1983-04-01

    This report summarizes key technical findings related to the Unresolved Safety Issue A-43, Containment Emergency Sump Performance, and provides recommendations for resolution of attendant safety issues. The key safety questions relate to: (a) effects of insulation debris on sump performance; (b) sump hydraulic performance as determined by design features, submergence, and plant induced effects, and (c) recirculation pump performance wherein air and/or particulate ingestion can occur. The technical findings presented in this report provide information relevant to the design and performance evaluation of the containment emergency sump

  11. Fuel safety criteria technical review - Results of OECD/CSNI/PWG2 Task Force on Fuel Safety Criteria

    International Nuclear Information System (INIS)

    Hollasky, N.; Valtonen, K.; Hache, G.; Gross, H.; Bakker, K.; Recio, M.; Bart, G.; Zimmermann, M.; Van Doesburg, W.; Killeen, J.; Meyer, R.O.; Speis, T.

    2000-01-01

    With the advent of advanced fuel and core designs, the adoption of more aggressive operational modes and the implementation of more accurate (best estimate or statistical) design and analysis methods, there is a concern if safety margins have remained adequate. Most - if not all - of the currently existing safety criteria were established during the 60's and early 70's, and verified against experiments with fuel that was available at that time, mostly with unirradiated specimens. Verification was of course performed as designs progressed in later years, however mostly with the aim to be able to prove that these designs adequately complied with existing criteria, and not to establish new limits. The OECD/CSNI/PWG2 Task Force on Fuel Safety Criteria (TFFSC) was therefore given the mandate to technically review the existing fuel safety criteria, focusing on the 'new design' elements (new fuel and core design, cladding materials, manufacturing processes, high burnup, MOX, etc.) introduced by the industry. It should also identify if additional efforts may be required (experimental, analytical) to ensure that the basis for fuel safety criteria is adequate to address the relevant safety issues. In this report, fuel-related criteria are discussed without attempting to categorize them according to event type or risk significance. For each of these 20 criteria, we present a brief description of the criterion as it is used in several applications along with the rationale for having such a criterion. New design elements, such as different cladding materials, higher burnup, and the use of MOX fuels, can affect fuel-related margins and, in some cases, the criteria themselves. Some of the more important effects are mentioned in order to indicate whether the criteria need to be re-evaluated. The discussion may not cover all possible effects, but should be sufficient to identify those criteria that need to be addressed. A summary of these discussions is given in Section 7. As part

  12. Canister Storage Building (CSB) Technical Safety Requirements

    International Nuclear Information System (INIS)

    KRAHN, D.E.

    2000-01-01

    The purpose of this section is to explain the meaning of logical connectors with specific examples. Logical connectors are used in Technical Safety Requirements (TSRs) to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in TSRs are AND and OR. The physical arrangement of these connectors constitutes logical conventions with specific meanings

  13. Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges

    Science.gov (United States)

    Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.

  14. 76 FR 40733 - National Institute for Occupational Safety and Health, (NIOSH), World Trade Center Health Program...

    Science.gov (United States)

    2011-07-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health, (NIOSH), World Trade Center Health Program Science/Technical Advisory Committee (WTCHP-STAC) Correction: This notice was published in the Federal Register on June 23...

  15. Waste Isolation Safety Assessment Program. Technical progress report for FY-1978

    International Nuclear Information System (INIS)

    Brandstetter, A.; Harwell, M.A.; Howes, B.W.; Benson, G.L.; Bradley, D.J.; Raymond, J.R.; Serne, R.J.; Schilling, A.H.

    1979-07-01

    Associated with commercial nuclear power production in the United States is the generation of potentially hazardous radioactive wastes. The Department of Energy (DOE) is seeking to develop nuclear waste isolation systems in geologic formations that will preclude contact with the biosphere of waste radionuclides in concentrations which are sufficient to cause deleterious impact on humans or their environments. Comprehensive analyses of specific isolation systems are needed to assess the expectations of meeting that objective. The Waste Isolation Safety Assessment Program (WISAP) has been established at the Pacific Northwest Laboratory (operated by Battelle Memorial Institute) for developing the capability of making those analyses. Progress on the following tasks is reported: release scenario analysis, waste form release rate analysis, release consequence analysis, sorption-desorption analysis, and societal acceptance analysis

  16. NWMO transportation technical work program

    International Nuclear Information System (INIS)

    Hatton, C.

    2015-01-01

    This paper describes technical work program for the transportation nuclear waste by the Nuclear Waste Management Organization (NWMO). Transportation work program involves risk assessment which under normal conditions involves dose assessment to the worker and the public as well as consideration of transportation system routing and operations. It also involves possible accident scenarios using forensic modelling and probability analysis.

  17. NWMO transportation technical work program

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, C. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2015-07-01

    This paper describes technical work program for the transportation nuclear waste by the Nuclear Waste Management Organization (NWMO). Transportation work program involves risk assessment which under normal conditions involves dose assessment to the worker and the public as well as consideration of transportation system routing and operations. It also involves possible accident scenarios using forensic modelling and probability analysis.

  18. Operating experience and systems analysis at Trillo NPP: A program intended for systematic review of plant safety systems to assess design basis requirements compliance

    International Nuclear Information System (INIS)

    Vega, R. de la

    1996-01-01

    The program was defined to apply to all plant safety systems and/or systems included in plant Technical Specifications. The goal of the program was to ensure, by systematic design, construction, and commissioning review, the adequacy of safety systems, structures and components to fulfill their safety functions. Also, as a result of the program, it was established that a complete, unambiguous, systematic, design basis definition shall take place. And finally, a complete documental review of the plant design shall result from the program execution

  19. Technical co-operation for nuclear safety in developing countries

    International Nuclear Information System (INIS)

    Flakus, F.N.; Giuliani, P.

    1984-01-01

    The Agency's programme on technical co-operation for nuclear safety is, largely, responsive in character and the Agency's response is tailored to needs identified by developing countries. However, the Agency's assistance alone is not sufficient: technical co-operation can only be successful and is most effective when there is also a strong input from the counterpart body participating in a particular project. The commitment of national governments is fundamental to success. Technical co-operation is most fruitful if the Agency's assistance capabilities and the recipient country's co-operation capabilities match. Co-operation activities mostly take the form of single projects hosted by individual institutions within a single country; regional and inter-regional projects are also important

  20. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the Atmospheric Environment Safety Technology Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This study analyzed aircraft incidents in the NASA Aviation Safety Reporting System (ASRS) that apply to two of the three technical challenges (TCs) in NASA's Aviation Safety Program's Atmospheric Environment Safety Technology Project. The aircraft incidents are related to airframe icing and atmospheric hazards TCs. The study reviewed incidents that listed their primary problem as weather or environment-nonweather between 1994 and 2011 for aircraft defined by Federal Aviation Regulations (FAR) Parts 121, 135, and 91. The study investigated the phases of flight, a variety of anomalies, flight conditions, and incidents by FAR part, along with other categories. The first part of the analysis focused on airframe-icing-related incidents and found 275 incidents out of 3526 weather-related incidents over the 18-yr period. The second portion of the study focused on atmospheric hazards and found 4647 incidents over the same time period. Atmospheric hazards-related incidents included a range of conditions from clear air turbulence and wake vortex, to controlled flight toward terrain, ground encounters, and incursions.

  1. Sustainable network of independent technical expertise for radioactive waste disposal (SITEX)

    Energy Technology Data Exchange (ETDEWEB)

    Serres, Christophe; Rocher, Muriel [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France); Bernier, Frederic [FANC, Brussels (Belgium); Havlova, Vaclava [UJV Rez, a.s., Rez (Czech Republic); Mrskova, Adela [DECOM A.S., Trnava (Slovakia); Dubreuil, Gilles Heriard [MUTADIS, Paris (France)

    2013-07-01

    SITEX is a 24 months FP7 Euratom project (from January 2012 to December 2013) led by IRSN and bringing together organisations representing technical safety organisations and nuclear safety authorities performing technical and scientific assessment of geological disposals for radioactive waste in the framework of their respective national regulatory review process of the safety case. Civil society outreach specialists of interaction with civil society are also involved in the project. SITEX aims at establishing the conditions required for developing sustainable interactions among experts from various horizons (nuclear safety authorities, technical safety organisations, civil society organisations..) capable of developing and coordinating joint and harmonized activities in relation with the safety assessment of the safety case. Among foreseen activities, partnership with the civil society experts is considered as a key function of the future network in order to contribute in enhancing trust in the decision making process. The SITEX program of work is split into a set of six workpackages that address technical and organizational issues allowing in fine to propose a structure of the activities and operating modes of the future network. These issues relate on the one hand to the study of the potential for sharing and developing technical expertise practices independently from the expertise developed by waste management organisations, on the other hand on the ability to implement coordinated R and D programs run by technical safety organisations in order to develop the scientific knowledge necessary to perform technical assessments. (orig.)

  2. Experience in the implementation of quality assurance program and safety culture assessment of research reactor operation and maintenance

    International Nuclear Information System (INIS)

    Syarip; Suryopratomo, K.

    2001-01-01

    The implementation of quality assurance program and safety culture for research reactor operation are of importance to assure its safety status. It comprises an assessment of the quality of both technical and organizational aspects involved in safety. The method for the assessment is based on judging the quality of fulfillment of a number of essential issues for safety i.e. through audit, interview and/or discussions with personnel and management in plant. However, special consideration should be given to the data processing regarding the fuzzy nature of the data i.e. in answering the questionnaire. To accommodate this situation, the SCAP, a computer program based on fuzzy logic for assessing plant safety status, has been developed. As a case study, the experience in the assessment of Kartini research reactor safety status shows that it is strongly related to the implementation of quality assurance program in reactor operation and awareness of reactor operation staffs to safety culture practice. It is also shown that the application of the fuzzy rule in assessing reactor safety status gives a more realistic result than the traditional approach. (author)

  3. Solid Waste Program technical baseline description

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, A.B.

    1994-07-01

    The system engineering approach has been taken to describe the technical baseline under which the Solid Waste Program is currently operating. The document contains a mission analysis, function analysis, system definition, documentation requirements, facility and project bases, and uncertainties facing the program.

  4. Waste Isolation Safety Assessment Program. Technical progress report for FY-1978

    Energy Technology Data Exchange (ETDEWEB)

    Brandstetter, A.; Harwell, M.A.; Howes, B.W.; Benson, G.L.; Bradley, D.J.; Raymond, J.R.; Serne, R.J.; Schilling, A.H.

    1979-07-01

    Associated with commercial nuclear power production in the United States is the generation of potentially hazardous radioactive wastes. The Department of Energy (DOE) is seeking to develop nuclear waste isolation systems in geologic formations that will preclude contact with the biosphere of waste radionuclides in concentrations which are sufficient to cause deleterious impact on humans or their environments. Comprehensive analyses of specific isolation systems are needed to assess the expectations of meeting that objective. The Waste Isolation Safety Assessment Program (WISAP) has been established at the Pacific Northwest Laboratory (operated by Battelle Memorial Institute) for developing the capability of making those analyses. Progress on the following tasks is reported: release scenario analysis, waste form release rate analysis, release consequence analysis, sorption-desorption analysis, and societal acceptance analysis. (DC)

  5. Safety Basis Report

    International Nuclear Information System (INIS)

    R.J. Garrett

    2002-01-01

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities

  6. Safety Basis Report

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2002-01-14

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  7. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Science.gov (United States)

    2010-01-01

    ...; (iv) Potential accident sequences caused by process deviations or other events internal to the... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process... this safety program; namely, process safety information, integrated safety analysis, and management...

  8. A Laboratory Safety Program at Delaware.

    Science.gov (United States)

    Whitmyre, George; Sandler, Stanley I.

    1986-01-01

    Describes a laboratory safety program at the University of Delaware. Includes a history of the program's development, along with standard safety training and inspections now being implemented. Outlines a two-day laboratory safety course given to all graduate students and staff in chemical engineering. (TW)

  9. Technical Issues and Proposes on the Legislation of Probabilistic Safety Assessment in Periodic Safety Review

    International Nuclear Information System (INIS)

    Hwang, Seok-Won; Jeon, Ho-Jun; Na, Jang-Hwan

    2015-01-01

    Korean Nuclear Power Plants have performed a comprehensive safety assessment reflecting design and procedure changes and using the latest technology every 10 years. In Korea, safety factors of PSR are revised to 14 by revision of IAEA Safety Guidelines in 2003. In the revised safety guidelines, safety analysis field was subdivided into deterministic safety analysis, PSA (Probabilistic safety analysis), and hazard analysis. The purpose to examine PSA as a safety factor on PSR is to make sure that PSA results and assumptions reflect the latest state of NPPs, validate the level of computer codes and analytical models, and evaluate the adequacy of PSA instructions. In addition, its purpose is to derive the plant design change, operating experience of other plants and safety enhancement items as well. In Korea, PSA is introduced as a new factor. Thus, the overall guideline development and long-term implementation strategy are needed. Today in Korea, full-power PSA model revision and low-power and shutdown (LPSD) PSA model development is being performed as a part of the post Fukushima action items for operating plants. The scope of the full-power PSA is internal/external level 1, 2 PSA. But in case of fire PSA, the scope is level 1 PSA using new method, NUREG/CR-6850. In case of LPSD PSA, level 1 PSA for all operating plants, and level 2 PSA for 2 demonstration plants are under development. The result of the LPSD PSA will be used as major input data for plant specific SAMG (Severe Accident Management Guideline). The scope of PSA currently being developed in Korea cannot fulfill 'All Mode, All Scope' requirements recommended in the IAEA Safety Guidelines. Besides the legislation of PSA, step-by-step development strategy for non-performed scopes such as level 3 PSA and new fire PSA is one of the urgent issues in Korea. This paper suggests technical issues and development strategies for each PSA technical elements.

  10. Proceedings of the Second NASA Aviation Safety Program Weather Accident Prevention Review

    Science.gov (United States)

    Martzaklis, K. Gus (Compiler)

    2003-01-01

    The Second NASA Aviation Safety Program (AvSP) Weather Accident Prevention (WxAP) Annual Project Review held June 5-7, 2001, in Cleveland, Ohio, presented the NASA technical plans and accomplishments to the aviation community. NASA-developed technologies presented included an Aviation Weather Information System with associated digital communications links, electronic atmospheric reporting technologies, forward-looking turbulence warning systems, and turbulence mitigation procedures. The meeting provided feedback and insight from the aviation community of diverse backgrounds and assisted NASA in steering its plans in the direction needed to meet the national safety goal of 80-percent reduction of aircraft accidents by 2007. The proceedings of the review are enclosed.

  11. Compassionate containment? Balancing technical safety and therapy in the design of psychiatric wards.

    Science.gov (United States)

    Curtis, Sarah; Gesler, Wilbert; Wood, Victoria; Spencer, Ian; Mason, James; Close, Helen; Reilly, Joseph

    2013-11-01

    This paper contributes to the international literature examining design of inpatient settings for mental health care. Theoretically, it elaborates the connections between conceptual frameworks from different strands of literature relating to therapeutic landscapes, social control and the social construction of risk. It does so through a discussion of the substantive example of research to evaluate the design of a purpose built inpatient psychiatric health care facility, opened in 2010 as part of the National Health Service (NHS) in England. Findings are reported from interviews or discussion groups with staff, patients and their family and friends. This paper demonstrates a strong, and often critical awareness among members of staff and other participants about how responsibilities for risk governance of 'persons' are exercised through 'technical safety' measures and the implications for therapeutic settings. Our participants often emphasised how responsibility for technical safety was being invested in the physical infrastructure of certain 'places' within the hospital where risks are seen to be 'located'. This illuminates how the spatial dimensions of social constructions of risk are incorporated into understandings about therapeutic landscapes. There were also more subtle implications, partly relating to 'Panopticist' theories about how the institution uses technical safety to supervise its own mechanisms, through the observation of staff behaviour as well as patients and visitors. Furthermore, staff seemed to feel that in relying on technical safety measures they were, to a degree, divesting themselves of human responsibility for risks they are required to manage. However, their critical assessment showed their concerns about how this might conflict with a more therapeutic approach and they contemplated ways that they might be able to engage more effectively with patients without the imposition of technical safety measures. These findings advance our thinking

  12. 77 FR 70409 - System Safety Program

    Science.gov (United States)

    2012-11-26

    ...-0060, Notice No. 2] 2130-AC31 System Safety Program AGENCY: Federal Railroad Administration (FRA... rulemaking (NPRM) published on September 7, 2012, FRA proposed regulations to require commuter and intercity passenger railroads to develop and implement a system safety program (SSP) to improve the safety of their...

  13. 75 FR 13521 - Centers for Independent Living Program-Training and Technical Assistance

    Science.gov (United States)

    2010-03-22

    ... DEPARTMENT OF EDUCATION Centers for Independent Living Program--Training and Technical Assistance... for Independent Living Program--Training and Technical Assistance (CIL-TA program). The Assistant... appropriated for the CIL program to provide training and technical assistance to CILs, agencies eligible to...

  14. UMTRA technical assistance contractor Quality Assurance Program Plan

    International Nuclear Information System (INIS)

    Pehrson, P.

    1993-01-01

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAC Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements. The key to ensuring compliance with this directive is a two-step professional approach: utilize the quality system in all areas of activity, and generate a personal commitment from all personnel to provide quality service. The quality staff will be experienced, trained professionals capable of providing maximum flexibility to Project goal attainment. Such flexibility will enable the staff to be more cost effective and to further improve communication and coordination. To provide control details, this QAPP will be supplemented by approved standard operating procedures that provide requirements for performing the various TAC quality-related activities. These procedures shall describe applicable design input and document control activities and documentation

  15. Multimegawatt Space Reactor Safety

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1989-01-01

    The Multimegawatt (MMW) Space Reactor Project supports the Strategic Defense Initiative Office requirement to provide reliable, safe, cost-effective, electrical power in the MMW range. Specifically, power may be used for neutral particle beams, free electron lasers, electromagnetic launchers, and orbital transfer vehicles. This power plant technology may also apply to the electrical power required for other uses such as deep-space probes and planetary exploration. The Multimegawatt Space Reactor Project, the Thermionic Fuel Element Verification Program, and Centaurus Program all support the Multimegawatt Space Nuclear Power Program and form an important part of the US Department of Energy's (DOE's) space and defense power systems activities. A major objective of the MMW project is the development of a reference flight system design that provides the desired levels of public safety, health protection, and special nuclear material (SNM) protection when used during its designated missions. The safety requirements for the MMW project are a hierarchy of requirements that consist of safety requirements/regulations, a safety policy, general safety criteria, safety technical specifications, safety design specifications, and the system design. This paper describes the strategy and philosophy behind the development of the safety requirements imposed upon the MMW concept developers. The safety organization, safety policy, generic safety issues, general safety criteria, and the safety technical specifications are discussed

  16. Proceedings of the Task 2 workshop Waste Isolation Safety Assessment Program

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1979-01-01

    The reports from the workshop on waste form release rate analysis are presented. The workshop started with overview presentations on the Office of Nuclear Waste Isolation (ONWI), the Waste Isolation Safety Assessment Program (WISAP), WISAP Task 2 (Waste Form Release Rate Analysis), and WISAP Task 4 (Sorption/Desorption Analysis). Technical presentations followed in these areas: leaching studies on spent fuels, leaching studies on high-level waste glass, waste form surface science experiments, radiation effects, and leach modeling. Separate abstracts were prepared for each

  17. Proceedings of the Task 2 workshop Waste Isolation Safety Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.

    1979-01-01

    The reports from the workshop on waste form release rate analysis are presented. The workshop started with overview presentations on the Office of Nuclear Waste Isolation (ONWI), the Waste Isolation Safety Assessment Program (WISAP), WISAP Task 2 (Waste Form Release Rate Analysis), and WISAP Task 4 (Sorption/Desorption Analysis). Technical presentations followed in these areas: leaching studies on spent fuels, leaching studies on high-level waste glass, waste form surface science experiments, radiation effects, and leach modeling. Separate abstracts were prepared for each.

  18. Krsko NPP Periodic Safety Review program

    International Nuclear Information System (INIS)

    Basic, I.; Spiler, J.; Novsak, M.

    2001-01-01

    The need for conducting a Periodic Safety Review for the Krsko NPP has been clearly recognized both by the NEK and the regulator (SNSA). The PSR would be highly desirable both in the light of current trends in safety oversight practices and because of many benefits it is capable to provide. On January 11, 2001 the SNSA issued a decision requesting the Krsko NPP to prepare a program and determine a schedule for the implementation of the program for 'Periodic Safety Review of NPP Krsko'. The program, which is required to be in accordance with the IAEA safety philosophy and with the EU practice, was submitted for the approval to the SNSA by the end of March 2001. The paper summarizes Krsko NPP Periodic Safety Review Program [1] including implemented SNSA and IAEA Expert Mission comments.(author)

  19. Nuclear Data Activities in Support of the DOE Nuclear Criticality Safety Program

    International Nuclear Information System (INIS)

    Westfall, R.M.; McKnight, R.D.

    2005-01-01

    The DOE Nuclear Criticality Safety Program (NCSP) provides the technical infrastructure maintenance for those technologies applied in the evaluation and performance of safe fissionable-material operations in the DOE complex. These technologies include an Analytical Methods element for neutron transport as well as the development of sensitivity/uncertainty methods, the performance of Critical Experiments, evaluation and qualification of experiments as Benchmarks, and a comprehensive Nuclear Data program coordinated by the NCSP Nuclear Data Advisory Group (NDAG).The NDAG gathers and evaluates differential and integral nuclear data, identifies deficiencies, and recommends priorities on meeting DOE criticality safety needs to the NCSP Criticality Safety Support Group (CSSG). Then the NDAG identifies the required resources and unique capabilities for meeting these needs, not only for performing measurements but also for data evaluation with nuclear model codes as well as for data processing for criticality safety applications. The NDAG coordinates effort with the leadership of the National Nuclear Data Center, the Cross Section Evaluation Working Group (CSEWG), and the Working Party on International Evaluation Cooperation (WPEC) of the OECD/NEA Nuclear Science Committee. The overall objective is to expedite the issuance of new data and methods to the DOE criticality safety user. This paper describes these activities in detail, with examples based upon special studies being performed in support of criticality safety for a variety of DOE operations

  20. Technical Skill Attainment and Post-Program Outcomes: An Analysis of Pennsylvania Secondary Career and Technical Education Graduates

    Science.gov (United States)

    Staklis, Sandra; Klein, Steven

    2010-01-01

    Since the mid-1990s, the Pennsylvania Department of Education (PDE) has required all students concentrating in career and technical education (CTE) programs to complete a standardized technical skill assessment at or near the end of their program. Results of technical skill assessments are used for a number of purposes, including recognizing…

  1. The INR program in 2000-2005 period for developing the national technical support of the nuclear power

    International Nuclear Information System (INIS)

    Gheorghiu, C.

    2001-01-01

    The INR - Pitesti is largely implied in implementing the tasks of high complexity stipulated by the Emergency Directive of the Romanian Government No. 144/30.09.1999 meant to ensure the national technical support for the nuclear power field as well as the development of presupposed international cooperation. The Strategic Program of the Autonomous Authority for Nuclear Activities (RAAN) stipulates the main activities to be carried-out in the period 2000-2005 and beyond, in the frame of 18 specific programs. These programs approaches high priority world wide issues targeting major objectives like efficient operation of NPPs ensuring the design service life, creating conditions for extension of operation duration increasing the safety standard of personnel, of population as well as reducing the impact of nuclear power upon the environmental. Also, the program approaches functionally the problem of safety management of the radioactive waste resulting from nuclear facility operation. Achieving these major objective as well as of those specific laid down in the Strategic Program requires continual supply with material and human resources, refurbishment of material background of INR in its research and development activities as well as a consistent integration of the INR staff of researchers within the international scientific community. Implementing the annual programs included in the Strategic Program will ensure also fulfilment of the international arrangements of our country as well as the realization of the agreements concluded by the Ministry of Industry and Resources and RAAN with analogous authorities from abroad (AECL - Canada, DOE - USA, etc.). This document has the following content: 1. Legislative support and the mission of the program; 2. Program's strategic objectives; 3. General technical objectives of the programs. 4. Financing; 5. Providing and training human resources; 6. Investments for research and development; 7. International cooperation; 8

  2. Process monitoring using a Quality and Technical Surveillance Program

    International Nuclear Information System (INIS)

    Rafferty, C.A.

    1995-01-01

    The purpose of process monitoring using a Quality and Technical Surveillance Program was to help ensure manufactured clad vents sets fully met technical and quality requirements established by the manufacturer and the customer, and that line and program management were immediately alerted if any aspect of the manufacturing activities drifted out of acceptable limits. The Quality and Technical Surveillance Program provided a planned, scheduled approach to monitor key processes and documentation illuminated potential problem areas early enough to permit timely corrective actions to reverse negative trends that, if left uncorrected, could have resulted in deficient hardware. Significant schedule and cost impacts were eliminated

  3. Improvements to Technical Specifications surveillance requirements

    International Nuclear Information System (INIS)

    Lobel, R.; Tjader, T.R.

    1992-12-01

    In August 1983 an NRC task group was formed to investigate problems with surveillance testing required by Technical Specifications, and to recommend approaches to effect improvements. NUREG-1024 (''Technical Specifications-Enhancing Safety Impact'') resulted, and it contained recommendations to review the basis for test frequencies; to ensure that the tests promote safety and do not degrade equipment; and to review surveillance tests so that they do not unnecessarily burden personnel. The Technical Specifications Improvement Program (TSIP) was established in December 1984 to provide the framework for rewriting and improving the Technical Specifications. As an element of the TSIP, all Technical Specifications surveillance requirements were comprehensively examined as recommended in NUREG-1024. The results of that effort are presented in this report. The study found that while some testing at power is essential to verify equipment and system operability, safety can be improved, equipment degradation decreased, and unnecessary personnel burden relaxed by reducing the amount of testing at power

  4. AEC controlled area safety program

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, D W [Nevada Operations Office, Atomic Energy Commission, Las Vegas, NV (United States)

    1969-07-01

    The detonation of underground nuclear explosives and the subsequent data recovery efforts require a comprehensive pre- and post-detonation safety program for workers within the controlled area. The general personnel monitoring and environmental surveillance program at the Nevada Test Site are presented. Some of the more unusual health-physics aspects involved in the operation of this program are also discussed. The application of experience gained at the Nevada Test Site is illustrated by description of the on-site operational and safety programs established for Project Gasbuggy. (author)

  5. AEC controlled area safety program

    International Nuclear Information System (INIS)

    Hendricks, D.W.

    1969-01-01

    The detonation of underground nuclear explosives and the subsequent data recovery efforts require a comprehensive pre- and post-detonation safety program for workers within the controlled area. The general personnel monitoring and environmental surveillance program at the Nevada Test Site are presented. Some of the more unusual health-physics aspects involved in the operation of this program are also discussed. The application of experience gained at the Nevada Test Site is illustrated by description of the on-site operational and safety programs established for Project Gasbuggy. (author)

  6. Space station pressurized laboratory safety guidelines

    Science.gov (United States)

    Mcgonigal, Les

    1990-01-01

    Before technical safety guidelines and requirements are established, a common understanding of their origin and importance must be shared between Space Station Program Management, the User Community, and the Safety organizations involved. Safety guidelines and requirements are driven by the nature of the experiments, and the degree of crew interaction. Hazard identification; development of technical safety requirements; operating procedures and constraints; provision of training and education; conduct of reviews and evaluations; and emergency preplanning are briefly discussed.

  7. Fusion safety program plan

    International Nuclear Information System (INIS)

    Crocker, J.G.; Holland, D.F.; Herring, J.S.

    1980-09-01

    The program plan consists of research that has been divided into 13 different areas. These areas focus on the radioactive inventories that are expected in fusion reactors, the energy sources potentially available to release a portion of these inventories, and analysis and design techniques to assess and ensure that the safety risks associated with operation of magnetic fusion facilities are acceptably low. The document presents both long-term program requirements that must be fulfilled as part of the commercialization of fusion power and a five-year plan for each of the 13 different program areas. Also presented is a general discussion of magnetic fusion reactor safety, a method for establishing priorities in the program, and specific priority ratings for each task in the five-year plan

  8. Evaluation Study of VTAE Wood Technics Programs.

    Science.gov (United States)

    Wisconsin State Board of Vocational, Technical, and Adult Education, Madison.

    A survey of former students of the Wisconsin Vocational, Technical, and Adult Education (VTAE) wood technics programs and employers in woodworking industries was conducted during spring of 1985. General objectives were to determine job classifications, types of businesses, and relative importance of tasks or duties in various woodworking-related…

  9. Management of technical knowledge in strengthening the global nuclear safety regime

    International Nuclear Information System (INIS)

    Kang, C.-S.

    2006-01-01

    The management of technical knowledge is becoming one of the key issues and challenges in strengthening global nuclear safety. The success of the industry depends on how to optimize knowledge acquisition, transfer and deployment. In this presentation, joint conduct of large-scale R and D work, assurance of free flow of safety-related knowledge from developed to developing nations, and potential imposition of a trade agreement between nuclear exporting and importing nations are discussed. The introduction of a 'Global Nuclear Safety Treaty' could be an excellent mechanism for achieving effective knowledge management and eventually enforcing a global safety regime. (author)

  10. Participant Assessments of Aviation Safety Inspector Training for Technically Advanced Aircraft

    National Research Council Canada - National Science Library

    Chidester, Thomas; Hackworth, Carla; Knecht, William

    2007-01-01

    .... Currently, Federal Aviation Administration (FAA) aviation safety inspectors are required to inspect technically advanced aircraft, check certified flight instructors, and conduct surveillance of designated pilot examiners who are certifying pilots...

  11. Analysis of occupational accidents: prevention through the use of additional technical safety measures for machinery.

    Science.gov (United States)

    Dźwiarek, Marek; Latała, Agata

    2016-01-01

    This article presents an analysis of results of 1035 serious and 341 minor accidents recorded by Poland's National Labour Inspectorate (PIP) in 2005-2011, in view of their prevention by means of additional safety measures applied by machinery users. Since the analysis aimed at formulating principles for the application of technical safety measures, the analysed accidents should bear additional attributes: the type of machine operation, technical safety measures and the type of events causing injuries. The analysis proved that the executed tasks and injury-causing events were closely connected and there was a relation between casualty events and technical safety measures. In the case of tasks consisting of manual feeding and collecting materials, the injuries usually occur because of the rotating motion of tools or crushing due to a closing motion. Numerous accidents also happened in the course of supporting actions, like removing pollutants, correcting material position, cleaning, etc.

  12. Program management plan for the conduct of a research, development, and demonstration program for improving the safety of nuclear powerplants

    International Nuclear Information System (INIS)

    1981-12-01

    Congress passed Public Law 96-567, Nuclear Safety Research, Development, and Demonstration Act of 1980, (hereafter referred to as the Act) to provide for an accelerated and coordinated program of light water reactor safety research, development, and demonstration to be carried out by the Department of Energy. In order to assure that this program would be compatible with the needs of Nuclear Regulatory Commission (NRC) and industry, the Department of Energy (DOE) initiated its response to Section 4 of the Act by conducting individual information gathering meetings with NRC and a wide cross section of the nuclear industry. The Department received recommendations on needs of what type of activities would and would not be appropriate for the Department to assist in satisfying these needs. Based on the evaluation of these inputs, it is concluded that the Department's ongoing Light Water Reactor (LWR) safety program is responsive to the Act. Specifically, the Department's ongoing program includes tasks in the areas of regulatory assessment, risk assessment, fission product source term, and emergency preparedness as well as providing technical assistance to the Institute of Nuclear Power Operations (INPO) to improve training of nuclear power personnel. These were among the very high priority efforts that were identified as necessary and appropriate for support by the Department

  13. Training for Technical Assistants: Technical Assistance Program

    Science.gov (United States)

    1986-09-01

    shortage of technical ptfesson until such time as English , "speking instructors might be trained, There. would be An aumcation of committed on-calI...12 hours in classroom Instruction, students in English as a Second nel Research and Development Computer.taught students Language. The program Is...hbeels "p.-ogram. A Iot ’ atar boiler arn tank heats týe food enroute to its destination. 1.0. A new tor of dust ptectleon to protect machine .perators

  14. Highway Safety Program Manual: Volume 8: Alcohol in Relation to Highway Safety.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 8 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) concentrates on alcohol in relation to highway safety. The purpose and objectives of the alcohol program are outlined. Federal authority in the area of highway safety and general policies regarding…

  15. Implementation of a Radiological Safety Coach program

    Energy Technology Data Exchange (ETDEWEB)

    Konzen, K.K. [Safe Sites of Colorado, Golden, CO (United States). Rocky Flats Environmental Technology Site; Langsted, J.M. [M.H. Chew and Associates, Golden, CO (United States)

    1998-02-01

    The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets.

  16. Implementation of a Radiological Safety Coach program

    International Nuclear Information System (INIS)

    Konzen, K.K.

