WorldWideScience

Sample records for safety key parameters

  1. Selecting of key safety parameters in reactor nuclear safety supervision

    International Nuclear Information System (INIS)

    He Fan; Yu Hong

    2014-01-01

    The safety parameters indicate the operational states and safety of research reactor are the basis of nuclear safety supervision institution to carry out effective supervision to nuclear facilities. In this paper, the selecting of key safety parameters presented by the research reactor operating unit to National Nuclear Safety Administration that can express the research reactor operational states and safety when operational occurrence or nuclear accident happens, and the interrelationship between them are discussed. Analysis shows that, the key parameters to nuclear safety supervision of research reactor including design limits, operational limits and conditions, safety system settings, safety limits, acceptable limits and emergency action level etc. (authors)

  2. Key processes and input parameters for environmental tritium models

    International Nuclear Information System (INIS)

    Bunnenberg, C.; Taschner, M.; Ogram, G.L.

    1994-01-01

    The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs

  3. Key processes and input parameters for environmental tritium models

    Energy Technology Data Exchange (ETDEWEB)

    Bunnenberg, C; Taschner, M [Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany); Ogram, G L [Ontario Hydro, Toronto, ON (Canada)

    1994-12-31

    The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs.

  4. Screening key parameters related to passive system performance based on Analytic Hierarchy Process

    International Nuclear Information System (INIS)

    Ma, Guohang; Yu, Yu; Huang, Xiong; Peng, Yuan; Ma, Nan; Shan, Zuhua; Niu, Fenglei; Wang, Shengfei

    2015-01-01

    Highlights: • An improved AHP method is presented for screening key parameters used in passive system reliability analysis. • We take the special bottom parameters as criterion for calculation and the abrupt change of the results are verified. • Combination weights are also affected by uncertainty of input parameters. - Abstract: Passive safety system is widely used in the new generation nuclear power plant (NPP) designs such as AP1000 to improve the reactor safety benefitting from its simple construction and less request for human intervene. However, the functional failure induced by uncertainty in the system thermal–hydraulic (T–H) performance becomes one of the main contributors to system operational failure since the system operates based on natural circulation, which should be considered in the system reliability evaluation. In order to improve the calculation efficiency the key parameters which significantly affect the system T–H characteristics can be screened and then be analyzed in detail. The Analytical Hierarchy Process (AHP) is one of the efficient methods to analyze the influence of the parameters on a passive system based on the experts’ experience. The passive containment cooling system (PCCS) in AP1000 is one of the typical passive safety systems, nevertheless too many parameters need to be analyzed and the T–H model itself is more complicated, so the traditional AHP method should be mended to use for screening key parameters efficiently. In this paper, we adapt the improved method in hierarchy construction and experts’ opinions integration, some parameters at the bottom justly in the traditional hierarchy are studied as criterion layer in improved AHP, the rationality of the method and the effect of abrupt change with the data are verified. The passive containment cooling system (PCCS) in AP1000 is evaluated as an example, and four key parameters are selected from 49 inputs

  5. Selection and verification of safety parameters in safety parameter display system for nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Yuangfang

    1992-02-01

    The method and results for safety parameter selection and its verification in safety parameter display system of nuclear power plants are introduced. According to safety analysis, the overall safety is divided into six critical safety functions, and a certain amount of safety parameters which can represent the integrity degree of each function and the causes of change are strictly selected. The verification of safety parameter selection is carried out from the view of applying the plant emergency procedures and in the accident man oeuvres on a full scale nuclear power plant simulator

  6. Key parameters controlling radiology departments

    International Nuclear Information System (INIS)

    Busch, Hans-Peter

    2011-01-01

    For radiology departments and outstanding practises control and optimization of processes demand an efficient management based on key data. Systems of key data deliver indicators for control of medical quality, service quality and economics. For practices effectiveness (productivity), for hospitals effectiveness and efficiency are in the focus of economical optimization strategies. Task of daily key data is continuous monitoring of activities and workflow, task of weekly/monthly key data is control of data quality, process quality and achievement of objectives, task of yearly key data is determination of long term strategies (marketing) and comparison with competitors (benchmarking). Key parameters have to be defined clearly and have to be available directly. For generation, evaluation and control of key parameters suitable forms of organization and processes are necessary. Strategies for the future will be directed more to the total processes of treatment. To think in total processes and to steer and optimize with suitable parameters is the challenge for participants in the healthcare market of the future. (orig.)

  7. Key issues for passive safety

    International Nuclear Information System (INIS)

    Hayns, M.R.

    1996-01-01

    The paper represents a summary of the introductory presentation made at this Advisory Group Meeting on the Technical Feasibility and Reliability of Passive Safety Systems. It was intended as an overview of our views on what are the key issues and what are the technical problems which might dominate any future developments of passive safety systems. It is, therefore, not a ''review paper'' as such and only record the highlights. (author)

  8. Key issues for passive safety

    Energy Technology Data Exchange (ETDEWEB)

    Hayns, M R [AEA Technology, Harwell, Didcot (United Kingdom). European Institutions; Hicken, E F [Forschungszentrum Juelich GmbH (Germany)

    1996-12-01

    The paper represents a summary of the introductory presentation made at this Advisory Group Meeting on the Technical Feasibility and Reliability of Passive Safety Systems. It was intended as an overview of our views on what are the key issues and what are the technical problems which might dominate any future developments of passive safety systems. It is, therefore, not a ``review paper`` as such and only record the highlights. (author).

  9. Key Parameters Estimation and Adaptive Warning Strategy for Rear-End Collision of Vehicle

    Directory of Open Access Journals (Sweden)

    Xiang Song

    2015-01-01

    Full Text Available The rear-end collision warning system requires reliable warning decision mechanism to adapt the actual driving situation. To overcome the shortcomings of existing warning methods, an adaptive strategy is proposed to address the practical aspects of the collision warning problem. The proposed strategy is based on the parameter-adaptive and variable-threshold approaches. First, several key parameter estimation algorithms are developed to provide more accurate and reliable information for subsequent warning method. They include a two-stage algorithm which contains a Kalman filter and a Luenberger observer for relative acceleration estimation, a Bayesian theory-based algorithm of estimating the road friction coefficient, and an artificial neural network for estimating the driver’s reaction time. Further, the variable-threshold warning method is designed to achieve the global warning decision. In the method, the safety distance is employed to judge the dangerous state. The calculation method of the safety distance in this paper can be adaptively adjusted according to the different driving conditions of the leading vehicle. Due to the real-time estimation of the key parameters and the adaptive calculation of the warning threshold, the strategy can adapt to various road and driving conditions. Finally, the proposed strategy is evaluated through simulation and field tests. The experimental results validate the feasibility and effectiveness of the proposed strategy.

  10. Reactor parameters for European economic, safety and environmental studies

    International Nuclear Information System (INIS)

    Hancox, R.; Cooke, P.I.H.; Spears, W.R.

    1990-01-01

    Parameter sets for five 1200 MW e tokamak reactors were developed for the European Study Group on the Environmental, Safety-related and Economic Potential of Fusion Power, showing today's perception of the range of reactors likely to be available as a result of the Commission's fusion programme. On the basis of the cost of generating electricity, relative to a fission reactor, a reference set was chosen and endorsed by the Group for further studies including that on the environmental impact of fusion power. Key physics and technology parameters for the reference reactor are compared with values used in the ITER design, and with those from American studies. (author)

  11. Key parameters analysis of hybrid HEMP simulator

    International Nuclear Information System (INIS)

    Mao Congguang; Zhou Hui

    2009-01-01

    According to the new standards on the high-altitude electromagnetic pulse (HEMP) developed by International Electrotechnical Commission (IEC), the target parameter requirements of the key structure of the hybrid HEMP simulator are decomposed. Firstly, the influences of the different excitation sources and biconical structures to the key parameters of the radiated electric field wave shape are investigated and analyzed. Then based on the influence curves the target parameter requirements of the pulse generator are proposed. Finally the appropriate parameters of the biconical structure and the excitation sources are chosen, and the computational result of the electric field in free space is presented. The results are of great value for the design of the hybrid HEMP simulator. (authors)

  12. Key Performance Indicators in the Evaluation of the Quality of Radiation Safety Programs.

    Science.gov (United States)

    Schultz, Cheryl Culver; Shaffer, Sheila; Fink-Bennett, Darlene; Winokur, Kay

    2016-08-01

    Beaumont is a multiple hospital health care system with a centralized radiation safety department. The health system operates under a broad scope Nuclear Regulatory Commission license but also maintains several other limited use NRC licenses in off-site facilities and clinics. The hospital-based program is expansive including diagnostic radiology and nuclear medicine (molecular imaging), interventional radiology, a comprehensive cardiovascular program, multiple forms of radiation therapy (low dose rate brachytherapy, high dose rate brachytherapy, external beam radiotherapy, and gamma knife), and the Research Institute (including basic bench top, human and animal). Each year, in the annual report, data is analyzed and then tracked and trended. While any summary report will, by nature, include items such as the number of pieces of equipment, inspections performed, staff monitored and educated and other similar parameters, not all include an objective review of the quality and effectiveness of the program. Through objective numerical data Beaumont adopted seven key performance indicators. The assertion made is that key performance indicators can be used to establish benchmarks for evaluation and comparison of the effectiveness and quality of radiation safety programs. Based on over a decade of data collection, and adoption of key performance indicators, this paper demonstrates one way to establish objective benchmarking for radiation safety programs in the health care environment.

  13. Parameters Evaluation of PLC Dependability and Safety

    Directory of Open Access Journals (Sweden)

    Juraj Zdansky

    2006-01-01

    Full Text Available This paper is focused on evaluation of dependability and safety parameters of PLC (Programmable Logic Controller. Achievement of requested level of these parameters is an application assumption for using PLC in control of safety critical processes. Evaluation of these parameters can be made on the base of suitable model and it can be influenced by system architecture when necessary.

  14. Research on the Effects of Hydropneumatic Parameters on Tracked Vehicle Ride Safety Based on Cosimulation

    Directory of Open Access Journals (Sweden)

    Shousong Han

    2017-01-01

    Full Text Available Ride safety of a tracked vehicle is the key focus of this research. The factors that affect the ride safety of a vehicle are analyzed and evaluation parameters with their criteria are proposed. A multibody cosimulation approach is used to investigate the effects of hydropneumatic parameters on the ride safety and aid with design optimization and tuning of the suspension system. Based on the cosimulation environment, the vehicle multibody dynamics (MBD model and the road model are developed using RecurDyn, which is linked to the hydropneumatic suspension model developed in Lab AMESim. Test verification of a single suspension unit is accomplished and the suspension parameters are implemented within the hydropneumatic model. Virtual tests on a G class road at different speeds are conducted. Effects of the accumulator charge pressure, damping diameter, and the track tensioning pressure on the ride safety are analyzed and quantified. This research shows that low accumulator charge pressure, improper damping diameter, and insufficient track tensioning pressure will deteriorate the ride safety. The results provide useful references for the optimal design and control of the parameters of a hydropneumatic suspension.

  15. Sensitivity analysis of reactor safety parameters with automated adjoint function generation

    International Nuclear Information System (INIS)

    Kallfelz, J.M.; Horwedel, J.E.; Worley, B.A.

    1992-01-01

    A project at the Paul Scherrer Institute (PSI) involves the development of simulation models for the transient analysis of the reactors in Switzerland (STARS). This project, funded in part by the Swiss Federal Nuclear Safety Inspectorate, also involves the calculation and evaluation of certain transients for Swiss light water reactors (LWRs). For best-estimate analyses, a key element in quantifying reactor safety margins is uncertainty evaluation to determine the uncertainty in calculated integral values (responses) caused by modeling, calculational methodology, and input data (parameters). The work reported in this paper is a joint PSI/Oak Ridge National Laboratory (ORNL) application to a core transient analysis code of an ORNL software system for automated sensitivity analysis. The Gradient-Enhanced Software System (GRESS) is a software package that can in principle enhance any code so that it can calculate the sensitivity (derivative) to input parameters of any integral value (response) calculated in the original code. The studies reported are the first application of the GRESS capability to core neutronics and safety codes

  16. Empirical estimation of school siting parameter towards improving children's safety

    Science.gov (United States)

    Aziz, I. S.; Yusoff, Z. M.; Rasam, A. R. A.; Rahman, A. N. N. A.; Omar, D.

    2014-02-01

    Distance from school to home is a key determination in ensuring the safety of hildren. School siting parameters are made to make sure that a particular school is located in a safe environment. School siting parameters are made by Department of Town and Country Planning Malaysia (DTCP) and latest review was on June 2012. These school siting parameters are crucially important as they can affect the safety, school reputation, and not to mention the perception of the pupil and parents of the school. There have been many studies to review school siting parameters since these change in conjunction with this ever-changing world. In this study, the focus is the impact of school siting parameter on people with low income that live in the urban area, specifically in Johor Bahru, Malaysia. In achieving that, this study will use two methods which are on site and off site. The on site method is to give questionnaires to people and off site is to use Geographic Information System (GIS) and Statistical Product and Service Solutions (SPSS), to analyse the results obtained from the questionnaire. The output is a maps of suitable safe distance from school to house. The results of this study will be useful to people with low income as their children tend to walk to school rather than use transportation.

  17. Trends in Control Area of PLC Reliability and Safety Parameters

    Directory of Open Access Journals (Sweden)

    Juraj Zdansky

    2008-01-01

    Full Text Available Extension of the PLC application possibilities is closely related to increase of reliability and safety parameters. If the requirement of reliability and safety parameters will be suitable, the PLC could by implemented to specific applications such the safety-related processes control. The goal of this article is to show the way which producers are approaching to increase PLC`s reliability and safety parameters. The second goal is to analyze these parameters for range of present choice and describe the possibility how the reliability and safety parameters can be affected.

  18. Nuclear criticality safety parameter evaluation for uranium metallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Andrea; Abe, Alfredo, E-mail: andreasdpz@hotmail.com, E-mail: abye@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Energia Nuclear

    2013-07-01

    Nuclear criticality safety during fuel fabrication process, transport and storage of fissile and fissionable materials requires criticality safety analysis. Normally the analysis involves computer calculations and safety parameters determination. There are many different Criticality Safety Handbooks where such safety parameters for several different fissile mixtures are presented. The handbooks have been published to provide data and safety principles for the design, safety evaluation and licensing of operations, transport and storage of fissile and fissionable materials. The data often comprise not only critical values, but also subcritical limits and safe parameters obtained for specific conditions using criticality safety calculation codes such as SCALE system. Although many data are available for different fissile and fissionable materials, compounds, mixtures, different enrichment level, there are a lack of information regarding a uranium metal alloy, specifically UMo and UNbZr. Nowadays uranium metal alloy as fuel have been investigated under RERTR program as possible candidate to became a new fuel for research reactor due to high density. This work aim to evaluate a set of criticality safety parameters for uranium metal alloy using SCALE system and MCNP Monte Carlo code. (author)

  19. A new concept of safety parameter display system

    International Nuclear Information System (INIS)

    Martinez, A.S.; Oliveira, L.F.S. de; Schirru, R.; Thome Filho, Z.D.; Silva, R.A. da.

    1986-07-01

    A general description of Angra-1 Parameter Display System (SSPA), a real time and on-line computerized monitoring system for the parameters related to the power plant safety is presented. This system has the main purpose of diminish the load on the Angra-1 power plant operators at an emergency event by supplying them with the additional tools serving as the basis for a prompt identification of the accident. The SSPA is a kind of safety parameter display system whose concept was introduced after Three Mile Island accident in USA. The SSPA comprises two nuclear applications independently considered. They are included into the Parameters Monitoring Integrated System (SIMP) and the safety critical function system (SFCS). (Author) [pt

  20. Development of a safety parameter supervision system for Angra-1

    International Nuclear Information System (INIS)

    Silva, R.A. da; Thome Filho, Z.D.; Schirru, R.; Martinez, A.S.; Oliveira, L.F.S. de

    1986-01-01

    The Safety Parameter Supervision System (SSPS) which is a computerized system for monitoring essential parameters in real time, determining the safety status and emergency procedures for returning normal reactor operation, in case of an anomaly occurrence, is presented. The SSPS consists of three sub-systems: Integrated parameter monitoring system which gives to operators an integrated vision of values of a parameter set, able to detect any deviation of normal reactor operation; safety critical function system which evaluates safety status in terms of a safety critical function set appointed in advance, and in case of violation of any critical function, it initiates the adequate emergency procedure to return normal operation; and safety parameter computer system which carries out the arquirement of analogic and digital control signals of nuclear power plant. (M.C.K.) [pt

  1. Key asset - inherent safety of LMFBR Pool Plant

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Sevy, R.H.; Lancet, R.T.; Mills, J.C.

    1984-04-01

    The safety approach used in the design of the Large Pool Plant emphasizes use of the intrinsic characteristics of Liquid Metal Fast Breeder Reactors to incorporate a high degree of safety in the design and reduce cost by providing simpler (more reliable) dedicated safety systems. Correspondingly, a goal was not to require the action of active systems to prevent significant core damage and/or provide large grace periods for all anticipated transients. The key safety features of the plant are presented and the analysis of representative flow and power transients are presented to show that the design goal has been satisfied

  2. Key asset--Inherent safety of LFMBR pool plant

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Lancet, R.T.; Mills, J.C.; Sevy, R.H.

    1984-01-01

    The safety approach used in the design of the Large Pool Plant emphasizes use of the intrinsic characteristics of Liquid Metal Fast Breeder Reactors to incorporate a high degree of safety in the design and reduce cost by providing simpler (more reliable) dedicated safety systems. Correspondingly, a goal was not to require the action of active systems to prevent significant core damage and/or provide large grace periods for all anticipated transients. The key safety features of the plant are presented and the analysis of representative flow and power transients are presented to show that the design goal has been satisfied

  3. Cogeneration: Key feasibility analysis parameters

    International Nuclear Information System (INIS)

    Coslovi, S.; Zulian, A.

    1992-01-01

    This paper first reviews the essential requirements, in terms of scope, objectives and methods, of technical/economic feasibility analyses applied to cogeneration systems proposed for industrial plants in Italy. Attention is given to the influence on overall feasibility of the following factors: electric power and fuel costs, equipment coefficients of performance, operating schedules, maintenance costs, Italian Government taxes and financial and legal incentives. Through an examination of several feasibility studies that were done on cogeneration proposals relative to different industrial sectors, a sensitivity analysis is performed on the effects of varying the weights of different cost benefit analysis parameters. With the use of statistical analyses, standard deviations are then determined for key analysis parameters, and guidelines are suggested for analysis simplifications

  4. Uncertainty estimation of core safety parameters using cross-correlations of covariance matrix

    International Nuclear Information System (INIS)

    Yamamoto, A.; Yasue, Y.; Endo, T.; Kodama, Y.; Ohoka, Y.; Tatsumi, M.

    2012-01-01

    An uncertainty estimation method for core safety parameters, for which measurement values are not obtained, is proposed. We empirically recognize the correlations among the prediction errors among core safety parameters, e.g., a correlation between the control rod worth and assembly relative power of corresponding position. Correlations of uncertainties among core safety parameters are theoretically estimated using the covariance of cross sections and sensitivity coefficients for core parameters. The estimated correlations among core safety parameters are verified through the direct Monte-Carlo sampling method. Once the correlation of uncertainties among core safety parameters is known, we can estimate the uncertainty of a safety parameter for which measurement value is not obtained. Furthermore, the correlations can be also used for the reduction of uncertainties of core safety parameters. (authors)

  5. Empirical estimation of school siting parameter towards improving children's safety

    International Nuclear Information System (INIS)

    Aziz, I S; Yusoff, Z M; Rasam, A R A; Rahman, A N N A; Omar, D

    2014-01-01

    Distance from school to home is a key determination in ensuring the safety of hildren. School siting parameters are made to make sure that a particular school is located in a safe environment. School siting parameters are made by Department of Town and Country Planning Malaysia (DTCP) and latest review was on June 2012. These school siting parameters are crucially important as they can affect the safety, school reputation, and not to mention the perception of the pupil and parents of the school. There have been many studies to review school siting parameters since these change in conjunction with this ever-changing world. In this study, the focus is the impact of school siting parameter on people with low income that live in the urban area, specifically in Johor Bahru, Malaysia. In achieving that, this study will use two methods which are on site and off site. The on site method is to give questionnaires to people and off site is to use Geographic Information System (GIS) and Statistical Product and Service Solutions (SPSS), to analyse the results obtained from the questionnaire. The output is a maps of suitable safe distance from school to house. The results of this study will be useful to people with low income as their children tend to walk to school rather than use transportation

  6. Uncertainty estimation of core safety parameters using cross-correlations of covariance matrix

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Yasue, Yoshihiro; Endo, Tomohiro; Kodama, Yasuhiro; Ohoka, Yasunori; Tatsumi, Masahiro

    2013-01-01

    An uncertainty reduction method for core safety parameters, for which measurement values are not obtained, is proposed. We empirically recognize that there exist some correlations among the prediction errors of core safety parameters, e.g., a correlation between the control rod worth and the assembly relative power at corresponding position. Correlations of errors among core safety parameters are theoretically estimated using the covariance of cross sections and sensitivity coefficients of core parameters. The estimated correlations of errors among core safety parameters are verified through the direct Monte Carlo sampling method. Once the correlation of errors among core safety parameters is known, we can estimate the uncertainty of a safety parameter for which measurement value is not obtained. (author)

  7. AMNT 2014. Key Topic: Reactor operation, safety - report. Pt. 1

    International Nuclear Information System (INIS)

    Schaffrath, Andreas

    2014-01-01

    Summary report on one session of the Annual Conference on Nuclear Technology held in Frankfurt, 6 to 8 May 2014: - Safety of Nuclear Installations - Methods, Analysis, Results: Backfittings for the Improvement of Safety and Efficiency. The other Sessions of the Key Topics 'Reactor Operation, Safety', 'Competence, Innovation, Regulation' and 'Fuel, Decommissioning and Disposal' will be covered in further issues of atw.

  8. AMNT 2014. Key Topic: Reactor operation, safety - report. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Schaffrath, Andreas [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Garching (Germany). Forschungszentrum

    2014-10-15

    Summary report on one session of the Annual Conference on Nuclear Technology held in Frankfurt, 6 to 8 May 2014: - Safety of Nuclear Installations - Methods, Analysis, Results: Backfittings for the Improvement of Safety and Efficiency. The other Sessions of the Key Topics 'Reactor Operation, Safety', 'Competence, Innovation, Regulation' and 'Fuel, Decommissioning and Disposal' will be covered in further issues of atw.

  9. Design of Safety Parameter Monitoring Function in a Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaekwan; Suh, Yongsuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The primary purpose of the safety parameter monitoring system (SPDS) is to help operating personnel in the control room make quick assessments of the plant safety status. Thus, the basic function of the SPDS is a provision of a continuous indication of plant parameters or derived variables representative of the safety status of the plant. NUREG-0737 Supplement 1 provides details of the functional criteria for the SPDS, as one of the action plan requirements from TMI accident. The system provides various functions as follows: · Alerting based on safety function decision logics, · Success path analysis to achieve the integrity of the safety functions, · 3 layer display architecture - safety function, success path display for each safety function, system summary and equipment details for each safety function, · Integration with computer-based procedure. According to a Notice of the NSSC No. 2012-31, a research reactor facility generating more than 2 MW of power should also be furnished with the SPDS for emergency preparedness. Generally, a research reactor is a small size facility, and its number of instrumentations is fewer than that of NPPs. In particular, it is actually hard to have various and powerful functions from an economic perspective. Therefore, a safety parameter display system optimized for a research reactor facility must be proposed. This paper provides the requirement analysis results and proposes the design of safety parameter monitoring function for a research reactor. The safety parameter monitoring function supporting control room personnel during emergency conditions should be designed in a research reactor facility. The facility size and number of signals are smaller than that of the power plants. Also, it is actually hard to have various and powerful functions of nuclear power plants from an economic perspective. Thus, a safety parameter display system optimized to a research reactor must be proposed. First, we found important design items

  10. Design of Safety Parameter Monitoring Function in a Research Reactor Facility

    International Nuclear Information System (INIS)

    Park, Jaekwan; Suh, Yongsuk

    2014-01-01

    The primary purpose of the safety parameter monitoring system (SPDS) is to help operating personnel in the control room make quick assessments of the plant safety status. Thus, the basic function of the SPDS is a provision of a continuous indication of plant parameters or derived variables representative of the safety status of the plant. NUREG-0737 Supplement 1 provides details of the functional criteria for the SPDS, as one of the action plan requirements from TMI accident. The system provides various functions as follows: · Alerting based on safety function decision logics, · Success path analysis to achieve the integrity of the safety functions, · 3 layer display architecture - safety function, success path display for each safety function, system summary and equipment details for each safety function, · Integration with computer-based procedure. According to a Notice of the NSSC No. 2012-31, a research reactor facility generating more than 2 MW of power should also be furnished with the SPDS for emergency preparedness. Generally, a research reactor is a small size facility, and its number of instrumentations is fewer than that of NPPs. In particular, it is actually hard to have various and powerful functions from an economic perspective. Therefore, a safety parameter display system optimized for a research reactor facility must be proposed. This paper provides the requirement analysis results and proposes the design of safety parameter monitoring function for a research reactor. The safety parameter monitoring function supporting control room personnel during emergency conditions should be designed in a research reactor facility. The facility size and number of signals are smaller than that of the power plants. Also, it is actually hard to have various and powerful functions of nuclear power plants from an economic perspective. Thus, a safety parameter display system optimized to a research reactor must be proposed. First, we found important design items

  11. AMNT 2014. Key topic: Reactor operation, safety - report. Pt. 2

    International Nuclear Information System (INIS)

    Fischer, Klaus-Christian; Willschuetz, Hans-Georg; Wortmann, Birgit

    2014-01-01

    Summary report on the following sessions of the Annual Conference on Nuclear Technology held in Frankfurt, 6 to 8 May 2014: - Thermo Dynamics and Fluid Dynamics: Experiments and Backfittings for the Improvement of Safety and Efficiency; - Safety of Nuclear Installations - Methods, Analyses, Results: In-Vessel Phenomena; Ex-Vessel Phenomena; - Standards and Regulations; Hazard and Safety Analysis; and Validation and Uncertainty Analysis. The other Sessions of the Key Topics 'Reactor Operation, Safety', 'Competence, Innovation, Regulation' and 'Fuel, Decommissioning and Disposal' have been covered in atw 10 (2014) and will be covered in further issues of atw.

  12. Patient safety in a physics service medical. Checklist of key parameters to be revised before the dossier of the patient out of service; Seguridad del paciente en un servicio de fisica medica. Checklist de parametros clave a ser revisados antes de que el dossier del paciente salga del servicio

    Energy Technology Data Exchange (ETDEWEB)

    Font Gomez, J. A.; Gandia Martinez, A.; Jimenez Albericio, F. J.; Andres Redondo, M. M.; Mengual Gil, M. A.

    2013-07-01

    In aviation, operating rooms, etc. long checklists used parameters considered important / vital for review prior to the completion of work in the interest of safety. This ensures that any parameters key will be ignored by the computer so that it could cause future problems. (Author)

  13. Safety parameter display system for Kalinin NPP

    International Nuclear Information System (INIS)

    Andreev, V.I.; Videneev, E.N.; Tissot, J.C.; Joonekindt, D.; Davidenko, N.N.; Shaftan, G.I.; Dounaev, V.G.; Neboyan, V.T.

    1995-01-01

    The paper discusses the safety parameter display system (SPDS), which is being designed for Kalinin NPP. The assessment of the safety status of the plant is done by the continuous monitoring of six critical safety functions and the corresponding status trees. Besides, a number of additional functions are realized within the scope of KlnNPP, aimed at providing the operator and the safety engineer in the main control room with more detailed information in accidental situation as well as during the normal operation. In particular, these functions are: archiving, data logs and alarm handling, safety actions monitoring, mnemonic diagrams indicating the state of main technological equipment and basic plant parameters, reference data, etc. As compared with the traditional scope of functions of this kind of systems, the functionality of KlnNPP SPDS is significantly expanded due to the inclusion in it the operator support function ''computerized procedures''. The basic SPDS implementation platform is ADACS of SEMA GROUP design. The system architecture includes two workstations in the main control room: one is for reactor operator and the other one for safety engineer. Every station has two CRT screens which ensures computerized procedures implementation and provides for extra services for the operator. Also, the information from the SPDS is transmitted to the local crisis center and to the crisis center of the State utility organization concern ''Rosenergoatom''. (author). 3 refs, 6 figs, 1 tab

  14. Diagnosis function of safety status in the safety parameter display system (SPDS)

    International Nuclear Information System (INIS)

    Zhang Yuanfang

    1993-04-01

    An automatic diagnosis function of safety status for nuclear power plant adopted in the SPDS is introduced. To guarantee diagnosis diversification, two diagnosis criteria of a design basis accident monitoring and a critical safety function monitoring used in plant emergency operation are provided. As an extensive function, a parameter deviation monitoring used in plant normal operation is also provided

  15. Key Factors Affecting Construction Safety Performance in Developing Countries: Evidence from Cambodia

    Directory of Open Access Journals (Sweden)

    Serdar Durdyev

    2017-12-01

    Full Text Available Although proper safety management in construction is of utmost importance; anecdotal evidence suggests that safety is not adequately considered in many developing countries. This paper considers the key variables affecting construction safety performance in Cambodia. Using an empirical questionnaire survey targeting local construction professionals, respondents were invited to rate the level of importance of 30 variables identified from the seminal literature. The data set was subjected to factor analysis. Correlations between the variables show that five key factors underlie the challenges facing the local industry; management and organisation, resources, site management, cosmetic and workforce. It is found that the forefront construction professionals (top management and government authorities should take more responsibilities for further improvements in safety performance on project sites. Findings and recommendations of this study may be useful to construction professional who are seeking ways to improve safety records in developing countries.

  16. Determination of a PWR key neutron parameters uncertainties and conformity studies applications

    International Nuclear Information System (INIS)

    Bernard, D.

    2002-01-01

    The aim of this thesis was to evaluate uncertainties of key neutron parameters of slab reactors. Uncertainties sources have many origins, technologic origin for parameters of fabrication and physical origin for nuclear data. First, each contribution of uncertainties is calculated and finally, a factor of uncertainties is associated to key slab parameter like reactivity, isotherm reactivity coefficient, control rod efficiency, power form factor before irradiation and lifetime. This factors of uncertainties were computed by Generalized Perturbations Theory in case of step 0 and by directs calculations in case of irradiation problems. One of neutronic conformity applications was about fabrication and nuclear data targets precision adjustments. Statistic (uncertainties) and deterministic (deviations) approaches were studied. Then neutronics key slab parameters uncertainties were reduced and so nuclear performances were optimised. (author)

  17. Key Factors Affecting Construction Safety Performance in Developing Countries: Evidence from Cambodia

    OpenAIRE

    Durdyev, Serdar; Mohamed, Sherif; Lay, Meng Leang; Ismail, Syuhaida

    2017-01-01

    Although proper safety management in construction is of utmost importance; anecdotal evidence suggests that safety is not adequately considered in many developing countries. This paper considers the key variables affecting construction safety performance in Cambodia. Using an empirical questionnaire survey targeting local construction professionals, respondents were invited to rate the level of importance of 30 variables identified from the seminal literature. The data set was subjected to f...

  18. Safety culture: analysis of the causal relationships between its key dimensions.

    Science.gov (United States)

    Fernández-Muñiz, Beatriz; Montes-Peón, José Manuel; Vázquez-Ordás, Camilo José

    2007-01-01

    Several fields are showing increasing interest in safety culture as a means of reducing accidents in the workplace. The literature shows that safety culture is a multidimensional concept. However, considerable confusion surrounds this concept, about which little consensus has been reached. This study proposes a model for a positive safety culture and tests this on a sample of 455 Spanish companies, using the structural equation modeling statistical technique. Results show the important role of managers in the promotion of employees' safe behavior, both directly, through their attitudes and behaviors, and indirectly, by developing a safety management system. This paper identifies the key dimensions of safety culture. In addition, a measurement scale for the safety management system is validated. This will assist organizations in defining areas where they need to progress if they wish to improve their safety. Also, we stress that managers need to be wholly committed to and personally involved in safety activities, thereby conveying the importance the firm attaches to these issues.

  19. Multimethods approach to safety-parameter-display evaluation

    International Nuclear Information System (INIS)

    Banks, W.W.; Blackman, H.S.; Gertman, D.I.; Petersen, R.J.

    1982-01-01

    The Human Factors Engineering Office of EG and G Idaho performed this NRC-funded study to assist the NRC in objectively assessing licensee-developed safety parameter display (SPD) formats and designs. The purpose of this study was to quantitatively measure the degree to which a tachistoscopic method of display evaluation would correlate with the results of a multidimensional rating approach to display evaluation. Results of the following three experiments will be presented; (a) tachistoscopic, (b) multidimensional rating scale, and (c) the combined results of a and b. The test material for all experiments consisted of three multivariate data display formats all under development as SPDs for reactor control rooms presenting safety parameter display data at the loss-of-fluid test (LOFT) facility. The three display formats studied were stars, deviation bar graphs, and meters. Eighteen adult volunteers were used as subjects. All were currently qualified reactor operators from the LOFT reactor plant, with a mean of 9.4 years reactor operating experience

  20. Safety analysis for key design features of KALIMER-600 design concept

    International Nuclear Information System (INIS)

    Lee, Yong-Bum; Kwon, Y. M.; Kim, E. K.; Suk, S. D.; Chang, W. P.; Joeng, H. Y.; Ha, K. S.; Heo, S.

    2005-03-01

    KAERI is developing the conceptual design of a Liquid Metal Reactor, KALIMER-600 (Korea Advanced LIquid MEtal Reactor) under the Long-term Nuclear R and D Program. KALIMER-600 addresses key issues regarding future nuclear power plants such as plant safety, economics, proliferation, and waste. In this report, key safety design features are described and safety analyses results for typical ATWS accidents, containment design basis accidents, and flow blockages in the KALIMER design are presented. First, the basic approach to achieve the safety goal and main design features of KALIMER-600 are introduced in Chapter 1, and the event categorization and acceptance criteria for the KALIMER-600 safety analysis are described in Chapter 2, In Chapter 3, results of inherent safety evaluations for the KALIMER-600 conceptual design are presented. The KALIMER-600 core and plant system are designed to assure benign performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram (ATWS) have been performed using the SSC-K code to investigate the KALIMER-600 system response to the events. The objectives of Chapter 4, are to assess the response of KALIMER-600 containment to the design basis accidents and to evaluate whether the consequences are acceptable or not in the aspect of structural integrity and the exposure dose rate. In Chapter 5, the analysis of flow blockage for KALIMER-600 with the MATRA-LMR-FB code, which has been developed for the internal flow blockage in a LMR subassembly, are described. The cases with a blockage of 6-subchannel, 24-subchannel, and 54-subchannel are analyzed

  1. Decommissioning: Regulatory activities and identification of key organizational and human factors safety issues

    International Nuclear Information System (INIS)

    Durbin, N.E.; Melber, B.D.; Lekberg, A.

    2001-12-01

    In the late 1990's the Swedish government decided to shut down Unit 1 of the Barsebaeck nuclear power plant. This report documents some of the efforts made by the Swedish Nuclear Power Inspectorate (SKI) to address human factors and organizational issues in nuclear safety during decommissioning of a nuclear facility. This report gives a brief review of the background to the decommissioning of Barsebaeck 1 and points out key safety issues that can arise during decommissioning. The main regulatory activities that were undertaken were requirements that the plant provide special safety reports on decommissioning focusing on first, the operation of both units until closure of Unit 1 and second, the operation of Unit 2 when Unit 1 was closed. In addition, SKI identified areas that might be affected by decommissioning and called these areas out for special attention. With regard to these areas of special attention, SKI required that the plant provide monthly reports on changing and emerging issues as well as self-assessments of the areas to be addressed in the special safety reports. Ten key safety issues were identified and evaluated with regard to different stages of decommissioning and with regard to the actions taken by Barsebaeck. Some key conclusions from SKI's experience in regulating a decommissioning nuclear power plant conclude the report

  2. Key issues of the common French-German safety approach for future PWRs

    International Nuclear Information System (INIS)

    Frisch, W.; Rohde, J.; Gros, G.; Queniart, D.

    1996-01-01

    The general common safety approach issued in May 1993 contains safety objectives, general principles and already some technical principles. Based on general safety approach, detailed recommendations have been developed in 1994 on key issues such as: system design and use of PSA; integrity of the primary circuit; external hazards; severe accidents and containment design; radiological consequences of reference accidents and low pressure core melt accidents. A selection of the detailed recommendations is presented in the full paper. (author)

  3. AMNT 2014. Key topic: Reactor operation, safety - report. Pt. 3

    Energy Technology Data Exchange (ETDEWEB)

    Bohnstedt, Angelika [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Programm Nukleare Sicherheitsforschung (NUKLEAR); Mull, Thomas [AREVA GmbH, Erlangen (Germany). Nuclear Fusion, HTR and Transverse Issues (PTDH-G); Starflinger, Joerg [Stuttgart Univ. (Germany). Inst. fuer Kernenergetik und Energiesysteme (IKE)

    2015-01-15

    Summary report on the following sessions of the Annual Conference on Nuclear Technology held in Frankfurt, 6 to 8 May 2014: - Reactor Operation, Safety: Radiation Protection (Angelika Bohnstedt); - Competence, Innovation, Regulation: Fusion Technology - Optimisation Steps in the ITER Design (Thomas Mull); - Competence, Innovation, Regulation: Education, Expert Knowledge, Knowledge Transfer (Joerg Starflinger). The other Sessions of the Key Topics 'Reactor Operation, Safety', 'Competence, Innovation, Regulation' and 'Fuel, Decommissioning and Disposal' have been covered in atw 10 and 12 (2015) and will be covered in further issues of atw.

  4. Safety functions and safety function indicators - key elements in SKB'S methodology for assessing long-term safety of a KBS-3 repository

    International Nuclear Information System (INIS)

    Hedin, A.

    2008-01-01

    The application of so called safety function indicators in SKB safety assessment of a KBS-3 repository for spent nuclear fuel is presented. Isolation and retardation are the two main safety functions of the KBS-3 concept. In order to quantitatively evaluate safety on a sub-system level, these functions need to be differentiated, associated with quantitative measures and, where possible, with quantitative criteria relating to the fulfillment of the safety functions. A safety function is defined as a role through which a repository component contributes to safety. A safety function indicator is a measurable or calculable property of a repository component that allows quantitative evaluation of a safety function. A safety function indicator criterion is a quantitative limit such that if the criterion is fulfilled, the corresponding safety function is upheld. The safety functions and their associated indicators and criteria developed for the KBS-3 repository are primarily related to the isolating potential and to physical states of the canister and the clay buffer surrounding the canister. They are thus not directly related to release rates of radionuclides. The paper also describes how the concepts introduced i) aid in focussing the assessment on critical, safety related issues, ii) provide a framework for the accounting of safety throughout the different time frames of the assessment and iii) provide key information in the selection of scenarios for the safety assessment. (author)

  5. Key Element Performance In Occupational Safety And Health Management System In Organization (A Literature

    Directory of Open Access Journals (Sweden)

    Agus Salim Nuzaihan Aras

    2016-01-01

    Full Text Available Setting an effective safety and health management system is crucial in order to reduce problem relating to accident and ill in management organizational. It is involve with multiple level of management and stakeholders who empower the organization to the management in handling the safety and health cases and issues in organizational. It is necessary to prepare a well knowledge about safety and health management systems and preparing the framework for setting a certain scale in measuring its performance in this area. The successful or failure of management does showing the capability of the organization in delivering the responsible to management levels [1]. The problem in safe work issues and practices cause by the management commitment and involvement that create improper safety program and procedures, and this crisis keep continuing till present [2]. This paper describes about key element of safety and health management system and measuring the performance in order to get an effective management system in organization that describes the process in achieving effectiveness in management. The literature review will be conducted through the data collection from research findings and defined the strong character of key element in which focusing on measuring performance. A guide on key element performance in occupational safety and health management system is specifically drawn to prepare for a future research.

  6. Design characteristics of safety parameter display system for nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Yuangfang

    1992-02-01

    The design features of safety parameter display system (SPDS) developed by Tsinghua University is introduced. Some new features have been added into the system functions and they are: (1) hierarchical display structure; (2) human factor in the display format design; (3)automatic diagnosis of safety status of nuclear power plant; (4) extension of SPDS use scope; (5) flexible hardware structure. The new approaches in the design are: (1)adopting the international design standards; (2) selecting safety parameters strictly; (3) developing software under multitask operating system; (4) using a nuclear power plant simulator to verify the SPDS design

  7. Patient safety in a service of medical physics. Key indicators

    International Nuclear Information System (INIS)

    Font Gomez, J. A.; Gandia Martinez, A.; Jimenez Albericio, F. J.; Andres Redondo, M. M.; Mengual Gil, M. A.

    2013-01-01

    The key indicators are those that endure over time to monitor the degree of compliance with the criteria in the processes that are considered key in the service. In the case of our service, define key indicators within the framework of ISO 9001 certification in the process of clinical dosimetry. All problems do not have same casuistry or not, have the same detrimental to the safety of the patient. We have prioritized some of the problems and opportunities for improvement have been found. Standard refers to the value of the indicator that we should or would like to achieve in such a way that if not achieved, action of improvement will be required. (Author)

  8. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    Science.gov (United States)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2016-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  9. Safety Parameters Graphical Interface

    International Nuclear Information System (INIS)

    Canamero, B.

    1998-01-01

    Nuclear power plant data are received at the Operations Center of the Consejo de Seguridad Nuclear in emergency situations. In order to achieve the required interface and to prepare those data to perform simulation and forecasting with already existing computer codes a Safety Parameters Graphical Interface (IGPS) has been developed. The system runs in a UNIX environment and use the Xwindows capabilities. The received data are stored in such a way that it can be easily used for further analysis and training activities. The system consists of task-oriented modules (processes) which communicate each other using well known UNIX mechanisms (signals, sockets and shared memory segments). IGPS conceptually have two different parts: Data collection and preparation, and Data monitorization. (Author)

  10. Optimization of Key Parameters of Energy Management Strategy for Hybrid Electric Vehicle Using DIRECT Algorithm

    Directory of Open Access Journals (Sweden)

    Jingxian Hao

    2016-11-01

    Full Text Available The rule-based logic threshold control strategy has been frequently used in energy management strategies for hybrid electric vehicles (HEVs owing to its convenience in adjusting parameters, real-time performance, stability, and robustness. However, the logic threshold control parameters cannot usually ensure the best vehicle performance at different driving cycles and conditions. For this reason, the optimization of key parameters is important to improve the fuel economy, dynamic performance, and drivability. In principle, this is a multiparameter nonlinear optimization problem. The logic threshold energy management strategy for an all-wheel-drive HEV is comprehensively analyzed and developed in this study. Seven key parameters to be optimized are extracted. The optimization model of key parameters is proposed from the perspective of fuel economy. The global optimization method, DIRECT algorithm, which has good real-time performance, low computational burden, rapid convergence, is selected to optimize the extracted key parameters globally. The results show that with the optimized parameters, the engine operates more at the high efficiency range resulting into a fuel savings of 7% compared with non-optimized parameters. The proposed method can provide guidance for calibrating the parameters of the vehicle energy management strategy from the perspective of fuel economy.

  11. Key issues on safety design basis selection and safety assessment

    International Nuclear Information System (INIS)

    An, S.; Togo, Y.

    1976-01-01

    In current fast reactor design in Japan, four design accident conditions and four design seismic conditions are adopted as the design base classifications. These are classified by the considerations on both likelihood of occurrence and the severeness of the consequences. There are several major problem areas in safety design consideration such as core accident problems which include fuel sodium interaction, fuel failure propagation and residual decay heat removal, and decay heat removal systems problems which is more or less the problem of selection of appropriate system and of assurance of high reliability of the system. In view of licensing, two kinds of accidents are postulated in evaluating the adequacy of a reactor site. The one is the ''major accident'' which is the accident to give most severe radiation hazard to the public from technical point of view. The other is the ''hypothetical accident'', induced public accident of which is severer than that of major accident. While the concept of the former is rather unique to Japanese licensing, the latter is almost equivalent to design base hypothetical accident of the US practice. In this paper, design bases selections, key safety issues and some of the licensing considerations in Japan are described

  12. Critical safety parameters: The logical approach to refresher training

    International Nuclear Information System (INIS)

    Johnson, A.R.; Pilkington, W.; Turner, S.

    1991-01-01

    Nuclear power plant managers must ensure that control room staff are able to perform effectively. This is of particular importance through the longer term after initial authorization. Traditionally refresher training has been based on delivery of fragmented training packages typically derived from the initial authorization training programs. Various approaches have been taken to provide a more integrated refresher training program. However, methods such as job and task analysis and subject matter expert derived training have tended to develop without a focused clear overall training objective. The primary objective of all control room staff training is to ensure a proper and safe response to all plant transients. At the Point Lepreau Nuclear Plant, this has defined the Critical Safety Parameter based refresher training program. The overall objective of the Critical Safety Parameter training program is to ensure that control room staff can monitor and control a discrete set of plant parameters. Maintenance of the selected parameters within defined boundaries assures adequate cooling of the fuel and containment of radioactivity. Control room staff need to be able to reliably respond correctly to plant transients under potentially high stress conditions,. utilizing the essential knowledge and skills to deal with such transients. The inference is that the knowledge and skills must be limited to that which can be reliably recalled. This paper describes how the Point Lepreau Nuclear Plant has developed a refresher training program on the basis of a limited number of Critical Safety Parameters. Through this approach, it has been possible to define the essential set of knowledge and skills which ensures a correct response to plant transients

  13. Safety Analysis for Key Design Features of KALIMER-600 Design Concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Kwon, Y. M.; Kim, E. K.; Suk, S. D.; Chang, W. P.; Jeong, H. Y.; Ha, K. S

    2007-02-15

    This report contains the safety analyses of the KALIMER-600 conceptual design which KAERI has been developing under the Long-term Nuclear R and D Program. The analyses have been performed reflecting the design developments during the second year of the 4th design phase in the program. The specific presentations are the key design features with the safety principles for achieving the safety objectives, the event categorization and safety criteria, and results on the safety analyses for the DBAs and ATWS events, the containment performance, and the channel blockages. The safety analyses for both the DBAs and ATWS events have been performed using SSC-K version 1.3., and the results have shown the fulfillment of the safety criteria for DBAs with conservative assumptions. The safety margins as well as the inherent safety also have been confirmed for the ATWS events. For the containment performance analysis, ORIGEN-2.1 and CONTAIN-LMR have been used. In results, the structural integrity has been acceptable and the evaluated exposure dose rate has been complied with 10 CFR 100 and PAG limits. The analysis results for flow blockages of 6-subchannels, 24-subchannels, and 54- subchannels with the MATRA-LMR-FB code, have assured the integrity of subassemblies.

  14. Nuclear Criticality Technology and Safety Project parameter study database

    International Nuclear Information System (INIS)

    Toffer, H.; Erickson, D.G.; Samuel, T.J.; Pearson, J.S.

    1993-03-01

    A computerized, knowledge-screened, comprehensive database of the nuclear criticality safety documentation has been assembled as part of the Nuclear Criticality Technology and Safety (NCTS) Project. The database is focused on nuclear criticality parameter studies. The database has been computerized using dBASE III Plus and can be used on a personal computer or a workstation. More than 1300 documents have been reviewed by nuclear criticality specialists over the last 5 years to produce over 800 database entries. Nuclear criticality specialists will be able to access the database and retrieve information about topical parameter studies, authors, and chronology. The database places the accumulated knowledge in the nuclear criticality area over the last 50 years at the fingertips of a criticality analyst

  15. Key parameters controlling the performance of catalytic motors

    Energy Technology Data Exchange (ETDEWEB)

    Esplandiu, Maria J.; Afshar Farniya, Ali [Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona (Spain); Reguera, David, E-mail: dreguera@ub.edu [Departament de Física Fonamental, Universitat de Barcelona, C/Martí i Franquès 1, 08028 Barcelona (Spain)

    2016-03-28

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.

  16. Inspire and develop people, two key competence for safety leadership

    International Nuclear Information System (INIS)

    Gonzalez, F.; Perez, O.; Fernandez, M.; Alvarez, N.; Villadoniga, J. I.

    2014-01-01

    Developing leadership skills in organizations is key to ensuring the sustainability of excellent results in industries with high standards of safety and reliability element. In order to have a model of development of specific leadership for these organizations, Tecnatom in 2011, we initiated an internal project to find and adapt a competency model to these requirements. (Author)

  17. Key regulatory and safety issues emerging NEA activities. Lessons Learned from Fukushima Dai-ichi NPS Accident - Key Regulatory and Safety Issues

    International Nuclear Information System (INIS)

    Nakoski, John

    2013-01-01

    A presentation was provided on the key safety and regulatory issues and an update of activities undertaken by the NEA and its members in response to the accident at the Fukushima Daiichi nuclear power stations (NPS) on 11 March 2011. An overview of the accident sequence and the consequences was provided that identified the safety functions that were lost (electrical power, core cooling, and primary containment) that lead to units 1, 2, and 3 being in severe accident conditions with large off-site releases. Key areas identified for which activities of the NEA and member countries are in progress include accident management; defence-in-depth; crisis communication; initiating events; operating experience; deterministic and probabilistic assessments; regulatory infrastructure; radiological protection and public health; and decontamination and recovery. For each of these areas, a brief description of the on-going and planned NEA activities was provided within the three standing technical committees of the NEA with safety and regulatory mandates (the Committee on Nuclear Regulatory Activities - CNRA, the Committee on the Safety of Nuclear Installations - CSNI, and the Committee on Radiation Protection and Public Health - CRPPH). On-going activities of CNRA include a review of enhancement being made to the regulatory aspects for the oversight of on-site accident management strategies and processes in light of the lessons learned from the accident; providing guidance to regulators on crisis communication; and supporting the peer review of the safety assessments of risk-significant research reactor facilities in light of the accident. Within the scope of the CSNI mandate, activities are being undertaken to better understand accident progression; characteristics of new fuel designs; and a benchmarking study of fast-running software for estimating source term under severe accident conditions to support protective measure recommendations. CSNI also has ongoing work in human

  18. Bearings with a key role in nuclear reactor safety

    International Nuclear Information System (INIS)

    Jackson, J.

    1981-01-01

    The most critical period during the operation of heavy-duty pumps occurs at run-up, when sudden high loads coincide with below normal oil pressure. When those pumps are a key component of a nuclear reactor safety-system, reliability takes on a special meaning. Electricite de France recently invited a British company, Michell Bearings, to find a solution to these 'black-start' problems, the details of which are described in the following article

  19. User interface design in safety parameter display systems

    International Nuclear Information System (INIS)

    Schultz, E.E. Jr.; Johnson, G.L.

    1988-01-01

    The extensive installation of computerized safety Parameter Display Systems (SPDSs) in nuclear power plants since the Three-Mile Island accident has enhanced plant safety. It has also raised new issues of how best to ensure an effective interface between human operators and the plant via computer systems. New developments in interface technologies since the current generation of SPDSs was installed can contribute to improving display interfaces. These technologies include new input devices, three-dimensional displays, delay indicators, and auditory displays. Examples of how they might be applied to improve current SPDSs are given. These examples illustrate how the new use interface technology could be applied to future nuclear plant displays

  20. DASS: A decision aid integrating the safety parameter display system and emergency functional recovery procedures. Final report

    International Nuclear Information System (INIS)

    Johnson, S.E.

    1984-08-01

    Using a stand-alone developmental test-bed consisting of a minicomputer and a high-resolution color graphics computer, displays and supporting software incorporating advanced on-line decision-aid concepts were developed and evaluated. The advanced concepts embodied in displays designed for the operating crew of a PWR plant include: (1) an integrated display format which supports a top-down approach to problem detection, recovery planning, and control; (2) introduction of nonobservable plant parameters derived from first principles mass and energy balances as part of the displayed information; and (3) systematic processing and display of key success path (plant safety system) attributes. The prototype system, referred to as the PWR-DASS (Disturbance Analysis and Surveillance System), consists of 18 displays targeted for principal use by the control room systems manager. PWR-DASS was conceived to fulfill an operational void not fully supported by safety parameter display systems or reformulated emergency procedure guidelines. The results from the evaluation by licensed operators suggest that organization and display of desired critical safety function and success path information as incorporated in the PWR-DASS prototype can support the systems manager's overview. The results also point to the need for several refinements required for a field grade system, and to the need for a simulator-based evaluation of the prototype or its successor. (author)

  1. EVALUATING THE CONTRIBUTION OF PHYSICAL PARAMETERS ON THE SAFETY OF UNSIGNALIZED INTERSECTIONS

    Directory of Open Access Journals (Sweden)

    A. AHMED

    2015-05-01

    Full Text Available Safety of any particular Road way facility cannot be attributed to set of parameters specific to a certain domain. Unsignalized intersections are no exceptions, thus, making them an important area of study. This paper presents the results of the analysis of four parameters, namely road width, traffic control, lane marking and landuse; and their sub-class on the safety of unsignalized intersections. The raw accident data was obtained from MIROS (Malaysian Institute of Road Safety Research. It was then reduced for descriptive analysis. Hypothesis testing was performed to assess the significance of all parameters and severity analysis was done to accomplish micro scale examination of each sub-class. The results show that landuse and lane marking are statistically significant. They are important variables to predict accidents whereas traffic control and road width are not significant. Intersections located in city with single line lane marking having no control and major road width greater than 9 meters were found to have the highest severity indices.

  2. Safety parameter display system: an operator support system for enhancement of safety in Indian PHWRs

    International Nuclear Information System (INIS)

    Subramaniam, K.; Biswas, T.

    1994-01-01

    Ensuring operational safety in nuclear power plants is important as operator errors are observed to contribute significantly to the occurrence of accidents. Computerized operator support systems, which process and structure information, can help operators during both normal and transient conditions, and thereby enhance safety and aid effective response to emergency conditions. An important operator aid being developed and described in this paper, is the safety parameter display system (SPDS). The SPDS is an event-independent, symptom-based operator aid for safety monitoring. Knowledge-based systems can provide operators with an improved quality of information. An information processing model of a knowledge based operator support system (KBOSS) developed for emergency conditions using an expert system shell is also presented. The paper concludes with a discussion of the design issues involved in the use of a knowledge based systems for real time safety monitoring and fault diagnosis. (author). 8 refs., 4 figs., 1 tab

  3. Key Problems of Fire Safety Enforcement in Traffic and Communication Centers (TCC)

    Science.gov (United States)

    Medyanik, M.; Zosimova, O.

    2017-10-01

    A Traffic and Communication Center (TCC) means facilities designed and used to distribute and redirect flows of humans and motor vehicles while they get serviced and operate. This paper sets forth the basic problems of fire safety enforcement on the TCC, and the causes that slow down human and vehicle traffic speeds. It proposes ways to solve the problems of fire safety enforcement on the TCC, in the Russian Federation and elsewhere. Engineering solutions are proposed for TCC design, with key outlooks of TCC future development as an alternative way to organize access in transportation.

  4. Impact of a community-based diabetes self-management program on key metabolic parameters

    Directory of Open Access Journals (Sweden)

    Johnson C

    2014-12-01

    Full Text Available Objective: Characterize the impact of a pharmacist-led diabetes self-management program on three key metabolic parameters: glycosylated hemoglobin (HbA1c, low-density lipoprotein cholesterol (LDL-C, and mean arterial blood pressure (MAP among employee health program participants. Methods: A self-insured company in the Kansas City metropolitan area began offering a pharmacist-led diabetes self-management program to eligible company employees and their dependents in 2008. A retrospective pre-post analysis was conducted to determine if the program affected key metabolic parameters in participants by determining mean change after one year of participation. Results: Among 183 program participants, 65 participants met inclusion criteria. All three key metabolic parameters were significantly reduced from baseline to one year of program participation: HbA1c decreased from 8.1% to 7.3% (p=0.007; LDL-C decreased from 108.3 mg/dL to 96.4 mg/dL (p=0.009; and MAP decreased from 96.1 to 92.3 mm Hg (p=0.005. Conclusions: The pharmacist-led diabetes self-management program demonstrated significant reductions in HbA1c, LDL-C, and MAP from baseline to one year of program participation. Improvements were statistically significant and clinically relevant for each parameter. Previous studies indicate these reductions may cause reduced overall healthcare costs.

  5. Thinking of the safety assessment of HLW disposal

    International Nuclear Information System (INIS)

    Li Honghui; Zhao Shuaiwei; Liu Jianqin; Liu Wei; Wan Lei; Yang Zhongtian; An Hongxiang; Sun Qinghong

    2014-01-01

    The function and the research methods of safety assessment are discussed. Two methods about safety assessment and the requirement of safety assessment are introduced. The key parameters and influence factors in nuclide transport of safety assessment are specialized. The works will be done on safety assessment is discussed which will give some suggests for the development of safety assessment. (authors)

  6. On-line validation of safety parameters and fault identification

    International Nuclear Information System (INIS)

    Tzanos, C.P.

    1985-01-01

    In many safety-significant off-normal events, the reliability of failure identification and corrective operator actions is limited greatly by the large amount of data that has to be processed and analyzed mentally in a very short time and in a high-stress environment. A data-validation and fault-identification system, that uses computers for continuous plant-information processing and analysis, can enhance plant safety and also improve plant availability. A methodology has been developed that provides validation of safety-significant plant parameter measurements, plant state verification, and fault identification in the presence of many instrumentation failures (including multiple common-cause failures). This paper presents this methodology and some results of its application to a reference LMFBR plant. The basic features of this methodology and the results of its application are summarized

  7. Integrated vehicle-based safety systems light-vehicle field operational test key findings report.

    Science.gov (United States)

    2011-01-01

    "This document presents key findings from the light-vehicle field operational test conducted as part of the Integrated Vehicle-Based Safety Systems program. These findings are the result of analyses performed by the University of Michigan Transportat...

  8. Safety parameter display system (SPDS) for Russian-designed NPPs

    International Nuclear Information System (INIS)

    Anikanov, S.S.; Catullo, W.J.; Pelusi, J.L.

    1997-01-01

    As part of the programs aimed at improving the safety of Russian-designed reactors, the US DoE has sponsored a project of providing a safety parameter display system (SPDS) for nuclear power plants with such reactors. The present paper is focused mostly on the system architecture design features of SPDS systems for WWER-1000 and RBMK-1000 reactors. The function and the operating modes of the SPDS are outlined, and a description of the display system is given. The system architecture and system design of both an integrated and a stand-alone IandC system is explained. (A.K.)

  9. Safety culture. Keys for sustaining progress

    International Nuclear Information System (INIS)

    Barraclough, I.; Carnino, A.

    1998-01-01

    Principles of nuclear safety are now well known and being put into practice around the world, leading to a degree of international harmonization in safety standards. Continued improvement in levels of safety requires the development of a comprehensive 'safety culture' at all levels of an organization, with visible and consistent leadership from senior management. This article reviews the main elements required for establishing and sustaining a good safety culture at nuclear installations that involves staff at all levels

  10. Variable Speed Limits: Strategies to Improve Safety and Traffic Parameters for a Bottleneck

    Directory of Open Access Journals (Sweden)

    M. Z. Hasanpour

    2017-04-01

    Full Text Available The primary purpose of the speed limit system is to enforce reasonable and safe speed. To reduce secondary problems such as accidents and queuing, Variable Speed Limits (VSL has been suggested. In this paper VSL is used to better safety and traffic parameters. Traffic parameters including speed, queue length and stopping time have been pondering. For VLS, an optimization decision tree algorithm with the function of microscopic simulation was used. The results in case of sub saturated, saturated and supersaturated at a bottleneck are examined and compared with the Allaby logic tree. The results show that the proposed decision tree shows an improved performance in terms of safety and comfort along the highway. The VSL pilot project is part of the Road Safety Improvement Program included in Iran’s road safety action plan that is in the research process in the BHRC Research Institute, Road and Housing & Urban Development Research that is planned for next 10-year Transportation safety view Plan.