    1998-01-01

    The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets

  17. Nuclear Fuel Safety Criteria Technical Review - Second edition

    International Nuclear Information System (INIS)

    Beck, Winfried; Blanpain, Patrick; Fuketa, Toyoshi; Gorzel, Andreas; Hozer, Zoltan; Kamimura, Katsuichiro; Koo, Yang-Hyun; Maertens, Dietmar; Nechaeva, Olga; Petit, Marc; Rehacek, Radomir; Rey-Gayo, Jose Maria; Sairanen, Risto; Sonnenburg, Heinz-Guenther; Valach, Mojmir; Waeckel, Nicolas; Yueh, Ken; Zhang, Jinzhao; Voglewede, John

    2012-01-01

    Most of the current nuclear fuel safety criteria were established during the 1960's and early 1970's. Although these criteria were validated against experiments with fuel designs available at that time, a number of tests were based on unirradiated fuels. Additional verification was performed as these designs evolved, but mostly with the aim of showing that the new designs adequately complied with existing criteria, and not to establish new limits. In 1996, the OECD Nuclear Energy Agency (NEA) reviewed existing fuel safety criteria, focusing on new fuel and core designs, new cladding materials and industry manufacturing processes. The results were published in the Nuclear Fuel Safety Criteria Technical Review of 2001. The NEA has since re-examined the criteria. A brief description of each criterion and its rationale are presented in this second edition, which will be of interest to both regulators and industry (fuel vendors, utilities)

  18. National Waste Terminal Storage Program: management and technical program plan, FY 1976--FY 1978

    International Nuclear Information System (INIS)

    1976-01-01

    The discussion on the management plan covers the program, responsibilities, general program schedule and logic, Office of Waste Isolation organization and facilities, management approach, administrative plan, and public affairs plan. The technical program plan includes geological studies, technical support studies, engineering studies, waste facility projects, environmental studies, system studies, data management, and international activities. The information contained in this report is obsolete and of historical interest only

  19. Learning health 'safety' within non-technical skills interprofessional simulation education: a qualitative study.

    Science.gov (United States)

    Gordon, Morris; Fell, Christopher W R; Box, Helen; Farrell, Michael; Stewart, Alison

    2017-01-01

    Healthcare increasingly recognises and focusses on the phenomena of 'safe practice' and 'patient safety.' Success with non-technical skills (NTS) training in other industries has led to widespread transposition to healthcare education, with communication and teamwork skills central to NTS frameworks. This study set out to identify how the context of interprofessional simulation learning influences NTS acquisition and development of 'safety' amongst learners. Participants receiving a non-technical skills (NTS) safety focussed training package were invited to take part in a focus group interview which set out to explore communication, teamwork, and the phenomenon of safety in the context of the learning experiences they had within the training programme. The analysis was aligned with a constructivist paradigm and took an interactive methodological approach. The analysis proceeded through three stages, consisting of open, axial, and selective coding, with constant comparisons taking place throughout each phase. Each stage provided categories that could be used to explore the themes of the data. Additionally, to ensure thematic saturation, transcripts of observed simulated learning encounters were then analysed. Six themes were established at the axial coding level, i.e., analytical skills, personal behaviours, communication, teamwork, context, and pedagogy. Underlying these themes, two principal concepts emerged, namely: intergroup contact anxiety - as both a result of and determinant of communication - and teamwork, both of which must be considered in relation to context. These concepts have subsequently been used to propose a framework for NTS learning. This study highlights the role of intergroup contact anxiety and teamwork as factors in NTS behaviour and its dissipation through interprofessional simulation learning. Therefore, this should be a key consideration in NTS education. Future research is needed to consider the role of the affective non-technical

  20. Public Health Service Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    McBride, J R [Southwestern Radiological Health Laboratory, Las Vegas, NV (United States)

    1969-07-01

    Off-Site Radiological Safety Programs conducted on past Plowshare experimental projects by the Southwestern Radiological Health Laboratory for the AEC will be presented. Emphasis will be placed on the evaluation of the potential radiation hazard to off-site residents, the development of an appropriate safety plan, pre- and post-shot surveillance activities, and the necessity for a comprehensive and continuing community relations program. In consideration of the possible wide use of nuclear explosives in industrial applications, a new approach to off-site radiological safety will be discussed. (author)

  1. Public Health Service Safety Program

    International Nuclear Information System (INIS)

    McBride, J.R.

    1969-01-01

    Off-Site Radiological Safety Programs conducted on past Plowshare experimental projects by the Southwestern Radiological Health Laboratory for the AEC will be presented. Emphasis will be placed on the evaluation of the potential radiation hazard to off-site residents, the development of an appropriate safety plan, pre- and post-shot surveillance activities, and the necessity for a comprehensive and continuing community relations program. In consideration of the possible wide use of nuclear explosives in industrial applications, a new approach to off-site radiological safety will be discussed. (author)

  2. SRTC criticality safety technical review of SRT-CMA-930039

    International Nuclear Information System (INIS)

    Rathbun, R.

    1993-01-01

    Review of SRT-CMA-930039, ''Nuclear Criticality Safety Evaluation (NCSE): DWPF Melter-Batch 1,'' December 1, 1993, has been performed by the Savannah River Technical Center (SRTC) Applied Physics Group. The NCSE is a criticality assessment of the Melt Cell in the DWPF. Additionally, this pertains only to Batch 1 operation, which differs from batches to follow. Plans for subsequent batch operations call for fissile material in the Salt Cell feed-stream, which necessitates a separate criticality evaluation in the future. The NCSE under review concludes that the process is safe from criticality events, even in the event that all lithium and boron neutron poisons are lost, provided uranium enrichments are less than 40%. Furthermore, if all the lithium and as much as 98% of the boron would be lost, uranium enrichments of 100% would be allowable. After a thorough review of the NCSE, this reviewer agrees with that conclusion. This technical review consisted of: an independent check of the methods and models employed, independent calculations application of ANSI/ANS 8.1, verification of WSRC Nuclear Criticality Safety Manual( 2 ) procedures

  3. ATF Neutron Irradiation Program Technical Plan

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, J. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-03-01

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post-irradiation examination and characterization of irradiated materials and the shipment of irradiated materials to JAEA in Japan. This report discusses the technical plan of the experimental study.

  4. Analysis of occupational accidents: prevention through the use of additional technical safety measures for machinery

    Science.gov (United States)

    Dźwiarek, Marek; Latała, Agata

    2016-01-01

    This article presents an analysis of results of 1035 serious and 341 minor accidents recorded by Poland's National Labour Inspectorate (PIP) in 2005–2011, in view of their prevention by means of additional safety measures applied by machinery users. Since the analysis aimed at formulating principles for the application of technical safety measures, the analysed accidents should bear additional attributes: the type of machine operation, technical safety measures and the type of events causing injuries. The analysis proved that the executed tasks and injury-causing events were closely connected and there was a relation between casualty events and technical safety measures. In the case of tasks consisting of manual feeding and collecting materials, the injuries usually occur because of the rotating motion of tools or crushing due to a closing motion. Numerous accidents also happened in the course of supporting actions, like removing pollutants, correcting material position, cleaning, etc. PMID:26652689

  5. Technical basis for evaluating electromagnetic and radio-frequency interference in safety-related I ampersand C systems

    International Nuclear Information System (INIS)

    Ewing, P.D.; Korsah, K.

    1994-04-01

    This report discusses the development of the technical basis for the control of upsets and malfunctions in safety-related instrumentation and control (I ampersand C) systems caused by electromagnetic and radio-frequency interference (EMI/RFI) and power surges. The research was performed at the Oak Ridge National Laboratory (ORNL) and was sponsored by the USNRC Office of Nuclear Regulatory Research (RES). The motivation for research stems from the safety-related issues that need to be addressed with the application of advanced I ampersand C systems to nuclear power plants. Development of the technical basis centered around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems known to be the source(s) of EMI/RFI and power surges. First, good EMC design and installation practices need to be established to control the impact of interference sources on nearby circuits and systems. These EMC good practices include circuit layouts, terminations, filtering, grounding, bonding, shielding, and adequate physical separation. Second, an EMI/RFI test and evaluation program needs to be established to outline the tests to be performed, the associated test methods to be followed, and carefully formulated acceptance criteria based on the intended environment to ensure that the circuit or system under test meets the recommended guidelines. Third, a program needs to be developed to perform confirmatory tests and evaluate the surge withstand capability (SWC) and of I ampersand C equipment connected to or installed in the vicinity of power circuits within the nuclear power plant. By following these three steps, the design and operability of safety-related I ampersand C systems against EMI/RFI and power surges can be evaluated, acceptance criteria can be developed, and appropriate regulatory guidance can be provided

  6. Structural Aging Program approach to providing an improved basis for aging management of safety-related concrete structures

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.

    1993-01-01

    The Structural Aging (SAG) Program is being conducted at the Oak Ridge National Laboratory (ORNL) for the United States Nuclear Regulatory Commission (USNRC). The SAG Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved technical bases for their continued service. The program is organized into four tasks: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technologies, and Quantitative Methodology for Continued Service Determinations. Objectives and a summary of recent accomplishments under each of these tasks are presented

  7. Foreign Assistance: Treasury's Technical Assistance Program

    National Research Council Canada - National Science Library

    Ford, Jess

    1999-01-01

    After the collapse of communism in Central Europe and the dissolution of the Soviet Union, the United States developed programs of technical assistance to help countries transition to market economies and democracy...

  8. Reducing nuclear danger through intergovernmental technical exchanges on nuclear materials safety management

    International Nuclear Information System (INIS)

    Jardine, L.J.; Peddicord, K.L.; Witmer, F.E.; Krumpe, P.F.; Lazarev, L.; Moshkov, M.

    1997-01-01

    The United States and Russia are dismantling nuclear weapons and generating hundreds of tons of excess plutonium and high enriched uranium fissile nuclear materials that require disposition. The U.S. Department of Energy and Russian Minatom organizations.are planning and implementing safe, secure storage and disposition operations for these materials in numerous facilities. This provides a new opportunity for technical exchanges between Russian and Western scientists that can establish an improved and sustained common safety culture for handling these materials. An initiative that develops and uses personal relationships and joint projects among Russian and Western participants involved in fissile nuclear materials safety management contributes to improving nuclear materials nonproliferation and to making a safer world. Technical exchanges and workshops are being used to systematically identify opportunities in the nuclear fissile materials facilities to improve and ensure the safety of workers, the public, and the environment

  9. Man as a safety problem in technical systems

    International Nuclear Information System (INIS)

    Compes, P.C.; Wolff, H.A.

    1980-01-01

    Safety engineering derives its justification from the success achieved in maintaining and enlarging safety, more precisely, from activities aimed at avoiding or preventing damage caused by accidents. Man is not only affected by accidents but is also the cause of accidents, either directly or indirectly, and thus is to be regarded as the actual cause or preventer of accidents. The Second International Summer Symposium of the Society for Safety Engineering (GfS) which was held at Duesseldorf in 1980 brought into focus this aspect and the importance to be attached to the individual man and the whole mankind in the field of accident prevention. 'Man as a safety problem in technical systems' - a great and weighty field of problems, the large extent of which and the complex content of which was to be discussed by the programme with its many different contributions, on the one hand by presenting an outline as completely as possible, and on the other hand by finding further-reaching solutions for at least some problems. This was the purpose of the dialogues held between theory and practice on the one hand, and between safety engineering and, in this case, the human sciences on the other hand. (orig./RW) [de

  10. Technical guidelines for the seismic safety re-evaluation at Eastern European NPPs

    International Nuclear Information System (INIS)

    Godoy, A.R.; Guerpinar, A.

    2001-01-01

    The paper describes one of the outcomes of the Engineering Safety Review Services (ESRS) that the IAEA provides as an element of the Agency's national, regional and interregional technical assistance and co-operation programmes and other extrabudgetary programmes to assess the safety of nuclear facilities. This refers to the establishment of detailed guidelines for conducting the seismic safety re-evaluation of existing nuclear power plants in Eastern European countries in line with updated criteria and current international practice. (author)

  11. NASA Aviation Safety Program Systems Analysis/Program Assessment Metrics Review

    Science.gov (United States)

    Louis, Garrick E.; Anderson, Katherine; Ahmad, Tisan; Bouabid, Ali; Siriwardana, Maya; Guilbaud, Patrick

    2003-01-01

    The goal of this project is to evaluate the metrics and processes used by NASA's Aviation Safety Program in assessing technologies that contribute to NASA's aviation safety goals. There were three objectives for reaching this goal. First, NASA's main objectives for aviation safety were documented and their consistency was checked against the main objectives of the Aviation Safety Program. Next, the metrics used for technology investment by the Program Assessment function of AvSP were evaluated. Finally, other metrics that could be used by the Program Assessment Team (PAT) were identified and evaluated. This investigation revealed that the objectives are in fact consistent across organizational levels at NASA and with the FAA. Some of the major issues discussed in this study which should be further investigated, are the removal of the Cost and Return-on-Investment metrics, the lack of the metrics to measure the balance of investment and technology, the interdependencies between some of the metric risk driver categories, and the conflict between 'fatal accident rate' and 'accident rate' in the language of the Aviation Safety goal as stated in different sources.

  12. A Proposal for the Common Safety Approach of Space Programs

    Science.gov (United States)

    Grimard, Max

    2002-01-01

    For all applications, business and systems related to Space programs, Quality is mandatory and is a key factor for the technical as well as the economical performances. Up to now the differences of applications (launchers, manned space-flight, sciences, telecommunications, Earth observation, planetary exploration, etc.) and the difference of technical culture and background of the leading countries (USA, Russia, Europe) have generally led to different approaches in terms of standards and processes for Quality. At a time where international cooperation is quite usual for the institutional programs and globalization is the key word for the commercial business, it is considered of prime importance to aim at common standards and approaches for Quality in Space Programs. For that reason, the International Academy of Astronautics has set up a Study Group which mandate is to "Make recommendations to improve the Quality, Reliability, Efficiency, and Safety of space programmes, taking into account the overall environment in which they operate : economical constraints, harsh environments, space weather, long life, no maintenance, autonomy, international co-operation, norms and standards, certification." The paper will introduce the activities of this Study Group, describing a first list of topics which should be addressed : Through this paper it is expected to open the discussion to update/enlarge this list of topics and to call for contributors to this Study Group.

  13. Reactor safety training for decision making

    International Nuclear Information System (INIS)

    Scott, C.K.

    2003-01-01

    The purpose of this paper is to describe an approach to reactor safety training for technical staff working at an operating station. The concept being developed is that, when the engineer becomes a registered professional engineer, they have sufficient reactor safety knowledge to perform independent technical work without compromising the safety of the plant. This goal would be achieved with a focused training program while working as an engineer-in-training (four years in NB). (author)

  14. Determination of Safety Performance Grade of NPP Using Integrated Safety Performance Assessment (ISPA) Program

    International Nuclear Information System (INIS)

    Chung, Dae Wook

    2011-01-01

    Since the beginning of 2000, the safety regulation of nuclear power plant (NPP) has been challenged to be conducted more reasonable, effective and efficient way using risk and performance information. In the United States, USNRC established Reactor Oversight Process (ROP) in 2000 for improving the effectiveness of safety regulation of operating NPPs. The main idea of ROP is to classify the NPPs into 5 categories based on the results of safety performance assessment and to conduct graded regulatory programs according to categorization, which might be interpreted as 'Graded Regulation'. However, the classification of safety performance categories is highly comprehensive and sensitive process so that safety performance assessment program should be prepared in integrated, objective and quantitative manner. Furthermore, the results of assessment should characterize and categorize the actual level of safety performance of specific NPP, integrating all the substantial elements for assessing the safety performance. In consideration of particular regulatory environment in Korea, the integrated safety performance assessment (ISPA) program is being under development for the use in the determination of safety performance grade (SPG) of a NPP. The ISPA program consists of 6 individual assessment programs (4 quantitative and 2 qualitative) which cover the overall safety performance of NPP. Some of the assessment programs which are already implemented are used directly or modified for incorporating risk aspects. The others which are not existing regulatory programs are newly developed. Eventually, all the assessment results from individual assessment programs are produced and integrated to determine the safety performance grade of a specific NPP

  15. Nuclear safety research

    International Nuclear Information System (INIS)

    1996-01-01

    The topics 'Large-sized PWR-NPP Safety Techniques Research',and 'The Key Techniques Research on the Safety Supervision and Control for Operation of Nuclear Installations' have been adopted as an apart of 'the National 9th five Year Programs for Tacking the Key Scientific and Technical Topics' which are organized by the State Planning Commission (SPC) and State Science and Technology Commission (SSTC) respectively, and have obtained a financial support from them. To play a better role with the limited fund, the NNSA laid special stress on selecting key sub-topics on nuclear safety, and carefully choosing units which would undertake sub-topics and signing technical contracts with them

  16. Swiss-Slovak cooperation program: a training strategy for safety analyses

    International Nuclear Information System (INIS)

    Husarcek, J.

    2000-01-01

    During the 1996-1999 period, a new training strategy for safety analyses was implemented at the Slovak Nuclear Regulatory Authority (UJD) within the Swiss-Slovak cooperation programme in nuclear safety (SWISSLOVAK). The SWISSLOVAK project involved the recruitment, training, and integration of the newly established team into UJD's organizational structure. The training strategy consisted primarily of the following two elements: a) Probabilistic Safety Analysis (PSA) applications (regulatory review and technical evaluation of Level-1/Level-2 PSAs; PSA-based operational events analysis, PSA applications to assessment of Technical Specifications; and PSA-based hardware and/or procedure modifications) and b) Deterministic accident analyses (analysis of accidents and regulatory review of licensee Safety Analysis Reports; analysis of severe accidents/radiological releases and the potential impact of the containment and engineered safety systems, including the development of technical bases for emergency response planning; and application of deterministic methods for evaluation of accident management strategies/procedure modifications). The paper discusses the specific aspects of the training strategy performed at UJD in both the probabilistic and deterministic areas. The integration of team into UJD's organizational structure is described and examples of contributions of the team to UJD's statutory responsibilities are provided. (author)

  17. Technical considerations in snubber reduction programs

    International Nuclear Information System (INIS)

    Longo, D.L.; Kitz, G.T.

    1989-01-01

    Snubber reduction has been a much discussed topic for the past several years. The advantages to the owner in terms of reduced radiation exposure, lower operating costs, and better plant maintainability are obvious but difficult to quantify. The costs associated with performing a snubber reduction program can be quantified, but can vary widely depending on how the program is implemented. One approach is to divide the scope of the work into several parts, based on similarities and differences of the plant systems and technical requirements. for example, for this program, the work was divided into three parts: nuclear steam supply system, torus-attached piping, and balance of plant. This approach facilitates addressing the variations in design requirements and the variations in snubber removal priorities that are related to each plant segment. It also allows the experience gained in the first part to be applied to the subsequent parts. This paper describes one utility's experience in successfully completing two parts of a three-part snubber reduction program and focuses on the various technical issues that must be addressed along with those areas where the utility should establish checkpoints that are critical to the success of the overall program. It also describes how the experience from the first two parts will be factored into the final part of the snubber reduction program

  18. Pressure Safety Program Implementation at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Mark [ORNL; Etheridge, Tom [ORNL; Oland, C. Barry [XCEL Engineering, Inc.

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) is a US Department of Energy (DOE) facility that is managed by UT-Battelle, LLC. In February 2006, DOE promulgated worker safety and health regulations to govern contractor activities at DOE sites. These regulations, which are provided in 10 CFR 851, Worker Safety and Health Program, establish requirements for worker safety and health program that reduce or prevent occupational injuries, illnesses, and accidental losses by providing DOE contractors and their workers with safe and healthful workplaces at DOE sites. The regulations state that contractors must achieve compliance no later than May 25, 2007. According to 10 CFR 851, Subpart C, Specific Program Requirements, contractors must have a structured approach to their worker safety and health programs that at a minimum includes provisions for pressure safety. In implementing the structured approach for pressure safety, contractors must establish safety policies and procedures to ensure that pressure systems are designed, fabricated, tested, inspected, maintained, repaired, and operated by trained, qualified personnel in accordance with applicable sound engineering principles. In addition, contractors must ensure that all pressure vessels, boilers, air receivers, and supporting piping systems conform to (1) applicable American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (2004) Sections I through XII, including applicable code cases; (2) applicable ASME B31 piping codes; and (3) the strictest applicable state and local codes. When national consensus codes are not applicable because of pressure range, vessel geometry, use of special materials, etc., contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local codes. This report documents the work performed to address legacy pressure vessel deficiencies and comply

  19. Process monitoring using a quality and technical surveillance program

    International Nuclear Information System (INIS)

    Rafferty, C.A.

    1995-01-01

    The purpose of process monitoring using a quality and technical surveillance program was to help ensure that manufactured clad went sets fully met technical and quality requirements established by the manufacturer and the customer and that line and program management were immediately alerted if any aspect of the manufacturing activities drifted out of acceptable limits. The quality and technical surveillance program provided a planned, scheduled approach to monitor key processes and documentation and certification systems to prevent noncompliances or any manufacturing discrepancies. These surveillances illuminated potential problem areas early enough to permit timely corrective actions to reverse negative trends that, if left uncorrected, could have resulted in deficient hardware. Significant schedule and cost impacts were eliminated. copyright 1995 American Institute of Physics

  20. Globalizing Technical Communication Programs: Visions, Challenges, and Emerging Directions

    DEFF Research Database (Denmark)

    Maylath, Bruce; Mousten, Birthe; Vandepitte, Sonia

    Speakers Maylath, Mousten and Vandepitte, co-authors of two chapters on what they call the Trans-Atlantic Project, will describe the programmatic framework for establishing the collaborative partnerships in which students studying technical writing in the U.S. work with students studying...... help achieve common program objectives, particularly in regard to intercultural negotiation and mediation processes. In addition, they will describe how they met course-specific objectives. For the technical writing course, such objectives included broadening students' awareness of the needs of readers...... translation in Europe to create procedural documents in Danish, Dutch, English, French, German and/or Italian. They will provide guidelines for  how international partnerships of this kind can be established between technical communication programs and translation programs anywhere, even in the abscence...

  1. National Ignition Facility Project Site Safety Program

    International Nuclear Information System (INIS)

    Dun, C

    2003-01-01

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES and H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES and H requirements are consistent with the ''LLNL ES and H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B

  2. Nuclear energy and public safety (Part II): a bibliography of technical resources

    International Nuclear Information System (INIS)

    Gabriel, M.R.

    1982-01-01

    Part 2 of the bibliography focuses on technical information of interest to those concerned with the operation of nuclear power plants and the subjects of safety and accidents. A subject index included after the bibliography provides a breakdown of the references into seven categories. There is also an author index. The material cited is available through the National Technical Information Service (NTIS) in Springfield, Virginia

  3. Cooperation of technical support organizations of state nuclear regulatory committee of Ukraine in sip safety regulation

    International Nuclear Information System (INIS)

    Bikov, V.O.; Kyilochits'ka, T.P.; Bogorins'kij, P.; Vasil'chenko, V.M.; Kondrat'jev, S.M.; Smishlyajeva, S.P.; Troter, D.

    2002-01-01

    The main task of the technical support in the Shelter Implementation Plan (SIP) licensing process consists in Technical Evaluation of SIP projects and documents submitted by the Licensee to State Nuclear Regulatory Committee to substantiate the safety of Shelter-related work. The goal of this task is to evaluate the submitted materials whether they meet the requirements of nuclear and radiation safety

  4. Dukovany nuclear power plant safety

    International Nuclear Information System (INIS)

    1999-01-01

    Presentation covers recommended safety issues for the Dukovany NPP which have been solved with satisfactory conclusions. Safety issues concerned include: radiation safety; nuclear safety; security; emergency preparedness; health protection at work; fire protection; environmental protection; chemical safety; technical safety. Quality assurance programs at all stages on NPP life time is described. Report includes description of NPP staff training provision, training simulator, emergency operating procedures, emergency preparedness, Year 2000 problem, inspections and life time management. Description of Dukovany Plant Safety Analysis Projects including integrity of the equipment, modernisation, equipment innovation and safety upgrading program show that this approach corresponds to the actual practice applied in EU countries, and fulfilment of current IAEA requirements for safety enhancement of the WWER 440/213 units in the course of MORAWA Equipment Upgrading program

  5. Technical basis for environmental qualification of computer-based safety systems in nuclear power plants

    International Nuclear Information System (INIS)

    Korsah, K.; Wood, R.T.; Tanaka, T.J.; Antonescu, C.E.

    1997-01-01

    This paper summarizes the results of research sponsored by the US Nuclear Regulatory Commission (NRC) to provide the technical basis for environmental qualification of computer-based safety equipment in nuclear power plants. This research was conducted by the Oak Ridge National Laboratory (ORNL) and Sandia National Laboratories (SNL). ORNL investigated potential failure modes and vulnerabilities of microprocessor-based technologies to environmental stressors, including electromagnetic/radio-frequency interference, temperature, humidity, and smoke exposure. An experimental digital safety channel (EDSC) was constructed for the tests. SNL performed smoke exposure tests on digital components and circuit boards to determine failure mechanisms and the effect of different packaging techniques on smoke susceptibility. These studies are expected to provide recommendations for environmental qualification of digital safety systems by addressing the following: (1) adequacy of the present preferred test methods for qualification of digital I and C systems; (2) preferred standards; (3) recommended stressors to be included in the qualification process during type testing; (4) resolution of need for accelerated aging in qualification testing for equipment that is to be located in mild environments; and (5) determination of an appropriate approach to address smoke in a qualification program

  6. Energy resources technical training and development programs for American Indians

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R E; White, W S

    1978-08-01

    Because of the energy resources located on Native American owned lands, it is pertinent that the tribes on these reservations receive information, training, and technical assistance concerning energy and the environment and the decisions that must be made about energy-resource development. In the past, attempts to enlist Indians in technical-assistance programs met with little success because teaching methods seldom incorporated program planning by both tribal leaders and the technical training staff. Several technical-assistance programs given on reservations in the central and western parts of the country were conducted by Argonne National Lab.--programs that stressed practical, on-the-job experience through lecture, laboratory, and field studies. Each program was designed by ANL and tribal leaders to fit the needs and concerns of a particular tribe for its environment. The individual programs met with an impressive degree of success; they also prompted several Indians to pursue this type of education further at ANL and local Indian community colleges and to obtain funds for energy projects. Despite the positive feedback, several difficulties were encountered. Among them are the necessity to continually modify the programs to fit diverse tribal needs, to diminish politically motivated interference, and to increase portions of the funding to involve more Native Americans.

  7. Technical diagnostics - equipment monitoring for increasing safety and availability of nuclear power plants

    International Nuclear Information System (INIS)

    Sturm, A.; Foerster, R.

    1977-01-01

    Utilization of technical diagnostics in equipment monitoring of nuclear power plants for ensuring nuclear safety, economic availability, and for decision making on necessary maintenance is reviewed. Technical diagnostics is subdivided into inspection and early detection of malfunctions. Moreover, combination of technical diagnostics and equipment monitoring, integration of technical diagnostics into maintenance strategy, and problems of introducing early detection of malfunctions into maintenance management of nuclear power plants are also discussed. In addition, a compilation of measuring techniques used in technical diagnostics has been made. The international state of the art of equipment monitoring in PWR nuclear power plants is illustrated by description of the sound and vibration measuring techniques. (author)

  8. 48{sup th} Annual meeting on nuclear technology (AMNT 2017). Key topic / Enhanced safety and operation excellence. Technical session: Operation and safety of nuclear installations, fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hollands, Thorsten [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany). Bereich Reaktorsicherheitsforschung

    2017-12-15

    The sessions Fuel and Materials and Containment and SFP, as part of the Technical Sessions Operation and Safety of Nuclear Installations, Fuel implemented in the Key Topic Enhanced Safety and Operation Excellence were chaired by Dr. Thorsten Hollands (Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH) and Dr. Erwin Fischer (PreussenElektra GmbH) who was the keynote coordinator for the Technical Sessions. Both sessions consist of a keynote lecture followed by technical presentations.

  9. Light Water Reactor Sustainability Program: Risk-Informed Safety Margins Characterization (RISMC) Pathway Technical Program Plan

    International Nuclear Information System (INIS)

    Smith, Curtis; Rabiti, Cristian; Martineau, Richard; Szilard, Ronaldo

    2016-01-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly ''over-design'' portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as ''safety margin.'' Historically, specific safety margin provisions have been formulated, primarily based on ''engineering judgment.''

  10. Approaches to the safety of future nuclear power plants. Report of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-09-01

    The Technical Committee Meeting on Approaches to Safety of Future Nuclear Power Plants in Different Countries, held from 29 May to 2 June 1995, contributed to this process. Experts from 14 different countries and two international organizations participated in the meeting, which provided the opportunity to exchange information and to review the answers developed to date to these issues (primarily form the IAEA's technical document ''Development of Safety Principles for the Design of Future Nuclear Power Plants'' IAEA-TECDOC-801) and the report of the International Nuclear Safety Advisory Group ''Basic Safety Principles for Nuclear Power Plants'' (INSAG-3). These references were then used as a starting point for answering the question ''to what degree does general agreement (or harmonization) exist on these desired safety approaches for future reactors, and what opportunities remain for further harmonization? 11 refs, 1 tab

  11. Quarterly technical progress report on water reactor safety programs sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, October--December 1975

    International Nuclear Information System (INIS)

    1976-05-01

    Light water reactor safety activities performed during October--December 1975 are reported. The blowdown heat transfer tests series of the Semiscale Mod-1 test program was completed. In the LOFT Program, preparations were made for nonnuclear testing. The Thermal Fuels Behavior Program completed a power-cooling-mismatch test and an irradiation effects test on PWR-type fuel rods. Model development and verification efforts of the Reactor Behavior Program included developing new analysis models for the RELAP4 computer code, subroutines for the FRAP-S and FRAP-T codes, and new models for predicting reactor fuel restructuring and zircaloy cladding behavior; an analysis of post-CHF fuel behavior was made using FRAP-T

  12. Gap Analysis Approach for Construction Safety Program Improvement

    Directory of Open Access Journals (Sweden)

    Thanet Aksorn

    2007-06-01

    Full Text Available To improve construction site safety, emphasis has been placed on the implementation of safety programs. In order to successfully gain from safety programs, factors that affect their improvement need to be studied. Sixteen critical success factors of safety programs were identified from safety literature, and these were validated by safety experts. This study was undertaken by surveying 70 respondents from medium- and large-scale construction projects. It explored the importance and the actual status of critical success factors (CSFs. Gap analysis was used to examine the differences between the importance of these CSFs and their actual status. This study found that the most critical problems characterized by the largest gaps were management support, appropriate supervision, sufficient resource allocation, teamwork, and effective enforcement. Raising these priority factors to satisfactory levels would lead to successful safety programs, thereby minimizing accidents.

  13. Health, safety and environmental research program

    International Nuclear Information System (INIS)

    Dinner, P.J.

    1983-01-01

    This report outlines the Health, Safety and Environmental Research Program being undertaken by the CFFTP. The Program objectives, relationship to other CFFTP programs, implementation plans and expected outputs are stated. Opportunities to build upon the knowledge and experience gained in safely managing tritium in the CANDU program, by addressing generic questions pertinent to tritium safety for fusion facilities, are identified. These opportunities exist across a broad spectrum of issues covering the anticipated behaviour of tritium in fusion facilities, the surrounding environment and in man

  14. Technical bases for criticality safety standards

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1980-01-01

    An American National Standard implies a consensus of those substantially concerned with its scope and provisions. The technical basis, or foundation, on which the consensus rests, must in turn, be firmly established and documented for public review. The technical bases are discussed and reviewed of several standards in different stages of completion and acceptance: ANSI/ANS-8.12, 1978, Nuclear Criticality Control and Safety of Homogeneous Plutonium - Uranium Mixtures Outside Reactors (Approved July 17, 1978); ANS-815, Nuclear Criticality Control of Special Actinide Elements (Draft No. 5 of newly proposed standard); ANS-8.14, Use of Solutions of Neutron Absorbers for Criticality Control (Draft No. 4 of newly proposed standard); ANS-8.5 (Revision of N16.4, 1971), Use of Borosilicate-Glass Raschig Rings as a Neutron Absorber in Solutions of Fissile Material (Draft No. 5 as a result of prescribed five-year review and update of old standard). In each of the preceding, the newly proposed (or revised) limits are based on the extension of experimental data via well established calculations, or by means of independent calculations with adequate margins for uncertainties. The four cases serve to illustrate the insight of the work group members in the establishment of the technical bases for the limits and the level of activity required on their part in the preparation of ANSI Standards. A time span of from four up to seven years has not been uncommon for the preparation, review, and acceptance of an ANSI Standard. 8 figures. 7 tables

  15. Light Water Reactor Sustainability Program Risk-Informed Safety Margins Characterization (RISMC) PathwayTechnical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Smith; Cristian Rabiti; Richard Martineau

    2012-11-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”

  16. Light Water Reactor Sustainability Program: Risk-Informed Safety Margins Characterization (RISMC) Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Szilard, Ronaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”

  17. Seismic safety margins research program overview

    International Nuclear Information System (INIS)

    Tokarz, F.J.; Smith, P.D.

    1978-01-01

    A multiyear seismic research program has been initiated at the Lawrence Livermore Laboratory. This program, the Seismic Safety Margins Research Program (SSMRP) is funded by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The program is designed to develop a probabilistic systems methodology for determining the seismic safety margins of nuclear power plants. Phase I, extending some 22 months, began in July 1978 at a funding level of approximately $4.3 million. Here we present an overview of the SSMRP. Included are discussions on the program objective, the approach to meet the program goal and objectives, end products, the probabilistic systems methodology, and planned activities for Phase I

  18. Index to Nuclear Safety: a technical progress review by chrology, permuted title, and author, Volume 11(1) through Volume 20(6)

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, W B; Passiakos, M

    1980-06-01

    This index to Nuclear Safety, a bimonthly technical progress review, covers articles published in Nuclear Safety, Volume II, No. 1 (January-February 1970), through Volume 20, No. 6 (November-December 1979). It is divided into three sections: a chronological list of articles (including abstracts) followed by a permuted-title (KWIC) index and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center (NSIC), covers all safety aspects of nuclear power reactors and associated facilities. Over 600 technical articles published in Nuclear Safety in the last ten years are listed in this index.

  19. Type B liquid package technical issues -- Experience with LR-56 safety analysis

    International Nuclear Information System (INIS)

    Smith, A.C.; Alstine, M.N. van; Gromada, R.J.; Hensel, S.J.; Gupta, N.K.

    1997-01-01

    In the course of the development of nuclear industry in France, shipment of Type B quantities (i.e., quantities having significant radiological consequences) of radioactive liquids between different, sites became necessary. Based on the experience acquired at the Commissariat a l'Energie Atomique (CEA) nuclear centers, a series of tanker trailers has been developed to meet this need. Similarly, as part of the ongoing program to process wastes to stable end forms, a need exists to move radioactive liquids at several DOE sites. The LR-56, developed by CEA to transport liquids of medium to high activity, was selected for these US applications, based on its design features and successful operating experience in France. No comparable Type B liquid packages are certified in the US Packages employed in transport of Type B quantities of liquids are either only suitable for small volumes, or are used within site boundaries with extensive administrative controls employed to insure that an adequate level of safety is maintained. The requirement is to provide safety equivalent to the level established by federal regulations in 10 CFR 71. Type B radioactive materials packages (RAM packages) are typically simple, rugged containers which are designed and fabricated in accordance with the ASME Boiler and Pressure Vessel Code to provide containment under the normal conditions of transport (NCT) and hypothetical accident conditions (HAC) established by the regulations. Packages designed for liquid contents must address a number of technical issues which are not common to packages for solid contents. This paper reviews the technical issues associated with Type B liquid packages from the perspective of the experience gained from the evaluation of the LR-56 for use at DOE sites

  20. The Science of Nuclear Safety and Security. IAEA Backs the Work of Technical and Scientific Support Organizations in Safety and Security

    International Nuclear Information System (INIS)

    Verlini, Giovanni

    2011-01-01

    Expertise in physical protection and accounting of nuclear and other radioactive material in use, storage and transport, and the associated facilities, as well as experience in the maintenance of systems, equipment and associated software used for effective border monitoring and for radiological threat assessment, are the fundaments of safety and security. This knowledge is developed through technical and scientific support organizations (TSOs), neutral and official organizations that provide the basis for decisions and activities regarding nuclear and radiation safety. The quality of the technical and scientific expertise provided by TSOs to the nuclear industry and their contribution to effective regulatory systems are of fundamental importance. For many years, the IAEA has been supporting the work of TSOs, by helping the TSOs promote their technical competence, transparency and observance of ethical principles.

  1. National HTGR safety program

    International Nuclear Information System (INIS)

    Davis, D.E.; Kelley, A.P. Jr.

    1982-01-01

    This paper presents an overview of the National HTGR Program in the US with emphasis on the safety and licensing strategy being pursued. This strategy centers upon the development of an integrated approach to organizing and classifying the functions needed to produce safe and economical nuclear power production. At the highest level, four plant goals are defined - Normal Operation, Core and Plant Protection, Containment Integrity and Emergency Preparedness. The HTGR features which support the attainment of each goal are described and finally a brief summary is provided of the current status of the principal safety development program supporting the validation of the four plant goals

  2. Heat transfer calculations for the High Flux Isotope Reactor (HFIR). Technical specifications: bases for safety limits and limiting safety system settings

    International Nuclear Information System (INIS)

    Sims, T.M.; Swanks, J.H.

    1977-09-01

    Heat transfer analyses, in support of the preparation of the HFIR technical specifications, were made to establish the bases for the safety limits and limiting safety system settings applicable to the HFIR. The results of these analyses, along with the detailed bases, are presented

  3. Seismic safety programme at NPP Paks. Propositions for coordinated international activity in seismic safety of the WWER-440 V-213

    International Nuclear Information System (INIS)

    Katona, T.

    1995-01-01

    This paper presents the Paks NPP seismic safety program, highlighting the specifics of the WWER-440/213 type in operation, and the results of work obtained so far. It covers the following scope: establishment of the seismic safety program (original seismic design, current requirements, principles and structure of the seismic safety program); implementation of the seismic safety program (assessing the seismic hazard of the site, development of the new concept of seismic safety for the NPP, assessing the seismic resistance of the building and the technology); realization of the seismic safety of higher level (technical solutions, drawings, realization); ideas and propositions for coordinated international activity

  4. Strategy for nuclear technical cooperation between Korea and U.S.A

    International Nuclear Information System (INIS)

    Kim, Kyoung Pyo; Kim, Young Min

    1998-12-01

    The Republic of Korea maintains joint coordination committee meeting in the field of nuclear technology with seven countries throughout the world. Among the committees, the R.O.K. - U.S.A. Joint Standing Committee on Nuclear Energy Cooperation (JSCNET) is regarded as one of the most active committees considering the long cooperative relationship relationship between the two countries. The cooperative programs between two countries range not only technical issues but also nuclear policy and safeguards endeavors. It is noted that at present there are eight items for co-operation in nuclear policy field, fourteen technical cooperation programs, thirteen safety related items for mutual co-operation, and six items for safeguards concerns. KAERI plays a key role in the implementation of joint cooperative programs as has been during the past. Among the various cooperative programs currently on-going, thirteen technical items and two safety programs are being initiated by KAERI. (author). 1 tab., 1 fig

  5. Effective safety training program design

    International Nuclear Information System (INIS)

    Chilton, D.A.; Lombardo, G.J.; Pater, R.F.

    1991-01-01

    Changes in the oil industry require new strategies to reduce costs and retain valuable employees. Training is a potentially powerful tool for changing the culture of an organization, resulting in improved safety awareness, lower-risk behaviors and ultimately, statistical improvements. Too often, safety training falters, especially when applied to pervasive, long-standing problems. Stepping, Handling and Lifting injuries (SHL) more commonly known as back injuries and slips, trips and falls have plagued mankind throughout the ages. They are also a major problem throughout the petroleum industry. Although not as widely publicized as other immediately-fatal accidents, injuries from stepping, materials handling, and lifting are among the leading causes of employee suffering, lost time and diminished productivity throughout the industry. Traditional approaches have not turned the tide of these widespread injuries. a systematic safety training program, developed by Anadrill Schlumberger with the input of new training technology, has the potential to simultaneously reduce costs, preserve employee safety, and increase morale. This paper: reviews the components of an example safety training program, and illustrates how a systematic approach to safety training can make a positive impact on Stepping, Handling and Lifting injuries

  6. The Department of Energy nuclear criticality safety program

    International Nuclear Information System (INIS)

    Felty, J.R.

    2004-01-01

    This paper broadly covers key events and activities from which the Department of Energy Nuclear Criticality Safety Program (NCSP) evolved. The NCSP maintains fundamental infrastructure that supports operational criticality safety programs. This infrastructure includes continued development and maintenance of key calculational tools, differential and integral data measurements, benchmark compilation, development of training resources, hands-on training, and web-based systems to enhance information preservation and dissemination. The NCSP was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 97-2, Criticality Safety, and evolved from a predecessor program, the Nuclear Criticality Predictability Program, that was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 93-2, The Need for Critical Experiment Capability. This paper also discusses the role Dr. Sol Pearlstein played in helping the Department of Energy lay the foundation for a robust and enduring criticality safety infrastructure.

  7. Energy Economic Data Base (EEDB) Program. Technical Reference Book

    International Nuclear Information System (INIS)

    Allen, R.E.; Benedict, R.G.; Hodson, J.S.

    1983-09-01

    Purpose of the program is to develop current technical and cost information for nuclear and comparison electric power generating stations. Purpose of this Technical Reference Book is to provide the current technical design bases for each of the technical data models updated in the Sixth Update (1983). It contains a set of detailed system design descriptions for these technical data models, which are supplemented with engineering drawings. The system design descriptions reflect regulatory and industry practice and experience for nuclear and coal-fired power generating stations that are current for January 1, 1983

  8. DOE Defense Program (DP) safety programs. Final report, Task 003

    International Nuclear Information System (INIS)

    1998-01-01

    The overall objective of the work on Task 003 of Subcontract 9-X52-W7423-1 was to provide LANL with support to the DOE Defense Program (DP) Safety Programs. The effort included the identification of appropriate safety requirements, the refinement of a DP-specific Safety Analysis Report (SAR) Format and Content Guide (FCG) and Comprehensive Review Plan (CRP), incorporation of graded approach instructions into the guidance, and the development of a safety analysis methodologies document. All tasks which were assigned under this Task Order were completed. Descriptions of the objectives of each task and effort performed to complete each objective is provided here

  9. Surface Fire Hazards Analysis Technical Report-Constructor Facilities

    International Nuclear Information System (INIS)

    Flye, R.E.

    2000-01-01

    The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives identified in DOE Order 420.1, Change 2, Facility Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public, or the environment; Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding defined limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events

  10. Impact of Geotechnical Factors on the Safety of Low Embankment Dams From the Perspective of Technical and Safety Supervision

    Directory of Open Access Journals (Sweden)

    Kasana Andrej

    2015-03-01

    Full Text Available Our research deals with a broad spectrum of problems concerning the variability of geotechnical factors and their influence on the safety of the biggest group of dam constructions in Slovakia, i.e., low earthfill dams. Its specific aim is the observation of their risk factors by using our experience and knowledge gained while working in the sector of technical and safety supervision. To achieve the aims of a research thesis, we analyzed 39 low earthfill dams. We performed observations and documented their conditions with the aim of clarifying the risk factors. After an analysis of the information materials that characterize dams and after a statistical analysis of the measurement results in situ, including measurements from technical and safety supervision databases, we performed an analysis by using mathematical modeling to evaluate the safety of the dam constructions. Out of the total number of 39 dam constructions, an analysis of the stability of the dam slopes was performed on 37 dams, and deformation problems were analyzed on 28 of the dams. Filtration problems were analyzed at 26 dams, and a complete evaluation of the intensity of filtration movements was performed on 19 of the constructions.

  11. Competition and safety in the law on technical inspection and control - is it a contradiction?

    International Nuclear Information System (INIS)

    Roth, H.A.

    1987-01-01

    For some time now, objections have been raised against the argument that technical inspection and control should indeed remain a task exlusively for the Technical Control Boards and their offices, organisations and employed inspectors, because competition in this very safety-related sector would not be a positive factor of selection but rather a mechanism reducing the inspection quality, resulting in a hazardous lowering of the safety level. The objections are primarily raised by the free-lance technical experts and their organisations who would like to enlarge their field of activity in this direction. The book at hand discusses the question how much free manoeuvering space there is for the legislative body to deal with such demands and reconcile the interests of safety and competition. The problem is discussed with a view to the Basic Law, which is said to create no legal basis for the demand for more competition in this field. The Basic Law leaves this decision to the discretion of the legislature. (orig./HP) [de

  12. Safety program considerations for space nuclear reactor systems

    International Nuclear Information System (INIS)

    Cropp, L.O.

    1984-08-01

    This report discusses the necessity for in-depth safety program planning for space nuclear reactor systems. The objectives of the safety program and a proposed task structure is presented for meeting those objectives. A proposed working relationship between the design and independent safety groups is suggested. Examples of safety-related design philosophies are given

  13. Socio-technical security metrics

    NARCIS (Netherlands)

    Gollmann, D.; Herley, C.; Koenig, V.; Pieters, W.; Sasse, M.A.

    2015-01-01

    Report from Dagstuhl seminar 14491. This report documents the program and the outcomes of Dagstuhl Seminar 14491 “Socio-Technical Security Metrics”. In the domain of safety, metrics inform many decisions, from the height of new dikes to the design of nuclear plants. We can state, for example, that

  14. Scientific and technical basis of safety increase measures at NPPs with WWER

    International Nuclear Information System (INIS)

    Skalozubov, V.I.; Klyuchnikov, A.A.; Komarov, Yu.A.; Shavlakov, A.V.

    2010-01-01

    This monograph presents the original development of the authors on scientific and technical substantiation of foreground modern measures on safety increase at nuclear power plants with water-water reactors: development and implementation of operative diagnostic system for thermo acoustical instability of reactor core, substantituation of performance capacity and reliability of fast-acting reducing units systems and regulation systems of reactor emergency cooling at control of dominant for safety accidents.

  15. USNRC HTGR safety research program overview

    International Nuclear Information System (INIS)

    Foulds, R.B.

    1982-01-01

    An overview is given of current activities and planned research efforts of the US Nuclear Regulatory Commission (NRC) HTGR Safety Program. On-going research at Brookhaven National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, and Pacific Northwest Laboratory are outlined. Tables include: HTGR Safety Issues, Program Tasks, HTGR Computer Code Library, and Milestones for Long Range Research Plan

  16. Competition and safety as reflected in the legislation concerning technical supervision - are they incompatible

    International Nuclear Information System (INIS)

    Roth, H.A.

    1986-01-01

    The author discusses the conflicts between competition and safety in the legislation on technical supervision, the requirements on specific sectors, and the consequences of the concentration of the functions of technical supervision in the hands of the Technical Supervisory Board (TUEV). The demand to give more room for competition is found to have no legal basis in fundamental law. It therefore rests with the legislator to concert the one with the other. (orig./HP) [de

  17. Review of TSOs technical needs in safety research and development

    International Nuclear Information System (INIS)

    Rintamaa, R.; Bruna, G.

    2012-01-01

    ETSON is the network of European Technical Safety Organizations. The ETSON members have elaborated together a position paper which identifies and ranks the main research and development fields of endeavor in a short, mid and long term perspective. The main research areas and major needs are grouped in 7 areas: 1) safety assessment methods, 2) multi-physics safety approach (several disciplines, macroscopic and microscopic level), 3) Ageing of materials, 4) fuel behaviour, 5) human and organisational factors, 6) instrumentation and control, 7) Severe accidents: phenomenology and methodology, and severe accidents: crisis preparedness and major needs. ETSON has coordinated the activities with other European platforms and has widely contributed to the NUGENIA (Nuclear Generation 2 and 3 Association) topic research and development areas. The next step will be a prioritization of these needs

  18. ATLAS program for advanced thermal-hydraulic safety research

    International Nuclear Information System (INIS)

    Song, Chul-Hwa; Choi, Ki-Yong; Kang, Kyoung-Ho

    2015-01-01

    Highlights: • Major achievements of the ATLAS program are highlighted in conjunction with both developing advanced light water reactor technologies and enhancing the nuclear safety. • The ATLAS data was shown to be useful for the development and licensing of new reactors and safety analysis codes, and also for nuclear safety enhancement through domestic and international cooperative programs. • A future plan for the ATLAS testing is introduced, covering recently emerging safety issues and some generic thermal-hydraulic concerns. - Abstract: This paper highlights the major achievements of the ATLAS program, which is an integral effect test program for both developing advanced light water reactor technologies and contributing to enhancing nuclear safety. The ATLAS program is closely related with the development of the APR1400 and APR"+ reactors, and the SPACE code, which is a best-estimate system-scale code for a safety analysis of nuclear reactors. The multiple roles of ATLAS testing are emphasized in very close conjunction with the development, licensing, and commercial deployment of these reactors and their safety analysis codes. The role of ATLAS for nuclear safety enhancement is also introduced by taking some examples of its contributions to voluntarily lead to multi-body cooperative programs such as domestic and international standard problems. Finally, a future plan for the utilization of ATLAS testing is introduced, which aims at tackling recently emerging safety issues such as a prolonged station blackout accident and medium-size break LOCA, and some generic thermal-hydraulic concerns as to how to figure out multi-dimensional phenomena and the scaling issue.

  19. Development of the JNC geological disposal technical information integration system subjected for repository design and safety assessment

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Ito, Takashi; Kobayashi, Shigeki; Neyama, Atsushi

    2004-02-01

    On this work, system manufacture about disposal technology and safety assessment field was performed towards construction of the JNC Geological Disposal Technical Information Integration System which systematized three fields of technical information acquired in investigation (site characteristic investigation) of geology environmental conditions, disposal technology (design of deep repository), and performance/safety assessment. The technical information database managed focusing on the technical information concerning individual research of an examination, analysis, etc. and the parameter set database managed focusing on the set up data set used in case of comprehensive evaluation are examined. In order to support and promote share and use of the technical information registered and managed by the database, utility functions, such as a technical information registration function, technical information search/browse function, analysis support function, and visualization function, are considered, and the system realized in these functions is built. The built system is installed in the server of JNC, and the functional check examination is carried out. (author)

  20. What You Should Get from a Professionally Oriented Master's Degree Program in Technical Communication.

    Science.gov (United States)

    Carliner, Saul

    1992-01-01

    Cites reasons for pursuing a curriculum in technical communication, lists objectives a program should achieve, and outlines a four-part program that includes theory, professional skills, technical proficiency, and an internship. Lists schools offering programs in technical communication. (SR)

  1. Implementation of radiation safety program in a medical institution

    International Nuclear Information System (INIS)

    Palanca, Elena D.

    1999-01-01

    A medical institution that utilizes radiation for the diagnosis and treatment of diseases of malignancies develops and implements a radiation safety program to keep occupational exposures of radiation workers and exposures of non-radiation workers and the public to the achievable and a more achievable minimum, to optimize the use of radiation, and to prevent misadministration. The hospital radiation safety program is established by a core medical radiation committee composed of trained radiation safety officers and head of authorized users of radioactive materials and radiation machines from the different departments. The radiation safety program sets up procedural guidelines of the safe use of radioactive material and of radiation equipment. It offers regular training to radiation workers and radiation safety awareness courses to hospital staff. The program has a comprehensive radiation safety information system or radsis that circularizes the radiation safety program in the hospital. The radsis keeps the drafted and updated records of safety guides and policies, radioactive material and equipment inventory, personnel dosimetry reports, administrative, regulatory and licensing activity document, laboratory procedures, emergency procedures, quality assurance and quality control program process, physics and dosimetry procedures and reports, personnel and hospital staff training program. The medical radiation protection committee is tasked to oversee the actual implementation of the radiation safety guidelines in the different radiation facilities in the hospital, to review personnel exposures, incident reports and ALARA actions, operating procedures, facility inspections and audit reports, to evaluate the existing radiation safety procedures, to make necessary changes to these procedures, and make modifications of course content of the training program. The effective implementation of the radiation safety program provides increased confidence that the physician and

  2. Periodic safety review of the experimental fast reactor JOYO. Review of aging management

    International Nuclear Information System (INIS)

    Isozaki, Kazunori; Ogawa, To-ru; Nishino, Kazunari

    2005-05-01

    Periodic safety review (Review of the aging management) which consisted of ''Technical review on aging for the safety related structures, systems and components'' and ''Establishment a long term maintenance program'' was carried out up to April 2005. 1. Technical review on aging for the safety related structures, systems and components. It was technically confirmed to prevent the loss of function of the safety related structures, systems and components due to aging phenomena, which (1) irradiation damage, (2) corrosion, (3) abrasion and erosion, (4) thermal aging, (5) creep and fatigue, (6) Stress Corrosion Cracking, (7) insulation deterioration and (8) general deterioration, under the periodic monitoring or renewal of them. 2. Establishment of long term maintenance program. The long term maintenance during JFY2005 to 2014 were established based on the technical review on aging for the safety related structures, systems and components. It was evaluated that the inspection and renewal based on the long term maintenance program, in addition to the spontaneous inspection of the long term voluntary long-term inspection plan, could prevent the loss of function of the safety related structures, systems and components. (author)

  3. Adding Realism to Technical Drafting Programs

    Science.gov (United States)

    Weaver, Gerald L.

    1976-01-01

    Suggestions for improved, relevant technical drafting programs are presented: (1) making realistic assignments, (2) viewing real projects, (3) duplicating industrial projects, (4) practicing lettering, (5) conducting research, (6) engaging in teamwork, (7) adapting to change, (8) learning to meet deadlines, and (9) stressing the importance of…

  4. The radiation safety self-assessment program of Ontario Hydro

    International Nuclear Information System (INIS)

    Armitage, G.; Chase, W.J.

    1987-01-01

    Ontario Hydro has developed a self-assessment program to ensure that high quality in its radiation safety program is maintained. The self-assessment program has three major components: routine ongoing assessment, accident/incident investigation, and detailed assessments of particular radiation safety subsystems or of the total radiation safety program. The operation of each of these components is described

  5. Radiological safety programs in the petroleum and petrochemistry industry of Venezuela

    International Nuclear Information System (INIS)

    Romero M, C.

    1996-01-01

    A diagnosis carried out five years ago showed that in Petroleos de Venezuela (PDVSA) and its subsidiaries, exist about 530 radioactive sources. Also, about 1500 workers were also occupationally exposed, during operations such as industrial radiography and well logging. The same study determined the occurrence of some non-reported accidents and incidents with the overexposure of workers, specially contractors. Most of these problems were the result of the bad application of the radiological protection practices, and on the other hand, the disregarding of the governmental authorities in applying the regulatory standards. In order to solve this situation, PDVSA settled the safety guide for working with ionizing radiation, in which guidelines and technical advice are stablished to perform a safer work with radioactive elements. A radiological protection program was also organized in all the company operational areas. The paper includes the programs, practices and procedures implemented by PDVSA and its subsidiaries. Besides, the result of applying this comprehensive radiation protection program will be showed. (author). 1 ref

  6. Using Contemporary Leadership Skills in Medication Safety Programs.

    Science.gov (United States)

    Hertig, John B; Hultgren, Kyle E; Weber, Robert J

    2016-04-01

    The discipline of studying medication errors and implementing medication safety programs in hospitals dates to the 1970s. These initial programs to prevent errors focused only on pharmacy operation changes - and not the broad medication use system. In the late 1990s, research showed that faulty systems, and not faulty people, are responsible for errors and require a multidisciplinary approach. The 2013 ASHP Statement on the Role of the Medication Safety Leader recommended that medication safety leaders be integrated team members rather than a single point of contact. Successful medication safety programs must employ a new approach - one that embraces the skills of all health care team members and positions many leaders to improve safety. This approach requires a new set of leadership skills based on contemporary management principles, including followership, team-building, tracking and assessing progress, storytelling and communication, and cultivating innovation, all of which promote transformational change. The application of these skills in developing or changing a medication safety program is reviewed in this article.

  7. Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author. Vol. 11(1)--Vol. 18(6)

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, W.B.; Klein, A.

    1978-04-11

    This index to Nuclear Safety covers articles published in Nuclear Safety, Vol. 11, No. 1 (January-February 1970), through Vol. 18, No. 6 (November-December 1977). It is divided into three sections: a chronological list of articles (including abstracts) followed by a permuted-title (KWIC) index and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center (NSIC), covers all safety aspects of nuclear power reactors and associated facilities. Over 450 technical articles published in Nuclear Safety in the last eight years are listed in this index.

  8. Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author. Vol. 11(1)--Vol. 18(6)

    International Nuclear Information System (INIS)

    Cottrell, W.B.; Klein, A.

    1978-01-01

    This index to Nuclear Safety covers articles published in Nuclear Safety, Vol. 11, No. 1 (January-February 1970), through Vol. 18, No. 6 (November-December 1977). It is divided into three sections: a chronological list of articles (including abstracts) followed by a permuted-title (KWIC) index and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center (NSIC), covers all safety aspects of nuclear power reactors and associated facilities. Over 450 technical articles published in Nuclear Safety in the last eight years are listed in this index

  9. 76 FR 49532 - Federal Motor Vehicle Safety Standards; Electronic Stability Control; Technical Report on the...

    Science.gov (United States)

    2011-08-10

    ...-0112] Federal Motor Vehicle Safety Standards; Electronic Stability Control; Technical Report on the Effectiveness of Electronic Stability Control Systems for Cars and LTVs AGENCY: National Highway Traffic Safety..., Electronic Stability Control Systems. The report's title is: Crash Prevention Effectiveness in Light-Vehicle...

  10. Towards common technical standards

    International Nuclear Information System (INIS)

    Rahmat, H.; Suardi, A.R.

    1993-01-01

    In 1989, PETRONAS launched its Total Quality Management (TQM) program. In the same year the decision was taken by the PETRONAS Management to introduce common technical standards group wide. These standards apply to the design, construction, operation and maintenance of all PETRONAS installations in the upstream, downstream and petrochemical sectors. The introduction of common company standards is seen as part of an overall technical management system, which is an integral part of Total Quality Management. The Engineering and Safety Unit in the PETRONAS Central Office in Kuala Lumpur has been charged with the task of putting in place a set of technical standards throughout PETRONAS and its operating units

  11. Medication safety programs in primary care: a scoping review.

    Science.gov (United States)

    Khalil, Hanan; Shahid, Monica; Roughead, Libby

    2017-10-01

    Medication safety plays an essential role in all healthcare organizations; improving this area is paramount to quality and safety of any wider healthcare program. While several medication safety programs in the hospital setting have been described and the associated impact on patient safety evaluated, no systematic reviews have described the impact of medication safety programs in the primary care setting. A preliminary search of the literature demonstrated that no systematic reviews, meta-analysis or scoping reviews have reported on medication safety programs in primary care; instead they have focused on specific interventions such as medication reconciliation or computerized physician order entry. This scoping review sought to map the current medication safety programs used in primary care. The current scoping review sought to examine the characteristics of medication safety programs in the primary care setting and to map evidence on the outcome measures used to assess the effectiveness of medication safety programs in improving patient safety. The current review considered participants of any age and any condition using care obtained from any primary care services. We considered studies that focussed on the characteristics of medication safety programs and the outcome measures used to measure the effectiveness of these programs on patient safety in the primary care setting. The context of this review was primary care settings, primary healthcare organizations, general practitioner clinics, outpatient clinics and any other clinics that do not classify patients as inpatients. We considered all quantitative studied published in English. A three-step search strategy was utilized in this review. Data were extracted from the included studies to address the review question. The data extracted included type of medication safety program, author, country of origin, aims and purpose of the study, study population, method, comparator, context, main findings and outcome

  12. EUROSAFE Forum 2010. Towards convergence of technical nuclear safety practices in Europe

    International Nuclear Information System (INIS)

    2010-01-01

    The EUROSAFE forum 2010 covered the following technical plenary presentations: the future of innovation in organizations; obstacles to innovative engineering; the challenge of introducing innovation to processes and regulations; TSO's approach to innovation - combining research, operational feedback experience and knowledge management; innovation and safety - necessity or contradiction? safe rail traffic control. Seminars were held on the following topics: Seminar 1: nuclear installation safety; Seminar 2: radiation protection and environment; Seminar 3: waste management; seminar 4: nuclear security.

  13. Canadian hydrogen safety program

    International Nuclear Information System (INIS)

    MacIntyre, I.; Tchouvelev, A.V.; Hay, D.R.; Wong, J.; Grant, J.; Benard, P.

    2007-01-01

    The Canadian hydrogen safety program (CHSP) is a project initiative of the Codes and Standards Working Group of the Canadian transportation fuel cell alliance (CTFCA) that represents industry, academia, government, and regulators. The Program rationale, structure and contents contribute to acceptance of the products, services and systems of the Canadian Hydrogen Industry into the Canadian hydrogen stakeholder community. It facilitates trade through fair insurance policies and rates, effective and efficient regulatory approval procedures and accommodation of the interests of the general public. The Program integrates a consistent quantitative risk assessment methodology with experimental (destructive and non-destructive) failure rates and consequence-of-release data for key hydrogen components and systems into risk assessment of commercial application scenarios. Its current and past six projects include Intelligent Virtual Hydrogen Filling Station (IVHFS), Hydrogen clearance distances, comparative quantitative risk comparison of hydrogen and compressed natural gas (CNG) refuelling options; computational fluid dynamics (CFD) modeling validation, calibration and enhancement; enhancement of frequency and probability analysis, and Consequence analysis of key component failures of hydrogen systems; and fuel cell oxidant outlet hydrogen sensor project. The Program projects are tightly linked with the content of the International Energy Agency (IEA) Task 19 Hydrogen Safety. (author)

  14. Technical Support Section Instrument Support Program for nuclear and nonnuclear facilities with safety requirements

    International Nuclear Information System (INIS)

    Adkisson, B.P.; Allison, K.L.

    1995-01-01

    This document describes requirements, procedures, and supervisory responsibilities of the Oak Ridge National Laboratory (ORNL) Instrumentation and Controls (I ampersand C) Division's Technical Support Section (TSS) for instrument surveillance and maintenance in nonreactor nuclear facilities having identified Operational Safety Requirements (OSRs) or Limiting Conditions Document (LCDs). Implementation of requirements comply with the requirements of U.S. Department of Energy (DOE) Orders 5480.5, 5480.22, and 5481.1B; Martin Marietta Energy Systems, Inc. (Energy Systems), Policy Procedure ESS-FS-201; and ORNL SPP X-ESH-15. OSRs and LCDs constitute an agreement or contract between DOE and the facility operating management regarding the safe operation of the facility. One basic difference between OSRs and LCDs is that violation of an OSR is considered a Category II occurrence, whereas violation of an LCD requirement is considered a Category III occurrence (see Energy Systems Standard ESS-OP-301 and ORNL SPP X-GP-13). OSRs are required for high- and moderate-hazard nuclear facilities, whereas the less-rigorous LCDs are required for low-hazard nuclear facilities and selected open-quotes generally acceptedclose quotes operations. Hazard classifications are determined through a hazard screening process, which each division conducts for its facilities

  15. Technical Advisory Committee on the nuclear fuel waste management program : thirteenth annual report

    International Nuclear Information System (INIS)

    Shemilt, L.W.

    1993-03-01

    Since the last reporting period by the Technical Advisory Committee (TAC) the emphasis of the work in the Canadian Nuclear Fuel Waste Management Program (CNFWMP) has been on the writing of the Environmental Impact Statement (EIS) and the associated set of nine primary reference documents as well as supporting documents. These are in preparation for submission to the Environmental Assessment Review Panel who will lead the national evaluation of the disposal concept under the auspices of the Federal Environmental Assessment Review Office (FEARO). The disposal concept developed over the last fourteen years by Atomic Energy of Canada Limited (AECL) and anticipated to be presented by means of the EIS in 1994, is based on a multiple system of natural and man-made barriers wherein nuclear waste is first enclosed in corrosion-resistant containers, designed to last at least 500 years, and then placed in a vault excavated 500 - 1000 m deep in granitic rocks of the Canadian Shield. After container emplacement either in or on the floor of the vault, and with a surrounding buffer material of a bentonite clay/sand mixture, the vault will be backfilled and sealed with crushed rock, buffer and sand, as will be the shafts and exploratory boreholes. The case study being presented by AECL to demonstrate the safety of this concept and the technology to implement it, relies on computer simulations of a hypothetical disposal site with geological characteristics similar to those at the Underground Research Laboratory (URL) in the Whiteshell Research Area (WRA) located in Manitoba. The preliminary simulation results suggest that safe containment can be achieved provided that the waste is surrounded by a sparsely-fractured zone of rock wherein movement of contaminants carried by groundwater is modelled as a diffusive as opposed to a advective process. The principal focus of work during the past year within the environmental and safety assessment has been to complete the Post

  16. Low-level waste program technical strategy

    International Nuclear Information System (INIS)

    Bledsoe, K.W.

    1994-01-01

    The Low-Level Waste Technical Strategy document describes the mechanisms which the Low-Level Waste Program Office plans to implement to achieve its mission. The mission is to manage the receipt, immobilization, packaging, storage/disposal and RCRA closure (of the site) of the low-level Hanford waste (pretreated tank wastes) in an environmentally sound, safe and cost-effective manner. The primary objective of the TWRS Low-level waste Program office is to vitrify the LLW fraction of the tank waste and dispose of it onsite

  17. Public safety around dams : proposed technical bulletins

    Energy Technology Data Exchange (ETDEWEB)

    Raska, C [BC Hydro, Burnaby, BC (Canada); Rowat, L [Ontario Power Generation Inc., Niagara Falls, ON (Canada)

    2009-07-01

    This presentation provided an introduction to the Canadian Dam Association (CDA) public safety guideline and proposed technical bulletins for exterior danger and warning signs; waterway booms and buoys; and audible and visual alerts for water conveyance structures. The presentation outlined the hierarchy of documents for principles, guidelines and technical bulletins. Effective signage includes signs in which the text is sized according to the viewing distance; the message identifies the hazard and the actions to take; and the wording is understood by the public. The criteria for effective booms and buoys were discussed in terms of visibility of booms; types of buoys to use; distance between booms floats; design issues for headpond application versus tailrace application; angling to facilitate self-rescue; and distance from structure. Proposed criteria for audible and visual alerts were also discussed. The audible and visual danger signal should have a designated signal reception area where people can recognize and react to the signal. If a visual signalling device is used, it should be red to indicate danger. Maintenance and inspection tests should be performed regularly on audible and visual signalling devices. 1 ref., 2 figs.

  18. Current activities on safety improvement at Ukrainian NPPs

    International Nuclear Information System (INIS)

    Stovbun, V.V.

    2000-01-01

    This report describes general development status of the national programs on safety improvement of the Ukrainian NPPs, basic approaches adopted for planning and implementation of safety improvement works, and state of implementation of principal technical activities aimed at safety improvement of Ukrainian NPPs. (author)

  19. Occupational Safety and Health Programs in Career Education.

    Science.gov (United States)

    DiCarlo, Robert D.; And Others

    This resource guide was developed in response to the Occupational Safety and Health Act of 1970 and is intended to assist teachers in implementing courses in occupational safety and health as part of a career education program. The material is a synthesis of films, programed instruction, slides and narration, case studies, safety pamphlets,…

  20. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--June 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J W; Boccio, J L; Diamond, D; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Hall, R E; Higgins, J C; Weiss, A J [comp.