  11. Measurement of key pool boiling parameters in nanofluids for nuclear applications

    International Nuclear Information System (INIS)

    Bang, In Cheol; Buongiorno, Jacopo; Hu, Lin-Wen; Wang, Hsin

    2008-01-01

    Nanofluids, colloidal dispersions of nanoparticles in a base fluid such as water, can afford very significant Critical Heat Flux (CHF) enhancement. Such engineered fluids potentially could be employed in reactors as advanced coolants in safety systems with significant safety and economic advantages. However, a satisfactory explanation of the CHF enhancement mechanism in nanofluids is lacking. To close this gap, we have identified the important boiling parameters to be measured. These are the properties (e.g., density, viscosity, thermal conductivity, specific heat, vaporization enthalpy, surface tension), hydrodynamic parameters (i.e., bubble size, bubble velocity, departure frequency, hot/dry spot dynamics) and surface conditions (i.e., contact angle, nucleation site density). We have also deployed a pool boiling facility in which many such parameters can be measured. The facility is equipped with a thin indium-tin-oxide heater deposited over a sapphire substrate. An infra-red high-speed camera and an optical probe are used to measure the temperature distribution on the heater and the hydrodynamics above the heater, respectively. The first data generated with this facility already provide some clue on the CHF enhancement mechanism in nanofluids. Specifically, the progression to burnout in a pure fluid (ethanol in this case) is characterized by a smoothly-shaped and steadily-expanding hot spot. By contrast, in the ethanol-based nanofluid the hot spot pulsates and the progression to burnout lasts longer, although the nanofluid CHF is higher than the pure fluid CHF. The presence of a nanoparticle deposition layer on the heater surface seems to enhance wettability and aid hot spot dissipation, thus delaying burnout. (author)

  12. Safety culture in nuclear installations: Bangladesh perspectives and key lessons learned from major events

    International Nuclear Information System (INIS)

    Jalil, A.; Rabbani, G.

    2002-01-01

    Steps necessary to be taken to ensure safety in nuclear installations are suggested. One of the steps suggested is enhancing the safety culture. It is necessary to gain a common understanding of the concept itself, the development stages of safety culture by way of good management practices and leadership for safety culture improvement in the long-term. International topical meetings on safety culture may serve as an important forum for exchange of experiences. From such conventions new initiatives and programmes may crop up which when implemented around the world is very likely to improve safety management and thus boost up the safety culture in nuclear installations. International co-operation and learning are to be prompted to facilitate the sharing of the achievements to face the challenges involved in the management of safety and fixing priorities for future work and identify areas of co-operations. Key lessons learned from some major events have been reported. Present status and future trend of nuclear safety culture in Bangladesh have been dealt with. (author)

  13. The effects of rock joint geometrical parameters on safety of concrete arch dam abutments

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, S.; Yazdani, M.; Joorabchi, A.E. [Tarbiat Modares Univ., Tehran (Iran, Islamic Republic of)

    2007-07-01

    The International Commission on Large Dams (ICOLD) has stated that foundation failure is the primary cause of dam failure following overtopping. As such, concrete arch dams require strong and stiff abutments. The failure of jointed rock mass at abutments is one of the key mechanisms that may lead to uncontrolled leakage. For that reason, this study investigated the affect of the joint geometrical parameters on the stability of the concrete arch dam abutments. The study also considered the role of joints on the behaviour mechanism of rock mass because it is governed by mechanical and hydraulic properties. The orientation of joints was considered since kinematic conditions are needed for a block to move. The hydromechanical influence of joint apertures on the stability of the foundation was also investigated through nonlinear analyses of different joint orientations and apertures on a hypothetical jointed abutment. Dam abutment safety was estimated by finding the values of maximum sliding and maximum opening and determining the water flow along discontinuities. The values of these 3 indices were derived for different orientations of joints. It was concluded that abutment safety was highly dependent on the geometrical characteristics of joints. 8 refs., 1 tab., 6 figs.

  14. Methods of Generating Key Sequences Based on Parameters of Handwritten Passwords and Signatures

    Directory of Open Access Journals (Sweden)

    Pavel Lozhnikov

    2016-10-01

    Full Text Available The modern encryption methods are reliable if strong keys (passwords are used, but the human factor issue cannot be solved by cryptographic methods. The best variant is binding all authenticators (passwords, encryption keys, and others to the identities. When a user is authenticated by biometrical characteristics, the problem of protecting a biometrical template stored on a remote server becomes a concern. The paper proposes several methods of generating keys (passwords by means of the fuzzy extractors method based on signature parameters without storing templates in an open way.

  15. Probability Distributions for Cyclone Key Parameters and Cyclonic Wind Speed for the East Coast of Indian Region

    Directory of Open Access Journals (Sweden)

    Pradeep K. Goyal

    2011-09-01

    Full Text Available This paper presents a study conducted on the probabilistic distribution of key cyclone parameters and the cyclonic wind speed by analyzing the cyclone track records obtained from India meteorological department for east coast region of India. The dataset of historical landfalling storm tracks in India from 1975–2007 with latitude /longitude and landfall locations are used to map the cyclone tracks in a region of study. The statistical tests were performed to find a best fit distribution to the track data for each cyclone parameter. These parameters include central pressure difference, the radius of maximum wind speed, the translation velocity, track angle with site and are used to generate digital simulated cyclones using wind field simulation techniques. For this, different sets of values for all the cyclone key parameters are generated randomly from their probability distributions. Using these simulated values of the cyclone key parameters, the distribution of wind velocity at a particular site is obtained. The same distribution of wind velocity at the site is also obtained from actual track records and using the distributions of the cyclone key parameters as published in the literature. The simulated distribution is compared with the wind speed distributions obtained from actual track records. The findings are useful in cyclone disaster mitigation.

  16. Implementation of safety parameter display system on Russian NPPs with WWER reactors

    International Nuclear Information System (INIS)

    Dounaev, V.G.; Neboyan, V.T.

    1996-01-01

    This report gives a short overview of the status of safety parameter display systems (SPDS) implementation on Russian NPPs with WWER reactors and also discusses the SPDS, which is being developed for Kalinin NPP. The assessment of the safety status of the plant is done by the continuous monitoring of six critical safety functions and the corresponding status trees. Besides, a number of additional functions are realized within the scope of KlnNPP, aimed at providing the operator and the safety engineer in the main control room with more detailed information in accidental situation as well as during the normal operation. In particular, these functions are: archiving, data logs and alarm handling, safety actions monitoring, mnemonic diagrams indicating the state of main technological equipment and basic plant parameters, reference data, etc. Also, the operator support function ''computerized procedures'' is included in the scope of SPDS. The basic SPDS implementation platform is ADACS of SEMA GROUP design. The system architecture includes two workstations in the main control room: one is for reactor operator and the other one for safety engineer. Every station has two CRT screens which ensures computerized procedures implementation and provides for extra services for the operator. Also, the information from the SPDS is transmitted to the local crisis centre and to the crisis centre of the State utility organization concern ''Rosenergoatom''. (author). 3 refs

  17. Artificial intelligence enhancements to safety parameter display systems

    International Nuclear Information System (INIS)

    Hajek, B.K.; Hashemi, S.; Sharma, D.; Chandrasekaran, B.; Miller, D.W.

    1986-01-01

    Two prototype knowledge based systems have been developed at The Ohio State University to be the basis of an operator aid that can be attached to an existing nuclear power plant Safety Parameter Display System. The first system uses improved sensor validation techniques to provide input to a fault diagnosis process. The second system would use the diagnostic system output to synthesize corrective procedures to aid the control room licensed operator in plant recovery

  18. Contribution to the methodology of safety evaluation - and licensing of reloading cycle for PWR type reactors

    International Nuclear Information System (INIS)

    Esteves, R.G.

    1981-01-01

    A simplified methodology for evaluating a reload safety cycle is presented. This methodology consists in selecting for each foreseen accident, the nuclear key reload safety parameters which determine the accident evolution. So, each key reload parameter is calculated and compared with its value for the first cycle. Those accidents, which have their key reload parameter bounded by the values of the first cycle do not need reanalise. Extension of the validity of this methodology when there exists change of fuel supplier is commented. (Author) [pt

  19. Measurement of key pool boiling parameters in nanofluids for nuclear applications

    International Nuclear Information System (INIS)

    Bang, In Cheol; Buongiorno, Jacopo; Hu, Lin-Wen; Wang, Hsin

    2007-01-01

    Nanofluids, colloidal dispersions of nanoparticles in a base fluid such as water, can afford very significant Critical Heat Flux (CHF) enhancement. Such engineered fluids potentially could be employed in reactors as advanced coolants in safety systems with significant safety and economic advantages. However, a satisfactory explanation of the CHF enhancement mechanism in nanofluids is lacking. To close this gap, we have identified the important boiling parameters to be measured and have deployed a pool boiling facility to measure them. The facility is equipped with a thin indium-tin-oxide heater deposited over a sapphire substrate. An intra-red high-speed camera and an optical probe are used to measure the temperature distribution on the heater and the hydrodynamics above the heater, respectively. The first data generated with this facility already provide some clue on the CHF enhancement mechanism in nanofluids. (author)

  20. Application of the WHO five keys of food safety to improve food ...

    African Journals Online (AJOL)

    Aim: To apply the WHO five keys of food safety in evidence based training programme for food vendors to improve the handling of street food. Methods: A total of 127 food vendors in Accra, the capital city of Ghana were sampled for interviews. Data collection from the vendors focused on (i) food handling practices (ii) ...

  1. Single parameter controls for nuclear criticality safety at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Baker, J.S.; Peek, W.M.

    1995-01-01

    At the Oak Ridge Y-12 Plant, there are numerous situations in which nuclear criticality safety must be assured and subcriticality demonstrated by some method other than the straightforward use of the double contingency principle. Some cases are cited, and the criticality safety evaluation of contaminated combustible waste collectors is considered in detail. The criticality safety evaluation for combustible collectors is based on applying one very good control to the one controllable parameter. Safety can only be defended when the contingency of excess density is limited to a credible value based on process knowledge. No reasonable single failure is found that will result in a criticality accident. The historically accepted viewpoint is that this meets double contingency, even though there are not two independent controls on the single parameter of interest

  2. Evaluation of safety-parameter display concepts. Final report

    International Nuclear Information System (INIS)

    Woods, D.D.; Wise, J.A.; Hanes, L.F.

    1982-02-01

    New control room equipment designed to improve operator performance must be evaluated before adoption and installation. Two experimental concepts for a Safety Parameters Display System (SPDS) were evaluated to assess benefits and potential problems associated with the SPDS concept and its integration into control room operations. Participants were licensed utility operators undergoing retraining on a nuclear power plant simulator. Both quantitative and qualitative data were collected and analyzed on crew response to seven simulated accident conditions

  3. An efficient method for evaluating the effect of input parameters on the integrity of safety systems

    International Nuclear Information System (INIS)

    Tang, Zhang-Chun; Zuo, Ming J.; Xiao, Ningcong

    2016-01-01

    Safety systems are significant to reduce or prevent risk from potentially dangerous activities in industry. Probability of failure to perform its functions on demand (PFD) for safety system usually exhibits variation due to the epistemic uncertainty associated with various input parameters. This paper uses the complementary cumulative distribution function of the PFD to define the exceedance probability (EP) that the PFD of the system is larger than the designed value. Sensitivity analysis of safety system is further investigated, which focuses on the effect of the variance of an individual input parameter on the EP resulting from epistemic uncertainty associated with the input parameters. An available numerical technique called finite difference method is first employed to evaluate the effect, which requires extensive computational cost and needs to select a step size. To address these difficulties, this paper proposes an efficient simulation method to estimate the effect. The proposed method needs only an evaluation to estimate the effects corresponding to all input parameters. Two examples are used to demonstrate that the proposed method can obtain more accurate results with less computation time compared to reported methods. - Highlights: • We define a sensitivity index to measure effect of a parameter for safety system. • We analyze the physical meaning of the sensitivity index. • We propose an efficient simulation method to assess the sensitivity index. • We derive the formulations of this index for lognormal and beta distributions. • Results identify important parameters on exceedance probability of safety system.

  4. A history and overview of the safety parameter display system concept

    International Nuclear Information System (INIS)

    Joyce, J.P.; Lapinsky, G.W.

    1983-01-01

    Inquiries into the accident at the Three Mile Island Nuclear Power Plant Unit 2, on March 28, 1979 brought to public attention the need to improve operators' capabilities to interact with the systems under their control. Recommendations ran the full gamut of human/machine interaction, from improvements in training and procedures to improvements in control and display hardware in the control room. This presentation briefly traces the history and development of a display concept that evolved in the post-TMI era, the Safety Parameter Display System or SPDS. The SPDS is intended to function as a detection aid for control room operators, providing an integrated overview of significant plant parameters. The purpose of this report is to describe the general concept of SPDS, its history, and its current regulatory status. A review of NRC guidance documents is included, as well as a discussion of NRC requirements placed on the SPDS. The presentation concludes with an outline of the NRC staff review process for safety parameter display systems and a synopsis of the results of generic SPDS reviews performed thus far

  5. Implicit Treatment of Technical Specification and Thermal Hydraulic Parameter Uncertainties in Gaussian Process Model to Estimate Safety Margin

    Directory of Open Access Journals (Sweden)

    Douglas A. Fynan

    2016-06-01

    Full Text Available The Gaussian process model (GPM is a flexible surrogate model that can be used for nonparametric regression for multivariate problems. A unique feature of the GPM is that a prediction variance is automatically provided with the regression function. In this paper, we estimate the safety margin of a nuclear power plant by performing regression on the output of best-estimate simulations of a large-break loss-of-coolant accident with sampling of safety system configuration, sequence timing, technical specifications, and thermal hydraulic parameter uncertainties. The key aspect of our approach is that the GPM regression is only performed on the dominant input variables, the safety injection flow rate and the delay time for AC powered pumps to start representing sequence timing uncertainty, providing a predictive model for the peak clad temperature during a reflood phase. Other uncertainties are interpreted as contributors to the measurement noise of the code output and are implicitly treated in the GPM in the noise variance term, providing local uncertainty bounds for the peak clad temperature. We discuss the applicability of the foregoing method to reduce the use of conservative assumptions in best estimate plus uncertainty (BEPU and Level 1 probabilistic safety assessment (PSA success criteria definitions while dealing with a large number of uncertainties.

  6. 47{sup th} Annual meeting on nuclear technology (AMNT 2016). Key topic / Enhanced safety and operation excellence

    Energy Technology Data Exchange (ETDEWEB)

    Traichel, Anke [NUKEM Technologies Engineering Services GmbH, Alzenau (Germany). Dept. of Safety Engineering and Assessment / Proposals Engineering

    2017-04-15

    Summary report on the Key Topic ''Enhanced Safety and Operation Excellence'' Technical Session ''Safety, IT, Hazards and PSA'' of the 47th Annual Meeting on Nuclear Technology (AMNT 2016) held in Hamburg, 10 to 12 May 2016.

  7. Evaluation of uncertainties of key neutron parameters of PWR-type reactors with slab fuel, application to neutronic conformity

    International Nuclear Information System (INIS)

    Bernard, D.

    2001-12-01

    The aim of this thesis was to evaluate uncertainties of key neutron parameters of slab reactors. Uncertainties sources have many origins, technologic origin for parameters of fabrication and physical origin for nuclear data. First, each contribution of uncertainties is calculated and finally, a factor of uncertainties is associated to key slab parameter like reactivity, isotherm reactivity coefficient, control rod efficiency, power form factor before irradiation and life-time. This factors of uncertainties were computed by Generalized Perturbations Theory in case of step 0 and by directs calculations in case of irradiation problems. One of neutronic conformity applications was about fabrication and nuclear data targets precision adjustments. Statistic (uncertainties) and deterministic (deviations) approaches were studied. Then, neutronics key slab parameters uncertainties were reduced and so nuclear performances were optimized. (author)

  8. Life cycle assessment in green chemistry: overview of key parameters and methodological concerns

    DEFF Research Database (Denmark)

    Tufvesson, Linda M.; Tufvesson, Pär; Woodley, John

    2013-01-01

    assessment (LCA) is a valuable methodology. However, on the planning stage, a full-scale LCA is considered to be too time consuming and complicated. Two reasons for this have been recognised, the method is too comprehensive and it is hard to find inventory data. In this review, key parameters are presented...... with the purpose to reduce the time-consuming steps in LCA.In this review, several LCAs of so-called ‘green chemicals’ are analysed and key parameters and methodological concerns are identified. Further, some conclusions on the environmental performance of chemicals were drawn.For fossil-based platform chemicals...... chemicals was identified. The environmental performance of bulk chemicals are closely connected to the production of the raw material and thereby different land use aspects. Here, a lot can be learnt from biofuel LCAs. In many of the reviewed articles focusing on bulk chemicals a comparison regarding fossil...

  9. Research on review technology for three key safety factors of periodic safety review (PSR) and its application to Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Xu Shoulv; Yao Weida; Dou Yikang; Lin Shaoxuan; Cao Yenan; Zhou Quanfu; Zheng Jiong; Zhang Ming

    2009-04-01

    In 2001, after 10 years' operation, Qinshan Nuclear Power Plant (Q1) started to carry out periodic safety review (PSR) based on a nuclear safety guideline, Periodic Safety Review for Operational Nuclear Power Plants (HAF0312), issued by National Nuclear Safety Administration of China (NNSA). Entrusted by the owner of Q1, Shanghai Nuclear Engineering Research and Design Institute (SNERDI) implemented reviews of three key safety factors including safety analysis, equipment qualification and ageing. PSR was a challenging work in China at that time and through three years' research and practice, SNERDI summarized a systematic achievement for the review including review methodology, scoping, review contents and implementation steps, etc.. During the process of review for the three safety factors, totally 148 review reports and 341 recommendations for corrections were submitted to Q1. These reports and recommendations have provided guidance for correction actions as follow-up of PSR. This paper focuses on technical aspects to carry out PSR for the above-mentioned three safety factors, including review scoping, contents, methodology and main steps. The review technology and relevant experience can be taken for reference for other NPPs to carry out PSR. (authors)

  10. List of key words with classification for a standard safety report for nuclear power plants with PWR or BWR

    International Nuclear Information System (INIS)

    1976-01-01

    Under the efforts of improving the licensing procedure for nuclear power plants, the Federal Minister of the Interior set up a task group of experts of the manufacturers and operators of nuclear power plants, the assessors (Technische Ueberwachungsvereine, TUeVs), the Institute for Reactor Safety of the TUeVs, the licensing authorities of the Laender, and the Federal Ministry of the Interior which worked out a list of key words for writing the safety report for nuclear power plants with PWRs and BWRs. This list of key words is published herewith in order to encourage its application when writing or assessing safety reports for nuclear power plants and in order to present the opportunity to make proposals for improvement to a group as large as possible. At a later date, it is intended to incorporate the list of key words as soon as sufficient experience from the practical application will justify this, it is intended to incorporate the list of key words in a general administrative regulation. (orig.) [de

  11. Rationale for statistical characteristics of road safety parameters

    Directory of Open Access Journals (Sweden)

    Dormidontova Tatiana

    2017-01-01

    Full Text Available When making engineering decisions at the stage of designing auto-roads and man-made structures it is necessary to take into account the statistical variability of physical and mechanical characteristics of the used materials as well as the different effects on the structures. Thus the rationale for the statistical characteristics of the parameters that determine the reliability of roads and man-made engineering facilities is of particular importance.There are many factors to be considered while designing roads, such as natural climatic factors, the accidental effects of the operating loads, the strength and deformation characteristics of the materials, the geometric parameters of the structure, etc. which affect the strength characteristics of roads and man-made structures. The rationale for statistical characteristics of the parameters can help an engineer assess the reliability of the decision and the economic risk, as well as avoid making mistakes in the design of roads and man-made structures.However, some statistical characteristics of the parameters that define the reliability of a road and man-made structures play a key role in the design. These are the visibility distance in daytime for the peak curve, variation coefficient of radial acceleration, the reliability of visibility distance and other parameters.

  12. Implementation of safety parameter display system at VVER-440 NPPs

    International Nuclear Information System (INIS)

    Manninen, T.

    1997-01-01

    Furnishing WWER-440 nuclear power plant units with a safety parameter display system (SPDS) fulfilling the requirements of internationally recognized standards and guidelines has been ranked high on the lists of proposed safety improvement projects. Technically such an SPDS system can be implemented either as a separate stand-alone system or as a more or less closely integrated part of a process information system of the plant unit. In the paper examples of these approaches are presented. Functionally all these examples include the well proven SPDS concept developed by IVO Power Engineering Ltd, Finland. The functional design basis, the general requirements for the system platform, experience with implementation and expansion possibilities of the systems are discussed. (author)

  13. Preliminary safety analysis for key design features of KALIMER with breakeven core

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, Y. B.; Jeong, K. S

    2001-06-01

    KAERI is currently developing the conceptual design of a Liquid Metal Reactor, KALIMER (Korea Advanced Liquid MEtal Reactor) under the Long-term Nuclear R and D Program. KALIMER addresses key issues regarding future nuclear power plants such as plant safety, economics, proliferation, and waste. In this report, descriptions of safety design features and safety analyses results for selected ATWS accidents for the breakeven core KALIMER are presented. First, the basic approach to achieve the safety goal is introduced in Chapter 1, and the safety evaluation procedure for the KALIMER design is described in Chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events.In Chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure benign performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram (ATWS) have been performed to investigate the KALIMER system response to the events. In Chapter 4, the design of the KALIMER containment dome and the results of its performance analyses are presented. The design of the existing containment and the KALIMER containment dome are compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core energetics behavior during HCDA in Chapter 5. Sensitivity analyses have been performed for the KALIMER core behavior during super-prompt critical excursions, using mathematical formulations developed in the framework of the Modified Bethe-Tait method. Work energy potential was then calculated based on the isentropic fuel expansion model.

  14. Study on the Key Indexes of Carambola Quality Safety under Logistics Environment of Different Temperature

    OpenAIRE

    Lei Wang; Ruhe Xie; Yifeng Zou

    2015-01-01

    By using layered factor analysis method, the key indexes of quality safety of Carambola are determined. The whole logistics process from picking, storing, transportation to selling is simulated in the experiment. At the same time, the key indexes are detected and analyzed under different temperature in logistics environment. The results indicate that both temperature and package have certain effect on the quality of Carambola. As shown in the study, the following conclusions are made. The tem...

  15. Preliminary study on functional performance of compound type multistage safety injection tank

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo

    2015-01-01

    Highlights: • Functional performance of compound type multistage safety injection tanks is studied. • Effects of key design parameters are scrutinized. • Distinctive flow features in compound type safety injection tanks are explored. - Abstract: A parametric study is carried out to evaluate the functional performance of a compound type multistage safety injection tank that would be considered one of the components for the passive safety injection systems in nuclear power plants. The effects of key design parameters such as the initial volume fraction and charging pressure of gas, tank elevation, vertical location of a sparger, resistance coefficient, and operating condition on the injection flow rate are scrutinized along with a discussion of the relevant flow features. The obtained results indicate that the compound type multistage safety injection tank can effectively control the injection flow rate in a passive manner, by switching the driving force for the safety injection from gas pressure to gravity during the refill and reflood phases, respectively

  16. Efficient cascaded parameter scan approach for studying top-off safety in storage rings

    Directory of Open Access Journals (Sweden)

    Yongjun Li

    2011-03-01

    Full Text Available We introduce a new algorithm, which we call the cascaded parameter scan method, to efficiently carry out the scan over magnet parameters in the safety analysis for top-off injection in synchrotron radiation storage rings. In top-off safety analysis, one must track particles populating phase space through a beam line containing magnets and apertures and clearly demonstrate that, for all possible magnet settings and errors, all particles are lost on scrapers within the properly shielded region. In the usual approach, if one considers m magnets and scans each magnet through n setpoints, then one must carry out n^{m} tracking runs. In the cascaded parameter scan method, the number of tracking runs is reduced to n×m. This reduction of exponential to linear dependence on the number of setpoints n greatly reduces the required computation time and allows one to more densely populate phase space and to increase the number n of setpoints scanned for each magnet.

  17. Transient performance analysis of pressurized safety injection tank with a partition

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo

    2015-01-01

    Highlights: • Functional performance of safety injection tanks with a partition is evaluated. • Effects of key design parameters are scrutinized. • Distinctive features of the flow in multi-unit safety injection tanks are explored. - Abstract: A parametric study has been performed to evaluate the functional performance of a pressurized multi-unit safety injection tank, which would be considered as one of the candidates for a passive safety injection system in a nuclear power plant. The influences of key design parameters including the orifice size, initial gas fraction, and resistance coefficients and operating condition on the injection flow rate are scrutinized with a discussion of the relevant flow features such as the choked flow of gas through an orifice and two interconnected regions of differing gaseous pressure. The obtained results indicate that a multi-unit safety injection tank can passively control the injection flow rate and provide a stable safety injection over a relatively long period even in the case of drastic depressurization of a reactor coolant system

  18. Breaking chaotic shift key communication via adaptive key identification

    International Nuclear Information System (INIS)

    Ren Haipeng; Han Chongzhao; Liu Ding

    2008-01-01

    This paper proposes an adaptive parameter identification method for breaking chaotic shift key communication from the transmitted signal in public channel. The sensitive dependence property of chaos on parameter mismatch is used for chaos adaptive synchronization and parameter identification. An index function about the synchronization error is defined and conjugate gradient method is used to minimize the index function and to search the transmitter's parameter (key). By using proposed method, secure key is recovered from transmitted signal generated by low dimensional chaos and hyper chaos switching communication. Multi-parameters can also be identified from the transmitted signal with noise

  19. Evaluation of safety parameter display concepts. Final report

    International Nuclear Information System (INIS)

    Woods, D.D.; Wise, J.A.; Hanes, L.F.

    1982-02-01

    New control room equipment designed to improve operator performance must be evaluated before adoption and installation. Two experimental concept for a Safety Parameters Display System (SPDS) were evaluated to assess benefits and potential problems associated with the SPDS concept and its integration into control room operations. Participants were licensed utility operators undergoing retraining on a nuclear power plant simulator. Both quantitative and qualitative data were collected and analyzed on crew response to seven simulated accident conditions. Data on operator decisions and actions have been organized into timelines. Analysis of the timelines and observations collected during testing provide important insights about the potential impact of the SPDS concept on control room operations

  20. Effect of the key mixture parameters on shrinkage of reactive powder concrete.

    Science.gov (United States)

    Ahmad, Shamsad; Zubair, Ahmed; Maslehuddin, Mohammed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 3(3) factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content.

  1. Preliminary investigation on reliability assessment of passive safety system

    International Nuclear Information System (INIS)

    Huang Changfan; Kuang Bo

    2012-01-01

    The reliability evaluation of passive safety system plays an important part in probabilistic safety assessment (PSA) of nuclear power plant applying passive safety design, which depends quantitatively on reliabilities of passive safety system. According to the object of reliability assessment of passive safety system, relevant parameters are identified. Then passive system behavior during accident scenarios are studied. A practical example of this method is given for the case of reliability assessment of AP1000 passive heat removal system in loss of normal feedwater accident. Key and design parameters of PRHRS are identified and functional failure criteria are established. Parameter combinations acquired by Latin hyper~ cube sampling (LHS) in possible parametric ranges are input and calculations of uncertainty propagation through RELAP5/MOD3 code are carried out. Based on the calculations, sensitivity assessment on PRHRS functional criteria and reliability evaluation of the system are presented, which might provide further PSA with PRHR system reliability. (authors)

  2. Safety Parameter Considerations of Anodal Transcranial Direct Current Stimulation in Rats

    Science.gov (United States)

    2017-10-01

    Richardson, J.D., Baker, J.M., Rorden, C., 2011. Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a...AFRL-RH-WP-TR-2017-0069 Safety parameter considerations of anodal transcranial Direct Current Stimulation in rats R. Andy McKinley...response, including the time for reviewing instructions, searching existing data sources, searching existing data sources, gathering and maintaining the

  3. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [ORNL; Poore III, Willis P [ORNL

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Mark I plant for those instrumentation systems considered most important for accident management purposes.

  4. Design and hardware alternatives for a Safety-Parameter Display System

    International Nuclear Information System (INIS)

    Honeycutt, F.; Merten, W.T.; Roy, G.M.; Segraves, E.; Stone, G.P.

    1981-05-01

    The SPDS is a dedicated control room operator aid and is viewed as an important safety improvement within the context of other post-TMI fixes. Hardware configurations and components to implement the NSAC display format of a Safety Parameter Display System (SPDS) are evaluated. The evaluation was made on the basis of five alternative hardware configurations which use commercially available components. Four of the alternatives use computer/video display architecture. The fifth alternative is a simple hardwired system which uses strip chart recorders. SPDS regulatory requirements are defined by NUREG 0696. Overall feasibility of the NSAC concept was evaluated in terms of performance, reliability, cost, licensability, and flexibility. The flexibility evaluation relates to the ability to handle other display formats, the data acquisition needs of the other emergency facilities and the impact of expected future NRC requirements

  5. Key performance outcomes of patient safety curricula: root cause analysis, failure mode and effects analysis, and structured communications skills.

    Science.gov (United States)

    Fassett, William E

    2011-10-10

    As colleges and schools of pharmacy develop core courses related to patient safety, course-level outcomes will need to include both knowledge and performance measures. Three key performance outcomes for patient safety coursework, measured at the course level, are the ability to perform root cause analyses and healthcare failure mode effects analyses, and the ability to generate effective safety communications using structured formats such as the Situation-Background-Assessment-Recommendation (SBAR) situational briefing model. Each of these skills is widely used in patient safety work and competence in their use is essential for a pharmacist's ability to contribute as a member of a patient safety team.

  6. Key natural analogue input required to build a safety case for direct disposal of spent nuclear fuel in Japan

    Energy Technology Data Exchange (ETDEWEB)

    McKinley, I.G.; Hardie, S.M.L.; Klein, E. [MCM Consulting, Baden-Dättwil (Switzerland); Kawamura, H. [Obayashi Corporation, Nuclear Facilities Division, Tokyo (Japan); Beattie, T.M. [MCM Consulting, Bristol (United Kingdom)

    2015-06-15

    Natural analogues have been previously used to support the safety case for direct disposal of spent nuclear fuel, but the focus of such work was very dependent on the key barriers of specific national disposal concepts. Investigations of the feasibility of such disposal in Japan are at an early stage but, nevertheless, it is clear that building a robust safety case will be very challenging and would benefit from focused support from natural analogue studies—both in terms of developing/testing required models and, as importantly, presenting safety arguments to a wide range of stakeholders. This paper identifies key analogues that support both longevity and spread of failure times of massive steel overpacks, the effectiveness of buffering of radiolytic oxidants and the chemical and physical mechanisms retarding release of radionuclides from the engineered barriers. It is concluded that, for countries like Japan where performance needs to be assessed as realistically as possible, natural analogues can complement the existing laboratory and theoretical knowledge base and contribute towards development of a robust safety case. (authors)

  7. Determination of key parameters of vector multifractal vector fields

    Science.gov (United States)

    Schertzer, D. J. M.; Tchiguirinskaia, I.

    2017-12-01

    For too long time, multifractal analyses and simulations have been restricted to scalar-valued fields (Schertzer and Tchiguirinskaia, 2017a,b). For instance, the wind velocity multifractality has been mostly analysed in terms of scalar structure functions and with the scalar energy flux. This restriction has had the unfortunate consequences that multifractals were applicable to their full extent in geophysics, whereas it has inspired them. Indeed a key question in geophysics is the complexity of the interactions between various fields or they components. Nevertheless, sophisticated methods have been developed to determine the key parameters of scalar valued fields. In this communication, we first present the vector extensions of the universal multifractal analysis techniques to multifractals whose generator belong to a Levy-Clifford algebra (Schertzer and Tchiguirinskaia, 2015). We point out further extensions noting the increased complexity. For instance, the (scalar) index of multifractality becomes a matrice. Schertzer, D. and Tchiguirinskaia, I. (2015) `Multifractal vector fields and stochastic Clifford algebra', Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(12), p. 123127. doi: 10.1063/1.4937364. Schertzer, D. and Tchiguirinskaia, I. (2017) `An Introduction to Multifractals and Scale Symmetry Groups', in Ghanbarian, B. and Hunt, A. (eds) Fractals: Concepts and Applications in Geosciences. CRC Press, p. (in press). Schertzer, D. and Tchiguirinskaia, I. (2017b) `Pandora Box of Multifractals: Barely Open ?', in Tsonis, A. A. (ed.) 30 Years of Nonlinear Dynamics in Geophysics. Berlin: Springer, p. (in press).

  8. Parameter optimization in biased decoy-state quantum key distribution with both source errors and statistical fluctuations

    Science.gov (United States)

    Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin

    2017-10-01

    The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.

  9. Safety analysis reports. Current status (third key report)

    International Nuclear Information System (INIS)

    1999-01-01

    A review of Ukrainian regulations and laws concerned with Nuclear power and radiation safety is presented with an overview of the requirements for the Safety Analysis Report Contents. Status of Safety Analysis Reports (SAR) is listed for each particular Ukrainian NPP including SAR development schedules. Organisational scheme of SAR development works includes: general technical co-ordination on Safety Analysis Report development; list of leading organisations and utilization of technical support within international projects

  10. Risk Communication: A Key for Fostering a More Resilient Safety Culture

    International Nuclear Information System (INIS)

    Nishizawa, M.

    2016-01-01

    It is widely agreed that the accident of the Fukushima Daiichi nuclear power plant was not only triggered by natural events combined with technical failures, but was a human induced disaster. From the bitter lessons, we have learned that human and organizational factors associated with emergency planning, response and decision-making for nuclear safety need to be more carefully reviewed and enhanced. Elements of social sciences, especially, risk management and risk communication here play a key role. Risk communication is an established concept within risk analysis frameworks. It is a vital tool to convey the meaning of scientific assessment and risk management, share safety related information, and exchange views and values amongst varying stakeholder groups. Risk communication aims at building trust through this process and human interactions. However, it would not be an overstatement that the essence of risk communication is not fully understood. As a result, it is either partially integrated into risk management practice or remains unconducive. The marginalisation of risk communication is observed in a variety of risk communication practices, or more evidently, in perception gaps between lays and experts about risks.

  11. Sensitivity analysis of parameters important to nuclear criticality safety of Castor X/28F spent nuclear fuel cask

    Energy Technology Data Exchange (ETDEWEB)

    Leotlela, Mosebetsi J. [Witwatersrand Univ., Johannesburg (South Africa). School of Physics; Koeberg Operating Unit, Johannesburg (South Africa). Regulations and Licensing; Malgas, Isaac [Koeberg Nuclear Power Station, Duinefontein (South Africa). Nuclear Engineering Analysis; Taviv, Eugene [ASARA consultants (PTY) LTD, Johannesburg (South Africa)

    2015-11-15

    In nuclear criticality safety analysis it is essential to ascertain how various components of the nuclear system will perform under certain conditions they may be subjected to, particularly if the components of the system are likely to be affected by environmental factors such as temperature, radiation or material composition. It is therefore prudent that a sensitivity analysis is performed to determine and quantify the response of the output to variation in any of the input parameters. In a fissile system, the output parameter of importance is the k{sub eff}. Therefore, in attempting to prevent reactivity-induced accidents, it is important for the criticality safety analyst to have a quantified degree of response for the neutron multiplication factor to perturbation in a given input parameter. This article will present the results of the perturbation of the parameters that are important to nuclear criticality safety analysis and their respective correlation equations for deriving the sensitivity coefficients.

  12. Influence of experimental parameters inherent to optical fibers on Quantum Key Distribution, the protocol BB84

    Directory of Open Access Journals (Sweden)

    L. Bouchoucha

    2018-03-01

    Full Text Available In this work, we represent the principle of quantum cryptography (QC that is based on fundamental laws of quantum physics. QC or Quantum Key Distribution (QKD uses various protocols to exchange a secret key between two communicating parties. This research paper focuses and examines the quantum key distribution by using the protocol BB84 in the case of encoding on the single-photon polarization and shows the influence of optical components parameters on the quantum key distribution. We also introduce Quantum Bit Error Rate (QBER to better interpret our results and show its relationship with the intrusion of the eavesdropper called Eve on the optical channel to exploit these vulnerabilities.

  13. Experience in the review of utility control room design review and safety parameter display system programs

    International Nuclear Information System (INIS)

    Moore, V.A.

    1985-01-01

    The Detailed Control Room Design Review (DCRDR) and the Safety Parameter Display System (SPDS) had their origins in the studies and investigations conducted as the result of the TMI-2 accident. The President's Commission (Kemeny Commission) critized NRC for not examining the man-machine interface, over-emphasizing equipment, ignoring human beings, and tolerating outdated technology in control rooms. The Commission's Special Inquiry Group (Rogovin Report) recommended greater application of human factors engineering including better instrumentation displays and improved control room design. The NRC Lessons Learned Task Force concluded that licensees should review and improve control rooms using NRC Human engineering guidelines, and install safety parameter display systems (then called the safety staff vector). The TMI Action Plan Item I.D.1 and I.D.2 were based on these recommendations

  14. 48{sup th} Annual meeting on nuclear technology (AMNT 2017). Key topic / Enhanced safety and operation excellence. Technical session: Operation and safety of nuclear installations, fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hollands, Thorsten [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany). Bereich Reaktorsicherheitsforschung

    2017-12-15

    The sessions Fuel and Materials and Containment and SFP, as part of the Technical Sessions Operation and Safety of Nuclear Installations, Fuel implemented in the Key Topic Enhanced Safety and Operation Excellence were chaired by Dr. Thorsten Hollands (Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH) and Dr. Erwin Fischer (PreussenElektra GmbH) who was the keynote coordinator for the Technical Sessions. Both sessions consist of a keynote lecture followed by technical presentations.

  15. The use of GIS tools for road infrastructure safety management

    Science.gov (United States)

    Budzyński, Marcin; Kustra, Wojciech; Okraszewska, Romanika; Jamroz, Kazimierz; Pyrchla, Jerzy

    2018-01-01

    There are many factors that influence accidents and their severity. They can be grouped within the system of man, vehicle and environment. The article focuses on how GIS tools can be used to manage road infrastructure safety. To ensure a better understanding and identification of road factors, GIS tools help with the acquisition of road parameter data. Their other role is helping with a clear and effective presentation of risk ranking. GIS is key to identifying high-risk sections and supports the effective communication of safety levels. This makes it a vital element of safety management. The article describes the use of GIS for the collection and visualisation of road parameter data which are not available in any of the existing databases, i.e. horizontal curve parameters. As we know from research and statistics, they are important factors that determine the safety of road infrastructure. Finally, new research is proposed as well as the possibilities for applying GIS tools for the purposes of road safety inspection.

  16. The effect of touch-key size on the usability of In-Vehicle Information Systems and driving safety during simulated driving.

    Science.gov (United States)

    Kim, Heejin; Kwon, Sunghyuk; Heo, Jiyoon; Lee, Hojin; Chung, Min K

    2014-05-01

    Investigating the effect of touch-key size on usability of In-Vehicle Information Systems (IVISs) is one of the most important research issues since it is closely related to safety issues besides its usability. This study investigated the effects of the touch-key size of IVISs with respect to safety issues (the standard deviation of lane position, the speed variation, the total glance time, the mean glance time, the mean time between glances, and the mean number of glances) and the usability of IVISs (the task completion time, error rate, subjective preference, and NASA-TLX) through a driving simulation. A total of 30 drivers participated in the task of entering 5-digit numbers with various touch-key sizes while performing simulated driving. The size of the touch-key was 7.5 mm, 12.5 mm, 17.5 mm, 22.5 mm and 27.5 mm, and the speed of driving was set to 0 km/h (stationary state), 50 km/h and 100 km/h. As a result, both the driving safety and the usability of the IVISs increased as the touch-key size increased up to a certain size (17.5 mm in this study), at which they reached asymptotes. We performed Fitts' law analysis of our data, and this revealed that the data from the dual task experiment did not follow Fitts' law. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. Crop damage by primates: quantifying the key parameters of crop-raiding events.

    Directory of Open Access Journals (Sweden)

    Graham E Wallace

    Full Text Available Human-wildlife conflict often arises from crop-raiding, and insights regarding which aspects of raiding events determine crop loss are essential when developing and evaluating deterrents. However, because accounts of crop-raiding behaviour are frequently indirect, these parameters are rarely quantified or explicitly linked to crop damage. Using systematic observations of the behaviour of non-human primates on farms in western Uganda, this research identifies number of individuals raiding and duration of raid as the primary parameters determining crop loss. Secondary factors include distance travelled onto farm, age composition of the raiding group, and whether raids are in series. Regression models accounted for greater proportions of variation in crop loss when increasingly crop and species specific. Parameter values varied across primate species, probably reflecting differences in raiding tactics or perceptions of risk, and thereby providing indices of how comfortable primates are on-farm. Median raiding-group sizes were markedly smaller than the typical sizes of social groups. The research suggests that key parameters of raiding events can be used to measure the behavioural impacts of deterrents to raiding. Furthermore, farmers will benefit most from methods that discourage raiding by multiple individuals, reduce the size of raiding groups, or decrease the amount of time primates are on-farm. This study demonstrates the importance of directly relating crop loss to the parameters of raiding events, using systematic observations of the behaviour of multiple primate species.

  18. Crop Damage by Primates: Quantifying the Key Parameters of Crop-Raiding Events

    Science.gov (United States)

    Wallace, Graham E.; Hill, Catherine M.

    2012-01-01

    Human-wildlife conflict often arises from crop-raiding, and insights regarding which aspects of raiding events determine crop loss are essential when developing and evaluating deterrents. However, because accounts of crop-raiding behaviour are frequently indirect, these parameters are rarely quantified or explicitly linked to crop damage. Using systematic observations of the behaviour of non-human primates on farms in western Uganda, this research identifies number of individuals raiding and duration of raid as the primary parameters determining crop loss. Secondary factors include distance travelled onto farm, age composition of the raiding group, and whether raids are in series. Regression models accounted for greater proportions of variation in crop loss when increasingly crop and species specific. Parameter values varied across primate species, probably reflecting differences in raiding tactics or perceptions of risk, and thereby providing indices of how comfortable primates are on-farm. Median raiding-group sizes were markedly smaller than the typical sizes of social groups. The research suggests that key parameters of raiding events can be used to measure the behavioural impacts of deterrents to raiding. Furthermore, farmers will benefit most from methods that discourage raiding by multiple individuals, reduce the size of raiding groups, or decrease the amount of time primates are on-farm. This study demonstrates the importance of directly relating crop loss to the parameters of raiding events, using systematic observations of the behaviour of multiple primate species. PMID:23056378

  19. Resilience of Key Biological Parameters of the Senegalese Flat Sardinella to Overfishing and Climate Change.

    Science.gov (United States)

    Ba, Kamarel; Thiaw, Modou; Lazar, Najih; Sarr, Alassane; Brochier, Timothée; Ndiaye, Ismaïla; Faye, Alioune; Sadio, Oumar; Panfili, Jacques; Thiaw, Omar Thiom; Brehmer, Patrice

    2016-01-01

    The stock of the Senegalese flat sardinella, Sardinella maderensis, is highly exploited in Senegal, West Africa. Its growth and reproduction parameters are key biological indicators for improving fisheries management. This study reviewed these parameters using landing data from small-scale fisheries in Senegal and literature information dated back more than 25 years. Age was estimated using length-frequency data to calculate growth parameters and assess the growth performance index. With global climate change there has been an increase in the average sea surface temperature along the Senegalese coast but the length-weight parameters, sex ratio, size at first sexual maturity, period of reproduction and condition factor of S. maderensis have not changed significantly. The above parameters of S. maderensis have hardly changed, despite high exploitation and fluctuations in environmental conditions that affect the early development phases of small pelagic fish in West Africa. This lack of plasticity of the species regarding of the biological parameters studied should be considered when planning relevant fishery management plans.

  20. A critical revisit of the key parameters used to describe microbial electrochemical systems

    International Nuclear Information System (INIS)

    Sharma, Mohita; Bajracharya, Suman; Gildemyn, Sylvia; Patil, Sunil A.; Alvarez-Gallego, Yolanda; Pant, Deepak; Rabaey, Korneel; Dominguez-Benetton, Xochitl

    2014-01-01

    Graphical abstract: - Abstract: Many microorganisms have the innate capability to discharge and/or receive electrons to and from solid state materials such as electrodes. This ability is now used towards innovative processes in wastewater treatment, power generation, production of fuels and biochemicals, bioremediation, desalination and resource recovery, among others. Despite being a dynamic field in science and technology, significant challenges remain towards industrial implementation which include representation of judicious performance indicators. This critical review outlines the progress in current density evaluated per projected surface area of electrodes, the most wide-spread performance indicator. It also proposes guidelines to correct current and exchange current per porous surface area, biofilm covered area, electrochemically- or bioelectrochemically- active surface area, of the electrodes. Recommendations for indicators to describe the environmental and electrochemical robustness of electrochemically-active biofilms are portrayed, including preservation of the predominant functionality as well as electrochemical mechanistic and phenomenological features. A few additional key elements for industrial processing are depicted. Whereas Microbial Fuel Cells (MFCs) are the main focus, some important parameters for reporting on cathodic bioproduction performance are also discussed. This critical revision aims to provide key parameters to compare the whole spectrum of microbial electrochemical systems in a consistent way

  1. The Momentum of the European Directive on Nuclear Safety: From the Complexity of Nuclear Safety to Key Messages. Addressed to European citizens

    International Nuclear Information System (INIS)

    Pouleur, Y.; Krs, P.

    2010-01-01

    This paper intends to present the key issues of the directive (council directive 2009/71/EURATOM establishing a Community framework for the nuclear safety of nuclear installations, approved by the Permanent Representatives Committee (C.O.R.E.P.E.R. 2) on 24. June and by the Council of Ministers on 25. June in the environment Council. It was published on 2. July in the Official Journal, O.J. L 172:18 and is to be transposed by 22. July 2011): a summary of the institutional context, the international framework in the field of nuclear safety developed in fora such as the International Atomic energy Agency (IAEA), the basic principles of nuclear safety and the compromises that were necessary to finally reach the consensus on the text. The goal of the authors is to offer an objective and accurate analysis that could be used for the interpretation and better understanding of the directive. (N.C.)

  2. Proposal of criteria for evaluation of engineering safety factors of VVER core parameters

    International Nuclear Information System (INIS)

    Shishkov, L.; Tsyganov, S.; Dementiev, V.

    2009-01-01

    The paper states that the regulatory documentation, as a rule, do not give explicit recommendations on formation techniques of engineering safety factors for design limited parameters of normal operation (K eng ). The AER countries use different approaches to K eng evaluation (sometimes even one country in relation of various power units). The paper suggests the development of uniform rules to be used in calculation of engineering safety factor for all VVER reactors. The paper presents principal problems that must be solved in the course of the discussion, and in the form of an exercise suggests the way of their solution. (authors)

  3. Proposal of criteria for evaluation of engineering safety factors of WWER core parameters

    International Nuclear Information System (INIS)

    Shishkov, L.; Tsyganov, S.; Dementiev, V.

    2009-01-01

    The paper states that the regulatory documentation, as a rule, do not give explicit recommendations on formation techniques of engineering safety factors for design limited parameters of normal operation. The AER countries use different approaches to evaluation (sometimes even one country in relation of various power units). The paper suggests the development of uniform rules to be used in calculation of engineering safety factor for all WWER reactors. The paper presents principal problems that must be solved in the course of the discussion, and in the form of an exercise suggests the way of their solution. (Authors)

  4. The village/commune safety policy and HIV prevention efforts among key affected populations in Cambodia: finding a balance

    Directory of Open Access Journals (Sweden)

    Thomson Nick

    2012-07-01

    Full Text Available Abstract The Village/Commune Safety Policy was launched by the Ministry of Interior of the Kingdom of Cambodia in 2010 and, due to a priority focus on “cleaning the streets”, has created difficulties for HIV prevention programs attempting to implement programs that work with key affected populations including female sex workers and people who inject drugs. The implementation of the policy has forced HIV program implementers, the UN and various government counterparts to explore and develop collaborative ways of delivering HIV prevention services within this difficult environment. The following case study explores some of these efforts and highlights the promising development of a Police Community Partnership Initiative that it is hoped will find a meaningful balance between the Village/Commune Safety Policy and HIV prevention efforts with key affected populations in Cambodia.

  5. Safety analysis methodology with assessment of the impact of the prediction errors of relevant parameters

    International Nuclear Information System (INIS)

    Galia, A.V.

    2011-01-01

    The best estimate plus uncertainty approach (BEAU) requires the use of extensive resources and therefore it is usually applied for cases in which the available safety margin obtained with a conservative methodology can be questioned. Outside the BEAU methodology, there is not a clear approach on how to deal with the issue of considering the uncertainties resulting from prediction errors in the safety analyses performed for licensing submissions. However, the regulatory document RD-310 mentions that the analysis method shall account for uncertainties in the analysis data and models. A possible approach is presented, that is simple and reasonable, representing just the author's views, to take into account the impact of prediction errors and other uncertainties when performing safety analysis in line with regulatory requirements. The approach proposes taking into account the prediction error of relevant parameters. Relevant parameters would be those plant parameters that are surveyed and are used to initiate the action of a mitigating system or those that are representative of the most challenging phenomena for the integrity of a fission barrier. Examples of the application of the methodology are presented involving a comparison between the results with the new approach and a best estimate calculation during the blowdown phase for two small breaks in a generic CANDU 6 station. The calculations are performed with the CATHENA computer code. (author)

  6. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.

    Science.gov (United States)

    Johnson, Ian; Wang, Sebo Michelle; Silken, Christine; Liu, Huinan

    2016-05-01

    Nanocomposite coatings offer multiple functions simultaneously to improve the interfacial properties of magnesium (Mg) alloys for skeletal implant applications, e.g., controlling the degradation rate of Mg substrates, improving bone cell functions, and providing drug delivery capability. However, the effective service time of nanocomposite coatings may be limited due to their early delamination from the Mg-based substrates. Therefore, the objective of this study was to address the delamination issue of nanocomposite coatings, improve the coating properties for reducing the degradation of Mg-based substrates, and thus improve their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The surface conditions of the substrates, polymer component type of the nanocomposite coatings, and post-deposition processing are the key parameters that contribute to the efficacy of the nanocomposite coatings in regulating substrate degradation and bone cell responses. Specifically, the effects of metallic surface versus alkaline heat-treated hydroxide surface of the substrates on coating quality were investigated. For the nanocomposite coatings, nanophase hydroxyapatite (nHA) was dispersed in three types of biodegradable polymers, i.e., poly(lactic-co-glycolic acid) (PLGA), poly(l-lactic acid) (PLLA), or poly(caprolactone) (PCL) to determine which polymer component could provide integrated properties for slowest Mg degradation. The nanocomposite coatings with or without post-deposition processing, i.e., melting, annealing, were compared to determine which processing route improved the properties of the nanocomposite coatings most significantly. The results showed that optimizing the coating processes addressed the delamination issue. The melted then annealed nHA/PCL coating on the metallic Mg substrates showed the slowest degradation and the best coating adhesion, among all the combinations of conditions studied; and, it improved the adhesion density of BMSCs

  7. Quantifying uncertainties in the estimation of safety parameters by using bootstrapped artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, Piercesare [MOX, Department of Mathematics, Polytechnic of Milan (Italy); Zio, Enrico [Department of Energy, Polytechnic of Milan, Via Ponzio 34/3, 20133 Milano (Italy)], E-mail: enrico.zio@polimi.it; Di Maio, Francesco [Department of Energy, Polytechnic of Milan, Via Ponzio 34/3, 20133 Milano (Italy)

    2008-12-15

    For licensing purposes, safety cases of Nuclear Power Plants (NPPs) must be presented at the Regulatory Authority with the necessary confidence on the models used to describe the plant safety behavior. In principle, this requires the repetition of a large number of model runs to account for the uncertainties inherent in the model description of the true plant behavior. The present paper propounds the use of bootstrapped Artificial Neural Networks (ANNs) for performing the numerous model output calculations needed for estimating safety margins with appropriate confidence intervals. Account is given both to the uncertainties inherent in the plant model and to those introduced by the ANN regression models used for performing the repeated safety parameter evaluations. The proposed framework of analysis is first illustrated with reference to a simple analytical model and then to the estimation of the safety margin on the maximum fuel cladding temperature reached during a complete group distribution header blockage scenario in a RBMK-1500 nuclear reactor. The results are compared with those obtained by a traditional parametric approach.

  8. Developing Key Parameters for Green Performance of Partition Wall Blocks

    Directory of Open Access Journals (Sweden)

    Goh Cheng Siew

    2016-01-01

    Full Text Available To promote sustainable construction, it is important to consider green performance of construction materials throughout the life cycle. Selecting inappropriate materials could not only affect the functional performance but also preclude the achievement of green building performance as a whole. Green performance of construction materials has therefore been one of the primary considerations of green building assessment systems. Using partition wall blocks as an example, this paper examines green performance of building materials primarily from the cradle to gate boundaries. Nine key parameters are proposed for the green performance of partition wall blocks. Apart from environmental features, technical performance of partition wall blocks is also taken into consideration since it is the determinant of the lifecycle performance. This paper offers a roadmap to decision makers to make environmentally responsible choices for their materials of internal walls and partitions, and hence provides a potential sustainable solution for green buildings.

  9. Determination of Initial Conditions for the Safety Analysis by Random Sampling of Operating Parameters

    International Nuclear Information System (INIS)

    Jeong, Hae-Yong; Park, Moon-Ghu

    2015-01-01

    In most existing evaluation methodologies, which follow a conservative approach, the most conservative initial conditions are searched for each transient scenario through tremendous assessment for wide operating windows or limiting conditions for operation (LCO) allowed by the operating guidelines. In this procedure, a user effect could be involved and a remarkable time and human resources are consumed. In the present study, we investigated a more effective statistical method for the selection of the most conservative initial condition by the use of random sampling of operating parameters affecting the initial conditions. A method for the determination of initial conditions based on random sampling of plant design parameters is proposed. This method is expected to be applied for the selection of the most conservative initial plant conditions in the safety analysis using a conservative evaluation methodology. In the method, it is suggested that the initial conditions of reactor coolant flow rate, pressurizer level, pressurizer pressure, and SG level are adjusted by controlling the pump rated flow, setpoints of PLCS, PPCS, and FWCS, respectively. The proposed technique is expected to contribute to eliminate the human factors introduced in the conventional safety analysis procedure and also to reduce the human resources invested in the safety evaluation of nuclear power plants

  10. Effect of DUPIC cycle on CANDU reactor safety parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M. A. [Atomic Energy Authority, ETRR-2, Cairo (Egypt); Badawi, Alya [Dept. of Nuclear and Radiation Engineering, Alexandria University, Alexandria (Egypt)

    2016-10-15

    Although, the direct use of spent pressurized water reactor (PWR) fuel in CANda Deuterium Uranium (CANDU) reactors (DUPIC) cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by UO{sub 2} enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1) the power distribution amongst the fuel elements of the bundle; (2) the coolant void reactivity; and (3) the reactor point-kinetics parameters.

  11. A status report regarding industry implementation of safety parameter display systems

    International Nuclear Information System (INIS)

    Lapinsky, G.W. Jr.; Eckenrode, R.J.; Goodman, P.C.; Correia, R.P.

    1989-04-01

    This report provides a summary of the results of the US Nuclear Regulatory Commission staff's review of installed safety parameter display systems (SPDS) at 57 nuclear units. The staff describes its rationale and practice for determining acceptability of some of the methods for satisfying the various requirements for SPDS as well as some methods that the staff has not accepted. The staff's discussion of identified strengths and weaknesses should aid licensees in solving some of the problems they may be experiencing with their SPDS

  12. Human factors engineering design review acceptance criteria for the safety parameter display

    International Nuclear Information System (INIS)

    McGevna, V.; Peterson, L.R.

    1981-01-01

    This report contains human factors engineering design review acceptance criteria developed by the Human Factors Engineering Branch (HFEB) of the Nuclear Regulatory Commission (NRC) to use in evaluating designs of the Safety Parameter Display System (SPDS). These criteria were developed in response to the functional design criteria for the SPDS defined in NUREG-0696, Functional Criteria for Emergency Response Facilities. The purpose of this report is to identify design review acceptance criteria for the SPDS installed in the control room of a nuclear power plant. Use of computer driven cathode ray tube (CRT) displays is anticipated. General acceptance criteria for displays of plant safety status information by the SPDS are developed. In addition, specific SPDS review criteria corresponding to the SPDS functional criteria specified in NUREG-0696 are established

  13. Key Performance Parameter Driven Technology Goals for Electric Machines and Power Systems

    Science.gov (United States)

    Bowman, Cheryl; Jansen, Ralph; Brown, Gerald; Duffy, Kirsten; Trudell, Jeffrey

    2015-01-01

    Transitioning aviation to low carbon propulsion is one of the crucial strategic research thrust and is a driver in the search for alternative propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The feasibility of scaling up various electric drive system technologies to meet the requirements of a large commercial transport is discussed in terms of key parameters. Functional requirements are identified that impact the power system design. A breakeven analysis is presented to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  14. 47{sup th} Annual meeting on nuclear technology (AMNT 2016). Key Topics / Enhanced safety and operation excellence

    Energy Technology Data Exchange (ETDEWEB)

    Bohnstedt, Angelika [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Programm Nukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE); Baumann, Erik [AREVA GmbH, Erlangen (Germany). Radiation Protection

    2016-12-15

    Summary report on the Key Topic 'Enhanced Safety and Operation Excellence' Focus Session 'Radiation Protection' of the 47{sup th} Annual Meeting on Nuclear Technology (AMNT 2016) held in Hamburg, 10 to 12 May 2016. Other Sessions of AMNT 2016 have been and will be covered in further issues of atw.

  15. Prediction of concentration and model validation - key issues in assessment of long term safety for radioactive waste disposal

    International Nuclear Information System (INIS)

    Xu, S.; Dverstorp, B.; Woerman, A.

    2008-01-01

    Post-closure safety assessments for nuclear waste repositories involve radioecological modelling for en,underground source term. In this paper we discuss critical aspects concerning process understanding and justification of simplified radioecological models used for such safety assessments. This study is part of the Swedish Radiation Protection Authority's (SSI) work on reviewing the Swedish Nuclear Fuel and Waste Management Co's (SKB) most recent safety assessment, SR-Can. One of the most challenging tasks in assessments of environmental doses and risk from an underground repository is to estimate radionuclide activity concentrations in various geologic strata in the future. For example, little is known about transport pathways through the quaternary deposits to the discharge points in surface waters and other recipients in the biosphere. Traditionally simplified compartmental models are used in safety assessment to describe the fate of radio-nuclides in surface environment. The possibility to test such models against more detailed process models and site specific data is of key importance for confidence in the safety assessment. As part of SSI's review of SR-Can, alternative modelling approaches were developed to explore the importance of transport process descriptions in the assessment models. The modelling results were compared with the Landscape Dose Factors (LDFs) derived by SKB in SR-Can. LDFs is a new methodology adapted by SKB in SR-Can. The LDFs are defined in the units of Sv/y per Bq/y and express all the radiological information about individual epository sites and ecosystems as a single, radionuclide-specific, number that relates geosphere releases to radiological dose. Further, we suggest a method for validating model parameters using data from field tracer tests. In two companion papers we present the underlying model framework for pathway analyses and a newly developed numerical module within the numerical software Ecolego Toolbox. Transport models

  16. Chernobyl 30 years on. Key remediation and safety projects are 'on track'

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, David [NucNet, Brussels (Belgium)

    2016-06-15

    Thirty years after the accident at Chernobyl, key remediation and safety projects are on track and construction of the vital Euro 1.5 bn (US Dollars 1.6 bn) New Safe Confinement (NSC) is almost finished with commissioning scheduled for November 2017, the company in charge of construction and the European Bank for Reconstruction and Development (EBRD) told NucNet. The NSC is the most high profile and expensive element of the US Dollars 2.15 bn Shelter Implementation Plan (SIP), a framework developed to overcome the consequences of the accident.