    1988-12-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1987.

  1. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, October 1--December 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A J; Azarm, A; Baum, J W; Boccio, J L; Carew, J; Diamond, D J; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Haber, S B

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988.

  2. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--June 30, 1988

    International Nuclear Information System (INIS)

    Baum, J.W.; Boccio, J.L.; Diamond, D.

    1988-12-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1987

  3. Sandia Laboratories environment and safety programs

    International Nuclear Information System (INIS)

    Zak, B.D.; McGrath, P.E.; Trauth, C.A. Jr.

    1975-01-01

    Sandia, one of ERDA's largest laboratories, is primarily known for its extensive work in the nuclear weapons field. In recent years, however, Sandia's role has expanded to embrace sizeable programs in the energy, resource recovery, and the environment and safety fields. In this latter area, Sandia has programs which address nuclear, fossil fuel, and general environment and safety issues. Here we survey ongoing activities and describe in more detail aa few projects of particular interest. These range from a study of the impact of sealed disposal of radioactive wastes, through reactor safety and fossil fuel plume chemistry, to investigations of the composition and dynamics of the stratosphere

  4. Scientific and technical report, 2000 of the IPSN

    International Nuclear Information System (INIS)

    2001-01-01

    IPSN (Institut de Protection et de Surete Nucleaire) is responsible for dealing with all aspects in the evaluation of safety of nuclear installations involving the human factors. To achieve its objectives, it conducts its own research and development activities on these themes. This report highlights the most significant scientific and technical achievements of the Institut in 2000. Twenty eight reports are presented, grouped in eight sessions, each ones opened by a review paper: the reactors safety, the installations safety, the radioactive materials and transport safety, the public health, the environment protection, the radioactive wastes safety, the crisis management and the IPSN installations. The international research program Phebus PF is detailed, technical progresses concerning the steam generators nondestructive testing or the impact of automation on operator performance are also presented. One session deals with the criticality studies and risk assessment. The control and surveillance of nuclear materials form the subject of research programs and experiments as well as the transport safety. Concerning the public and environment protection inspections, epidemiological studies, radionuclides transportation and radio-contaminant behavior are reported. In the domain of the radioactive wastes safety, the deep underground storage and the model MELODIE are presented. Examples of accidents or the INEX2 exercise are also discussed. (A.L.B.)

  5. OSHA Training Programs. Module SH-48. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on OSHA (Occupational Safety and Health Act) training programs is one of 50 modules concerned with job safety and health. This module provides a list of OSHA training requirements and describes OSHA training programs and other safety organizations' programs. Following the introduction, 11 objectives (each keyed to a page in the…

  6. Idaho National Engineering Laboratory (INEL) Environmental Restoration Program (ERP), Baseline Safety Analysis File (BSAF). Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-20

    This document was prepared to take the place of a Safety Evaluation Report since the Baseline Safety Analysis File (BSAF)and associated Baseline Technical Safety Requirements (TSR) File do not meet the requirements of a complete safety analysis documentation. Its purpose is to present in summary form the background of how the BSAF and Baseline TSR originated and a description of the process by which it was produced and approved for use in the Environmental Restoration Program.The BSAF is a facility safety reference document for INEL environmental restoration activities including environmental remediation of inactive waste sites and decontamination and decommissioning (D&D) of surplus facilities. The BSAF contains safety bases common to environmental restoration activities and guidelines for performing and documenting safety analysis. The common safety bases can be incorporated by reference into the safety analysis documentation prepared for individual environmental restoration activities with justification and any necessary revisions. The safety analysis guidelines in BSAF provide an accepted method for hazard analysis; analysis of normal, abnormal, and accident conditions; human factors analysis; and derivation of TSRS. The BSAF safety bases and guidelines are graded for environmental restoration activities.

  7. Idaho National Engineering Laboratory (INEL) Environmental Restoration Program (ERP), Baseline Safety Analysis File (BSAF). Revision 1

    International Nuclear Information System (INIS)

    1994-01-01

    This document was prepared to take the place of a Safety Evaluation Report since the Baseline Safety Analysis File (BSAF)and associated Baseline Technical Safety Requirements (TSR) File do not meet the requirements of a complete safety analysis documentation. Its purpose is to present in summary form the background of how the BSAF and Baseline TSR originated and a description of the process by which it was produced and approved for use in the Environmental Restoration Program.The BSAF is a facility safety reference document for INEL environmental restoration activities including environmental remediation of inactive waste sites and decontamination and decommissioning (D ampersand D) of surplus facilities. The BSAF contains safety bases common to environmental restoration activities and guidelines for performing and documenting safety analysis. The common safety bases can be incorporated by reference into the safety analysis documentation prepared for individual environmental restoration activities with justification and any necessary revisions. The safety analysis guidelines in BSAF provide an accepted method for hazard analysis; analysis of normal, abnormal, and accident conditions; human factors analysis; and derivation of TSRS. The BSAF safety bases and guidelines are graded for environmental restoration activities

  8. Evaluation of Safety Programs with Respect to the Causes of General Aviation Accidents. Volume I. Technical Report,

    Science.gov (United States)

    1980-05-01

    65 Physical Impairment 66 Spatial disorientation. 67 Psychological condition. 71 Misused or failed to use flaps. 74 Left aircraft unattended, engine...ARTS III - (Software) (1975) 203 Weather Radar Display System (ASR - 57) 204 ATARS - Automated Terminal Area Radar Service (1974) 205 Instrument Landing...Generated Trauma, Pathological and Psychological Dysfunction accident causes. Collectively, the distribution of safety programs throughout the fault

  9. Polish Standard of the Technical Safety of Transmission Gas Pipelines

    International Nuclear Information System (INIS)

    Tkacz, A.J.

    2006-01-01

    The document is presenting the idea of the CNGI Norm called The Polish Standard of the Technical Safety of Transmission Gas Pipelines and the way of using it by companies associated in the Chamber of the Natural Gas Industry in the business activity. It will be applied to improve the quality and reliability of gas transmission after full opening of Polish natural gas market. (author)

  10. River Protection Project waste feed delivery program technical performance measurement assessment plan

    International Nuclear Information System (INIS)

    O'TOOLE, S.M.

    1999-01-01

    This plan establishes a formal technical performance-monitoring program. Technical performance is assessed by establishing requirements based performance goals at the beginning of a program and routinely evaluating progress in meeting these goals at predetermined milestones throughout the project life cycle

  11. 75 FR 15484 - Railroad Safety Technology Program Grant Program

    Science.gov (United States)

    2010-03-29

    ... governments for projects that have a public benefit of improved railroad safety and efficiency. The program... State and local governments for projects * * * that have a public benefit of improved safety and network... minimum 20 percent grantee cost share (cash or in-kind) match requirement. DATES: FRA will begin accepting...

  12. Technical basis and evaluation criteria for an air sampling/monitoring program

    International Nuclear Information System (INIS)

    Gregory, D.C.; Bryan, W.L.; Falter, K.G.

    1993-01-01

    Air sampling and monitoring programs at DOE facilities need to be reviewed in light of revised requirements and guidance found in, for example, DOE Order 5480.6 (RadCon Manual). Accordingly, the Oak Ridge National Laboratory (ORNL) air monitoring program is being revised and placed on a sound technical basis. A draft technical basis document has been written to establish placement criteria for instruments and to guide the ''retrospective sampling or real-time monitoring'' decision. Facility evaluations are being used to document air sampling/monitoring needs, and instruments are being evaluated in light of these needs. The steps used to develop this program and the technical basis for instrument placement are described

  13. Development in France of nuclear safety technical regulations and standards used in the licensing procedure

    International Nuclear Information System (INIS)

    Lebouleux, P.

    1983-04-01

    Initially, the Commissariat a l'Energie Atomique was the overall structure which encompassed all nuclear activities in France, including those connected with radiological protection and nuclear safety. As other partners appeared, the Authorities have laid down national regulations relative to nuclear installations since 1963. These regulations more particularly provide for the addition of prescriptions with which the applicant must comply to obtain the necessary licenses and the establishment of General Technical Regulations pertaining to nuclear safety. The technical regulation related to nuclear safety in France is made of a set of regulation texts, of a different nature, that define the requirements for the construction, commissioning and operation of nuclear facilities. Simultaneously, the safety authorities (Service Central de Surete des Installations Nucleaires: SCSIN) issue recommendations or guides which are not strictly speaking regulations in the juridical sense; they are called ''Regles Fondamentales de Surete'' (RFS). The RFS set up and detail the conditions, the respect of which is deemed to be complying with the French regulation practice, for the subject to which they relate. Their purpose is to make known rules judged acceptable by safety authorities, thus making the safety review easier. A RFS, or a letter, can also give the result of the examination of the constructor and operator codes (RCC) by safety authorities

  14. Technical Standards on the Safety Assessment of a HLW Repository in Other Countries

    International Nuclear Information System (INIS)

    Lee, Sung Ho; Hwang, Yong Soo

    2009-01-01

    The basic function of HLW disposal system is to prevent excessive radio-nuclides being leaked from the repository in a short time. To do this, many technical standards should be developed and established on the components of disposal system. Safety assessment of a repository is considered as one of technical standards, because it produces quantitative results of the future evolution of a repository based on a reasonably simplified model. In this paper, we investigated other countries' regulations related to safely assessment focused on the assessment period, radiation dose limits and uncertainties of the assessment. Especially, in the investigation process of the USA regulations, the USA regulatory bodies' approach to assessment period and peak dose is worth taking into account in case of a conflict between peak dose from safety assessment and limited value in regulation.

  15. Fast reactor safety program. Progress report, January-March 1980

    International Nuclear Information System (INIS)

    1980-05-01

    The goal of the DOE LMFBR Safety Program is to provide a technology base fully responsive to safety considerations in the design, evaluation, licensing, and economic optimization of LMFBRs for electrical power generation. A strategy is presented that divides safety technology development into seven program elements, which have been used as the basis for the Work Breakdown Structure (WBS) for the Program. These elements include four lines of assurance (LOAs) involving core-related safety considerations, an element supporting non-core-related plant safety considerations, a safety R and D integration element, and an element for the development of test facilities and equipment to be used in Program experiments: LOA-1 (prevent accidents); LOA-2 (limit core damage); LOA-3 (maintain containment integrity); LOA-4 (attenuate radiological consequences); plant considerations; R and D integration; and facility development

  16. ALWR - regulatory stabilization through simplicity, margin, and improved safety

    International Nuclear Information System (INIS)

    Vine, G.; Gray, S.

    1989-01-01

    The Electric Power Research Institute Advanced Light Water Reactor (ALWR) program is discussed with respect to the following topics: fundamental acceptance criteria for the ALWR; program approach; utility steering committee technical guidance; safety principles; utility requirements document; design bases; generic safety issue resolution; reactor accidents prevention and mitigation; and programmatic plans

  17. Research program on regulatory safety research

    International Nuclear Information System (INIS)

    Mailaender, R.

    2010-02-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning regulatory nuclear safety research, as co-ordinated by the Swiss Nuclear Safety Inspectorate ENSI. Work carried out in various areas is reviewed, including that done on reactor safety, radiation protection and waste disposal as well as human aspects, organisation and safety culture. Work done concerning materials, pressure vessel integrity, transient analysis, the analysis of serious accidents in light-water reactors, fuel and material behaviour, melt cooling and concrete interaction is presented. OECD data bank topics are discussed. Transport and waste disposal research at the Mont Terri rock laboratory is looked at. Requirements placed on the personnel employed in nuclear power stations are examined and national and international co-operation is reviewed

  18. Technical Assistance and Program Support: DoD Historical Black Colleges and Universities and Minority Institutions Program

    National Research Council Canada - National Science Library

    Andrews, Aaron

    2003-01-01

    ... (His), the United Negro College Fund Special Programs developed and implemented a comprehensive technical assistance and infrastructure program This program has provided HBCUs, HSIs, TCUs, and MIs...

  19. Quarterly technical progress report on water reactor safety programs sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, October--December 1975

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Light water reactor safety activities performed during October--December 1975 are reported. The blowdown heat transfer tests series of the Semiscale Mod-1 test program was completed. In the LOFT Program, preparations were made for nonnuclear testing. The Thermal Fuels Behavior Program completed a power-cooling-mismatch test and an irradiation effects test on PWR-type fuel rods. Model development and verification efforts of the Reactor Behavior Program included developing new analysis models for the RELAP4 computer code, subroutines for the FRAP-S and FRAP-T codes, and new models for predicting reactor fuel restructuring and zircaloy cladding behavior; an analysis of post-CHF fuel behavior was made using FRAP-T.

  20. Framework conditions and requirements to ensure the technical functional safety of reprocessed medical devices.

    Science.gov (United States)

    Kraft, Marc

    2008-09-03

    Testing and restoring technical-functional safety is an essential part of medical device reprocessing. Technical functional tests have to be carried out on the medical device in the course of the validation of reprocessing procedures. These ensure (in addition to the hygiene tests) that the reprocessing procedure is suitable for the medical device. Functional tests are, however, also a part of reprocessing procedures. As a stage in the reprocessing, they ensure for the individual medical device that no damage or other changes limit the performance. When determining which technical-functional tests are to be carried out, the current technological standard has to be taken into account in the form of product-specific and process-oriented norms. Product-specific norms primarily define safety-relevant requirements. The risk management method described in DIN EN ISO 14971 is the basis for recognising hazards; the likelihood of such hazards arising can be minimised through additional technical-functional tests, which may not yet have been standardised. Risk management is part of a quality management system, which must be bindingly certified for manufacturers and processors of critical medical devices with particularly high processing demands by a body accredited by the competent authority.

  1. High-heat tank safety issue resolution program plan

    International Nuclear Information System (INIS)

    Wang, O.S.

    1993-12-01

    The purpose of this program plan is to provide a guide for selecting corrective actions that will mitigate and/or remediate the high-heat waste tank safety issue for single-shell tank (SST) 241-C-106. This program plan also outlines the logic for selecting approaches and tasks to mitigate and resolve the high-heat safety issue. The identified safety issue for high-heat tank 241-C-106 involves the potential release of nuclear waste to the environment as the result of heat-induced structural damage to the tank's concrete, if forced cooling is interrupted for extended periods. Currently, forced ventilation with added water to promote thermal conductivity and evaporation cooling is used to cool the waste. At this time, the only viable solution identified to resolve this safety issue is the removal of heat generating waste in the tank. This solution is being aggressively pursued as the permanent solution to this safety issue and also to support the present waste retrieval plan. Tank 241-C-106 has been selected as the first SST for retrieval. The program plan has three parts. The first part establishes program objectives and defines safety issues, drivers, and resolution criteria and strategy. The second part evaluates the high-heat safety issue and its mitigation and remediation methods and alternatives according to resolution logic. The third part identifies major tasks and alternatives for mitigation and resolution of the safety issue. Selected tasks and best-estimate schedules are also summarized in the program plan

  2. NCSU reactor sharing program. Final technical report

    International Nuclear Information System (INIS)

    Perez, P.B.

    1997-01-01

    The Nuclear Reactor Program at North Carolina State University provides the PULSTAR Research Reactor and associated facilities to eligible institutions with support, in part, from the Department of Energy Reactor Sharing Program. Participation in the NCSU Reactor Sharing Program continues to increase steadily with visitors ranging from advance high school physics and chemistry students to Ph.D. level research from neighboring universities. This report is the Final Technical Report for the DOE award reference number DE-FG05-95NE38136 which covers the period September 30, 1995 through September 30, 1996

  3. Integrated Plant Safety Assessment, Systematic Evaluation Program: Yankee Nuclear Power Station (Docket No. 50-29)

    International Nuclear Information System (INIS)

    1987-10-01

    The US Nuclear Regulatory Commission (NRC) has prepared Supplement 1 to the final Integrated Plant Safety Assessment Report (IPSAR) (NUREG-0825), under the scope of the Systematic Evaluation Program (SEP), for Yankee Atomic Electric Company's Yankee Nuclear Power Station located in Rowe, Massachusetts. The SEP was initiated by the NRC to review the design of older operating nuclear power plants to reconfirm and document their safety. This report documents the review completed under the SEP for those issues that required refined engineering evaluations or the continuation of ongoing evaluations after the Final IPSAR for the Yankee plant was issued. The review has provided for (1) an assessment of the significance of differences between current technical positions on selected safety issues and those that existed when Yankee was licensed, (2) a basis for deciding how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. 2 tabs

  4. Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author, Volume 18 (1) through Volume 22 (6)

    International Nuclear Information System (INIS)

    Cottrell, W.B.; Passiakos, M.

    1982-06-01

    This index to Nuclear Safety covers articles published in Nuclear Safety, Volume 18, Number 1 (January-February 1977) through Volume 22, Number 6 (November-December 1981). The index is divided into three section: a chronological list of articles (including abstracts), a permuted-title (KWIC) index, and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. Over 300 technical articles published in Nuclear Safety in the last 5 years are listed in this index

  5. Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author, Volume 18 (1) through Volume 22 (6)

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, W.B.; Passiakos, M.

    1982-06-01

    This index to Nuclear Safety covers articles published in Nuclear Safety, Volume 18, Number 1 (January-February 1977) through Volume 22, Number 6 (November-December 1981). The index is divided into three section: a chronological list of articles (including abstracts), a permuted-title (KWIC) index, and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. Over 300 technical articles published in Nuclear Safety in the last 5 years are listed in this index.

  6. Communication of technical information to lay audiences. [National Waste Terminal Storage (NWTS) program

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, J.E.; Stamm, K.R.; Jackson, K.M.; Moore, J.

    1978-05-01

    One of the objectives of the National Waste Terminal Storage (NWTS) Program is to provide terminal storage facilities for commercial radioactive wastes in various geologic formations at multiple locations in the United States. The activities performed under the NWTS Program will affect regional, state, and local areas, and widespread public interest in this program is expected. Since a large part of the NWTS Program deals with technical information it was considered desirable to initiate a study dealing with possible methods of effectively transmitting this technical information to the general public. This study has the objective of preparing a state-of-the-art report on the communication of technical information to lay audiences. The particular task of communicating information about the NWTS Program to the public is discussed where appropriate. The results of this study will aid the NWTS Program in presenting to the public the quite diverse technical information generated within the program so that a widespread, thorough public understanding of the NWTS Program might be achieved. An annotated bibliography is included.

  7. Technical findings and regulatory analysis for Generic Safety Issue II.E.4.3, ''Containment Integrity Check''

    International Nuclear Information System (INIS)

    Serkiz, A.W.

    1988-04-01

    This report contains the technical findings and regulatory analysis for Generic Safety Issue II.E.4.3, ''Containment Integrity Check.'' An evaluation of the containment isolation history from 1965 to 1983 reveals that (except for a small number of events) containment integrity has been maintained and that the majority of reported events have been events related to exceeding Technical Specification limits (or 0.6 of the allowable leakage level). In addition, more recent risk analyses have shown that allowable leakage rates even if increased by a factor of 10 would not significantly increase risk. Potential methods of continuous monitoring are identified and evaluated. Therefore, these technical findings and risk evaluations support closure of Generic Safety Issue II.E.4.3

  8. IRSN research programs concerning reactor safety

    International Nuclear Information System (INIS)

    Bardelay, J.

    2005-01-01

    This paper is made up of 3 parts. The first part briefly presents the missions of IRSN (French research institute on nuclear safety), the second part reviews the research works currently led by IRSN in the following fields : -) the assessment of safety computer codes, -) thermohydraulics, -) reactor ageing, -) reactivity accidents, -) loss of coolant, -) reactor pool dewatering, -) core meltdown, -) vapor explosion, and -) fission product release. In the third part, IRSN is shown to give a major importance to experimental programs led on research or test reactors for collecting valid data because of the complexity of the physical processes that are involved. IRSN plans to develop a research program concerning the safety of high or very high temperature reactors. (A.C.)

  9. A Computer Program for Assessing Nuclear Safety Culture Impact

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kiyoon; Jae, Moosung [Hanyang Univ., Seoul (Korea, Republic of)

    2014-10-15

    Through several accidents of NPP including the Fukushima Daiichi in 2011 and Chernobyl accidents in 1986, a lack of safety culture was pointed out as one of the root cause of these accidents. Due to its latent influences on safety performance, safety culture has become an important issue in safety researches. Most of the researches describe how to evaluate the state of the safety culture of the organization. However, they did not include a possibility that the accident occurs due to the lack of safety culture. Because of that, a methodology for evaluating the impact of the safety culture on NPP's safety is required. In this study, the methodology for assessing safety culture impact is suggested and a computer program is developed for its application. SCII model which is the new methodology for assessing safety culture impact quantitatively by using PSA model. The computer program is developed for its application. This program visualizes the SCIs and the SCIIs. It might contribute to comparing the level of the safety culture among NPPs as well as improving the management safety of NPP.

  10. Nuclear criticality safety program at the Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lell, R.M.; Fujita, E.K.; Tracy, D.B.; Klann, R.T.; Imel, G.R.; Benedict, R.W.; Rigg, R.H.

    1994-01-01

    The Fuel Cycle Facility (FCF) is designed to demonstrate the feasibility of a novel commercial-scale remote pyrometallurgical process for metallic fuels from liquid metal-cooled reactors and to show closure of the Integral Fast Reactor (IFR) fuel cycle. Requirements for nuclear criticality safety impose the most restrictive of the various constraints on the operation of FCF. The upper limits on batch sizes and other important process parameters are determined principally by criticality safety considerations. To maintain an efficient operation within appropriate safety limits, it is necessary to formulate a nuclear criticality safety program that integrates equipment design, process development, process modeling, conduct of operations, a measurement program, adequate material control procedures, and nuclear criticality analysis. The nuclear criticality safety program for FCF reflects this integration, ensuring that the facility can be operated efficiently without compromising safety. The experience gained from the conduct of this program in the Fuel cycle Facility will be used to design and safely operate IFR facilities on a commercial scale. The key features of the nuclear criticality safety program are described. The relationship of these features to normal facility operation is also described

  11. EGP contribution to Mochovce completion, safety enhancement and operation

    International Nuclear Information System (INIS)

    Letko, A.; Matula, P.

    2000-01-01

    The Re-Evaluation Programme of Mochovce NPP was created in 1995 as an integral part of the completion of the Unit 1 and Unit 2. This program analyzed the general fulfillment of the principle of nuclear safety in the NPP Mochovce project. The analysis has required new corrections of the project, so that the project met the higher safety requirements when starting production. 87 safety measures represent the 'Program'. The basis for their creation were the international missions from 1992 to 1995 which defined. The final safety aim was represented by 'The Technical Specification of the Safety Measures' supported by The Nuclear Power Plant Research Institute and recommended by The Nuclear Regulatory Authority of the Slovak Republic. The technical specification served as a qualified base for the next steps in the pre-project, project and realization stages. (author)

  12. RE/SPEC Inc. technical support to the Repository Technology Program

    International Nuclear Information System (INIS)

    Wagner, R.A.

    1992-06-01

    This report presents a summary of all RE/SPEC Inc. technical support activities to the Repository Technology Program (RTP) from September 1, 1988, through June 30, 1992. The RE/SPEC Inc. activities are grouped into the following categories: project management, project quality assurance (QA), performance assessment (PA), support of the Office of Civilian Radioactive Waste Management (OCRWM) through technical reviews and general assistance, participation in the Department of Energy (DOE) International Program, and code evaluation and documentation

  13. Electrical Switchgear Building No. 5010-ESF Fire Hazards Technical Report

    International Nuclear Information System (INIS)

    N.M. Ruonavaara

    2001-01-01

    The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives, identified in DOE Order 420.1, Change 2, Fire Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire or related event; (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of the employees, the public, and the environment; (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; (4) Property losses from a fire and related events exceeding defined limits established by DOE; and (5) Critical process controls and safety class systems being damaged as a result of a fire and related event

  14. Research notes : are safety corridors really safe? Evaluation of the corridor safety improvement program.

    Science.gov (United States)

    1998-08-26

    High accident frequencies on Oregons highway corridors are of concern to the Oregon Department of Transportation (ODOT). : ODOT adopted the Corridor Safety Improvement Program as part of an overall program of safety improvements using federal and ...

  15. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, July 1--September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A J [comp.

    1989-02-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through June 30, 1988. 71 figs., 24 tabs.

  16. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, July 1--September 30, 1988

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1989-02-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through June 30, 1988. 71 figs., 24 tabs

  17. A process for integrating public involvement into technical/social programs

    International Nuclear Information System (INIS)

    Wiltshire, S.; Williams, C.

    1994-01-01

    Good technical/social decisions--those that are technically sound and publicly acceptable--result from a planning process that considers consulting the public a basic part of the technical program, as basic as hiring a technical consultant to advise about new ideas in computer modeling. This paper describes a specific process for making public involvement an integral part of decision-making about high-level radioactive waste management, so that important technical, social, environmental, economic, and cultural information and values can be incorporated in a meaningful way in planning and carrying out a high-level waste management program or project. The process for integration must consider: (a) the decision or task for which public interaction is needed; (b) the people who should or will want to participate in the decision or task; (c) the goals or purposes of the communication or interaction--the agency's and the public's; (d) the kinds of information the public needs and that the agency needs in order to understand the relevant technical and social issues; and (e) the types of communication or involvement that best serve to meet the agency's and the public's goals

  18. Summary of NRC LWR safety research programs on fuel behavior, metallurgy/materials and operational safety

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1979-09-01

    The NRC light-water reactor safety-research program is part of the NRC regulatory program for ensuring the safety of nuclear power plants. This paper summarizes the results of NRC-sponsored research into fuel behavior, metallurgy and materials, and operational safety. The fuel behavior research program provides a detailed understanding of the response of nuclear fuel assemblies to postulated off-normal or accident conditions. Fuel behavior research includes studies of basic fuel rod properties, in-reactor tests, computer code development, fission product release and fuel meltdown. The metallurgy and materials research program provides independent confirmation of the safe design of reactor vessels and piping. This program includes studies on fracture mechanics, irradiation embrittlement, stress corrosion, crack growth, and nondestructive examination. The operational safety research provides direct assistance to NRC officials concerned with the operational and operational-safety aspects of nuclear power plants. The topics currently being addressed include qualification testing evaluation, fire protection, human factors, and noise diagnostics

  19. Safety Requirements and Modern Technical Requirements in Human Information Systems in Amman Hotels

    OpenAIRE

    Farouq Ahmad Alazzam; Sattam Rakan Allahawiah; Mohammad Nayef Alsarayreh; Kafa Hmoud Abdallah al Nawaiseh

    2015-01-01

    This study aimed to demonstrate the availability of Safety requirements and modern technical requirements in human information systems in Amman hotels. an the most important results of this study is the availability of security and safety requirements in human information systems In Amman hotels and The adequacy of the information that it provided .and show that all departments are not connected by appropriate and effective communication networks in adequate form . Also sophisticated operatin...

  20. Substantiation of the safety in the technical project of Belene NPP

    International Nuclear Information System (INIS)

    Boyadzhiev, A.

    1990-01-01

    The chapter contains an evaluation of the safety of Belene NPP project, based on an experts study of the corresponding volume of the Technical Project documentation of the main contractor and also on other related documents. The authors state that most of the remarks are constitutive, part of them requiring additional information or research. The general explicit conclusion is that the materials on the safety substantiation provided in the project are insufficient for making final statements on the safety of the NPP and there is a need for a detailed analysis and expertise. There are 12 topical conclusion paragraphs and each of them comprises a number of remarks. Among the remarks there are some related to the reactivity coefficient values in certain modes of operation, the problem of the mechanical safety and control system efficiency, the unacceptable operation at nominal power in case of stringent safety rules enforcement, the insufficiency of the PSA, the automatic control systems and the software codes not standing up to the contemporary requirements. (R.Ts.)

  1. Subseabed-disposal program: systems-analysis program plan

    International Nuclear Information System (INIS)

    Klett, R.D.

    1981-03-01

    This report contains an overview of the Subseabed Nuclear Waste Disposal Program systems analysis program plan, and includes sensitivity, safety, optimization, and cost/benefit analyses. Details of the primary barrier sensitivity analysis and the data acquisition and modeling cost/benefit studies are given, as well as the schedule through the technical, environmental, and engineering feasibility phases of the program

  2. Reactor safety research programs. Quarterly progress report, October 1--December 31, 1977

    International Nuclear Information System (INIS)

    Romano, A.J.

    1978-01-01

    HTGR safety evaluation included studies on fission product release; materials, chemistry, and instrumentation; structural evaluation; and analytical safety evaluation. LMFBR safety evaluation included studies on accident sequences, technical coordination of structural integrity, and SSC code development and validation. LWR safety studies included thermal/hydraulic accident analysis, THOR code development, and stress corrosion cracking of PWR steam generator tubing

  3. Technical Safety Requirements for the Gamma Irradiation Facility (GIF)

    CERN Document Server

    Mahn, J A E M J G

    2003-01-01

    This document provides the Technical Safety Requirements (TSR) for the Sandia National Laboratories Gamma Irradiation Facility (GIF). The TSR is a compilation of requirements that define the conditions, the safe boundaries, and the administrative controls necessary to ensure the safe operation of a nuclear facility and to reduce the potential risk to the public and facility workers from uncontrolled releases of radioactive or other hazardous materials. These requirements constitute an agreement between DOE and Sandia National Laboratories management regarding the safe operation of the Gamma Irradiation Facility.

  4. Nuclear Plant Aging Research (NPAR) program plan

    International Nuclear Information System (INIS)

    1991-06-01

    A comprehensive Nuclear Plant Aging Research (NPAR) Program was implemented by the US NRC office of Nuclear Regulatory Research in 1985 to identify and resolve technical safety issues related to the aging of systems, structures, and components in operating nuclear power plants. This is Revision 2 to the Nuclear Plant Aging Research Program Plant. This planes defines the goals of the program the current status of research, and summarizes utilization of the research results in the regulatory process. The plan also describes major milestones and schedules for coordinating research within the agency and with organizations and institutions outside the agency, both domestic and foreign. Currently the NPAR Program comprises seven major areas: (1) hardware-oriented engineering research involving components and structures; (2) system-oriented aging interaction studies; (3) development of technical bases for license renewal rulemaking; (4) determining risk significance of aging phenomena; (5) development of technical bases for resolving generic safety issues; (6) recommendations for field inspection and maintenance addressing aging concerns; (7) and residual lifetime evaluations of major LWR components and structures. The NPAR technical database comprises approximately 100 NUREG/CR reports by June 1991, plus numerous published papers and proceedings that offer regulators and industry important insights to aging characteristics and aging management of safety-related equipment. Regulatory applications include revisions to and development of regulatory guides and technical specifications; support to resolve generic safety issues; development of codes and standards; evaluation of diagnostic techniques; (e.g., for cables and valves); and technical support for development of the license renewal rule. 80 refs., 25 figs., 10 tabs

  5. THE OFFICE OF AEROSPACE RESEARCH SCIENTIFIC AND TECHNICAL INFORMATION PROGRAM

    Science.gov (United States)

    The document outlines the mission and organization of the Office of Aerospace Research (OAR), then describes how its principal product, scientific...effective technical information program, are documented by examples. The role of the Office of Scientific and Technical Information within OAR as performed

  6. Improved technical specifications and related improvements to safety in commercial Nuclear power plants

    International Nuclear Information System (INIS)

    Hoffman, D.R.; Demitrack, T.; Schiele, R.; Jones, J.C.

    2004-01-01

    Many of the commercial nuclear power plants in the United States (US) have been converting a portion of the plant operating license known as the Technical Specifications (TS) in accordance with a document published by the US Nuclear Regulatory Commission (NRC). The TS prescribe commercial nuclear power plant operating requirements. There are several types of nuclear power plants in the US, based on the technology of different vendors, and there is an NRC document that supports each of the five different vendor designs. The NRC documents are known as the Improved Standard Technical Specifications (ISTS) and are contained in a separate document (NUREG series) for each one of the designs. EXCEL Services Corporation (hereinafter EXCEL) has played a major role in the development of the ISTS and in the development, licensing, and implementation of the plant specific Improved Technical Specifications (ITS) (which is based on the ISTS) for the commercial nuclear power plants in the US that have elected to make this conversion. There are currently 103 operating commercial nuclear power plants in the US and 68 of them have successfully completed the conversion to the ITS and are now operating in accordance with their plant specific ITS. The ISTS is focused mainly on safety by ensuring the commercial nuclear reactors can safely shut down and mitigate the consequences of any postulated transient and accident. It accomplishes this function by including requirements directly associated with safety in a document structured systematically and taking into account some key human factors and technical initiatives. This paper discusses the ISTS including its format, content, and detail, the history of the ISTS, the ITS development, licensing, and implementation process, the safety improvements resulting from a plant conversion to ITS, and the importance of the ITS Project to the industry. (Author)

  7. Improved technical specifications and related improvements to safety in commercial Nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.R.; Demitrack, T.; Schiele, R.; Jones, J.C. [EXCEL Services Corporation, 11921 Rockville Pike, Suite 100, Rockville, MD 20852 (United States)]. e-mail: donaldh@excelservices.com

    2004-07-01

    Many of the commercial nuclear power plants in the United States (US) have been converting a portion of the plant operating license known as the Technical Specifications (TS) in accordance with a document published by the US Nuclear Regulatory Commission (NRC). The TS prescribe commercial nuclear power plant operating requirements. There are several types of nuclear power plants in the US, based on the technology of different vendors, and there is an NRC document that supports each of the five different vendor designs. The NRC documents are known as the Improved Standard Technical Specifications (ISTS) and are contained in a separate document (NUREG series) for each one of the designs. EXCEL Services Corporation (hereinafter EXCEL) has played a major role in the development of the ISTS and in the development, licensing, and implementation of the plant specific Improved Technical Specifications (ITS) (which is based on the ISTS) for the commercial nuclear power plants in the US that have elected to make this conversion. There are currently 103 operating commercial nuclear power plants in the US and 68 of them have successfully completed the conversion to the ITS and are now operating in accordance with their plant specific ITS. The ISTS is focused mainly on safety by ensuring the commercial nuclear reactors can safely shut down and mitigate the consequences of any postulated transient and accident. It accomplishes this function by including requirements directly associated with safety in a document structured systematically and taking into account some key human factors and technical initiatives. This paper discusses the ISTS including its format, content, and detail, the history of the ISTS, the ITS development, licensing, and implementation process, the safety improvements resulting from a plant conversion to ITS, and the importance of the ITS Project to the industry. (Author)

  8. Procedures for evaluating technical specifications (PETS)

    International Nuclear Information System (INIS)

    Samanta, P.K.; Boccio, J.L.; Vesely, W.E.