  17. Do clinical safety charts improve paramedic key performance indicator results? (A clinical improvement programme evaluation).

    Science.gov (United States)

    Ebbs, Phillip; Middleton, Paul M; Bonner, Ann; Loudfoot, Allan; Elliott, Peter

    2012-07-01

    Is the Clinical Safety Chart clinical improvement programme (CIP) effective at improving paramedic key performance indicator (KPI) results within the Ambulance Service of New South Wales? The CIP intervention area was compared with the non-intervention area in order to determine whether there was a statistically significant improvement in KPI results. The CIP was associated with a statistically significant improvement in paramedic KPI results within the intervention area. The strategies used within this CIP are recommended for further consideration.

  18. IRSN safety research carried out for reviewing safety cases

    International Nuclear Information System (INIS)

    Serres, Ch.

    2010-01-01

    Christophe Serres from IRSN (France) described the independent role of the IRSN regarding research related to nuclear safety in the context of the French Planning Act of 28 June 2006 foreseeing a licence application to be submitted in 2015 for the creation of a deep geological repository. IRSN research programme is organised along research activities devoted to addressing independently-identified k ey safety issues . These 'key issues' should also be of prime concern for the implementer since they relate to the demonstration of the overall safety of the repository, and the level of funding that the implementer should afford to research activities of concern for safety. He explained that the quality and independency of the research programme carried out by IRSN allow building and improving a set of scientific knowledge and technical skills that serves the public mission of delivering technical appraisal and advice, e.g., on behalf of the national safety authority. In particular they contribute to improving the decisional process by making possible scientific dialogue with stakeholders independently from regulator or implementer. The current IRSN R and D programme is developed along the following lines: - Test the adequacy of experimental methods for which feedback is not sufficient. - Develop basic scientific knowledge in the fields where there is a need for better understanding of complex phenomena and interactions. - Develop and use numerical modelling tools to support studies on complex phenomena and interactions. - Perform specific experimental tests aiming at assessing the key parameters that may warrant the performances of the different components of the repository. These studies are carried out by means of experiments performed either at IRSN surface laboratories, or in the Tournemire Experimental Station (TES), an underground facility operated by IRSN in the south-east of France. Targeted actions on research related to operational safety and reversibility

  19. A lattice-based Monte Carlo evaluation of Canada Deuterium Uranium-6 safety parameters

    International Nuclear Information System (INIS)

    Kim, Yong Hee; Hartanto, Donny; Kim, Woo Song

    2016-01-01

    Important safety parameters such as the fuel temperature coefficient (FTC) and the power coefficient of reactivity (PCR) of the CANada Deuterium Uranium (CANDU-6) reactor have been evaluated using the Monte Carlo method. For accurate analysis of the parameters, the Doppler broadening rejection correction scheme was implemented in the MCNPX code to account for the thermal motion of the heavy uranium-238 nucleus in the neutron-U scattering reactions. In this work, a standard fuel lattice has been modeled and the fuel is depleted using MCNPX. The FTC value is evaluated for several burnup points including the mid-burnup representing a near-equilibrium core. The Doppler effect has been evaluated using several cross-section libraries such as ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1.1, and JENDL-4.0. The PCR value is also evaluated at mid-burnup conditions to characterize the safety features of an equilibrium CANDU-6 reactor. To improve the reliability of the Monte Carlo calculations, we considered a huge number of neutron histories in this work and the standard deviation of the k-infinity values is only 0.5-1 pcm

  20. Concept for creating program-technical complex of safety monitoring with system of safety parameters presentation functions on the basis of routine WWER-1000 systems

    International Nuclear Information System (INIS)

    Dunaev, V.G.; Tarasov, M. V.; Povarov, P.V.

    2005-01-01

    Prerequisites of creating the software-hardware complex for reactor safety monitoring on the Volgodonsk NPP are analyzed and generalized. The concept of this complex is based on functions of the safety parameters presentation system. It will serve as an interface between operator and technological process and give to operator a possibility to estimate quickly the state of the safety of the nuclear power unit. The complex will be created on the basis of routine reactor monitoring and control systems intended for the WWER-1000 reactor. In addition to existing soft- and hard-wares for reactor monitoring and for analysis of technological archive, it is proposed to create and connect in parallel the new software-hardware complex which ensures calculation and presentation of generalized factors of reactor safety [ru

  1. Biosphere assessment for high-level radioactive waste disposal: modelling experiences and discussion on key parameters by sensitivity analysis in JNC

    International Nuclear Information System (INIS)

    Kato, Tomoko; Makino, Hitoshi; Uchida, Masahiro; Suzuki, Yuji

    2004-01-01

    In the safety assessment of the deep geological disposal system of the high-level radioactive waste (HLW), biosphere assessment is often necessary to estimate future radiological impacts on human beings (e.g. radiation dose). In order to estimate the dose, the surface environment (biosphere) into which future releases of radionuclides might occur and the associated future human behaviour needs to be considered. However, for a deep repository, such releases might not occur for many thousands of years after disposal. Over such timescales, it is impossible to predict with any certainty how the biosphere and human behaviour will evolve. To avoid endless speculation aimed at reducing such uncertainty, the 'Reference Biospheres' concept has been developed for use in the safety assessment of HLW disposal. As the aim of the safety assessment with a hypothetical HLW disposal system by JNC was to demonstrate the technical feasibility and reliability of the Japanese disposal concept for a range of geological and surface environments, some biosphere models were developed using the 'Reference Biospheres' concept and the BIOMASS Methodology. These models have been used to derive factors to convert the radionuclide flux from a geosphere to a biosphere into a dose (flux to dose conversion factors). Moreover, sensitivity analysis for parameters in the biosphere models was performed to evaluate and understand the relative importance of parameters. It was concluded that transport parameters in the surface environments, annual amount of food consumption, distribution coefficients on soils and sediments, transfer coefficients of radionuclides to animal products and concentration ratios for marine organisms would have larger influence on the flux to dose conversion factors than any other parameters. (author)

  2. Keys to effective third-party process safety audits

    International Nuclear Information System (INIS)

    Birkmire, John C.; Lay, James R.; McMahon, Mona C.

    2007-01-01

    The Occupational Safety and Health Administration's (OSHA's) Process Safety Management (PSM) regulation was promulgated in 1992. The U.S. Environmental Protection Agency's (EPA's) corresponding Risk Management Program (RMP) rule followed in 1996. Both programs include requirements for triennial compliance audits. Effective compliance audits are critical in identifying program weaknesses and ensuring the safety of facility personnel and the surrounding public. Large companies with corporate and facility health, safety, and environmental groups typically have the resources and experience to conduct audits internally, either through a corporate audit team or the sharing of personnel between multiple facilities. Small to medium sized businesses frequently do not have the expertise or the resources to perform compliance audits, and rely on third-party consultants to provide these services. This paper will discuss the observations of the authors in performing audits and working with PSM/RMP programs across a number of market sectors (e.g. chemical, petrochemical, pharmaceutical, food and beverage, water treatment), including effective practices, hurdles to successful implementation and execution of programs, and typical program shortcomings. The paper will also discuss steps to improve the audit process and increase effectiveness whether performed by a third party or internally

  3. Forging New Cocoa Keys: The Impact of Unlocking the Cocoa Bean’s Genome on Pre-harvest Food Safety

    Science.gov (United States)

    Forging New Cocoa Keys: The Impact of Unlocking the Cocoa Bean’s Genome on Pre-harvest Food Safety David N. Kuhn, USDA ARS SHRS, Miami FL Sometimes it's hard to see the value and application of genomics to real world problems. How will sequencing the cacao genome affect West African farmers? Thi...

  4. Strengthening the culture of safety and performance in nuclear installations

    International Nuclear Information System (INIS)

    Briant, V.S.; Germann, R.P.

    1997-01-01

    In mid-1995, the International Atomic Energy Agency (IAEA) in Vienna brought together a group of safety culture experts from around the world to explore and summarize those practices they viewed as important in establishing sound safety cultures in nuclear installations. This paper will summarize key findings of the Vienna team and also expand those ideas based on related work in which the authors are engaged. The paper includes a definition of safety culture, a description of three stages of safety culture, and five key practices essential to establishing and maintaining a sound safety culture. Additionally, the authors contradicts the conventional view of safety and production as trade-offs, supporting the Vienna team's conclusion that the principles, attitudes, and practices which bring about sustained levels of high performance are the same as those which enhance safety. Based on input from colleagues in several countries, this appears to hold true across geographical and ethnic boundaries. The authors also discuss how this information can be put to practical use to obtain an objective, measurable, and repeated assessment of the current state of the safety culture within a company, plant or work unit. With that information, leaders are then in the position to act on any of the several parameters which affect both safety and performance effectiveness. (author)

  5. Dark energy and key physical parameters of clusters of galaxies

    Science.gov (United States)

    Bisnovatyi-Kogan, G. S.; Chernin, A. D.

    2012-04-01

    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.

  6. Keys to effective third-party process safety audits

    Energy Technology Data Exchange (ETDEWEB)

    Birkmire, John C. [Tourgee and Associates Inc., 11459 Cronhill Drive, Suite A, Owings Mills, MD 21117 (United States)]. E-mail: jbirkmire@taiengineering.com; Lay, James R. [5644 High Tor Hill, Columbia, MD 21045 (United States)]. E-mail: jim.lay21045@gmail.com; McMahon, Mona C. [General Physics Corporation, 6095 Marshalee Drive, Suite 300, Elkridge, MD 21075 (United States)]. E-mail: mmcmahon@gpworldwide.com

    2007-04-11

    The Occupational Safety and Health Administration's (OSHA's) Process Safety Management (PSM) regulation was promulgated in 1992. The U.S. Environmental Protection Agency's (EPA's) corresponding Risk Management Program (RMP) rule followed in 1996. Both programs include requirements for triennial compliance audits. Effective compliance audits are critical in identifying program weaknesses and ensuring the safety of facility personnel and the surrounding public. Large companies with corporate and facility health, safety, and environmental groups typically have the resources and experience to conduct audits internally, either through a corporate audit team or the sharing of personnel between multiple facilities. Small to medium sized businesses frequently do not have the expertise or the resources to perform compliance audits, and rely on third-party consultants to provide these services. This paper will discuss the observations of the authors in performing audits and working with PSM/RMP programs across a number of market sectors (e.g. chemical, petrochemical, pharmaceutical, food and beverage, water treatment), including effective practices, hurdles to successful implementation and execution of programs, and typical program shortcomings. The paper will also discuss steps to improve the audit process and increase effectiveness whether performed by a third party or internally.

  7. Development of safety-related regulatory requirements for nuclear power in developing countries. Key issue paper no. 4

    International Nuclear Information System (INIS)

    Han, K.I.

    2000-01-01

    In implementing a national nuclear power program, balanced regulatory requirements are necessary to ensure nuclear safety and cost competitive nuclear power, and to help gain public acceptance. However, this is difficult due to the technology-intensive nature of the nuclear regulatory requirements, the need to reflect evolving technology and the need for cooperation among multidisciplinary technical groups. This paper suggests approaches to development of balanced nuclear regulatory requirements in developing countries related to nuclear power plant safety, radiation protection and radioactive waste management along with key technical regulatory issues. It does not deal with economic or market regulation of electric utilities using nuclear power. It suggests that national regulatory requirements be developed using IAEA safety recommendations as guidelines and safety requirements of the supplier country as a main reference after careful planning, manpower buildup and thorough study of international and supplier country's regulations. Regulation making is not recommended before experienced manpower has been accumulated. With an option that the supplier country's regulations may be used in the interim, the lack of complete national regulatory requirements should not deter introduction of nuclear power in developing countries. (author)

  8. Safety KPIs - Monitoring of safety performance

    Directory of Open Access Journals (Sweden)

    Andrej Lališ

    2014-09-01

    Full Text Available This paper aims to provide brief overview of aviation safety development focusing on modern trends represented by implementation of Safety Key Performance Indicators. Even though aviation is perceived as safe means of transport, it is still struggling with its complexity given by long-term growth and robustness which it has reached today. Thus nowadays safety issues are much more complex and harder to handle than ever before. We are more and more concerned about organizational factors and control mechanisms which have potential to further increase level of aviation safety. Within this paper we will not only introduce the concept of Key Performance Indicators in area of aviation safety as an efficient control mechanism, but also analyse available legislation and documentation. Finally we will propose complex set of indicators which could be applied to Czech Air Navigation Service Provider.

  9. How important is vehicle safety in the new vehicle purchase process?

    Science.gov (United States)

    Koppel, Sjaanie; Charlton, Judith; Fildes, Brian; Fitzharris, Michael

    2008-05-01

    Whilst there has been a significant increase in the amount of consumer interest in the safety performance of privately owned vehicles, the role that it plays in consumers' purchase decisions is poorly understood. The aims of the current study were to determine: how important vehicle safety is in the new vehicle purchase process; what importance consumers place on safety options/features relative to other convenience and comfort features, and how consumers conceptualise vehicle safety. In addition, the study aimed to investigate the key parameters associated with ranking 'vehicle safety' as the most important consideration in the new vehicle purchase. Participants recruited in Sweden and Spain completed a questionnaire about their new vehicle purchase. The findings from the questionnaire indicated that participants ranked safety-related factors (e.g., EuroNCAP (or other) safety ratings) as more important in the new vehicle purchase process than other vehicle factors (e.g., price, reliability etc.). Similarly, participants ranked safety-related features (e.g., advanced braking systems, front passenger airbags etc.) as more important than non-safety-related features (e.g., route navigation systems, air-conditioning etc.). Consistent with previous research, most participants equated vehicle safety with the presence of specific vehicle safety features or technologies rather than vehicle crash safety/test results or crashworthiness. The key parameters associated with ranking 'vehicle safety' as the most important consideration in the new vehicle purchase were: use of EuroNCAP, gender and education level, age, drivers' concern about crash involvement, first vehicle purchase, annual driving distance, person for whom the vehicle was purchased, and traffic infringement history. The findings from this study are important for policy makers, manufacturers and other stakeholders to assist in setting priorities with regard to the promotion and publicity of vehicle safety features

  10. Focus on the studies in support of fire safety analysis. IRSN modelling approach for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Espargilliere, Julien; Meyrand, Raphael; Vinot, Thierry [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France)

    2015-12-15

    For a fire safety analysis, in order to comply with nuclear safety goals, a nuclear fuel facility operator has to define the elements important for safety to be maintained, even in the case of a fire. One of the key points of this fire analysis is the assessment of possible fire scenarios in the facility. This paper presents the IRSN method applied to a case study to assess fire scenarios which have the most harmful effects on safety targets. The layout consists in a central room (fire cell) containing three glove boxes with radioactive material and three electrical cabinets. This room is linked to two connecting compartments (the fire cell and these two compartments define the containment cell) and then to two corridors. Each room is equipped with a mechanical ventilation system, and a pressure cascade is established from the corridors to the central room. A fire scenario was studied with fire ignition occurring in an electrical cabinet. This scenario has a set of safety goals (prevention of fire cell and containment device failure, propagation of the fire). This case study was conducted with the IRSN code SYLVIA based on two zones modelling. Safety goals were associated with key parameters and performance criteria to be fulfilled. Modelling assumptions were defined in order to maximize physical effects of the fire. Sensitivity studies were also conducted on key parameters such as oxygen limitation, equivalent-fuel definition. Eventually, a critical analysis of the code models was carried out.

  11. Application of verification and validation on safety parameter display systems

    International Nuclear Information System (INIS)

    Thomas, N.C.

    1983-01-01

    Offers some explanation of how verification and validation (VandV) can support development and licensing of the Safety Parameter Display Systems (SPDS). Advocates that VandV can be more readily accepted within the nuclear industry if a better understanding exists of what the objectives of VandV are and should be. Includes a discussion regarding a reasonable balance of costs and benefits of VandV as applied to the SPDS and to other digital systems. Represents the author's perception of the regulator's perspective based on background information and experience, and discussions with regulators about their current concerns and objectives. Suggests that the introduction of the SPDS into the Control Room is a first step towards growing dependency on use of computers

  12. Safety parameter display systems' effect on operator performance

    International Nuclear Information System (INIS)

    Cerven, F.; Ford, R.E.; Blackman, H.S.

    1983-01-01

    Computer generated displays are a powerful and flexible tool for presenting data to the operators of nuclear power plants. Such displays are currently being developed in industry for use as safety parameter displays and for use in advanced control rooms. There exists a need for methods to objectively evaluate the effect of these displays, positive or negative, on the performance of control room personnel. Results of developing one such method, noninteractive simulation, and the two experiments that were performed to determine if it can be used as a method for evaluating computer displays are presented. This method is more objective and powerful than pencil and paper methods because it measures human performance rather than opinion or perference, has excellent control of the experimental variables, and has a higher fidelity to the control room environment. The results of these experiments indicates that the present methodology does not differentiate among the display types tested at a statistically significant level. In other words, all display types tested worked equally well in providing operators needed information

  13. Forecast of the key parameters of the 24-th solar cycle

    International Nuclear Information System (INIS)

    Chumak, Oleg Vasilievich; Matveychuk, Tatiana Viktorovna

    2010-01-01

    To predict the key parameters of the solar cycle, a new method is proposed based on the empirical law describing the correlation between the maximum height of the preceding solar cycle and the entropy of the forthcoming one. The entropy of the forthcoming cycle may be estimated using this empirical law, if the maximum height of the current cycle is known. The cycle entropy is shown to correlate well with the cycle's maximum height and, as a consequence, the height of the forthcoming maximum can be estimated. In turn, the correlation found between the height of the maximum and the duration of the ascending branch (the Waldmeier rule) allows the epoch of the maximum, Tmax, to be estimated, if the date of the minimum is known. Moreover, using the law discovered, one can find out the analogous cycles which are similar to the cycle being forecasted, and hence, obtain the synoptic forecast of all main features of the forthcoming cycle. The estimates have shown the accuracy level of this technique to be 86%. The new regularities discovered are also interesting because they are fundamental in the theory of solar cycles and may provide new empirical data. The main parameters of the future solar cycle 24 are as follows: the height of the maximum is Wmax = 95 ± 20, the duration of the ascending branch is Ta = 4.5 ± 0.5yr, the total cycle duration according to the synoptic forecast is 11.3 yr. (research papers)

  14. Achieving reasonable conservatism in nuclear safety analyses

    International Nuclear Information System (INIS)

    Jamali, Kamiar

    2015-01-01

    In the absence of methods that explicitly account for uncertainties, seeking reasonable conservatism in nuclear safety analyses can quickly lead to extreme conservatism. The rate of divergence to extreme conservatism is often beyond the expert analysts’ intuitive feeling, but can be demonstrated mathematically. Too much conservatism in addressing the safety of nuclear facilities is not beneficial to society. Using certain properties of lognormal distributions for representation of input parameter uncertainties, example calculations for the risk and consequence of a fictitious facility accident scenario are presented. Results show that there are large differences between the calculated 95th percentiles and the extreme bounding values derived from using all input variables at their upper-bound estimates. Showing the relationship of the mean values to the key parameters of the output distributions, the paper concludes that the mean is the ideal candidate for representation of the value of an uncertain parameter. The mean value is proposed as the metric that is consistent with the concept of reasonable conservatism in nuclear safety analysis, because its value increases towards higher percentiles of the underlying positively skewed distribution with increasing levels of uncertainty. Insensitivity of the results to the actual underlying distributions is briefly demonstrated. - Highlights: • Multiple conservative assumptions can quickly diverge into extreme conservatism. • Mathematics and attractive properties provide basis for wide use of lognormal distribution. • Mean values are ideal candidates for representation of parameter uncertainties. • Mean values are proposed as reasonably conservative estimates of parameter uncertainties

  15. The Key Lake project

    International Nuclear Information System (INIS)

    1991-01-01

    Key Lake is located in the Athabasca sand stone basin, 640 kilometers north of Saskatoon, Saskatchewan, Canada. The three sources of ore at Key Lake contain 70 100 tonnes of uranium. Features of the Key Lake Project were described under the key headings: work force, mining, mill process, tailings storage, permanent camp, environmental features, worker health and safety, and economic benefits. Appendices covering the historical background, construction projects, comparisons of western world mines, mining statistics, Northern Saskatchewan surface lease, and Key Lake development and regulatory agencies were included

  16. Experimental Study and Computational Simulations of Key Pebble Bed Thermo-mechanics Issues for Design and Safety

    Energy Technology Data Exchange (ETDEWEB)

    Tokuhiro, Akira; Potirniche, Gabriel; Cogliati, Joshua; Ougouag, Abderrafi

    2014-07-08

    An experimental and computational study, consisting of modeling and simulation (M&S), of key thermal-mechanical issues affecting the design and safety of pebble-bed (PB) reactors was conducted. The objective was to broaden understanding and experimentally validate thermal-mechanic phenomena of nuclear grade graphite, specifically, spheres in frictional contact as anticipated in the bed under reactor relevant pressures and temperatures. The contact generates graphite dust particulates that can subsequently be transported into the flowing gaseous coolent. Under postulated depressurization transients and with the potential for leaked fission products to be adsorbed onto graphite 'dust', there is the potential for fission products to escape from the primary volume. This is a design safety concern. Furthermore, earlier safety assessment identified the distinct possibility for the dispersed dust to combust in contact with air if sufficient conditions are met. Both of these phenomena were noted as important to design review and containing uncertainty to warrant study. The team designed and conducted two separate effects tests to study and benchmark the potential dust-generation rate, as well as study the conditions under which a dust explosion may occure in a standardized, instrumented explosion chamber.

  17. Nuclear EMP: key suppression device parameters for EMP hardening

    International Nuclear Information System (INIS)

    Durgin, D.L.; Brown, R.M.

    1975-03-01

    The electrical transients induced by EMP exhibit unique characteristics which differ considerably from transients associated with other phenomena such as lightning, switching, and circuit malfunctions. The suppression techniques developed to handle more common transients, though not necessarily the same devices, can be used for EMP damage protection. The suppression devices used for circuit level EMP protection are referred to as Terminal Protection Devices (TPD). Little detailed data describing the response of TPD's to EMP-related transients have been published. While most vendors publish specifications for TPD performance, there is little standardization of parameters and TPD response models are not available. This lack of parameter standardization has resulted in a proliferation of test data that is sometimes conflicting and often not directly comparable. This paper derives and/or defines a consistent set of parameters based on EMP circuit hardening requirements and on measurable component parameters and is concerned only with use of TPD's to prevent permanent damage. Three sets of parameters pertaining to pertinent TPD functional characteristics were defined as follows: standby parameters, protection parameters, and failure parameters. These parameters are used to evaluate a representative sample of TPD's and the results are presented in matrix form to facilitate the selection of devices for specific hardening problems

  18. Preliminary safety analysis for key design features of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, D. H.; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, S. O.; Lee, Y. B.; Jeong, K. S

    2000-07-01

    KAERI is currently developing the conceptual design of a liquid metal reactor, KALIMER(Korea Advanced Liquid Metal Reactor) under the long-term nuclear R and D program. In this report, descriptions of the KALIMER safety design features and safety analyses results for selected ATWS accidents are presented. First, the basic approach to achieve the safety goal is introduced in chapter 1, and the safety evaluation procedure for the KALIMER design is described in chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events. In chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure design performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram(ATWS) have been performed to investigate the KALIMER system response to the events. They are categorized as bounding events(BEs) because of their low probability of occurrence. In chapter 4, the design of the KALIMER containment dome and the results of its performance analysis are presented. The designs of the existing LMR containment and the KALIMER containment dome have been compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core kinetics and hydraulic behavior during HCDA in chapter 5. Mathematical formulations have been developed in the framework of the modified bethe-tait method, and scoping analyses have been performed for the KALIMER core behavior during super-prompt critical excursions.

  19. Strengthening the culture of safety and performance in nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Briant, V S [GPU Nuclear, Parsippany (United States); Germann, R P [Aberdeen Center for Team Learning, Matawan (United States)

    1997-07-01

    In mid-1995, the International Atomic Energy Agency (IAEA) in Vienna brought together a group of safety culture experts from around the world to explore and summarize those practices they viewed as important in establishing sound safety cultures in nuclear installations. This paper will summarize key findings of the Vienna team and also expand those ideas based on related work in which the authors are engaged. The paper includes a definition of safety culture, a description of three stages of safety culture, and five key practices essential to establishing and maintaining a sound safety culture. Additionally, the authors contradicts the conventional view of safety and production as trade-offs, supporting the Vienna team`s conclusion that the principles, attitudes, and practices which bring about sustained levels of high performance are the same as those which enhance safety. Based on input from colleagues in several countries, this appears to hold true across geographical and ethnic boundaries. The authors also discuss how this information can be put to practical use to obtain an objective, measurable, and repeated assessment of the current state of the safety culture within a company, plant or work unit. With that information, leaders are then in the position to act on any of the several parameters which affect both safety and performance effectiveness. (author) 9 refs., 5 tabs.

  20. Key elements on implementing an occupational health and safety management system using ISO 45001 standard

    Directory of Open Access Journals (Sweden)

    Darabont Doru Costin

    2017-01-01

    Full Text Available Occupational health and safety (OHS management system is one of the main elements of the company’s general management system. During last decade, Romanian companies gained a valuable experience on implementing this type of management systems, using OHSAS 18001 referential and standard. However, the projected release of the ISO 45001 represents a new approach which requires the companies to take in consideration new key elements for a successful implementation of the OHS management system. The aim of the paper is to identify and analyse these key elements, by integration of the following issues: standard requirements, Romanian OHS legislation and good practice examples, including the general control measures for new and emerging risks such as psycho-social risks, workforce ageing and new technologies. The study results represent an important work instrument for each company interested to implement or upgrade its OHS management system using ISO 45001 standard and could be used regardless the company size or activity domain.

  1. Key considerations and safety issues for the stretch power uprate at Chinshan Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Huang, P., E-mail: u808966@taipower.com.tw [Taiwan Power Company, Taipei, Taiwan (China)

    2014-07-01

    The Taiwan Power Company (TPC) has elected in recent years to implement the power uprate program as a key measure to improve the performance for TPC's nuclear power plants. The Measurement Uncertainty Recapture (MUR) power uprate for the TPC's three operating plants (reported in 16th PBNC) had been successfully implemented by July 2009. For the stretch power uprate (SPU) followed, the magnitude of uprate (~3%) is determined based on the available margins for original plant design, constant pressure approach (BWR) is adopted to simplify the evaluation, and major plant modifications are not considered. As the first application, the SPU safety analysis report (SAR) for the Chinshan plant was submitted to the ROCAEC in December 2010. A review task force was organized by the ROCAEC to perform a very thorough review. As the licensing bases are fully re-examined during the review process, many important issues have been identified and addressed. The key issues resolved include: conformance of SAR to ROCAEC's review guidance; re-examination of post-Fukushima comprehensive safety assessment; qualification of containment protective coatings; GL 96-06 (Assurance of Equipment Operability and Containment Integrity During DBA Conditions); credit for Containment Accident Pressure; issue for Annulus Pressurization Loads Evaluation. These issues required very extensive efforts to resolve. With the cooperative efforts by TPC and contractor (Institute of Nuclear Energy Research), however, all the issues were fully clarified and SAR was approved by ROCAEC on November 15, 2012. The first step SPU (2% OLTP) was successfully implemented in November 2012 at both units. (author)

  2. Safety and the environment: Key to total quality

    International Nuclear Information System (INIS)

    Scott, J.N.

    1991-01-01

    The author briefly discusses the principles that guide the safety and environmental efforts of the petroleum industry. Specific examples are given of things that the industry is doing to carry out those principles. There are 12 principles which say that the petroleum industry will be responsive to the communities in which they operate. In general they say that waste will try to be eliminated; the industry will handle raw materials, products and waste in a safe manner; and that the petroleum industry will work with government to draft regulations that will improve the safety of the workplace and the environment

  3. Formal Safety versus Real Safety: Quantitative and Qualitative Approaches to Safety Culture – Evidence from Estonia

    Directory of Open Access Journals (Sweden)

    Järvis Marina

    2016-10-01

    Full Text Available This paper examines differences between formal safety and real safety in Estonian small and medium-sized enterprises. The results reveal key issues in safety culture assessment. Statistical analysis of safety culture questionnaires showed many organisations with an outstanding safety culture and positive safety attitudes. However, qualitative data indicated some important safety weaknesses and aspects that should be included in the process of evaluation of safety culture in organisations.

  4. Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean

    Science.gov (United States)

    Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.

    2011-12-01

    Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling

  5. Key radionuclides and parameters that determine performance of geologic repositories for high-level radioactive wastes

    International Nuclear Information System (INIS)

    Joonhong Ahn; Atsuyuki Suzuki

    1993-01-01

    This paper presents results of a mathematical analysis for performance of the engineered barriers of high-level radioactive waste repositories. The main body of the mathematical model developed in this study is mass transport of actinides in a bentonite region. In an analysis of actinide transport, radioactive decay chain and effects of low solubilities must be taken into account. In many previous models for mass transport in engineered barriers including radioactive decay chain, however, boundary conditions at the interface between the waste form and the bentonite region cannot be determined flexibly. In some models, solubility-limited boundary condition is assumed for all the members in a chain. In order to investigate what are key radionuclides and parameters that control performance of engineered barriers of a geologic repository, we must evaluate mass transport with the source boundary condition determined by a detailed analysis on mass transfer at the boundary. In this study, we developed a mathematical model, which can determine whether the inner boundary condition is solubility-limited or congruent release, based on a mathematical analysis for mass transfer at the glass dissolution location, and how long the solubility-limited boundary condition applies. Based on the mathematical model, we point out radionuclides and parameters that have primary influences on the performance of a repository, and investigate a reasonable strategy for coupling geologic disposal and partitioning of those key radionuclides from the standpoint of reducing hazard of geologic disposal. (authors). 4 tabs., 2 figs., 8 refs

  6. Verification and validation of the safety parameter display system for nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Yuanfang

    1993-05-01

    During the design and development phase of the safety parameter display system for nuclear power plant, a verification and validation (V and V) plan has been implemented to improve the quality of system design. The V and V activities are briefly introduced, which were executed in four stages of feasibility research, system design, code development and system integration and regulation. The evaluation plan and the process of implementation as well as the evaluation conclusion of the final technical validation for this system are also presented in detail

  7. Safety margins in deterministic safety analysis

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    The concept of safety margins has acquired certain prominence in the attempts to demonstrate quantitatively the level of the nuclear power plant safety by means of deterministic analysis, especially when considering impacts from plant ageing and discovery issues. A number of international or industry publications exist that discuss various applications and interpretations of safety margins. The objective of this presentation is to bring together and examine in some detail, from the regulatory point of view, the safety margins that relate to deterministic safety analysis. In this paper, definitions of various safety margins are presented and discussed along with the regulatory expectations for them. Interrelationships of analysis input and output parameters with corresponding limits are explored. It is shown that the overall safety margin is composed of several components each having different origins and potential uses; in particular, margins associated with analysis output parameters are contrasted with margins linked to the analysis input. While these are separate, it is possible to influence output margins through the analysis input, and analysis method. Preserving safety margins is tantamount to maintaining safety. At the same time, efficiency of operation requires optimization of safety margins taking into account various technical and regulatory considerations. For this, basic definitions and rules for safety margins must be first established. (author)

  8. Key practical issues in strengthening safety culture. INSAG-15. A report by the International Safety Advisory Group

    International Nuclear Information System (INIS)

    2002-01-01

    This report describes the essential practical issues to be considered by organizations aiming to strengthen safety culture. It is intended for senior executives, managers and first line supervisors in operating organizations. Although safety culture cannot be directly regulated, it is important that members of regulatory bodies understand how their actions affect the development of attempts to strengthen safety culture and are sympathetic to the need to improve the less formal human related aspects of safety. The report is therefore of relevance to regulators, although not intended primarily for them. The International Nuclear Safety Advisory Group (INSAG) introduced the concept of safety culture in its INSAG-4 report in 1991. Since then, many papers have been written on safety culture, as it relates to organizations and individuals, its improvement and its underpinning prerequisites. Variations in national cultures mean that what constitutes a good approach to enhancing safety culture in one country may not be the best approach in another. However, INSAG seeks to provide pragmatic and practical advice of wide applicability in the principles and issues presented in this report. Nuclear and radiological safety are the prime concerns of this report, but the topics discussed are so general that successful application of the principles should lead to improvements in other important areas, such as industrial safety, environmental performance and, in some respects, wider business performance. This is because many of the attitudes and practices necessary to achieve good performance in nuclear safety, including visible commitment by management, openness, care and thoroughness in completing tasks, good communication and clarity in recognizing major issues and dealing with them as a priority, have wide applicability

  9. Safety assessment on the key equipment of coal gasification based on SDG-HAZOP method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B.; Xu, X.; Ma, X.; Wu, C. [Beijing University of Chemical Technology, Beijing (China)

    2008-07-15

    An example of the coal gasification process was introduced after the explanation of the graphical representation method known as the sign directed graph (SDG). The systematic modeling procedure was also introduced. Firstly, the key variables of the whole system were selected. Then the relationship equations were listed. Finally, the SDG-HAZOP (hazard and operability) model was derived after attaching the abnormal causes and adverse consequences. In order to get a credible SDG model, the model was checked by technicians in the factory. Based on computer-aided analysis, this model can express almost all the dangerous features of the gasification process. It can also reveal the mechanisms of danger propagation, which may effectively help safety engineers to identify potential hazards. 15 refs., 4 figs., 1 tab.

  10. Nuclear safety research

    International Nuclear Information System (INIS)

    1996-01-01

    The topics 'Large-sized PWR-NPP Safety Techniques Research',and 'The Key Techniques Research on the Safety Supervision and Control for Operation of Nuclear Installations' have been adopted as an apart of 'the National 9th five Year Programs for Tacking the Key Scientific and Technical Topics' which are organized by the State Planning Commission (SPC) and State Science and Technology Commission (SSTC) respectively, and have obtained a financial support from them. To play a better role with the limited fund, the NNSA laid special stress on selecting key sub-topics on nuclear safety, and carefully choosing units which would undertake sub-topics and signing technical contracts with them

  11. 48{sup th} Annual meeting on nuclear technology (AMNT 2017). Key topic / Enhanced safety and operation excellence. Focus session: International operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Mohrbach, Ludger [VGB PowerTech e.V., Essen (Germany). Abteilung ' ' N' ' ; Gottschling, Helge

    2017-11-15

    Summary report on the Key Topic Enhanced Safety and Operation Excellence: Focus Session: International Operational Experience and the Nuclear Energy Campus of the 48{sup th} Annual Meeting on Nuclear Technology (AMNT 2017) held in Berlin, 16 to 17 May 2017.

  12. Key transmission parameters of an institutional outbreak during the 1918 influenza pandemic estimated by mathematical modelling

    Directory of Open Access Journals (Sweden)

    Nelson Peter

    2006-11-01

    Full Text Available Abstract Aim To estimate the key transmission parameters associated with an outbreak of pandemic influenza in an institutional setting (New Zealand 1918. Methods Historical morbidity and mortality data were obtained from the report of the medical officer for a large military camp. A susceptible-exposed-infectious-recovered epidemiological model was solved numerically to find a range of best-fit estimates for key epidemic parameters and an incidence curve. Mortality data were subsequently modelled by performing a convolution of incidence distribution with a best-fit incidence-mortality lag distribution. Results Basic reproduction number (R0 values for three possible scenarios ranged between 1.3, and 3.1, and corresponding average latent period and infectious period estimates ranged between 0.7 and 1.3 days, and 0.2 and 0.3 days respectively. The mean and median best-estimate incidence-mortality lag periods were 6.9 and 6.6 days respectively. This delay is consistent with secondary bacterial pneumonia being a relatively important cause of death in this predominantly young male population. Conclusion These R0 estimates are broadly consistent with others made for the 1918 influenza pandemic and are not particularly large relative to some other infectious diseases. This finding suggests that if a novel influenza strain of similar virulence emerged then it could potentially be controlled through the prompt use of major public health measures.

  13. Patient safety in a service of medical physics. Key indicators; Seguridad del paciente en un servicio de fisica medica. Indicadores clave

    Energy Technology Data Exchange (ETDEWEB)

    Font Gomez, J. A.; Gandia Martinez, A.; Jimenez Albericio, F. J.; Andres Redondo, M. M.; Mengual Gil, M. A.

    2013-07-01

    The key indicators are those that endure over time to monitor the degree of compliance with the criteria in the processes that are considered key in the service. In the case of our service, define key indicators within the framework of ISO 9001 certification in the process of clinical dosimetry. All problems do not have same casuistry or not, have the same detrimental to the safety of the patient. We have prioritized some of the problems and opportunities for improvement have been found. Standard refers to the value of the indicator that we should or would like to achieve in such a way that if not achieved, action of improvement will be required. (Author)

  14. Uncertainty analysis for Ulysses safety evaluation report

    International Nuclear Information System (INIS)

    Frank, M.V.

    1991-01-01

    As part of the effort to review the Ulysses Final Safety Analysis Report and to understand the risk of plutonium release from the Ulysses spacecraft General Purpose Heat Source---Radioisotope Thermal Generator (GPHS-RTG), the Interagency Nuclear Safety Review Panel (INSRP) and the author performed an integrated, quantitative analysis of the uncertainties of the calculated risk of plutonium release from Ulysses. Using state-of-art probabilistic risk assessment technology, the uncertainty analysis accounted for both variability and uncertainty of the key parameters of the risk analysis. The results show that INSRP had high confidence that risk of fatal cancers from potential plutonium release associated with calculated launch and deployment accident scenarios is low

  15. A Novel Series Connected Batteries State of High Voltage Safety Monitor System for Electric Vehicle Application

    Directory of Open Access Journals (Sweden)

    Qiang Jiaxi

    2013-01-01

    Full Text Available Batteries, as the main or assistant power source of EV (Electric Vehicle, are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS, the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  16. A novel series connected batteries state of high voltage safety monitor system for electric vehicle application.

    Science.gov (United States)

    Jiaxi, Qiang; Lin, Yang; Jianhui, He; Qisheng, Zhou

    2013-01-01

    Batteries, as the main or assistant power source of EV (Electric Vehicle), are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS), the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  17. Sensitivity and uncertainty analyses applied to criticality safety validation, methods development. Volume 1

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Hopper, C.M.; Childs, R.L.; Parks, C.V.

    1999-01-01

    This report presents the application of sensitivity and uncertainty (S/U) analysis methodologies to the code/data validation tasks of a criticality safety computational study. Sensitivity and uncertainty analysis methods were first developed for application to fast reactor studies in the 1970s. This work has revitalized and updated the available S/U computational capabilities such that they can be used as prototypic modules of the SCALE code system, which contains criticality analysis tools currently used by criticality safety practitioners. After complete development, simplified tools are expected to be released for general use. The S/U methods that are presented in this volume are designed to provide a formal means of establishing the range (or area) of applicability for criticality safety data validation studies. The development of parameters that are analogous to the standard trending parameters forms the key to the technique. These parameters are the D parameters, which represent the differences by group of sensitivity profiles, and the ck parameters, which are the correlation coefficients for the calculational uncertainties between systems; each set of parameters gives information relative to the similarity between pairs of selected systems, e.g., a critical experiment and a specific real-world system (the application)

  18. Nuclear reactor conceptual design: methodology for cost-effective internalisation of nuclear safety

    International Nuclear Information System (INIS)

    Gimenez, M.; Grinblat, P.; Schlamp, M.

    2002-01-01

    A novel and promising methodology to perform nuclear reactor design is presented in this work. It achieves to balance efficiently safety and economics at the conceptual engineering stage. The key to this integral approach is to take into account safety aspects in a design optimisation process where the design variables are balanced in order to obtain a better figure of merit related with reactor economic performance. Design parameter effects on characteristic or critical safety variables, chosen from reactor behaviour during accidents and from its probabilistic safety assessment -safety performance indicators-, are synthesised on Safety Design Maps. These maps allow one to compare these indicators with limit values, which are determined by design criteria or regulations, and to transfer these restrictions to the design parameters. In this way, reactor dynamic response and other safety aspects are integrated in a global optimisation process, by means of additional rules to the neutronic, thermal-hydraulic and mechanical calculations. This methodology turns out to be promising to balance and optimise reactor and safety system design in an early engineering stage, in order to internalise cost-efficiently safety issues. It also allows one to evaluate the incremental costs of implementing higher safety levels. Furthermore, through this methodology, a simplified design can be obtained, compared to the resultant complexity when these concepts are introduced in a later engineering stage. (author)

  19. Neutronic calculation of safety parameters for the RP-0 and RP-10 nuclear reactors

    OpenAIRE

    Lázaro, Gerardo; Deen, James R.; Woodruff, William L.

    2002-01-01

    Theoretical safety calculations were done with proved codes utilized by the staff of the RERTR program in the HEU to LEU core conversions. The studies were designed to evaluate the reactivity coefficients and kinetics parameters of the reactor involved in the evolution of peak power transients by reactivity insertion accidents. It was done to show the trend of these reactivity coefficients as a function of the core size and fuel depletion for RP10 cores. It was useful to get a better underst...

  20. Safety culture

    International Nuclear Information System (INIS)

    Keen, L.J.

    2003-01-01

    Safety culture has become a topic of increasing interest for industry and regulators as issues are raised on safety problems around the world. The keys to safety culture are organizational effectiveness, effective communications, organizational learning, and a culture that encourages the identification and resolution of safety issues. The necessity of a strong safety culture places an onus on all of us to continually question whether the safety measures already in place are sufficient, and are being applied. (author)

  1. Notification: FY 2017 Update of Proposed Key Management Challenges and Internal Control Weaknesses Confronting the U.S. Chemical Safety and Hazard Investigation Board

    Science.gov (United States)

    Jan 5, 2017. The EPA OIG is beginning work to update for fiscal year 2017 its list of proposed key management challenges and internal control weaknesses confronting the U.S. Chemical Safety and Hazard Investigation Board (CSB).

  2. A no-key-exchange secure image sharing scheme based on Shamir's three-pass cryptography protocol and the multiple-parameter fractional Fourier transform.

    Science.gov (United States)

    Lang, Jun

    2012-01-30

    In this paper, we propose a novel secure image sharing scheme based on Shamir's three-pass protocol and the multiple-parameter fractional Fourier transform (MPFRFT), which can safely exchange information with no advance distribution of either secret keys or public keys between users. The image is encrypted directly by the MPFRFT spectrum without the use of phase keys, and information can be shared by transmitting the encrypted image (or message) three times between users. Numerical simulation results are given to verify the performance of the proposed algorithm.

  3. Understanding aging - A key to ensuring safety

    International Nuclear Information System (INIS)

    Arlotto, G.A.

    1985-01-01

    The nuclear community has entered a period during which issues related to the advancing age of nuclear power plants will play an ever-increasing role in the decision making process for the continued safe operation of these plants, including extended safe operation beyond the presently authorized forty years. Although progress has been made toward understanding and managing this aging phenomenon, much remains to be done. This paper describes research needs directed toward: (a) systematically identifying those aging effects which could impair safety; (b) assessment of inspection and monitoring methods for detecting aging prior to loss of safety function; and (c) evaluation of effectiveness of maintenance in mitigation aging. To be successful, this research, and its ultimate application, must involve the entire nuclear community - the regulator and the regulated. It must take the advantage of operating experience, include the assessment and tests of aged equipment, and involve coordination of related activities conducted by individual utilities, reactor manufacturers, architect-engineers, equipment suppliers, utility groups that have been (or might be) established, standards-writing bodies, foreign countries, the NRC, other Government agencies, and other knowledgeable organization and persons. The implementation of this research would best be accomplished by obtaining consensus in an open forum of all interested organizations and persons

  4. Dynamic Safety Cases for Through-Life Safety Assurance

    Science.gov (United States)

    Denney, Ewen; Pai, Ganesh; Habli, Ibrahim

    2015-01-01

    We describe dynamic safety cases, a novel operationalization of the concept of through-life safety assurance, whose goal is to enable proactive safety management. Using an example from the aviation systems domain, we motivate our approach, its underlying principles, and a lifecycle. We then identify the key elements required to move towards a formalization of the associated framework.

  5. Development of a remote monitoring system, through monitoring of key safety parameters for a nuclear research reactor

    International Nuclear Information System (INIS)

    Urcia, Agustin; Arrieta, Rolando; Baltuano, Oscar; Chan, Renzo; Tincopa, Jean Pierre; Urquizo, Rafael; Rosas, Bernick

    2014-01-01

    This paper presents the detailed development, installation and commissioning of water level sensors and exposure rate range in the 11 meters level (mouth of tank) of the RP-10 nuclear reactor used to continuously monitor these values and use them as security for the periods of no presence of operating personnel (overlooking situation) with the reactor in shutdown state. The levels of these parameters are packaged and transmitted to a controller in the control room of reactor for display and activation of alarm levels. Additionally, the design of these warning signs is shown in conjunction with the fire alarm in the building of reactor and auxiliary laboratories to be transmitted to the physical security facility, located at a distance of 500 meters. (authors).

  6. Key terms for the assessment of the safety of vaccines in pregnancy: Results of a global consultative process to initiate harmonization of adverse event definitions.

    Science.gov (United States)

    Munoz, Flor M; Eckert, Linda O; Katz, Mark A; Lambach, Philipp; Ortiz, Justin R; Bauwens, Jorgen; Bonhoeffer, Jan

    2015-11-25

    The variability of terms and definitions of Adverse Events Following Immunization (AEFI) represents a missed opportunity for optimal monitoring of safety of immunization in pregnancy. In 2014, the Brighton Collaboration Foundation and the World Health Organization (WHO) collaborated to address this gap. Two Brighton Collaboration interdisciplinary taskforces were formed. A landscape analysis included: (1) a systematic literature review of adverse event definitions used in vaccine studies during pregnancy; (2) a worldwide stakeholder survey of available terms and definitions; (3) and a series of taskforce meetings. Based on available evidence, taskforces proposed key terms and concept definitions to be refined, prioritized, and endorsed by a global expert consultation convened by WHO in Geneva, Switzerland in July 2014. Using pre-specified criteria, 45 maternal and 62 fetal/neonatal events were prioritized, and key terms and concept definitions were endorsed. In addition recommendations to further improve safety monitoring of immunization in pregnancy programs were specified. This includes elaboration of disease concepts into standardized case definitions with sufficient applicability and positive predictive value to be of use for monitoring the safety of immunization in pregnancy globally, as well as the development of guidance, tools, and datasets in support of a globally concerted approach. There is a need to improve the safety monitoring of immunization in pregnancy programs. A consensus list of terms and concept definitions of key events for monitoring immunization in pregnancy is available. Immediate actions to further strengthen monitoring of immunization in pregnancy programs are identified and recommended. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Study of parameters for safety assessment of sub-surface disposal. Tunnel-excavating speed and thickness of additional soil in residential land development by filling

    International Nuclear Information System (INIS)

    Ishitoya, Kimihide; Sugaya, Toshikatsu; Funabashi, Hideyuki

    2012-02-01

    Japan Atomic Energy Agency (JAEA) is making preparations for the sub-surface disposal of own low level radioactive wastes. In order to carry out the disposal, it is necessary to confirm the safety of the disposal. Nuclear Safety Commission of Japan (NSC) issued 'Policy of the Safety Assessment of Sub-surface Disposal after the Period for Active Control' (April 1, 2010). Then, we investigated the parameters for dose assessment in tunnel excavation scenario and large-scale land use scenario which were described in the 'Policy of the Safety Assessment', in order to perform the assessment based on actual conditions. To be concrete, we investigated the tunnel excavating speeds in Japan for the former scenario, and investigated technical standards of the filling for the latter scenario. We studied the realistic parameters for the dose assessment with the results of those investigations. (author)

  8. Nuclide documentation. Element specific parameter values used in the biospheric models of the safety assessments SR 97 and SAFE

    International Nuclear Information System (INIS)

    Karlsson, Sara; Bergstroem, Ulla

    2002-05-01

    In this report the element and nuclide specific parameter values used in the biospheric models of the safety assessments SR 97 and SAFE are presented. The references used are presented and where necessary the process of estimation of data is described. The parameters treated in this report are distribution coefficients in soil, organic soil and suspended matter in freshwater and brackish water, root uptake factors for pasturage, cereals, root crops and vegetables, bioaccumulation factors for freshwater fish, brackish water fish, freshwater invertebrates and marine water plants, transfer coefficients for transfer to milk and meat, translocation factors and dose coefficients for external exposure, ingestion (age-dependent values) and inhalation (age-dependent values). The radionuclides treated are those which could be of interest in the two safety assessments. Physical data such as half-lives and type of decay are also presented

  9. Nuclide documentation. Element specific parameter values used in the biospheric models of the safety assessments SR 97 and SAFE

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Sara; Bergstroem, Ulla [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    2002-05-01

    In this report the element and nuclide specific parameter values used in the biospheric models of the safety assessments SR 97 and SAFE are presented. The references used are presented and where necessary the process of estimation of data is described. The parameters treated in this report are distribution coefficients in soil, organic soil and suspended matter in freshwater and brackish water, root uptake factors for pasturage, cereals, root crops and vegetables, bioaccumulation factors for freshwater fish, brackish water fish, freshwater invertebrates and marine water plants, transfer coefficients for transfer to milk and meat, translocation factors and dose coefficients for external exposure, ingestion (age-dependent values) and inhalation (age-dependent values). The radionuclides treated are those which could be of interest in the two safety assessments. Physical data such as half-lives and type of decay are also presented.

  10. Discussion on building safety culture inside a nuclear safety regulatory body

    International Nuclear Information System (INIS)

    Fan Yumao

    2013-01-01

    A strong internal safety culture plays a key role in improving the performance of a nuclear regulatory body. This paper discusses the definition of internal safety culture of nuclear regulatory bodies, and explains the functions that the safety culture to facilitate the nuclear safety regulation and finally puts forward some thoughts about building internal safety culture inside regulatory bodies. (author)

  11. Identification of key parameters determining Danish homeowners' willingness and motivation for energy renovations

    DEFF Research Database (Denmark)

    Mortensen, Andrea; Heiselberg, Per Kvols; Knudstrup, Mary-Ann

    2016-01-01

    that the average Danish single-family house owner can be motivated by improvements in comfort, indoor environment and architecture combined with a reasonable economy. The objective of this paper is, based on the motivation survey results, to determine if all homeowners can be assumed as one homogeneous group...... or if there are significant differences among the homeowners, what causes these differences and how does this affect the future motivation strategy. The key parameters for if and how the homeowner can be motivated are related to the homeowner’s position in life: age, children’s’ age, time of ownership, occupation and income....... Furthermore, the results conclude that the homeowners cannot be assumed as one group, but must be seen as individuals. Those who are most likely to be motivated to perform an energy renovation are the younger generation of homeowners. The older generation will be harder to motivate, but results nonetheless...

  12. 3-D simulations of M9 earthquakes on the Cascadia Megathrust: Key parameters and uncertainty

    Science.gov (United States)

    Wirth, Erin; Frankel, Arthur; Vidale, John; Marafi, Nasser A.; Stephenson, William J.

    2017-01-01

    Geologic and historical records indicate that the Cascadia subduction zone is capable of generating large, megathrust earthquakes up to magnitude 9. The last great Cascadia earthquake occurred in 1700, and thus there is no direct measure on the intensity of ground shaking or specific rupture parameters from seismic recordings. We use 3-D numerical simulations to generate broadband (0-10 Hz) synthetic seismograms for 50 M9 rupture scenarios on the Cascadia megathrust. Slip consists of multiple high-stress drop subevents (~M8) with short rise times on the deeper portion of the fault, superimposed on a background slip distribution with longer rise times. We find a >4x variation in the intensity of ground shaking depending upon several key parameters, including the down-dip limit of rupture, the slip distribution and location of strong-motion-generating subevents, and the hypocenter location. We find that extending the down-dip limit of rupture to the top of the non-volcanic tremor zone results in a ~2-3x increase in peak ground acceleration for the inland city of Seattle, Washington, compared to a completely offshore rupture. However, our simulations show that allowing the rupture to extend to the up-dip limit of tremor (i.e., the deepest rupture extent in the National Seismic Hazard Maps), even when tapering the slip to zero at the down-dip edge, results in multiple areas of coseismic coastal uplift. This is inconsistent with coastal geologic evidence (e.g., buried soils, submerged forests), which suggests predominantly coastal subsidence for the 1700 earthquake and previous events. Defining the down-dip limit of rupture as the 1 cm/yr locking contour (i.e., mostly offshore) results in primarily coseismic subsidence at coastal sites. We also find that the presence of deep subevents can produce along-strike variations in subsidence and ground shaking along the coast. Our results demonstrate the wide range of possible ground motions from an M9 megathrust earthquake in

  13. Comparison of EPRI safety valve test data with analytically determined hydraulic results

    International Nuclear Information System (INIS)

    Smith, L.C.; Howe, K.S.

    1983-01-01

    NUREG-0737 (November 1980) and all subsequent U.S. NRC generic follow-up letters require that all operating plant licensees and applicants verify the acceptability of plant specific pressurizer safety valve piping systems for valve operation transients by testing. To aid in this verification process, the Electric Power Research Institute (EPRI) conducted an extensive testing program at the Combustion Engineering Test Facility. Pertinent tests simulating dynamic opening of the safety valves for representative upstream environments were carried out. Different models and sizes of safety valves were tested at the simulated operating conditions. Transducers placed at key points in the system monitored a variety of thermal, hydraulic and structural parameters. From this data, a more complete description of the transient can be made. The EPRI test configuration was analytically modeled using a one-dimensional thermal hydraulic computer program that uses the method of characteristics approach to generate key fluid parameters as a function of space and time. The conservative equations are solved by applying both the implicit and explicit characteristic methods. Unbalanced or wave forces were determined for each straight run of pipe bounded on each side by a turn or elbow. Blowdown forces were included, where appropriate. Several parameters were varied to determine the effects on the pressure, hydraulic forces and timings of events. By comparing these quantities with the experimentally obtained data, an approximate picture of the flow dynamics is arrived at. Two cases in particular are presented. These are the hot and cold loop seal discharge tests made with the Crosby 6M6 spring-loaded safety valve. Included in the paper is a description of the hydraulic code, modeling techniques and assumptions, a comparison of the numerical results with experimental data and a qualitative description of the factors which govern pipe support loading. (orig.)

  14. Impact Assessment of Effective Parameters on Drivers' Attention Level to Urban Traffic Signs

    Science.gov (United States)

    Kazemi, Mojtaba; Rahimi, Amir Masoud; Roshankhah, Sheida

    2016-03-01

    Traffic signs are one of the oldest safety and traffic control equipments. Drivers' reaction to installed signs is an important issue that could be studied using statistical models developed for target groups. There are 527 questionnaires have been filled up randomly in 45 days, some by drivers passing two northern cities of Iran and some by e-mail. Therefore, minimum sample size of 384 is fulfilled. In addition, Cronbach Alpha of more than 90 % verifies the questionnaire's validity. Ordinal logistic regression is used for 5-level answer variables. This relatively novel method predicts probability of different cases' considering other effective independent variables. There are 18 parameters of factor, man, vehicle, and environment are assessed and 5 parameters of number of accidents in last 5 years, occupation, driving time, number of accidents per day, and driving speed are eventually found as the most important ones. Age and gender, that are considered as key factors in other safety and accident studies, are not recognized as effective ones in this paper. The results could be useful for safety planning programs.

  15. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    verification' are used differently in different countries. The way that these terms have been used in this Safety Guide is explained in Section 2. The term 'design' as used here includes the specifications for the safe operation and management of the plant. This Safety Guide identifies the key recommendations for carrying out the safety assessment and the independent verification. It provides detailed guidance in support of IAEA, Safety of Nuclear Power Plants: Design, Safety Standards Series No. NS-R-1 (2000), particularly in the area of safety analysis. However, this does not include all the technical details which are available and reference is made to other IAEA publications on specific design issues and safety analysis methods. Specific deterministic or probabilistic safety targets or radiological limits can vary in different countries and are the responsibility of the regulatory body. This Safety Guide provides some references to targets and limits established by international organizations. Operators, and sometimes designers, may also set their own safety targets which may be more stringent than those set by the regulator or may address different aspects of safety. In some countries operators are expected to do this as part of their 'ownership' of the entire safety case. This Safety Guide does not include specific recommendations for the safety assessment of those plant systems for which dedicated Safety Guides exist. Section 2 defines the terms 'safety assessment', 'safety analysis' and 'independent verification' and outlines their relationship. Section 3 gives the key recommendations for the safety assessment of the principal and plant design requirements. Section 4 gives the key recommendations for safety analysis. It describes the identification of postulated initiating events (PIEs), which are used throughout the safety assessment including the safety analysis, the deterministic transient analysis and severe accident analysis, and the probabilistic safety analysis

  16. At-line monitoring of key parameters of nisin fermentation by near infrared spectroscopy, chemometric modeling and model improvement.

    Science.gov (United States)

    Guo, Wei-Liang; Du, Yi-Ping; Zhou, Yong-Can; Yang, Shuang; Lu, Jia-Hui; Zhao, Hong-Yu; Wang, Yao; Teng, Li-Rong

    2012-03-01

    An analytical procedure has been developed for at-line (fast off-line) monitoring of 4 key parameters including nisin titer (NT), the concentration of reducing sugars, cell concentration and pH during a nisin fermentation process. This procedure is based on near infrared (NIR) spectroscopy and Partial Least Squares (PLS). Samples without any preprocessing were collected at intervals of 1 h during fifteen batch of fermentations. These fermentation processes were implemented in 3 different 5 l fermentors at various conditions. NIR spectra of the samples were collected in 10 min. And then, PLS was used for modeling the relationship between NIR spectra and the key parameters which were determined by reference methods. Monte Carlo Partial Least Squares (MCPLS) was applied to identify the outliers and select the most efficacious methods for preprocessing spectra, wavelengths and the suitable number of latent variables (n (LV)). Then, the optimum models for determining NT, concentration of reducing sugars, cell concentration and pH were established. The correlation coefficients of calibration set (R (c)) were 0.8255, 0.9000, 0.9883 and 0.9581, respectively. These results demonstrated that this method can be successfully applied to at-line monitor of NT, concentration of reducing sugars, cell concentration and pH during nisin fermentation processes.

  17. Designing key-dependent chaotic S-box with larger key space

    International Nuclear Information System (INIS)

    Yin Ruming; Yuan Jian; Wang Jian; Shan Xiuming; Wang Xiqin

    2009-01-01

    The construction of cryptographically strong substitution boxes (S-boxes) is an important concern in designing secure cryptosystems. The key-dependent S-boxes designed using chaotic maps have received increasing attention in recent years. However, the key space of such S-boxes does not seem to be sufficiently large due to the limited parameter range of discretized chaotic maps. In this paper, we propose a new key-dependent S-box based on the iteration of continuous chaotic maps. We explore the continuous-valued state space of chaotic systems, and devise the discrete mapping between the input and the output of the S-box. A key-dependent S-box is constructed with the logistic map in this paper. We show that its key space could be much larger than the current key-dependent chaotic S-boxes.

  18. Source term modelling parameters for Project-90

    International Nuclear Information System (INIS)

    Shaw, W.; Smith, G.; Worgan, K.; Hodgkinson, D.; Andersson, K.