    1987-01-01

    In this paper, aspects of technical specifications relating to Generic Issues B-56 and B-61 are discussed from a risk-standpoint. These primarily deal with the risk issues associated with (1) adaptive diesel test requirements/surveillance test intervals, and (2) the effectiveness of cumulative outage time requirements for controlling downtime risk. Risk and reliability approaches are presented which (1) allow risk-acceptable test intervals to be determined for any diesel and (2) show the potential risk-control capability of prescribed allowed cumulative outage times. This work was conducted through NRC's Procedures for Evaluating Technical Specifications (PETS) Program. The overall objective of this program is to develop and demonstrate methodologies that utilize risk insights and reliability techniques for evaluating the scope, detailed requirements, and safety impact of plant technical specifications

  9. Instrument and Survey Analysis Technical Report: Program Implementation Survey. Technical Report #1112

    Science.gov (United States)

    Alonzo, Julie; Tindal, Gerald

    2011-01-01

    This technical document provides guidance to educators on the creation and interpretation of survey instruments, particularly as they relate to an analysis of program implementation. Illustrative examples are drawn from a survey of educators related to the use of the easyCBM learning system. This document includes specific sections on…

  10. Prioritized schedule for review of industrial safety and occupational health programs

    International Nuclear Information System (INIS)

    1996-12-01

    This document provides the rationale and criteria for developing a schedule for reviewing the Industrial Safety and Occupational Health programs for the Management and Operating Contractor (MOC) of the Waste Isolation Pilot Plant. The reviews will evaluate the MOC's compliance with applicable Department of Energy (DOE) orders and regulatory requirements. The scope of this task includes developing prioritization criteria, determining the review priority of each program based upon the criteria, identifying review requirements for each program, and preparing a detailed review schedule. In keeping with the Carlsbad Area Office (CAO) structure for the review of site activities, these review activities will be addressed as surveillances, although the original basis for this requirement refers to these activities as appraisals. Surveillances and appraisals are the same within this document. Surveillances are defined as: ''The act of monitoring or observing to verify whether an item, activity, system, or process conforms to specified requirements. Surveillance of a technical work activity is normally done in real time, i.e., the surveillance is accomplished as the work is being performed.''

  11. Risk-based configuration control: Application of PSA in improving technical specifications and operational safety

    International Nuclear Information System (INIS)

    Samanta, P.K.; Kim, I.S.; Vesely, W.E.

    1992-01-01

    Risk-based configuration control is the management of component configurations using a risk perspective to control risk and assure safety. A configuration, as used here, is a set of component operability statuses that define the state of a nuclear power plant. If the component configurations that have high risk implications do not occur, then the risk from the operation of nuclear power plants would be minimal. The control of component configurations, i.e., the management of component statuses, to minimize the risk from components being unavailable, becomes difficult, because the status of a standby safety system component is often not apparent unless it is tested. Controlling plant configuration from a risk-perspective can provide more direct risk control and also more operational flexibility by allowing looser controls in areas unimportant to risk. Risk-based configuration control approaches can be used to replace parts of nuclear power plant Technical Specifications. With the advances in probabilistic safety assessment (PSA) technology, such approaches to improve Technical Specifications and operational safety are feasible. In this paper, we present an analysis of configuration risks, and a framework for risk-based configuration control to achieve the desired control of risk-significant configurations during plant operation

  12. Safety and reliability of automatization software

    Energy Technology Data Exchange (ETDEWEB)

    Kapp, K; Daum, R [Karlsruhe Univ. (TH) (Germany, F.R.). Lehrstuhl fuer Angewandte Informatik, Transport- und Verkehrssysteme

    1979-02-01

    Automated technical systems have to meet very high requirements concerning safety, security and reliability. Today, modern computers, especially microcomputers, are used as integral parts of those systems. In consequence computer programs must work in a safe and reliable mannter. Methods are discussed which allow to construct safe and reliable software for automatic systems such as reactor protection systems and to prove that the safety requirements are met. As a result it is shown that only the method of total software diversification can satisfy all safety requirements at tolerable cost. In order to achieve a high degree of reliability, structured and modular programming in context with high level programming languages are recommended.

  13. Directory of Academic Programs in Occupational Safety and Health.

    Science.gov (United States)

    Weis, William J., III; And Others

    This booklet describes academic program offerings in American colleges and universities in the area of occupational safety and health. Programs are divided into five major categories, corresponding to each of the core disciplines: (1) occupational safety and health/industrial hygiene, (2) occupational safety, (3) industrial hygiene, (4)…

  14. OPG waterways public safety program

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, T [Ontario Power Generation Inc., Niagara Falls, ON (Canada)

    2009-07-01

    Ontario Power Generation (OPG) has 64 hydroelectric generating stations, 241 dams, and 109 dams in Ontario's registry with the International Commission on Large Dams (ICOLD). In 1986, it launched a formal dam safety program. This presentation addressed the importance of public safety around dams. The safety measures are timely because of increasing public interaction around dams; the public's unawareness of hazards; public interest in extreme sports; easier access by recreational vehicles; the perceived right of public to access sites; and the remote operation of hydroelectric stations. The presentation outlined the OPG managed system approach, with particular reference to governance; principles; standards and procedures; and aspects of implementation. Specific guidelines and governing documents for public safety around dams were identified, including guidelines for public safety of waterways; booms and buoys; audible warning devices and lights; public safety signage; fencing and barricades; and risk assessment for public safety around waterways. The presentation concluded with a discussion of audits and management reviews to determine if safety objectives and targets have been met. figs.

  15. Technical issues for WIPP

    International Nuclear Information System (INIS)

    Hunter, T.O.

    1979-01-01

    Emplacement of wastes in the WIPP will include experiments on various waste types which will provide essential data on waste-rock interaction and repository response. These experiments will include evolution of the synergistic effects of both heat production, radiation, and actual waste forms. While these studies will provide essential data on the validity of waste isolation in bedded salt, they will be preceded by a broad-based experimental program which will resolve many of the current technical issues providing not only an assessment of the safety of performing such experiments but also the technical basis for assurance that the appropriate experiments are performed. Data and predictive modeling techniques, which are currently available, can bound the consequences associated with these technical issues. Predictions of the impact on public safety based on these analyses indicate that safe waste disposal in WIPP salt beds is achievable; however, a major use of WIPP will be to conduct realistic experiments with HLW forms to address some of the unresolved details of these waste/salt interactions

  16. Review of occupational safety and health activities in Southern Africa funded under the DANIDA/ILO framework agreement on technical cooperation

    DEFF Research Database (Denmark)

    Hasle, Peter; Jørgensen, Claus

    2003-01-01

    A review of occupational safety and health activities in Southern Africa (SADC region) which have been funded under the DANIDA/ILO framework agreement on technical cooperation.......A review of occupational safety and health activities in Southern Africa (SADC region) which have been funded under the DANIDA/ILO framework agreement on technical cooperation....

  17. Fundamentals of a patient safety program

    International Nuclear Information System (INIS)

    Frush, Karen S.

    2008-01-01

    Thousands of people are injured or die from medical errors and adverse events each year, despite being cared for by hard-working, intelligent and well-intended health care professionals, working in the highly complex and high-risk environment of the American health care system. Patient safety leaders have described a need for health care organizations to make error prevention a major strategic objective while at the same time recognizing the importance of transforming the traditional health care culture. In response, comprehensive patient safety programs have been developed with the aim of reducing medical errors and adverse events and acting as a catalyst in the development of a culture of safety. Components of these programs are described, with an emphasis on strategies to improve pediatric patient safety. Physicians, as leaders of the health care team, have a unique opportunity to foster the culture and commitment required to address the underlying systems causes of medical error and harm. (orig.)

  18. 76 FR 18624 - Research, Technical Assistance and Training Programs: Notice of Final Circular

    Science.gov (United States)

    2011-04-04

    ... to FTA Circular 6100.1D, Research and Technical Assistance Training Program: Application Instructions... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Research, Technical Assistance and Training Programs: Notice of Final Circular AGENCY: Federal Transit Administration (FTA), DOT. ACTION...

  19. PRACA Enhancement Pilot Study Report: Engineering for Complex Systems Program (formerly Design for Safety), DFS-IC-0006

    Science.gov (United States)

    Korsmeyer, David; Schreiner, John

    2002-01-01

    This technology evaluation report documents the findings and recommendations of the Engineering for Complex Systems Program (formerly Design for Safety) PRACA Enhancement Pilot Study of the Space Shuttle Program's (SSP's) Problem Reporting and Corrective Action (PRACA) System. A team at NASA Ames Research Center (ARC) performed this Study. This Study was initiated as a follow-on to the NASA chartered Shuttle Independent Assessment Team (SIAT) review (performed in the Fall of 1999) which identified deficiencies in the current PRACA implementation. The Pilot Study was launched with an initial qualitative assessment and technical review performed during January 2000 with the quantitative formal Study (the subject of this report) started in March 2000. The goal of the PRACA Enhancement Pilot Study is to evaluate and quantify the technical aspects of the SSP PRACA systems and recommend enhancements to address deficiencies and in preparation for future system upgrades.

  20. Improving operational safety management through probabilistic safety assessment on personal computers

    International Nuclear Information System (INIS)

    1988-10-01

    The Technical Committee Meeting considered the current effort in the implementation and use of PSA information for day-to-day operational safety management on Personal Computers. Due to the very recent development of the necessary hardware and software for Personal Computers, the application of PSA information for day-to-day operational safety management on PCs is essentially still in a pioneering stage. There is at present only one such system for end users existing, the PRISIM (Plant Risk Status Information Management) program for which a limited practical application experience is available. Others are still in the development stage. The main aim of the Technical Committee Meeting was to discuss the present status of PSA based systems for operational safety management support on small computers, to consider practical aspects when implementing these systems into a nuclear installation and to address problems related to the further work in the area. A separate abstract was prepared for the summary of the Technical Committee Meeting and for the 8 papers presented by the participants. Refs, figs and tabs

  1. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Larson, H L

    2007-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  2. Technical Safety Requirements for the B695 Segment

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D

    2008-09-11

    This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment (LLNL 2007). The analysis presented there determined that the B695 Segment is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment are shown in the B695 Segment DSA. Activities typically conducted in the B695 Segment include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive, mixed, and hazardous waste. Operations specific to the SWPA include sorting and segregating waste, lab-packing, sampling, and crushing empty drums that previously contained waste. Furthermore, a Waste Packaging Unit will be permitted to treat hazardous and mixed waste. RHWM generally processes LLW with no, or extremely low, concentrations of transuranics (i.e., much less than 100 n

  3. Technical Safety Requirements for the B695 Segment

    International Nuclear Information System (INIS)

    Laycak, D.

    2008-01-01

    This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment (LLNL 2007). The analysis presented there determined that the B695 Segment is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment are shown in the B695 Segment DSA. Activities typically conducted in the B695 Segment include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive, mixed, and hazardous waste. Operations specific to the SWPA include sorting and segregating waste, lab-packing, sampling, and crushing empty drums that previously contained waste. Furthermore, a Waste Packaging Unit will be permitted to treat hazardous and mixed waste. RHWM generally processes LLW with no, or extremely low, concentrations of transuranics (i.e., much less than 100 n

  4. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  5. Index to Nuclear Safety. A technical progress review by chronology, permuted title, and author. Vol. 11, No. 1--Vol. 17, No. 6

    International Nuclear Information System (INIS)

    Cottrell, W.B.; Klein, A.

    1977-01-01

    This index to Nuclear Safety covers articles in Nuclear Safety Vol. 11, No. 1 (Jan.-Feb. 1970), through Vol. 17, No. 6 (Nov.-Dec. 1976). The index includes a chronological list of articles (including abstract) followed by KWIC and Author Indexes. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. The index lists over 350 technical articles in the last six years of publication

  6. Index to Nuclear Safety. A technical progress review by chronology, permuted title, and author. Vol. 11, No. 1--Vol. 17, No. 6

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, W.B.; Klein, A.

    1977-02-23

    This index to Nuclear Safety covers articles in Nuclear Safety Vol. 11, No. 1 (Jan.-Feb. 1970), through Vol. 17, No. 6 (Nov.-Dec. 1976). The index includes a chronological list of articles (including abstract) followed by KWIC and Author Indexes. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. The index lists over 350 technical articles in the last six years of publication.

  7. Safety test facilities. Needs and concepts. A French evaluation

    International Nuclear Information System (INIS)

    Tretiakoff, O.; Bailly, J.

    1976-01-01

    The fuel behavior of LMFBRs in the event of an accident has been tested in-pile in the SCARABEE program. These tests will be carried on in the framework of an international cooperation on irradiated fuels: this is the purpose of the CABRI and SCARABEE N programs. All those studies should enable to assess safety margins between accident conditions and the technical specifications of the reactor. The purpose of this paper is to explain how a logical set of simple observations has led us to the present state of the Cadarache in-pile experimental safety program and how it may help us to find our way in a dense forest of both technical and psychological difficulties

  8. Blueprint for nuclear safety - a nonregulatory strategy

    International Nuclear Information System (INIS)

    Knight, J.P.

    1989-01-01

    The Department of Energy operates a nuclear complex that now numbers over 250 facilities nationwide, many of which date back to the 1940s and 1950s. In 1985, Secretary Herrington moved to establish the Office of Environment, Safety and Health, give it needed resources and authorities, and begin extensive environmental protection and safety evaluations of all major DOE sites and facilities. On the nuclear safety side this necessitates an integrated program that not only strengthens oversight but also builds DOE-wide technical capabilities and promotes safety performance. This has led up to focus our attention on three areas: (1) the DOE safety oversight system -- its resources, technical capabilities, and effectiveness; (2) the safety policy development and review; and (3) the Department's capabilities to foster technical inquisitiveness and overall excellence in safety performance. The essence of this approach is found in this last term -- performance. Performance that is results-oriented; founded on realized safety enhancements and risk reduction, not merely regulation for its own sake. Performance not merely in terms of hardware fixes, but also focusing on the human part of the safety equation

  9. 49 CFR 659.19 - System safety program plan: contents.

    Science.gov (United States)

    2010-10-01

    ... implementation of the system safety program. (j) A description of the process used by the rail transit agency to... the rail transit agency to manage safety issues. (d) The process used to control changes to the system... hazard management program. (n) A description of the process used for facilities and equipment safety...

  10. Safety goals and safety culture opening plenary. 1. WANO's Role in Maintaining and Improving Safety Culture

    International Nuclear Information System (INIS)

    Tsutsumi, Ryosuke

    2001-01-01

    Over the past several years, operators of the world's nuclear plants have compiled an increasingly impressive record of operational performance. Among the many factors that have led to this improvement are the unprecedented cooperation and information exchange among the world's nuclear operators. This paper presents the World Association of Nuclear Operators (WANO) operating experience program and WANO peer review program as examples of the kinds of interaction that are occurring around the globe to maintain and improve the nuclear safety culture. In addition, some unique features of WANO are discussed. WANO has established four programs to help its members communicate effectively with each other. These include the exchange of operating experiences, voluntary peer reviews, professional and technical development, and technical support and exchange. The operating experience program alerts members to events that have occurred at other NPPs and enables members to take appropriate actions to prevent event recurrence. When an event occurs at a plant, management at that plant analyses the event and completes an event report, which is then sent to the WANO regional center to which the plant belongs. After a regional center review and necessary iteration, the report is posted onto the WANO Web site to make it available to all WANO members. By the end of 2000, more than 1500 event reports had been posted. The WANO Peer Review Program is a unique opportunity for members to learn and share the best worldwide insights into safe and reliable nuclear operations. The peer review program has become one of WANO's most important activities containing all essential elements of WANO's mission. A WANO peer review team consists of 15 to 16 people with NPP experience; most team members are from countries outside the one that they are visiting. These teams of peers from plants around the world visit host plants upon request to identify strengths and areas for improvement, with a strong

  11. Computer code package RALLY for probabilistic safety assessment of large technical systems

    International Nuclear Information System (INIS)

    Gueldner, W.; Polke, H.; Spindler, H.; Zipf, G.

    1981-09-01

    This report describes the program system RALLY to compute the reliability of large and intermeshed technical systems. In addition to a short explanation of the different programs, the possible applications of the program system RALLY are demonstrated. Finally, the most important studies carried out so far on RALLY are discussed. (orig.) [de

  12. Technical reference book for the Energy Economic Data Base (EEDB) Program

    International Nuclear Information System (INIS)

    Allen, R.E.; Benedict, R.G.; Hodson, J.S.

    1984-09-01

    The Energy Economic Data Base (EEDB) Program is sponsored by the US Department of Energy (DOE) for the purpose of developing current technical and cost information for nuclear and comparison electric power generating stations. The EEDB contains a variety of nuclear and coal-fired power plant technical data models. Each of these data models is a complete and detailed conceptual design for a single unit, commercial, steam electric, power generating station located on a standard hypothetical Middletown site. A major effort for the Sixth Update (1983) has been the updating of the system design descriptions and selected engineering drawings for the technical data models. This update took the form of revising and expanding the system design descriptions and engineering drawings contained in the Base Data Studies, to include the technical information developed and recorded in the first five EEDB updates. The results of the update effort are contained in this EEDB Program Technical Reference Book

  13. 77 FR 9216 - Native American Career and Technical Education Program; Proposed Waivers and Extension of the...

    Science.gov (United States)

    2012-02-16

    ... DEPARTMENT OF EDUCATION Native American Career and Technical Education Program; Proposed Waivers...) 2007 under the Native American Career and Technical Education Program (NACTEP), the Secretary proposes... secondary school career and technical education programs. \\1\\ Section 116(a)(2) of the Carl D. Perkins...

  14. Passive and inherent safety technologies for light-water nuclear reactors

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1990-07-01

    Passive/inherent safety implies a technical revolution in our approach to nuclear power safety. This direction is discussed herein for light-water reactors (LWRs) -- the predominant type of power reactor used in the world today. At Oak Ridge National Laboratory (ORNL) the approach to the development of passive/inherent safety for LWRs consists of four steps: identify and quantify safety requirements and goals; identify and quantify the technical functional requirements needed for safety; identify, invent, develop, and quantify technical options that meet both of the above requirements; and integrate safety systems into designs of economic and reliable nuclear power plants. Significant progress has been achieved in the first three steps of this program. The last step involves primarily the reactor vendors. These activities, as well as related activities worldwide, are described here. 27 refs., 7 tabs

  15. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Laycak, D.T.

    2010-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting

  16. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2008-06-16

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas

  17. India's power program and its concern over environmental safety

    International Nuclear Information System (INIS)

    Prasad, G.E.; Mittra, J.

    2001-01-01

    India's need of electrical power is enormous and per capita consumption of power is to be increased at least by ten times to reach the level of world average. Thermal Power generation faces two fold problems. First, there is scarcity of good quality fuel and second, increasing environmental pollution. India's self reliant, three stage, 'closed-fuel-cycle' nuclear power program is promising better solution to the above problems. To ensure Radiation Protection and Safety of Radiation Sources, Indian Nuclear Power program emphasizes upon design and engineering safety by incorporating necessary safety features in the design, operational safety through structured training program and typically through software packages to handle rare unsafe events and regulation by complying safety directives. A health survey among the radiation workers indicates that there is no extra threat to the public from nuclear power program. Based on latest technology, as available in case of nuclear power option, it is quite possible to meet high energy requirement with least impact on the environment.. (authors)

  18. Training Programs on Radiological Safety for users of Ionizing Radiations in Peru; Programas de formacion en proteccion radiologica para usuarios de radiaciones ionizantes en el Peru

    Energy Technology Data Exchange (ETDEWEB)

    Medina Gironzini, E.

    2003-07-01

    In Peru, people who work with ionizing radiations must have an authorization (Individual License) as established in the Radiological Safety Regulations, which are the mandatory rules. The Technical Office of the National Authority (OTAN), which is the technical organ of the Peruvian Institute of Nuclear Energy (IPEN) in charge of controlling radiations within the country, grants the authorization after the candidate demonstrates that he/she knows the specific use of the technique using radiations, as well as the aspects related to safety and radiological protection. Since it was created in 1972, the Superior Center of Nuclear Studies (VSEN) from IPEN has carried out different training courses so that people can work safety with ionizing radiations in medicine, industry and investigation. The analysis of the radiological safety programs carried out by CSEN during the last 30 years, which allowed the training of more than 2200 people in the country and, at the same time, made possible the securing of the respective Individual License, is presented in this work. The courses, nuclear medicine, radiotherapy, industrial radiography, nuclear gauges gamma irradiator, etc..., are part of the continuous education program of CSEN. (Author)

  19. Kentucky Career and Technical Teacher Education Programs/Ongoing Issues

    Science.gov (United States)

    Workman, Ed; Stubbs, Joyce

    2012-01-01

    What is Career and Technical Education (CTE)? How does one identify and recognized strong CTE educational programs? And after one has answers to the first two questions, how does one successfully align CTE teacher education (CTTE) programs across large institutions such as colleges within universities, or in Kentucky's endeavor within universities…

  20. SRTC criticality safety technical review: Nuclear Criticality Safety Evaluation 93-04 enriched uranium receipt

    International Nuclear Information System (INIS)

    Rathbun, R.

    1993-01-01

    Review of NMP-NCS-930087, open-quotes Nuclear Criticality Safety Evaluation 93-04 Enriched Uranium Receipt (U), July 30, 1993, close quotes was requested of SRTC (Savannah River Technology Center) Applied Physics Group. The NCSE is a criticality assessment to determine the mass limit for Engineered Low Level Trench (ELLT) waste uranium burial. The intent is to bury uranium in pits that would be separated by a specified amount of undisturbed soil. The scope of the technical review, documented in this report, consisted of (1) an independent check of the methods and models employed, (2) independent HRXN/KENO-V.a calculations of alternate configurations, (3) application of ANSI/ANS 8.1, and (4) verification of WSRC Nuclear Criticality Safety Manual procedures. The NCSE under review concludes that a 500 gram limit per burial position is acceptable to ensure the burial site remains in a critically safe configuration for all normal and single credible abnormal conditions. This reviewer agrees with that conclusion

  1. Japan's international cooperation programs on seismic safety of nuclear power plants

    International Nuclear Information System (INIS)

    Sanada, Akira

    1997-01-01

    MITI is promoting many international cooperation programs on nuclear safety area. The seismic safety of nuclear power plants (NPPs) is a one of most important cooperation areas. Experts from MITI and related organization join the multilateral cooperation programs carried out by international organization such as IAEA, OECD/NEA etc. MITI is also promoting bilateral cooperation programs such as information exchange meetings, training programs and seminars on nuclear safety with several countries. Concerning to the cooperation programs on seismic safety of NPPs such as information exchange and training, MITI shall continue and expand these programs. (J.P.N.)

  2. Safety Test Program Summary SNAP 19 Pioneer Heat Source Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1971-07-01

    Sixteen heat source assemblies have been tested in support of the SNAP 19 Pioneer Safety Test Program. Seven were subjected to simulated reentry heating in various plasma arc facilities followed by impact on earth or granite. Six assemblies were tested under abort accident conditions of overpressure, shrapnel impact, and solid and liquid propellant fires. Three capsules were hot impacted under Transit capsule impact conditions to verify comparability of test results between the two similar capsule designs, thus utilizing both Pioneer and Transit Safety Test results to support the Safety Analysis Report for Pioneer. The tests have shown the fuel is contained under all nominal accident environments with the exception of minor capsule cracks under severe impact and solid fire environments. No catastrophic capsule failures occurred in this test which would release large quantities of fuel. In no test was fuel visible to the eye following impact or fire. Breached capsules were defined as those which exhibit thoria contamination on its surface following a test, or one which exhibited visible cracks in the post test metallographic analyses.

  3. 77 FR 30512 - Native American Career and Technical Education Program; Final Waivers and Extension of Project...

    Science.gov (United States)

    2012-05-23

    ... DEPARTMENT OF EDUCATION Native American Career and Technical Education Program; Final Waivers and... American Career and Technical Education Program Catalog of Federal Domestic Assistance (CFDA) Number: 84... and Technical Education Program (NACTEP), the Secretary waives 34 CFR 75.250 and 75.261(c)(2) in order...

  4. The NASA Aviation Safety Program: Overview

    Science.gov (United States)

    Shin, Jaiwon

    2000-01-01

    In 1997, the United States set a national goal to reduce the fatal accident rate for aviation by 80% within ten years based on the recommendations by the Presidential Commission on Aviation Safety and Security. Achieving this goal will require the combined efforts of government, industry, and academia in the areas of technology research and development, implementation, and operations. To respond to the national goal, the National Aeronautics and Space Administration (NASA) has developed a program that will focus resources over a five year period on performing research and developing technologies that will enable improvements in many areas of aviation safety. The NASA Aviation Safety Program (AvSP) is organized into six research areas: Aviation System Modeling and Monitoring, System Wide Accident Prevention, Single Aircraft Accident Prevention, Weather Accident Prevention, Accident Mitigation, and Synthetic Vision. Specific project areas include Turbulence Detection and Mitigation, Aviation Weather Information, Weather Information Communications, Propulsion Systems Health Management, Control Upset Management, Human Error Modeling, Maintenance Human Factors, Fire Prevention, and Synthetic Vision Systems for Commercial, Business, and General Aviation aircraft. Research will be performed at all four NASA aeronautics centers and will be closely coordinated with Federal Aviation Administration (FAA) and other government agencies, industry, academia, as well as the aviation user community. This paper provides an overview of the NASA Aviation Safety Program goals, structure, and integration with the rest of the aviation community.

  5. The Fukushima Daiichi Accident. Technical Volume 2/5. Safety Assessment

    International Nuclear Information System (INIS)

    2015-08-01

    Technical Volume 1 of this report has described what happened during the accident at the Fukushima Daiichi nuclear power plant (NPP). This volume begins (Section 2.1) with a review of how the design basis of the site for external events was assessed initially and then reassessed over the life of the NPP. The section also describes the physical changes that were made to the units as a result. The remainder of the volume describes the treatment of beyond design basis events in the safety assessment of the site, the accident management provisions, the effectiveness of regulatory programmes, human and organizational factors and the safety culture, and the role of operating experience. Further background information is contained in three annexes included on the CD-ROM of this Technical Volume which describe analytical investigations of the accident along with information on topics such as system performance, defence in depth and severe accident phenomena. Section 2.2 provides an assessment of the systems that failed, resulting in a failure to maintain the fundamental safety functions in Units 1–3, which were in operation at the time of the tsunami and in which the reactor pressure vessels (RPV) and containment vessels failed. The section also describes Units 4-6, which were shut down at the time of the tsunami, and the site’s central spent fuel storage facility. Section 2.3 discusses the probabilistic and deterministic safety assessments of beyond design basis accidents (BDBAs) that had been performed for the plant and the insights from these assessments that had led to changes in the plant’s design. The section pays particular attention to the assessment of extreme natural hazards, such as the one which led to the total loss of AC power supply on the site. The additional loss of DC power supply in Units 1 and 2 played a key role in the progression of the accident because it impeded the diagnosis of plant conditions and made the operators unaware of the status of

  6. HTGR safety research concerns at NRC

    International Nuclear Information System (INIS)

    Minogue, R.B.

    1982-01-01

    A general discussion of HTGR technical and safety-related problems is given. The broad areas of current research programs specific to the Fort St. Vrain reactor and applicable to HTGR technology are summarized

  7. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    Science.gov (United States)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  8. Tanks Focus Area FY98 midyear technical review

    Energy Technology Data Exchange (ETDEWEB)

    Schlahta, S.N.; Brouns, T.M.

    1998-06-01

    The Tanks Focus Area (TFA) serves as the DOE`s Office of Environmental Management`s national technology and solution development program for radioactive waste tank remediation. Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. In total, 17 technologies and technical solutions were selected for review. The purpose of each review was to understand the state of development of each technology selected for review and to identify issues to be resolved before the technology or technical solution progressed to the next level of maturity. The reviewers provided detailed technical and programmatic recommendations and comments. The disposition of these recommendations and comments and their impact on the program is documented in this report.

  9. Tanks Focus Area FY98 midyear technical review

    International Nuclear Information System (INIS)

    Schlahta, S.N.; Brouns, T.M.

    1998-06-01

    The Tanks Focus Area (TFA) serves as the DOE's Office of Environmental Management's national technology and solution development program for radioactive waste tank remediation. Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. In total, 17 technologies and technical solutions were selected for review. The purpose of each review was to understand the state of development of each technology selected for review and to identify issues to be resolved before the technology or technical solution progressed to the next level of maturity. The reviewers provided detailed technical and programmatic recommendations and comments. The disposition of these recommendations and comments and their impact on the program is documented in this report

  10. Quo Vadis Payload Safety?

    Science.gov (United States)

    Fodroci, Michael P.; Schwartz, MaryBeth

    2008-01-01

    As we complete the preparations for the fourth Hubble Space Telescope (HST) servicing mission, we note an anniversary approaching: it was 30 years ago in July that the first HST payload safety review panel meeting was held. This, in turn, was just over a year after the very first payload safety review, a Phase 0 review for the Tracking and Data Relay Satellite and its Inertial Upper Stage, held in June of 1977. In adapting a process that had been used in the review and certification of earlier Skylab payloads, National Aeronautics and Space Administration (NASA) engineers sought to preserve the lessons learned in the development of technical payload safety requirements, while creating a new process that would serve the very different needs of the new space shuttle program. Their success in this undertaking is substantiated by the fact that this process and these requirements have proven to be remarkably robust, flexible, and adaptable. Furthermore, the payload safety process has, to date, served us well in the critical mission of safeguarding our astronauts, cosmonauts, and spaceflight participants. Both the technical requirements and their interpretation, as well as the associated process requirements have grown, evolved, been streamlined, and have been adapted to fit multiple programs, including the International Space Station (ISS) program, the Shuttle/Mir program, and most recently the United States Constellation program. From its earliest days, it was anticipated that the payload safety process would be international in scope, and so it has been. European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA), German Space Agency (DLR), Canadian Space Agency (CSA), Russian Space Agency (RSA), and many additional countries have flown payloads on both the space shuttle and on the ISS. Our close cooperation and long-term working relationships have culminated in the franchising of the payload safety review process itself to our partners in ESA, which in

  11. German Light-Water-Reactor Safety-Research Program

    International Nuclear Information System (INIS)

    Seipel, H.G.; Lummerzheim, D.; Rittig, D.

    1977-01-01

    The Light-Water-Reactor Safety-Research Program, which is part of the energy program of the Federal Republic of Germany, is presented in this article. The program, for which the Federal Minister of Research and Technology of the Federal Republic of Germany is responsible, is subdivided into the following four main problem areas, which in turn are subdivided into projects: (1) improvement of the operational safety and reliability of systems and components (projects: quality assurance, component safety); (2) analysis of the consequences of accidents (projects: emergency core cooling, containment, external impacts, pressure-vessel failure, core meltdown); (3) analysis of radiation exposure during operation, accident, and decommissioning (project: fission-product transport and radiation exposure); and (4) analysis of the risk created by the operation of nuclear power plants (project: risk and reliability). Various problems, which are included in the above-mentioned projects, are concurrently studied within the Heiss-Dampf Reaktor experiments

  12. 76 FR 35474 - UAW-Chrysler Technical Training Center, Technology Training Joint Programs Staff, Including On...

    Science.gov (United States)

    2011-06-17

    ...-Chrysler Technical Training Center, Technology Training Joint Programs Staff, Including On-Site Leased Workers From Cranks, O/E Learning, DBSI, IDEA, and Tonic/MVP, Detroit, MI; UAW-Chrysler Technical Training... workers and former workers of UAW-Chrysler Technical Training Center, Technology Training Joint Programs...

  13. 78 FR 25292 - Announcement of Funding Awards; Office of Native American Programs Training and Technical...

    Science.gov (United States)

    2013-04-30

    ... Awards; Office of Native American Programs Training and Technical Assistance; Fiscal Year 2012 AGENCY... (NOFA) for the Office of Native American Programs Training and Technical Assistance (ONAP T&TA). This... nonprofit organizations, as well as for-profit entities to provide Training & Technical Assistance to the...