    1992-04-01

    This document summarises the input parameters for the source term modelling within Project-90. In the first place, the parameters relate to the CALIBRE near-field code which was developed for the Swedish Nuclear Power Inspectorate's (SKI) Project-90 reference repository safety assessment exercise. An attempt has been made to give best estimate values and, where appropriate, a range which is related to variations around base cases. It should be noted that the data sets contain amendments to those considered by KBS-3. In particular, a completely new set of inventory data has been incorporated. The information given here does not constitute a complete set of parameter values for all parts of the CALIBRE code. Rather, it gives the key parameter values which are used in the constituent models within CALIBRE and the associated studies. For example, the inventory data acts as an input to the calculation of the oxidant production rates, which influence the generation of a redox front. The same data is also an initial value data set for the radionuclide migration component of CALIBRE. Similarly, the geometrical parameters of the near-field are common to both sub-models. The principal common parameters are gathered here for ease of reference and avoidance of unnecessary duplication and transcription errors. (au)

  19. Strategy for a consistent selection of radionuclide migration parameters for the Belgian safety and feasibility case-1

    International Nuclear Information System (INIS)

    Bruggeman, C.; Maes, N.; Salah, S.; Brassinnes, S.; Van Geet, M.

    2010-01-01

    Document available in extended abstract form only. The purpose of this presentation is to describe the strategy for the selection of retention and migration parameters for safety-relevant nuclides that was developed in the framework of the Belgian Safety and Feasibility Case SFC-1. A geochemical database containing state-of-the-art retention and migration parameters of all safety-relevant radionuclides, is ideally based on a thermodynamic understanding and an ability to accurately describe the geochemical and transport behaviour of all these radionuclides under the geochemical conditions that are considered for a reference host formation. In Belgium, this reference formation is Boom Clay. The parameters will be used in Performance Assessment (PA) calculations, and therefore must also be adapted to PA models. Since these models currently use only a four parameters for every radionuclide, the whole geochemical and transport behaviour must be comprised to a very limited parameter set that describe on the one hand chemical retention within the Boom Clay formation, and on the other hand transport through the Boom Clay formation. Chemical retention considers two concepts: 1) a concentration limit (S), which represents the mobile concentration of a nuclide present in the aqueous phase under undisturbed far field Boom Clay conditions; 2) a retardation (R/Kd) factor, which represents the uptake of a mobile nuclide by the inorganic and organic phases present in the Boom Clay formation. For mobility/migration two additional concepts are introduced: 3) the diffusion accessible porosity (η), which is the total physical space available for transport of a nuclide. The maximum value of η is limited by the water content of the formation; 4) the pore diffusion coefficient (Dp), which represents the transport velocity of a nuclide in a diffusion-dominated system. Within the framework of SFC-1, primary focus is laid on the compilation of parameter ranges, instead of individual &apos

  20. Comparative Study of some Parameters reported in the Safety Analysis Report of TRIGA MARK II Research reactor with Calculations

    International Nuclear Information System (INIS)

    Chakrobortty, T.K.; Huda, M.Q.; Bhuiyan, S.I.; Mondal, M.A.W.

    1997-06-01

    An attempt has been made to investigate some of the parametric results reported in the safety Analysis Report (SAR) with the theoretical analysis carried out by different computer codes and data bases. Different neutronics, thermal hydraulics and safety parameters such as core criticality and burnup lifetime, power peaking factor, prompt negative temperature coefficient, neutron flux, pulse characteristics, steady state and transient behaviors of the TRIGA reactor were analyzed. The investigated results were found to be in fairly good agreement with the values reported in the SAR. 12 refs., 14 figs., 1 table (Author)

  1. Development of Basic Key Technologies for Gen IV SFR Safety Evaluation

    International Nuclear Information System (INIS)

    Jeong, Hae Yong; Kwon, Young Min; Kim, Tae Woon; Park, Soo Yong; Suk, Soo Dong; Lee, Kwi Lim; Lee, Yong Bum; Chang, Won Pyo; Ha, Kwi Seok; Hahn, Sang Hoon

    2010-07-01

    Safety issues and design requirements on control rod worth were identified through the evaluation of safety design characteristics and the preliminary safety evaluation. This results will be taken into account for the conceptual design studies of the demonstration reactor in the next stage. The Level-1 Pasa has been performed and a quantitative Cdf value was produced for the selected design from the several candidates. The inherent safety characteristics of the selected design were evaluated through the DBE and ATWS analyses. A surrogate material for Tru has been selected which is applicable to the study of liquidus/solidus temperature test for the metallic fuel containing Tru. A methodology for the regression analysis with surrogate material has been developed and valuable data on metal fuel liquidus/solidus temperature have been measured. A simple mechanistic model describing a bending of subassemblies has been formulated based on the foreign test data and existing models. Its applicability has been evaluated for the Phenix design. New criteria of the core damage for the SFR PSA were identified. The list of initiating events, system response event tree, and core response event tree, which constitute a PSA methodology for an SFR, have been introduced. By developing the SFR PIRT, phenomenological model features, which have to be satisfied in a safety code, were defined and the PIRT results were applied to the design of the PDRC test facility. Bases for a safety evaluation methodology for the SFR DBEs have been also prepared. A draft version of the topical report on the code for local fault analysis has been completed. Since 2007, the MARS-LMR code has been developed and assessments for model validation with the test data from EBR-II and Phenix reactor have been continued. The code has been applied to the evaluation of passive safety of a conceptual design of Gen IV SFR

  2. SEMPaC - an expert system prototype associated with safety parameter display system of a nuclear power plant

    International Nuclear Information System (INIS)

    Hirama, K.

    1989-01-01

    This work presents SEMPaC, an expert system prototype: it provides means to support diagnosis and to make decisions during abnormal transients that cause the trip of nuclear power plant. The system operation is associated with Safety Parameter Display System - SPDS that was recommended by U. S. Nuclear Regulatory Commission (NRC) after the Three-Mile Island (TMI) accident analysis. (author)

  3. Categorization of safety related motor operated valve safety significance for Ulchin Unit 3

    International Nuclear Information System (INIS)

    Kang, D. I.; Kim, K. Y.

    2002-03-01

    We performed a categorization of safety related Motor Operated Valve (MOV) safety significance for Ulchin Unit 3. The safety evaluation of MOV of domestic nuclear power plants affects the generic data used for the quantification of MOV common cause failure ( CCF) events in Ulchin Units 3 PSA. Therefore, in this study, we re-estimated the MGL(Multiple Greek Letter) parameter used for the evaluation of MOV CCF probabilities in Ulchin Units 3 Probabilistic Safety Assessment (PSA) and performed a classification of the MOV safety significance. The re-estimation results of the MGL parameter show that its value is decreased by 30% compared with the current value in Ulchin Unit 3 PSA. The categorization results of MOV safety significance using the changed value of MGL parameter shows that the number of HSSCs(High Safety Significant Components) is decreased by 54.5% compared with those using the current value of it in Ulchin Units 3 PSA

  4. Computational Analysis of Nuclear Safety Parameters of 3 MW TRIGA Mark-II Research Reactor Based on Evaluated Nuclear Data Libraries JENDL-3.3 and ENDF/B-VII.0

    International Nuclear Information System (INIS)

    Khan, Jahirul Haque

    2013-01-01

    The objective of this study is to explain the main nuclear safety parameters of 3 MW TRIGA Mark-II Research Reactor at AERE, Savar, Dhaka, Bangladesh from the viewpoint of reactor safety and also reactor operator. The most important nuclear reactor physics safety parameters are power distribution, power peaking factors, shutdown margin, control rod worth, excess reactivity and fuel temperature reactivity coefficient. These parameters are calculated using the chain of the computer codes the SRAC-PIJ for cell calculation based on neutron transport theory and the SRAC-CITATION for core calculation based on neutron diffusion equation. To achieve this objective the TRIGA model is developed by the 3-D diffusion code SRAC-CITATION based on the group constants that come from the collision probability transport code SRAC-PIJ. In this study the evaluated nuclear data libraries JENDL-3.3 and ENDF/B-VII.0 are used. The calculated most important reactor physics parameters are compared to the safety analysis report (SAR) values as well as earlier published MCNP results (numerically benchmark). It was found that the calculated results show a good agreement between the said libraries. Besides, in most cases the calculated results reveal a reasonable agreement with the SAR values (by General Atomic) as well as the MCNP results. In addition, this analysis can be used as the inputs for thermal-hydraulic calculations of the TRIGA fresh core in the steady state and pulse mode operation. Because of power peaking factors, power distributions and temperature reactivity coefficients are the most important reactor safety parameters for normal operation and transient safety analysis in research as well as in power reactors. They form the basis for technical specifications and limitations for reactor operation such as loading pattern limitations for pulse operation (in TRIGA). Therefore, this analysis will be very important to develop the nuclear safety parameters data of 3 MW TRIGA Mark

  5. NUMO's approach for long-term safety assessment - 59404

    International Nuclear Information System (INIS)

    Ebashi, Takeshi; Kaku, Kenichi; Ishiguro, Katsuhiko

    2012-01-01

    One of NUMO's policies for ensuring safety is staged and flexible project implementation and decision-making based on iterative confirmation of safety. The safety assessment takes the central role in multiple lines of reasoning and argumentation by providing a quantitative evaluation of long-term safety; a key aspect is uncertainty management. This paper presents NUMO's basic strategies for long-term safety assessment based on the above policy. NUMO's approach considering Japanese boundary conditions is demonstrated as a starting-point for evaluating the long-term safety of an actual site. In Japan, the Act on Final Disposal of Specified Radioactive Waste states that the siting process shall consist of three stages. The Nuclear Waste Management Organization of Japan (NUMO) is responsible for geological disposal of vitrified high-level waste and some types of TRU waste. NUMO has chosen to implement a volunteer approach to siting. NUMO decided to prepare the so-called 2010 technical report, which sets out three safety policies, one of which is staged project implementation and decision-making based on iterative confirmation of safety. Based on this policy, NUMO will gradually integrate relevant interdisciplinary knowledge to build a safety case when a formal volunteer application is received that would allow site investigations to be initiated. The safety assessment takes the central role in multiple lines of reasoning and argumentation by providing a quantitative evaluation of long-term safety; one of a key aspect is uncertainty management. This paper presents the basic strategies for NUMO's long-term safety assessment based on the above policy. In concrete terms, the common procedures involved in safety assessment are applied in a stepwise manner, based on integration of knowledge obtained from site investigations/evaluations and engineered measures. The results of the safety assessment are then reflected in the planning of site investigations and engineered

  6. Nuclear criticality safety program at the Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lell, R.M.; Fujita, E.K.; Tracy, D.B.; Klann, R.T.; Imel, G.R.; Benedict, R.W.; Rigg, R.H.

    1994-01-01

    The Fuel Cycle Facility (FCF) is designed to demonstrate the feasibility of a novel commercial-scale remote pyrometallurgical process for metallic fuels from liquid metal-cooled reactors and to show closure of the Integral Fast Reactor (IFR) fuel cycle. Requirements for nuclear criticality safety impose the most restrictive of the various constraints on the operation of FCF. The upper limits on batch sizes and other important process parameters are determined principally by criticality safety considerations. To maintain an efficient operation within appropriate safety limits, it is necessary to formulate a nuclear criticality safety program that integrates equipment design, process development, process modeling, conduct of operations, a measurement program, adequate material control procedures, and nuclear criticality analysis. The nuclear criticality safety program for FCF reflects this integration, ensuring that the facility can be operated efficiently without compromising safety. The experience gained from the conduct of this program in the Fuel cycle Facility will be used to design and safely operate IFR facilities on a commercial scale. The key features of the nuclear criticality safety program are described. The relationship of these features to normal facility operation is also described

  7. Emergency medical services key performance measurement in Asian cities.

    Science.gov (United States)

    Rahman, Nik Hisamuddin; Tanaka, Hideharu; Shin, Sang Do; Ng, Yih Yng; Piyasuwankul, Thammapad; Lin, Chih-Hao; Ong, Marcus Eng Hock

    2015-01-01

    One of the key principles in the recommended standards is that emergency medical service (EMS) providers should continuously monitor the quality and safety of their services. This requires service providers to implement performance monitoring using appropriate and relevant measures including key performance indicators. In Asia, EMS systems are at different developmental phases and maturity. This will create difficultly in benchmarking or assessing the quality of EMS performance across the region. An attempt was made to compare the EMS performance index based on the structure, process, and outcome analysis. The data was collected from the Pan-Asian Resuscitation Outcome Study (PAROS) data among few Asian cities, namely, Tokyo, Osaka, Singapore, Bangkok, Kuala Lumpur, Taipei, and Seoul. The parameters of inclusions were broadly divided into structure, process, and outcome measurements. The data was collected by the site investigators from each city and keyed into the electronic web-based data form which is secured strictly by username and passwords. Generally, there seems to be a more uniformity for EMS performance parameters among the more developed EMS systems. The major problem with the EMS agencies in the cities of developing countries like Bangkok and Kuala Lumpur is inadequate or unavailable data pertaining to EMS performance. There is non-uniformity in the EMS performance measurement across the Asian cities. This creates difficulty for EMS performance index comparison and benchmarking. Hopefully, in the future, collaborative efforts such as the PAROS networking group will further enhance the standardization in EMS performance reporting across the region.

  8. Key practical issues in strengthening safety culture. INSAG-15. A report by the International Safety Advisory Group [Russian Edition

    International Nuclear Information System (INIS)

    2015-01-01

    This report describes the essential practical issues to be considered by organizations aiming to strengthen safety culture. It is intended for senior executives, managers and first line supervisors in operating organizations. Although safety culture cannot be directly regulated, it is important that members of regulatory bodies understand how their actions affect the development of attempts to strengthen safety culture and are sympathetic to the need to improve the less formal human related aspects of safety. The report is therefore of relevance to regulators, although not intended primarily for them. The International Nuclear Safety Advisory Group (INSAG) introduced the concept of safety culture in its INSAG-4 report in 1991. Since then, many papers have been written on safety culture, as it relates to organizations and individuals, its improvement and its underpinning prerequisites. Variations in national cultures mean that what constitutes a good approach to enhancing safety culture in one country may not be the best approach in another. However, INSAG seeks to provide pragmatic and practical advice of wide applicability in the principles and issues presented in this report. Nuclear and radiological safety are the prime concerns of this report, but the topics discussed are so general that successful application of the principles should lead to improvements in other important areas, such as industrial safety, environmental performance and, in some respects, wider business performance. This is because many of the attitudes and practices necessary to achieve good performance in nuclear safety, including visible commitment by management, openness, care and thoroughness in completing tasks, good communication and clarity in recognizing major issues and dealing with them as a priority, have wide applicability

  9. A neutronics study for improving the safety and performance parameters of a 3600 MWth Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Sun, Kaichao; Krepel, Jiri; Mikityuk, Konstantin; Chawla, Rakesh

    2013-01-01

    Highlights: ► The potential for neutronics design optimization is assessed for a large SFR core. ► Both beginning-of-life and equilibrium fuel cycle conditions are considered. ► The sodium void effect is decomposed via a neutron balance based methodology. ► The optimized core options adopt an appropriate sodium plenum design to reduce the void effect. ► The introduction of moderator pins is considered for enhancing the Doppler effect. - Abstract: The Sodium-cooled Fast Reactor (SFR) is one of the most promising Generation IV systems with many performance advantages, but has one dominating neutronics drawback – a positive sodium void reactivity. The starting point for the present study is an SFR core design considered in the Collaborative Project on the European Sodium-cooled Fast Reactor (CP-ESFR). The aim is to analyze, for this reference core, four safety and performance parameters from the viewpoint of four different optimization options, and to propose possible optimized core designs. In doing so, the study focuses not only on the beginning-of-life state of the core, but also on the beginning of equilibrium closed fuel cycle. The four studied optimization options are: (a) introducing an upper sodium plenum and boron layer, (b) varying the core height-to-diameter (H/D) ratio, (c) introducing moderator pins into the fuel assembly, and (d) modifying the initial plutonium content. The sensitivity of the void reactivity, Doppler constant, nominal reactivity and breeding gain has been evaluated. In particular, the void reactivity, which is the most crucial safety parameter for the SFR, has been decomposed into its reaction-wise, isotope-wise and energy-group-wise components using a methodology based on the neutron balance equation. Extended voiding in the upper sodium plenum region – in conjunction with the effect of a boron layer introduced above the plenum – is found to be particularly effective in the void effect reduction while, at the same time

  10. Study of radiation exposure rate on the measurement points in Kartini reactor hall as based to determine operation safety parameters (KBO)

    International Nuclear Information System (INIS)

    Mahrus Salam; Elisabeth Supriyatni; Fajar Panuntun

    2016-01-01

    In the operation of nuclear facility there are safety parameters, which is the value of the conservatively maximum limit to ensure that all of the uncertainty in the analysis of facility operations safety have been considered, such as uncertainty of measurement, response time and uncertainty calculation tool, and is get a long to others value of normal operating condition limits, in other words, there are still allowed or permitted. Calculation of the radiation exposure rate on five measurement points (50 cm above the water surface of reactor pool, above interim storage (bulk shielding), reactor deck, thermal column and sub critical facility) and to be compared to the operation safety parameters (KBO) of Kartini reactor. The exposure rate value is obtained by calculating the source term of radioactivity on the core, attenuation resulting from the radiation shielding and measurement distance. From the calculation obtained that the value of gamma exposure rate of 50 cm above the water surface of reactor pool is 96.91 mR/hr (KBO<100 mR/hr), on the deck of Bulk Shielding amounted to 1.70 mR/h (KBO<2.5 mR/hr), on the reactor deck amounted to 5.73 mR/hr (KBO<10 mR/hr), on the Thermal Column amounted to 2.73 mR/hr (KBO<10 mR/hr) and on the sub critical facility amounted to 1.148 mR/hr (KBO<2.5 mR/hr). The value of gamma exposure rate at 5 locations measurements are still less than the operation safety parameters (KBO), it means that the reactor is safe to be operated. (author)

  11. Identification of Evidence for Key Parameters in Decision-Analytic Models of Cost Effectiveness: A Description of Sources and a Recommended Minimum Search Requirement.

    Science.gov (United States)

    Paisley, Suzy

    2016-06-01

    This paper proposes recommendations for a minimum level of searching for data for key parameters in decision-analytic models of cost effectiveness and describes sources of evidence relevant to each parameter type. Key parameters are defined as treatment effects, adverse effects, costs, resource use, health state utility values (HSUVs) and baseline risk of events. The recommended minimum requirement for treatment effects is comprehensive searching according to available methodological guidance. For other parameter types, the minimum is the searching of one bibliographic database plus, where appropriate, specialist sources and non-research-based and non-standard format sources. The recommendations draw on the search methods literature and on existing analyses of how evidence is used to support decision-analytic models. They take account of the range of research and non-research-based sources of evidence used in cost-effectiveness models and of the need for efficient searching. Consideration is given to what constitutes best evidence for the different parameter types in terms of design and scientific quality and to making transparent the judgments that underpin the selection of evidence from the options available. Methodological issues are discussed, including the differences between decision-analytic models of cost effectiveness and systematic reviews when searching and selecting evidence and comprehensive versus sufficient searching. Areas are highlighted where further methodological research is required.

  12. Binomial Distribution Sample Confidence Intervals Estimation 1. Sampling and Medical Key Parameters Calculation

    Directory of Open Access Journals (Sweden)

    Tudor DRUGAN

    2003-08-01

    Full Text Available The aim of the paper was to present the usefulness of the binomial distribution in studying of the contingency tables and the problems of approximation to normality of binomial distribution (the limits, advantages, and disadvantages. The classification of the medical keys parameters reported in medical literature and expressing them using the contingency table units based on their mathematical expressions restrict the discussion of the confidence intervals from 34 parameters to 9 mathematical expressions. The problem of obtaining different information starting with the computed confidence interval for a specified method, information like confidence intervals boundaries, percentages of the experimental errors, the standard deviation of the experimental errors and the deviation relative to significance level was solves through implementation in PHP programming language of original algorithms. The cases of expression, which contain two binomial variables, were separately treated. An original method of computing the confidence interval for the case of two-variable expression was proposed and implemented. The graphical representation of the expression of two binomial variables for which the variation domain of one of the variable depend on the other variable was a real problem because the most of the software used interpolation in graphical representation and the surface maps were quadratic instead of triangular. Based on an original algorithm, a module was implements in PHP in order to represent graphically the triangular surface plots. All the implementation described above was uses in computing the confidence intervals and estimating their performance for binomial distributions sample sizes and variable.

  13. Validation of Essential Acoustic Parameters for Highly Urgent In-Vehicle Collision Warnings.

    Science.gov (United States)

    Lewis, Bridget A; Eisert, Jesse L; Baldwin, Carryl L

    2018-03-01

    Objective The aim of this study was to validate the importance of key acoustic criteria for use as in-vehicle forward collision warning (FCW) systems. Background Despite recent advances in vehicle safety, automobile crashes remain one of the leading causes of death. As automation allows for more control of noncritical functions by the vehicle, the potential for disengagement and distraction from the driving task also increases. It is, therefore, as important as ever that in-vehicle safety-critical interfaces are intuitive and unambiguous, promoting effective collision avoidance responses upon first exposure even under divided-attention conditions. Method The current study used a driving simulator to assess the effectiveness of two warnings, one that met all essential acoustic parameters, one that met only some essential parameters, and a no-warning control in the context of a lead vehicle-following task in conjunction with a cognitive distractor task and collision event. Results Participants receiving an FCW comprising five essential acoustic components had improved collision avoidance responses relative to a no-warning condition and an FCW missing essential elements on their first exposure. Responses to a consistently good warning (GMU Prime) improved with subsequent exposures, whereas continued exposure to the less optimal FCW (GMU Sub-Prime) resulted in poorer performance even relative to receiving no warning at all. Conclusions This study provides support for previous warning design studies and for the validity of five key acoustic parameters essential for the design of effective in-vehicle FCWs. Application Results from this study have implications for the design of auditory FCWs and in-vehicle display design.

  14. Quality and Safety Education for Nurses (QSEN): The Key is Systems Thinking.

    Science.gov (United States)

    Dolansky, Mary A; Moore, Shirley M

    2013-09-30

    Over a decade has passed since the Institute of Medicine's reports on the need to improve the American healthcare system, and yet only slight improvement in quality and safety has been reported. The Quality and Safety Education for Nurses (QSEN) initiative was developed to integrate quality and safety competencies into nursing education. The current challenge is for nurses to move beyond the application of QSEN competencies to individual patients and families and incorporate systems thinking in quality and safety education and healthcare delivery. This article provides a history of QSEN and proposes a framework in which systems thinking is a critical aspect in the application of the QSEN competencies. We provide examples of how using this framework expands nursing focus from individual care to care of the system and propose ways to teach and measure systems thinking. The conclusion calls for movement from personal effort and individual care to a focus on care of the system that will accelerate improvement of healthcare quality and safety.

  15. Psychological safety: The key to high performance in high stress, potentially traumatic environments

    Science.gov (United States)

    James Saveland

    2011-01-01

    Safety is typically talked about in a context of the absence of injury. The field of resilience engineering has been advocating that we think about safety differently, by taking a systems view and begin to see how people create safety in unsafe systems by managing risk. There is growing recognition that safety is an emergent behavior of our complex system of human...

  16. Key improvements to XTR

    NARCIS (Netherlands)

    Lenstra, A.K.; Verheul, E.R.; Okamoto, T.

    2000-01-01

    This paper describes improved methods for XTR key representation and parameter generation (cf. [4]). If the field characteristic is properly chosen, the size of the XTR public key for signature applications can be reduced by a factor of three at the cost of a small one time computation for the

  17. Undersafe: Monitoring safety parameters in touristic mines and caves

    Science.gov (United States)

    Parcerisa, David; Sanmiquel, Lluís; Alfonso, Pura; Oliva, Josep

    2014-05-01

    Tourism is a key sector of the European economy, generating more than 5% of the EU GPD (Gross Domestic Product). Usually, underground touristic sites receive non-expert visitors; nevertheless these activities are poorly regulated or completely deregulated. Nowadays, safety is provided by underground expert professionals whom proceed to regular inspections and by basic safety infrastructures. Even with these measures, some potential personal and environmental dangers are always present and cannot be totally avoided. Therefore, there is a clear need of a new technological product for safety and environmental continuous monitoring of tourist underground attractions. So, the aim of the Undersafe project is to provide underground attractions with a novel and specifically tailored monitoring system, easy to use and maintain. One of the goals of the Undersafe project is to develop a rock falling detection based on a set of cost limited vibration sensors. Based on the technical needs, but with cost constraints, different types of potential sensors are considered: Underground microphone: It is placed in the surface or in the underground. It is based on the consideration that the impact of the stone generates a ground impact vibration which can be understood as a "noise" that is received by a microphone capsule. Airborne sound sensing microphone: It similarly applies to underground use of the microphones, but now the microphone is tested as for its traditional use (I.e. air sound detection). In such case, the microphone detects the environmental noise produced by the impact of the stone falling onto the ground, which will include the impact sound of the stone. Geophone: It is the de facto standard for ground vibrations. Although this technology was initially discarded due to its high cost, recently, low cost geophones have appeared in the market that allows its use inside the underground attractions. Accelerometers: These, can have enough sensibility to act as vibration

  18. Influence of material and gear parameters on the safety of gearing in metallurgical industry

    Directory of Open Access Journals (Sweden)

    S. Medvecká - Beňová

    2015-01-01

    Full Text Available This paper deals with the appropriate choice of parameters to obtain the desired level of safety of gears in a gearbox to drive the conveyor in the metallurgical industry under increased load. Steel with surface hardness up to 350 HBW, or heat treated steel with hardness of 500 - 650 HBW are used. As a final heat treatment are used surface hardening, cementation and hardening, nitridation. Good properties of heat-treated steels are at the correct thickness of the heat-treated layer of the tooth. Results are presented for dual-ratio gearbox with spur gears from operation of an integrated steel company.

  19. Safety-related parameters for the MAPLE research reactor and a comparison with the IAEA generic 10-MW research reactor

    International Nuclear Information System (INIS)

    Carlson, P.A.; Lee, A.G.; Smith, H.J.; Ellis, R.J.

    1989-07-01

    A summary is presented of some of the principle safety-related physics parameters for the MAPLE Research Reactor, and a comparison with the IAEA Generic 10-MW Reactor is given. This provides a means to assess the operating conditions and fuelling requirements for safe operation of the MAPLE Research Reactor under accepted standards

  20. Key management of the double random-phase-encoding method using public-key encryption

    Science.gov (United States)

    Saini, Nirmala; Sinha, Aloka

    2010-03-01

    Public-key encryption has been used to encode the key of the encryption process. In the proposed technique, an input image has been encrypted by using the double random-phase-encoding method using extended fractional Fourier transform. The key of the encryption process have been encoded by using the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. The encoded key has then been transmitted to the receiver side along with the encrypted image. In the decryption process, first the encoded key has been decrypted using the secret key and then the encrypted image has been decrypted by using the retrieved key parameters. The proposed technique has advantage over double random-phase-encoding method because the problem associated with the transmission of the key has been eliminated by using public-key encryption. Computer simulation has been carried out to validate the proposed technique.

  1. Review of key Belotero Balance safety and efficacy trials.

    Science.gov (United States)

    Lorenc, Z Paul; Fagien, Steven; Flynn, Timothy C; Waldorf, Heidi A

    2013-10-01

    Belotero Balance is a novel highly cross-linked hyaluronic acid that uses cohesive polydensified matrix technology to achieve cohesive gel; improved adaptation by the dermis; and a soft, smooth fill. Several studies have now compared Belotero Balance to bovine collagen and other hyaluronic acids. Two pivotal studies demonstrated the noninferiority and superiority of Belotero Balance to bovine collagen. In the first study, more than half of the patients maintained optimal correction at 6 months on the Belotero-treated side of the face. The second of those two studies followed patients to week 96 and demonstrated that the effects of Belotero Balance in this long-term, open-label study persisted in the majority of subjects without repeated treatment for at least one interval of 48 weeks. The filler was well tolerated, with only one of 34 total adverse events (injection-site bruising) considered to be related to the study device. A third study compared the safety and efficacy of other hyaluronic acids (i.e., Juvéderm and Restylane) with Belotero Balance. In this study, the safety profiles of all three hyaluronic acids were generally favorable, with site-specific adverse events mild to moderate and comparable across each hyaluronic acid. Aesthetic results were also similar, although Belotero Balance resulted in greater evenness than Restylane at 4 weeks by one indicator used in the study. Finally, a 5-year retrospective safety review of 317 patients treated with Belotero Balance over a 5-year period revealed no severe adverse events in any patients, including the absence of persistent nodules or granulomas.

  2. 47{sup th} Annual conference on nuclear technology (AMNT 2016). Key topics / Outstanding know-how and sustainable innovations - enhanced safety and operation excellence

    Energy Technology Data Exchange (ETDEWEB)

    Raetzke, Christian [CONLAR - Consulting on Nuclear Law, Licensing and Regulation, Leipzig (Germany); Fischer, Erwin [PreussenElektra GmbH, Hannover (Germany). Management Board; Mohrbach, Ludger [VGB PowerTech e.V., Essen (Germany). Competence Center ' ' Nuclear Power Plants' '

    2016-08-15

    Summary report on the Key Topics ''Outstanding Know-How and Sustainable Innovations'' and ''Enhanced Safety and Operation Excellence'' of the 47{sup th} Annual Conference on Nuclear Technology (AMNT 2016) held in Hamburg, 10 to 12 May 2016. Other Sessions of AMNT 2016 will be covered in further issues of atw.

  3. Data concentrator requirements for a safety parameter display system

    International Nuclear Information System (INIS)

    Brewer, C.R.

    1983-01-01

    To comply with NUREG 0696 several nuclear plants are being fitted with new facilities and data systems; specifically a Technical Support Center (TSC), Operational Support Center (OSC), Emergency Operational Facility (EOF), and Backup Safety Parameter Display System (SPDS), Emergency Response Computer System (ERCS) and Nuclear Data Link (NDL). The TSC, OSC, and EOF are physical locations while the SPDS, ERCS, and NDL are Systems. The SPDS and ERCS are usually separate and independent systems, however, they may share a common front end data acquisition system that acquires and sends SPDS related data to both the SPDS and to the ERCS. In the situation just described an SPDS system must depend upon input data from a source that is SPDS host computer independent. To achieve this independence the front end data acquisition system may employ a concept of intelligent distributed processing. This concept essentially takes functional capabilities that were once found only in realtime host computers and distributes it to front end data acquisition systems. Thus by expanding the functionality of the data acquisition system in a manner that provides more capability, independence from the computer vendor, links to multiple computer systems, processing power and redundancy, the concept of a data concentrator evolved. This paper will define this new distributed functionality, and its related requirements. It will also examine different system configuration approaches

  4. The development of design technology on the safety parameter display system for the operability improvement of the nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Young Joon; Choi, Hae Yoon; Ahn, Jang Sun; Lee, Tae Woo; Lee, Ki Won; Kim, Kil Kon; Baek, Seong Min; Sul, Young Sil [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-31

    The purpose of this study is, basically, threefold. Firstly, through detailed comparison, the difference between the safety parameters used in the EPG and CFMS is analyzed. Furthermore, to anticipate and extrapolate the problems that might be encountered when developing the CFMS system that utilizes safety parameters consistent with that of the EPG. Secondly, the setpoint analysis of the CFMS alarm algorithm was done for there is a possibility of causing spurious alarms since the alarm setpoint of the YGN 3,4 CFMS is not reflective of the plant operating conditions nor accident progression. Lastly, the analysis of the success path for each accident was done to help operator in mitigating the accident by using the pictorial path of the success path during an accident condition. Moreover, in this analysis, the contents of the concerns that KINS raised regarding the YGN 3,4 SPDS has been addressed from the designer`s perspective. 33 figs., 16 refs. (Author) .new.

  5. Periodic safety review of the HTR-10 safety analysis

    International Nuclear Information System (INIS)

    Chen Fubing; Zheng Yanhua; Shi Lei; Li Fu

    2015-01-01

    Designed by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University, the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) is the first modular High Temperature Gas-cooled Reactor (HTGR) in China. According to the nuclear safety regulations of China, the periodic safety review (PSR) of the HTR-10 was initiated by INET after approved by the National Nuclear Safety Administration (NNSA) of China. Safety analysis of the HTR-10 is one of the key safety factors of the PSR. In this paper, the main contents in the review of safety analysis are summarized; meanwhile, the internal evaluation on the review results is presented by INET. (authors)

  6. Management of safety, safety culture and self assessment

    International Nuclear Information System (INIS)

    Carnino, A.

    2000-01-01

    Safety management is the term used for the measures required to ensure that an acceptable level of safety is maintained throughout the life of an installation, including decommissioning. The safety culture concept and its implementation are described in part one of the paper. The principles of safety are now quite well known and are implemented worldwide. It leads to a situation where harmonization is being achieved as indicated by the entry into force of the Convention on Nuclear Safety. To go beyond the present nuclear safety levels, management of safety and safety culture will be the means for achieving progress. Recent events which took place in major nuclear power countries have shown the importance of the management and the consequences on safety. At the same time, electricity deregulation is coming and will impact on safety through reductions in staffing and in operation and maintenance cost at nuclear installations. Management of safety as well as its control and monitoring by the safety authorities become a key to the future of nuclear energy.(author)

  7. Key aspects in managing safety when working with multiple contractors: A case study

    NARCIS (Netherlands)

    Drupsteen, L.; Rasmussen, H.B.; Ustailieva, E.; Kampen, J. van

    2015-01-01

    Working with multiple contractors in a shared workplace can introduce and increase safety risks due to complexity. The aim of this study was to explore how safety issues are recognized in a specific case and to identify whether clients and contractors perceive problems similarly. The safety issues

  8. Electric and mechanical basic parameters to elaborate a process for a technical verification of safety related design modifications

    International Nuclear Information System (INIS)

    Lamuno Fernandez, Mercedes; La Roca Mallofre, GISEL; Bano Azcon, Alberto

    2010-01-01

    This paper presents a systematic process to check a design in order to achieve all the requirements that regulations demand. Nuclear engineers must verify that a design is done according to the safety requirements, and this paper presents how we have elaborated a process to improve the technical project verification. For a faster, better and easier verification process, here we summarize how to select the electric and mechanical basic parameters, which ensure the correct project verification of safety related design modifications. This process considers different aspects, which guarantee that the design preserves the availability, reliability and functional capability of the Structures, Systems and Components needed to operate the Nuclear Power Station with security. Electric and mechanical reference parameters are identified and discussed as well as others related ones, which are critical to safety. The implementation procedure to develop tasks performed in any company that has a quality plan is a requirement. On the engineering business, it is important not to use the personal criteria to do a technical analysis of a project; although, many times it is the checker's criteria and knowledge responsibility to ensure the correct development of a design modification. Then, the checker capabilities are the basis of the modification verification. This kind of procedure's development is not easy, because in an engineering project with important technical contents, there are multiple scenarios, but lots of them have a common basis. If we can identify the technical common basis of these projects, we will make good project verification but there are many difficulties we can encounter along this process. (authors)

  9. A strategy to establish Food Safety Model Repositories.

    Science.gov (United States)

    Plaza-Rodríguez, C; Thoens, C; Falenski, A; Weiser, A A; Appel, B; Kaesbohrer, A; Filter, M

    2015-07-02

    Transferring the knowledge of predictive microbiology into real world food manufacturing applications is still a major challenge for the whole food safety modelling community. To facilitate this process, a strategy for creating open, community driven and web-based predictive microbial model repositories is proposed. These collaborative model resources could significantly improve the transfer of knowledge from research into commercial and governmental applications and also increase efficiency, transparency and usability of predictive models. To demonstrate the feasibility, predictive models of Salmonella in beef previously published in the scientific literature were re-implemented using an open source software tool called PMM-Lab. The models were made publicly available in a Food Safety Model Repository within the OpenML for Predictive Modelling in Food community project. Three different approaches were used to create new models in the model repositories: (1) all information relevant for model re-implementation is available in a scientific publication, (2) model parameters can be imported from tabular parameter collections and (3) models have to be generated from experimental data or primary model parameters. All three approaches were demonstrated in the paper. The sample Food Safety Model Repository is available via: http://sourceforge.net/projects/microbialmodelingexchange/files/models and the PMM-Lab software can be downloaded from http://sourceforge.net/projects/pmmlab/. This work also illustrates that a standardized information exchange format for predictive microbial models, as the key component of this strategy, could be established by adoption of resources from the Systems Biology domain. Copyright © 2015. Published by Elsevier B.V.

  10. Steel Erection Safety. Module SH-39. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on steel erection safety is one of 50 modules concerned with job safety and health. This module identifies typical jobsite hazards encountered by steel erectors, as well as providing safe job procedures for general and specific construction activities. Following the introduction, 11 objectives (each keyed to a page in the text)…

  11. Key parameters of the sediment surface morphodynamics in an estuary - An assessment of model solutions

    Science.gov (United States)

    Sampath, D. M. R.; Boski, T.

    2018-05-01

    Large-scale geomorphological evolution of an estuarine system was simulated by means of a hybrid estuarine sedimentation model (HESM) applied to the Guadiana Estuary, in Southwest Iberia. The model simulates the decadal-scale morphodynamics of the system under environmental forcing, using a set of analytical solutions to simplified equations of tidal wave propagation in shallow waters, constrained by empirical knowledge of estuarine sedimentary dynamics and topography. The key controlling parameters of the model are bed friction (f), current velocity power of the erosion rate function (N), and sea-level rise rate. An assessment of sensitivity of the simulated sediment surface elevation (SSE) change to these controlling parameters was performed. The model predicted the spatial differentiation of accretion and erosion, the latter especially marked in the mudflats within mean sea level and low tide level and accretion was mainly in a subtidal channel. The average SSE change mutually depended on both the friction coefficient and power of the current velocity. Analysis of the average annual SSE change suggests that the state of intertidal and subtidal compartments of the estuarine system vary differently according to the dominant processes (erosion and accretion). As the Guadiana estuarine system shows dominant erosional behaviour in the context of sea-level rise and sediment supply reduction after the closure of the Alqueva Dam, the most plausible sets of parameter values for the Guadiana Estuary are N = 1.8 and f = 0.8f0, or N = 2 and f = f0, where f0 is the empirically estimated value. For these sets of parameter values, the relative errors in SSE change did not exceed ±20% in 73% of simulation cells in the studied area. Such a limit of accuracy can be acceptable for an idealized modelling of coastal evolution in response to uncertain sea-level rise scenarios in the context of reduced sediment supply due to flow regulation. Therefore, the idealized but cost

  12. Estimation of Key Parameters of the Coupled Energy and Water Model by Assimilating Land Surface Data

    Science.gov (United States)

    Abdolghafoorian, A.; Farhadi, L.

    2017-12-01

    Accurate estimation of land surface heat and moisture fluxes, as well as root zone soil moisture, is crucial in various hydrological, meteorological, and agricultural applications. Field measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state observations that are widely available from remote sensing across a range of scale. In this work, we applies the variational data assimilation approach to estimate land surface fluxes and soil moisture profile from the implicit information contained Land Surface Temperature (LST) and Soil Moisture (SM) (hereafter the VDA model). The VDA model is focused on the estimation of three key parameters: 1- neutral bulk heat transfer coefficient (CHN), 2- evaporative fraction from soil and canopy (EF), and 3- saturated hydraulic conductivity (Ksat). CHN and EF regulate the partitioning of available energy between sensible and latent heat fluxes. Ksat is one of the main parameters used in determining infiltration, runoff, groundwater recharge, and in simulating hydrological processes. In this study, a system of coupled parsimonious energy and water model will constrain the estimation of three unknown parameters in the VDA model. The profile of SM (LST) at multiple depths is estimated using moisture diffusion (heat diffusion) equation. In this study, the uncertainties of retrieved unknown parameters and fluxes are estimated from the inverse of Hesian matrix of cost function which is computed using the Lagrangian methodology. Analysis of uncertainty provides valuable information about the accuracy of estimated parameters and their correlation and guide the formulation of a well-posed estimation problem. The results of proposed algorithm are validated with a series of experiments using a synthetic data set generated by the simultaneous heat and

  13. Assessing the status of airline safety culture and its relationship to key employee attitudes

    Science.gov (United States)

    Owen, Edward L.

    The need to identify the factors that influence the overall safety environment and compliance with safety procedures within airline operations is substantial. This study examines the relationships between job satisfaction, the overall perception of the safety culture, and compliance with safety rules and regulations of airline employees working in flight operations. A survey questionnaire administered via the internet gathered responses which were converted to numerical values for quantitative analysis. The results were grouped to provide indications of overall average levels in each of the three categories, satisfaction, perceptions, and compliance. Correlations between data in the three sets were tested for statistical significance using two-sample t-tests assuming equal variances. Strong statistical significance was found between job satisfaction and compliance with safety rules and between perceptions of the safety environment and safety compliance. The relationship between job satisfaction and safety perceptions did not show strong statistical significance.

  14. Determination of the temperature coefficients and the kinetic parameters for the HTTR safety analysis

    International Nuclear Information System (INIS)

    Tokuhara, K.; Nakata, T.; Murata, I.; Yamashita, K.; Shindo, R.

    1991-01-01

    This report describes the calculational methods which were employed to determine the temperature coefficients and the kinetic parameters for the safety analysis in the HTTR (High Temperature Engineering Test Reactor). The temperature coefficients (doppler, moderator temperature) and the kinetic parameters (prompt neutron life time; l, effective delayed neutron fraction; β eff) are important for the point model core dynamic analysis and should be evaluated properly. The temperature coefficients were calculated by the whole core model. Doppler coefficient was evaluated under the conditions of all control rods withdrawn and the uniform change of fuel temperature. The minimum and the maximum value of the evaluated doppler coefficients in a burnup cycle are -4.6x10 -5 and -1.5x10 -5 ΔK/K/deg. C respectively. The moderator temperature coefficient was evaluated under the conditions of all control rods withdrawn and the uniform change of moderator temperature. The minimum and the maximum value of the evaluated moderator temperature coefficients in a burnup cycle are -17.1x10 -5 and 0.99x10 -5 ΔK/K/deg. C respectively. In spite of positive moderator temperature coefficient, the power coefficient is always negative. Therefore the HTTR possesses inherent power-suppressing feed back characteristic in all operating condition. We surveyed the effects of the Xe existence, the control rods existence, the fuel temperature and the region in which the temperature was changed on the moderator temperature coefficients. The kinetic parameters were calculated by the perturbation method with the whole core model. The minimum and the maximum value of the evaluated effective delayed neutron fraction (β eff) are 0.0047 and 0.0065 respectively. These of the evaluated prompt neutron life time (l) are 0.67 and 0.78 ms respectively. We have surveyed the effects of the fuel depletion and the core power level on these parameters, and considered these effects on the kinetic parameters. From

  15. Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data

    Science.gov (United States)

    Tong, Xuming; Chen, Jinghang; Miao, Hongyu; Li, Tingting; Zhang, Le

    2015-01-01

    Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data. PMID:26535589

  16. The Key to School Security.

    Science.gov (United States)

    Hotle, Dan

    1993-01-01

    In addition to legislative accessibility requirements, other security issues facing school administrators who select a security system include the following: access control; user friendliness; durability or serviceability; life safety precautions; possibility of vandalism, theft, and tampering; and key control. Offers steps to take in considering…

  17. Nuclear Safety

    International Nuclear Information System (INIS)

    1978-09-01

    In this short paper it has only been possible to deal in a rather general way with the standards of safety used in the UK nuclear industry. The record of the industry extending over at least twenty years is impressive and, indeed, unique. No other industry has been so painstaking in protection of its workers and in its avoidance of damage to the environment. Headings are: introduction; how a nuclear power station works; radiation and its effects (including reference to ICRP, the UK National Radiological Protection Board, and safety standards); typical radiation doses (natural radiation, therapy, nuclear power programme and other sources); safety of nuclear reactors - design; key questions (matters of concern which arise in the public mind); safety of operators; safety of people in the vicinity of a nuclear power station; safety of the general public; safety bodies. (U.K.)

  18. Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters.

    Science.gov (United States)

    Shin, Jaewoo; Kong, Chanho; Cho, Jae Sung; Lee, Jihyeon; Koh, Chin Su; Yoon, Min-Sik; Na, Young Cheol; Chang, Won Seok; Chang, Jin Woo

    2018-02-01

    OBJECTIVE The application of pharmacological therapeutics in neurological disorders is limited by the ability of these agents to penetrate the blood-brain barrier (BBB). Focused ultrasound (FUS) has recently gained attention for its potential application as a method for locally opening the BBB and thereby facilitating drug delivery into the brain parenchyma. However, this method still requires optimization to maximize its safety and efficacy for clinical use. In the present study, the authors examined several sonication parameters of FUS influencing BBB opening in small animals. METHODS Changes in BBB permeability were observed during transcranial sonication using low-intensity FUS in 20 adult male Sprague-Dawley rats. The authors examined the effects of FUS sonication with different sonication parameters, varying acoustic pressure, center frequency, burst duration, microbubble (MB) type, MB dose, pulse repetition frequency (PRF), and total exposure time. The focal region of BBB opening was identified by Evans blue dye. Additionally, H & E staining was used to identify blood vessel damage. RESULTS Acoustic pressure amplitude and burst duration were closely associated with enhancement of BBB opening efficiency, but these parameters were also highly correlated with tissue damage in the sonicated region. In contrast, MB types, MB dose, total exposure time, and PRF had an influence on BBB opening without conspicuous tissue damage after FUS sonication. CONCLUSIONS The study aimed to identify these influential conditions and provide safety and efficacy values for further studies. Future work based on the current results is anticipated to facilitate the implementation of FUS sonication for drug delivery in various CNS disease states in the near future.

  19. The logic of comparative life history studies for estimating key parameters, with a focus on natural mortality rate

    Science.gov (United States)

    Hoenig, John M; Then, Amy Y.-H.; Babcock, Elizabeth A.; Hall, Norman G.; Hewitt, David A.; Hesp, Sybrand A.

    2016-01-01

    There are a number of key parameters in population dynamics that are difficult to estimate, such as natural mortality rate, intrinsic rate of population growth, and stock-recruitment relationships. Often, these parameters of a stock are, or can be, estimated indirectly on the basis of comparative life history studies. That is, the relationship between a difficult to estimate parameter and life history correlates is examined over a wide variety of species in order to develop predictive equations. The form of these equations may be derived from life history theory or simply be suggested by exploratory data analysis. Similarly, population characteristics such as potential yield can be estimated by making use of a relationship between the population parameter and bio-chemico–physical characteristics of the ecosystem. Surprisingly, little work has been done to evaluate how well these indirect estimators work and, in fact, there is little guidance on how to conduct comparative life history studies and how to evaluate them. We consider five issues arising in such studies: (i) the parameters of interest may be ill-defined idealizations of the real world, (ii) true values of the parameters are not known for any species, (iii) selecting data based on the quality of the estimates can introduce a host of problems, (iv) the estimates that are available for comparison constitute a non-random sample of species from an ill-defined population of species of interest, and (v) the hierarchical nature of the data (e.g. stocks within species within genera within families, etc., with multiple observations at each level) warrants consideration. We discuss how these issues can be handled and how they shape the kinds of questions that can be asked of a database of life history studies.

  20. Labor unions and safety climate: perceived union safety values and retail employee safety outcomes.

    Science.gov (United States)

    Sinclair, Robert R; Martin, James E; Sears, Lindsay E

    2010-09-01

    Although trade unions have long been recognized as a critical advocate for employee safety and health, safety climate research has not paid much attention to the role unions play in workplace safety. We proposed a multiple constituency model of workplace safety which focused on three central safety stakeholders: top management, ones' immediate supervisor, and the labor union. Safety climate research focuses on management and supervisors as key stakeholders, but has not considered whether employee perceptions about the priority their union places on safety contributes contribute to safety outcomes. We addressed this gap in the literature by investigating unionized retail employee (N=535) perceptions about the extent to which their top management, immediate supervisors, and union valued safety. Confirmatory factor analyses demonstrated that perceived union safety values could be distinguished from measures of safety training, workplace hazards, top management safety values, and supervisor values. Structural equation analyses indicated that union safety values influenced safety outcomes through its association with higher safety motivation, showing a similar effect as that of supervisor safety values. These findings highlight the need for further attention to union-focused measures related to workplace safety as well as further study of retail employees in general. We discuss the practical implications of our findings and identify several directions for future safety research. 2009 Elsevier Ltd. All rights reserved.

  1. Implementation of safety management systems in Hong Kong construction industry - A safety practitioner's perspective.

    Science.gov (United States)

    Yiu, Nicole S N; Sze, N N; Chan, Daniel W M

    2018-02-01

    In the 1980s, the safety management system (SMS) was introduced in the construction industry to mitigate against workplaces hazards, reduce the risk of injuries, and minimize property damage. Also, the Factories and Industrial Undertakings (Safety Management) Regulation was introduced on 24 November 1999 in Hong Kong to empower the mandatory implementation of a SMS in certain industries including building construction. Therefore, it is essential to evaluate the effectiveness of the SMS in improving construction safety and identify the factors that influence its implementation in Hong Kong. A review of the current state-of-the-practice helped to establish the critical success factors (CSFs), benefits, and difficulties of implementing the SMS in the construction industry, while structured interviews were used to establish the key factors of the SMS implementation. Results of the state-of-the-practice review and structured interviews indicated that visible senior commitment, in terms of manpower and cost allocation, and competency of safety manager as key drivers for the SMS implementation. More so, reduced accident rates and accident costs, improved organization framework, and increased safety audit ratings were identified as core benefits of implementing the SMS. Meanwhile, factors such as insufficient resources, tight working schedule, and high labor turnover rate were the key challenges to the effective SMS implementation in Hong Kong. The findings of the study were consistent and indicative of the future development of safety management practice and the sustainable safety improvement of Hong Kong construction industry in the long run. Copyright © 2018 National Safety Council and Elsevier Ltd. All rights reserved.

  2. Development of safety performance indicators for HANARO

    International Nuclear Information System (INIS)

    Wu, Jong-Sup; Jung, Hoan-Sung; Ahn, Guk-Hoon; Lee, Kye-Hong; Lim, In-Cheol

    2007-01-01

    The nuclear facilities need an extensive basis for ensuring their safety. An operating organization should conduct its operation and utilization important to the safety in accordance with approved procedures and regulations. The general aims of a management system for nuclear facilities are to improve the safety performance through a planning, control and supervision of safety related activities and to foster a strong safety culture. The effectiveness of a management system can be monitored and measured to confirm the ability of its processes to achieve the intended safety performance by an assessment of the operational performance. The Operational Safety Performance Indicators, also known as SPI, help an organization define and measure a progress with regard to safety activity goals. The elements of a SPI are quantifiable measurements that reflect the critical success factors of an organizational safety. Since 1995, efforts have been directed towards the elaboration of a framework for the establishment of an operational safety performance indicator program in nuclear power plants (NPP). IAEA-TECDOC-1141, 'Operational safety performance indicators for NPP' attempted to provide a frame work for an identification of performance indicators which have a relationship to the desired safety attributes, and therefore, to a safe plant operation. Three key attributes of a smooth operation, an operation with a low risk, and an operation with a positive safety attitude, were recommended, which are associated with a safe operation. Because these attributes cannot be directly measured, an indicator structure is expanded further until a level of easily quantifiable or directly measurable indicators is identified. The intention of this approach is to use quantitative information provided by the specific indicators and to analyze performance trends relative to established goals. The safety activities in HANARO have been continuously conducted to enhance its safe operation. HANARO

  3. Thermodynamic sorption modelling in support of radioactive waste disposal safety cases - NEA sorption project phase III

    International Nuclear Information System (INIS)

    2012-01-01

    A central safety function of radioactive waste disposal repositories is the prevention or sufficient retardation of radionuclide migration to the biosphere. Performance assessment exercises in various countries, and for a range of disposal scenarios, have demonstrated that one of the most important processes providing this safety function is the sorption of radionuclides along potential migration paths beyond the engineered barriers. Thermodynamic sorption models (TSMs) are key for improving confidence in assumptions made about such radionuclide sorption when preparing a repository's safety case. This report presents guidelines for TSM development as well as their application in repository performance assessments. They will be of particular interest to the sorption modelling community and radionuclide migration modellers in developing safety cases for radioactive waste disposal Contents: 1 - Thermodynamic sorption models and radionuclide migration: Sorption and radionuclide migration; Applications of TSMs in radioactive waste disposal studies; Requirements for a scientifically defensible, calibrated TSM applicable to radioactive waste disposal; Current status of TSMs in radioactive waste management; 2 - Theoretical basis of TSMs and options in model development: Conceptual building blocks of TSMs and integration with aqueous chemistry; The TSM representation of sorption and relationship with Kd values; Theoretical basis of TSMs; Example of TSM for uranyl sorption; Options in TSM development; Illustration of TSM development and effects of modelling choices; Summary: TSMs for constraining Kd values - impact of modelling choices; 3 - Determination of parameters for TSMs: Overview of experimental determination of TSM parameters; Theoretical estimation methods of selected model parameters; Case study: sorption modelling of trivalent lanthanides/actinides on illite; Indicative values for certain TSM parameters; Parameter uncertainty; Illustration of parameter sensitivity

  4. Finite-key analysis for quantum key distribution with weak coherent pulses based on Bernoulli sampling

    Science.gov (United States)

    Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato

    2017-07-01

    An essential step in quantum key distribution is the estimation of parameters related to the leaked amount of information, which is usually done by sampling of the communication data. When the data size is finite, the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present security analyses are based on the method with simple random sampling, where hypergeometric distribution or its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling, which is related to binomial distribution. Our method is suitable for the Bennett-Brassard 1984 (BB84) protocol with weak coherent pulses [C. H. Bennett and G. Brassard, Proceedings of the IEEE Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Vol. 175], reducing the number of estimated parameters to achieve a higher key generation rate compared to the method with simple random sampling. We also apply the method to prove the security of the differential-quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that the advantage of the DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed in the asymptotic regime, persists in the finite-key regime.

  5. Key performance indicators for stroke from the Ministry of Health of Brazil: benchmarking and indicator parameters

    Directory of Open Access Journals (Sweden)

    Marcos C Lange

    Full Text Available ABSTRACT The present study aimed to analyze the stroke units in two centers for the key performance indicators (KPIs required by the Ministry of Health in Brazil. Methods All 16 KPIs were analyzed, including the percentage of patients admitted to the stroke unit, venous thromboembolism prophylaxis in the first 48 hours after admission, pneumonia and hospital mortality due to stroke, and hospital discharge on antithrombotic therapy in patients without cardioembolic mechanism. Results Both centers admitted over 80% of the patients in their stroke unit. The incidence of venous thromboembolism prophylaxis was > 85%, that of in-hospital pneumonia was 70%. Conclusion Our results suggest using the parameters of all of the 16 KPIs required by the Ministry of Health of Brazil, and the present results for the two stroke units for future benchmarking.

  6. Nuclear health and safety

    International Nuclear Information System (INIS)

    1991-04-01

    Numerous environmental, safety, and health problems found at other Department of Energy (DOE) defense nuclear facilities precipitated a review of these conditions at DOE's contractor-operated Pantex Plant, where our nation's nuclear weapons are assembled. This book focuses the review on examining key safety and health problems at Pantex and determining the need for external safety oversight of the plant

  7. 47{sup th} Annual meeting on nuclear technology (AMNT 2016). Key Topics / Enhanced safety and operation excellence and decommissioning experience and Waste management solutions

    Energy Technology Data Exchange (ETDEWEB)

    Salnikova, Tatiana [AREVA GmbH, Erlangen (Germany); Schaffrath, Andreas [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-10-15

    Summary report on the Key Topics ''Enhanced Safety and Operation Excellence'' and ''Decommissioning Experience and Waste Management Solutions'' of the 47{sup th} Annual Conference on Nuclear Technology (AMNT 2016) held in Hamburg, 10 to 12 May 2016. Other Sessions of AMNT 2016 have been and will be covered in further issues of atw.

  8. Parameters affecting of Akkuyu's safety assessment for severe core damages

    Science.gov (United States)

    Kavun, Yusuf; Karasulu, Muzaffer

    2015-07-01

    We have looked at all past core meltdowns (Three Mile Island, Chernobyl and Fukushima incidents) and postulated the fourth one might be taking place in the future most probably in a newly built reactors anywhere of the earth in any type of NPP. The probability of this observation is high considering the nature of the machine and human interaction. Operation experience is a very significant parameter as well as the safety culture of the host nation. The concerns is not just a lack of experience with industry with the new comers, but also the infrastructure and established institutions who will be dealing with the Emergencies. Lack of trained and educated Emergency Response Organizations (ERO) is a major concern. The culture on simple fire drills even makes the difference when a severe condition occurs in the industry. The study assumes the fourth event will be taking place at the Akkuyu NGS and works backwards as required by the "what went wrong " scenarios and comes up with interesting results. The differences studied in depth to determine the impact to the severe accidents. The all four design have now core catchers. We have looked at the operator errors'like in TMI); Operator errors combined with design deficiencies(like in Chernobyl) and natural disasters( like in Fukushima) and found operator errors to be more probable event on the Akkuyu's postulated next incident. With respect to experiences of the operators we do not have any data except for long and successful operating history of the Soviet design reactors up until the Chernobyl incident. Since the Akkuyu will be built, own and operated by the Russians we have found no alarming concerns at the moment. At the moment, there is no body be able to operate those units in Turkey. Turkey is planning to build the required manpower during the transition period. The resolution of the observed parameters lies to work and educate, train of the host nation and exercise together.

  9. Dynamics of psychological safety in mothers raising children with special needs

    Directory of Open Access Journals (Sweden)

    Atamanova I.

    2018-01-01

    Full Text Available There is a considerable decrease in psychological well-being among mothers raising children with special needs. Addressing the issues of providing psychological support for them is of particular importance for both researchers and practitioners. The paper presents a study aimed at exploring the dynamics of psychological safety in mothers raising children with special needs. 32 mothers whose children underwent a rehabilitation programme in a rehabilitation centre participated in the study. The key element of the psychological support programme developed for these mothers was a specific psychotherapeutic space combining hippotherapy with environmental, social and personal factors. Compared to the control group, the study participants’ parameters of psychological safety showed statistically significant positive dynamics. The results obtained contribute to studying factors of psychological well-being in mothers raising children with special needs and suggest an effective way of enhancing their sense of psychological safety.

  10. Modeling Parameters of Reliability of Technological Processes of Hydrocarbon Pipeline Transportation

    Directory of Open Access Journals (Sweden)

    Shalay Viktor

    2016-01-01

    Full Text Available On the basis of methods of system analysis and parametric reliability theory, the mathematical modeling of processes of oil and gas equipment operation in reliability monitoring was conducted according to dispatching data. To check the quality of empiric distribution coordination , an algorithm and mathematical methods of analysis are worked out in the on-line mode in a changing operating conditions. An analysis of physical cause-and-effect relations mechanism between the key factors and changing parameters of technical systems of oil and gas facilities is made, the basic types of technical distribution parameters are defined. Evaluation of the adequacy the analyzed parameters of the type of distribution is provided by using a criterion A.Kolmogorov, as the most universal, accurate and adequate to verify the distribution of continuous processes of complex multiple-technical systems. Methods of calculation are provided for supervising by independent bodies for risk assessment and safety facilities.

  11. SYMMETRIC ENCRYPTION USING PRE-SHARED PUBLIC PARAMETERS FOR A SECURE TFTP PROTOCOL

    Directory of Open Access Journals (Sweden)

    N. N. MOHAMED

    2017-01-01

    Full Text Available Advances in the communication technology of embedded systems have led to the situation where nowadays almost all systems should implement security for data safety. Trivial File Transfer Protocol (TFTP has advantages for use in embedded systems due to its speed and simplicity, however without security mechanisms, it is vulnerable to various attacks. As an example, during upgrading of Wireless Access Points (WAPs, attackers can access the information and modify it, and then install malicious code to interrupt the system. This work proposes security implementation of Diffie Hellman Key Exchange in TFTP by pre-sharing public parameters that enable two parties to achieve same secret key without the risk of Man-In-The-Middle (MITM attacks. The implementation is integrated with compression and encryption methods to significantly reduce computational requirements in TFTP communication.