  14. Strategies to Improve Management of Shoulder Dystocia Under the AHRQ Safety Program for Perinatal Care.

    Science.gov (United States)

    McArdle, Jill; Sorensen, Asta; Fowler, Christina I; Sommerness, Samantha; Burson, Katrina; Kahwati, Leila

    2018-03-01

    To assess implementation of safety strategies to improve management of births complicated by shoulder dystocia in labor and delivery units. Mixed-methods implementation evaluation. Labor and delivery units (N = 18) in 10 states participating in the Safety Program for Perinatal Care (SPPC). Shoulder dystocia is unpredictable, requiring rapid and coordinated action. Key informants were labor and delivery unit staff who implemented SPPC safety strategies. The SPPC was implemented by using the TeamSTEPPS teamwork and communication framework and tools, applying safety science principles (standardization, independent checks, and learn from defects) to shoulder dystocia management, and establishing an in situ simulation program focused on shoulder dystocia to practice teamwork and communication skills. Unit staff received training, a toolkit, technical assistance, and unit-specific feedback reports. Quantitative data on unit-reported process improvement measures and qualitative data from staff interviews were used to understand changes in use of safety principles, teamwork/communication, and in situ simulation. Use of shoulder dystocia safety strategies improved on the units. Differences between baseline and follow-up (10 months) were as follows: in situ simulation (50% vs. 89%), teamwork and communication (67% vs. 94%), standardization (67% to 94%), learning from defects (67% vs. 89%), and independent checks (56% vs. 78%). Interview data showed reasons to address management of shoulder dystocia, various approaches to implement safety practices, and facilitators and barriers to implementation. Successful management of shoulder dystocia requires a rapid, standardized, and coordinated response. The SPPC strategies to increase safety of shoulder dystocia management are scalable, replicable, and adaptable to unit needs and circumstances. Copyright © 2018 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights

  15. Nuclear safety assessment of nuclear power plants and nuclear risk in Eastern Europe and other regions. Scientific-technical cooperation with nuclear regulatory authorities and technical support organizations (TSOs); Einschaetzung der nuklearen Sicherheit von Kernkraftwerken sowie nuklearer Risiken in Osteuropa und anderen Regionen. Wissenschaftlich-technische Zusammenarbeit mit atomrechtlichen Behoerden und deren Sachverstaendigenorganisationen (TSO)

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Holger

    2014-09-15

    The BMUB/BfS project 3611I01512 formed the frame of the GRS for the scientifictechnical cooperation with Technical Support Organisations and Nuclear Regulatory Authorities in the field of nuclear safety of NPPs and for the evaluation of nuclear risks in Eastern Europe and other regions for the period from September 2011 till June 2014. In the present final report main results of the project are described. The project comprised the following technical topics: - Record status of NPP modernisation programs, Monitoring and evaluation of modernisation programs; - Design basis and severe accident analyses for NPP with PWR (WWER-440, WWER-1000); - Cooperation with INSC partner countries on DBA, BDBA and severe accident analyses for WWER plants of generation 3+ and on building NRA and safety evaluation capacities; - Decommissioning of nuclear facilities and disposal of radioactive waste; - Evaluation of new reactor concepts and their safety design; Panels at regulatory level. The work results are preceded by a summary on the activities related to the project management and to the planning of the bilateral work.

  16. Technical report: technical development on the silicide plate-type fuel experiment at nuclear safety research reactor

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Soyama, Kazuhiko; Ichikawa, Hiroki

    1991-08-01

    According to a reduction of fuel enrichment from 45 w/o 235 U to 20 w/o, an aluminide plate-type fuel used currently in the domestic research and material testing reactors will be replaced by a silicide plate-type one. One of the major concern arisen from this alternation is to understand the fuel behavior under simulated reactivity initiated accident (RIA) conditions, this is strongly necessary from the safety and licensing point of view. The in-core RIA experiments are, therefore, carried out at Nuclear Safety Research Reactor (NSRR) in Japan Atomic Energy Research Institute (JAERI). The silicide plate-type fuel consisted of the ternary alloy of U-Al-Si as a meat with uranium density up to 4.8 g/cm 3 having thickness by 0.51 mm and the binary alloy of Al-3%Mg as a cladding by thickness of 0.38 mm. Comparison of the physical properties of this metallic plate fuel with the UO 2 -zircaloy fuel rod used conventionally in commercial light water reactors shows that the heat conductivity of the former is of the order of about 13 times greater than the latter, however the melting temperature is only one-half (1570degC). Prior to in-core RIA experiments, there were some difficulties lay in our technical path. This report summarized the technical achievements obtained through our four years work. (J.P.N.)

  17. Safety test facilities. Needs and concepts. A French evaluation

    International Nuclear Information System (INIS)

    Tretiakoff, O.; Bailly, J.

    1976-01-01

    The fuel behaviour of LMFBRs in the event of an accident has been tested in-pile in the SCARABEE program (local blockage, sudden flow reduction and pump coast-down at constant power). These tests will be carried on in the framework of an international cooperation on irradiated fuels: this is the purpose of the CABRI and SCARABEE N programs. All those studies should enable to assess safety margins between accident conditions and the technical specifications of the reactor. The paper explains how a logical set of simple observations has led to the present state of the Cadarache in-pile experimental safety program and how it may help to find the way in a dense forest of both technical and psychological difficulties

  18. 76 FR 74723 - New Car Assessment Program (NCAP); Safety Labeling

    Science.gov (United States)

    2011-12-01

    ... [Docket No. NHTSA 2010-0025] RIN 2127-AK51 New Car Assessment Program (NCAP); Safety Labeling AGENCY... NHTSA's regulation on vehicle labeling of safety rating information to reflect the enhanced NCAP ratings... Traffic Safety Administration under the enhanced NCAP testing and rating program. * * * * * (e) * * * (4...

  19. Operational safety

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The PNL Safety, Standards and Compliance Program contributed to the development and issuance of safety policies, standards, and criteria; for projects in the nuclear and nonnuclear areas. During 1976 the major emphasis was on developing criteria, instruments and methods to assure that radiation exposure to occupational personnel and to people in the environs of nuclear-related facilities is maintained at the lowest level technically and economically practicable. Progress in 1976 is reported on the preparation of guidelines for radiation exposure; Pu dosimetry studies; the preparation of an environmental monitoring handbook; and emergency instrumentation preparedness

  20. Technical bulletin : structural considerations for dam safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This technical bulletin discussed issues related to the safety assessment of concrete water-retaining structures and timber dams. Structures reviewed in the paper included gravity dams; buttress dams; arch dams; spillway structures; intake structures; power plants; roller compacted concrete dams; and timber dams. A variety of issues related to the loss of cohesive bond and discontinuities in bedrock foundations were reviewed with reference to issues related to compressive strength, tensile strength, and shear strength. Static failure modes and failure mechanisms related to dam failures were also described. Visual indicators for potential failures include abutment and foundation movement, seepage, and structure movements. Loading combinations were discussed, and performance indicators for gravity dams were provided. Methods of analysis for considering load characteristics, structure types and geological conditions were also discussed. Modelling techniques for finite element analysis were also included. 16 refs., 3 tabs., 5 figs.

  1. Safety guidance and inspection program for particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Do Whey [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Lee, Hee Seock; Yeo, In Whan [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)] (and others)

    2001-03-15

    The inspection program and the safety guidance were developed to enhance the radiation protection for the use of particle accelerators. First the classification of particle accelerators was conducted to develop the safety inspection protocol efficiently. The status of particle accelerators which were operated at the inside and outside of the country, and their safety programs were surveyed. The characteristics of radiation production was researched for each type of particle accelerators. Two research teams were launched for industrial and research accelerators and for medical accelerators, respectively. In each stages of a design, a fabrication, an installation, a commissioning, and normal operation of accelerators, those safety inspection protocols were developed. Because all protocols resulted from employing safety experts, doing the questionnaire, and direct facility surveys, it can be applicable to present safety problem directly. The detail improvement concepts were proposed to revise the domestic safety rule. This results might also be useful as a practical guidance for the radiation safety officer of an accelerator facility, and as the detail standard for the governmental inspection authorities.

  2. India's power programs and its concern over environmental safety

    International Nuclear Information System (INIS)

    Prasad, G.E.; Mittra, J.; Sarma, M.S.R.

    2000-01-01

    India's need for electrical power is enormous and per capita consumption of power is to be increased at least by 10 times to reach the level of the world average. Thermal power generation faces two-fold problems. First, there is scarcity of good quality fuel and second, increasing environmental pollution. India 's self reliant, . three stage, 'closed-fuel-cycle' nuclear power program is promising a better solution to the above problems. To ensure Radiation Protection and Safety of Radiation Sources, the Indian Nuclear Power program emphasizes upon design and engineering safety by incorporating' necessary safety features in the design, operational safety through a structured training program and typically through software packages to handle rare unsafe events and regulation by complying safety directives. A health survey among the radiation workers indicates that there is no extra threat to the public from the nuclear power program. Based on the latest technology, as available in case of the nuclear power option, it is quite possible to meet high energy requirements with least impact on the environment. (authors)

  3. Reactor safety-a New Approach

    International Nuclear Information System (INIS)

    Machiels, A.J.; Marston, T.U.; Taylor, J.J.

    1993-01-01

    Since 1982, the U.S. utilities have been leading to an industry-wide effort to establish a technical foundation for the design of the next generation of light water reactors (LWRs) in the United States. Since 1985, the utility initiative has been effected through a major technical program managed by the Electric Power Research Institute (EPRI): the Advanced Light Water Reactor (ALWR) Program. In addition to the U.S. utility leadership and sponsorship, the ALWR Program has also greatly benefitted from the participation and sponsorship of numerous international utility companies and from the close cooperation with the U.S. Department of Energy (DOE). One of the main goals of the ALWR Program has been to develop a comprehensive set of design requirements for the advanced LWRs. The Utility Requirement Document (URD) defines the technical basis for improved and standardized future LWR designs. The URD covers the entire plant up to the grid interface. Therefore, it is the basis for an integrated plant design, i.e., nuclear steam supply system and balance of plant. It emphasizes those areas which are most important to the objective of achieving an advanced LWR that is excellent with respect to safety, performance, constructibility, and economics. There are numerous basic design policies underlying the ALWR URD. Of particular interest is the treatment of reactor safety

  4. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    International Nuclear Information System (INIS)

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described

  5. EPRI program in water reactor safety

    International Nuclear Information System (INIS)

    Loewenstein, W.B.; Gelhaus, F.; Gopalakrishnan, A.

    1975-01-01

    The basis for EPRI's water reactor safety program is twofold. First is compilation and development of fundamental background data necessary for quantified light-water reactor (LWR) safety assurance appraisals. Second is development of realistic and experimentally bench-marked analytical procedures. The results are expected either to confirm the safety margins in current operating parameters, and to identify overly conservative controls, or, in some cases, to provide a basis for improvements to further minimize uncertainties in expected performance. Achievement of these objectives requires the synthesis of related current and projected experimental-analytical projects toward establishment of an experimentally-based analysis for the assurance of safety for LWRs

  6. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    CERN Document Server

    Cooper, J R

    2000-01-01

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  7. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    International Nuclear Information System (INIS)

    COOPER, J.R.

    2000-01-01

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual

  8. Safety in the Chemical Laboratory: Safety in the Chemistry Laboratories: A Specific Program.

    Science.gov (United States)

    Corkern, Walter H.; Munchausen, Linda L.

    1983-01-01

    Describes a safety program adopted by Southeastern Louisiana University. Students are given detailed instructions on laboratory safety during the first laboratory period and a test which must be completely correct before they are allowed to return to the laboratory. Test questions, list of safety rules, and a laboratory accident report form are…

  9. HTGR safety research program

    International Nuclear Information System (INIS)

    Barsell, A.W.; Olsen, B.E.; Silady, F.A.

    1981-01-01

    An HTGR safety research program is being performed supporting and guided in priorities by the AIPA Probabilistic Risk Study. Analytical and experimental studies have been conducted in four general areas where modeling or data assumptions contribute to large uncertainties in the consequence assessments and thus, in the risk assessment for key core heat-up accident scenarios. Experimental data have been obtained on time-dependent release of fission products from the fuel particles, and plateout characteristics of condensible fission products in the primary circuit. Potential failure modes of primarily top head PCRV components as well as concrete degradation processes have been analyzed using a series of newly developed models and interlinked computer programs. Containment phenomena, including fission product deposition and potential flammability of liberated combustible gases have been studied analytically. Lastly, the behaviour of boron control material in the core and reactor subcriticality during core heatup have been examined analytically. Research in these areas has formed the basis for consequence updates in GA-A15000. Systematic derivation of future safety research priorities is also discussed. (author)

  10. Analysis of School Food Safety Programs Based on HACCP Principles

    Science.gov (United States)

    Roberts, Kevin R.; Sauer, Kevin; Sneed, Jeannie; Kwon, Junehee; Olds, David; Cole, Kerri; Shanklin, Carol

    2014-01-01

    Purpose/Objectives: The purpose of this study was to determine how school districts have implemented food safety programs based on HACCP principles. Specific objectives included: (1) Evaluate how schools are implementing components of food safety programs; and (2) Determine foodservice employees food-handling practices related to food safety.…

  11. Development of a safety communication and recognition program for construction.

    Science.gov (United States)

    Sparer, Emily H; Herrick, Robert F; Dennerlein, Jack T

    2015-05-01

    Leading-indicator-based (e.g., hazard recognition) incentive programs provide an alternative to controversial lagging-indicator-based (e.g., injury rates) programs. We designed a leading-indicator-based safety communication and recognition program that incentivized safe working conditions. The program was piloted for two months on a commercial construction worksite and then redesigned using qualitative interview and focus group data from management and workers. We then ran the redesigned program for six months on the same worksite. Foremen received detailed weekly feedback from safety inspections, and posters displayed worksite and subcontractor safety scores. In the final program design, the whole site, not individual subcontractors, was the unit of analysis and recognition. This received high levels of acceptance from workers, who noted increased levels of site unity and team-building. This pilot program showed that construction workers value solidarity with others on site, demonstrating the importance of health and safety programs that engage all workers through a reliable and consistent communication infrastructure. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Fusion Safety Program. Annual report, FY 1982

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1983-07-01

    The Fusion Safety Program major activities for Fiscal Year 1982 are summarized in this report. The program was started in FY-79, with the Idaho National Engineering Laboratory (INEL) designated as lead laboratory and EG and G Idaho, Inc., named as prime contractor to implement this role. The report contains four sections: EG and G Idaho, Inc., Activities at INEL includes major portions of papers dealing with ongoing work in tritium implantation experiments, tritium risk assessment, transient code development, heat transfer and fluid flow analysis, and high temperature oxidation and mobilization of structural material experiments. The section Outside Contracts includes studies of superconducting magnet safety conducted by Argonne National Laboratory, experiments concerning superconductor safety issues performed by the Francis Bitter Magnet Laboratory of the Massachusetts Institute of Technology (MIT) to verify analytical work, a continuation of safety and environmental studies by MIT, a summary of lithium safety experiments at Hanford Engineering Development Laboratory, and the results of tritium gas conversion to oxide experiments at Oak Ridge National Laboratory. A List of Publications and Proposed FY-83 Activities are also presented

  13. 1993 DOE technical standards managers workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This workshop is focused on the benefits of the DOE technical standards program, which is focused toward the preferred use of non-Government standards for DOE activities and the development of DOE technical standards when non-Government standards are not available or are inappropriate. One goal of the program is to replace redundant site-specific standards with more universally accepted documents that have been scrutinized by experts. This replacement is discussed at the workshop along with the problems encountered and solutions found. The workshop provided an opportunity for geographically dispersed people to meet and advance their standards knowledge and efforts to support the program. Safety issues have been the driving force behind the program to date. Several companies offer products and services that support the development, processing, and retrieval of standards. This document mostly comprise vugraphs.

  14. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  15. 29 CFR 1960.12 - Dissemination of occupational safety and health program information.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Dissemination of occupational safety and health program... OCCUPATIONAL SAFETY AND HEALTH PROGRAMS AND RELATED MATTERS Administration § 1960.12 Dissemination of occupational safety and health program information. (a) Copies of the Act, Executive Order 12196, program...

  16. Safety Culture Perceptions in a Collegiate Aviation Program: A Systematic Assessment

    OpenAIRE

    Adjekum, Daniel Kwasi

    2014-01-01

    An assessment of the perceptions of respondents on the safety culture at an accredited Part 141 four year collegiate aviation program was conducted as part of the implementation of a safety management system (SMS). The Collegiate Aviation Program Safety Culture Assessment Survey (CAPSCAS), which was modified and revalidated from the existing Commercial Aviation Safety Survey (CASS), was used. Participants were drawn from flight students and certified flight instructors in the program. The sur...

  17. Index to Nuclear Safety. A technical progress review by chronology, permuted title, and author. Vol 11, No. 1 through Vol. 16, No. 6

    International Nuclear Information System (INIS)

    Cottrell, W.B.; Klein, A.

    1976-04-01

    This index to Nuclear Safety covers articles in Nuclear Safety Vol. 11, No. 1 (Jan.-Feb. 1970) through Vol. 16, No. 6 (Nov.-Dec. 1975). Included in the index is a chronological list of articles (including abstract) followed by both a KWIC index and an Author Index. Nuclear Safety is a bimonthly technical progress review prepared by the Nuclear Safety Information Center and covers all safety aspects of nuclear power reactors and associated facilities. The index lists over 300 technical articles in the last six years of publication

  18. Index to Nuclear Safety. A technical progress review by chronology, permuted title, and author. Vol 11, No. 1 through Vol. 16, No. 6

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, W.B.; Klein, A.

    1976-04-01

    This index to Nuclear Safety covers articles in Nuclear Safety Vol. 11, No. 1 (Jan.-Feb. 1970) through Vol. 16, No. 6 (Nov.-Dec. 1975). Included in the index is a chronological list of articles (including abstract) followed by both a KWIC index and an Author Index. Nuclear Safety is a bimonthly technical progress review prepared by the Nuclear Safety Information Center and covers all safety aspects of nuclear power reactors and associated facilities. The index lists over 300 technical articles in the last six years of publication.

  19. Organizing safety: conditions for successful information assurance programs.

    Science.gov (United States)

    Collmann, Jeff; Coleman, Johnathan; Sostrom, Kristen; Wright, Willie

    2004-01-01

    Organizations must continuously seek safety. When considering computerized health information systems, "safety" includes protecting the integrity, confidentiality, and availability of information assets such as patient information, key components of the technical information system, and critical personnel. "High Reliability Theory" (HRT) argues that organizations with strong leadership support, continuous training, redundant safety mechanisms, and "cultures of high reliability" can deploy and safely manage complex, risky technologies such as nuclear weapons systems or computerized health information systems. In preparation for the Health Insurance Portability and Accountability Act (HIPAA) of 1996, the Office of the Assistant Secretary of Defense (Health Affairs), the Offices of the Surgeons General of the United States Army, Navy and Air Force, and the Telemedicine and Advanced Technology Research Center (TATRC), US Army Medical Research and Materiel Command sponsored organizational, doctrinal, and technical projects that individually and collectively promote conditions for a "culture of information assurance." These efforts include sponsoring the "P3 Working Group" (P3WG), an interdisciplinary, tri-service taskforce that reviewed all relevant Department of Defense (DoD), Miliary Health System (MHS), Army, Navy and Air Force policies for compliance with the HIPAA medical privacy and data security regulations; supporting development, training, and deployment of OCTAVE(sm), a self-directed information security risk assessment process; and sponsoring development of the Risk Information Management Resource (RIMR), a Web-enabled enterprise portal about health information assurance.

  20. Management services, quality assurance, and safety

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Broad technical and administrative support for the programmatic research and development activities of the Fusion Energy Division is provided by the Management Services Section and by the division's quality assurance (QA) and safety programs. Support is provided through effective communication with division programmatic staff and through the coordination of resources from disciplines outside the division. The QA activity in the division emphasizes the development and documentation of a QA program that conforms to national standards, the review and approval of engineering documents, supplier surveillance, identification and documentation of nonconforming items, audits, and QA assessments/plans. The division's safety activities include a formal safety program, emergency planning activities, and environmental protection services. Efforts devoted to the removal of hazardous wastes from division facilities were expanded during 1986

  1. Effective radiological safety program for electron linear accelerators

    International Nuclear Information System (INIS)

    Swanson, W.P.

    1980-10-01

    An outline is presented of some of the main elements of an electron accelerator radiological safety program. The discussion includes types of accelerator facilities, types of radiations to be anticipated, activity induced in components, air and water, and production of toxic gases. Concepts of radiation shielding design are briefly discussed and organizational aspects are considered as an integral part of the overall safety program

  2. 41 CFR 128-1.8006 - Seismic Safety Program requirements.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Seismic Safety Program requirements. 128-1.8006 Section 128-1.8006 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF JUSTICE 1-INTRODUCTION 1.80-Seismic Safety Program...

  3. 49 CFR 385.309 - What is the purpose of the safety audit?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false What is the purpose of the safety audit? 385.309... SAFETY FITNESS PROCEDURES New Entrant Safety Assurance Program § 385.309 What is the purpose of the safety audit? The purpose of a safety audit is to: (a) Provide educational and technical assistance to...

  4. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    Energy Technology Data Exchange (ETDEWEB)

    COOPER, J.R.

    2000-04-17

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  5. Socio-Technical Security Metrics (Dagstuhl Seminar 14491)

    NARCIS (Netherlands)

    Gollmann, Dieter; Herley, Cormac; Koenig, Vincent; Pieters, Wolter; Sasse, Martina Angela

    2015-01-01

    This report documents the program and the outcomes of Dagstuhl Seminar 14491 "Socio-Technical Security Metrics". In the domain of safety, metrics inform many decisions, from the height of new dikes to the design of nuclear plants. We can state, for example, that the dikes should be high enough to

  6. Endometrial ablation by rollerball electrocoagulation compared to uterine balloon thermal ablation. Technical and safety aspects.

    NARCIS (Netherlands)

    Zon-Rabelink, I.A.A. van; Vleugels, M.P.; Merkus, J.M.W.M.; Graaf, R.M. de

    2003-01-01

    OBJECTIVE: To compare two methods of endometrial ablation, hysteroscopic rollerball electrocoagulation (RBE) and non-hysteroscopic uterine balloon thermal (UBT) ablation (Thermachoice), regarding intra- and post-operative technical complications and safety aspects. STUDY DESIGN: A randomised

  7. Implementation of a patient safety program at a tertiary health system: A longitudinal analysis of interventions and serious safety events.

    Science.gov (United States)

    Cropper, Douglas P; Harb, Nidal H; Said, Patricia A; Lemke, Jon H; Shammas, Nicolas W

    2018-04-01

    We hypothesize that implementation of a safety program based on high reliability organization principles will reduce serious safety events (SSE). The safety program focused on 7 essential elements: (a) safety rounding, (b) safety oversight teams, (c) safety huddles, (d) safety coaches, (e) good catches/safety heroes, (f) safety education, and (g) red rule. An educational curriculum was implemented focusing on changing high-risk behaviors and implementing critical safety policies. All unusual occurrences were captured in the Midas system and investigated by risk specialists, the safety officer, and the chief medical officer. A multidepartmental committee evaluated these events, and a root cause analysis (RCA) was performed. Events were tabulated and serious safety event (SSE) recorded and plotted over time. Safety success stories (SSSs) were also evaluated over time. A steady drop in SSEs was seen over 9 years. Also a rise in SSSs was evident, reflecting on staff engagement in the program. The parallel change in SSEs, SSSs, and the implementation of various safety interventions highly suggest that the program was successful in achieving its goals. A safety program based on high-reliability organization principles and made a core value of the institution can have a significant positive impact on reducing SSEs. © 2018 American Society for Healthcare Risk Management of the American Hospital Association.

  8. Nuclear criticality safety specialist training and qualification programs

    International Nuclear Information System (INIS)

    Hopper, C.M.

    1993-01-01

    Since the beginning of the Nuclear Criticality Safety Division of the American Nuclear Society (ANS) in 1967, the nuclear criticality safety (NCS) community has sought to provide an exchange of information at a national level to facilitate the education and development of NCS specialists. In addition, individual criticality safety organizations within government contractor and licensed commercial nonreactor facilities have developed training and qualification programs for their NCS specialists. However, there has been substantial variability in the content and quality of these program requirements and personnel qualifications, at least as measured within the government contractor community. The purpose of this paper is to provide a brief, general history of staff training and to describe the current direction and focus of US DOE guidance for the content of training and qualification programs designed to develop NCS specialists

  9. 77 FR 30514 - Native Hawaiian Career and Technical Education Program; Final Waiver and Extension of Project Period

    Science.gov (United States)

    2012-05-23

    ... DEPARTMENT OF EDUCATION Native Hawaiian Career and Technical Education Program; Final Waiver and... Career and Technical Education Program Catalog of Federal Domestic Assistance (CFDA) Number: 84.259A... Technical Education Program (NHCTEP), the Secretary hereby waives 34 CFR 75.261(c)(2) in order to extend the...

  10. Fusion reactor safety studies, FY 1977

    International Nuclear Information System (INIS)

    Darby, J.B. Jr.

    1978-04-01

    This report reviews the technical progress in the fusion reactor safety studies performed during FY 1977 in the Fusion Power Program at the Argonne National Laboratory. The subjects reported on include safety considerations of the vacuum vessel and first-wall design for the ANL/EPR, the thermal responses of a tokamak reactor first wall, the vacuum wall electrical resistive requirements in relationship to magnet safety, and a major effort is reported on considerations and experiments on air detritiation

  11. Do Farm Programs Explain Mean and Variance of Technical Efficiency? Stochastic Frontier Analysis

    OpenAIRE

    Ranjan, Rahul; Shaik, Saleem; Mishra, Ashok K.

    2010-01-01

    Past literature has examined the importance of farm programs on the volatility and returns on general and agriculture economic growth. The objective of this study was to assess the impact of farm program payments on technical efficiency. The study used aggregate state level panel data from the U.S agricultural sector. Results indicate production increasing with increasing units of inputs. Results from this study indicate that farm program payments play an important role in technical efficienc...

  12. Japan`s international cooperation programs on seismic safety of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Akira [Agency of Natural Resources and Energy, Tokyo (Japan)

    1997-03-01

    MITI is promoting many international cooperation programs on nuclear safety area. The seismic safety of nuclear power plants (NPPs) is a one of most important cooperation areas. Experts from MITI and related organization join the multilateral cooperation programs carried out by international organization such as IAEA, OECD/NEA etc. MITI is also promoting bilateral cooperation programs such as information exchange meetings, training programs and seminars on nuclear safety with several countries. Concerning to the cooperation programs on seismic safety of NPPs such as information exchange and training, MITI shall continue and expand these programs. (J.P.N.)

  13. Pennsylvania Department of Transportation's Local Technical Assistance Program (LTAP).

    Science.gov (United States)

    2010-11-01

    The Pennsylvania Department of Transportations (PennDOT) Local Technical Assistance Program : (LTAP) was awarded to the Pennsylvania State Association of Township Supervisors (PSATS), with the : contract start date of December 1, 2005. PSATS led t...

  14. Safety implications of standardized continuous quality improvement programs in community pharmacy.

    Science.gov (United States)

    Boyle, Todd A; Ho, Certina; Mackinnon, Neil J; Mahaffey, Thomas; Taylor, Jeffrey M

    2013-06-01

    Standardized continuous quality improvement (CQI) programs combine Web-based technologies and standardized improvement processes, tools, and expectations to enable quality-related events (QREs) occurring in individual pharmacies to be shared with pharmacies in other jurisdictions. Because standardized CQI programs are still new to community pharmacy, little is known about how they impact medication safety. This research identifies key aspects of medication safety that change as a result of implementing a standardized CQI program. Fifty-three community pharmacies in Nova Scotia, Canada, adopted the SafetyNET-Rx standardized CQI program in April 2010. The Institute for Safe Medication Practices (ISMP) Canada's Medication Safety Self-Assessment (MSSA) survey was administered to these pharmacies before and 1 year into their use of the SafetyNET-Rx program. The nonparametric Wilcoxon signed-rank test was used to explore where changes in patient safety occurred as a result of SafetyNETRx use. Significant improvements occurred with quality processes and risk management, staff competence, and education, and communication of drug orders and other information. Patient education, environmental factors, and the use of devices did not show statistically significant changes. As CQI programs are designed to share learning from QREs, it is reassuring to see that the largest improvements are related to quality processes, risk management, staff competence, and education.

  15. Safety and man in light of the analysis of major technical accidents

    International Nuclear Information System (INIS)

    Carnino, A.

    1990-01-01

    Up to the seventies, it was not easy to admit human failure as a cause of industrial accidents. Man was considered as reliable. With the perfection of materials, technical systems and industrial processes though, man has become the weakest link in the chain of technical events. He is and stays a remarkably reliable being, with a roughly estimated average failure quota of 1:1000 manipulations. If the hypothetical risk should be kept very low, this value can become a problem. Instead of judging a mistake as a punishable crime, as the present tendency will have it, a more differentiated, systematical approach is called for. By means of an analysis of four major accidents - Chernobyl, Three Mile Island, Challenger and Bhopal - interesting parallels between the causes of such accidents can be found. Human failure, e.g. of a surgeon, is in most cases, the direct cause of an accident. A whole series of further causes, which can be assigned to different areas of influence but are usually interdependent, also play a role. While the human factor must be viewed as more or less predetermined, far reaching improvements can be made to reduce the risk of accident. Today, thanks to modern technology and new findings, it is possible to practically neutralize human error. This creates more costs and necessitates giving up short term production maximization. It also requires the willingness to give safety absolute priority. The name 'culture de surete' (safety culture) is used to describe this concept. Surprising similarities between the causes of the four mentioned major accidents were discovered. Certain circumstances, such as the time of day, played a role. The concept of a plant, resp. technical process has an essential influence, as well as company policy (importance of safety, preparation of emergency procedures, training, maintenance, company rules) and management (evaluation and realization of foreign and the company's own operation experiences and error alarms). (author) 7

  16. Safety and economic impacts of photo radar program.

    Science.gov (United States)

    Chen, Greg

    2005-12-01

    Unsafe speed is one of the major traffic safety challenges facing motorized nations. In 2003, unsafe speed contributed to 31 percent of all fatal collisions, causing a loss of 13,380 lives in the United States alone. The economic impact of speeding is tremendous. According to NHTSA, the cost of unsafe speed related collisions to the American society exceeds 40 billion US dollars per year. In response, automated photo radar speed enforcement programs have been implemented in many countries. This study assesses the economic impacts of a large-scale photo radar program in British Columbia. The knowledge generated from this study could inform policy makers and project managers in making informed decisions with regard to this highly effective and efficient, yet very controversial program. This study establishes speed and safety effects of photo radar programs by summarizing two physical impact investigations in British Columbia. It then conducts a cost-benefit analysis to assess the program's economic impacts. The cost-benefit analysis takes into account both societal and funding agency's perspectives. It includes a comprehensive account of major impacts. It uses willingness to pay principle to value human lives saved and injuries avoided. It incorporates an extended sensitivity analysis to quantify the robustness of base case conclusions. The study reveals an annual net benefit of approximately 114 million in year 2001 Canadian dollars to British Columbians. The study also finds a net annual saving of over 38 million Canadian dollars for the Insurance Corporation of British Columbia (ICBC) that funded the program. These results are robust under almost all alternative scenarios tested. The only circumstance under which the net benefit of the program turns negative is when the real safety effects were one standard deviation below the estimated values, which is possible but highly unlikely. Automated photo radar traffic safety enforcement can be an effective and efficient

  17. Transition to Office-based Obstetric and Gynecologic Procedures: Safety, Technical, and Financial Considerations.

    Science.gov (United States)

    Peacock, Lisa M; Thomassee, May E; Williams, Valerie L; Young, Amy E

    2015-06-01

    Office-based surgery is increasingly desired by patients and providers due to ease of access, overall efficiency, reimbursement, and satisfaction. The adoption of office-based surgery requires careful consideration of safety, efficacy, cost, and feasibility within a providers practice. This article reviews the currently available data regarding patient and provider satisfaction as well as practical considerations of staffing, equipment, and supplies. To aid the practitioner, issues of office-based anesthesia and safety with references to currently available national guidelines and protocols are provided. Included is a brief review of billing, coding, and reimbursement. Technical procedural aspects with information and recommendations are summarized.

  18. Developing an integrated dam safety program

    International Nuclear Information System (INIS)

    Nielsen, N. M.; Lampa, J.

    1996-01-01

    An effort has been made to demonstrate that dam safety is an integral part of asset management which, when properly done, ensures that all objectives relating to safety and compliance, profitability, stakeholders' expectations and customer satisfaction, are achieved. The means to achieving this integration of the dam safety program and the level of effort required for each core function have been identified using the risk management approach to pinpoint vulnerabilities, and subsequently to focus priorities. The process is considered appropriate for any combination of numbers, sizes and uses of dams, and is designed to prevent exposure to unacceptable risks. 5 refs., 1 tab

  19. A Review of Technical Communication Programs Outside the United States.

    Science.gov (United States)

    Alred, Gerald J.

    2001-01-01

    Examines technical communication programs outside the United States and comments on such features as their location in the university structure, links with public relations, the inclusion of internships or practicums, the balance of theory and practice, and typical course offerings. Lists a dozen major programs in seven countries. Concludes that…

  20. Revised technical regulations on radiation protection and safety of 30 September 1975

    International Nuclear Information System (INIS)

    1975-01-01

    These revised technical regulations were made in implementation of Section 4 of Decree No 7/9038 of 30 November 1974 on radiation health and safety and lay down in detail the requirements to be met in Turkey for the use of all types of radiation sources. They set out protection plans and specify the protective equipment to be used as well as the controlled areas, i.e. areas in which radiation sources are used and which must be subject to special safety measures. Finally to obtain a license, users of radiation sources must fill in forms, the models of which are provided, giving their particulars and the specifications of the intended use and activity of the sources. (NEA) [fr

  1. GSFC Safety and Mission Assurance Organization

    Science.gov (United States)

    Kelly, Michael P.