  12. Safety Climate of Commercial Vehicle Operation

    Science.gov (United States)

    2010-03-01

    Enhancing the safety culture within trucking and motor coach industries has become a key area of concern given the potential impact it has on crashes and overall safety. Many organizations recognize that safety is compromised if the culture within th...

  13. Management of safety and safety culture at the NPPs of Ukraine

    International Nuclear Information System (INIS)

    Koltakov, Vladimir

    2002-01-01

    The report contains general aspects of safety and safety culture. The brief description of operational characteristics and basic indexes of atomic power plants at the Ukraine are represented. The information referring to structure of NPPs of Operation organization license-holder, safety responsibility of both Regulatory and Utility Bodies also is given. The main part of the report include seven sections: 1. Practical application of safety management models; 2. erspective on the relationship between safety management and safety culture; 3. The role of leadership in achieving high standards of safety; 4. Current and future challengers that impact on safety culture and safety management (e.g. the impact of competition, changing, economic and political circumstances, workforce demographics, etc.); 5. Key lessons learned from major events; 6. Practical applications of safety culture concepts (e.g. learning organizations, training staff communications, etc.); 7. dvance in human performance. Some of the main pending safety and safety culture problems that are necessary to achieve in the near future are mentioned

  14. Priming patient safety: A middle-range theory of safety goal priming via safety culture communication.

    Science.gov (United States)

    Groves, Patricia S; Bunch, Jacinda L

    2018-05-18

    The aim of this paper is discussion of a new middle-range theory of patient safety goal priming via safety culture communication. Bedside nurses are key to safe care, but there is little theory about how organizations can influence nursing behavior through safety culture to improve patient safety outcomes. We theorize patient safety goal priming via safety culture communication may support organizations in this endeavor. According to this theory, hospital safety culture communication activates a previously held patient safety goal and increases the perceived value of actions nurses can take to achieve that goal. Nurses subsequently prioritize and are motivated to perform tasks and risk assessment related to achieving patient safety. These efforts continue until nurses mitigate or ameliorate identified risks and hazards during the patient care encounter. Critically, this process requires nurses to have a previously held safety goal associated with a repertoire of appropriate actions. This theory suggests undergraduate educators should foster an outcomes focus emphasizing the connections between nursing interventions and safety outcomes, hospitals should strategically structure patient safety primes into communicative activities, and organizations should support professional development including new skills and the latest evidence supporting nursing practice for patient safety. © 2018 John Wiley & Sons Ltd.

  15. Nuclear Safety Culture & Leadership in Slovenske Elektrarne

    International Nuclear Information System (INIS)

    Janko, P.

    2016-01-01

    This presentation shows practically how nuclear safety culture is maintained and assessed in Slovenske elektrarne, supported by human performance program and leadership model. Safety is the highest priority and it must be driven by the Leaders in the field. Human Performance is key to safety and therefore key to our success. Safety Policy of our operating organization—licence holder, is in line with international best practices and nuclear technology is recognised as special and unique. All nuclear facilities adopt a clear safety policy and are operated with overriding priority to nuclear safety, the protection of nuclear workers, the general public and the environment from risk of harm. The focus is on nuclear safety, although the same principles apply to radiological safety, industrial safety and environmental safety. Safety culture is assessed regularly based (every two years) on eight principles for strong safety culture in nuclear utilities. Encourage excellence in all plant activities and to go beyond compliance with applicable laws and regulations. Adopt management approaches embodying the principles of Continuous Improvement and risk Management is never ending activity for us. (author)

  16. Selling safety: the use of celebrities in improving awareness of safety in commercial aviation.

    Science.gov (United States)

    Molesworth, Brett R C; Seneviratne, Dimuth; Burgess, Marion

    2016-07-01

    The aim of this study was to investigate the influential power of a celebrity to convey key safety messages in commercial aviation using a pre-flight safety briefing video. In addition, the present research sought to examine the effectiveness of subtitles in aiding the recall of these important messages as well as how in-cabin aircraft noise affects recall of this information. A total of 101 participants were randomly divided into four groups (no noise without subtitles, no noise with subtitles, noise without subtitles and noise with subtitles) and following exposure to a pre-recorded pre-flight safety briefing video were tested for recall of key safety messages within that video. Participants who recognised and recalled the name of the celebrity in the safety briefing video recalled significantly more of the messages than participants who did not recognise the celebrity. Subtitles were also found to be effective, however, only in the presence of representative in-cabin aircraft noise. Practitioner Summary: Passenger attention to pre-flight safety briefings on commercial aircraft is poor. Utilising the celebrity status of a famous person may overcome this problem. Results suggest that celebrities do increase the recall of safety-related information.

  17. The conception of fashion products for children: reflections on safety parameters.

    Science.gov (United States)

    Prete, Lígia Gomes Pereira; Emidio, Lucimar de Fátima Bilmaia; Martins, Suzana Barreto

    2012-01-01

    The purpose of this study is to reflect on safety requirements for children's clothing, based on the standardization proposed by the ABNT (Technical Standardization Brazilian Association). Bibliographic research and case studies were considered on writing this work. We also discuss the importance of adding other safety requirements to the current standardization, as well as the increasing of the actual age range specified by the ABNT, following the children's clothing safety standardizations in Portugal and the United States, also stated here.

  18. Machine and Woodworking Tool Safety. Module SH-24. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on machine and woodworking tool safety is one of 50 modules concerned with job safety and health. This module discusses specific practices and precautions concerned with the efficient operation and use of most machine and woodworking tools in use today. Following the introduction, 13 objectives (each keyed to a page in the…

  19. Cloud/Fog Computing System Architecture and Key Technologies for South-North Water Transfer Project Safety

    Directory of Open Access Journals (Sweden)

    Yaoling Fan

    2018-01-01

    Full Text Available In view of the real-time and distributed features of Internet of Things (IoT safety system in water conservancy engineering, this study proposed a new safety system architecture for water conservancy engineering based on cloud/fog computing and put forward a method of data reliability detection for the false alarm caused by false abnormal data from the bottom sensors. Designed for the South-North Water Transfer Project (SNWTP, the architecture integrated project safety, water quality safety, and human safety. Using IoT devices, fog computing layer was constructed between cloud server and safety detection devices in water conservancy projects. Technologies such as real-time sensing, intelligent processing, and information interconnection were developed. Therefore, accurate forecasting, accurate positioning, and efficient management were implemented as required by safety prevention of the SNWTP, and safety protection of water conservancy projects was effectively improved, and intelligential water conservancy engineering was developed.

  20. Associations between safety climate and safety management practices in the construction industry.

    Science.gov (United States)

    Marín, Luz S; Lipscomb, Hester; Cifuentes, Manuel; Punnett, Laura

    2017-06-01

    Safety climate, a group-level measure of workers' perceptions regarding management's safety priorities, has been suggested as a key predictor of safety outcomes. However, its relationship with actual injury rates is inconsistent. We posit that safety climate may instead be a parallel outcome of workplace safety practices, rather than a determinant of workers' safety behaviors or outcomes. Using a sample of 25 commercial construction companies in Colombia, selected by injury rate stratum (high, medium, low), we examined the relationship between workers' safety climate perceptions and safety management practices (SMPs) reported by safety officers. Workers' perceptions of safety climate were independent of their own company's implementation of SMPs, as measured here, and its injury rates. However, injury rates were negatively related to the implementation of SMPs. Safety management practices may be more important than workers' perceptions of safety climate as direct predictors of injury rates. © 2017 Wiley Periodicals, Inc.

  1. Visitor Safety and Security in Barbados: Stakeholder Perceptions

    Directory of Open Access Journals (Sweden)

    Clifford Griffin

    2010-12-01

    Full Text Available Is information about the nature, location and incidence of crimes against tourists/visitors sufficient to develop meaningful visitor safety and security policy? Are the views of key tourism stakeholder groups useful in informing and enhancing visitor safety and security policy? To answer these questions, this study analyzes 24 years of recorded crime data against visitors to Barbados and survey data of key tourism stakeholder groups and concludes: 1 that information about the nature, location and incidence of crimes against visitors is necessary but not sufficient to inform visitor safety and security policy; and 2 that the views and input of key stakeholders are essential if destinations are to become more effective in enhancing visitor safety and security.

  2. Dose-associated changes in safety and efficacy parameters observed in a 24-week maintenance trial of olanzapine long-acting injection in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Watson Susan B

    2011-02-01

    Full Text Available Abstract Background In a recently published 24-week maintenance study of olanzapine long-acting injection (LAI in schizophrenia (Kane et al., 2010, apparent dose-associated changes were noted in both efficacy and safety parameters. To help clinicians balance safety and efficacy when choosing a dose of olanzapine LAI, we further studied these changes. Methods Outpatients with schizophrenia who had maintained stability on open-label oral olanzapine for 4 to 8 weeks were randomly assigned to "low" (150 mg/2 weeks; N = 140, "medium" (405 mg/4 weeks; N = 318, or "high" (300 mg/2 weeks; N = 141 dosages of olanzapine LAI for 24 weeks. Potential relationships between dose and several safety or efficacy measures were examined via regression analysis, the Jonckheere-Terpstra test (continuous data, or the Cochran-Armitage test (categorical data. Results Safety parameters statistically significantly related to dose were mean weight change (low: +0.67 [SD = 4.38], medium: +0.89 [SD = 3.87], high: +1.70 [SD = 4.14] kg, p = .024; effect size [ES] = 0.264 high vs. low dose, mean change in prolactin (low: -5.61 [SD = 12.49], medium: -2.76 [SD = 19.02], high: +3.58 [SD = 33.78] μg/L, p = .001; ES = 0.410 high vs. low dose, fasting triglycerides change from normal at baseline to high (low: 3.2%, medium: 6.0%, high: 18.9%, p = .001; NNT = 7 high vs. low dose and fasting high-density lipoprotein cholesterol change from normal at baseline to low (low: 13.8%, medium: 19.6%, high: 30.7%, p = .019; NNT = 6 high vs. low dose. Efficacy measures significantly related to dose included Positive and Negative Syndrome Scale total score mean change (low: +2.66 [SD = 14.95], medium: -0.09 [SD = 13.47], high: -2.19 [SD = 13.11], p Conclusions Analyses of several safety and efficacy parameters revealed significant associations with dose of olanzapine LAI, with the highest dose generally showing greater efficacy as well as greater adverse changes in metabolic safety measures. When

  3. Determinants for conducting food safety culture research

    NARCIS (Netherlands)

    Nyarugwe, Shingai P.; Linnemann, Anita; Hofstede, Gert Jan; Fogliano, Vincenzo; Luning, Pieternel A.

    2016-01-01

    Background Foodborne outbreaks continue to occur regardless of existing food safety measures indicating the shortcomings of these measures to assure food safety. This has led to the recognition of food safety culture as a key contributory factor to the food safety performance of food

  4. Performance and Reliability of DSRC Vehicular Safety Communication: A Formal Analysis

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available IEEE- and ASTM-adopted dedicated short range communications (DSRC standard toward 802.11p is a key enabling technology for the next generation of vehicular safety communication. Broadcasting of safety messages is one of the fundamental services in DSRC. There have been numerous publications addressing design and analysis of such broadcast ad hoc system based on the simulations. For the first time, an analytical model is proposed in this paper to evaluate performance and reliability of IEEE 802.11a-based vehicle-to-vehicle (V2V safety-related broadcast services in DSRC system on highway. The proposed model takes two safety services with different priorities, nonsaturated message arrival, hidden terminal problem, fading transmission channel, transmission range, IEEE 802.11 backoff counter process, and highly mobile vehicles on highway into account. Based on the solutions to the proposed analytic model, closed-form expressions of channel throughput, transmission delay, and packet reception rates are derived. From the obtained numerical results under various offered traffic and network parameters, new insights and enhancement suggestions are given.

  5. A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing

    International Nuclear Information System (INIS)

    Walenta, N; Gisin, N; Guinnard, O; Houlmann, R; Korzh, B; Lim, C W; Lunghi, T; Portmann, C; Thew, R T; Burg, A; Constantin, J; Caselunghe, D; Kulesza, N; Legré, M; Monat, L; Soucarros, M; Trinkler, P; Junod, P; Trolliet, G; Vannel, F

    2014-01-01

    We present a compactly integrated, 625 MHz clocked coherent one-way quantum key distribution system which continuously distributes secret keys over an optical fibre link. To support high secret key rates, we implemented a fast hardware key distillation engine which allows for key distillation rates up to 4 Mbps in real time. The system employs wavelength multiplexing in order to run over only a single optical fibre. Using fast gated InGaAs single photon detectors, we reliably distribute secret keys with a rate above 21 kbps over 25 km of optical fibre. We optimized the system considering a security analysis that respects finite-key-size effects, authentication costs and system errors for a security parameter of ε QKD  = 4 × 10 −9 . (paper)

  6. HTR-PM Safety requirement and Licensing experience

    International Nuclear Information System (INIS)

    Li Fu; Zhang Zuoyi; Dong Yujie; Wu Zongxin; Sun Yuliang

    2014-01-01

    HTR-PM is a 200MWe modular pebble bed high temperature reactor demonstration plant which is being built in Shidao Bay, Weihai, Shandong, China. The main design parameters of HTR-PM were fixed in 2006, the basic design was completed in 2008. The review of Preliminary Safety Analysis Report (PSAR) of HTR-PM was started in April 2008, completed in September 2009. In general, HTR- PM design complies with the current safety requirement for nuclear power plant in China, no special standards are developed for modular HTR. Anyway, Chinese Nuclear Safety Authority, together with the designers, developed some dedicated design criteria for key systems and components and published the guideline for the review of safety analysis report of HTR-PM, based on the experiences from licensing of HTR-10 and new development of nuclear safety. The probabilistic safety goal for HTR-PM was also defined by the safety authority. The review of HTR-PM PSAR lasted for one and a half years, with 3 dialogues meetings and 8 topics meetings, with more than 2000 worksheets and answer sheets. The heavily discussed topics during the PSAR review process included: the requirement for the sub-atmospheric ventilation system, the utilization of PSA in design process, the scope of beyond design basis accidents, the requirement for the qualification of TRISO coating particle fuel, and etc. Because of the characteristics of first of a kind for the demonstration plant, the safety authority emphasized the requirement for the experiment and validation, the PSAR was licensed with certain licensing conditions. The whole licensing process was under control, and was re-evaluated again after Fukushima accident to be shown that the design of HTR-PM complies with current safety requirement. This is a good example for how to license a new reactor. (author)

  7. IRSN safety research carried out for reviewing geological disposal safety case

    International Nuclear Information System (INIS)

    Serres, Christophe; Besnus, Francois; Gay, Didier

    2010-01-01

    The Radiation Protection and Nuclear Safety Institute develops a research programme on scientific issues related to geological disposal safety in order to supporting the technical assessment carried out in the framework of the regulatory review process. This research programme is organised along key safety questions that deal with various scientific disciplines as geology, hydrogeology, mechanics, geochemistry or physics and is implemented in national and international partnerships. It aims at providing IRSN with sufficient independent knowledge and scientific skills in order to be able to assess whether the scientific results gained by the waste management organisation and their integration for demonstrating the safety of the geological disposal are acceptable with regard to the safety issues to be dealt with in the Safety Case. (author)

  8. Determination of a PWR key neutron parameters uncertainties and conformity studies applications; Determination des incertitudes liees aux grandeurs neutroniques d'interet des reacteurs a eau pressurisee a plaques combustible et applications aux etudes de conformite

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, D

    2002-07-01

    The aim of this thesis was to evaluate uncertainties of key neutron parameters of slab reactors. Uncertainties sources have many origins, technologic origin for parameters of fabrication and physical origin for nuclear data. First, each contribution of uncertainties is calculated and finally, a factor of uncertainties is associated to key slab parameter like reactivity, isotherm reactivity coefficient, control rod efficiency, power form factor before irradiation and lifetime. This factors of uncertainties were computed by Generalized Perturbations Theory in case of step 0 and by directs calculations in case of irradiation problems. One of neutronic conformity applications was about fabrication and nuclear data targets precision adjustments. Statistic (uncertainties) and deterministic (deviations) approaches were studied. Then neutronics key slab parameters uncertainties were reduced and so nuclear performances were optimised. (author)

  9. Novi Han Radioactive Waste Repository post-closure safety assessment, ver.2

    International Nuclear Information System (INIS)

    Mateeva, M.

    2003-01-01

    The methodology for the post-closure safety assessment is presented. The assessment context includes regulatory framework (protection principles); scope and time frame; radiological and technical requirements; modeling etc. The description of the Novi Han disposal system contains site location. meteorological, hydrological and seismological characteristics; waste and repository description and human activities characteristics. The next step in the methodology is scenario development and justification. The systematic generation os exposure scenarios is considered as central to the post-closure safety assessment. The most important requirements for the systematic scenario generation approach are: transparency, comprehensiveness (all possible FEPs influencing the the disposal system and the radionuclide release should be considered); relevant future evolutions; identification of critical issues and investigation of the robustness of the system. For the source-pathway-receptor analysis the Process System is divided into near-field, geosphere/atmosphere and biosphere, describing the key facets controlling the potential radionuclide migration to the environment. The schematic division of the Novi Han near-field Process System into lower-level conceptual features is presented and discussed. As a result of the examinations of the FEPs three classes of scenarios are identified for the Novi Han post-closure safety assessment: Environmental evolution scenarios (geological change and climate change); future human action scenarios (human intrusion and archaeological action); Scenarios with very low probability (terrorism, crashes, explosions). The safety assessment iteration leads to identification of a modern scenario generation approach, assessment of key radionuclide releases, geological and hydrological evaluation, identification of the key parameters from sensitivity analysis etc. Examples of conceptual models are given. For the mathematical modeling the AMBER code is used

  10. The Role of OSHA in Safety and Health. Module SH-02. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on the role of OSHA (Occupational Safety and Health Act) in Safety and Health is one of 50 modules concerned with job safety and health. This module looks at the OSHA Act, its aims, and the rights and responsibilities of employers and workers under the Act. Following the introduction, 16 objectives (each keyed to a page in the…

  11. Creating a culture of safety: why CEOs hold the key to improved outcomes.

    Science.gov (United States)

    Birk, Susan

    2009-01-01

    When the nonprofit VHA foundation, created by VHA Inc., Irving, Texas, embarked on a national patient safety initiative it looked first to outside industries, gathering information and ideas from pioneers in nuclear energy, aviation, the military and other innovation-rich fields known for safety excellence.

  12. Model-based verification method for solving the parameter uncertainty in the train control system

    International Nuclear Information System (INIS)

    Cheng, Ruijun; Zhou, Jin; Chen, Dewang; Song, Yongduan

    2016-01-01

    This paper presents a parameter analysis method to solve the parameter uncertainty problem for hybrid system and explore the correlation of key parameters for distributed control system. For improving the reusability of control model, the proposed approach provides the support for obtaining the constraint sets of all uncertain parameters in the abstract linear hybrid automata (LHA) model when satisfying the safety requirements of the train control system. Then, in order to solve the state space explosion problem, the online verification method is proposed to monitor the operating status of high-speed trains online because of the real-time property of the train control system. Furthermore, we construct the LHA formal models of train tracking model and movement authority (MA) generation process as cases to illustrate the effectiveness and efficiency of the proposed method. In the first case, we obtain the constraint sets of uncertain parameters to avoid collision between trains. In the second case, the correlation of position report cycle and MA generation cycle is analyzed under both the normal and the abnormal condition influenced by packet-loss factor. Finally, considering stochastic characterization of time distributions and real-time feature of moving block control system, the transient probabilities of wireless communication process are obtained by stochastic time petri nets. - Highlights: • We solve the parameters uncertainty problem by using model-based method. • We acquire the parameter constraint sets by verifying linear hybrid automata models. • Online verification algorithms are designed to monitor the high-speed trains. • We analyze the correlation of key parameters and uncritical parameters. • The transient probabilities are obtained by using reliability analysis.

  13. A management system integrating radiation protection and safety supporting safety culture in the hospital

    International Nuclear Information System (INIS)

    Almen, A.; Lundh, C.

    2015-01-01

    Quality assurance has been identified as an important part of radiation protection and safety for a considerable time period. A rational expansion and improvement of quality assurance is to integrate radiation protection and safety in a management system. The aim of this study was to explore factors influencing the implementing strategy when introducing a management system including radiation protection and safety in hospitals and to outline benefits of such a system. The main experience from developing a management system is that it is possible to create a vast number of common policies and routines for the whole hospital, resulting in a cost-efficient system. One of the key benefits is the involvement of management at all levels, including the hospital director. Furthermore, a transparent system will involve staff throughout the organisation as well. A management system supports a common view on what should be done, who should do it and how the activities are reviewed. An integrated management system for radiation protection and safety includes key elements supporting a safety culture. (authors)

  14. Generative Programming for Functional Safety in Mobile Robots

    DEFF Research Database (Denmark)

    Adam, Marian Sorin

    2018-01-01

    execution environment. The effective usage of DeRoS to specify safetyrelated properties of mobile robots and generation of a runtime verification infrastructure for the different controllers has been experimentally demonstrated on ROS-based systems, safety PLCs and microcontrollers. The key issue of making......Safety is a major challenge in robotics, in particular for mobile robots operating in an open and unpredictable environment. Safety certification is desired for commercial robots, but the existing approaches for addressing safety do not provide a clearly defined and isolated programmatic safety...... layer, with an easily understandable specification for facilitating safety certification. Moreover, mobile robots are advanced systems often implemented using a distributed architecture where software components are deployed on heterogeneous hardware modules. Many components are key to the overall...

  15. Lead-acid batteries in micro-hybrid applications. Part I. Selected key parameters

    Science.gov (United States)

    Schaeck, S.; Stoermer, A. O.; Kaiser, F.; Koehler, L.; Albers, J.; Kabza, H.

    Micro-hybrid electric vehicles were launched by BMW in March 2007. These are equipped with brake energy regeneration (BER) and the automatic start and stop function (ASSF) of the internal combustion engine. These functions are based on common 14 V series components and lead-acid (LA) batteries. The novelty is given by the intelligent onboard energy management, which upgrades the conventional electric system to the micro-hybrid power system (MHPS). In part I of this publication the key factors for the operation of LA batteries in the MHPS are discussed. Especially for BER one is high dynamic charge acceptance (DCA) for effective boost charging. Vehicle rest time is identified as a particular negative parameter for DCA. It can be refreshed by regular fully charging at elevated charge voltage. Thus, the batteries have to be outstandingly robust against overcharge and water loss. This can be accomplished for valve-regulated lead-acid (VRLA) batteries at least if they are mounted in the trunk. ASSF goes along with frequent high-rate loads for warm cranking. The internal resistance determines the drop of the power net voltage during cranking and is preferably low for reasons of power net stability even after years of operation. Investigations have to be done with aged 90 Ah VRLA-absorbent glass mat (AGM) batteries. Battery operation at partial state-of-charge gives a higher risk of deep discharging (overdischarging). Subsequent re-charging then is likely to lead to the formation of micro-short circuits in the absorbent glass mat separator.

  16. Determination of a PWR key neutron parameters uncertainties and conformity studies applications; Determination des incertitudes liees aux grandeurs neutroniques d'interet des reacteurs a eau pressurisee a plaques combustible et applications aux etudes de conformite

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, D

    2002-07-01

    The aim of this thesis was to evaluate uncertainties of key neutron parameters of slab reactors. Uncertainties sources have many origins, technologic origin for parameters of fabrication and physical origin for nuclear data. First, each contribution of uncertainties is calculated and finally, a factor of uncertainties is associated to key slab parameter like reactivity, isotherm reactivity coefficient, control rod efficiency, power form factor before irradiation and lifetime. This factors of uncertainties were computed by Generalized Perturbations Theory in case of step 0 and by directs calculations in case of irradiation problems. One of neutronic conformity applications was about fabrication and nuclear data targets precision adjustments. Statistic (uncertainties) and deterministic (deviations) approaches were studied. Then neutronics key slab parameters uncertainties were reduced and so nuclear performances were optimised. (author)

  17. Safety analysis procedures for PHWR

    International Nuclear Information System (INIS)

    Min, Byung Joo; Kim, Hyoung Tae; Yoo, Kun Joong

    2004-03-01

    The methodology of safety analyses for CANDU reactors in Canada, a vendor country, uses a combination of best-estimate physical models and conservative input parameters so as to minimize the uncertainty of the plant behavior predictions. As using the conservative input parameters, the results of the safety analyses are assured the regulatory requirements such as the public dose, the integrity of fuel and fuel channel, the integrity of containment and reactor structures, etc. However, there is not the comprehensive and systematic procedures for safety analyses for CANDU reactors in Korea. In this regard, the development of the safety analyses procedures for CANDU reactors is being conducted not only to establish the safety analyses system, but also to enhance the quality assurance of the safety assessment. In the first phase of this study, the general procedures of the deterministic safety analyses are developed. The general safety procedures are covered the specification of the initial event, selection of the methodology and accident sequences, computer codes, safety analysis procedures, verification of errors and uncertainties, etc. Finally, These general procedures of the safety analyses are applied to the Large Break Loss Of Coolant Accident (LBLOCA) in Final Safety Analysis Report (FSAR) for Wolsong units 2, 3, 4

  18. Simulation-based Extraction of Key Material Parameters from Atomic Force Microscopy

    Science.gov (United States)

    Alsafi, Huseen; Peninngton, Gray

    Models for the atomic force microscopy (AFM) tip and sample interaction contain numerous material parameters that are often poorly known. This is especially true when dealing with novel material systems or when imaging samples that are exposed to complicated interactions with the local environment. In this work we use Monte Carlo methods to extract sample material parameters from the experimental AFM analysis of a test sample. The parameterized theoretical model that we use is based on the Virtual Environment for Dynamic AFM (VEDA) [1]. The extracted material parameters are then compared with the accepted values for our test sample. Using this procedure, we suggest a method that can be used to successfully determine unknown material properties in novel and complicated material systems. We acknowledge Fisher Endowment Grant support from the Jess and Mildred Fisher College of Science and Mathematics,Towson University.

  19. Criticality safety considerations. Integral Monitored Retrievable Storage (MRS) Facility

    International Nuclear Information System (INIS)

    1986-09-01

    This report summarizes the criticality analysis performed to address criticality safety concerns and to support facility design during the conceptual design phase of the Monitored Retrievable Storage (MRS) Facility. The report addresses the criticality safety concerns, the design features of the facility relative to criticality, and the results of the analysis of both normal operating and hypothetical off-normal conditions. Key references are provided (Appendix C) if additional information is desired by the reader. The MRS Facility design was developed and the related analysis was performed in accordance with the MRS Facility Functional Design Criteria and the Basis for Design. The detailed description and calculations are documented in the Integral MRS Facility Conceptual Design Report. In addition to the summary portion of this report, explanatary notes for various terms, calculation methodology, and design parameters are presented in Appendix A. Appendix B provides a brief glossary of technical terms

  20. Managing electrical safety

    CERN Document Server

    Wiggins, James H, Jr

    2001-01-01

    Managing Electrical Safety provides an overview of electric basics, hazards, and established standards that enables you to understand the hazards you are likely to encounter in your workplace. Focusing on typical industrial environments-which utilize voltages much higher than household or office circuits-the author identifies the eight key components of an electrical safety program and examines each using a model safety management process. You'll learn how to identify electrical hazards, how to prescribe necessary electrical Personal Protective Equipment, how to ensure that equipment is de-ene

  1. Radiographers' professional knowledge regarding parameters and safety issues in plain radiography: a questionnaire survey.

    Science.gov (United States)

    Farajollahi, A R; Fouladi, D F; Ghojazadeh, M; Movafaghi, A

    2014-08-01

    To review the knowledge of radiographers and examine the possible sociodemographic and situational contributors to this knowledge. A questionnaire survey was devised and distributed to a cohort of 120 radiographers. Each questionnaire contained two sections. In the first section, background data, including sex, age, highest academic level, grade point average (GPA), length of time from graduation, work experience as a radiographer and the status of previous refresher course(s), were collected. The second section contained 17 multiple-choice questions concerning radiographic imaging parameters and safety issues. The response rate was 63.8%. In univariate analytic model, higher academic degree (p workplace (p = 0.04) and taking previous refresher course(s) (p = 0.01) were significantly associated with higher knowledge score. In multivariate analytic model, however, higher academic degree (B = 1.62; p = 0.01), higher GPA (B = 0.50; p = 0.01) and taking previous refresher course(s) (B = -1.26; p = 0.03) were independently associated with higher level of knowledge. Age, sex, length of time from graduation and work experience were not associated with the respondents' knowledge score. Academic background is a robust indicator of a radiographer's professional knowledge. Refresher courses and regular knowledge assessments are highly recommended. This is the first study in the literature that examines professional knowledge of radiographers in terms of technical and safety issues in plain radiography. Academic degree, GPA and refresher courses are independent predictors of this knowledge. Regular radiographer professional knowledge checks may be recommended.

  2. Knowledge representation in safety assessment: improving transparency and traceability

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, F.L. de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Sullivan, T. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Ross, T. [University of New Mexico (UNM), Albuquerque, NM (United States); Guimaraes, L.N.F. [Instituto de Estudos Avancados (IEAv/CTA), Sao Jose dos Campos, SP (Brazil)

    2011-07-01

    Transparency and traceability are key factors for confidence building, acceptability, and quality enhancement of the safety assessment, and safety case for a radioactive waste disposal facility. In order to facilitate analysis and promote discussions, all of the information used to make decisions should be readily available to stake holders. The information should convey a good understanding of the intermediate decisions processes, allowing examination of alternatives and 'what if questions'. In an ideal situation all stake holders, including scientists and the public, should be able to follow the path of a certain parameter, from the beginning where it was defined, its assumptions and uncertainties, throughout the calculations until the final results of the safety assessment. One of the main challenges, to achieving such a transparency and traceability, is that stake holders are a very diverse audience, with very different backgrounds. This could require preparation of various versions of the same documentation, which would be impractical. While the linguistic information is of crucial importance to understanding the reasoning, it is very difficult to convey the supporting conditions, and consequent uncertainties for the selection of parameters values. Even scientists involved in the process can become confused due to the overwhelming amount of information that is used to support parameter value selection. The amount of details makes it difficult to track the decisions, which lead to the selection of a certain parameter, throughout the calculations. This paper presents a methodology to represent the linguistic information used in the safety assessment in terms of mathematical expressions by using the fuzzy sets and fuzzy logic tools. This methodology aims to help information to be readily available while keeping, as much as possible, the original meaning of the linguistic expressions and, consequently, to be available at any time as a quick reference

  3. Knowledge representation in safety assessment: improving transparency and traceability

    International Nuclear Information System (INIS)

    Lemos, F.L. de; Sullivan, T.; Ross, T.; Guimaraes, L.N.F.

    2011-01-01

    Transparency and traceability are key factors for confidence building, acceptability, and quality enhancement of the safety assessment, and safety case for a radioactive waste disposal facility. In order to facilitate analysis and promote discussions, all of the information used to make decisions should be readily available to stake holders. The information should convey a good understanding of the intermediate decisions processes, allowing examination of alternatives and 'what if questions'. In an ideal situation all stake holders, including scientists and the public, should be able to follow the path of a certain parameter, from the beginning where it was defined, its assumptions and uncertainties, throughout the calculations until the final results of the safety assessment. One of the main challenges, to achieving such a transparency and traceability, is that stake holders are a very diverse audience, with very different backgrounds. This could require preparation of various versions of the same documentation, which would be impractical. While the linguistic information is of crucial importance to understanding the reasoning, it is very difficult to convey the supporting conditions, and consequent uncertainties for the selection of parameters values. Even scientists involved in the process can become confused due to the overwhelming amount of information that is used to support parameter value selection. The amount of details makes it difficult to track the decisions, which lead to the selection of a certain parameter, throughout the calculations. This paper presents a methodology to represent the linguistic information used in the safety assessment in terms of mathematical expressions by using the fuzzy sets and fuzzy logic tools. This methodology aims to help information to be readily available while keeping, as much as possible, the original meaning of the linguistic expressions and, consequently, to be available at any time as a quick reference. This would

  4. Analysis and modeling of safety parameters in the selection of optimal routes for emergency evacuation after the earthquake (Case study: 13 Aban neighborhood of Tehran

    Directory of Open Access Journals (Sweden)

    Sajad Ganjehi

    2013-08-01

    Full Text Available Introduction : Earthquakes are imminent threats to urban areas of Iran, especially Tehran. They can cause extensive destructions and lead to heavy casualties. One of the most important aspects of disaster management after earthquake is the rapid transfer of casualties to emergency shelters. To expedite emergency evacuation process the optimal safe path method should be considered. To examine the safety of road networks and to determine the most optimal route at pre-earthquake phase, a series of parameters should be taken into account.   Methods : In this study, we employed a multi-criteria decision-making approach to determine and evaluate the effective safety parameters for selection of optimal routes in emergency evacuation after an earthquake.   Results: The relationship between the parameters was analyzed and the effect of each parameter was listed. A process model was described and a case study was implemented in the 13th Aban neighborhood ( Tehran’s 20th municipal district . Then, an optimal path to safe places in an emergency evacuation after an earthquake in the 13th Aban neighborhood was selected.   Conclusion : Analytic hierarchy process (AHP, as the main model, was employed. Each parameter of the model was described. Also, the capabilities of GIS software such as layer coverage were used.     Keywords: Earthquake, emergency evacuation, Analytic Hierarchy Process (AHP, crisis management, optimization, 13th Aban neighborhood of Tehran

  5. Identifying the effects of parameter uncertainty on the reliability of riverbank stability modelling

    Science.gov (United States)

    Samadi, A.; Amiri-Tokaldany, E.; Darby, S. E.

    2009-05-01

    Bank retreat is a key process in fluvial dynamics affecting a wide range of physical, ecological and socioeconomic issues in the fluvial environment. To predict the undesirable effects of bank retreat and to inform effective measures to prevent it, a wide range of bank stability models have been presented in the literature. These models typically express bank stability by defining a factor of safety as the ratio of driving and resisting forces acting on the incipient failure block. These forces are affected by a range of controlling factors that include such aspects as the bank profile (bank height and angle), the geotechnical properties of the bank materials, as well as the hydrological status of the riverbanks. In this paper we evaluate the extent to which uncertainties in the parameterization of these controlling factors feed through to influence the reliability of the resulting bank stability estimate. This is achieved by employing a simple model of riverbank stability with respect to planar failure (which is the most common type of bank stability model) in a series of sensitivity tests and Monte Carlo analyses to identify, for each model parameter, the range of values that induce significant changes in the simulated factor of safety. These identified parameter value ranges are compared to empirically derived parameter uncertainties to determine whether they are likely to confound the reliability of the resulting bank stability calculations. Our results show that parameter uncertainties are typically high enough that the likelihood of generating unreliable predictions is typically very high (> ˜ 80% for predictions requiring a precision of < ± 15%). Because parameter uncertainties are derived primarily from the natural variability of the parameters, rather than measurement errors, much more careful attention should be paid to field sampling strategies, such that the parameter uncertainties and consequent prediction unreliabilities can be quantified more

  6. Finite key analysis in quantum cryptography

    International Nuclear Information System (INIS)

    Meyer, T.

    2007-01-01

    In view of experimental realization of quantum key distribution schemes, the study of their efficiency becomes as important as the proof of their security. The latter is the subject of most of the theoretical work about quantum key distribution, and many important results such as the proof of unconditional security have been obtained. The efficiency and also the robustness of quantum key distribution protocols against noise can be measured by figures of merit such as the secret key rate (the fraction of input signals that make it into the key) and the threshold quantum bit error rate (the maximal error rate such that one can still create a secret key). It is important to determine these quantities because they tell us whether a certain quantum key distribution scheme can be used at all in a given situation and if so, how many secret key bits it can generate in a given time. However, these figures of merit are usually derived under the ''infinite key limit'' assumption, that is, one assumes that an infinite number of quantum states are send and that all sub-protocols of the scheme (in particular privacy amplification) are carried out on these infinitely large blocks. Such an assumption usually eases the analysis, but also leads to (potentially) too optimistic values for the quantities in question. In this thesis, we are explicitly avoiding the infinite key limit for the analysis of the privacy amplification step, which plays the most important role in a quantum key distribution scheme. We still assume that an optimal error correction code is applied and we do not take into account any statistical errors that might occur in the parameter estimation step. Renner and coworkers derived an explicit formula for the obtainable key rate in terms of Renyi entropies of the quantum states describing Alice's, Bob's, and Eve's systems. This results serves as a starting point for our analysis, and we derive an algorithm that efficiently computes the obtainable key rate for any

  7. Finite key analysis in quantum cryptography

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, T.

    2007-10-31

    In view of experimental realization of quantum key distribution schemes, the study of their efficiency becomes as important as the proof of their security. The latter is the subject of most of the theoretical work about quantum key distribution, and many important results such as the proof of unconditional security have been obtained. The efficiency and also the robustness of quantum key distribution protocols against noise can be measured by figures of merit such as the secret key rate (the fraction of input signals that make it into the key) and the threshold quantum bit error rate (the maximal error rate such that one can still create a secret key). It is important to determine these quantities because they tell us whether a certain quantum key distribution scheme can be used at all in a given situation and if so, how many secret key bits it can generate in a given time. However, these figures of merit are usually derived under the ''infinite key limit'' assumption, that is, one assumes that an infinite number of quantum states are send and that all sub-protocols of the scheme (in particular privacy amplification) are carried out on these infinitely large blocks. Such an assumption usually eases the analysis, but also leads to (potentially) too optimistic values for the quantities in question. In this thesis, we are explicitly avoiding the infinite key limit for the analysis of the privacy amplification step, which plays the most important role in a quantum key distribution scheme. We still assume that an optimal error correction code is applied and we do not take into account any statistical errors that might occur in the parameter estimation step. Renner and coworkers derived an explicit formula for the obtainable key rate in terms of Renyi entropies of the quantum states describing Alice's, Bob's, and Eve's systems. This results serves as a starting point for our analysis, and we derive an algorithm that efficiently computes

  8. Safety systems and safety analysis of the Qinshan phase III CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Cai Jianping; Shen Sen; Barkman, N.

    1999-01-01

    The author introduces the Canadian nuclear reactor safety philosophy and the Qinshan Phase III CANDU NPP safety systems and safety analysis, which are designed and performed according to this philosophy. The concept of 'defence-in-depth' is a key element of the Canadian nuclear reactor safety philosophy. The design concepts of redundancy, diversity, separation, equipment qualification, quality assurance, and use of appropriate design codes and standards are adopted in the design. Four special safety systems as well as a set of reliable safety support systems are incorporated in the design of Qinshan phase III CANDU for accident mitigation. The assessment results for safety systems performance show that the fundamental safety criteria for public dose, and integrity of fuel, channels and the reactor building, are satisfied

  9. Parameters affecting of Akkuyu’s safety assessment for severe core damages

    Directory of Open Access Journals (Sweden)

    Kavun Yusuf

    2015-01-01

    Full Text Available We have looked at all past core meltdowns (Three Mile Island, Chernobyl and Fukushima incidents and postulated the fourth one might be taking place in the future most probably in a newly built reactors anywhere of the earth in any type of NPP. The probability of this observation is high considering the nature of the machine and human interaction. Operation experience is a very significant parameter as well as the safety culture of the host nation. The concerns is not just a lack of experience with industry with the new comers, but also the infrastructure and established institutions who will be dealing with the Emergencies. Lack of trained and educated Emergency Response Organizations (ERO is a major concern. The culture on simple fire drills even makes the difference when a severe condition occurs in the industry. The study assumes the fourth event will be taking place at the Akkuyu NGS and works backwards as required by the “what went wrong ” scenarios and comes up with interesting results. The differences studied in depth to determine the impact to the severe accidents. The all four design have now core catchers. We have looked at the operator errors’like in TMI; Operator errors combined with design deficiencies(like in Chernobyl and natural disasters( like in Fukushima and found operator errors to be more probable event on the Akkuyu’s postulated next incident. With respect to experiences of the operators we do not have any data except for long and successful operating history of the Soviet design reactors up until the Chernobyl incident. Since the Akkuyu will be built, own and operated by the Russians we have found no alarming concerns at the moment. At the moment, there is no body be able to operate those units in Turkey. Turkey is planning to build the required manpower during the transition period. The resolution of the observed parameters lies to work and educate, train of the host nation and exercise together.

  10. The evaluation of set of criticality parameters using scale system

    International Nuclear Information System (INIS)

    Abe, Alfredo; Sanchez, Andrea; Yamaguchi, Mistuo

    2009-01-01

    In evaluating the criticality safety of the nuclear fuel facility, it is important to apply a consistent methodology, which consider every aspects concerning various types of criticality parameters. Usually, the critical parameters are compiled and arranged into handbooks, and these handbooks are based on experience with nuclear facilities, experimental data from criticality safety research facilities, and theoretical studies performed using numerical simulations. Most of criticality safety evaluation can be addressed using the criticality parameters data directly from handbook, but some critical parameters for a specific chemical mixtures and/or enrichment are not be available. Consequently, not available parameters has to be evaluated. This work present the methodology to evaluate a set of critical parameters using SCALE system for various types of mixtures present at nuclear fuel cycle facilities for two different level of enrichment, the results are verified in the independent calculation using MCNP Monte Carlo Code. (author)

  11. Safety for Compressed Gas and Air Equipment. Module SH-26. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety for compressed gas and air equipment is one of 50 modules concerned with job safety and health. This module presents technical data about commonly used gases and stresses the procedures necessary for safe handling of compressed gases. Following the introduction, 14 objectives (each keyed to a page in the text) the…

  12. Safety in Elevators and Grain Handling Facilities. Module SH-27. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety in elevators and grain handling facilities is one of 50 modules concerned with job safety and health. Following the introduction, 15 objectives (each keyed to a page in the text) the student is expected to accomplish are listed (e.g., Explain how explosion suppression works). Then each objective is taught in detail,…

  13. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    International Nuclear Information System (INIS)

    Rao, Suman

    2007-01-01

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly

  14. Key Update Assistant for Resource-Constrained Networks

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    2012-01-01

    developed a push-button solution - powered by stochastic model checking - that network designers can easily benefit from, and it paves the way for consumers to set up key update related security parameters. Key Update Assistant, as we named it, runs necessary model checking operations and determines...

  15. Effects of psychological stress test on the cardiac response of public safety workers: alternative parameters to autonomic balance

    Science.gov (United States)

    Huerta-Franco, M. R.; Vargas-Luna, F. M.; Delgadillo-Holtfort, I.

    2015-01-01

    It is well known that public safety workers (PSW) face many stressful situations that yield them as high-risk population for suffering chronic stress diseases. In this multidisciplinary research the cardiac response to induced psychological stress by a short duration Stroop test was evaluated in 20 female and 19 male PSW, in order to compare traditionally used cardiac response parameters with alternative ones. Electrocardiograms have been recorded using the Eindhoven electrodes configuration for 1 min before, 3 min during and 1 min after the test. Signals analysis has been performed for the heart rate and the power spectra of its variability and of the variability of the amplitude of the R-wave, i.e. the highest peak of the electrocardiographic signal periodic sequence. The results demonstrated that the traditional autonomic balance index shows no significant differences between stages. In contrast, the median of the area of the power spectrum of the R-wave amplitude variability in the frequency region dominated by the autonomous nervous system (0.04-to-0.4 Hz) is the more sensitive parameter. Moreover, this parameter allows to identify gender differences consistent with those encountered in other studies.

  16. Effects of psychological stress test on the cardiac response of public safety workers: alternative parameters to autonomic balance

    International Nuclear Information System (INIS)

    Huerta-Franco, M R; Vargas-Luna, F M; Delgadillo-Holtfort, I

    2015-01-01

    It is well known that public safety workers (PSW) face many stressful situations that yield them as high-risk population for suffering chronic stress diseases. In this multidisciplinary research the cardiac response to induced psychological stress by a short duration Stroop test was evaluated in 20 female and 19 male PSW, in order to compare traditionally used cardiac response parameters with alternative ones. Electrocardiograms have been recorded using the Eindhoven electrodes configuration for 1 min before, 3 min during and 1 min after the test. Signals analysis has been performed for the heart rate and the power spectra of its variability and of the variability of the amplitude of the R-wave, i.e. the highest peak of the electrocardiographic signal periodic sequence. The results demonstrated that the traditional autonomic balance index shows no significant differences between stages. In contrast, the median of the area of the power spectrum of the R-wave amplitude variability in the frequency region dominated by the autonomous nervous system (0.04-to-0.4 Hz) is the more sensitive parameter. Moreover, this parameter allows to identify gender differences consistent with those encountered in other studies

  17. The Department of Energy nuclear criticality safety program

    International Nuclear Information System (INIS)

    Felty, J.R.

    2004-01-01

    This paper broadly covers key events and activities from which the Department of Energy Nuclear Criticality Safety Program (NCSP) evolved. The NCSP maintains fundamental infrastructure that supports operational criticality safety programs. This infrastructure includes continued development and maintenance of key calculational tools, differential and integral data measurements, benchmark compilation, development of training resources, hands-on training, and web-based systems to enhance information preservation and dissemination. The NCSP was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 97-2, Criticality Safety, and evolved from a predecessor program, the Nuclear Criticality Predictability Program, that was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 93-2, The Need for Critical Experiment Capability. This paper also discusses the role Dr. Sol Pearlstein played in helping the Department of Energy lay the foundation for a robust and enduring criticality safety infrastructure.

  18. Variability and Uncertainties of Key Hydrochemical Parameters for SKB Sites

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd, Willoughby on the Wolds, Loughborough (United Kingdom); Hermansson, Hans-Peter [Studsvik Nuclear AB, Nykoeping (Sweden)

    2006-12-15

    being able to characterise them thermodynamically. Geochemical modelling with the MEDUSA program and the HYDRA thermodynamic database was used to construct a set of Eh/pH diagrams for the iron and sulphur system in Forsmark groundwaters. Geochemical modelling with the PHREEQCI program was used for two purposes connected with uncertainties in key hydrochemical parameters: (i) to adjust pH to compensate for CO{sub 2} outgassing on the basis of an assumption that in situ groundwater should be at equilibrium with calcite, and (ii) to evaluate the hypothetical Eh on the basis of assumed control by Fe{sup 3+}/Fe{sup 2+}, Fe(OH)3/Fe{sup 2+} and SO{sub 4} 2-/HS- redox couples so as to assess evidence for control and buffering of redox and for reactivity of other redox sensitive parameters. These calculations were carried out with reported groundwater data from Forsmark and Simpevarp sites and also from the Aespoe HRL. It is emphasised that the purpose of these calculations is to explore and illustrate the theoretical basis of geochemical interpretations, and to understand what are the assumptions, simplifications and uncertainties in interpreting hydrochemical data especially redox and pH. Deviations of {+-}10 mV are attributable to minor differences in thermodynamic data and other model inputs. Some of the conclusions from geochemical modelling are: (i) pH data, when adjusted to compensate for CO{sub 2} outgassing, are typically 0.2 to 0.4 pH units lower than the measured values, which suggests one aspect of uncertainty in measured pH values. (ii) Most measured pH/Eh points for Forsmark are located close to the HS{sup -}/SO{sub 4} 2-line in an Eh/pH diagram, suggesting that the couple HS{sup -}/SO{sub 4} 2-controls Eh at normal SO{sub 4} 2-concentrations (above about 0.5 mM and around 5 mM). (iii) Eh calculated from the couples SO{sub 4} 2-/HS- and Fe(OH)3/Fe{sup 2+} are rather close to the measured Eh in most cases. In contrast, the Eh calculated from the Fe{sup 3+}/Fe{sup 2

  19. Model–Based Techniques for Virtual Sensing of Longitudinal Flight Parameters

    Directory of Open Access Journals (Sweden)

    Seren Cédric

    2015-03-01

    Full Text Available Introduction of fly-by-wire and increasing levels of automation significantly improve the safety of civil aircraft, and result in advanced capabilities for detecting, protecting and optimizing A/C guidance and control. However, this higher complexity requires the availability of some key flight parameters to be extended. Hence, the monitoring and consolidation of those signals is a significant issue, usually achieved via many functionally redundant sensors to extend the way those parameters are measured. This solution penalizes the overall system performance in terms of weight, maintenance, and so on. Other alternatives rely on signal processing or model-based techniques that make a global use of all or part of the sensor data available, supplemented by a model-based simulation of the flight mechanics. That processing achieves real-time estimates of the critical parameters and yields dissimilar signals. Filtered and consolidated information is delivered in unfaulty conditions by estimating an extended state vector, including wind components, and can replace failed signals in degraded conditions. Accordingly, this paper describes two model-based approaches allowing the longitudinal flight parameters of a civil A/C to be estimated on-line. Results are displayed to evaluate the performances in different simulated and real flight conditions, including realistic external disturbances and modeling errors.

  20. Effect of changes in technical parameters in radiological safety

    International Nuclear Information System (INIS)

    Avendano, Ge; Fernandez, C

    2007-01-01

    This work analyzes the generation of secondary radiation that affects the professionals of health during interventional X ray procedures in first level hospitals. The research objectives were, on the one hand, to quantify the amount of radiation and to compare it with norms in force with respect to magnitudes, and on the other hand to evaluate the elements of protection used. The measurements will help to improve the radiological safety, to assess the eventuality of risks and, in the last term, to the possibility of norms modification for the improvement of the protection, especially that of the personnel who daily make a certain amount of interventional procedures guided by radiation, like angiographic cine applications, using continuous or pulsed fluoroscopy. The motivation of the study is in the suspicion that present interventionism is made with a false sensation of safety, based only in the use of lead apron and protection elements incorporated in the equipment by the manufacturer, nevertheless not always the health personnel are conscious that an excessive proximity with the tube and the patient body becomes a risky source of secondary and scattered radiation. The obtained results allow us to demonstrate the existence of conditions of risk, even possible iatrogenic events, in particular when the procedures imply the use of certain techniques of radiographic exploration, thus reaching the conclusion that the radiographic methodology must be changed in order to rationalize so much?. In order to achieve this we propose modifications to the present norms and legislation referred to the radiological safety in Chile

  1. Safety behavior: Job demands, job resources, and perceived management commitment to safety.

    Science.gov (United States)

    Hansez, Isabelle; Chmiel, Nik

    2010-07-01

    The job demands-resources model posits that job demands and resources influence outcomes through job strain and work engagement processes. We test whether the model can be extended to effort-related "routine" safety violations and "situational" safety violations provoked by the organization. In addition we test more directly the involvement of job strain than previous studies which have used burnout measures. Structural equation modeling provided, for the first time, evidence of predicted relationships between job strain and "routine" violations and work engagement with "routine" and "situational" violations, thereby supporting the extension of the job demands-resources model to safety behaviors. In addition our results showed that a key safety-specific construct 'perceived management commitment to safety' added to the explanatory power of the job demands-resources model. A predicted path from job resources to perceived management commitment to safety was highly significant, supporting the view that job resources can influence safety behavior through both general motivational involvement in work (work engagement) and through safety-specific processes.

  2. Sensitivity of risk parameters to human errors in reactor safety study for a PWR

    International Nuclear Information System (INIS)

    Samanta, P.K.; Hall, R.E.; Swoboda, A.L.

    1981-01-01

    Sensitivities of the risk parameters, emergency safety system unavailabilities, accident sequence probabilities, release category probabilities and core melt probability were investigated for changes in the human error rates within the general methodological framework of the Reactor Safety Study (RSS) for a Pressurized Water Reactor (PWR). Impact of individual human errors were assessed both in terms of their structural importance to core melt and reliability importance on core melt probability. The Human Error Sensitivity Assessment of a PWR (HESAP) computer code was written for the purpose of this study. The code employed point estimate approach and ignored the smoothing technique applied in RSS. It computed the point estimates for the system unavailabilities from the median values of the component failure rates and proceeded in terms of point values to obtain the point estimates for the accident sequence probabilities, core melt probability, and release category probabilities. The sensitivity measure used was the ratio of the top event probability before and after the perturbation of the constituent events. Core melt probability per reactor year showed significant increase with the increase in the human error rates, but did not show similar decrease with the decrease in the human error rates due to the dominance of the hardware failures. When the Minimum Human Error Rate (M.H.E.R.) used is increased to 10 -3 , the base case human error rates start sensitivity to human errors. This effort now allows the evaluation of new error rate data along with proposed changes in the man machine interface

  3. Towards Improving our Understanding on the Retrievals of Key Parameters Characterising Land Surface Interactions from Space: Introduction & First Results from the PREMIER-EO Project

    Science.gov (United States)

    Ireland, Gareth; North, Matthew R.; Petropoulos, George P.; Srivastava, Prashant K.; Hodges, Crona

    2015-04-01

    Acquiring accurate information on the spatio-temporal variability of soil moisture content (SM) and evapotranspiration (ET) is of key importance to extend our understanding of the Earth system's physical processes, and is also required in a wide range of multi-disciplinary research studies and applications. The utility and applicability of Earth Observation (EO) technology provides an economically feasible solution to derive continuous spatio-temporal estimates of key parameters characterising land surface interactions, including ET as well as SM. Such information is of key value to practitioners, decision makers and scientists alike. The PREMIER-EO project recently funded by High Performance Computing Wales (HPCW) is a research initiative directed towards the development of a better understanding of EO technology's present ability to derive operational estimations of surface fluxes and SM. Moreover, the project aims at addressing knowledge gaps related to the operational estimation of such parameters, and thus contribute towards current ongoing global efforts towards enhancing the accuracy of those products. In this presentation we introduce the PREMIER-EO project, providing a detailed overview of the research aims and objectives for the 1 year duration of the project's implementation. Subsequently, we make available the initial results of the work carried out herein, in particular, related to an all-inclusive and robust evaluation of the accuracy of existing operational products of ET and SM from different ecosystems globally. The research outcomes of this project, once completed, will provide an important contribution towards addressing the knowledge gaps related to the operational estimation of ET and SM. This project results will also support efforts ongoing globally towards the operational development of related products using technologically advanced EO instruments which were launched recently or planned be launched in the next 1-2 years. Key Words: PREMIER

  4. Integrated Safety and Security Risk Assessment Methods: A Survey of Key Characteristics and Applications

    NARCIS (Netherlands)

    Chockalingam, Sabarathinam; Hadziosmanovic, D.; Pieters, Wolter; Texeira, Andre; van Gelder, Pieter

    2016-01-01

    Over the last years, we have seen several security incidents that compromised system safety, of which some caused physical harm to people. Meanwhile, various risk assessment methods have been developed that integrate safety and security, and these could help to address the corresponding threats by

  5. Rational quantitative safety goals: a summary

    International Nuclear Information System (INIS)

    Unwin, S.D.; Hayns, M.R.

    1984-08-01

    We introduce the notion of a Rational Quantitative Safety Goal. Such a goal reflects the imprecision and vagueness inherent in any reasonable notion of adequate safety and permits such vagueness to be incorporated into the formal regulatory decision-making process. A quantitative goal of the form, the parameter x, characterizing the safety level of the nuclear plant, shall not exceed the value x 0 , for example, is of a non-rational nature in that it invokes a strict binary logic in which the parameter space underlying x is cut sharply into two portions: that containing those values of x that comply with the goal and that containing those that do not. Here, we utilize an alternative form of logic which, in accordance with any intuitively reasonable notion of safety, permits a smooth transition of a safety determining parameter between the adequately safe and inadequately safe domains. Fuzzy set theory provides a suitable mathematical basis for the formulation of rational quantitative safety goals. The decision-making process proposed here is compatible with current risk assessment techniques and produces results in a transparent and useful format. Our methodology is illustrated with reference to the NUS Corporation risk assessment of the Limerick Generating Station

  6. Evaluation of uncertainty associated with parameters for long-term safety assessments of geological disposal

    International Nuclear Information System (INIS)

    Yamaguchi, Tetsuji; Minase, Naofumi; Iida, Yoshihisa; Tanaka, Tadao; Nakayama, Shinichi

    2005-01-01

    This paper describes the current status of our data acquisition on quantifying uncertainties associated with parameters for safety assessment on groundwater scenarios for geological disposal of radioactive wastes. First, sources of uncertainties and the resulting priority in data acquisition were briefed. Then, the current status of data acquisition for quantifying the uncertainties in assessing solubility, diffusivity in bentonite buffer and distribution coefficient on rocks is introduced. The uncertainty with the solubility estimation is quantified from that associated with thermodynamic data and that in estimating groundwater chemistry. The uncertainty associated with the diffusivity in bentonite buffer is composed of variations of relevant factors such as porosity of the bentonite buffer, montmorillonite content, chemical composition of pore water and temperature. The uncertainty of factors such as the specific surface area of the rock, pH, ionic strength, carbonate concentration in groundwater compose uncertainty of the distribution coefficient of radionuclides on rocks. Based on these investigations, problems to be solved in future studies are summarized. (author)

  7. Methodology for Evaluating Safety System Operability using Virtual Parameter Network

    International Nuclear Information System (INIS)

    Park, Sukyoung; Heo, Gyunyoung; Kim, Jung Taek; Kim, Tae Wan

    2014-01-01

    KAERI (Korea Atomic Energy Research Institute) and UTK (University of Tennessee Knoxville) are working on the I-NERI project to suggest complement of this problem. This research propose the methodology which provide the alternative signal in case of unable guaranteed reliability of some instrumentation with KAERI. Proposed methodology is assumed that several instrumentations are working normally under the power supply condition because we do not consider the instrumentation survivability itself. Thus, concept of the Virtual Parameter Network (VPN) is used to identify the associations between plant parameters. This paper is extended version of the paper which was submitted last KNS meeting by changing the methodology and adding the result of the case study. In previous research, we used Artificial Neural Network (ANN) inferential technique for estimation model but every time this model showed different estimate value due to random bias each time. Therefore Auto-Associative Kernel Regression (AAKR) model which have same number of inputs and outputs is used to estimate. Also the importance measures in the previous method depend on estimation model but importance measure of improved method independent on estimation model. Also importance index of previous method depended on estimation model but importance index of improved method is independent on estimation model. In this study, we proposed the methodology to identify the internal state of power plant when severe accident happens also it has been validated through case study. SBLOCA which has large contribution to severe accident is considered as initiating event and relationship amongst parameter has been identified. VPN has ability to identify that which parameter has to be observed and which parameter can be alternative to the missing parameter when some instruments are failed in severe accident. In this study we have identified through results that commonly number 2, 3, 4 parameter has high connectivity while

  8. Methodology for Evaluating Safety System Operability using Virtual Parameter Network

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sukyoung; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Kim, Jung Taek [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Tae Wan [Kepco International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-05-15

    KAERI (Korea Atomic Energy Research Institute) and UTK (University of Tennessee Knoxville) are working on the I-NERI project to suggest complement of this problem. This research propose the methodology which provide the alternative signal in case of unable guaranteed reliability of some instrumentation with KAERI. Proposed methodology is assumed that several instrumentations are working normally under the power supply condition because we do not consider the instrumentation survivability itself. Thus, concept of the Virtual Parameter Network (VPN) is used to identify the associations between plant parameters. This paper is extended version of the paper which was submitted last KNS meeting by changing the methodology and adding the result of the case study. In previous research, we used Artificial Neural Network (ANN) inferential technique for estimation model but every time this model showed different estimate value due to random bias each time. Therefore Auto-Associative Kernel Regression (AAKR) model which have same number of inputs and outputs is used to estimate. Also the importance measures in the previous method depend on estimation model but importance measure of improved method independent on estimation model. Also importance index of previous method depended on estimation model but importance index of improved method is independent on estimation model. In this study, we proposed the methodology to identify the internal state of power plant when severe accident happens also it has been validated through case study. SBLOCA which has large contribution to severe accident is considered as initiating event and relationship amongst parameter has been identified. VPN has ability to identify that which parameter has to be observed and which parameter can be alternative to the missing parameter when some instruments are failed in severe accident. In this study we have identified through results that commonly number 2, 3, 4 parameter has high connectivity while

  9. 46th Annual meeting on nuclear technology (AMNT 2015). Key topic / Enhanced safety and operation excellence / Sustainable reactor operation management - safe, efficient, valuable

    International Nuclear Information System (INIS)

    Fischer, Erwin

    2015-01-01

    Summary report on the following Topical Session of the 46 th Annual Conference on Nuclear Technology (AMNT 2015) held in Berlin, 5 to 7 May 2015: - Sustainable Reactor Operation Management - Safe, Efficient, Valuable (Erwin Fischer) The other Sessions of the Key Topics - ''Outstanding Know-How and Sustainable Innovations'', - ''Enhanced Safety and Operation Excellence'' and - ''Decommissioning Experience and Waste Management Solutions'' have been covered in atw 7 (2015) and will be covered in further issues of atw.

  10. Safety and reliability in industrial organizations - The key factors

    International Nuclear Information System (INIS)

    Cooke, R.A.; Sarkis, H.D.

    1992-01-01

    A survey-based technique has been developed that measures and generates comparative data on important organizational, work group, and job-level variables that are directly related to on-the-job accidents. This paper describes the results of an analysis of data from more than 2,700 employees in the chemical, oil, construction, and wood products industries. These analyses indicate that several key variables are significantly related to accidents in the workplace

  11. Relationships among Safety Climate, Safety Behavior, and Safety Outcomes for Ethnic Minority Construction Workers

    Directory of Open Access Journals (Sweden)

    Sainan Lyu

    2018-03-01

    Full Text Available In many countries, it is common practice to attract and employ ethnic minority (EM or migrant workers in the construction industry. This primarily occurs in order to alleviate the labor shortage caused by an aging workforce with a lack of new entrants. Statistics show that EM construction workers are more likely to have occupational fatal and nonfatal injuries than their local counterparts; however, the mechanism underlying accidents and injuries in this vulnerable population has been rarely examined. This study aims to investigate relationships among safety climate, safety behavior, and safety outcomes for EM construction workers. To this end, a theoretical research model was developed based on a comprehensive review of the current literature. In total, 289 valid questionnaires were collected face-to-face from 223 Nepalese construction workers and 56 Pakistani construction workers working on 15 construction sites in Hong Kong. Structural equation modelling was employed to validate the constructs and test the hypothesized model. Results show that there were significant positive relationships between safety climate and safety behaviors, and significant negative relationships between safety behaviors and safety outcomes for EM construction workers. This research contributes to the literature regarding EM workers by providing empirical evidence of the mechanisms by which safety climate affects safety behaviors and outcomes. It also provides insights in order to help the key stakeholders formulate safety strategies for EM workers in many areas where numerous EM workers are employed, such as in the U.S., the UK, Australia, Singapore, Malaysia, and the Middle East.

  12. Relationships among Safety Climate, Safety Behavior, and Safety Outcomes for Ethnic Minority Construction Workers.

    Science.gov (United States)

    Lyu, Sainan; Hon, Carol K H; Chan, Albert P C; Wong, Francis K W; Javed, Arshad Ali

    2018-03-09

    In many countries, it is common practice to attract and employ ethnic minority (EM) or migrant workers in the construction industry. This primarily occurs in order to alleviate the labor shortage caused by an aging workforce with a lack of new entrants. Statistics show that EM construction workers are more likely to have occupational fatal and nonfatal injuries than their local counterparts; however, the mechanism underlying accidents and injuries in this vulnerable population has been rarely examined. This study aims to investigate relationships among safety climate, safety behavior, and safety outcomes for EM construction workers. To this end, a theoretical research model was developed based on a comprehensive review of the current literature. In total, 289 valid questionnaires were collected face-to-face from 223 Nepalese construction workers and 56 Pakistani construction workers working on 15 construction sites in Hong Kong. Structural equation modelling was employed to validate the constructs and test the hypothesized model. Results show that there were significant positive relationships between safety climate and safety behaviors, and significant negative relationships between safety behaviors and safety outcomes for EM construction workers. This research contributes to the literature regarding EM workers by providing empirical evidence of the mechanisms by which safety climate affects safety behaviors and outcomes. It also provides insights in order to help the key stakeholders formulate safety strategies for EM workers in many areas where numerous EM workers are employed, such as in the U.S., the UK, Australia, Singapore, Malaysia, and the Middle East.

  13. Vision and commercial motor vehicle driver safety : vol. 1 : evidence report

    Science.gov (United States)

    2008-06-06

    The purpose of this evidence report is to address several key questions posed by the Federal Motor Carrier Safety Administration (FMCSA) that pertain to vision and commercial motor vehicle (CMV) driver safety. Each of these key questions was develope...

  14. Audit of data and code use in the SR-Can safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, T.W.; Baldwin, T.D. [Galson Sciences Ltd, 5 Grosvenor House, Melton R oad, Oakham, Rutland LE15 6AX (United Kingdom)

    2008-03-15

    Building on the findings of previous studies on data and code quality assurance (QA) in safety assessments, this report provides a review of data and code QA in the SR-Can safety assessment. The data quality audit aimed to check that the selection and use of data in the SR-Can safety assessment was appropriate, focusing on the data that underpin representations of and assumptions about canister, insert, buffer, and backfill behaviour. The SR-Can Data Report provided the initial focus for examining the traceability and reliability of data used in the safety assessment; the Data Report is one of the series of SR-Can safety assessment reports and, in this review, it was anticipated that it would provide the primary source of data on the canister, insert, buffer, and backfill. However, other safety assessment reports (the SR-Can Main Report, the Initial State Report, the Fuel and Canister Process Report, and the Buffer and Backfill Process Report) were found to provide key information on data used in the safety assessment. The quality audit of codes aimed to check that code use in the SR-Can safety assessment has been justified through a transparent and traceable process of code development and selection. The Model Summary Report provided the focus for reviewing the QA status of the codes used in the safety assessment. As well as highlighting a number of concerns regarding QA aspects of specific data sets, parameter values, and codes used in the SR-Can safety assessment (which are presented in the report), the review has led to several general observations on data and code QA that should be considered by SKB in the development and implementation of a QA system for the SR-Site safety assessment: - The SR-Site safety assessment and associated QA records should include information that demonstrates that a full QA system has been implemented in order to build confidence in the validity of the assessment. - The data and parameter values used directly in the safety

  15. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Suman [Risk Analyst (India)]. E-mail: sumanashokrao@yahoo.co.in

    2007-04-11

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly.

  16. SITE-94. Chemical and physical transport parameters for SITE-94

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden). Technical Environmental Planning

    1996-02-01

    Important parameters are the interactions of radionuclides with solid surfaces, parameters describing the geometrical conditions like porosity, data on water composition (ionic strength, pH, redox conditions, complex formers etc) and data on the solids that may be of importance to the water and radionuclide chemistry. In this report some of these data of relevance for the Aespoe site are discussed. Based on a literature survey, sorption data as well as values for some other parameters have been selected for rock, fracture fillings and bentonite relevant to the chemical conditions in and around a repository at Aespoe. A comparison to data used for earlier, site-specific as well as general, safety assessments of underground repositories has been performed. The data are recommendations for modelling of radionuclide release from a hypothetical high level waste repository at Aespoe. Since the data to a large extent are not based on experimental measurements, more accurate predictions may be expected if more experimental data are available. Before such studies are performed for a specific site, a variational analysis in order to evaluate the importance of the single parameters is recommended. After such a study, the key parameters may be investigated in detail and the modelling can be expected to be more accurate what concerns influence of single parameters. However, the uncertainty in conceptual areas like how to model accurately the long term hydrology of the site etc still remains. 32 refs.

  17. Development and implementation of setpoint tolerances for special safety systems

    International Nuclear Information System (INIS)

    Oliva, A.F.; Balog, G.; Parkinson, D.G.; Archinoff, G.H.

    1991-01-01

    The establishment of tolerances and impairment limits for special safety system setpoints is part of the process whereby the plant operator demonstrates to the regulatory authority that the plant operates safely and within the defined plant licensing envelope. The licensing envelope represents the set of limits and plant operating state and for which acceptably safe plant operation has been demonstrated by the safety analysis. By definition, operation beyond this envelope contributes to overall safety system unavailability. Definition of the licensing envelope is provided in a wide range of documents including the plant operating licence, the safety report, and the plant operating policies and principles documents. As part of the safety analysis, limits are derived for each special safety system initiating parameter such that the relevant safety design objectives are achieved for all design basis events. If initiation on a given parameter occurs at a level beyond its limit, there is a potential reduction in safety system effectiveness relative to the performance credited in the plant safety analysis. These safety system parameter limits, when corrected for random and systematic instrument errors and other errors inherent in the process of periodic testing or calibration, are then used to derive parameter impairment levels and setpoint tolerances. This paper describes the methodology that has evolved at Ontario Hydro for developing and implementing tolerances for special safety system parameters (i.e., the shutdown systems, emergency coolant injection system and containment system). Tolerances for special safety system initiation setpoints are addressed specifically, although many of the considerations discussed here will apply to performance limits for other safety system components. The first part of the paper deals with the approach that has been adopted for defining and establishing setpoint limits and tolerances. The remainder of the paper addresses operational

  18. KeyPathwayMinerWeb

    DEFF Research Database (Denmark)

    List, Markus; Alcaraz, Nicolas; Dissing-Hansen, Martin

    2016-01-01

    , for instance), KeyPathwayMiner extracts connected sub-networks containing a high number of active or differentially regulated genes (proteins, metabolites) in the molecular profiles. The web interface at (http://keypathwayminer.compbio.sdu.dk) implements all core functionalities of the KeyPathwayMiner tool set......We present KeyPathwayMinerWeb, the first online platform for de novo pathway enrichment analysis directly in the browser. Given a biological interaction network (e.g. protein-protein interactions) and a series of molecular profiles derived from one or multiple OMICS studies (gene expression...... such as data integration, input of background knowledge, batch runs for parameter optimization and visualization of extracted pathways. In addition to an intuitive web interface, we also implemented a RESTful API that now enables other online developers to integrate network enrichment as a web service...

  19. Hospital safety climate and safety behavior: A social exchange perspective.

    Science.gov (United States)

    Ancarani, Alessandro; Di Mauro, Carmela; Giammanco, Maria D

    Safety climate is considered beneficial to the improvement of hospital safety outcomes. Nevertheless, the relations between two of its key constituents, namely those stemming from leader-subordinate relations and coworker support for safety, are still to be fully ascertained. This article uses the theoretical lens of Social Exchange Theory to study the joint impact of leader-member exchange in the safety sphere and coworker support for safety on safety-related behavior at the hospital ward level. Social exchange constructs are further related to the existence of a shame-/blame-free environment, seen as a potential antecedent of safety behavior. A cross-sectional study including 166 inpatients in hospital wards belonging to 10 public hospitals in Italy was undertaken to test the hypotheses developed. Hypothesized relations have been analyzed through a fully mediated multilevel structural equation model. This methodology allows studying behavior at the individual level, while keeping into account the heterogeneity among hospital specialties. Results suggest that the linkage between leader support for safety and individual safety behavior is mediated by coworker support on safety issues and by the creation of a shame-free environment. These findings call for the creation of a safety climate in which managerial efforts should be directed not only to the provision of new safety resources and the enforcement of safety rules but also to the encouragement of teamwork and freedom to report errors as ways to foster the capacity of the staff to communicate, share, and learn from each other.

  20. Feasibility study of applying the passive safety system concept to fusion–fission hybrid reactor

    International Nuclear Information System (INIS)

    Yu, Zhang-cheng; Xie, Heng

    2014-01-01

    The fusion–fission hybrid reactor can produce energy, breed nuclear fuel, and handle the nuclear waste, etc., with the fusion neutron source striking the subcritical blanket. The passive safety system consists of passive residual heat removal system, passive safety injection system and automatic depressurization system was adopted into the fusion–fission hybrid reactor in this paper. Modeling and nodalization of primary loop, partial secondary loop and passive core cooling system for the fusion–fission hybrid reactor using relap5 were conducted and small break LOCA on cold leg was analyzed. The results of key transient parameters indicated that the actuation of passive safety system could mitigate the accidental consequence of the 4-inch cold leg small break LOCA on cold leg in the early time effectively. It is feasible to apply the passive safety system concept to fusion–fission hybrid reactor. The minimum collapsed liquid level had great increase if doubling the volume of CMTs to increase its coolant injection and had no increase if doubling the volume of ACCs

  1. Impact of Construction Health & Safety Regulations on Project ...

    African Journals Online (AJOL)

    Impact of Construction Health & Safety Regulations on Project Parameters in Nigeria: Consultants and Contractors View. ... The study recommends that better attention is given to health and safety should as a project parameter and that related practice notes and guidelines should be evolved for all project stakeholders.

  2. EDA activities related to safety

    International Nuclear Information System (INIS)

    Gordon, C.; Raeder, J.

    2001-01-01

    This article reviews the accomplishments in ITER safety analysis during the course of the Engineering Design Activities (EDA). The key aspects of ITER safety analysis are: effluents and emissions from normal operation, including planned maintenance activities; occupational safety for workers at the facility; radioactive materials and wastes generated during operation and from decommissioning ; potential incidents and accidents and the resulting transients. As a result of the work during the EDA it is concluded that ITER is safe

  3. Safety culture development in nuclear electric plc

    International Nuclear Information System (INIS)

    Gibson, G.P.; Low, M.B.J.

    1995-01-01

    Nuclear Electric plc (NE) has always given the highest priority to safety. However, past emphasis has been directed towards ensuring safety thorough engineering design and hazard control procedures. Whilst the company did achieve high safety standards, particularly with respect to accidents, it was recognized that further improvements could be obtained. Analysis of the safety performance across a wide range of industries showed that the key to improving safety performance lay in developing a strong safety culture within the company. Over the last five years, NE has made great strides to improve its safety culture. This has resulted in a considerable improvement in its measured safety performance indicators, such as the number of incidents at international nuclear event scale (INES) rating 1, the number of lost time accidents and the collective radiation dose. However, despite this success, the company is committed to further improvement and a means by which this process becomes self-sustaining. In this way the company will achieve its prime goal, to ''ensure the safety of people, plant and the environment''. The paper provides an overview of the development of safety culture in NE since its formation in November 1989. It describes the research and international developments that have influenced the company's understanding of safety culture, the key initiatives that the company has undertaken to enhance its safety culture and the future initiatives being considered to ensure continual improvement. (author). 5 refs, 2 figs, 2 tabs

  4. Safety-critical Java for embedded systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Dalsgaard, Andreas Engelbredt; Hansen, René Rydhof

    2016-01-01

    This paper presents the motivation for and outcomes of an engineering research project on certifiable Javafor embedded systems. The project supports the upcoming standard for safety-critical Java, which defines asubset of Java and libraries aiming for development of high criticality systems....... The outcome of this projectinclude prototype safety-critical Java implementations, a time-predictable Java processor, analysis tools formemory safety, and example applications to explore the usability of safety-critical Java for this applicationarea. The text summarizes developments and key contributions...

  5. ASSESSING CUSTOMER SATISFACTION BASED ON QoS PARAMETERS

    Directory of Open Access Journals (Sweden)

    Alem Čolaković

    2017-03-01

    Full Text Available Measurement of customer sastisfaction is an efficient tool to detect problems in SP (Services Provider and their relationship with customers. Based on this measurement a relationship between customer satisfaction and loyalty can be established. It can determine the influence of key parameters on the number of users of services. The parameters of customer satisfaction and loyalty are numerous and depend on the network (network quality of services parameters, the client (the perception, expectations, beliefs, etc., employees (implementation of activities, technological developments, organizational structure, etc. This paper aims to show the way to identify key indicators and their weighted factors that affect customer satisfaction. This paper intends to emphasize relationship between quality of services, customer perception and loyalty and to present a model for examining the key parameters that significantly influence customer satisfaction and how these parameters influence customer loyalty.

  6. An international nuclear safety regime

    International Nuclear Information System (INIS)

    Rosen, M.

    1995-01-01

    For all the parties involved with safe use of nuclear energy, the opening for signature of the 'Convention on Nuclear Safety' (signed by 60 countries) and the ongoing work to prepare a 'Convention on Radioactive Waste Safety' are particularly important milestones. 'Convention on Nuclear Safety' is the first legal instrument that directly addresses the safety of nuclear power plants worldwide. The two conventions are only one facet of international cooperation to enhance safety. A review of some cooperative efforts of the past decades, and some key provisions of the new safety conventions, presented in this paper, show how international cooperation is increasing nuclear safety worldwide. The safety philosophy and practices involved with legal framework for the safe use of nuclear power will foster a collective international involvement and commitment. It will be a positive step towards increasing public confidence in nuclear power

  7. Neutronics safety analysis in severe transients of the dual-cooled waste transmutation blanket for the FDS-I

    International Nuclear Information System (INIS)

    Zheng, S.; Wu, Y.

    2006-01-01

    The conceptual design of the fusion-driven subcritical system FDS-I with the multifunctional subcritical dual-cooled waste transmutation (DWT) blanket proposed as a middle step toward the final application of fusion energy was presented previously. Safety is a key concern for the innovative conceptual system. The potential safety characteristic is expected as one of the advantages of FDS-I for the transmutation and incineration of nuclear waste compared with the critical reactor. With the intent of evaluating the inherent and passive safety features of FDS-I, the reactivity coefficients (e.g. the coolant density/void effect and the Doppler feedback), which are similar to those in critical reactors, and the kinetics quantities (e.g. neutron generation time and β eff ), which are influenced by the external neutron source of the source-driven system, are calculated and analyzed. In addition, the specific transient scenarios for FDS-I, which show the effects of the source power perturbation on the safety parameters, is presented

  8. Establishment and cultivation of the radiation safety culture

    International Nuclear Information System (INIS)

    Zhang Zhigang; Fan Yumao

    2010-01-01

    Safety culture is the cure of the corporate culture for nuclear technology application unit's. This article introduces the definition, connotation and levels of safety culture, and discusses the requirements of safety culture for organization and individuals in the area of technology application. Finally, key practical issues for the cultivation of safety culture are explained and some ideas about the construction of safety culture are proposed. (authors)

  9. Nature-based strategies for improving urban health and safety

    Science.gov (United States)

    Michelle C. Kondo; Eugenia C. South; Charles C. Branas

    2015-01-01

    Place-based programs are being noticed as key opportunities to prevent disease and promote public health and safety for populations at-large. As one key type of place-based intervention, nature-based and green space strategies can play an especially large role in improving health and safety for dwellers in urban environments such as US legacy cities that lack nature...

  10. Microbial food safety - modeling and applications

    Science.gov (United States)

    Microbial food safety is a key issue for the food processing industry, and enhancing food safety is everyone’s responsibility from food producers to consumers. Financial losses to the economy due to foodborne illness are in the billions of dollars, annually. Foodborne illness can be caused by patho...

  11. New standard on safety for hydrogen systems in spanish. Keys for understanding and use

    Energy Technology Data Exchange (ETDEWEB)

    Luis Aprea, Jose [CNEA, Argentine Atomic Energy Commission - AAH - IRAM - Comahue University, CC 805 - Neuquen (Argentina)

    2008-07-15

    The present paper approaches all the preliminary, normative and additional elements observed during the work carried out by the Argentine standardization board to count in the country with a normative document that covers the expectations of the local community of users and other Spanish-speaking user, about the integral safety for the hydrogen systems. The antecedents and the process of adoption of an international standard and its adaptation to the local media are analyzed. The result has been the Standard IRAM/ISO 15916 that intends to offer, to all the users and especially to those who are not familiar with the technology, a base to understand the subject of safety, thus enhancing the education of the general public in hydrogen safety matters. (author)

  12. Inventory parameters

    CERN Document Server

    Sharma, Sanjay

    2017-01-01

    This book provides a detailed overview of various parameters/factors involved in inventory analysis. It especially focuses on the assessment and modeling of basic inventory parameters, namely demand, procurement cost, cycle time, ordering cost, inventory carrying cost, inventory stock, stock out level, and stock out cost. In the context of economic lot size, it provides equations related to the optimum values. It also discusses why the optimum lot size and optimum total relevant cost are considered to be key decision variables, and uses numerous examples to explain each of these inventory parameters separately. Lastly, it provides detailed information on parameter estimation for different sectors/products. Written in a simple and lucid style, it offers a valuable resource for a broad readership, especially Master of Business Administration (MBA) students.

  13. NMC and A and nuclear criticality safety systems integration: A prospective way for enhancement of the nuclear industry facilities safety

    International Nuclear Information System (INIS)

    Ryazanov, Boris G.; Sviridov, Victor I.; Frolov, Vladimir V.; Shvedov, Maxim O.; Mclaughlin, Thomas P.; Pruvost, Norman L.

    2003-01-01

    A considerable body of data has now been acquired about the principles, parameters and consequences of nuclear (criticality) accidents at facilities of the atomic industry in Russia, the United States, Great Britain and Japan. The total number of such accidents stands at 22. Russian and US specialists have prepared a rather extensive survey and analysis of these accidents. The final and important section of this survey is the lessons implied by the results of analysis of these 22 accidents. Among these lessons is the necessity of unconditional enforcement of control over the movement and transformations of special nuclear materials (SNM), and in particular fissile materials, (those SNMs with criticality accident concerns) during production and processing. Inadequacies in such control have been among the causes of most of the accidents that have occurred. Nuclear materials control and accounting (MC and A) for the purpose of ensuring storage reliability and nonproliferation safeguards is a major task of nuclear facilities in any nation. MC and A systems use the latest techniques and hardware for periodic control of SNM in specifically organized material balance areas. Immediate checking, periodic inventory of SNM, and measurements of the parameters of SNM at key points are the main sources of data for these systems. Data about the presence and sites of location of SNM in material balance areas that are acquired in inventories can be used for objective assessment of the status of nuclear safety. On the other hand, the inventory itself involves performance of operations that are unlike routine process engineering, and require special consideration of nuclear safety. Use of the techniques and hardware of MC and A systems not only for purposes of storage reliability, but also to ensure nuclear safety, will reduce the risk of nuclear accidents. This paper gives a concise overview of nuclear accidents that have occurred due to inadequacies in MC and A, and demonstrates

  14. Hybrid probabilistic and possibilistic safety assessment. Methodology and application

    International Nuclear Information System (INIS)

    Kato, Kazuyuki; Amano, Osamu; Ueda, Hiroyoshi; Ikeda, Takao; Yoshida, Hideji; Takase, Hiroyasu

    2002-01-01

    This paper presents a unified methodology to handle variability and ignorance by using probabilistic and possibilistic techniques respectively. The methodology has been applied to the safety assessment of geological disposal of high-level radioactive waste. Uncertainties associated with scenarios, models and parameters were defined in terms of fuzzy membership functions derived through a series of interviews to the experts, while variability was formulated by means of probability density functions (pdfs) based on available data sets. The exercise demonstrated the applicability of the new methodology and, in particular, its advantage in quantifying uncertainties based on expert opinion and in providing information on the dependence of assessment results on the level of conservatism. In addition, it was shown that sensitivity analysis can identify key parameters contributing to uncertainties associated with results of the overall assessment. The information mentioned above can be utilized to support decision-making and to guide the process of disposal system development and optimization of protection against potential exposure. (author)

  15. Development of integrated parameter database for risk assessment at the Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Tamauchi, Yoshikazu

    2011-01-01

    A study to develop a parameter database for Probabilistic Safety Assessment (PSA) for the application of risk information on plant operation and maintenance activity is important because the transparency, consistency, and traceability of parameters are needed to explanation adequacy of the evaluation to third parties. Application of risk information for the plant operation and maintenance activity, equipment reliability data, human error rate, and 5 factors of 'five-factor formula' for estimation of the amount of radioactive material discharge (source term) are key inputs. As a part of the infrastructure development for the risk information application, we developed the integrated parameter database, 'R-POD' (Rokkasho reprocessing Plant Omnibus parameter Database) on the trial basis for the PSA of the Rokkasho Reprocessing Plant. This database consists primarily of the following 3 parts, 1) an equipment reliability database, 2) a five-factor formula database, and 3) a human reliability database. The underpinning for explaining the validity of the risk assessment can be improved by developing this database. Furthermore, this database is an important tool for the application of risk information, because it provides updated data by incorporating the accumulated operation experiences of the Rokkasho reprocessing plant. (author)

  16. Visitor Safety and Security in Barbados: Stakeholder Perceptions

    OpenAIRE

    Clifford Griffin

    2010-01-01

    Is information about the nature, location and incidence of crimes against tourists/visitors sufficient to develop meaningful visitor safety and security policy? Are the views of key tourism stakeholder groups useful in informing and enhancing visitor safety and security policy? To answer these questions, this study analyzes 24 years of recorded crime data against visitors to Barbados and survey data of key tourism stakeholder groups and concludes: 1) that information about the nature, locatio...

  17. Testing the new stochastic neutronic code ANET in simulating safety important parameters

    International Nuclear Information System (INIS)

    Xenofontos, T.; Delipei, G.-K.; Savva, P.; Varvayanni, M.; Maillard, J.; Silva, J.; Catsaros, N.

    2017-01-01

    Highlights: • ANET is a new neutronics stochastic code. • Criticality calculations in both subcritical and critical nuclear systems of conventional design were conducted. • Simulations of thermal, lower epithermal and fast neutron fluence rates were performed. • Axial fission rate distributions in standard and MOX fuel pins were computed. - Abstract: ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is an under development Monte Carlo code for simulating both GEN II/III reactors as well as innovative nuclear reactor designs, based on the high energy physics code GEANT3.21 of CERN. ANET is built through continuous GEANT3.21 applicability amplifications, comprising the simulation of particles’ transport and interaction in low energy along with the accessibility of user-provided libraries and tracking algorithms for energies below 20 MeV, as well as the simulation of elastic and inelastic collision, capture and fission. Successive testing applications performed throughout the ANET development have been utilized to verify the new code capabilities. In this context the ANET reliability in simulating certain reactor parameters important to safety is here examined. More specifically the reactor criticality as well as the neutron fluence and fission rates are benchmarked and validated. The Portuguese Research Reactor (RPI) after its conversion to low enrichment in U-235 and the OECD/NEA VENUS-2 MOX international benchmark were considered appropriate for the present study, the former providing criticality and neutron flux data and the latter reaction rates. Concerning criticality benchmarking, the subcritical, Training Nuclear Reactor of the Aristotle University of Thessaloniki (TNR-AUTh) was also analyzed. The obtained results are compared with experimental data from the critical infrastructures and with computations performed by two different, well established stochastic neutronics codes, i.e. TRIPOLI-4.8 and MCNP5. Satisfactory agreement

  18. Thawed chilled Barents Sea cod fillets in modified atmosphere packaging-application of multivariate data analysis to select key parameters in good manufacturing practice

    DEFF Research Database (Denmark)

    Bøknæs, Niels; Jensen, K.N.; Guldager, H.S.

    2002-01-01

    The purpose of the present study was to select key parameters in good manufacturing practice for production of thawed chilled modified atmosphere packed (MAP) cod (Gadus morhua) fillets. The effect of frozen storage temperature (-20 and -30 C), frozen storage period (3, 6, 9 and 12 mo) and chill...... storage periods up to 21 d at 2 C were evaluated for thawed MAP Barents Sea cod fillets. Sensory, chemical, microbiological and physical quality attributes were evaluated and multivariate data analysis (principal component analysis and partial least- squares regression) applied for identification of key...... storage was low for thawed MAP Barents Sea cod and this fish raw material seemed the more appropriate for production of thawed chilled MAP products. Frozen storage inactivation of the spoilage bacteria of Photobacterium phosphorcum was modest in Barnets Sea cod, possibly due to high trimethylamine oxide...

  19. Vehicle Authentication via Monolithically Certified Public Key and Attributes

    OpenAIRE

    Dolev, Shlomi; Krzywiecki, Łukasz; Panwar, Nisha; Segal, Michael

    2015-01-01

    Vehicular networks are used to coordinate actions among vehicles in traffic by the use of wireless transceivers (pairs of transmitters and receivers). Unfortunately, the wireless communication among vehicles is vulnerable to security threats that may lead to very serious safety hazards. In this work, we propose a viable solution for coping with Man-in-the-Middle attacks. Conventionally, Public Key Infrastructure (PKI) is utilized for a secure communication with the pre-certified public key. H...

  20. Nuclear safety regulation on nuclear safety equipment activities in relation to human and organizational factors

    International Nuclear Information System (INIS)

    Li Tianshu

    2013-01-01

    Based on years of knowledge in nuclear safety supervision and experience of investigating and dealing with violation events in repair welding of DFHM, this paper analyzes major faults in manufacturing and maintaining activities of nuclear safety equipment in relation to human and organizational factors. It could be deducted that human and organizational factors has definitely become key features in the development of nuclear energy and technology. Some feasible measures to reinforce supervision on nuclear safety equipment activities have also been proposed. (author)

  1. Aviation and healthcare: a comparative review with implications for patient safety.

    Science.gov (United States)

    Kapur, Narinder; Parand, Anam; Soukup, Tayana; Reader, Tom; Sevdalis, Nick

    2016-01-01

    Safety in aviation has often been compared with safety in healthcare. Following a recent article in this journal, the UK government set up an Independent Patient Safety Investigation Service, to emulate a similar well-established body in aviation. On the basis of a detailed review of relevant publications that examine patient safety in the context of aviation practice, we have drawn up a table of comparative features and a conceptual framework for patient safety. Convergence and divergence of safety-related behaviours across aviation and healthcare were derived and documented. Key safety-related domains that emerged included Checklists, Training, Crew Resource Management, Sterile Cockpit, Investigation and Reporting of Incidents and Organisational Culture. We conclude that whilst healthcare has much to learn from aviation in certain key domains, the transfer of lessons from aviation to healthcare needs to be nuanced, with the specific characteristics and needs of healthcare borne in mind. On the basis of this review, it is recommended that healthcare should emulate aviation in its resourcing of staff who specialise in human factors and related psychological aspects of patient safety and staff wellbeing. Professional and post-qualification staff training could specifically include Cognitive Bias Avoidance Training, as this appears to play a key part in many errors relating to patient safety and staff wellbeing.

  2. 46{sup th} Annual meeting on nuclear technology (AMNT 2015). Key topic / Enhanced safety and operation excellence / Sustainable reactor operation management - safe, efficient, valuable

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Erwin [E.ON Kernkraft GmbH, Global Unit Next Generation, Hannover (Germany)

    2015-08-15

    Summary report on the following Topical Session of the 46{sup th} Annual Conference on Nuclear Technology (AMNT 2015) held in Berlin, 5 to 7 May 2015: - Sustainable Reactor Operation Management - Safe, Efficient, Valuable (Erwin Fischer) The other Sessions of the Key Topics - ''Outstanding Know-How and Sustainable Innovations'', - ''Enhanced Safety and Operation Excellence'' and - ''Decommissioning Experience and Waste Management Solutions'' have been covered in atw 7 (2015) and will be covered in further issues of atw.

  3. Screening of Gas-Cooled Reactor Thermal-Hydraulic and Safety Analysis Tools and Experimental Database

    International Nuclear Information System (INIS)

    Lee, Won Jae; Kim, Min Hwan; Lee, Seung Wook

    2007-08-01

    This report is a final report of I-NERI Project, 'Screening of Gas-cooled Reactor Thermal Hydraulic and Safety Analysis Tools and Experimental Database 'jointly carried out by KAERI, ANL and INL. In this study, we developed the basic technologies required to develop and validate the VHTR TH/safety analysis tools and evaluated the TH/safety database information. The research tasks consist of; 1) code qualification methodology (INL), 2) high-level PIRTs for major nucleus set of events (KAERI, ANL, INL), 3) initial scaling and scoping analysis (ANL, KAERI, INL), 4) filtering of TH/safety tools (KAERI, INL), 5) evaluation of TH/safety database information (KAERI, INL, ANL) and 6) key scoping analysis (KAERI). The code qualification methodology identifies the role of PIRTs in the R and D process and the bottom-up and top-down code validation methods. Since the design of VHTR is still evolving, we generated the high-level PIRTs referencing 600MWth block-type GT-MHR and 400MWth pebble-type PBMR. Nucleus set of events that represents the VHTR safety and operational transients consists of the enveloping scenarios of HPCC (high pressure conduction cooling: loss of primary flow), LPCC/Air-Ingress (low pressure conduction cooling: loss of coolant), LC (load changes: power maneuvering), ATWS (anticipated transients without scram: reactivity insertion), WS (water ingress: water-interfacing system break) and HU (hydrogen-side upset: loss of heat sink). The initial scaling analysis defines dimensionless parameters that need to be reflected in mixed convection modeling and the initial scoping analysis provided the reference system transients used in the PIRTs generation. For the PIRTs phenomena, we evaluated the modeling capability of the candidate TH/safety tools and derived a model improvement need. By surveying and evaluating the TH/safety database information, a tools V and V matrix has been developed. Through the key scoping analysis using available database, the modeling

  4. Screening of Gas-Cooled Reactor Thermal-Hydraulic and Safety Analysis Tools and Experimental Database

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Kim, Min Hwan; Lee, Seung Wook (and others)

    2007-08-15

    This report is a final report of I-NERI Project, 'Screening of Gas-cooled Reactor Thermal Hydraulic and Safety Analysis Tools and Experimental Database 'jointly carried out by KAERI, ANL and INL. In this study, we developed the basic technologies required to develop and validate the VHTR TH/safety analysis tools and evaluated the TH/safety database information. The research tasks consist of; 1) code qualification methodology (INL), 2) high-level PIRTs for major nucleus set of events (KAERI, ANL, INL), 3) initial scaling and scoping analysis (ANL, KAERI, INL), 4) filtering of TH/safety tools (KAERI, INL), 5) evaluation of TH/safety database information (KAERI, INL, ANL) and 6) key scoping analysis (KAERI). The code qualification methodology identifies the role of PIRTs in the R and D process and the bottom-up and top-down code validation methods. Since the design of VHTR is still evolving, we generated the high-level PIRTs referencing 600MWth block-type GT-MHR and 400MWth pebble-type PBMR. Nucleus set of events that represents the VHTR safety and operational transients consists of the enveloping scenarios of HPCC (high pressure conduction cooling: loss of primary flow), LPCC/Air-Ingress (low pressure conduction cooling: loss of coolant), LC (load changes: power maneuvering), ATWS (anticipated transients without scram: reactivity insertion), WS (water ingress: water-interfacing system break) and HU (hydrogen-side upset: loss of heat sink). The initial scaling analysis defines dimensionless parameters that need to be reflected in mixed convection modeling and the initial scoping analysis provided the reference system transients used in the PIRTs generation. For the PIRTs phenomena, we evaluated the modeling capability of the candidate TH/safety tools and derived a model improvement need. By surveying and evaluating the TH/safety database information, a tools V and V matrix has been developed. Through the key scoping analysis using available database, the

  5. Evaluation of uncertainties of key neutron parameters of PWR-type reactors with slab fuel, application to neutronic conformity; Determination des incertitudes liees aux grandeurs neutroniques d'interet des reacteurs a eau pressurisee a plaques combustibles et application aux etudes de conformite

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, D

    2001-12-01

    The aim of this thesis was to evaluate uncertainties of key neutron parameters of slab reactors. Uncertainties sources have many origins, technologic origin for parameters of fabrication and physical origin for nuclear data. First, each contribution of uncertainties is calculated and finally, a factor of uncertainties is associated to key slab parameter like reactivity, isotherm reactivity coefficient, control rod efficiency, power form factor before irradiation and life-time. This factors of uncertainties were computed by Generalized Perturbations Theory in case of step 0 and by directs calculations in case of irradiation problems. One of neutronic conformity applications was about fabrication and nuclear data targets precision adjustments. Statistic (uncertainties) and deterministic (deviations) approaches were studied. Then, neutronics key slab parameters uncertainties were reduced and so nuclear performances were optimized. (author)

  6. Safety lock for radiography exposure device

    International Nuclear Information System (INIS)

    Gaines, T.M.

    1982-01-01

    A safety lock for securing a radiation source in a radiography exposure device is disclosed. The safety lock prevents the inadvertent extension of the radiation source from the exposure device. The exposure devices are used extensively in industry for nondestructive testing of metal materials for defect. Unnecessary exposure of the radiographer or operator occurs not infrequently due to operator's error in believing that the radiation source is secured in the exposure device when, in fact, it is not. The present invention solves this problem of unnecessary exposure by releasingly trapping the radiation source in the shield of the radiography exposure device each time the source is retracted therein so that it is not inadvertently extended therefrom without the operator resetting the safety lock, thereby releasing the radiation source. Further, the safety lock includes an indicator which indicates when the source is trapped in the exposure device and also when it is untrapped. The safety lock is so designed that it does not prevent the return of the source to the trapped, shielded position in the exposure device. Further the safety lock includes a key means for locking the radiation source in the trapped position. The key means cannot be actuated until said radiation source is in said trapped position to further insure the safety lock cannot be inadvertently locked with the source untrapped and thus still extendable from the exposure device

  7. The development of safety requirements

    International Nuclear Information System (INIS)

    Jorel, M.

    2009-01-01

    This document describes the safety approach followed in France for the design of nuclear reactors. This safety approach is based on safety principles from which stem safety requirements that set limiting values for specific parameters. The improvements in computerized simulation, the use of more adequate new materials, a better knowledge of the concerned physical processes, the changes in the reactor operations (higher discharge burnups for instance) have to be taken into account for the definition of safety criteria and the setting of limiting values. The developments of the safety criteria linked to the risks of cladding failure and loss of primary coolant are presented. (A.C.)

  8. Nuclear safety in perspective

    International Nuclear Information System (INIS)

    Andersson, K.; Sjoeberg, B.M.D.; Lauridsen, K.; Wahlstroem, B.

    2002-06-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicating on the subject in society. The project, which has been built around a number of seminars, was supported by limited research in three sub-projects: 1) Risk assessment, 2) Safety analysis, and 3) Strategies for safety management. The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems for regulatory oversight are described in the nuclear area and also, to widen the perspective, for other industrial areas. Transparency and public participation are described as key elements in good risk communication, and case studies are given. Environmental Impact Assessment and Strategic Environmental Assessment are described as important overall processes within which risk communication can take place. Safety culture, safety indicators and quality systems are important concepts in the nuclear safety area are very useful, but also offer important challenges for the future. They have been subject to special attention in the project. (au)

  9. International conference on the strengthening of nuclear safety in Eastern Europe. Keynote papers. Regulatory aspects of NPP safety, status of safety improvements, status of safety analysis report

    International Nuclear Information System (INIS)

    1999-06-01

    The Objective of the Conference was to assess the past decade of nuclear safety efforts in countries operating WWER and RBMK nuclear reactors and to address remaining safety issues which require further work. A particular focus of the Conference was on international co-operation and assistance and where such efforts should be focused in the future. All Eastern European countries that operate RBMK or WWER reactors participated in the Conference, and presented papers on three key areas of nuclear safety: Regulatory Aspects of Nuclear Power Plant Safety; Status of Safety Improvements; and Status of Safety Analysis Reports. In addition, representatives from 18 additional countries that provide financial and/or technical assistance and co-operation in the area of WWER and RBMK safety offered the most extensive commentary. Key international (IAEA, World Association of Nuclear Operators, the Nuclear Energy Agency, the G-24 NUSAC, the European Commission, and the EBRD) organizations that provide nuclear safety assistance for WWER and RBMK reactors also made presentations. There is no question that considerable progress on nuclear safety has been made in Eastern Europe. Special mention should be made of successful efforts to strengthen the independence and technical competence of the nuclear regulatory authorities. Efforts should now concentrate on improving the depth and scope of the technical abilities of the regulatory authorities. More attention by governments is needed to ensure that the regulatory authorities have the financial resources and enforcement authority to fully execute their missions. In respect to the operators of the nuclear power plants, they have demonstrated clear progress in operational safety improvements. Significant additional efforts are required to maintain and enhance an effective safety culture. Design safety improvement programmes are in place in all countries. Implementation of these programmes has varied and is particularly affected by

  10. Internet safety education for youth: stakeholder perspectives.

    Science.gov (United States)

    Moreno, Megan A; Egan, Katie G; Bare, Kaitlyn; Young, Henry N; Cox, Elizabeth D

    2013-06-05

    Internet use is nearly ubiquitous among US youth; risks to internet use include cyberbullying, privacy violations and unwanted solicitation. Internet safety education may prevent these negative consequences; however, it is unclear at what age this education should begin and what group is responsible for teaching this topic. Surveys were distributed to key stakeholders in youth safety education including public school teachers, clinicians, parents and adolescents. Surveys assessed age at which internet safety education should begin, as well as experiences teaching and learning internet safety. Surveys of adults assessed willingness to teach internet safety. Finally, participants were asked to identify a group whose primary responsibility it should be to teach internet safety. A total of 356 participants completed the survey (93.4% response rate), including 77 teachers, 111 clinicians, 72 parents and 96 adolescents. Stakeholders felt the optimal mean age to begin teaching internet safety was 7.2 years (SD = 2.5), range 2-15. Internet safety was regularly taught by some teachers (20.8%), few clinicians (2.6%) and many parents (40.3%). The majority of teachers, clinicians and parents were willing to teach internet safety, but all groups surveyed identified parents as having primary responsibility for teaching this topic. Findings suggest agreement among key stakeholders for teaching internet safety at a young age, and for identifying parents as primary teachers of this topic. Clinicians have a unique opportunity to support parents by providing resources, guidance and support.

  11. Effects of chilled-then-frozen storage (up to 52weeks) on lamb M. longissimus lumborum quality and safety parameters.

    Science.gov (United States)

    Coombs, Cassius E O; Holman, Benjamin W B; Collins, Damian; Friend, Michael A; Hopkins, David L

    2017-12-01

    This study evaluated the effect of chilled followed by frozen storage on lamb quality and safety parameters. Experimental (n=360) M. longissimus lumborum (LL) were randomly sampled from the boning room of a commercial Australian abattoir, at 24 h post-mortem, and assigned to five chilled storage periods (0, 2, 4, 6 and 8 weeks) and six subsequent frozen storage periods (0, 4, 8, 12, 24 and 52 weeks). Upon completion of each storage treatment combination, corresponding LL were sub-sectioned and analysed for colour stability (0, 1, 2 and 3 days), shear force, fluid losses (purge, thaw and cooking losses), intramuscular fat content, sarcomere length, water activity and microbial load (lactic acid bacteria, Enterobacteriaceae sp., Brochothrix thermosphacta, Clostridium perfringens and Escherichia coli). LL stored chilled for 2-4 weeks prior to freezing presented superior results for shear force, display colour and low levels of spoilage microbes, correlating with good eating quality and safety following more than one year of frozen storage. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Simplicity: the key to improved safety, performance and economics

    International Nuclear Information System (INIS)

    McCandless, R.J.; Redding, J.R.

    1989-01-01

    In General Electric's Simplified Boiling Water Reactor (SBWR) design every feature, every system, every piece of equipment must justify its existence - or it must go. Each must perform a needed function in the simplest way because simplification is the key to high performance and competitive economics. The SBWR has the potential to become a safe, economical and environmentally sound energy source for the 1990s, GE believes. The distinctive features of the reactor are described. It is illustrated on a wall chart which also gives its main specifications

  13. Translating Health Services Research into Practice in the Safety Net.

    Science.gov (United States)

    Moore, Susan L; Fischer, Ilana; Havranek, Edward P

    2016-02-01

    To summarize research relating to health services research translation in the safety net through analysis of the literature and case study of a safety net system. Literature review and key informant interviews at an integrated safety net hospital. This paper describes the results of a comprehensive literature review of translational science literature as applied to health care paired with qualitative analysis of five key informant interviews conducted with senior-level management at Denver Health and Hospital Authority. Results from the literature suggest that implementing innovation may be more difficult in the safety net due to multiple factors, including financial and organizational constraints. Results from key informant interviews confirmed the reality of financial barriers to innovation implementation but also implied that factors, including institutional respect for data, organizational attitudes, and leadership support, could compensate for disadvantages. Translating research into practice is of critical importance to safety net providers, which are under increased pressure to improve patient care and satisfaction. Results suggest that translational research done in the safety net can better illuminate the special challenges of this setting; more such research is needed. © Health Research and Educational Trust.

  14. K-effective as a measure of criticality safety

    International Nuclear Information System (INIS)

    Venner, J.; Haley, R.M.; Bowden, R.L.

    2003-01-01

    This paper considers the relation between the neutron multiplication of a system, k-effective, and critical parameters. It aims to investigate whether k-effective is always the most appropriate measure of safety. For simple systems handbook data can be effectively utilized, applying a safety factor to critical masses. In such situations, the criticality safety margin is readily apparent. However, more complex systems may use the calculated value of neutron multiplication to assess the criticality safety of the system under investigation. A problem arises because there is no exact consistency between k-effective and the physical margin of subcriticality, in terms of parameters such as mass. In the UK, commonly accepted safety criteria are applied to limit the k-effective of the system being assessed. These margins of subcriticality have no definitive justification to support the values chosen and might be considered rather arbitrary in nature. This paper aims to answer this question of suitability by investigating the relation between k-effective and the physical critical parameters for a wide range of systems. It concludes that the safety criteria currently applied in the UK are valid, but some difference exists between safety factors applied to the mass of fissile material present and the corresponding value of k-effective. (author)

  15. Analysis of safety culture components based on site interviews

    International Nuclear Information System (INIS)

    Ueno, Akira; Nagano, Yuko; Matsuura, Shojiro

    2002-01-01

    Safety culture of an organization is influenced by many factors such as employee's moral, safety policy of top management and questioning attitude among site staff. First this paper analyzes key factors of safety culture on the basis of site interviews. Then the paper presents a safety culture composite model and its applicability in various contexts. (author)

  16. Rule-based Dynamic Safety Monitoring for Mobile Robots

    DEFF Research Database (Denmark)

    Adam, Marian Sorin; Larsen, Morten; Jensen, Kjeld

    2016-01-01

    Safety is a key challenge in robotics, in particular for mobile robots operating in an open and unpredictable environment. Safety certification is desired for commercial robots, but no existing approaches for addressing the safety challenge provide a clearly specified and isolated safety layer......, defined in an easily understandable way for facilitating safety certification. In this paper, we propose that functional-safety-critical concerns regarding the robot software be explicitly declared separately from the main program, in terms of externally observable properties of the software. Concretely...

  17. Safety culture measurements results in the agricultural sector

    OpenAIRE

    Terjék, László

    2013-01-01

    The author examined the safety culture and in relation to that the safety and health-related human factors. The examination was conducted primarily in the agricultural sector. Safety culture is also a key factor in business life especially in productive sectors. Basically, it determines the general work safety and occupational hazard situations, which may have an impact on business, competitiveness, and efficiency, and also employee satisfaction.The concept of safety culture is new in the app...

  18. Uncertainty and sensitivity analysis on probabilistic safety assessment of an experimental facility

    International Nuclear Information System (INIS)

    Burgazzi, L.

    2000-01-01

    The aim of this work is to perform an uncertainty and sensitivity analysis on the probabilistic safety assessment of the International Fusion Materials Irradiation Facility (IFMIF), in order to assess the effect on the final risk values of the uncertainties associated with the generic data used for the initiating events and component reliability and to identify the key quantities contributing to this uncertainty. The analysis is conducted on the expected frequency calculated for the accident sequences, defined through the event tree (ET) modeling. This is in order to increment credit to the ET model quantification, to calculate frequency distributions for the occurrence of events and, consequently, to assess if sequences have been correctly selected on the probability standpoint and finally to verify the fulfillment of the safety conditions. Uncertainty and sensitivity analysis are performed using respectively Monte Carlo sampling and an importance parameter technique. (author)

  19. The safety designs for the TITAN reversed-field pinch reactor study

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, R.L.; Hoot, C.G.; Schultz, K.R.; Grotz, S.P.; Blanchard, J.; Sharafat, S.; Najmabadi, F.

    1989-01-01

    TITAN is a study to investigate the potential of the reversed-field pinch concept as a compact, high-power density energy system. Two reactor concepts were developed, a self-cooled lithium design with vanadium structure and an aqueous solution loop-in-pool design, both operating at 18 MW/m 2 . The key safety features of the TITAN-I lithium-vanadium blanket design are in material selection, fusion power core configuration selection, lithium piping connections, and passive lithium drain tank system. Based on these safety features and results from accident evaluation, TITAN-I can at least be rated at a level 3 of safety assurance. For the TITAN-II aqueous loop-in-pool design, the key passive feature is the complete submersion of the fusion power core and the corresponding primary coolant loop system into a pool of low temperature water. Based on this key safety design feature, the TITAN-II design can be rated at a level 2 of safety assurance. (orig.)

  20. The safety designs for the TITAN reversed-field pinch reactor study

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, R.L.; Hoot, C.G.; Schultz, K.R.; Grotz, S.P.; Blanchard, J.P.; Sharafat, S.; Najmabadi, F.

    1988-01-01

    TITAN is a study to investigate the potential of the reversed-field pinch concept as a compact, high-power density energy system. Two reactor concepts were developed, a self-cooled lithium design with vanadium structure and an aqueous solution loop-in-pool design, both operating at 18 MW/m 2 . The key safety features of the TITAN-I lithium-vanadium blanket design are in material selection, fusion power core configuration selection, lithium piping connections and passive lithium drain tank system. Based on these safety features and results from accident evaluation, TITAN-I can at least be rated as level 3 of safety assurance. For the TITAN-II aqueous loop-in-pool design, the key passive feature is the complete submersion of the fusion power core and the corresponding primary coolant loop system into a pool of low temperature water. Based on this key safety design feature, the TITAN-II design can be rated as level 2 of safety assurance. 7 refs., 2 figs

  1. Nuclear safety: an international approach: the convention on nuclear safety

    International Nuclear Information System (INIS)

    Rosen, M.

    1994-01-01

    This paper is a general presentation of the IAEA Convention on Nuclear Safety which has already be signed by 50 countries and which is the first legal instrument that directly addresses the safety of nuclear power plants worldwide. The paper gives a review of its development and some key provisions for a better understanding of how this agreement will operate in practice. The Convention consists of an introductory preamble and four chapters consisting of 35 articles dealing with: the principal objectives, definitions and scope of application; the various obligations (general provisions, legislation, responsibility and regulation, general safety considerations taking into account: the financial and human resources, the human factors, the quality assurance, the assessment and verification of safety, the radiation protection and the emergency preparedness; the safety of installations: sitting, design and construction, operation); the periodic meetings of the contracting parties to review national reports on the measures taken to implement each of the obligations, and the final clauses and other judicial provisions common to international agreements. (J.S.). 1 append

  2. Safety research program of NUCEF

    International Nuclear Information System (INIS)

    Naito, Y.

    1996-01-01

    To contribute the safety and establishment of advanced technologies in the area of nuclear fuel cycle, Japan Atomic Energy Research Institute (JAERI) has constructed a new research facility NUCEF (Nuclear Fuel Cycle Safety Engineering Research Facility) as the center for the research and development, particularly on the reprocessing technology and transuranium (TRU) waste management. NUCEF consist of three buildings, administration building, experiment building A and B. Building A has two experiment facilities STACY (Static Experiment Critical Facility) and TRACY (Transient Experiment Critical Facility). The experiment building B is referred to as BECKY (Back-end Fuel Cycle Key Elements Research Facility). Researches on the reprocessing and the waste management are carried out with spent fuels, high-level liquid waste, TRU etc. in the α γ cell and glove boxes. NUCEF was constructed with the following aims. Using STACY and TRACY, are aimed, (1) research on advanced technology for criticality safety control, (2) reconfirmation of criticality safety margin of the Rokkasho reprocessing plant. Using BECKY, are aimed, (1) research on advanced technology of reprocessing process, (2) contribution to develop the scenario for TRU waste disposal, (3) development of new technology for TRU partitioning and volume reduction of radioactive waste. To realize the above aims, following 5 research subjects are settled in NUCEF, (1) Criticality safety research, (2) Research on safety and advanced technology of fuel reprocessing, (3) Research on TRU waste management, (4) Fundamental research on TRU chemistry, (5) Key technology development for TRU processing. (author)

  3. Influence of key processing parameters and seeding density effects of microencapsulated chondrocytes fabricated using electrohydrodynamic spraying.

    Science.gov (United States)

    Gansau, Jennifer; Kelly, Lara; Buckley, Conor

    2018-06-11

    Cell delivery and leakage during injection remains a challenge for cell-based intervertebral disc regeneration strategies. Cellular microencapsulation may offer a promising approach to overcome these limitations by providing a protective niche during intradiscal injection. Electrohydrodynamic spraying (EHDS) is a versatile one-step approach for microencapsulation of cells using a high voltage electric field. The primary objective of this work was to characterise key processing parameters such as applied voltage (0, 5, 10 or 15kV), emitter needle gauge (21, 26 or 30G), alginate concentration (1, 2 or 3%) and flow rate (50, 100, 250 or 500 µl/min) to regulate the morphology of alginate microcapsules and subsequent cell viability when altering these parameters. The effect of initial cell seeding density (5, 10 and 20x106 cells/ml) on subsequent matrix accumulation of microencapsulated articular chondrocytes was also evaluated. Results showed that increasing alginate concentration and thus viscosity increased overall microcapsule size but also affected the geometry towards ellipsoidal-shaped gels. Altering the electric field strength and needle diameter regulated microcapsule size towards a smaller diameter with increasing voltage and smaller needle diameter. Needle size did not appear to affect cell viability when operating with lower alginate concentrations (1% and 2%), although higher concentrations (3%) and thus higher viscosity hydrogels resulted in diminished viability with decreasing needle diameter. Increasing cell density resulted in decreased cell viability and a concomitant decrease in DNA content, perhaps due to competing nutrient demands as a result of more closely packed cells. However, higher cell densities resulted in increased levels of extracellular matrix accumulated. Overall, this work highlights the potential of EHDS as a controllable and versatile approach to fabricate microcapsules for injectable delivery which can be used in a

  4. Patient safety goals for the proposed Federal Health Information Technology Safety Center.

    Science.gov (United States)

    Sittig, Dean F; Classen, David C; Singh, Hardeep

    2015-03-01

    The Office of the National Coordinator for Health Information Technology is expected to oversee creation of a Health Information Technology (HIT) Safety Center. While its functions are still being defined, the center is envisioned as a public-private entity focusing on promotion of HIT related patient safety. We propose that the HIT Safety Center leverages its unique position to work with key administrative and policy stakeholders, healthcare organizations (HCOs), and HIT vendors to achieve four goals: (1) facilitate creation of a nationwide 'post-marketing' surveillance system to monitor HIT related safety events; (2) develop methods and governance structures to support investigation of major HIT related safety events; (3) create the infrastructure and methods needed to carry out random assessments of HIT related safety in complex HCOs; and (4) advocate for HIT safety with government and private entities. The convening ability of a federally supported HIT Safety Center could be critically important to our transformation to a safe and effective HIT enabled healthcare system. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Integrated Safety and Security Risk Assessment Methods: A Survey of Key Characteristics and Applications

    OpenAIRE

    Chockalingam, Sabarathinam; Hadziosmanovic, Dina; Pieters, Wolter; Teixeira, Andre; van Gelder, Pieter

    2017-01-01

    Over the last years, we have seen several security incidents that compromised system safety, of which some caused physical harm to people. Meanwhile, various risk assessment methods have been developed that integrate safety and security, and these could help to address the corresponding threats by implementing suitable risk treatment plans. However, an overarching overview of these methods, systematizing the characteristics of such methods, is missing. In this paper, we conduct a systematic l...

  6. Safety objectives for 2014

    CERN Multimedia

    HSE Unit

    2014-01-01

    This is the third year in which the CERN Management has presented annual safety objectives for the Organization, the “HSE Objectives”.   The HSE objectives for 2014, which were announced by the Director-General at his traditional New Year’s address to the staff and were presented at the first Enlarged Directorate meeting of the year, have been drawn up and agreed in close collaboration between the DSOs, the HSE Unit and the DG himself. From safety in the workplace to radiation and environmental protection, the document emphasises that “Safety is a priority for CERN” and that safety policy is a key element in how the Organization is run. And, like all policies, it generates objectives that “serve as a general framework for action”. The HSE objectives are broken down into the following fields: occupational health and safety on sites and in the workplace, radiation protection, radiation safety, environmental protection, emerge...

  7. Sensitivities of Key Parameters in the Preparation of Silver/Silver Chloride Electrodes Used in Harned Cell Measurements of pH

    Directory of Open Access Journals (Sweden)

    Richard J. C. Brown

    2011-08-01

    Full Text Available A questionnaire was completed by fourteen world leading national metrology institutes to study the influence of several variables in the preparation of Ag/AgCl electrodes on the accuracy of Harned cell measurements of pH. The performance of each institute in the last decade has been assessed based on their results in eight key comparisons, organized by the Bureau International des Poids et Measures Consultative Committee for Amount of Substance, involving the measurement of pH of phosphate, phthalate, carbonate, borate and tetroxalate buffer solutions. The performance of each laboratory has been correlated to the results of the questionnaire to determine the critical parameters in the preparation of Ag/AgCl electrodes and their sensitivities with respect to the accuracy of pH measurement. This study reveals that the parameters most closely correlated to performance in comparisons are area of electrode wire exposed to the electrolyte, diameter and porosity of the Ag sphere prior to anodisation, amount of Ag converted to AgCl during anodisation, stability times employed for electrodes to reach equilibrium in solution prior to measurement, electrode rejection criteria employed and purity of reagents.

  8. Technical Approach for Determining Key Parameters Needed for Modeling the Performance of Cast Stone for the Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Yabusaki, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-30

    the critical link between the short-term understanding from laboratory and field tests, and the prediction of repository performance over repository time frames and scales. One common recommendation is that experiments be designed to permit the appropriate scaling in the models. There is a large contrast in the physical and chemical properties between the Cast Stone waste package and the IDF backfill and surrounding sediments. Cast Stone exhibits low permeability, high tortuosity, low carbonate, high pH, and low Eh whereas the backfill and native sediments have high permeability, low tortuosity, high carbonate, circumneutral pH, and high Eh. These contrasts have important implications for flow, transport, and reactions across the Cast Stone – backfill interface. Over time with transport across the interface and subsequent reactions, the sharp geochemical contrast will blur and there will be a range of spatially-distributed conditions. In general, COC mobility and transport will be sensitive to these geochemical variations, which also include physical changes in porosity and permeability from mineral reactions. Therefore, PA modeling must address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Section 2 of this document reviews past Hanford PAs and SRS Saltstone PAs, which to date have mostly relied on the lumped parameter COC release conceptual models for TSPA predictions, and provides some details on the chosen values for the lumped parameters. Section 3 provides more details on the hierarchical modeling strategy and processes and mechanisms that control COC release. Section 4 summarizes and lists the key parameters for which numerical values are needed to perform PAs. Section 5 provides brief summaries of the methods used to measure the needed parameters and references to get more details.