    2010-01-01

    This viewgraph presentation reviews NASA Goddard Space Flight Center's approach to safety and mission assurance. The contents include: 1) NASA GSFC Background; 2) Safety and Mission Assurance Directorate; 3) The Role of SMA-D and the Technical Authority; 4) GSFC Mission assurance Requirements; 5) GSFC Systems Review Office (SRO); 6) GSFC Supply Chain Management Program; and 7) GSFC ISO9001/AS9100 Status Brief.

  2. REQUIREMENT VERIFICATION AND SYSTEMS ENGINEERING TECHNICAL REVIEW (SETR) ON A COMMERCIAL DERIVATIVE AIRCRAFT (CDA) PROGRAM

    Science.gov (United States)

    2017-09-01

    VERIFICATION AND SYSTEMS ENGINEERING TECHNICAL REVIEW (SETR) ON A COMMERCIAL DERIVATIVE AIRCRAFT (CDA) PROGRAM by Theresa L. Thomas September... ENGINEERING TECHNICAL REVIEW (SETR) ON A COMMERCIAL DERIVATIVE AIRCRAFT (CDA) PROGRAM 5. FUNDING NUMBERS 6. AUTHOR(S) Theresa L. Thomas 7...CODE 13. ABSTRACT (maximum 200 words) The Naval Air Systems Command (NAVAIR) systems engineering technical review (SETR) process does not

  3. Systems Analysis of NASA Aviation Safety Program: Final Report

    Science.gov (United States)

    Jones, Sharon M.; Reveley, Mary S.; Withrow, Colleen A.; Evans, Joni K.; Barr, Lawrence; Leone, Karen

    2013-01-01

    A three-month study (February to April 2010) of the NASA Aviation Safety (AvSafe) program was conducted. This study comprised three components: (1) a statistical analysis of currently available civilian subsonic aircraft data from the National Transportation Safety Board (NTSB), the Federal Aviation Administration (FAA), and the Aviation Safety Information Analysis and Sharing (ASIAS) system to identify any significant or overlooked aviation safety issues; (2) a high-level qualitative identification of future safety risks, with an assessment of the potential impact of the NASA AvSafe research on the National Airspace System (NAS) based on these risks; and (3) a detailed, top-down analysis of the NASA AvSafe program using an established and peer-reviewed systems analysis methodology. The statistical analysis identified the top aviation "tall poles" based on NTSB accident and FAA incident data from 1997 to 2006. A separate examination of medical helicopter accidents in the United States was also conducted. Multiple external sources were used to develop a compilation of ten "tall poles" in future safety issues/risks. The top-down analysis of the AvSafe was conducted by using a modification of the Gibson methodology. Of the 17 challenging safety issues that were identified, 11 were directly addressed by the AvSafe program research portfolio.

  4. Management of radioactive material safety programs at medical facilities. Final report

    International Nuclear Information System (INIS)

    Camper, L.W.; Schlueter, J.; Woods, S.

    1997-05-01

    A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution's executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC's reporting and notification requirements are discussed, and a general description is given of how NRC's licensing, inspection and enforcement programs work

  5. 29 CFR 1960.80 - Secretary's evaluations of agency occupational safety and health programs.

    Science.gov (United States)

    2010-07-01

    ... EMPLOYEE OCCUPATIONAL SAFETY AND HEALTH PROGRAMS AND RELATED MATTERS Evaluation of Federal Occupational Safety and Health Programs § 1960.80 Secretary's evaluations of agency occupational safety and health... evaluating an agency's occupational safety and health program. To accomplish this, the Secretary shall...

  6. Urology technical and non-technical skills development: the emerging role of simulation.

    Science.gov (United States)

    Rashid, Prem; Gianduzzo, Troy R J

    2016-04-01

    To review the emerging role of technical and non-technical simulation in urological education and training. A review was conducted to examine the current role of simulation in urology training. A PUBMED search of the terms 'urology training', 'urology simulation' and 'urology education' revealed 11,504 titles. Three hundred and fifty-seven abstracts were identified as English language, peer reviewed papers pertaining to the role of simulation in urology and related topics. Key papers were used to explore themes. Some cross-referenced papers were also included. There is an ongoing need to ensure that training time is efficiently utilised while ensuring that optimal technical and non-technical skills are achieved. Changing working conditions and the need to minimise patient harm by inadvertent errors must be taken into account. Simulation models for specific technical aspects have been the mainstay of graduated step-wise low and high fidelity training. Whole scenario environments as well as non-technical aspects can be slowly incorporated into the curriculum. Doing so should also help define what have been challenging competencies to teach and evaluate. Dedicated time, resources and trainer up-skilling are important. Concurrent studies are needed to help evaluate the effectiveness of introducing step-wise simulation for technical and non-technical competencies. Simulation based learning remains the best avenue of progressing surgical education. Technical and non-technical simulation could be used in the selection process. There are good economic, logistic and safety reasons to pursue the process of ongoing development of simulation co-curricula. While the role of simulation is assured, its progress will depend on a structured program that takes advantage of what can be delivered via this medium. Overall, simulation can be developed further for urological training programs to encompass technical and non-technical skill development at all stages, including

  7. Promoting radiation protection in France and Europe. The key role of IRSN, French Technical Safety Organisation

    Energy Technology Data Exchange (ETDEWEB)

    Repussard, Jacques [IRSN - Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France). Direction des Affaires Internationales - Delegation aux Relations Internationales

    2012-07-01

    IRSN, the Institute for Radiological Protection and Nuclear Safety was set up in France under Article 5 of French Act No. 2001-398 of May 9, 2001 as the French 'Technical Safety Organization' (TSO) expert in nuclear and radiological risks. It contributes to the implementation of public policies concerning nuclear safety and security and protection of human health and environment against ionizing radiation. IRSN interacts with all the parties concerned by these policies (public authorities, operators and stakeholders) while keeping its independence of judgment. (orig.)

  8. High-heat tank safety issue resolution program plan. Revision 2

    International Nuclear Information System (INIS)

    Wang, O.S.

    1994-12-01

    The purpose of this program plan is to provide a guide for selecting corrective actions that will mitigate and/or remediate the high-heat waste tank safety issue for single-shell tank 241-C-106. The heat source of approximately 110,000 Btu/hr is the radioactive decay of the stored waste material (primarily 90 Sr) inadvertently transferred into the tank in the later 1960s. Currently, forced ventilation, with added water to promote thermal conductivity and evaporation cooling, is used for heat removal. The method is very effective and economical. At this time, the only viable solution identified to permanently resolve this safety issue is the removal of heat-generating waste in the tank. This solution is being aggressively pursued as the only remediation method to this safety issue, and tank 241-C-106 has been selected as the first single-shell tank for retrieval. The current cooling method and other alternatives are addressed in this program as means to mitigate this safety issue before retrieval. This program plan has three parts. The first part establishes program objectives and defines safety issue, drivers, and resolution criteria and strategy. The second part evaluates the high-heat safety issue and its mitigation and remediation methods and other alternatives according to resolution logic. The third part identifies major tasks and alternatives for mitigation and resolution of the safety issue. A table of best-estimate schedules for the key tasks is also included in this program plan

  9. 29 CFR 1960.79 - Self-evaluations of occupational safety and health programs.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Self-evaluations of occupational safety and health programs. 1960.79 Section 1960.79 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... AND HEALTH PROGRAMS AND RELATED MATTERS Evaluation of Federal Occupational Safety and Health Programs...

  10. Technical considerations for the development of an engineering safety features control system with PLC

    International Nuclear Information System (INIS)

    Lee, C. K.; Kim, C. H.; Han, J. B.; Kim, H.; Lee, S. S.

    2002-01-01

    Technical considerations are summarized for the development of an ESFCS(Engineered Safety Features Control System) with PLC (Programmable Logic Controller). The ESFCS is required for the mitigation of plant accident conditions and therefore developed in conformance with the design requirements applied to the safety critical system. The design of ESFCS primarily considered its safety, and the system has an architecture that will be able to minimize spurious actuation. The PLC based functional distribution and redundant design features are adopted, and the fieldbus is applied in the communication of information and control signals between PLC processors. It is expected that the ESFCS will have several advanced design features compared with the conventional systems supplied by foreign vendors

  11. A program approach for site safety at oil spills

    International Nuclear Information System (INIS)

    Whipple, F.L.; Glenn, S.P.; Ocken, J.J.; Ott, G.L.

    1993-01-01

    When OSHA developed the hazardous waste operations (Hazwoper) regulations (29 CFR 1910.120) members of the response community envisioned a separation of oil and open-quotes hazmatclose quotes response operations. Organizations that deal with oil spills have had difficulty applying Hazwoper regulations to oil spill operations. This hinders meaningful implementation of the standard for their personnel. We should approach oil spills with the same degree of caution that is applied to hazmat response. Training frequently does not address the safety of oil spill response operations. Site-specific safety and health plans often are neglected or omitted. Certain oils expose workers to carcinogens, as well as chronic and acute hazards. Significant physical hazards are most important. In responding to oil spills, the hazards must be addressed. It is the authors' contention that a need exists for safety program at oil spill sites. Gone are the days of labor pool hires cleaning up spills in jeans and sneakers. The key to meaningful programs for oil spills requires application of controls focused on relevant safety risks rather than minimal chemical exposure hazards. Working with concerned reviewers from other agencies and organizations, the authors have developed a general safety and health program for oil spill response. It is intended to serve as the basis for organizations to customize their own written safety and health program (required by OSHA). It also provides a separate generic site safety plan for emergency phase oil spill operations (check-list) and long term post-emergency phase operations

  12. A Handbook for Public Playground Safety. Volume II: Technical Guidelines for Equipment and Surfacing.

    Science.gov (United States)

    Consumer Product Safety Commission, Washington, DC.

    This handbook suggests safety guidelines for public playground equipment and describes various surfaces used under the equipment and possible injuries resulting from falls. The handbook is intended for use mainly by manufacturers, installers, school and park officials, and others interested in technical criteria for public playground equipment.…

  13. Safety evaluation methods applied at the Technical department of the Institute for radiation protection and nuclear safety

    International Nuclear Information System (INIS)

    Crabol, B.

    1990-12-01

    Institute of radiation protection and nuclear safety (IPSN) has established a Technical emergency center (CTC) for nuclear facilities with the aim to supply the public with technical data analysis of incidents, mainly, all the predicted consequences of radioactive release into the environment. From technical point of view, the functioning of CTC relies on the work of two units, one in charge of the state of accident installation, and the second responsible for evaluation of radiological environmental effects. The latter is concerned with the meteorological situation, it relies sometimes on local, and sometimes on national weather forecast in order to compile data needed for calculating atmospheric transport at the and in the vicinity of the affected site, and further in the region and across the borders. For this analysis the Unit possesses operational computer codes. The code (SIROCCO) can take into account the kinetics of particulates and all the time dependent meteorological conditions. This calculation model can either treat the dispersed isotopes or isotope chains (rare gases, cesium isotopes, iodine isotopes...). One version of this code enables calculation of the consequences at medium and long distances using the methods of Meteorologie Nationale [fr

  14. Safety technical considerations on the 2012 periodic safety verification of the Beznau nuclear power plant

    International Nuclear Information System (INIS)

    2016-12-01

    of the examination of the defects discovered during the revision shutdown in 2015 concerning the material of the reactor pressure vessel of block 1. As far as the NOK’s request for an unlimited operational license is concerned, NOK has to prove in time, before the 40-year license limit is up, that the design boundaries of safety-relevant components will not be reached during the duration of extended operation. Otherwise, the necessary refit works have to be performed in time. KKB has produced the requested proof for the long-term operation of both blocks. The results of the supervisory work carried out by the Swiss Federal Nuclear Safety Inspectorate (ENSI) were published in the safety technical review for KKB1 and KKB2. ENSI concludes that there are no safety technical objections against the operation of both blocks beyond the limit of 40 years. On the basis of the state of knowledge when the considerations were made, the criteria for shutting down will not be reached in the 10 following operational years, neither by KKB1 nor by KKB2

  15. Preliminary safety information document for the standard MHTGR. Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-01-01

    This report contains information concerning: operational radionuclide control; occupational radiation protection, conduct of operations; initial test program; safety analysis; technical specifications; and quality assurance. (JDB)

  16. Integrated program of using of Probabilistic Safety Analysis in Spain

    International Nuclear Information System (INIS)

    1998-01-01

    Since 25 June 1986, when the CSN (Nuclear Safety Conseil) approve the Integrated Program of Probabilistic Safety Analysis, this program has articulated the main activities of CSN. This document summarize the activities developed during these years and reviews the Integrated programme

  17. Construction safety program for the National Ignition Facility

    International Nuclear Information System (INIS)

    Cerruti, S.J.

    1997-01-01

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and initial activation and operation of NIF at LLNL during the construction period of NIF. During this period, all workers are required to implement measures to create a universal awareness which promotes safe practice at the work site, and which will achieve NIF's management objectives in preventing accidents and illnesses. Construction safety for NIF is predicated on everyone performing their jobs in a manner which prevents job-related disabling injuries and illnesses. The CSP outlines the minimum environment, safety, and health (ES ampersand H) standards, LLNL policies and the Construction Industry Institute (CII) Zero Injury Techniques requirements that all workers at the NIF construction site shall adhere to during the construction period of NIF. It identifies the safety requirements which the NIF organizational Elements, construction contractors and construction subcontractors must include in their safety plans for the construction period of NIF, and presents safety protocols and guidelines which workers shall follow to assure a safe and healthful work environment. The CSP also identifies the ES ampersand H responsibilities of LLNL employees, non-LLNL employees, construction contractors, construction subcontractors, and various levels of management within the NIF Program at LLNL. In addition, the CSP contains the responsibilities and functions of ES ampersand H support organizations and administrative groups, and describes their interactions with the NIF Program

  18. Construction safety program for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cerruti, S.J.

    1997-01-01

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and initial activation and operation of NIF at LLNL during the construction period of NIF. During this period, all workers are required to implement measures to create a universal awareness which promotes safe practice at the work site, and which will achieve NIF`s management objectives in preventing accidents and illnesses. Construction safety for NIF is predicated on everyone performing their jobs in a manner which prevents job-related disabling injuries and illnesses. The CSP outlines the minimum environment, safety, and health (ES&H) standards, LLNL policies and the Construction Industry Institute (CII) Zero Injury Techniques requirements that all workers at the NIF construction site shall adhere to during the construction period of NIF. It identifies the safety requirements which the NIF organizational Elements, construction contractors and construction subcontractors must include in their safety plans for the construction period of NIF, and presents safety protocols and guidelines which workers shall follow to assure a safe and healthful work environment. The CSP also identifies the ES&H responsibilities of LLNL employees, non-LLNL employees, construction contractors, construction subcontractors, and various levels of management within the NIF Program at LLNL. In addition, the CSP contains the responsibilities and functions of ES&H support organizations and administrative groups, and describes their interactions with the NIF Program.

  19. Technical evaluation of the electrical, instrumentation, and control design aspects of the override of containment purge valve isolation and other engineered safety feature signals for the Fort Calhoun Nuclear Power Plant

    International Nuclear Information System (INIS)

    Hackett, D.B.

    1980-01-01

    This report documents the technical evaluation of the electrical, instrumentation, and control design aspects of the override of containment purge valve isolation and other engineered safety feature signals for the Fort Calhoun nuclear power plant. The review criteria are based on IEEE Std-279-1971 requirements for the safety signals to all purge and ventilation isolation valves. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Program being conducted for the US Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  20. Management of radioactive material safety programs at medical facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Camper, L.W.; Schlueter, J.; Woods, S. [and others

    1997-05-01

    A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution`s executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC`s reporting and notification requirements are discussed, and a general description is given of how NRC`s licensing, inspection and enforcement programs work.

  1. Technical Work Plan For: Meteorological Monitoring and Data Analysis

    International Nuclear Information System (INIS)

    C.T. Bastian

    2003-01-01

    The meteorological monitoring and analysis program has three overall objectives. First, the program will acquire qualified meteorological data from monitoring activities in the Environmental Safety and Health (ES and H) network, including appropriate controls on measuring and test equipment. All work will be completed in accordance with U.S. Department of Energy (DOE) Office of Repository Development (ORD) administrative procedures and Bechtel SAIC Co., LLC (BSC) line procedures. The continuously operating monitoring program includes measuring and test equipment calibrations, operational checks, preventive and corrective maintenance, and data collection. Second, the program will process the raw monitoring data collected in the field and submit technically reviewed, traceable data to the Technical Data Management System (TDMS) and the Records Processing Center. Third, reports containing analyses or calculations could be created to provide information to data requesters

  2. Wood Programs. Courseware Evaluation for Vocational and Technical Education.

    Science.gov (United States)

    Kaylor, Robert; And Others

    This courseware evaluation rates the Wood Programs software developed by the Iowa Department of Public Instruction. (These programs--not contained in this document--include understanding board feet, wood characteristics, wood safety drill, wood dimensions, wood moisture, operating the table saw, radial arm, measurement drill, fraction drill, and…

  3. Gas-cooled reactor technology safety and siting. Report of a technical committee meeting. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-07-01

    At the invitation of the Government of the Union of Soviet Socialist Republics, the Eleventh International Conference on the HTGR and the IAEA Technical Committee Meeting on Gas-Cooled Reactor Technology, Safety and Siting were held in Dimitrovgrad, USSR, on June 21-23, 1989. The Technical Committee Meeting provided the Soviet delegates with an opportunity to display the breadth of their program on HTGRs to an international audience. Nearly one-half of the papers were presented by Soviet participants. Among the highlights of the meeting were the following: the diverse nature and large magnitude of the Soviet research and development program on high temperature gas-cooled reactors; the Government approval of the budget for the construction of the 30 MWt High Temperature Test Reactor (HTTR) in Japan (The schedule contemplates a start of construction in spring 1990 on a site at the Oarai Research Establishment and about a five year construction period.); disappointment in the announced plans to shutdown both the Fort St. Vrain (FSV) plant in the United States (US) and the Thorium High Temperature Reactor (THTR-300) in Germany (These two reactors presently represent the only operating HTGRs in the world since the AVR plant in Juelich, Germany, was also shutdown at the end of 1988.); the continuing negotiations between Germany and the USSR on the terms of the co-operation between the two countries for the construction of a HTR Module supplemented by joint research and development activities aimed at increasing coolant outlet temperatures from 750 deg. C to 950 deg. C; the continued enthusiasm displayed by both the US and German representatives for the potential of the small modular designs under development in both countries and the ability for these designs to meet the stringent requirements demanded for the future expansion of nuclear power; the combining of the HTGR technology interest of ABB-Atom and Siemens in Germany into a joint enterprise, HTR GmbH, in May 1989

  4. Gas-cooled reactor technology safety and siting. Report of a technical committee meeting. Working material

    International Nuclear Information System (INIS)

    1990-01-01

    At the invitation of the Government of the Union of Soviet Socialist Republics, the Eleventh International Conference on the HTGR and the IAEA Technical Committee Meeting on Gas-Cooled Reactor Technology, Safety and Siting were held in Dimitrovgrad, USSR, on June 21-23, 1989. The Technical Committee Meeting provided the Soviet delegates with an opportunity to display the breadth of their program on HTGRs to an international audience. Nearly one-half of the papers were presented by Soviet participants. Among the highlights of the meeting were the following: the diverse nature and large magnitude of the Soviet research and development program on high temperature gas-cooled reactors; the Government approval of the budget for the construction of the 30 MWt High Temperature Test Reactor (HTTR) in Japan (The schedule contemplates a start of construction in spring 1990 on a site at the Oarai Research Establishment and about a five year construction period.); disappointment in the announced plans to shutdown both the Fort St. Vrain (FSV) plant in the United States (US) and the Thorium High Temperature Reactor (THTR-300) in Germany (These two reactors presently represent the only operating HTGRs in the world since the AVR plant in Juelich, Germany, was also shutdown at the end of 1988.); the continuing negotiations between Germany and the USSR on the terms of the co-operation between the two countries for the construction of a HTR Module supplemented by joint research and development activities aimed at increasing coolant outlet temperatures from 750 deg. C to 950 deg. C; the continued enthusiasm displayed by both the US and German representatives for the potential of the small modular designs under development in both countries and the ability for these designs to meet the stringent requirements demanded for the future expansion of nuclear power; the combining of the HTGR technology interest of ABB-Atom and Siemens in Germany into a joint enterprise, HTR GmbH, in May 1989

  5. Research program on regulatory safety research - Synthesis report 2008

    International Nuclear Information System (INIS)

    Mailaender, R

    2009-06-01

    This report for the Swiss Federal Office of Energy (SFOE) summarises the program's main points of interest, work done in the year 2008 and the results obtained. The main points of the research program, which is co-ordinated by the Swiss Federal Nuclear Safety Inspectorate ENSI, are discussed. Topics covered concern reactor safety as well as human, organisational and safety aspects. Work done in several areas concerning reactor safety and materials as well as interactions in severe accidents in light-water reactors is described. Radiation protection, the transport and disposal of radioactive wastes and safety culture are also looked at. Finally, national and international co-operation is briefly looked at and work to be done in 2009 is reviewed. The report is completed with a list of research and development projects co-ordinated by ENSI

  6. Evaluation of a five-year Bloomberg Global Road Safety Program in Turkey.

    Science.gov (United States)

    Gupta, S; Hoe, C; Özkan, T; Lajunen, T J; Vursavas, F; Sener, S; Hyder, A A

    2017-03-01

    Turkey was included in the Bloomberg Philanthropies funded Global Road Safety Program (2010-14) with Ankara and Afyonkarahisar (Afyon) selected for interventions to manage speed and encourage seat-belt use. The objectives of this study are to present the monitoring and evaluation findings of seat-belt use and speed in Afyon and Ankara over the five years and to assess overall impact of the program on road traffic injury, and death rates in Turkey. Quasi-experimental before after without comparison. In collaboration with the Middle East Technical University, roadside observations and interviews were coupled with secondary data to monitor changes in risk factors and outcomes at the two intervention sites. The percentage of seat-belt use among drivers and front-seat passengers in Afyon and Ankara increased significantly between 2010 and 2014 with increased self-reported use and preceded by an increase in tickets (fines) for not using seat belts. There were uneven improvements in speed reduction. In Afyon, the average speed increased significantly from 46.3 km/h in 2012 to about 52.7 km/h in 2014 on roads where the speed limits were 50 km/h. In Ankara, the average speed remained less than 55 km/h during the program period (range: 50-54 km/h; P < 0.005) for roads where the speed limits were 50 km/h; however, the average speed on roads with speed limits of 70 km/h decreased significantly from 80.6 km/h in 2012 to 68.44 km/h in 2014 (P < 0.005). The program contributed to increase in seat-belt use in Afyon and Ankara and by drawing political attention to the issue can contribute to improvements in road safety. We are optimistic that the visible motivation within Turkey to substantially reduce road traffic injuries will lead to increased program implementation matched with a robust evaluation program, with suitable controls. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Fast reactor test facilities in the US safety program

    International Nuclear Information System (INIS)

    Avery, R.; Dickerman, C.E.; Lennox, D.H.; Rose, D.

    1979-01-01

    The needs for safety information derivable from in-pile programs are reviewed, and the correlation made with existing and planned capability. In view of the current status of the U.S. breeder program, emphasis is given in the review to the impact of different fast breeder options on the required program and facilities. It is concluded that facility needs are somewhat independent of specific fast breeder concept, even though the relative emphasis on the various safety issues will differ. 8 refs

  8. Study of system safety evaluation on LTO of national project. NISA safety research project on system safety of nuclear power plants

    International Nuclear Information System (INIS)

    Takizawa, Masayuki; Sekimura, Naoto; Miyano, Hiroshi; Aoyama, Katsunobu

    2012-01-01

    Japanese safety regulatory body, that is, Nuclear and Industrial Safety Agency (NISA) started a 5-year national safety research project as 'the first stage' from 2006 FY to 2010 FY whose objective is 'Improve the technical information basis in order to utilize knowledge as well as information related to ageing management and maintenance of NPPs. Fukushima disaster happened in March 2011, and the priority of research needs for ageing management dramatically changed in Japan. The second-stage national project started in October 2011 with the concept of 'system safety' of NNPs where not only ageing management on degradation phenomena of important components but also safety management on total plant systems are paid attention to. The second-stage project is so called 'Japanese Ageing Management Program for System Safety (JAMPSS)'. (author)

  9. Technical reference book for the Energy Economic Data Base (EEDB) Program

    International Nuclear Information System (INIS)

    1985-08-01

    The Energy Economic Data Base (EEDB) Program is sponsored by the US Department of Energy (DOE) for the purpose of developing current technical and cost information for nuclear and comparison electric power generating stations. The data base was first assembled in 1978 from an initial update of the technical/cost data models developed for the predecessor studies. Seven updates of the data base have been performed between 1978 and 1984, in which various technical/cost data models have been updated, added, superceded or discontinued

  10. A reliability program approach to operational safety

    International Nuclear Information System (INIS)

    Mueller, C.J.; Bezella, W.A.

    1985-01-01

    A Reliability Program (RP) model based on proven reliability techniques is being formulated for potential application in the nuclear power industry. Methods employed under NASA and military direction, commercial airline and related FAA programs were surveyed and a review of current nuclear risk-dominant issues conducted. The need for a reliability approach to address dependent system failures, operating and emergency procedures and human performance, and develop a plant-specific performance data base for safety decision making is demonstrated. Current research has concentrated on developing a Reliability Program approach for the operating phase of a nuclear plant's lifecycle. The approach incorporates performance monitoring and evaluation activities with dedicated tasks that integrate these activities with operation, surveillance, and maintenance of the plant. The detection, root-cause evaluation and before-the-fact correction of incipient or actual systems failures as a mechanism for maintaining plant safety is a major objective of the Reliability Program. (orig./HP)

  11. Seismic safety margin assessment program (Annual safety research report, JFY 2010)

    International Nuclear Information System (INIS)

    Suzuki, Kenichi; Iijima, Toru; Inagaki, Masakatsu; Taoka, Hideto; Hidaka, Shinjiro

    2011-01-01

    Seismic capacity test data, analysis method and evaluation code provided by Seismic Safety Margin Assessment Program have been utilized for the support of seismic back-check evaluation of existing plants. The summary of the program in 2010 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. Many seismic capacity tests of various snubbers were conducted and quantitative seismic capacities were evaluated. One of the emergency diesel generator partial-model seismic capacity tests was conducted and quantitative seismic capacity was evaluated. Some of the analytical evaluations of piping-system seismic capacities were conducted. 2. Analysis method for minute evaluation of component seismic response. The difference of seismic response of large components such as primary containment vessel and reactor pressure vessel when they were coupled with 3-dimensional FEM building model or 1-dimensional lumped mass building model, was quantitatively evaluated. 3. Evaluation code for quantitative evaluation of seismic safety margin of systems, structures and components. As the example, quantitative evaluation of seismic safety margin of systems, structures and components were conducted for the reference plant. (author)

  12. Status report of the US Department of Energy's International Nuclear Safety Program

    International Nuclear Information System (INIS)

    1994-12-01

    The US Department of Energy (DOE) implements the US Government's International Nuclear Safety Program to improve the level of safety at Soviet-designed nuclear power plants in Central and Eastern Europe, Russia, and Unkraine. The program is conducted consistent with guidance and policies established by the US Department of State (DOS) and the Agency for International Development and in close collaboration with the Nuclear Regulatory Commission. Some of the program elements were initiated in 1990 under a bilateral agreement with the former Soviet Union; however, most activities began after the Lisbon Nuclear Safety Initiative was announced by the DOS in 1992. Within DOE, the program is managed by the International Division of the Office of Nuclear Energy. The overall objective of the International Nuclear Safety Program is to make comprehensive improvements in the physical conditions of the power plants, plant operations, infrastructures, and safety cultures of countries operating Soviet-designed reactors. This status report summarizes the Internatioal Nuclear Safety Program's activities that have been completed as of September 1994 and discusses those activities currently in progress

  13. Proceedings of the efficient separations and processing crosscutting program 1997 technical exchange meeting

    Energy Technology Data Exchange (ETDEWEB)

    Gephart, J.M. [ed.

    1997-05-01

    This document contains summaries of technology development presented at the 1997 Efficient Separations and Processing Crosscutting Program (ESP-CP) Technical Exchange Meeting (TEM), held January 28-30, 1997, in Gaithersburg, Maryland. The ESP-CP is sponsored by the U.S. Department of Energy`s Office of Environmental Management (DOE/EM), Office of Science and Technology. The ESP-CP TEM is held annually to: (1) Present current technology development activities funded by the ESP-CP. Developers of ESP-CP-funded technologies describe the problems and needs addressed by their technologies; the technical approach, accomplishments, and resolution of issues; the strategy and schedule for commercialization; and evolving potential applications. Representatives from DOE/EM`s Focus Areas also present their technology needs. (2) Promote the exchange of technical information among those developing new separations technologies, those responsible for providing new separations technologies to meet DOE/EM needs, and those who need or will potentially make use of such technologies. (3) Familiarize the ESP-CP Technical Review Team with the FY 1997 program and solicit reviewers` views on the program as a whole. This meeting is not a program review of the individual tasks, but instead focuses on the technical aspects and implementation of ESP-CP-sponsored technology or data. This document also contains a list of ESP-CP-sponsored publications, presentations, and patents. Separate abstracts have been indexed into the energy database for contributions to this proceedings.

  14. Proceedings of the efficient separations and processing crosscutting program 1997 technical exchange meeting

    International Nuclear Information System (INIS)

    Gephart, J.M.

    1997-01-01

    This document contains summaries of technology development presented at the 1997 Efficient Separations and Processing Crosscutting Program (ESP-CP) Technical Exchange Meeting (TEM), held January 28-30, 1997, in Gaithersburg, Maryland. The ESP-CP is sponsored by the U.S. Department of Energy's Office of Environmental Management (DOE/EM), Office of Science and Technology. The ESP-CP TEM is held annually to: (1) Present current technology development activities funded by the ESP-CP. Developers of ESP-CP-funded technologies describe the problems and needs addressed by their technologies; the technical approach, accomplishments, and resolution of issues; the strategy and schedule for commercialization; and evolving potential applications. Representatives from DOE/EM's Focus Areas also present their technology needs. (2) Promote the exchange of technical information among those developing new separations technologies, those responsible for providing new separations technologies to meet DOE/EM needs, and those who need or will potentially make use of such technologies. (3) Familiarize the ESP-CP Technical Review Team with the FY 1997 program and solicit reviewers' views on the program as a whole. This meeting is not a program review of the individual tasks, but instead focuses on the technical aspects and implementation of ESP-CP-sponsored technology or data. This document also contains a list of ESP-CP-sponsored publications, presentations, and patents. Separate abstracts have been indexed into the energy database for contributions to this proceedings

  15. Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Bradley, E.W.; Wu, C.F.; Goff, T.E.

    1993-01-01

    The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from a sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report

  16. Continuing the service of safety-related concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Mori, Y.; Arndt, E.G.

    1993-01-01

    The Structural Aging (SAG) Program is addressing the aging management of safety-related concrete structures in nuclear power plants (NPPs) for the purpose of providing improved technical bases for their continued service. The program consists of three technical tasks: materials property data base, structural component assessment/repair technologies, and quantitative methodologies for continued service determinations. Recent accomplishments under each of these tasks are summarized

  17. Evaluation of systems interactions in nuclear power plants: Technical findings related to Unresolved Safety Issue A-17

    International Nuclear Information System (INIS)

    Thatcher, D.

    1989-05-01

    This report presents a summary of the activities related to Unresolved Safety Issue (USI)A-17, ''Systems Interactions in Nuclear Power Plants,'' and also includes the NRC staff's conclusions based on those activities. The staff's technical findings provide the framework for the final resolution of this unresolved safety issue. The final resolution will be published later as NUREG-1229. 52 refs., 4 tabs

  18. Correlation between safety climate and contractor safety assessment programs in construction.

    Science.gov (United States)

    Sparer, Emily H; Murphy, Lauren A; Taylor, Kathryn M; Dennerlein, Jack T

    2013-12-01

    Contractor safety assessment programs (CSAPs) measure safety performance by integrating multiple data sources together; however, the relationship between these measures of safety performance and safety climate within the construction industry is unknown. Four hundred and one construction workers employed by 68 companies on 26 sites and 11 safety managers employed by 11 companies completed brief surveys containing a nine-item safety climate scale developed for the construction industry. CSAP scores from ConstructSecure, Inc., an online CSAP database, classified these 68 companies as high or low scorers, with the median score of the sample population as the threshold. Spearman rank correlations evaluated the association between the CSAP score and the safety climate score at the individual level, as well as with various grouping methodologies. In addition, Spearman correlations evaluated the comparison between manager-assessed safety climate and worker-assessed safety climate. There were no statistically significant differences between safety climate scores reported by workers in the high and low CSAP groups. There were, at best, weak correlations between workers' safety climate scores and the company CSAP scores, with marginal statistical significance with two groupings of the data. There were also no significant differences between the manager-assessed safety climate and the worker-assessed safety climate scores. A CSAP safety performance score does not appear to capture safety climate, as measured in this study. The nature of safety climate in construction is complex, which may be reflective of the challenges in measuring safety climate within this industry. Am. J. Ind. Med. 56:1463-1472, 2013. © 2013 Wiley Periodicals, Inc. © 2013 Wiley Periodicals, Inc.