  9. Managing for safety at nuclear installations

    International Nuclear Information System (INIS)

    1996-01-01

    This publication, by the Health and Safety Executive's (HSE's) Nuclear Safety Division (NSD), provides a statement of the criteria the Nuclear Installations Inspectorate (NII) uses to judge the adequacy of any proposed or existing system for managing a nuclear installation in so far as it affects safety. These criteria have been developed from the basic HSE model, described in the publication Successful health and safety management that applies to industry generally, in order to meet the additional needs for managing nuclear safety. In addition, the publication identifies earlier studies upon which this work was based together with the key management activities and outputs. (Author)

  10. Design for safety: theoretical framework of the safety aspect of BIM system to determine the safety index

    Directory of Open Access Journals (Sweden)

    Ai Lin Evelyn Teo

    2016-12-01

    Full Text Available Despite the safety improvement drive that has been implemented in the construction industry in Singapore for many years, the industry continues to report the highest number of workplace fatalities, compared to other industries. The purpose of this paper is to discuss the theoretical framework of the safety aspect of a proposed BIM System to determine a Safety Index. An online questionnaire survey was conducted to ascertain the current workplace safety and health situation in the construction industry and explore how BIM can be used to improve safety performance in the industry. A safety hazard library was developed based on the main contributors to fatal accidents in the construction industry, determined from the formal records and existing literature, and a series of discussions with representatives from the Workplace Safety and Health Institute (WSH Institute in Singapore. The results from the survey suggested that the majority of the firms have implemented the necessary policies, programmes and procedures on Workplace Safety and Health (WSH practices. However, BIM is still not widely applied or explored beyond the mandatory requirement that building plans should be submitted to the authorities for approval in BIM format. This paper presents a discussion of the safety aspect of the Intelligent Productivity and Safety System (IPASS developed in the study. IPASS is an intelligent system incorporating the buildable design concept, theory on the detection, prevention and control of hazards, and the Construction Safety Audit Scoring System (ConSASS. The system is based on the premise that safety should be considered at the design stage, and BIM can be an effective tool to facilitate the efforts to enhance safety performance. IPASS allows users to analyse and monitor key aspects of the safety performance of the project before the project starts and as the project progresses.

  11. Key parameters of the swimming start and their relationship to start performance.

    Science.gov (United States)

    Tor, Elaine; Pease, David L; Ball, Kevin A

    2015-01-01

    The swimming start is typically broken into three sub-phases; on-block, flight, and underwater phases. While overall start performance is highly important to elite swimming, the contribution of each phase and important technical components within each phase, particularly with the new kick-start technique, has not been established. The aim of this study was to identify technical factors associated with overall start performance, with a particular focus on the underwater phase. A number of parameters were calculated from 52 starts performed by elite freestyle and butterfly swimmers. These parameters were split into above-water and underwater groupings, before factor analysis was used to reduce parameter numbers for multiple regression. For the above-water phases, 81% of variance in start performance was accounted for by take-off horizontal velocity. For the underwater water phase, 96% of variance was accounted for with time underwater in descent, time underwater in ascent and time to 10 m. Therefore, developing greater take-off horizontal velocity and focussing on the underwater phase by finding the ideal trajectory will lead to improved start performance.

  12. Review of nuclear regulatory activities associated with safety culture and the management of safety in the United Kingdom

    International Nuclear Information System (INIS)

    Woodhouse, P.A.

    1995-01-01

    This paper describes some of the key regulatory activities which have taken place in the United Kingdom in recent years in the areas of safety culture and management of safety. It explains how the UK's nuclear licensing regime, regulated and enforced by the Nuclear Installations Inspectorate, (NII), provides the framework for a viable safety management system and identifies a management of safety model which a NII Task Force has developed. It finally identifies further work which is being undertaken by the NII. (author). 4 refs, 2 figs

  13. Topical session proceedings of the 5. IGSC meeting on: observations regarding the safety case in recent safety assessment studies

    International Nuclear Information System (INIS)

    Hooper, Alan J.; Voinis, Sylvie; Van Luik, Abraham E.

    2004-01-01

    Within the NEA, the IGSC (Integration Group for the Safety Case) has, as an essential role, to develop common views on such key aspects of the safety case. Therefore, since the inauguration of the IGSC in 2000, four meetings were organised with topical sessions to explore various of these key aspects. This is a report on the fifth such topical session, held as part of the 5. plenary meeting of the IGSC. The session was attended by 36 participants, representing waste management organisations and regulatory authorities from 16 NEA member countries, the IAEA and the European Commission. The purpose of this topical session was to provide support to the finalising of the IGSC safety case brochure by getting a description of the safety case content of the IAEA Draft Safety Requirements document and by getting an overview of progress that could be observed from national organisations on developing their cases for system safety and/or developing the required methodologies. The objective was that the IGSC safety case brochure should be supportive of the IAEA/NEA document, and be reflective of the experience of the IGSC member programmes and organisations. The topical session was mainly aimed at exchanging information on: - The safety case related content of the proposed IAEA/NEA document (currently titled: 'IAEA Safety Standards Series, Geological Disposal of Radioactive Waste, Draft Safety Requirements (DS-154)'). - National programmes where safety assessments have recently been completed, e.g. ONDRAF/NIRAS, Nagra and Andra. - Feedback from international peer reviews, e.g. the Andra Dossier 2001 Argile, the Belgian SAFIR 2 report, the SR 97 report and the US-DOE Yucca Mountain TSPA. - The evolution of some national assessment methods and approaches e.g. SKB and Nagra. - The content of the draft IGSC safety case brochure entitled: 'The Nature and Purpose of the Post-closure Safety Case in Geological Disposal'. This document presents the various

  14. Response of Key Soil Parameters During Compost-Assisted Phytostabilization in Extremely Acidic Tailings: Effect of Plant Species

    Science.gov (United States)

    Solís-Dominguez, Fernando A.; White, Scott A.; Hutter, Travis Borrillo; Amistadi, Mary Kay; Root, Robert A.; Chorover, Jon; Maier, Raina M.

    2012-01-01

    Phytostabilization of mine tailings acts to mitigate both eolian dispersion and water erosion events which can disseminate barren tailings over large distances. This technology uses plants to establish a vegetative cover to permanently immobilize contaminants in the rooting zone, often requiring addition of an amendment to assist plant growth. Here we report the results of a greenhouse study that evaluated the ability of six native plant species to grow in extremely acidic (pH ~ 2.5) metalliferous (As, Pb, Zn: 2000–3000 mg kg−1) mine tailings from Iron King Mine Humboldt Smelter Superfund site when amended with a range of compost concentrations. Results revealed that three of the six plant species tested (buffalo grass, mesquite, and catclaw acacia) are good candidates for phytostabilization at an optimum level of 15% compost (w/w) amendment showing good growth and minimal shoot accumulation of metal(loid)s. A fourth candidate, quailbush, also met all criteria except for exceeding the domestic animal toxicity limit for shoot accumulation of zinc. A key finding of this study was that the plant species that grew most successfully on these tailings significantly influenced key tailings parameters; direct correlations between plant biomass and both increased tailings pH and neutrophilic heterotrophic bacterial counts were observed. We also observed decreased iron oxidizer counts and decreased bioavailability of metal(loid)s mainly as a result of compost amendment. Taken together, these results suggest that the phytostabilization process reduced tailings toxicity as well as the potential for metal(loid) mobilization. This study provides practical information on plant and tailings characteristics that is critically needed for successful implementation of assisted phytostabilization on acidic, metalliferous mine tailings sites. PMID:22191663

  15. Response of key soil parameters during compost-assisted phytostabilization in extremely acidic tailings: effect of plant species.

    Science.gov (United States)

    Solís-Dominguez, Fernando A; White, Scott A; Hutter, Travis Borrillo; Amistadi, Mary Kay; Root, Robert A; Chorover, Jon; Maier, Raina M

    2012-01-17

    Phytostabilization of mine tailings acts to mitigate both eolian dispersion and water erosion events which can disseminate barren tailings over large distances. This technology uses plants to establish a vegetative cover to permanently immobilize contaminants in the rooting zone, often requiring addition of an amendment to assist plant growth. Here we report the results of a greenhouse study that evaluated the ability of six native plant species to grow in extremely acidic (pH ∼ 2.5) metalliferous (As, Pb, Zn: 2000-3000 mg kg(-1)) mine tailings from Iron King Mine Humboldt Smelter Superfund site when amended with a range of compost concentrations. Results revealed that three of the six plant species tested (buffalo grass, mesquite, and catclaw acacia) are good candidates for phytostabilization at an optimum level of 15% compost (w/w) amendment showing good growth and minimal shoot accumulation of metal(loid)s. A fourth candidate, quailbush, also met all criteria except for exceeding the domestic animal toxicity limit for shoot accumulation of zinc. A key finding of this study was that the plant species that grew most successfully on these tailings significantly influenced key tailings parameters; direct correlations between plant biomass and both increased tailings pH and neutrophilic heterotrophic bacterial counts were observed. We also observed decreased iron oxidizer counts and decreased bioavailability of metal(loid)s mainly as a result of compost amendment. Taken together, these results suggest that the phytostabilization process reduced tailings toxicity as well as the potential for metal(loid) mobilization. This study provides practical information on plant and tailings characteristics that is critically needed for successful implementation of assisted phytostabilization on acidic, metalliferous mine tailings sites.

  16. Parameter Estimation of a Reliability Model of Demand-Caused and Standby-Related Failures of Safety Components Exposed to Degradation by Demand Stress and Ageing That Undergo Imperfect Maintenance

    Directory of Open Access Journals (Sweden)

    S. Martorell

    2017-01-01

    Full Text Available One can find many reliability, availability, and maintainability (RAM models proposed in the literature. However, such models become more complex day after day, as there is an attempt to capture equipment performance in a more realistic way, such as, explicitly addressing the effect of component ageing and degradation, surveillance activities, and corrective and preventive maintenance policies. Then, there is a need to fit the best model to real data by estimating the model parameters using an appropriate tool. This problem is not easy to solve in some cases since the number of parameters is large and the available data is scarce. This paper considers two main failure models commonly adopted to represent the probability of failure on demand (PFD of safety equipment: (1 by demand-caused and (2 standby-related failures. It proposes a maximum likelihood estimation (MLE approach for parameter estimation of a reliability model of demand-caused and standby-related failures of safety components exposed to degradation by demand stress and ageing that undergo imperfect maintenance. The case study considers real failure, test, and maintenance data for a typical motor-operated valve in a nuclear power plant. The results of the parameters estimation and the adoption of the best model are discussed.

  17. Performance Monitoring for Nuclear Safety Related Instrumentation at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Sabri Minhat

    2015-01-01

    The Reactor TRIGA PUSPATI (RTP) at Malaysia Nuclear Agency is a TRIGA Mark II type reactor and pool type cooled by natural circulation of light water. This paper describe on performance monitoring for nuclear safety related instrumentation in TRIGA PUSPATI Reactor (RTP) of based on various parameter of reactor safety instrument channel such as log power, linear power, Fuel temperature, coolant temperature will take into consideration. Methodology of performance on estimation and monitoring is to evaluate and analysis of reactor parameters which is important of reactor safety and control. And also to estimate power measurement, differential of log and linear power and fuel temperature during reactor start-up, operation and shutdown .This study also focus on neutron power fluctuation from fission chamber during reactor start-up and operation. This work will present result of performance monitoring from RTP which indicated the safety parameter identification and initiate safety action on crossing the threshold set point trip. Conclude that performance of nuclear safety related instrumentation will improved the reactor control and safety parameter during reactor start-up, operation and shutdown. (author)

  18. Device-independent secret-key-rate analysis for quantum repeaters

    Science.gov (United States)

    Holz, Timo; Kampermann, Hermann; Bruß, Dagmar

    2018-01-01

    The device-independent approach to quantum key distribution (QKD) aims to establish a secret key between two or more parties with untrusted devices, potentially under full control of a quantum adversary. The performance of a QKD protocol can be quantified by the secret key rate, which can be lower bounded via the violation of an appropriate Bell inequality in a setup with untrusted devices. We study secret key rates in the device-independent scenario for different quantum repeater setups and compare them to their device-dependent analogon. The quantum repeater setups under consideration are the original protocol by Briegel et al. [Phys. Rev. Lett. 81, 5932 (1998), 10.1103/PhysRevLett.81.5932] and the hybrid quantum repeater protocol by van Loock et al. [Phys. Rev. Lett. 96, 240501 (2006), 10.1103/PhysRevLett.96.240501]. For a given repeater scheme and a given QKD protocol, the secret key rate depends on a variety of parameters, such as the gate quality or the detector efficiency. We systematically analyze the impact of these parameters and suggest optimized strategies.

  19. International conference on the strengthening of nuclear safety in Eastern Europe. Keynote papers. Regulatory aspects of NPP safety, status of safety improvements, status of safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The Objective of the Conference was to assess the past decade of nuclear safety efforts in countries operating WWER and RBMK nuclear reactors and to address remaining safety issues which require further work. A particular focus of the Conference was on international co-operation and assistance and where such efforts should be focused in the future. All Eastern European countries that operate RBMK or WWER reactors participated in the Conference, and presented papers on three key areas of nuclear safety: Regulatory Aspects of Nuclear Power Plant Safety; Status of Safety Improvements; and Status of Safety Analysis Reports. In addition, representatives from 18 additional countries that provide financial and/or technical assistance and co-operation in the area of WWER and RBMK safety offered the most extensive commentary. Key international (IAEA, World Association of Nuclear Operators, the Nuclear Energy Agency, the G-24 NUSAC, the European Commission, and the EBRD) organizations that provide nuclear safety assistance for WWER and RBMK reactors also made presentations. There is no question that considerable progress on nuclear safety has been made in Eastern Europe. Special mention should be made of successful efforts to strengthen the independence and technical competence of the nuclear regulatory authorities. Efforts should now concentrate on improving the depth and scope of the technical abilities of the regulatory authorities. More attention by governments is needed to ensure that the regulatory authorities have the financial resources and enforcement authority to fully execute their missions. In respect to the operators of the nuclear power plants, they have demonstrated clear progress in operational safety improvements. Significant additional efforts are required to maintain and enhance an effective safety culture. Design safety improvement programmes are in place in all countries. Implementation of these programmes has varied and is particularly affected by

  20. Patron Banning in the Nightlife Entertainment Districts: A Key Informant Perspective.

    Science.gov (United States)

    Miller, Peter; Curtis, Ashlee; Palmer, Darren; Warren, Ian; McFarlane, Emma

    2016-07-01

    Alcohol-related harm in and around licensed venues is associated with substantial costs. Many interventions have been introduced in an effort to combat these harms, and one such intervention is known as patron banning. Patron banning involves prohibiting patrons who have been violent or disorderly in a licensed venue in an attempt to reduce alcohol-related harm. It can be implemented by the venue, by members of police, or by liquor accords. This study aimed to obtain key informant perspectives on the benefits of patron banning as well as on the effectiveness of patron banning in reducing alcohol-related harm. Thirty-six key informants provided perspectives on patron banning through in-depth interviews that were part of a larger study. Key informants were supportive of patron banning for reducing alcohol-related harm, noting that it had many benefits including increased venue safety, general risk management, and deterrence of antisocial behavior. Although processes for banning were not always consistent, identification scanners were generally recognized as a way to ensure that patron banning was enforced. Key informants viewed patron banning as an effective measure for increasing patron safety and reducing alcohol-related harms.

  1. A Quantitative Feasibility Study on Potential Safety Improvement Effects of Advanced Safety Features in APR-1400 when Applied to OPR-1000

    Energy Technology Data Exchange (ETDEWEB)

    Ualikhan Zhiyenbayev [KAIST, Daejeon (Korea, Republic of); Chung, Dae Wook [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    This study aims to test the feasibility of the applications using Probabilistic Safety Assessment (PSA). Particularly, three of those advanced safety features are selected as follows: 1. Providing an additional Emergency Diesel Generator (EDG); 2. Increasing the capacity of Class 1E batteries; 3. Placing a Refueling Water Storage Tank (RWST) inside containment, i.e., change from RWST to IRWST. The Advanced Power Reactor 1400 (APR-1400) adopts several advanced safety features compared to its predecessor, the Optimized Power Reactor 1000 (OPR-1000), which includes an additional Emergency Diesel Generator, increase in battery capacity, in-containment refueling water storage tank (IRWST), and so on. Considering the remarkable advantages of these safety features in safety improvement and the design similarities between APR-1400 and OPR-1000, it is feasible to apply key advanced safety features of APR-1400 to OPR-1000 to enhance the safety. The selected safety features are incorporated into OPR-1000 PSA model using the Advanced Information Management System (AIMS) for PSA and CDFs are re-evaluated for each application and combination of three applications. Based on current results, it is concluded that three of key advanced safety features of APR-1400 can be effectively applied to OPR-1000, resulting in considerable safety improvement. In aggregate, three advanced safety features, which are an additional EDG, increased battery capacity and IRWST, can reduce the CDF of OPR-1000 by more than 15% when applied altogether.

  2. A Quantitative Feasibility Study on Potential Safety Improvement Effects of Advanced Safety Features in APR-1400 when Applied to OPR-1000

    International Nuclear Information System (INIS)

    Ualikhan Zhiyenbayev; Chung, Dae Wook

    2015-01-01

    This study aims to test the feasibility of the applications using Probabilistic Safety Assessment (PSA). Particularly, three of those advanced safety features are selected as follows: 1. Providing an additional Emergency Diesel Generator (EDG); 2. Increasing the capacity of Class 1E batteries; 3. Placing a Refueling Water Storage Tank (RWST) inside containment, i.e., change from RWST to IRWST. The Advanced Power Reactor 1400 (APR-1400) adopts several advanced safety features compared to its predecessor, the Optimized Power Reactor 1000 (OPR-1000), which includes an additional Emergency Diesel Generator, increase in battery capacity, in-containment refueling water storage tank (IRWST), and so on. Considering the remarkable advantages of these safety features in safety improvement and the design similarities between APR-1400 and OPR-1000, it is feasible to apply key advanced safety features of APR-1400 to OPR-1000 to enhance the safety. The selected safety features are incorporated into OPR-1000 PSA model using the Advanced Information Management System (AIMS) for PSA and CDFs are re-evaluated for each application and combination of three applications. Based on current results, it is concluded that three of key advanced safety features of APR-1400 can be effectively applied to OPR-1000, resulting in considerable safety improvement. In aggregate, three advanced safety features, which are an additional EDG, increased battery capacity and IRWST, can reduce the CDF of OPR-1000 by more than 15% when applied altogether

  3. Evaluation of uncertainties of key neutron parameters of PWR-type reactors with slab fuel, application to neutronic conformity; Determination des incertitudes liees aux grandeurs neutroniques d'interet des reacteurs a eau pressurisee a plaques combustibles et application aux etudes de conformite

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, D

    2001-12-01

    The aim of this thesis was to evaluate uncertainties of key neutron parameters of slab reactors. Uncertainties sources have many origins, technologic origin for parameters of fabrication and physical origin for nuclear data. First, each contribution of uncertainties is calculated and finally, a factor of uncertainties is associated to key slab parameter like reactivity, isotherm reactivity coefficient, control rod efficiency, power form factor before irradiation and life-time. This factors of uncertainties were computed by Generalized Perturbations Theory in case of step 0 and by directs calculations in case of irradiation problems. One of neutronic conformity applications was about fabrication and nuclear data targets precision adjustments. Statistic (uncertainties) and deterministic (deviations) approaches were studied. Then, neutronics key slab parameters uncertainties were reduced and so nuclear performances were optimized. (author)

  4. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  5. Rad waste disposal safety analysis / Integrated safety assessment of a waste repository

    International Nuclear Information System (INIS)

    Jeong, Jongtae; Choi, Jongwon; Kang, Chulhyung

    2012-04-01

    We developed CYPRUS+and adopted PID and RES method for the development of scenario. Safety performance assessment program was developed using GoldSim for the safety assessment of disposal system for the disposal of spnet fuels and wastes resulting from the pyrpoprocessing. Biosphere model was developed and verified in cooperation with JAEA. The capability to evaluate post-closure performance and safety was added to the previously developed program. And, nuclide migration and release to the biosphere considering site characteristics was evaluated by using deterministic and probabilistic approach. Operational safety assessment for drop, fire, and earthquake was also statistically evaluated considering well-established input parameter distribution. Conservative assessment showed that dose rate is below the limit value of low- and intermediate-level repository. Gas generation mechanism within engineered barrier was defined and its influence on safety was evaluated. We made probabilistic safety assessment by obtaining the probability distribution functions of important input variables and also made a sensitivity analysis. The maximum annual dose rate was shown to be below the safety limit value of 10 mSv/yr. The structure and element of safety case was developed to increase reliability of safety assessment methodology for a deep geological repository. Finally, milestone for safety case development and implementation strategy for each safety case element was also proposed

  6. Key Variables Screening of Near-Infrared Models for Simultaneous Determination of Quality Parameters in Traditional Chinese Food “Fuzhu”

    Directory of Open Access Journals (Sweden)

    Jiahua Wang

    2018-01-01

    Full Text Available The traditional Chinese food Fuzhu is a dried soy protein-lipid film formed during the heating of soymilk. This study investigates whether a simple and accurate model can nondestructively determine the quality parameters of intact Fuzhu. The diffused reflectance spectra (1000–2499 nm of intact Fuzhu were collected by a commercial near-infrared (NIR spectrometer. Among various preprocessing methods, the derivative by wavelet transform method optimally enhanced the characteristic signals of Fuzhu spectra. Uninformative variable elimination based on Monte Carlo (MC-UVE, random frog (RF, and competitive adaptive reweighted sampling (CARS were proposed to select key variables for partial least squares (PLS calculation. The strong performance of the developed models is attributed to the high ratios of prediction to deviation values (3.32–3.51 for protein, 3.62–3.89 for lipid, and 4.27–4.55 for moisture. The prediction set was used to assess the performances of the best models of protein (CARS-PLS, lipid (RF-PLS, and moisture (CARS-PLS, which resulted in greater coefficients of determination of 0.958, 0.966, and 0.976, respectively, and lower root mean square errors of prediction of 0.656%, 0.442%, and 0.123%, respectively. Combined with chemometrics methods, the NIR technique is promising for simultaneous testing of quality parameters of intact Fuzhu.

  7. Functional Safety Specification of Communication Profile PROFIsafe

    Directory of Open Access Journals (Sweden)

    Jan Rofar

    2006-01-01

    Full Text Available Paper maps the trends in area of safety-related communication within PROFIBUS and PROFINET industry networks. There are analyses safety measures and Fail-safe parameters of PROFIsafe profile in version V2 and their localisation in Safety Communication Layer SCL, which guarantees Safety Integrity Level SIL according to standard IEC 61508. The last chapter analyses the reaction in the event of fault during transmission of messages.

  8. Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...

    Science.gov (United States)

    With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th

  9. Key parameters of two typical intercalation reactions to prepare hybrid inorganic-organic perovskite films

    Science.gov (United States)

    Shi, Biao; Guo, Sheng; Wei, Changchun; Li, Baozhang; Ding, Yi; Li, Yuelong; Wan, Qing; Zhao, Ying; Zhang, Xiaodan

    2018-01-01

    Not Available Project supported by the International Cooperation Project of the Ministry of Science and Technology, China (Grant No. 2014DFE60170), the National Natural Science Foundation of China (Grant Nos. 61474065 and 61674084), Tianjin Research Key Program of Application Foundation and Advanced Technology, China (Grant No. 15JCZDJC31300), Key Project in the Science & Technology Pillar Program of Jiangsu Province, China (Grant No. BE2014147-3), and the 111 Project, China (Grant No. B16027).

  10. Continuous Variable Quantum Key Distribution Using Polarized Coherent States

    Science.gov (United States)

    Vidiella-Barranco, A.; Borelli, L. F. M.

    We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.

  11. New trends in pile safety instrumentation

    International Nuclear Information System (INIS)

    Furet, J.

    1961-01-01

    This report addresses the protection of nuclear piles against damages due to operation incidents. The author discusses the current trends in the philosophy of safety of atomic power piles, identifies the parameters which define safety systems, presents tests to be performed on safety chains, comments the relationship between safety and the decrease of the number of pile inadvertent shutdowns, discusses the issues of instrument failures and chain multiplicity, comments the possible improvement of the operation of elements which build up safety chains (design simplification, development of semiconductors, replacement of electromechanical relays by static relays), the role of safety logical computers and the development of automatics in pile safety, presents automatic control as a safety factor (example of automatic start-up), and finally comments the use of fuses

  12. COMPREHENSIVE CHECK MEASUREMENT OF KEY PARAMETERS ON MODEL BELT CONVEYOR

    Directory of Open Access Journals (Sweden)

    Vlastimil MONI

    2013-07-01

    Full Text Available Complex measurements of characteristic parameters realised on a long distance model belt conveyor are described. The main objective was to complete and combine the regular measurements of electric power on drives of belt conveyors operated in Czech opencast mines with measurements of other physical quantities and to gain by this way an image of their mutual relations and relations of quantities derived from them. The paper includes a short description and results of the measurements on an experimental model conveyor with a closed material transport way.

  13. Safety of pulmonary function testing

    DEFF Research Database (Denmark)

    Roberts, Cara; Ward, Simon; Walsted, Emil

    2017-01-01

    BACKGROUND: Pulmonary function testing (PFT) is a key investigation in the evaluation of individuals with respiratory symptoms; however, the safety of routine and specialised PFT testing has not been reported in a large data set. Using patient safety incident (PSI) records, we aimed to assess risk...... was rated using the NHS National Patient Safety Agency and any hospital admission reported. RESULTS: There were 119 PSIs reported from 186 000 PFT; that is, 0.6 PSIs per 1000 tests. Cardiopulmonary PSIs were 3.3 times more likely to occur than non-cardiopulmonary (95% CI 2.17 to 5.12). Syncope was the most...

  14. Safety provisions of nuclear power plants

    International Nuclear Information System (INIS)

    Niehaus, F.

    1994-01-01

    Safety of nuclear power plants is determined by a deterministic approach complemented by probabilistic considerations. Much use has been made of the wealth of information from more than 6000 years of reactor operation. Design, construction and operation is governed by national and international safety standards and practices. The IAEA has prepared a set of Nuclear Safety Standards as recommendations to its Member States, covering the areas of siting, design, operations, quality assurance, and governmental organisations. In 1988 the IAEA published a report by the International Nuclear Safety Advisory Group on Basic Safety Principles for Nuclear Power Plants, summarizing the underlying objectives and principles of excellence in nuclear safety and the way in which its aspects are interrelated. The paper will summarize some of the key safety principles and provisions, and results and uses of Probabilistic Safety Assessments. Some comments will be made on the safety of WWER 440/230 and WWER-1000 reactors which are operated on Bulgaria. 8 figs

  15. Promoting radiation protection in France and Europe. The key role of IRSN, French Technical Safety Organisation

    Energy Technology Data Exchange (ETDEWEB)

    Repussard, Jacques [IRSN - Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France). Direction des Affaires Internationales - Delegation aux Relations Internationales

    2012-07-01

    IRSN, the Institute for Radiological Protection and Nuclear Safety was set up in France under Article 5 of French Act No. 2001-398 of May 9, 2001 as the French 'Technical Safety Organization' (TSO) expert in nuclear and radiological risks. It contributes to the implementation of public policies concerning nuclear safety and security and protection of human health and environment against ionizing radiation. IRSN interacts with all the parties concerned by these policies (public authorities, operators and stakeholders) while keeping its independence of judgment. (orig.)

  16. VRLane: a desktop virtual safety management program for underground coal mine

    Science.gov (United States)

    Li, Mei; Chen, Jingzhu; Xiong, Wei; Zhang, Pengpeng; Wu, Daozheng

    2008-10-01

    VR technologies, which generate immersive, interactive, and three-dimensional (3D) environments, are seldom applied to coal mine safety work management. In this paper, a new method that combined the VR technologies with underground mine safety management system was explored. A desktop virtual safety management program for underground coal mine, called VRLane, was developed. The paper mainly concerned about the current research advance in VR, system design, key techniques and system application. Two important techniques were introduced in the paper. Firstly, an algorithm was designed and implemented, with which the 3D laneway models and equipment models can be built on the basis of the latest mine 2D drawings automatically, whereas common VR programs established 3D environment by using 3DS Max or the other 3D modeling software packages with which laneway models were built manually and laboriously. Secondly, VRLane realized system integration with underground industrial automation. VRLane not only described a realistic 3D laneway environment, but also described the status of the coal mining, with functions of displaying the run states and related parameters of equipment, per-alarming the abnormal mining events, and animating mine cars, mine workers, or long-wall shearers. The system, with advantages of cheap, dynamic, easy to maintenance, provided a useful tool for safety production management in coal mine.

  17. Infusing Reliability Techniques into Software Safety Analysis

    Science.gov (United States)

    Shi, Ying

    2015-01-01

    Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.

  18. New quantitative safety standards : Different techniques, different results?

    NARCIS (Netherlands)

    Rouvroye, J.L.; Brombacher, A.C.; Lydersen, S.; Hansen, G.K.; Sandtor, H.

    1998-01-01

    Safety Instrumented Systems (SIS) are used in the process industry to perform safety functions. Many parameters can influence the safety of a SIS like system layout, diagnostics, testing and repair. In standards like the German DIN [DIN19250, DIN0801] no quantitative analysis was demanded. The

  19. Criticality safety evaluation of the fuel cycle facility electrorefiner

    International Nuclear Information System (INIS)

    Lell, R.M.; Mariani, R.D.; Fujita, E.K.; Benedict, R.W.; Turski, R.B.

    1993-01-01

    The integral Fast Reactor (IFR) being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal cooled reactors and a closed-loop fuel cycle. Some of the primary advantages are passive safety for the reactor and resistance to diversion for the heavy metal in the fuel cycle. in addition, the IFR pyroprocess recycles all the long-lived actinide activation products for casting into new fuel pins so that they may be burned in the reactor. A key component in the Fuel Cycle Facility (FCF) recycling process is the electrorefiner (ER) in which the actinides are separated from the fission products. In the process, the metal fuel is electrochemically dissolved into a high-temperature molten salt, and electrorefined uranium or uranium/plutonium products are deposited at cathodes. This report addresses the new and innovative aspects of the criticality analysis ensuing from processing metallic fuel, rather than metal oxide fuel, and from processing the spent fuel in batch operations. in particular, the criticality analysis employed a mechanistic approach as opposed to a probabilistic one. A probabilistic approach was unsuitable because of a lack of operational experience with some of the processes, rendering the estimation of accident event risk factors difficult. The criticality analysis also incorporated the uncertainties in heavy metal content attending the process items by defining normal operations envelopes (NOES) for key process parameters. The goal was to show that reasonable process uncertainties would be demonstrably safe toward criticality for continuous batch operations provided the key process parameters stayed within their NOES. Consequently the NOEs became the point of departure for accident events in the criticality analysis

  20. Demonstration of Emulator-Based Bayesian Calibration of Safety Analysis Codes: Theory and Formulation

    Directory of Open Access Journals (Sweden)

    Joseph P. Yurko

    2015-01-01

    Full Text Available System codes for simulation of safety performance of nuclear plants may contain parameters whose values are not known very accurately. New information from tests or operating experience is incorporated into safety codes by a process known as calibration, which reduces uncertainty in the output of the code and thereby improves its support for decision-making. The work reported here implements several improvements on classic calibration techniques afforded by modern analysis techniques. The key innovation has come from development of code surrogate model (or code emulator construction and prediction algorithms. Use of a fast emulator makes the calibration processes used here with Markov Chain Monte Carlo (MCMC sampling feasible. This work uses Gaussian Process (GP based emulators, which have been used previously to emulate computer codes in the nuclear field. The present work describes the formulation of an emulator that incorporates GPs into a factor analysis-type or pattern recognition-type model. This “function factorization” Gaussian Process (FFGP model allows overcoming limitations present in standard GP emulators, thereby improving both accuracy and speed of the emulator-based calibration process. Calibration of a friction-factor example using a Method of Manufactured Solution is performed to illustrate key properties of the FFGP based process.

  1. OSHA Training Programs. Module SH-48. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on OSHA (Occupational Safety and Health Act) training programs is one of 50 modules concerned with job safety and health. This module provides a list of OSHA training requirements and describes OSHA training programs and other safety organizations' programs. Following the introduction, 11 objectives (each keyed to a page in the…

  2. A study of software safety analysis system for safety-critical software

    International Nuclear Information System (INIS)

    Chang, H. S.; Shin, H. K.; Chang, Y. W.; Jung, J. C.; Kim, J. H.; Han, H. H.; Son, H. S.

    2004-01-01

    The core factors and requirements for the safety-critical software traced and the methodology adopted in each stage of software life cycle are presented. In concept phase, Failure Modes and Effects Analysis (FMEA) for the system has been performed. The feasibility evaluation of selected safety parameter was performed and Preliminary Hazards Analysis list was prepared using HAZOP(Hazard and Operability) technique. And the check list for management control has been produced via walk-through technique. Based on the evaluation of the check list, activities to be performed in requirement phase have been determined. In the design phase, hazard analysis has been performed to check the safety capability of the system with regard to safety software algorithm using Fault Tree Analysis (FTA). In the test phase, the test items based on FMEA have been checked for fitness guided by an accident scenario. The pressurizer low pressure trip algorithm has been selected to apply FTA method to software safety analysis as a sample. By applying CASE tool, the requirements traceability of safety critical system has been enhanced during all of software life cycle phases

  3. Behavior based safety

    International Nuclear Information System (INIS)

    Sudhikumaran, T.V.; Mehta, S.C.; Goyal, D.K.

    2009-01-01

    Behaviour Based Safety (popularly known as BBS) is a new methodology for achieving injury free work place and total Safety Culture. BBS is successfully being implemented and is being practiced as a work methodology for achieving a loss and injury free work environment and work practice. Through BBS, it was brought out that the root causes of all Industrial accidents some how originate from the 'at risk' behaviour of some individual or group of individuals at some level. The policy of NPCIL is to excel in the field of Industrial and Fire Safety in comparison to international standards. This article indents to bring out the various parameters helping in installing BBS programme at any plant. (author)

  4. The WHO Five Keys to Safer Food: a Tool for Food Safety Health ...

    African Journals Online (AJOL)

    Lusubilo

    2012-06-04

    Jun 4, 2012 ... Region with major socio-economic implications [1]. Reported ... strategy to improve food safety and reduce the impact of foodborne diseases. The education of .... promote healthy lifestyles during the Beijing Olympics [11].

  5. Assessment of key transport parameters in a karst system under different dynamic conditions based on tracer experiments: the Jeita karst system, Lebanon

    Science.gov (United States)

    Doummar, Joanna; Margane, Armin; Geyer, Tobias; Sauter, Martin

    2018-03-01

    Artificial tracer experiments were conducted in the mature karst system of Jeita (Lebanon) under various flow conditions using surface and subsurface tracer injection points, to determine the variation of transport parameters (attenuation of peak concentration, velocity, transit times, dispersivity, and proportion of immobile and mobile regions) along fast and slow flow pathways. Tracer breakthrough curves (TBCs) observed at the karst spring were interpreted using a two-region nonequilibrium approach (2RNEM) to account for the skewness in the TBCs' long tailings. The conduit test results revealed a discharge threshold in the system dynamics, beyond which the transport parameters vary significantly. The polynomial relationship between transport velocity and discharge can be related to the variation of the conduit's cross-sectional area. Longitudinal dispersivity in the conduit system is not a constant value (α = 7-10 m) and decreases linearly with increasing flow rate because of dilution effects. Additionally, the proportion of immobile regions (arising from conduit irregularities) increases with decreasing water level in the conduit system. From tracer tests with injection at the surface, longitudinal dispersivity values are found to be large (8-27 m). The tailing observed in some TBCs is generated in the unsaturated zone before the tracer actually arrives at the major subsurface conduit draining the system. This work allows the estimation and prediction of the key transport parameters in karst aquifers. It shows that these parameters vary with time and flow dynamics, and they reflect the geometry of the flow pathway and the origin of infiltrating (potentially contaminated) recharge.

  6. Lessons learned while implementing a safety parameter display system at the Comanche Peak steam electric station

    International Nuclear Information System (INIS)

    Hagar, B.

    1987-01-01

    With the completion of site Verification and Validation tests, the Safety Parameter Display System (SPDS) will be fully operational at the Comanche Peak Steam Electric Station. Implementation of the SPDS, which began in 1982, included: modifying generic Safety Assessment System Software; developing site-specific displays and features; installing and integrating system equipment into the plant; modifying station heating, ventilation, and air conditioning systems to provide necessary cooling; installing an additional uninterruptible power supply system to provide necessary power; and training station personnel in the operation and use of the system. Lessons learned during this project can be discussed in terms of an ideal SPDS implementation project. Such a project would design and implement an SPDS for a plant that is already under construction or operating, and would progress through a sequence of activities that includes: (1) developing and documenting the system design bases, and including all major design influences; (2) developing a database description and system functional specifications to clarify specific system requirements; (3) developing detailed system hardware and software design specifications to fully describe the system, and to enable identification of necessary site design changes early in the project; (4) implementing the system design; (5) configuring and extensively testing the system prior to routine system operation; and (6) tuning the system after the completion of system installation. The ideal project would include future system users in design development and system testing, and would use Verification and Validation techniques throughout the project to ensure that each sequential step is appropriate and correct

  7. Validation of Monte Carlo predictions of LWR-PROTEUS safety parameters using an improved whole-reactor model

    Energy Technology Data Exchange (ETDEWEB)

    Plaschy, M. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, CH-5232 Villigen, PSI (Switzerland)], E-mail: michael.plaschy@eos.ch; Murphy, M.; Jatuff, F.; Perret, G.; Seiler, R. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, CH-5232 Villigen, PSI (Switzerland); Chawla, R. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, CH-5232 Villigen, PSI (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, EPFL (Switzerland)

    2009-10-15

    The recent experimental programme conducted in the PROTEUS research reactor at the Paul Scherrer Institute (PSI) has concerned detailed investigations of advanced light water reactor (LWR) fuels. More than fifteen different configurations of the multi-zone critical facility have been studied, each of them requiring accurate estimation of operational safety parameters, in particular the critical driver loadings, shutdown rod worths and the effective delayed neutron fraction {beta}{sub eff}. The current paper presents a full-scale 3D Monte Carlo model for the facility, set up using the MCNPX code, which has been employed for calculation of the operational characteristics for seven different LWR-PROTEUS configurations. Thereby, a variety of nuclear data libraries (viz. ENDF/B6v2, ENDF/B6v8, JEF2.2, JEFF3.0, JEFF3.1, JENDL3.2, and JENDL3.3) have been used, and predictions of k{sub eff} and shutdown rod worths compared with experimental values. Even though certain library-specific trends have been observed, the k{sub eff} predictions are generally very satisfactory, viz. with discrepancies of <0.5% between calculation (C) and experiment (E). The results also confirm the consistent determination of reactivity variations, the C/E values for the shutdown (safety) rod worths being always within 5% of unity. In addition, the MCNP modelling of the multi-zone reactor has yielded interesting results for the delayed neutron fraction ({beta}{sub eff}) in the different configurations, a breakdown being made possible in each case in terms of delayed neutron group, fissioning nuclide, and reactor region.

  8. Review of EU-APR Design for Selected Safety Issues of WERNA RHWG 2013

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Soo; Kim, Ji Hwan [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Western European Nuclear Regulators' Association (WENRA) was established in 1999 to develop a harmonized approach to nuclear safety and radiation protection and their regulation. In 2013, the Reactor Harmonization Working Group (RHWG) of WENRA sets out the common positions on the seven selected key safety issues. This paper is to introduce the regulatory positions of WENRA RHWG 2013 and to review the compliance of the EU-APR with them. In this paper, we reviewed the compliance of the EUAPR regarding seven safety issues for new NPPs presented by WERNA RHWG in 2013. The EU-APR design fully complies with all WERNA RHWG safety issues since the following measures have been incorporated in it: - Successive five levels of DiD maintaining independence between different levels of DiD - Diverse design against multiple failure events such as ATWS, SBO, Loss of Ultimate Heat Sink, and Loss of Spent Fuel Pool Cooling - SAs dedicated mitigation systems to ensure the containment integrity during the SAs. - Practically eliminates accident sequences with a large or early release of radiological materials by diverse designs for multiple failure events, SAs dedicated mitigation system, and double containment design - Standard site parameters not lead to core melt accidents due to natural or man-made external hazards.

  9. Grouted Connections with Shear Keys

    DEFF Research Database (Denmark)

    Pedersen, Ronnie; Jørgensen, M. B.; Damkilde, Lars

    2012-01-01

    This paper presents a finite element model in the software package ABAQUS in which a reliable analysis of grouted pile-to-sleeve connections with shear keys is the particular purpose. The model is calibrated to experimental results and a consistent set of input parameters is estimated so that dif...... that different structural problems can be reproduced successfully....

  10. Confidence building in safety assessments

    International Nuclear Information System (INIS)

    Grundfelt, Bertil

    1999-01-01

    Future generations should be adequately protected from damage caused by the present disposal of radioactive waste. This presentation discusses the core of safety and performance assessment: The demonstration and building of confidence that the disposal system meets the safety requirements stipulated by society. The major difficulty is to deal with risks in the very long time perspective of the thousands of years during which the waste is hazardous. Concern about these problems has stimulated the development of the safety assessment discipline. The presentation concentrates on two of the elements of safety assessment: (1) Uncertainty and sensitivity analysis, and (2) validation and review. Uncertainty is associated both with respect to what is the proper conceptual model and with respect to parameter values for a given model. A special kind of uncertainty derives from the variation of a property in space. Geostatistics is one approach to handling spatial variability. The simplest way of doing a sensitivity analysis is to offset the model parameters one by one and observe how the model output changes. The validity of the models and data used to make predictions is central to the credibility of safety assessments for radioactive waste repositories. There are several definitions of model validation. The presentation discusses it as a process and highlights some aspects of validation methodologies

  11. Safety aspects of siting

    International Nuclear Information System (INIS)

    Rosen, M.

    1976-01-01

    Outline of parameters to be considered in site selection, radiation safety, and mechanisms of radiation release. Radiation doses in tablular form for areas at various distances from the plant. (HP) [de

  12. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.

    Science.gov (United States)

    Gill, L W; O'Farrell, C

    2015-12-01

    Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Identification of the key parameters defining the life of graphite core components

    International Nuclear Information System (INIS)

    Mitchell, M.N.

    2005-01-01

    The Core Structures of a Pebble Bed rector core comprise graphite reflectors constructed from blocks. These blocks are subject to high flux and temperatures as well as significant gradients in flux and temperature. This loading combined with the behaviour of graphite under irradiation gives rise to complex stress states within the reflector blocks. At some point, the stress state will reach a critical level and cracks will initiate within the blocks. The point of crack initiation is a useful point to define as the end of the part's life. The life of these graphite reflector parts in a pebble bed reactor (PBR) core determines the service life of the Core Structures. The replacement of the Core Structures' components will be a costly and time consuming. It is important that the components of the Core Structures be designed for the best life possible. As part of the conceptual design of the Pebble Bed Modular Reactor (PBMR), the assessment of the life of these components was examined. To facilitate the understanding of the parameters that influence the design life of the PBMR, a study has been completed into the effect of various design parameters on the design life of a typical side reflector block. Parameters investigated include: block geometry, material property variations, and load variations. The results of this study are to be presented. (author)

  14. ELECTROMAGNETIC SAFETY OF ELECTRIC TRANSPORT SYSTEMS: MAIN SOURCES AND PARAMETERS OF MAGNETIC FIELDS

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-03-01

    Full Text Available Magnetic fields produced by electric drive vehicles may break electromagnetic safety. For electromagnetic safety and electromagnetic compatibility knowledge about characteristics and sources of magnetic fields in the electric transport is necessary. The article deals with analysis of available data about magnetic fields in electric cars and comparison with results of our measurements carried out in the other types of electrified transport systems.

  15. A new assessment method for demonstrating the sufficiency of the safety assessment and the safety margins of the geological disposal system

    International Nuclear Information System (INIS)

    Ohi, Takao; Kawasaki, Daisuke; Chiba, Tamotsu; Takase, Toshio; Hane, Koji

    2013-01-01

    A new method for demonstrating the sufficiency of the safety assessment and safety margins of the geological disposal system has been developed. The method is based on an existing comprehensive sensitivity analysis method and can systematically identify the successful conditions, under which the dose rate does not exceed specified safety criteria, using analytical solutions for nuclide migration and the results of a statistical analysis. The successful conditions were identified using three major variables. Furthermore, the successful conditions at the level of factors or parameters were obtained using relational equations between the variables and the factors or parameters making up these variables. In this study, the method was applied to the safety assessment of the geological disposal of transuranic waste in Japan. Based on the system response characteristics obtained from analytical solutions and on the successful conditions, the classification of the analytical conditions, the sufficiency of the safety assessment and the safety margins of the disposal system were then demonstrated. A new assessment procedure incorporating this method into the existing safety assessment approach is proposed in this study. Using this procedure, it is possible to conduct a series of safety assessment activities in a logical manner. (author)

  16. Determination of engineering safety factor -routine in Hungary (a methodology for the normal operation local power engineering safety factors)

    International Nuclear Information System (INIS)

    Szecsenyi, Z.; Korpas, L.; Bona, G.; Kereszturi, A.

    2010-01-01

    From the late nineties Paks Nuclear Power Plant-in collaboration with KFKI Atomic Energy Research Institute (KFKI AEKI)- is developing a system for determining the normal operation local power engineering safety factors. The system is based on a Monte Carlo sampling of the uncertain model input parameters. Additionally, the comparison of the calculation to the in-core measurements plays essential role for determining some important input parameters. By using new fuel types and the corresponding more recent detailed technological data, the applied method is being improved from time to time. Presently, the actually used and authorized engineering safety factors at Paks NPP are determined by using this method. In the paper, the system.s main properties are described (not going beyond the possible extent). The main points are as follows:-Mathematical definition of the engineering safety factor;-Sources of the uncertainties;-Input error propagation method constituting the basis of the system;-Flow-chart of the subsequent steps of the determination Finally, in the paper the engineering safety factors values of some selected parameters are presented as examples for demonstration of the capability of the method. (Authors)

  17. Selection of a new nuclear unit for Slovakia: possibilities and key technical issues

    International Nuclear Information System (INIS)

    Misak, J.

    2009-01-01

    Plans for construction of new nuclear unit at Jaslovske Bohunice brings forward the issue of selection of reactor design. This paper compares technical characteristics (safety and operational) of pressurized water reactors that are at present available in the market, such as AP 1000 (WEC), EPR (AREVA), AES 2006 (ASE), APWR 1700 (Mitsubishi) and APR 1400 (Korea Hydro and Nuclear). Selected parameters that require close attention in future negotiations with potential suppliers are discussed in detail. Compared are parameters as type of the reactor, reactor output power, quantified level of safety, compliance with national legislature and international safety requirements, operational flexibility in meeting requirements of the grid, using of verified technology, measures for coping with severe accidents, resistance against extreme external conditions etc. (authors)

  18. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  19. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  20. Safety Parameters for the Recycled Uranium Loaded into a CANDU Reactor

    International Nuclear Information System (INIS)

    Park, Chang Je; Kang, Kweon Ho; Na, Sang Ho; Kim, Young Hee; Ryu, Ho Jin; Park, Geun Il; Song, Kee Chan

    2008-01-01

    In order to recover uranium and TRU from spent nuclear fuels, a pyroprocessing has been developed through a dry and metallurgical reprocess technology using a series of electrolyses such as an electro-reduction, an electro-refining, and an electro-winning. When the spent fuel is being fed into the pyroprocess, most of the uranium is gathered in metallic form around a solid cathode during an electro-refining process. It is expected that the recovered uranium will be sent to a spent fuel storage site after converting it into a metal ingot form to reduce its storage space and transportation burden. However, the weight percent of U-235 in the recovered uranium is about 0.9 wt% and it is sufficiently re-utilized in a heavy water reactor which uses a natural uranium fuel. The reuse of recovered uranium will bring not only a huge economical profit and save of uranium resources but also an alleviation of burden on the management and disposal of the spent fuel. A previous research on recycling of recovered uranium was carried out and most of the recovered uranium was assumed to be imported from abroad at that time. The preliminary results showed there is a sufficient possibility to recycle recovered uranium in terms of a reactor's characteristics as well as the fuel performance. And the DUPIC (direct use of spent pressurized water reactor fuel into CANDU reactor) program has also been performed and demonstrated the fundamental technologies. The recovered uranium from a pyroprocess contains some TRU as an impurity and it will exhibit a slightly different behavior from the previous recycling options. In this paper, the reactor's characteristics including safety parameters are investigated based on the lattice calculations which are performed for the CANFELX bundle

  1. Statistical Hot Channel Factors and Safety Limit CHFR/OFIR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeonghee; Park, Suki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The fuel integrity of research reactors are usually judged by comparing the critical heat flux ratio (CHFR) and the maximum fuel temperature (MFT) with the safety limits. Onset of flow instability ratio (OFIR) can also be used for the examination with CHFR. Hot channel factors (HCFs) are incorporated when calculating the CHFR/OFIR and MFT, to consider the uncertainties of fuel properties and thermo-hydraulic variables affecting them. The HCFs and safety limit CHFR is sometimes estimated to include too much conservatism, deteriorating the design flexibilities and operating margins. In this paper, a statistical estimation of HCFs and the safety limit CHFR/OFIR is presented by a random sampling of uncertainty parameters. A 15MW pool type research reactor is selected as the sample reactor for the estimation. The HCFs and the safety limit CHFR/OFIR of a 15MW pool type research reactor are evaluated statistically. The parameters affecting the HCF and the safety limit CHFR/OFIR are listed and their uncertainties are estimated. The relevant parameter uncertainties are sampled randomly and the HCFs and the safety limits are evaluated from them. The HCFs and the safety limit CHFR/OFIR with 95% probability are smaller than those estimated deterministically because the statistical evaluation convolute the correlation uncertainties and the other uncertainties in probabilistic way, whereas the deterministic evaluation simply multiply them.

  2. The Commodity Form of Safety Information

    Directory of Open Access Journals (Sweden)

    Rodrigo Finkelstein

    2015-10-01

    Full Text Available The production of safety information is deemed a vital resource to protect human lives at the work site. The injury rate, lost days, incapacity rate, and fatality rate, are key indicators to prop up labour risk awareness and identify job hazards. However, safety information gets highly distorted because it does not only measure risk but serves as a means of exchange. It determines the amount of money to be swapped between Workers’ Compensation Boards and their client corporations. Moreover, as a depository of exchange value, safety information tends to exert pressure over social reality rather than just being a passive reflection of it. This paper discloses the commodity form of safety information. Based on a political economy of information framework, it identifies, describes, and analyses the safety information commodity in its active role of organizing safety and labour health.

  3. FMCSA safety program effectiveness measurement : Roadside Intervention Effectiveness Model FY 2012, [analysis brief].

    Science.gov (United States)

    2016-02-01

    Roadside Inspection and Traffic Enforcement are two of : the Federal Motor Carrier Safety Administrations : (FMCSAs) key safety programs. The Roadside : Inspection Program consists of roadside inspections : performed by qualified safety inspect...

  4. Technical safety Organisations (TSO) contribute to European Nuclear Safety

    International Nuclear Information System (INIS)

    Repussard, J.

    2010-01-01

    Nuclear safety and radiation protection rely on science to achieve high level prevention objectives, through the analysis of safety files proposed by the licensees. The necessary expertise needs to be exercised so as to ensure adequate independence from nuclear operators, appropriate implementation of state of the art knowledge, and a broad spectrum of analysis, adequately ranking the positive and negative points of the safety files. The absence of a Europe-wide nuclear safety regime is extremely costly for an industry which has to cope with a highly competitive and open international environment, but has to comply with fragmented national regulatory systems. Harmonization is therefore critical, but such a goal is difficult to achieve. Only a gradual policy, made up of planned steps in each of the three key dimensions of the problem (energy policy at EU level, regulatory harmonization, consolidation of Europe-wide technical expertise capability) can be successful to achieve the required integration on the basis of the highest safety levels. TSO's contribute to this consolidation, with the support of the EC, in the fields of research (EURATOM-Programmes), of experience feedback analysis (European Clearinghouse), of training and knowledge management (European Training and Tutoring Institute, EUROSAFE). The TSO's network, ETSON, is becoming a formal organisation, able to enter into formal dialogue with EU institutions. However, nuclear safety nevertheless remains a world wide issue, requiring intensive international cooperation, including on TSO issues. (author)

  5. Development of the NUMO pre-selection, site-specific safety case

    International Nuclear Information System (INIS)

    Fujiyama, Tetsuo; Suzuki, Satoru; Deguchi, Akira; Umeki, Hiroyuki

    2016-01-01

    Key conclusions: ◆ “The NUMO pre-selection, site-specific safety case” provides the basic structure for subsequent safety cases that will be applied to any selected site, emphasising practical approaches and methodology which will be applicable for the conditions/constraints during an actual siting process. ◆ The preliminary results of the design and safety assessment would underpin the feasibility and safety of geological disposal in Japan.

  6. Safety assessment in plant layout design using indexing approach: Implementing inherent safety perspective

    International Nuclear Information System (INIS)

    Tugnoli, Alessandro; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio

    2008-01-01

    Layout planning plays a key role in the inherent safety performance of process plants since this design feature controls the possibility of accidental chain-events and the magnitude of possible consequences. A lack of suitable methods to promote the effective implementation of inherent safety in layout design calls for the development of new techniques and methods. In the present paper, a safety assessment approach suitable for layout design in the critical early phase is proposed. The concept of inherent safety is implemented within this safety assessment; the approach is based on an integrated assessment of inherent safety guideword applicability within the constraints typically present in layout design. Application of these guidewords is evaluated along with unit hazards and control devices to quantitatively map the safety performance of different layout options. Moreover, the economic aspects related to safety and inherent safety are evaluated by the method. Specific sub-indices are developed within the integrated safety assessment system to analyze and quantify the hazard related to domino effects. The proposed approach is quick in application, auditable and shares a common framework applicable in other phases of the design lifecycle (e.g. process design). The present work is divided in two parts: Part 1 (current paper) presents the application of inherent safety guidelines in layout design and the index method for safety assessment; Part 2 (accompanying paper) describes the domino hazard sub-index and demonstrates the proposed approach with a case study, thus evidencing the introduction of inherent safety features in layout design

  7. NASA's Software Safety Standard

    Science.gov (United States)

    Ramsay, Christopher M.

    2007-01-01

    requirements. This allows the projects leeway to meet these requirements in many forms that best suit a particular project's needs and safety risk. In other words, it tells the project what to do, not how to do it. This update also incorporated advances in the state of the practice of software safety from academia and private industry. It addresses some of the more common issues now facing software developers in the NASA environment such as the use of Commercial-Off-the-Shelf Software (COTS), Modified OTS (MOTS), Government OTS (GOTS), and reused software. A team from across NASA developed the update and it has had both NASA-wide internal reviews by software engineering, quality, safety, and project management. It has also had expert external review. This presentation and paper will discuss the new NASA Software Safety Standard, its organization, and key features. It will start with a brief discussion of some NASA mission failures and incidents that had software as one of their root causes. It will then give a brief overview of the NASA Software Safety Process. This will include an overview of the key personnel responsibilities and functions that must be performed for safety-critical software.

  8. Strategy for resolution of the flammable gas safety issue

    International Nuclear Information System (INIS)

    Johnson, G.D.

    1997-01-01

    This document provides a strategy for resolution of the Flammable Gas Safety Issue. It defines the key elements required for the following: Closing the Flammable Gas Unreviewed Safety Question (USQ); Providing the administrative basis for resolving the safety issue; Defining the data needed to support these activities; and Providing the technical and administrative path for removing tanks from the Watch List

  9. Strategy for resolution of the flammable gas safety issue

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.D.

    1997-05-23

    This document provides a strategy for resolution of the Flammable Gas Safety Issue. It defines the key elements required for the following: Closing the Flammable Gas Unreviewed Safety Question (USQ); Providing the administrative basis for resolving the safety issue; Defining the data needed to support these activities; and Providing the technical and administrative path for removing tanks from the Watch List.

  10. To the problem of the statistical basis of evaluation of the mechanical safety factor

    International Nuclear Information System (INIS)

    Tsyganov, S.V.

    2009-01-01

    The methodology applied for the safety factor assessment of the WWER fuel cycles uses methods and terms of statistics. Value of the factor is calculated on the basis of estimation of probability to meet predefined limits. Such approach demands the special attention to the statistical properties of parameters of interest. Considering the mechanical constituents of the engineering factor it is assumed uncertainty factors of safety parameters are stochastic values. It characterized by probabilistic distributions that can be unknown. Traditionally in the safety factor assessment process the unknown parameters are estimated from the conservative points of view. This paper analyses how the refinement of the factors distribution parameters is important for the assessment of the mechanical safety factor. For the analysis the statistical approach is applied for modelling of different type of factor probabilistic distributions. It is shown the significant influence of the shape and parameters of distributions for some factors on the value of mechanical safety factor. (Authors)

  11. To the problem of the statistical basis of evaluation of the mechanical safety factor

    International Nuclear Information System (INIS)

    Tsyganov, S.

    2009-01-01

    The methodology applied for the safety factor assessment of the VVER fuel cycles uses methods and terms of statistics. Value of the factor is calculated on the basis of estimation of probability to meet predefined limits. Such approach demands the special attention to the statistical properties of parameters of interest. Considering the mechanical constituents of the engineering factor it is assumed uncertainty factors of safety parameters are stochastic values. It characterized by probabilistic distributions that can be unknown. Traditionally in the safety factor assessment process the unknown parameters are estimated from the conservative points of view. This paper analyses how the refinement of the factors distribution parameters is important for the assessment of the mechanical safety factor. For the analysis the statistical approach is applied for modelling of different type of factor probabilistic distributions. It is shown the significant influence of the shape and parameters of distributions for some factors on the value of mechanical safety factor. (author)

  12. IAEA safety fundamentals: the safety of nuclear installations and the defence in depth concept

    International Nuclear Information System (INIS)

    Aro, I.

    2005-01-01

    This presentation is a replica of the similar presentation provided by the IAEA Basic Professional Training Course on Nuclear Safety. The presentation utilizes the IAEA Safety Series document No. 110, Safety Fundamentals: the Safety of Nuclear Installations. The objective of the presentation is to provide the basic rationale for actions in provision of nuclear safety. The presentation also provides basis to understand national nuclear safety requirements. There are three Safety Fundamentals documents in the IAEA Safety Series: one for nuclear safety, one for radiation safety and one for waste safety. The IAEA is currently revising its Safety Fundamentals by combining them into one general Safety Fundamentals document. The IAEA Safety Fundamentals are not binding requirements to the Member States. But, a very similar text has been provided in the Convention on Nuclear Safety which is legally binding for the Member State after ratification by the Parliament. This presentation concentrates on nuclear safety. The Safety Fundamentals documents are the 'policy documents' of the IAEA Safety Standards Series. They state the basic objectives, concepts and principles involved in ensuring protection and safety in the development and application of atomic energy for peaceful purposes. They will state - without providing technical details and without going into the application of principles - the rationale for actions necessary in meeting Safety Requirements. Chapter 7 of this presentation describes the basic features of defence in depth concept which is referred to in the Safety Fundamentals document. The defence in depth concept is a key issue in reaching high level of safety specifically at the design stage but as the reader can see the extended concept also refers to the operational stage. The appendix has been taken directly from the IAEA Basic Professional Training Course on Nuclear Safety and applied to the Finnish conditions. The text originates from the references

  13. FMCSA safety program effectiveness measurement : roadside intervention effectiveness model FY 2011 : [analysis brief].

    Science.gov (United States)

    2015-06-01

    Roadside Inspection and Traffic Enforcement are two of the Federal Motor Carrier Safety Administrations (FMCSAs) key safety programs. The Roadside Inspection program consists of roadside inspections performed by qualified safety inspectors. The...