  19. Technical Meeting on Passive Shutdown Systems for Liquid Metal-Cooled Fast Reactors. Working Material

    International Nuclear Information System (INIS)

    2015-01-01

    A major focus of the design of modern fast reactor systems is on inherent and passive safety. Specific systems to improve reactor safety performance during accidental transients have been developed in nearly all fast reactor programs, and a large number of proposed systems have reached various stages of maturity. This Technical Meeting on Passive Shutdown Systems for Fast Reactors, which was recommended by the Technical Working Group on Fast Reactors (TWG-FR), addressed Member States’ expressed need for information exchange on projects and programs in the field, as well as for the identification of priorities based on the analysis of technology gaps to be covered through R&D activities. This meeting was limited to shutdown systems only, and did not include other passive features such as natural circulation decay heat removal systems etc.; however the meeting catered to passive shutdown safety devices applicable to all types of fast neutron systems. It was agreed to initiate a new study and produce a Nuclear Energy Series (NES) Technical Report to collect information about the existing operational systems as well as innovative concepts under development. This will be a useful source for member states interested in gaining technical expertise to develop passive shutdown systems as well as to highlight the importance and development in this area

  20. 76 FR 6810 - Announcement of Funding Awards for the Special Needs Assistance Programs-Technical Assistance...

    Science.gov (United States)

    2011-02-08

    ... Awards for the Special Needs Assistance Programs--Technical Assistance (SNAPS--TA) Fiscal Year 2010... funding awards for HUD'S Fiscal Year 2010 Special Needs Assistance Programs--Technical Assistance (SNAPS... Department in a competition for funding under the Notice of Funding Availability (NOFA) for the Special Needs...

  1. Decree of the Czech Labor Safety Office No. 263/1991 amending the Decree No. 76/1989 on ensuring safety of technical facilities in the nuclear power sector

    International Nuclear Information System (INIS)

    1995-01-01

    Some provisions of the Decree of the Czech Labor Safety Office No. 76/1989 on ensuring safety of technical facilities in the nuclear power sector are amended, particularly in the field of construction activities, assembling, reconstruction and repair of nuclear power facilities. The Decree entered into force on 28 June 1991. (J.B.)

  2. 41 CFR 128-1.8009 - Review of Seismic Safety Program.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Review of Seismic Safety Program. 128-1.8009 Section 128-1.8009 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF JUSTICE 1-INTRODUCTION 1.80-Seismic Safety Program...

  3. Pilot program to identify valve failures which impact the safety and operation of light water nuclear power plants

    International Nuclear Information System (INIS)

    Tsacoyeanes, J.C.; Raju, P.P.

    1980-04-01

    The pilot program described has been initiated under the Department of Energy Light Water Reactor Safety Research and Development Program and has the following specific objectives: to identify the principal types and causes of failures in valves, valve operators and their controls and associated hardware, which lead to, or could lead to plant trip; and to suggest possible remedies for the prevention of these failures and recommend future research and development programs which could lead to minimizing these valve failures or mitigating their effect on plant operation. The data surveyed cover incidents reported over the six-year period, beginning 1973 through the end of 1978. Three sources of information on valve failures have been consulted: failure data centers, participating organizations in the nuclear power industry, and technical documents

  4. Probabilistic studies for a safety assurance program

    International Nuclear Information System (INIS)

    Iyer, S.S.; Davis, J.F.

    1985-01-01

    The adequate supply of energy is always a matter of concern for any country. Nuclear power has played, and will continue to play an important role in supplying this energy. However, safety in nuclear power production is a fundamental prerequisite in fulfilling this role. This paper outlines a program to ensure safe operation of a nuclear power plant utilizing the Probabilistic Safety Studies

  5. Experiment to evaluate software safety

    International Nuclear Information System (INIS)

    Soubies, B.; Henry, J.Y.

    1994-01-01

    The process of licensing nuclear power plants for operation consists of mandatory steps featuring detailed examination of the instrumentation and control system by the safety authorities, including softwares. The criticality of these softwares obliges the manufacturer to develop in accordance with the IEC 880 standard 'Computer software in nuclear power plant safety systems' issued by the International Electronic Commission. The evaluation approach, a two-stage assessment is described in detail. In this context, the IPSN (Institute of Protection and Nuclear Safety), the technical support body of the safety authority uses the MALPAS tool to analyse the quality of the programs. (R.P.). 4 refs

  6. State technical review of the HLNW program and the peer review process

    International Nuclear Information System (INIS)

    Jacob, G.R.

    1986-01-01

    Millions of dollars are being spent on state governments' review of the Department of Energy (DOE) high level waste (HLW) repository program. A significant portion of the review efforts focus on technical issues surrounding the development and installment of HLW disposal technologies. Some view the states' technical review efforts as part of a peer review process. However, this interpretation reveals a misunderstanding of the concept of peer review and the purposes of state technical review

  7. Overview of the Nuclear Regulatory Commission's safety research program

    International Nuclear Information System (INIS)

    Beckjord, E.S.

    1989-01-01

    Accomplishments during 1988 of the Office of Nuclear Regulatory Research and the program of safety research are highlighted, and plans, expections, and needs of the next year and beyond are discussed. Topics discussed include: ECCS Appendix K Revision; pressurized thermal shock; NUREG-1150, or the PRA method performance document; resolution of station blackout; severe accident integration plan; nuclear safety research review committee; and program management

  8. Guidance for implementing an environmental, safety, and health-assurance program. Volume 15. A model plan for line organization environmental, safety, and health-assurance programs

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, A.C.; Trauth, C.A. Jr.

    1982-01-01

    This is 1 of 15 documents designed to illustrate how an Environmental, Safety and Health (ES and H) Assurance Program may be implemented. The generic definition of ES and H Assurance Programs is given in a companion document entitled An Environmental, Safety and Health Assurance Program Standard. This particular document presents a model operational-level ES and H Assurance Program that may be used as a guide by an operational-level organization in developing its own plan. The model presented here reflects the guidance given in the total series of 15 documents.

  9. Canadian Nuclear Safety Commission's intern program

    International Nuclear Information System (INIS)

    Gilmour, P.E.

    2002-01-01

    The Intern Program was introduced at the Canadian Nuclear Safety Commission, Canada's Nuclear Regulator in response to the current competitive market for engineers and scientists and the CNSC's aging workforce. It is an entry level staff development program designed to recruit and train new engineering and science graduates to eventually regulate Canada's nuclear industry. The program provides meaningful work experience and exposes the interns to the general work activities of the Commission. It also provides them with a broad awareness of the regulatory issues in which the CNSC is involved. The intern program is a two-year program focusing on the operational areas and, more specifically, on the generalist functions of project officers. (author)

  10. Technical Guidance from the International Safety Framework for Nuclear Power Source Applications in Outer Space for Design and Development Phases

    Science.gov (United States)

    Summerer, Leopold

    2014-08-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space [1] has been adopted, following a multi-year process that involved all major space faring nations in the frame of the International Atomic Energy Agency and the UN Committee on the Peaceful Uses of Outer Space. The safety framework reflects an international consensus on best practices. After the older 1992 Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second document at UN level dedicated entirely to space nuclear power sources.This paper analyses aspects of the safety framework relevant for the design and development phases of space nuclear power sources. While early publications have started analysing the legal aspects of the safety framework, its technical guidance has not yet been subject to scholarly articles. The present paper therefore focuses on the technical guidance provided in the safety framework, in an attempt to assist engineers and practitioners to benefit from these.

  11. Technical feasibility and reliability of passive safety systems for nuclear power plants. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    1996-12-01

    The meeting provided an overview of the key issues on passive safety. Technical problems which may affect future deployment, and the operating experience of passive systems and components, as well as, definitions of passive safety terms, were discussed. Advantages and disadvantages of passive systems were also highlighted. The philosophy behind different passive safety systems was presented and the range of possibility between fully passive and fully active systems was discussed. Refs, figs, tabs

  12. Technical feasibility and reliability of passive safety systems for nuclear power plants. Proceedings of an advisory group meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The meeting provided an overview of the key issues on passive safety. Technical problems which may affect future deployment, and the operating experience of passive systems and components, as well as, definitions of passive safety terms, were discussed. Advantages and disadvantages of passive systems were also highlighted. The philosophy behind different passive safety systems was presented and the range of possibility between fully passive and fully active systems was discussed. Refs, figs, tabs.

  13. High-temperature gas-cooled reactor safety-reliability program plan

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The purpose of this document is to present a safety plan as part of an overall program plan for the design and development of the High Temperature Gas-Cooled Reactor (HTGR). This plan is intended to establish a logical framework for identifying the technology necessary to demonstrate that the requisite degree of public risk safety can be achieved economically. This plan provides a coherent system safety approach together with goals and success criterion as part of a unifying strategy for licensing a lead reactor plant in the near term. It is intended to provide guidance to program participants involved in producing a technology base for the HTGR that is fully responsive to safety consideration in the design, evaluation, licensing, public acceptance, and economic optimization of reactor systems.

  14. Operating experience: safety perspective

    International Nuclear Information System (INIS)

    Piplani, Vivek; Krishnamurthy, P.R.; Kumar, Neeraj; Upadhyay, Devendra

    2015-01-01

    Operating Experience (OE) provides valuable information for improving NPP safety. This may include events, precursors, deviations, deficiencies, problems, new insights to safety, good practices, lessons and corrective actions. As per INSAG-10, an OE program caters as a fundamental means for enhancing the defence-in-depth at NPPs and hence should be viewed as ‘Continuous Safety Performance Improvement Tool’. The ‘Convention on Nuclear Safety’ also recognizes the OE as a tool of high importance for enhancing the NPP safety and its Article 19 mandates each contracting party to establish an effective OE program at operating NPPs. The lessons drawn from major accidents at Three Mile Island, Chernobyl and Fukushima Daiichi NPPs had prompted nuclear stalwarts to change their safety perspective towards NPPs and to frame sound policies on issues like safety culture, severe accident prevention and mitigation. An effective OE program, besides correcting current/potential problems, help in proactively improving the NPP design, operating and maintenance procedures, practices, training, etc., and thus plays vital role in ensuring safe and efficient operation of NPPs. Further it enhances knowledge with regard to equipment operating characteristics, system performance trends and provides data for quantitative and qualitative safety analysis. Besides all above, an OE program inculcates a learning culture in the organisation and thus helps in continuously enhancing the expertise, technical competency and knowledge base of its staff. Nuclear and Radiation Facilities in India are regulated by Atomic Energy Regulatory Board (AERB). Operating Plants Safety Division (OPSD) of AERB is involved in managing operating experience activities. This paper provides insights about the operating experience program of OPSD, AERB (including its on-line data base namely OPSD STAR) and its utilisation in improving the regulations and safety at Indian NPPs/projects. (author)

  15. Area Safety Program for the tokamak fusion test reactor (TFTR)

    International Nuclear Information System (INIS)

    Rappe, G.M.

    1984-10-01

    Overall the Area Safety Program has proved to be a very successful operation. There is no doubt that a safety program organized through line management is the best way to involve all personnel. Naturally, when the program was first started, there was some criticism and a certain resistance on the part of a few individuals to fully participate. However, once the program was underway and it could be seen that it was working to everyone's advantage, this reluctance disappeared and a spirit of full cooperation is now enjoyed. It is very important that for this success to continue there must be a two way flow of information, both from the Area Safety Coordinators up through line management, and from senior management, with decisions and answers, back down through the management chain with the utmost dispatch. As with all programs, there is still room for improvement. This program has started a review cycle with a view to streamlining certain areas and possibly increasing its scope in others

  16. Safety aspects in life extension of NPPs. Working material

    International Nuclear Information System (INIS)

    2002-01-01

    Due to current social and economical framework, in last years many Member States (MS) started a process of Plant Life Extension (PLEX) for their older nuclear facilities. The process followed many different approaches, being intrinsically dependent on the national regulatory framework and technical tradition. This process has many nuclear safety implications, other than strategic and political ones, and therefore a need for tailoring the available safety assessment tools to such applications has become urgent in recent years. Typical safety assessment processes such as the Periodic Safety Review has been used already and can be used in the future as a framework for a PLEX. Also the review of regular maintenance and ageing management programs and the continuous upgrading of the Safety Analysis Report are tools widely used in a life extension context in many MS. However, recently some MS highlighted the need to identify in a clear way the technical aspects more directly affecting the decision for a long-term operation of a nuclear facility. Many Technical Cooperation projects have been requested for the year 2003-2004 on this subject and a generic task in Nuclear Safety proved necessary as a background activity. Therefore, on May 6-10, 2002, a Consultant Meeting dealing with Safety Aspects of life extension for NPPs was convened at the Nuclear Safety Dept. of the IAEA. It was attended by representatives of Regulatory Bodies and Utilities, both from countries with experience of life extension of NPPs and countries where the process is at the beginning. The main application problems were identified and discussed and a first attempt was carried out to define the key elements of the life extension process, isolating peculiar technical items, LTO related, from generic safety related tasks. The result was a preliminary technical document with a collection of basic experience and information for the implementation of a PLEX program. Therefore the draft document was thought

  17. Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1993-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  18. Reactor safety research program. A description of current and planned reactor safety research sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research

    International Nuclear Information System (INIS)

    1975-06-01

    The reactor safety research program, sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, is described in terms of its program objectives, current status, and future plans. Elements of safety research work applicable to water reactors, fast reactors, and gas cooled reactors are presented together with brief descriptions of current and planned test facilities. (U.S.)

  19. An Effective Health and Medical Technical Authority

    Science.gov (United States)

    Fogarty, Jennifer A.

    2009-01-01

    The NASA Governance model directed the formation of three Technical Authorities, Engineering; Safety and Mission Assurance; and Health and Medical, to ensure that risks are identified and adjudicated efficiently and transparently in concert with the spaceflight programs and projects. The Health and Medical Technical Authority (HMTA) has been implemented at the Johnson Space Center (JSC) and consists of the Chief Medical Office (CMO), the Deputy CMO, and HMTA Delegates. The JSC HMTA achieves the goals of risk identification and adjudication through the discharge of the appropriate technical expertise to human space flight programs and projects and the escalation of issues within program and technical authority boards. The JSC HMTA relies on subject matter experts (SMEs) in the Space Life Sciences Directorate at JSC as well as experts from other Centers to work crew health and performance issues at the technical level, develop requirements, oversee implementation and validation of requirements, and identify risks and non-compliances. Once a risk or potential noncompliance has been identified and reported to the programs or projects, the JSC HMTA begins to track it and closely monitor the program's or project's response. As a risk is developed or a non-compliance negotiated, positions from various levels of decision makers are sought at the program and project control boards. The HMTA may support a program or project position if it is satisfied with the decision making and vetting processes (ex. the subject matter expert voiced his/her concerns and all dissenting opinions were documented) and finds that the position both acknowledges the risk and cost of the mitigation and resolves the issue without changing NASA risk posture. The HMTA may disagree with a program or project position if the NASA risk posture has been elevated or obfuscated. If the HMTA does disagree with the program or project position, it will appeal to successively higher levels of authority so that

  20. Workforce Investments: State Strategies to Preserve Higher-Cost Career Education Programs in Community and Technical Colleges

    Science.gov (United States)

    Shulock, Nancy; Lewis, Jodi; Tan, Connie

    2013-01-01

    In today's highly-skilled economy, rewarding career pathways are available to those who acquire technical skills by enrolling in certificate and associate degree programs in a community or technical college. Such programs are often more costly to offer than liberal arts and sciences programs that prepare students to transfer to four-year…

  1. Determining Safety Inspection Thresholds for Employee Incentives Programs on Construction Sites.

    Science.gov (United States)

    Sparer, Emily; Dennerlein, Jack

    2013-01-01

    The goal of this project was to evaluate approaches of determining the numerical value of a safety inspection score that would activate a reward in an employee safety incentive program. Safety inspections are a reflection of the physical working conditions at a construction site and provide a safety score that can be used in incentive programs to reward workers. Yet it is unclear what level of safety should be used when implementing this kind of program. This study explored five ways of grouping safety inspection data collected during 19 months at Harvard University-owned construction projects. Each approach grouped the data by one of the following: owner, general contractor, project, trade, or subcontractor. The median value for each grouping provided the threshold score. These five approaches were then applied to data from a completed project in order to calculate the frequency and distribution of rewards in a monthly safety incentive program. The application of each approach was evaluated qualitatively for consistency, competitiveness, attainability, and fairness. The owner-specific approach resulted in a threshold score of 96.3% and met all of the qualitative evaluation goals. It had the most competitive reward distribution (only 1/3 of the project duration) yet it was also attainable. By treating all workers equally and maintaining the same value throughout the project duration, this approach was fair and consistent. The owner-based approach for threshold determination can be used by owners or general contractors when creating leading indicator incentives programs and by researchers in future studies on incentive program effectiveness.

  2. Process hazards analysis (PrHA) program, bridging accident analyses and operational safety

    International Nuclear Information System (INIS)

    Richardson, J.A.; McKernan, S.A.; Vigil, M.J.

    2003-01-01

    Recently the Final Safety Analysis Report (FSAR) for the Plutonium Facility at Los Alamos National Laboratory, Technical Area 55 (TA-55) was revised and submitted to the US. Department of Energy (DOE). As a part of this effort, over seventy Process Hazards Analyses (PrHAs) were written and/or revised over the six years prior to the FSAR revision. TA-55 is a research, development, and production nuclear facility that primarily supports US. defense and space programs. Nuclear fuels and material research; material recovery, refining and analyses; and the casting, machining and fabrication of plutonium components are some of the activities conducted at TA-35. These operations involve a wide variety of industrial, chemical and nuclear hazards. Operational personnel along with safety analysts work as a team to prepare the PrHA. PrHAs describe the process; identi fy the hazards; and analyze hazards including determining hazard scenarios, their likelihood, and consequences. In addition, the interaction of the process to facility systems, structures and operational specific protective features are part of the PrHA. This information is rolled-up to determine bounding accidents and mitigating systems and structures. Further detailed accident analysis is performed for the bounding accidents and included in the FSAR. The FSAR is part of the Documented Safety Analysis (DSA) that defines the safety envelope for all facility operations in order to protect the worker, the public, and the environment. The DSA is in compliance with the US. Code of Federal Regulations, 10 CFR 830, Nuclear Safety Management and is approved by DOE. The DSA sets forth the bounding conditions necessary for the safe operation for the facility and is essentially a 'license to operate.' Safely of day-to-day operations is based on Hazard Control Plans (HCPs). Hazards are initially identified in the PrI-IA for the specific operation and act as input to the HCP. Specific protective features important to worker

  3. MedWatch, the FDA Safety Information and Adverse Event Reporting Program

    Science.gov (United States)

    ... Reporting Program MedWatch: The FDA Safety Information and Adverse Event Reporting Program Share Tweet Linkedin Pin it ... approved information that can help patients avoid serious adverse events. Potential Signals of Serious Risks/New Safety ...

  4. 78 FR 66987 - Railroad Safety Technology Program Grant Program

    Science.gov (United States)

    2013-11-07

    ... carriers, railroad suppliers, and State and local governments for projects that have a public benefit of... projects . . . that have a public benefit of improved safety and network efficiency.'' To be eligible for... million. This grant program has a maximum 80-percent Federal and minimum 20-percent grantee cost share...

  5. USNRC licensing process as related to nuclear criticality safety

    International Nuclear Information System (INIS)

    Ketzlach, N.

    1987-01-01

    The U.S. Code of Federal Regulations establishes procedures and criteria for the issuance of licenses to receive title to, own, acquire, deliver, receive, possess, use, and initially transfer special nuclear material; and establishes and provides for the terms and conditions upon which the Nuclear Regulatory Commission (NRC) will issue such licenses. Section 70.22 of the regulations, ''Contents of Applications'', requires that applications for licenses contain proposed procedures to avoid accidental conditions of criticality. These procedures are elements of a nuclear criticality safety program for operations with fissionable materials at fuels and materials facilities (i.e., fuel cycle facilities other than nuclear reactors) in which there exists a potential for criticality accidents. To assist the applicant in providing specific information needed for a nuclear criticality safety program in a license application, the NRC has issued regulatory guides. The NRC requirements for nuclear criticality safety include organizational, administrative, and technical requirements. For purely technical matters on nuclear criticality safety these guides endorse national standards. Others provide guidance on the standard format and content of license applications, guidance on evaluating radiological consequences of criticality accidents, or guidance for dealing with other radiation safety issues. (author)

  6. Development of nuclear safety issues program

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. C.; Yoo, S. O.; Yoon, Y. K.; Kim, H. J.; Jeong, M. J.; Noh, K. W.; Kang, D. K

    2006-12-15

    The nuclear safety issues are defined as the cases which affect the design and operation safety of nuclear power plants and also require the resolution action. The nuclear safety issues program (NSIP) which deals with the overall procedural requirements for the nuclear safety issues management process is developed, in accordance with the request of the scientific resolution researches and the establishment/application of the nuclear safety issues management system for the nuclear power plants under design, construction or operation. The NSIP consists of the following 4 steps; - Step 1 : Collection of candidates for nuclear safety issues - Step 2 : Identification of nuclear safety issues - Step 3 : Categorization and resolution of nuclear safety issues - Step 4 : Implementation, verification and closure The NSIP will be applied to the management directives of KINS related to the nuclear safety issues. Through the identification of the nuclear safety issues which may be related to the potential for accident/incidents at operating nuclear power plants either directly or indirectly, followed by performance of regulatory researches to resolve the safety issues, it will be possible to prevent occurrence of accidents/incidents as well as to cope with unexpected accidents/incidents by analyzing the root causes timely and scientifically and by establishing the proper flow-up or remedied regulatory actions. Moreover, the identification and resolution of the safety issues related to the new nuclear power plants completed at the design stage are also expected to make the new reactor licensing reviews effective and efficient as well as to make the possibility of accidents/incidents occurrence minimize. Therefore, the NSIP developed in this study is expected to contribute for the enhancement of the safety of nuclear power plants.

  7. Development of nuclear safety issues program

    International Nuclear Information System (INIS)

    Cho, J. C.; Yoo, S. O.; Yoon, Y. K.; Kim, H. J.; Jeong, M. J.; Noh, K. W.; Kang, D. K.

    2006-12-01

    The nuclear safety issues are defined as the cases which affect the design and operation safety of nuclear power plants and also require the resolution action. The nuclear safety issues program (NSIP) which deals with the overall procedural requirements for the nuclear safety issues management process is developed, in accordance with the request of the scientific resolution researches and the establishment/application of the nuclear safety issues management system for the nuclear power plants under design, construction or operation. The NSIP consists of the following 4 steps; - Step 1 : Collection of candidates for nuclear safety issues - Step 2 : Identification of nuclear safety issues - Step 3 : Categorization and resolution of nuclear safety issues - Step 4 : Implementation, verification and closure The NSIP will be applied to the management directives of KINS related to the nuclear safety issues. Through the identification of the nuclear safety issues which may be related to the potential for accident/incidents at operating nuclear power plants either directly or indirectly, followed by performance of regulatory researches to resolve the safety issues, it will be possible to prevent occurrence of accidents/incidents as well as to cope with unexpected accidents/incidents by analyzing the root causes timely and scientifically and by establishing the proper flow-up or remedied regulatory actions. Moreover, the identification and resolution of the safety issues related to the new nuclear power plants completed at the design stage are also expected to make the new reactor licensing reviews effective and efficient as well as to make the possibility of accidents/incidents occurrence minimize. Therefore, the NSIP developed in this study is expected to contribute for the enhancement of the safety of nuclear power plants

  8. Electronuclear's safety culture assessment and enhancement program

    International Nuclear Information System (INIS)

    Selvatici, E.; Diaz-Francisco, J.M.; Diniz de Souza, V.

    2002-01-01

    The present paper describes the Eletronuclear's safety culture assessment and enhancement program. The program was launched by the company's top management one year after the creation of Eletronuclear in 1997, from the merging of two companies with different organizational cultures, the design and engineering company Nuclen and the nuclear directorate of the Utility Furnas, Operator of the Angra1 NPP. The program consisted of an assessment performed internally in 1999 with the support and advice of the IAEA. This assessment, performed with the help of a survey, pooled about 80% of the company's employees. The overall result of the assessment was that a satisfactory level of safety culture existed; however, a number of points with a considerable margin for improvement were also identified. These points were mostly related with behavioural matters such as motivation, stress in the workplace, view of mistakes, handling of conflicts, and last but not least a view by a considerable number of employees that a conflict between safety and production might exist. An Action Plan was established by the company managers to tackle these weak points. This Plan was issued as company guideline by the company's Directorate. The subsequent step was to detail and implement the different actions of the Plan, which is the phase that we are at present. In the detailing of the Action Plan, special care was taken to sum up efforts, avoiding duplication of work or competition with already existing programs. In this process it was identified that the company had a considerable number of initiatives directly related to organizational and safety culture improvement, already operational. These initiatives have been integrated in the detailed Action Plan. A new assessment, for checking the effectiveness of the undertaken actions, is planned for 2003. (author)

  9. Public service electric and gas company technical supervisory skills programs for nuclear power plant personnel

    International Nuclear Information System (INIS)

    Meredith, J.B.

    1985-01-01

    A series of training programs entitled Technical Supervisory Skills Programs for management personnel are described. The first level of this program, TSSP-1, is a seven week program designed for first-line supervisors and other selected management personnel responsible for directing the work forces in the stations. TSSP-1 includes training in PWR/BWR Technology, Supervision, Aberrant Behavior Identification, Labor Relations and Ethics, Technical Administration, Quality Assurance Program, On-the-job Training, and Specific Departmental Training. TSSP-2, TSSP-3, and TSSP-4 courses are described in this paper

  10. Applying health education theory to patient safety programs: three case studies.

    Science.gov (United States)

    Gilkey, Melissa B; Earp, Jo Anne L; French, Elizabeth A

    2008-04-01

    Program planning for patient safety is challenging because intervention-oriented surveillance data are not yet widely available to those working in this nascent field. Even so, health educators are uniquely positioned to contribute to patient safety intervention efforts because their theoretical training provides them with a guide for designing and implementing prevention programs. This article demonstrates the utility of applying health education concepts from three prominent patient safety campaigns, including the concepts of risk perception, community participation, and social marketing. The application of these theoretical concepts to patient safety programs suggests that health educators possess a knowledge base and skill set highly relevant to patient safety and that their perspective should be increasingly brought to bear on the design and evaluation of interventions that aim to protect patients from preventable medical error.

  11. A program to improve educational qualifications of reactor site technical personnel

    International Nuclear Information System (INIS)

    Christenson, J.M.; Eckart, L.E.

    1982-01-01

    The authors describe the planning and execution of a program that meets all of the Institute for Nuclear Power Operations (INPO) recommendations and Nuclear Regulatory Commission (NRC) requirements for Shift Technical Advisor (STA) education. They recall and comment these recommendations and requirements, the classification categories of the prospective candidates, indicate the courses proposed by the education program, comment the implementation of the STA program plan

  12. Effect of generic issues program on improving safety

    International Nuclear Information System (INIS)

    Fard, M. R.; Kauffman, J. V.

    2010-01-01

    The U.S. Nuclear Regulatory Commission (NRC) identifies (by its assessment of plant operation) certain issues involving public health and safety, the common defense and security, or the environment that could affect multiple entities under NRC jurisdiction. The Generic Issues Program (GIP) addresses the resolution of these Generic Issues (GIs). The resolution of these issues may involve new or revised rules, new or revised guidance, or revised interpretation of rules or guidance that affect nuclear power plant licensees, nuclear material certificate holders, or holders of other regulatory approvals. U.S. NRC provides information related to the past and ongoing GIP activities to the general public by the use of three main resources, namely NUREG-0933, 'Resolution of Generic Safety Issues, ' Generic Issues Management Control System (GIMCS), and GIP public web page. GIP information resources provide information such as historical information on resolved GIs, current status of the open GIs, policy documents, program procedures, GIP annual and quarterly reports and the process to contact GIP and propose a GI This paper provides an overview of the GIP and several examples of safety improvements resulting from the resolution of GIs. In addition, the paper provides a brief discussion of a few recent GIs to illustrate how the program functions to improve safety. (authors)

  13. Technical evaluation of bids for nuclear power stations

    International Nuclear Information System (INIS)

    Zijl, N.A. van

    1976-01-01

    A bid evaluation method is described which, it is claimed, facilitates a distinct and objective judgement of bids, taking into account the importance of the components, systems, and technical aspects evaluated with regard to the operation and safety of a nuclear power station. The evaluation basically consists of a cost assessment of the scope of supply deviations and a numerical evaluation of the technical design, the latter being a particularly novel feature of the method. The logic applied in both processes is shown. Main evaluation criteria which are applied for most components and systems are given as reliability, function and performance, safety, operation and maintenance, and materials. The judgements given to these evaluation criteria form the basis of the numerical bid evaluation described, which is carried out with the aid of computer programs. (U.K.)

  14. Technical baseline description for in situ vitrification laboratory test equipment

    International Nuclear Information System (INIS)

    Beard, K.V.; Bonnenberg, R.W.; Watson, L.R.

    1991-09-01

    IN situ vitrification (ISV) has been identified as possible waste treatment technology. ISV was developed by Pacific Northwest Laboratory (PNL), Richland, Washington, as a thermal treatment process to treat contaminated soils in place. The process, which electrically melts and dissolves soils and associated inorganic materials, simultaneously destroys and/or removes organic contaminants while incorporating inorganic contaminants into a stable, glass-like residual product. This Technical Baseline Description has been prepared to provide high level descriptions of the design of the Laboratory Test model, including all design modifications and safety improvements made to data. Furthermore, the Technical Baseline Description provides a basic overview of the interface documents for configuration management, program management interfaces, safety, quality, and security requirements. 8 figs

  15. Development and implementation of a hospital-based patient safety program

    International Nuclear Information System (INIS)

    Frush, Karen S.; Alton, Michael; Frush, Donald P.

    2006-01-01

    Evidence from numerous studies indicates that large numbers of patients are harmed by medical errors while receiving health-care services in the United States today. The 1999 Institute of Medicine report on medical errors recommended that hospitals and health-care agencies ''establish safety programs to act as a catalyst for the development of a culture of safety'' [1]. In this article, we describe one approach to successful implementation of a hospital-based patient safety program. Although our experience at Duke University Health System will be used as an example, the needs, principles, and solutions can apply to a variety of other health-care practices. Key components include the development of safety teams, provision of tools that teams can use to support an environment of safety, and ongoing program modification to meet patient and staff needs and respond to changing priorities. By moving patient safety to the forefront of all that we do as health-care providers, we can continue to improve our delivery of health care to children and adults alike. This improvement is fostered when we enhance the culture of safety, develop a constant awareness of the possibility of human and system errors in the delivery of care, and establish additional safeguards to intercept medical errors in order to prevent harm to patients. (orig.)

  16. Occupational Safety and Health Practices: An Alarming Call to Action

    Science.gov (United States)

    Threeton, Mark D.; Evanoski, Danielle C.

    2014-01-01

    In an effort to provide additional insight on providing a secure teaching and learning environment within schools, this study sought to: (1) explore the safety and health practices within Career and Technical Education (CTE); and (2) identify the perceived obstacles which appear to hinder implementation of health and safety programs. While it…

  17. 42 CFR 9.10 - Occupational Health and Safety Program (OHSP) and biosafety requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Occupational Health and Safety Program (OHSP) and... SANCTUARY SYSTEM § 9.10 Occupational Health and Safety Program (OHSP) and biosafety requirements. (a) How are employee Occupational Health and Safety Program risks and concerns addressed? The sanctuary shall...

  18. A Comprehensive Review of Selected Business Programs in Community Colleges and Area Vocational-Technical Centers. Program Review Report.

    Science.gov (United States)

    Florida State Dept. of Education, Tallahassee. Div. of Vocational, Adult, and Community Education.

    In 1988, a review was conducted of the business component of associate in arts and associate in science (AS) degree programs, and of the certificate programs in business in Florida community colleges and area vocational-technical centers. Focusing primarily on business programs in marketing, general business management, and small business…

  19. Technical reference book for the Energy Economic Data Base Program: EEDB Phase 9 (1987)

    International Nuclear Information System (INIS)

    1988-07-01

    This document provides the current technical design bases for each technical data model (of and electric generating plant) in the eighth update. It contains a set of detailed system design descriptions (supplemented with engineering drawings) for the technical data models. This distribution is the latest in a series published since 1978. The overall program purpose is to provide periodically updated, detailed base construction cost estimates for large nuclear electric operating plants. These data, which are representative of current US powerplant construction cost experience, are a useful contribution to program planning by the Office of the Assistant Secretary for Nuclear Energy

  20. The Ninth International scientific and technical conference Safety, efficiency and economy of atomic energy. Book of abstracts

    International Nuclear Information System (INIS)

    2014-01-01

    The abstracts of the Ninth International scientific and technical conference Safety, efficiency and economy of atomic energy are present. The conference took place in Moscow, 21-23 May, 2014. The problems of WWER, RBMK, BN and EhGP-6 NPPs operation, maintenance and repair; materials testing and metallic structures control; radioactive wastes and spent fuel management; NPP decommissioning; radiation safety, NPP ecology, emergency preparedness were discussed on the conference. The great attention was paid to the problems of atomic energy economy and its developing, international cooperation for NPP safety and young NPP specialists training [ru