  14. Securing information using optically generated biometric keys

    Science.gov (United States)

    Verma, Gaurav; Sinha, Aloka

    2016-11-01

    In this paper, we present a new technique to obtain biometric keys by using the fingerprint of a person for an optical image encryption system. The key generation scheme uses the fingerprint biometric information in terms of the amplitude mask (AM) and the phase mask (PM) of the reconstructed fingerprint image that is implemented using the digital holographic technique. Statistical tests have been conducted to check the randomness of the fingerprint PM key that enables its usage as an image encryption key. To explore the utility of the generated biometric keys, an optical image encryption system has been further demonstrated based on the phase retrieval algorithm and the double random phase encoding scheme in which keys for the encryption are used as the AM and the PM key. The advantage associated with the proposed scheme is that the biometric keys’ retrieval requires the simultaneous presence of the fingerprint hologram and the correct knowledge of the reconstruction parameters at the decryption stage, which not only verifies the authenticity of the person but also protects the valuable fingerprint biometric features of the keys. Numerical results are carried out to prove the feasibility and the effectiveness of the proposed encryption system.

  15. Analysis of factors influencing safety management for metro construction in China.

    Science.gov (United States)

    Yu, Q Z; Ding, L Y; Zhou, C; Luo, H B

    2014-07-01

    With the rapid development of urbanization in China, the number and size of metro construction projects are increasing quickly. At the same time, and increasing number of accidents in metro construction make it a disturbing focus of social attention. In order to improve safety management in metro construction, an investigation of the participants' perspectives on safety factors in China metro construction has been conducted to identify the key safety factors, and their ranking consistency among the main participants, including clients, consultants, designers, contractors and supervisors. The result of factor analysis indicates that there are five key factors which influence the safety of metro construction including safety attitude, construction site safety, government supervision, market restrictions and task unpredictability. In addition, ANOVA and Spearman rank correlation coefficients were performed to test the consistency of the means rating and the ranking of safety factors. The results indicated that the main participants have significant disagreement about the importance of safety factors on more than half of the items. Suggestions and recommendations on practical countermeasures to improve metro construction safety management in China are proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Prototype application of best estimate and uncertainty safety analysis methodology to large LOCA analysis

    International Nuclear Information System (INIS)

    Luxat, J.C.; Huget, R.G.

    2001-01-01

    Development of a methodology to perform best estimate and uncertainty nuclear safety analysis has been underway at Ontario Power Generation for the past two and one half years. A key driver for the methodology development, and one of the major challenges faced, is the need to re-establish demonstrated safety margins that have progressively been undermined through excessive and compounding conservatism in deterministic analyses. The major focus of the prototyping applications was to quantify the safety margins that exist at the probable range of high power operating conditions, rather than the highly improbable operating states associated with Limit of the Envelope (LOE) assumptions. In LOE, all parameters of significance to the consequences of a postulated accident are assumed to simultaneously deviate to their limiting values. Another equally important objective of the prototyping was to demonstrate the feasibility of conducting safety analysis as an incremental analysis activity, as opposed to a major re-analysis activity. The prototype analysis solely employed prior analyses of Bruce B large break LOCA events - no new computer simulations were undertaken. This is a significant and novel feature of the prototyping work. This methodology framework has been applied to a postulated large break LOCA in a Bruce generating unit on a prototype basis. This paper presents results of the application. (author)

  17. The rewards of road safety

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    In May, the HSE Unit launched a cycling safety campaign at CERN over three days during which members of the Unit and representatives of the Swiss Office for Accident Prevention and the Touring Club Suisse reminded people of the basic safety rules to which they should adhere when riding a bike. A competition was held to encourage people to be self-critical and to highlight best practice.    On 14 June, a month and 273 participants later, 40 lucky contestants received winners' prizes in a low-key reception at Restaurant 2. Among the prizes were "safety packs" containing a fluorescent jacket, arm-bands and a water-bottle, cycle helmets and two brand new bikes. More proof, if any were needed, that safety and prevention form a winning combination!  

  18. Development of the methodology on priority of element-specific biosphere parameters for geological disposal applicable to any proposed repository site

    International Nuclear Information System (INIS)

    Kato, Tomoko; Ohi, Takao; Suzuki, Yuji

    2009-01-01

    It is difficult to acquire all of biosphere parameters for geological disposal at the repository site because several hundreds of the parameters have to be dealt with in one calculation case of the biosphere assessment. Before site-specific activities, it is important to develop the data acquisition methodology of biosphere parameters applicable to any proposed repository site. The methodology for identification of the priority of the parameters was developed for the effective data acquisition of biosphere parameters at the site. First of all, flow diagram was constructed to evaluate the availability of the existing generic biosphere dataset. It was found to be effective for the data acquisition at the site to focus on the element-specific parameters with the existing dataset. Secondly, the priority of the data acquisition was identified for element-specific parameters at the site, with considering the variation of dose rate by combining the significant element-specific parameters. The availability of the existing generic biosphere dataset and the priority on data acquisition were identified for the element-specific parameters of key radionuclides in the safety assessment of geological disposal that should be acquired at the site. This priority list would be useful for effective data acquisition at the site. (author)

  19. Safety class methodology

    International Nuclear Information System (INIS)

    Donner, E.B.; Low, J.M.; Lux, C.R.

    1992-01-01

    DOE Order 6430.1A, General Design Criteria (GDC), requires that DOE facilities be evaluated with respect to ''safety class items.'' Although the GDC defines safety class items, it does not provide a methodology for selecting safety class items. The methodology described in this paper was developed to assure that Safety Class Items at the Savannah River Site (SRS) are selected in a consistent and technically defensible manner. Safety class items are those in the highest of four categories determined to be of special importance to nuclear safety and, merit appropriately higher-quality design, fabrication, and industrial test standards and codes. The identification of safety class items is approached using a cascading strategy that begins at the 'safety function' level (i.e., a cooling function, ventilation function, etc.) and proceeds down to the system, component, or structure level. Thus, the items that are required to support a safety function are SCls. The basic steps in this procedure apply to the determination of SCls for both new project activities, and for operating facilities. The GDC lists six characteristics of SCls to be considered as a starting point for safety item classification. They are as follows: 1. Those items whose failure would produce exposure consequences that would exceed the guidelines in Section 1300-1.4, ''Guidance on Limiting Exposure of the Public,'' at the site boundary or nearest point of public access 2. Those items required to maintain operating parameters within the safety limits specified in the Operational Safety Requirements during normal operations and anticipated operational occurrences. 3. Those items required for nuclear criticality safety. 4. Those items required to monitor the release of radioactive material to the environment during and after a Design Basis Accident. Those items required to achieve, and maintain the facility in a safe shutdown condition 6. Those items that control Safety Class Item listed above

  20. Workforce perceptions of hospital safety culture: development and validation of the patient safety climate in healthcare organizations survey.

    Science.gov (United States)

    Singer, Sara; Meterko, Mark; Baker, Laurence; Gaba, David; Falwell, Alyson; Rosen, Amy

    2007-10-01

    To describe the development of an instrument for assessing workforce perceptions of hospital safety culture and to assess its reliability and validity. Primary data collected between March 2004 and May 2005. Personnel from 105 U.S. hospitals completed a 38-item paper and pencil survey. We received 21,496 completed questionnaires, representing a 51 percent response rate. Based on review of existing safety climate surveys, we developed a list of key topics pertinent to maintaining a culture of safety in high-reliability organizations. We developed a draft questionnaire to address these topics and pilot tested it in four preliminary studies of hospital personnel. We modified the questionnaire based on experience and respondent feedback, and distributed the revised version to 42,249 hospital workers. We randomly divided respondents into derivation and validation samples. We applied exploratory factor analysis to responses in the derivation sample. We used those results to create scales in the validation sample, which we subjected to multitrait analysis (MTA). We identified nine constructs, three organizational factors, two unit factors, three individual factors, and one additional factor. Constructs demonstrated substantial convergent and discriminant validity in the MTA. Cronbach's alpha coefficients ranged from 0.50 to 0.89. It is possible to measure key salient features of hospital safety climate using a valid and reliable 38-item survey and appropriate hospital sample sizes. This instrument may be used in further studies to better understand the impact of safety climate on patient safety outcomes.

  1. Working Safety in Confined Spaces. Module SH-32. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on working safely in confined spaces in one of 50 modules concerned with job safety and health. This module explains how to recognize potential hazards in confined spaces, how to deal with these hazards, and how planning can prevent accidents. Following the introduction, 17 objectives (each keyed to a page in the text) the…

  2. CANDU Safety R&D Status, Challenges, and Prospects in Canada

    Directory of Open Access Journals (Sweden)

    W. Shen

    2015-01-01

    Full Text Available In Canada, safe operation of CANDU (CANada Deuterium Uranium; it is a registered trademark of Atomic Energy of Canada Limited reactors is supported by a full-scope program of nuclear safety research and development (R&D in key technical areas. Key nuclear R&D programs, facilities, and expertise are maintained in order to address the unique features of the CANDU as well as generic technology areas common to CANDU and LWR (light water reactor. This paper presents an overview of the CANDU safety R&D which includes background, drivers, current status, challenges, and future directions. This overview of the Canadian nuclear safety R&D programs includes those currently conducted by the COG (CANDU Owners Group, AECL (Atomic Energy of Canada Limited, Candu Energy Inc., and the CNSC (Canadian Nuclear Safety Commission and by universities via UNENE (University Network of Excellence in Nuclear Engineering sponsorship. In particular, the nuclear safety R&D program related to the emerging CANDU ageing issues is discussed. The paper concludes by identifying directions for the future nuclear safety R&D.

  3. ITER Safety and Licensing

    International Nuclear Information System (INIS)

    Girard, J-.P; Taylor, N.; Garin, P.; Uzan-Elbez, J.; GULDEN, W.; Rodriguez-Rodrigo, L.

    2006-01-01

    The site for the construction of ITER has been chosen in June 2005. The facility will be implemented in Europe, south of France close to Marseille. The generic safety scheme is now under revision to adapt the design to the host country regulation. Even though ITER will be an international organization, it will have to comply with the French requirements in the fields of public and occupational health and safety, nuclear safety, radiation protection, licensing, nuclear substances and environmental protection. The organization of the central team together with its partners organized in domestic agencies for the in-kind procurement of components is a key issue for the success of the experimentation. ITER is the first facility that will achieve sustained nuclear fusion. It is both important for the experimental one-of-a-kind device, ITER itself, and for the future of fusion power plants to well understand the key safety issues of this potential new source of energy production. The main safety concern is confinement of the tritium, activated dust in the vacuum vessel and activated corrosion products in the coolant of the plasma-facing components. This is achieved in the design through multiple confinement barriers to implement the defence in depth approach. It will be demonstrated in documents submitted to the French regulator that these barriers maintain their function in all postulated incident and accident conditions. The licensing process started by examination of the safety options. This step has been performed by Europe during the candidature phase in 2002. In parallel to the final design, and taking into account the local regulations, the Preliminary Safety Report (RPrS) will be drafted with support of the European partner and others in the framework of ITER Task Agreements. Together with the license application, the RPrS will be forwarded to the regulatory bodies, which will launch public hearings and a safety review. Both processes must succeed in order to

  4. Safety design of Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ouyang Yu; Zhang Lian; Du Shenghua; Zhao Jiayu

    1984-01-01

    Safety issues have been greatly emphasized through the design of the Qinshan Nuclear Power Plant. Reasonable safety margine has been taken into account in the plant design parameters, the design incorporated various safeguard systems, such as engineering safety feature systems, safety protection systems and the features to resist natural catastrophes, e. g. earthquake, hurricanes, tide and so on. Preliminary safety analysis and environmental effect assessment have been done and anti-accident provisions and emergency policy were carefully considered. Qinshan Nuclear Power Plant safety related systems are designed in accordance with the common international standards established in the late 70's, as well as the existing engineering standard of China

  5. Elevating standards, improving safety.

    Science.gov (United States)

    Clarke, Richard

    2014-08-01

    In our latest 'technical guidance' article, Richard Clarke, sales and marketing director at one of the UK's leading lift and escalator specialists, Schindler, examines some of the key issues surrounding the specification, maintenance, and operation of lifts in hospitals to help ensure the highest standards of safety and reliability.

  6. The key role of nuclear energy to strengthen economic safety for France and the European Union

    International Nuclear Information System (INIS)

    Jouette, Isabelle; Le Ngoc, Boris; Chenu, Anne; Nieuviaert, Jean-Jacques

    2015-01-01

    This publication first discusses how to improve the external safety (energy independence) for France. It outlines that nuclear energy is a safety factor for the economy, that France needs to reduce its dependence on fossil energies through an electrification of uses, that imports of fossil energies can be reduced by developing nuclear research. In a second part, it discusses how to improve internal supply safety for France and for the EU. It evokes the crisis situation faced by the European electricity market, outlines the need to invest in existing nuclear production capacities, the need to stabilize the electric system, and to take better advantage of non-carbon energies (possible future technological advances of the energy sector are evoked)

  7. JHR Project: a future Material Testing Reactor working as an International user Facility: The key-role of instrumentation in support to the development of modern experimental capacity

    Energy Technology Data Exchange (ETDEWEB)

    Bignan, G. [CEA, DEN, DER, JHR user Facility Interface Manager' , Cadarache, F-13108 St-Paul-Lez-Durance (France); Gonnier, C. [CEA, DEN, DER, SRJH Jules Horowitz Reactor Service, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A.; Villard, J.F.; Destouches, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Chauvin, J.P. [CEA,DEN, DER, SPEX, Experimental Physics Service, Cadarache, F-13108 St-Paul-Lez-Durance (France); Maugard, B. [CEA, DEN, DER, Reactor Department Studies, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    Research and development on fuel and material behaviour under irradiation is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. These needs mainly deal with a constant improvement of performances and safety in order to optimize the fuel cycle and hence to reach nuclear energy sustainable objectives. A sustainable nuclear energy requires a high level of performances in order to meet specific needs such as: - Pursuing improvement of the performances and safety of present and coming water cooled reactor technologies. This will require a continuous R and D support following a long-term trend driven by the plant life management, safety demonstration, flexibility and economics improvement. Experimental irradiations of structure materials are necessary to anticipate these material behaviours and will contribute to their optimisation. - Upgrading continuously nuclear fuel technology in present and future nuclear power plants to achieve better performances and to optimise the fuel cycle keeping the best level of safety. Fuel evolution for generation II, III and III+ is a key stake requiring developments, qualification tests and safety experiments to ensure the competitiveness and safety: experimental tests exploring the full range of fuel behaviour determine fuel stability limits and safety margins, as a major input for the fuel reliability analysis. To perform such accurate and innovative progress and developments, specific and ad hoc instrumentation, irradiation devices, measurement methods are necessary to be set up inside or beside the material testing reactor (MTR) core. These experiments require beforehand in situ and on line sophisticated measurements to accurately determine different key parameters such as thermal and fast neutron fluxes and nuclear heating in order to precisely monitor and control the conducted assays. The new Material Testing Reactor JHR (Jules Horowitz Reactor) currently under

  8. In-pile experiments and test facilities proposed for fast reactor safety

    International Nuclear Information System (INIS)

    Grolmes, M.A.; Avery, R.; Goldman, A.J.; Fauske, H.K.; Marchaterre, J.F.; Rose, D.; Wright, A.E.

    1976-01-01

    The role of in-pile experiments in support of the resolution of fast breeder reactor safety and licensing issues has been re-examined, with emphasis on key safety issues. Experiment needs have been related to the specific characteristics of these safety issues and to realistic requirements for additional test facility capabilities which can be achieved and utilized within the next ten years. It is found that those safety issues related to the energetics of core disruptive accidents have the largest impact on new facility requirements. However, utilization of existing facilities with modifications can provide for a continuing increase in experiment capability and experiment results on a timely bases. Emphasis has been placed upon maximum utilization of existing facilities and minimum requirements for new facilities. This evaluation has concluded that a new Safety Test Facility, STF, along with major modifications to the EBR II facility, improvement in TREAT capabilities, the existing Sodium Loop Safety Facility and corresponding Support Facilities provide the essential elements of the Safety Research Experiment Facilities (SAREF) required for resolution of key issues

  9. Study of fundamental safety-related aspects in connection with the decommissioning of nuclear installations. Pt. 2. Safety considerations and emissions

    International Nuclear Information System (INIS)

    John, T.; Thierfeldt, S.

    1993-01-01

    The procedures used so far for the examination of selected decommissioning projects in expert opinions on safety, in particular of nuclear power plants, were screened, with special emphasis on the examination of safety considerations, i.e. analysis of possible accidents. Generic examinations on safety in connection with the decommissioning of nuclear installations were used to assess safety considerations. Different approaches were taken with regard to the selection of analysed accidents and determination of parameters defining activity release and assumptions in safety opinions. Therefore it seems to be appropriate to establish a scenario to be used for nuclear power plant accident analyses, which covers the range of radiologically relevant accidents during decommissioning activities. Although it might be controversially discussed, because of specific plant designs (test and prototype reactors as well as first power reactors), to establish such a radiologically covering accident scenario for older nuclear power plants, it seems to be no problem for modern light water reactors. The radiologically most relevant possible accident in a decommissioned nuclear power plant is fire in the plant. Parameter values and assumptions are suggested which determine the source term in the event of a fire in the plant. Inspite of a conservative determination of parameter values and assumptions, an environmental dose commitment of less than 50 mSv is to be expected for the resulting source term. (orig.) [de

  10. Anomaly Monitoring Method for Key Components of Satellite

    Directory of Open Access Journals (Sweden)

    Jian Peng

    2014-01-01

    Full Text Available This paper presented a fault diagnosis method for key components of satellite, called Anomaly Monitoring Method (AMM, which is made up of state estimation based on Multivariate State Estimation Techniques (MSET and anomaly detection based on Sequential Probability Ratio Test (SPRT. On the basis of analysis failure of lithium-ion batteries (LIBs, we divided the failure of LIBs into internal failure, external failure, and thermal runaway and selected electrolyte resistance (Re and the charge transfer resistance (Rct as the key parameters of state estimation. Then, through the actual in-orbit telemetry data of the key parameters of LIBs, we obtained the actual residual value (RX and healthy residual value (RL of LIBs based on the state estimation of MSET, and then, through the residual values (RX and RL of LIBs, we detected the anomaly states based on the anomaly detection of SPRT. Lastly, we conducted an example of AMM for LIBs, and, according to the results of AMM, we validated the feasibility and effectiveness of AMM by comparing it with the results of threshold detective method (TDM.

  11. geo-scientific indicators for safety

    International Nuclear Information System (INIS)

    Andersson, J.; Bruno, G.; Deguchi, A.; Fein, E.; Larue, P.J.; Lei, S.; Leung, H.; Norris, S.; Violette, S.; Wollrath, J.

    2007-01-01

    Working Group A was continuation of Working Group B of AMIGO-1, but participants explored more deeply the issues surrounding geo-scientific indicators for safety. The following outcomes were expected. - List different geo-scientific arguments or indicators for safety (with motivation) for various host rocks and sites. Consider dividing the arguments into those that support isolation or retention and discuss their applicability for different time frames. - What actual measurable field evidence supports these arguments/indicators? - What kind of field evidence would go counter to these safety arguments? - What key messages are the most promising in terms of scientific credibility to contribute to the safety case? Possibly examine the same message but in terms of potential ease of communication. The session started with two introductory presentations: - Following the presentations, in discussion the Working Group listed: - Safety Functions where geo-scientific support is needed; - Commonly used chains of argument for supporting these safety functions; - Whether the applicability of the arguments are host rock or site specific and how they apply for different time frames; - Field evidence or other issues that would go counter to the safety arguments; - Key messages most promising in terms of scientific credibility to contribute to the safety case. Overall it was concluded by the Working Group that: - The most important argument is to present a clear understanding of past geological evolution at the particular site, consistent with the global understanding of geological evolution. Efforts should be made to achieve a broad consensus on this from many independent experts. - The supporting arguments are seldom based on a single piece of evidence. It is the chain of arguments rather than individual arguments that is important. - We are primarily interested in 'reasonable' predictability of the geological system. We recognize that most geological systems evolve with time

  12. Safety goals for nuclear power

    International Nuclear Information System (INIS)

    Fischhoff, B.

    1984-02-01

    The key policy question in managing hazardous technologies is often some variant of How safe is safe enough. The US Nuclear Regulatory Commission has recently broached this topic by adopting safety goals defining acceptable risk levels for nuclear power plants. These goals are analyzed here with a general theory of standard setting (Fischhoff, 1983) which asks: (1) Are standards an appropriate policy tool in this case. (2) Can the Commission's safety philosophy be defended. (3) Do the operational goals capture that philosophy. The anlaysis shows the safety goals proposal to be sophisticated in some respects, incomplete in others. More generally, it points to difficulties with the concept of acceptable risk and any attempt to build policy instruments around it. Although focused on the NRC's safety goals, the present analysis is a prototype of what can be learned by similarly detailed consideration of other standards, not only for nuclear power but also for other hazardous technologies, as well as for issues unrelated to safety

  13. Resilience Safety Culture in Aviation Organisations

    OpenAIRE

    Akselsson, R.; Koornneef, F.; Stewart, S.; Ward, M.

    2009-01-01

    Chapter 2: Resilience Safety Culture in Aviation Organisations The European Commission HILAS project (Human Integration into the Lifecycle of Aviation Systems - a project supported by the European Commission’s 6th Framework between 2005-2009) was focused on using human factors knowledge and methodology to address key challenges for aviation (current and future) including a performance based approach for safety and fatigue management in the aviation sector, mainly inflight operations and maint...

  14. Investigations of safety-related parameters applying a new multi-group diffusion code for HTR transients

    International Nuclear Information System (INIS)

    Kasselmann, S.; Druska, C.; Lauer, A.

    2010-01-01

    The energy spectra of fast and thermal neutrons from fission reactions in the FZJ code TINTE are modelled by two broad energy groups. Present demands for increased numerical accuracy led to the question of how precise the 2-group approximation is compared to a multi-group model. Therefore a new simulation program called MGT (Multi Group TINTE) has recently been developed which is able to handle up to 43 energy groups. Furthermore, an internal spectrum calculation for the determination of cross-sections can be performed for each time step and location within the reactor. In this study the multi-group energy models are compared to former calculations with only two energy groups. Different scenarios (normal operation and design-basis accidents) have been defined for a high temperature pebble bed reactor design with annular core. The effect of an increasing number of energy groups on safety-related parameters like the fuel and coolant temperature, the nuclear heat source or the xenon concentration is studied. It has been found that for the studied scenarios the use of up to 8 energy groups is a good trade-off between precision and a tolerable amount of computing time. (orig.)

  15. Hospital safety climate surveys: measurement issues.

    Science.gov (United States)

    Jackson, Jeanette; Sarac, Cakil; Flin, Rhona

    2010-12-01

    Organizational safety culture relates to behavioural norms in the workplace and is usually assessed by safety climate surveys. These can be a diagnostic indicator on the state of safety in a hospital. This review examines recent studies using staff surveys of hospital safety climate, focussing on measurement issues. Four questionnaires (hospital survey on patient safety culture, safety attitudes questionnaire, patient safety climate in healthcare organizations, hospital safety climate scale), with acceptable psychometric properties, are now applied across countries and clinical settings. Comparisons for benchmarking must be made with caution in case of questionnaire modifications. Increasing attention is being paid to the unit and hospital level wherein distinct cultures may be located, as well as to associated measurement and study design issues. Predictive validity of safety climate is tested against safety behaviours/outcomes, with some relationships reported, although effects may be specific to professional groups/units. Few studies test the role of intervening variables that could influence the effect of climate on outcomes. Hospital climate studies are becoming a key component of healthcare safety management systems. Large datasets have established more reliable instruments that allow a more focussed investigation of the role of culture in the improvement and maintenance of staff's safety perceptions within units, as well as within hospitals.

  16. Response surface use in safety analyses

    International Nuclear Information System (INIS)

    Prosek, A.

    1999-01-01

    When thousands of complex computer code runs related to nuclear safety are needed for statistical analysis, the response surface is used to replace the computer code. The main purpose of the study was to develop and demonstrate a tool called optimal statistical estimator (OSE) intended for response surface generation of complex and non-linear phenomena. The performance of optimal statistical estimator was tested by the results of 59 different RELAP5/MOD3.2 code calculations of the small-break loss-of-coolant accident in a two loop pressurized water reactor. The results showed that OSE adequately predicted the response surface for the peak cladding temperature. Some good characteristic of the OSE like monotonic function between two neighbor points and independence on the number of output parameters suggest that OSE can be used for response surface generation of any safety or system parameter in the thermal-hydraulic safety analyses.(author)

  17. Materials for lithium-ion battery safety.

    Science.gov (United States)

    Liu, Kai; Liu, Yayuan; Lin, Dingchang; Pei, Allen; Cui, Yi

    2018-06-01

    Lithium-ion batteries (LIBs) are considered to be one of the most important energy storage technologies. As the energy density of batteries increases, battery safety becomes even more critical if the energy is released unintentionally. Accidents related to fires and explosions of LIBs occur frequently worldwide. Some have caused serious threats to human life and health and have led to numerous product recalls by manufacturers. These incidents are reminders that safety is a prerequisite for batteries, and serious issues need to be resolved before the future application of high-energy battery systems. This Review aims to summarize the fundamentals of the origins of LIB safety issues and highlight recent key progress in materials design to improve LIB safety. We anticipate that this Review will inspire further improvement in battery safety, especially for emerging LIBs with high-energy density.

  18. Towards a Usability and Error "Safety Net": A Multi-Phased Multi-Method Approach to Ensuring System Usability and Safety.

    Science.gov (United States)

    Kushniruk, Andre; Senathirajah, Yalini; Borycki, Elizabeth

    2017-01-01

    The usability and safety of health information systems have become major issues in the design and implementation of useful healthcare IT. In this paper we describe a multi-phased multi-method approach to integrating usability engineering methods into system testing to ensure both usability and safety of healthcare IT upon widespread deployment. The approach involves usability testing followed by clinical simulation (conducted in-situ) and "near-live" recording of user interactions with systems. At key stages in this process, usability problems are identified and rectified forming a usability and technology-induced error "safety net" that catches different types of usability and safety problems prior to releasing systems widely in healthcare settings.

  19. Limits on safety in technology

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1984-01-01

    Owing to the difficulty of establishing a clear and generally binding definition of the term ''safety'', an explanation has been given of the five typical and/or most frequently encountered categories of accident causes. Following quantification of the hazards with the aid of safety factors and reliability parameters, examples of component and system failures are discussed from the nuclear engineering sector, together with the results of risk studies. In conclusion the relationship between man and machine is outlined, taking due account of malfunctions and the prevention of hazards and the superordinate problem of technical safety and ethics is also mentioned. (orig.) [de

  20. Tracing the foundations of a conceptual framework for a patient safety ontology

    DEFF Research Database (Denmark)

    Runciman, William B; Baker, G Ross; Michel, Philippe

    2010-01-01

    In work for the World Alliance for Patient Safety on research methods and measures and on defining key concepts for an International Patient Safety Classification (ICPS), it became apparent that there was a need to try to understand how the meaning of patient safety and underlying concepts relate...... to the existing safety and quality frameworks commonly used in healthcare....

  1. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  2. Safety evaluation of zinc methionine in laying hens: Effects on laying performance, clinical blood parameters, organ development, and histopathology.

    Science.gov (United States)

    Chen, N N; Liu, B; Xiong, P W; Guo, Y; He, J N; Hou, C C; Ma, L X; Yu, D Y

    2018-04-01

    The study was conducted to investigate whether high-dose zinc methionine (Zn-Met) affected the safety of laying hens, including laying performance, hematological parameters, serum chemical parameters, organ index, and histopathology. A total of 540 20-week-old Hy-Line White laying hens was randomly allocated to 6 groups with 6 replicates of 15 birds each. Birds were fed diets supplemented with 0 (control), 70, 140, 350, 700, or 1,400 mg Zn/kg diet as Zn-Met. The experiment lasted for 8 wk after a 2-week acclimation period. Results showed that dietary supplementation with 70 or 140 mg Zn/kg diet as Zn-Met significantly increased average daily egg mass (ADEM), laying rate (LR), and feed conversion ratio (FCR) (P hens fed with 0, 350, or 700 mg Zn/kg as Zn-Met (P > 0.05); hens administered 1,400 mg Zn/kg showed a significant increase in BSER and remarkable decreases in ADEM, LR, and FCR (P hens receiving 0, 70, 140, 350, or 700 mg Zn/kg as Zn-Met in serum chemical parameters (P > 0.05); supplementation with 1,400 mg Zn/kg as Zn-Met remarkably elevated the concentrations of serum total bilirubin (TBILI), glucose (GLU), uric acid (UA), and creatinine (CRE) (P hens administered 0, 70, 140, 350, or 700 mg Zn/kg as Zn-Met, while significant histological lesions were observed in the heart, liver, lung, and kidney tissues of hens receiving 1,400 mg Zn/kg as Zn-Met. No significant differences were detected in hematological parameters or organ index (P > 0.05). In conclusion, a nominal Zn concentration of 700 mg/kg as Zn-Met is considered to be no-observed-adverse-effect level following daily administration to hens for 56 days.

  3. FMCSA safety program effectiveness measurement : Roadside Intervention Effectiveness Model, fiscal year 2010 : [analysis brief].

    Science.gov (United States)

    2014-11-01

    Two of the Federal Motor Carrier Safety Administrations (FMCSAs) key safety programs are the Roadside Inspection and Traffic Enforcement programs. The Roadside Inspection program consists of roadside inspections performed by qualified safety in...

  4. Comparison of AIHA ISO 9001-based occupational health and safety management system guidance document with a manufacturer's occupational health and safety assessment instrument.

    Science.gov (United States)

    Dyjack, D T; Levine, S P; Holtshouser, J L; Schork, M A

    1998-06-01

    Numerous manufacturing and service organizations have integrated or are considering integration of their respective occupational health and safety management and audit systems into the International Organization for Standardization-based (ISO) audit-driven Quality Management Systems (ISO 9000) or Environmental Management Systems (ISO 14000) models. Companies considering one of these options will likely need to identify and evaluate several key factors before embarking on such efforts. The purpose of this article is to identify and address the key factors through a case study approach. Qualitative and quantitative comparisons of the key features of the American Industrial Hygiene Association ISO-9001 harmonized Occupational Health and Safety Management System with The Goodyear Tire & Rubber Co. management and audit system were conducted. The comparisons showed that the two management systems and their respective audit protocols, although structured differently, were not substantially statistically dissimilar in content. The authors recommend that future studies continue to evaluate the advantages and disadvantages of various audit protocols. Ideally, these studies would identify those audit outcome measures that can be reliably correlated with health and safety performance.

  5. Safety Culture Perspective. Managing the pre Managing the pre-operational phases of new NPPs and creating the safety culture

    International Nuclear Information System (INIS)

    Cowan, Pamela B.; Oh, Chaewoon; Dahlgren Persson, Kerstin; Carnino, Annick

    2008-01-01

    Nuclear safety is a key for the revival of nuclear energy future programmes. Lots of competent people will be needed worldwide for ensuring the safety of the installations both existing ones and future ones. Their expertise should range from design to operation, from regulatory role to operators, from fuel fabrication to waste disposal. The challenge in front of us will be to prepare for the right recruitment, the development of the needed expertise in order to face the demand in developed countries, in countries with economies in transition and in developing countries. Time allocated for the panel does not allow for covering all aspects but the panelists will cover some of the important aspects of the challenge in terms of needs, of new competencies, of learning from operation and licensing requirements including for new designs. The key objectives of the panel are: 1- Maintaining safe operation, learning from experience, licensing including aging management and re-licensing with safety improvements for existing installations: - Presentation by Junko Ogawa of the experience and lessons learned from the earthquake on Kashiwasaki Kariwa NPP: effects in terms of manpower involved in the investigation, effects on regulations and licensing, expertise used. - Presentation by Pamela Cowan of her experience in preparing licensing actions, regulatory compliance and interface with the Regulator for both operating plants and modern requirements for constructing new ones. 2 - Special training needed for the human aspect of safety: what are the challenges in areas of safety culture and management of safety: - Presentation by Chae Woon Oh of the Korean safety culture features developed nationally, at the regulator and at the operating organizations and their integration within the safety training programmes. - Presentation by Kerstin Dahlgren Person of the needs in terms of safety culture and safety management, in terms of expertise, practitioners and assessors. 3 - How to

  6. Safety Culture Perspective. Managing the pre Managing the pre-operational phases of new NPPs and creating the safety culture

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Pamela B. [Exelon Generation, 200 Exelon Way, 19348 Kennett Square, PA 19348 (United States); Oh, Chaewoon [Korea Institute of Nuclear Safety, 19 Gusung-Dong, Yuseong-Ku, 305-338 Daejeon (Korea, Republic of); Dahlgren Persson, Kerstin [International Atomic Energy Agency, Wagramer Strasse 5, PO BOX 100 A-1400 Vienna (Austria); Carnino, Annick [IAEA, Division of Nuclear Installation Safety, Wagramer Strasse 5, PO BOX 100 A-1400 Vienna (Austria)

    2008-07-01

    Nuclear safety is a key for the revival of nuclear energy future programmes. Lots of competent people will be needed worldwide for ensuring the safety of the installations both existing ones and future ones. Their expertise should range from design to operation, from regulatory role to operators, from fuel fabrication to waste disposal. The challenge in front of us will be to prepare for the right recruitment, the development of the needed expertise in order to face the demand in developed countries, in countries with economies in transition and in developing countries. Time allocated for the panel does not allow for covering all aspects but the panelists will cover some of the important aspects of the challenge in terms of needs, of new competencies, of learning from operation and licensing requirements including for new designs. The key objectives of the panel are: 1- Maintaining safe operation, learning from experience, licensing including aging management and re-licensing with safety improvements for existing installations: - Presentation by Junko Ogawa of the experience and lessons learned from the earthquake on Kashiwasaki Kariwa NPP: effects in terms of manpower involved in the investigation, effects on regulations and licensing, expertise used. - Presentation by Pamela Cowan of her experience in preparing licensing actions, regulatory compliance and interface with the Regulator for both operating plants and modern requirements for constructing new ones. 2 - Special training needed for the human aspect of safety: what are the challenges in areas of safety culture and management of safety: - Presentation by Chae Woon Oh of the Korean safety culture features developed nationally, at the regulator and at the operating organizations and their integration within the safety training programmes. - Presentation by Kerstin Dahlgren Person of the needs in terms of safety culture and safety management, in terms of expertise, practitioners and assessors. 3 - How to

  7. Evaluation of the Quality of Occupational Health and Safety Management Systems Based on Key Performance Indicators in Certified Organizations.

    Science.gov (United States)

    Mohammadfam, Iraj; Kamalinia, Mojtaba; Momeni, Mansour; Golmohammadi, Rostam; Hamidi, Yadollah; Soltanian, Alireza

    2017-06-01

    Occupational Health and Safety Management Systems are becoming more widespread in organizations. Consequently, their effectiveness has become a core topic for researchers. This paper evaluates the performance of the Occupational Health and Safety Assessment Series 18001 specification in certified companies in Iran. The evaluation is based on a comparison of specific criteria and indictors related to occupational health and safety management practices in three certified and three noncertified companies. Findings indicate that the performance of certified companies with respect to occupational health and safety management practices is significantly better than that of noncertified companies. Occupational Health and Safety Assessment Series 18001-certified companies have a better level of occupational health and safety; this supports the argument that Occupational Health and Safety Management Systems play an important strategic role in health and safety in the workplace.

  8. Safety parameter display system functions are integrated parts of the KWU KONVOI process information system (SPDS functions are parts of the KWU-PRINS)

    International Nuclear Information System (INIS)

    Aleite, W.; Geyer, K.H.

    1984-01-01

    The desirability of having flexible overview as well as extended detail information with pictorial and abstraction features and easy and quick access throughout the large-size control rooms in German plants has been recognized. Developments over the last years now make it possible to add on extensive computer driven VDU-systems to the three German KONVOI NPPs (Isar II, Emsland and Neckarwestheim II) thereby creating the Process Information System ''PRINS''. The new system is driven by multiple computers at different locations controlling about 30 full-graphic, high resolution Video Display Units. They are arranged singly and in three ''mxn - Information Panels'' distributed about the control room and present all thinkable kinds of display formats with more than 1000 separate pictures. The display of only single ''Safety Parameters'' or even complete ''Safety Goal Information'' on single or multiple VDUs in parallel is only one aspect of this computerized part of the entire integrated Information System. (orig./HP)

  9. Operational Safety Performance Indicators and Balanced Scorecard in HANARO

    International Nuclear Information System (INIS)

    Wu, Jong-Sup; Jung, Hoan-Sung; Ahn, Guk-Hoon; Lee, Kye-Hong; Lim, In-Cheol; Kim, Hark-Rho

    2007-01-01

    Research reactors need an extensive basis for ensuring their safety. The importance of a safety management in nuclear facilities and activities has been emphasized. The safety activities in HANARO have been continuously conducted to enhance its safe operation. Last year, HANARO prepared two indicator sets to measure and assess the safety status of the reactor's operation and utilization. One is Safety Performance Indicators (SPI) and the other is Balanced Scorecard (BSC). Through reviewing these indicators, we can obtain the following information; - Plant safety status - Safety parameter trends - Safety information, for example, reactor operation status and radiation safety HANARO will continuously pursue the trends of SPI and BSC

  10. Monte Carlo simulation of core physics parameters of the Nigeria Research Reactor-1 (NIRR-1)

    Energy Technology Data Exchange (ETDEWEB)

    Jonah, S.A. [Reactor Engineering Section, Centre for Energy Research and Training, Ahmadu Bello University, Zaria, P.M.B. 1014 (Nigeria)], E-mail: jonahsa2001@yahoo.com; Liaw, J.R.; Matos, J.E. [RERTR Program, Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2007-12-15

    The Monte Carlo N-Particle (MCNP) code, version 4C (MCNP4C) and a set of neutron cross-section data were used to develop an accurate three-dimensional computational model of the Nigeria Research Reactor-1 (NIRR-1). The geometry of the reactor core was modeled as closely as possible including the details of all the fuel elements, reactivity regulators, the control rod, all irradiation channels, and Be reflectors. The following reactor core physics parameters were calculated for the present highly enriched uranium (HEU) core: clean cold core excess reactivity ({rho}{sub ex}), control rod (CR) and shim worth, shut down margin (SDM), neutron flux distributions in the irradiation channels, reactivity feedback coefficients and the kinetics parameters. The HEU input model was validated by experimental data from the final safety analyses report (SAR). The model predicted various key neutronics parameters fairly accurately and the calculated thermal neutron fluxes in the irradiation channels agree with the values obtained by foil activation method. Results indicate that the established Monte Carlo model is an accurate representation of the NIRR-1 HEU core and will be used to perform feasibility for conversion to low enriched uranium (LEU)

  11. Containment-emergency-sump performance. Technical findings related to Unresolved Safety Issue A-43

    International Nuclear Information System (INIS)

    1983-04-01

    This report summarizes key technical findings related to the Unresolved Safety Issue A-43, Containment Emergency Sump Performance, and provides recommendations for resolution of attendant safety issues. The key safety questions relate to: (a) effects of insulation debris on sump performance; (b) sump hydraulic performance as determined by design features, submergence, and plant induced effects, and (c) recirculation pump performance wherein air and/or particulate ingestion can occur. The technical findings presented in this report provide information relevant to the design and performance evaluation of the containment emergency sump

  12. U.S. Food System Working Conditions as an Issue of Food Safety.

    Science.gov (United States)

    Clayton, Megan L; Smith, Katherine C; Pollack, Keshia M; Neff, Roni A; Rutkow, Lainie

    2017-02-01

    Food workers' health and hygiene are common pathways to foodborne disease outbreaks. Improving food system jobs is important to food safety because working conditions impact workers' health, hygiene, and safe food handling. Stakeholders from key industries have advanced working conditions as an issue of public safety in the United States. Yet, for the food industry, stakeholder engagement with this topic is seemingly limited. To understand this lack of action, we interviewed key informants from organizations recognized for their agenda-setting role on food-worker issues. Findings suggest that participants recognize the work standards/food safety connection, yet perceived barriers limit adoption of a food safety frame, including more pressing priorities (e.g., occupational safety); poor fit with organizational strategies and mission; and questionable utility, including potential negative consequences. Using these findings, we consider how public health advocates may connect food working conditions to food and public safety and elevate it to the public policy agenda.

  13. EPRI program in water reactor safety

    International Nuclear Information System (INIS)

    Loewenstein, W.B.; Gelhaus, F.; Gopalakrishnan, A.

    1975-01-01

    The basis for EPRI's water reactor safety program is twofold. First is compilation and development of fundamental background data necessary for quantified light-water reactor (LWR) safety assurance appraisals. Second is development of realistic and experimentally bench-marked analytical procedures. The results are expected either to confirm the safety margins in current operating parameters, and to identify overly conservative controls, or, in some cases, to provide a basis for improvements to further minimize uncertainties in expected performance. Achievement of these objectives requires the synthesis of related current and projected experimental-analytical projects toward establishment of an experimentally-based analysis for the assurance of safety for LWRs

  14. Reload core safety verification

    International Nuclear Information System (INIS)

    Svetlik, M.; Minarcin, M.

    2003-01-01

    This paper presents a brief look at the process of reload core safety evaluation and verification in Slovak Republic. It gives an overview of experimental verification of selected nuclear parameters in the course of physics testing during reactor start-up. The comparison of IAEA recommendations and testing procedures at Slovak and European nuclear power plants of similar design is included. An introduction of two level criteria for evaluation of tests represents an effort to formulate the relation between safety evaluation and measured values (Authors)

  15. Standard Test Method for Determining the Linearity of a Photovoltaic Device Parameter with Respect To a Test Parameter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method determines the degree of linearity of a photovoltaic device parameter with respect to a test parameter, for example, short-circuit current with respect to irradiance. 1.2 The linearity determined by this test method applies only at the time of testing, and implies no past or future performance level. 1.3 This test method applies only to non-concentrator terrestrial photovoltaic devices. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  16. Safety analysis and synthesis using fuzzy sets and evidential reasoning

    International Nuclear Information System (INIS)

    Wang, J.; Yang, J.B.; Sen, P.

    1995-01-01

    This paper presents a new methodology for safety analysis and synthesis of a complex engineering system with a structure that is capable of being decomposed into a hierarchy of levels. In this methodology, fuzzy set theory is used to describe each failure event and an evidential reasoning approach is then employed to synthesise the information thus produced to assess the safety of the whole system. Three basic parameters--failure likelihood, consequence severity and failure consequence probability, are used to analyse a failure event. These three parameters are described by linguistic variables which are characterised by a membership function to the defined categories. As safety can also be clearly described by linguistic variables referred to as the safety expressions, the obtained fuzzy safety score can be mapped back to the safety expressions which are characterised by membership functions over the same categories. This mapping results in the identification of the safety of each failure event in terms of the degree to which the fuzzy safety score belongs to each of the safety expressions. Such degrees represent the uncertainty in safety evaluations and can be synthesised using an evidential reasoning approach so that the safety of the whole system can be evaluated in terms of these safety expressions. Finally, a practical engineering example is presented to demonstrate the proposed safety analysis and synthesis methodology

  17. Modelling on c-Si/a-Si:H wire solar cells: some key parameters to optimize the photovoltaic performance

    Directory of Open Access Journals (Sweden)

    Alvarez J.

    2012-07-01

    Full Text Available Solar cells based on silicon nano- or micro-wires have attracted much attention as a promising path for low cost photovoltaic technology. The key point of this structure is the decoupling of the light absorption from the carriers collection. In order to predict and optimize the performance potential of p- (or n- doped c-Si/ n-(or p- doped a-Si:H nanowire-based solar cells, we have used the Silvaco-Atlas software to model a single-wire device. In particular, we have noticed a drastic decrease of the open-circuit voltage (Voc when increasing the doping density of the silicon core beyond an optimum value. We present here a detailed study of the parameters that can alter the Voc of c-Si(p/a-Si:H (n wires according to the doping density in c-Si. A comparison with simulation results obtained on planar c-Si/a-Si:H heterojunctions shows that the drop in Voc, linked to an increase of the dark current in both structures, is more pronounced for radial junctions due to geometric criteria. These numerical modelling results have lead to a better understanding of transport phenomena within the wire.

  18. Parameters of importance to determine in geoscientific site studies

    International Nuclear Information System (INIS)

    Andersson, Johan; Almen, K.E.; Ericsson, L.O.; Karlsson, Fred; Stroem, A.; Fredriksson, Anders; Stanfors, R.

    1996-12-01

    This report identifies and describes parameters, that may be determined in a site characterization study, for performing functional and safety analyses of a deep rock repository for radioactive wastes. The report discusses data needs for rock engineering and for description of other environmental aspects. It is intended that the report be used as a basis for formulating the criteria of acceptance in evaluating a candidate site. The report describes how different parameters influence the safety function, and how they are evaluated in practice. The logical order of performing measurements, due to the need of in-data and influence on other measurements is also discussed. 65 refs

  19. Transportation safety through regulatory compliance training is the key to success

    International Nuclear Information System (INIS)

    Carnes, N.; Stancell, D.; Willaford, D.; Blalock, L.

    1989-01-01

    The US Department of Energy (DOE) has a strong commitment to ensure the safe and efficient transportation of hazardous materials, and achieves this goal through compliance with the regulations. DOEs commitment to excellence in this area is reflected by the Transportation Management Divisions support of compliance training workshops for DOE/DOE contractor personnel. Training is the key to compliance. This paper will address the current compliance training program, and new initiatives by DOE

  20. Safety culture as an element of contact and cooperation between utilities, research and safety authorities

    International Nuclear Information System (INIS)

    Hoegberg, L.

    1994-01-01

    The safety culture approach may simply be seen as a recognition of the close interdependence between safety and organisational processes: achievement of technical safety objectives will largely depend on the quality of the implementation processes in the organisations concerned. With a slight modification of the original INSAG formulation, SKI defines safety culture as 'a consciously formulated and implemented set of values in an organisation, which establishes that, as an overriding priority, safety issues receive the attention warranted by their significance'. In practice, a high level of safety culture means the systematic organisation and implementation of a number of activities aimed at creating a high quality defence in depth against both technical and human failures that may cause accidents. An enquiring and learning attitude is a key element of such a safety culture. For example, to prevent accidents, the organisation always needs to be reactive to incidents, by performing proper root cause analysis of both technical and organisational factors, and taking appropriate corrective actions. The long term organisational objective should be to be proactive and identify deficiencies in technology and organisation that may lead to serious incidents or, at worst, accidents and take corrective action even before actual occurrence of incidents of substantial safety significance. (author) 13 refs

  1. Indicators of safety culture - selection and utilization of leading safety performance indicators

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Teemu; Pietikaeinen, Elina (VTT, Technical Research Centre of Finland (Finland))

    2010-03-15

    performance indicators can help in reflecting on this model. Key questions to ask when selecting and utilizing safety performance indicators are 1) what is required from the nuclear power plant to perform safely and 2) what is required from the organization in order to be aware of its safety level and enhance its safety performance. The indicators should provide information on whether these requirements are met or not, where the organization should put more effort to meet the requirements and finally, does the organization have an accurate view on the requirements

  2. Indicators of safety culture - selection and utilization of leading safety performance indicators

    International Nuclear Information System (INIS)

    Reiman, Teemu; Pietikaeinen, Elina

    2010-03-01

    performance indicators can help in reflecting on this model. Key questions to ask when selecting and utilizing safety performance indicators are 1) what is required from the nuclear power plant to perform safely and 2) what is required from the organization in order to be aware of its safety level and enhance its safety performance. The indicators should provide information on whether these requirements are met or not, where the organization should put more effort to meet the requirements and finally, does the organization have an accurate view on the requirements

  3. Evaluation of the Quality of Occupational Health and Safety Management Systems Based on Key Performance Indicators in Certified Organizations

    Directory of Open Access Journals (Sweden)

    Iraj Mohammadfam

    2017-06-01

    Conclusion: Occupational Health and Safety Assessment Series 18001-certified companies have a better level of occupational health and safety; this supports the argument that Occupational Health and Safety Management Systems play an important strategic role in health and safety in the workplace.

  4. Nature-Based Strategies for Improving Urban Health and Safety.

    Science.gov (United States)

    Kondo, Michelle C; South, Eugenia C; Branas, Charles C

    2015-10-01

    Place-based programs are being noticed as key opportunities to prevent disease and promote public health and safety for populations at-large. As one key type of place-based intervention, nature-based and green space strategies can play an especially large role in improving health and safety for dwellers in urban environments such as US legacy cities that lack nature and greenery. In this paper, we describe the current understanding of place-based influences on public health and safety. We focus on nonchemical environmental factors, many of which are related to urban abandonment and blight. We then review findings from studies of nature-based interventions regarding impacts on health, perceptions of safety, and crime. Based on our findings, we suggest that further research in this area will require (1) refined measures of green space, nature, and health and safety for cities, (2) interdisciplinary science and cross-sector policy collaboration, (3) observational studies as well as randomized controlled experiments and natural experiments using appropriate spatial counterfactuals and mixed methods, and (4) return-on-investment calculations of potential economic, social, and health costs and benefits of urban greening initiatives.

  5. System theory and safety models in Swedish, UK, Dutch and Australian road safety strategies.

    Science.gov (United States)

    Hughes, B P; Anund, A; Falkmer, T

    2015-01-01

    Road safety strategies represent interventions on a complex social technical system level. An understanding of a theoretical basis and description is required for strategies to be structured and developed. Road safety strategies are described as systems, but have not been related to the theory, principles and basis by which systems have been developed and analysed. Recently, road safety strategies, which have been employed for many years in different countries, have moved to a 'vision zero', or 'safe system' style. The aim of this study was to analyse the successful Swedish, United Kingdom and Dutch road safety strategies against the older, and newer, Australian road safety strategies, with respect to their foundations in system theory and safety models. Analysis of the strategies against these foundations could indicate potential improvements. The content of four modern cases of road safety strategy was compared against each other, reviewed against scientific systems theory and reviewed against types of safety model. The strategies contained substantial similarities, but were different in terms of fundamental constructs and principles, with limited theoretical basis. The results indicate that the modern strategies do not include essential aspects of systems theory that describe relationships and interdependencies between key components. The description of these strategies as systems is therefore not well founded and deserves further development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Patient safety is not elective: a debate at the NPSF Patient Safety Congress.

    Science.gov (United States)

    McTiernan, Patricia; Wachter, Robert M; Meyer, Gregg S; Gandhi, Tejal K

    2015-02-01

    The opening keynote session of the 16th Annual National Patient Safety Foundation Patient Safety Congress, held 14-16 May 2014, featured a debate addressing the merits and challenges of accountability with respect to key issues in patient safety. The specific resolution debated was: Certain safety practices should be inviolable, and transgressions should result in penalties, potentially including fines, suspensions, and firing. The themes discussed in the debate are issues that healthcare professionals and leaders commonly struggle with in their day-to-day work. How do we draw a line between systems problems and personal failings? When should clinicians and staff be penalised for failing to follow a known safety protocol? The majority of those who listened to the live debate agreed that it is time to begin holding health professionals accountable when they wilfully or repeatedly violate policies or protocols put in place by their institutions to protect the safety of patients. This article summarises the debate as well as the questions and discussion generated by each side. A video of the original debate can be found at http://bit.ly/Npsf_debate. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. New IAEA guidance on safety culture

    International Nuclear Information System (INIS)

    Haage, Monica; )

    2012-01-01

    Monica Haage described a project for Kozloduy Nuclear Power Plant in Bulgaria which was also funded by the Norwegian government. This project included the development of guidance documents and training on self-assessment and continuous improvement of safety culture. A draft IAEA safety culture survey was also developed as part of this project in collaboration with St Mary's University, Canada. This project was conducted in parallel with an IAEA project to develop new safety reports on safety culture self-assessment and continuous improvement. A safety report on safety culture during the pre-operational phases of NPPs has also been drafted. The IAEA approach to safety culture assessment was outlined and core principles of the approach were discussed. These include the use of several assessment methods (survey, interview, observation, focus groups, document review), and two distinct levels of analysis. The first is a descriptive analysis of the observed cultural characteristics from each assessment method and overarching themes. This is followed by a 'normative' analysis comparing what has been observed with the desirable characteristics of a strong, positive, safety culture, as defined by the IAEA safety culture framework. The application of this approach during recent Operational Safety Assessment Review Team (OSART) missions was described along with key learning points

  8. The safety issues of medical robotics

    Energy Technology Data Exchange (ETDEWEB)

    Fei Baowei; Ng, W.S.; Chauhan, Sunita; Kwoh, Chee Keong

    2001-08-01

    In this paper, we put forward a systematic method to analyze, control and evaluate the safety issues of medical robotics. We created a safety model that consists of three axes to analyze safety factors. Software and hardware are the two material axes. The third axis is the policy that controls all phases of design, production, testing and application of the robot system. The policy was defined as hazard identification and safety insurance control (HISIC) that includes seven principles: definitions and requirements, hazard identification, safety insurance control, safety critical limits, monitoring and control, verification and validation, system log and documentation. HISIC was implemented in the development of a robot for urological applications that was known as URObot. The URObot is a universal robot with different modules adaptable for 3D ultrasound image-guided interstitial laser coagulation, radiation seed implantation, laser resection, and electrical resection of the prostate. Safety was always the key issue in the building of the robot. The HISIC strategies were adopted for safety enhancement in mechanical, electrical and software design. The initial test on URObot showed that HISIC had the potential ability to improve the safety of the system. Further safety experiments are being conducted in our laboratory.

  9. The safety issues of medical robotics

    International Nuclear Information System (INIS)

    Fei Baowei; Ng, W.S.; Chauhan, Sunita; Kwoh, Chee Keong

    2001-01-01

    In this paper, we put forward a systematic method to analyze, control and evaluate the safety issues of medical robotics. We created a safety model that consists of three axes to analyze safety factors. Software and hardware are the two material axes. The third axis is the policy that controls all phases of design, production, testing and application of the robot system. The policy was defined as hazard identification and safety insurance control (HISIC) that includes seven principles: definitions and requirements, hazard identification, safety insurance control, safety critical limits, monitoring and control, verification and validation, system log and documentation. HISIC was implemented in the development of a robot for urological applications that was known as URObot. The URObot is a universal robot with different modules adaptable for 3D ultrasound image-guided interstitial laser coagulation, radiation seed implantation, laser resection, and electrical resection of the prostate. Safety was always the key issue in the building of the robot. The HISIC strategies were adopted for safety enhancement in mechanical, electrical and software design. The initial test on URObot showed that HISIC had the potential ability to improve the safety of the system. Further safety experiments are being conducted in our laboratory

  10. Proceedings on safety case - IGSC Topical Session held 25 November 2001, Paris-France

    International Nuclear Information System (INIS)

    O'Sullivan, Patrik; Voinis, Sylvie; Ouzounian, Gerald; Van Luik, Abraham

    2002-01-01

    It is accepted universally that an assessment of the safety of proposed geological repositories is a key input to the decision-making process regarding the development of these facilities. Accordingly, implementing and regulatory organisations in many of the OECD/NEA countries are involved in the investigation and resolution of issues associated with repository safety and NEA has been concerned with this issue for several years. Most current repository development programmes envisage that repository development will occur in an incremental fashion, with decisions being taken by national authorities at several steps in the development process. It may be envisaged that safety assessments will become progressively more refined at successive stages of the development process, with an expectation of increasing levels of confidence that the assessed levels of safety can be realised in practice. Different countries are at different stages and therefore opinions can be expected to vary on where the key issues remain. In accordance with current terminology the Safety Case for a proposed facility should present the results of the safety assessment together with an illustration of the level of confidence in the results. The safety case should also discuss how levels of uncertainty would be reduced in succeeding development phases. The establishment of the IGSC (Integration Group for the Safety Case), to bring together all activities relating to the safety case, recognised its key role of the latter in the process of repository development. Initiatives currently being pursued by the IGSC include the development of a 'Safety Case Brochure', to synthesise current understanding about the requirements of the Safety Case. The IGSC has a role to develop common views on such key aspects of the Safety Case but should not be prescriptive. To go further in establishments of the safety case brochure, a 'Topical Session' on the Safety Case was organised as part of the

  11. Analysis of neutronic parameters of AP1000 core for 18 month and 16/20 month cycle schemes using CASMO4E and SIMULATE-3 codes

    International Nuclear Information System (INIS)

    Nawaz Amjad; Yoshikawa, Hidekazu; Ming Yang

    2015-01-01

    AP1000 reactor is designed for 18 month of operating cycle. The core can also be used for 16/20 months of operating cycle. This study is performed to analyze and compare the neutronic parameters of typical AP1000 reactor core for 18 month and 16/20 month alternate cycle lengths. CASMO4E and SIMULATE-3 code package is used for the analysis of initial and equilibrium cores. The key reactor physics safety parameters were analyzed including power peaking factors, core radial and axial power distribution and core reactivity feedback coefficients. Moreover, the analysis of fuel depletion, fission product buildup and burnable poison behaviour with burnup is also analyzed. Full 2-D fuel assembly model in CASMO4E and full 3-D core model in SIMULATE-3 is employed to examine core performance and safety parameters. In order to evaluate the equilibrium core neutronic parameters, the equilibrium core model is attained by performing burnup analysis from initial to equilibrium cycle, where optimized transition core design is obtained so that the power peaking factors remain within designed limits. The MTC for higher concentration of critical boron concentrations is slightly positive at lower moderator temperatures. However, it remains negative at operating temperature ranges. The radial core relative power distribution indicates that low leakage capability of initial and equilibrium cores is reduced at EOC. (author)

  12. Key formal and legal aspects of acquiring radiopharmaceuticals used in nuclear medicine departments

    International Nuclear Information System (INIS)

    Kapuscinski, J.

    2007-01-01

    The article presents the key both Polish and EU legal regulation concerning terms and conditions of acquiring radiopharmaceuticals, i.e. isotope labelled compounds used for diagnostic and/ therapeutic purposes in nuclear medicine departments. The emphasis was put on the requirements regarding provision of the medicaments' safety in broad meaning of the term, which are important factors in providing patients' safety. Legal acts discussed in the article remain valid as of May 2007. (author)

  13. The generation of shared cryptographic keys through channel impulse response estimation at 60 GHz.

    Energy Technology Data Exchange (ETDEWEB)

    Young, Derek P.; Forman, Michael A.; Dowdle, Donald Ryan

    2010-09-01

    Methods to generate private keys based on wireless channel characteristics have been proposed as an alternative to standard key-management schemes. In this work, we discuss past work in the field and offer a generalized scheme for the generation of private keys using uncorrelated channels in multiple domains. Proposed cognitive enhancements measure channel characteristics, to dynamically change transmission and reception parameters as well as estimate private key randomness and expiration times. Finally, results are presented on the implementation of a system for the generation of private keys for cryptographic communications using channel impulse-response estimation at 60 GHz. The testbed is composed of commercial millimeter-wave VubIQ transceivers, laboratory equipment, and software implemented in MATLAB. Novel cognitive enhancements are demonstrated, using channel estimation to dynamically change system parameters and estimate cryptographic key strength. We show for a complex channel that secret key generation can be accomplished on the order of 100 kb/s.

  14. Safety Profile of Meswak Root Extract on Liver, Kidney, Sexual Hormones and Hematological Parameters of Rats

    Directory of Open Access Journals (Sweden)

    Abeer Y. IBRAHIM

    2012-02-01

    Full Text Available This study was conducted to investigate the safety profile of Salvadora persica (Salvadoraceae aqueous alcoholic root extract by carrying out acute and sub-chronic toxicity assessment in order to find out any side effect of the traditionally using of these root sticks. Regarding to acute toxicity test, mice were administered the extract up to 5 g kg-1, intraperitoneally. Animals were then observed for behavioural changes; signs of toxicity, and mortality within 24 h. Surviving mice were monitored for 7 days for signs of delayed toxicity. In the sub-chronic toxicity test, rats were daily treated with the extract at a dose of 400 mg kg-1 intraperitoneally, for 30 days. At the end of the test period, hematological and biochemical parameters were determined in blood and serum samples with determination of vital organs weights. In the acute toxicity test, the extract was practically non-toxic showing no mortality and visible signs of delayed toxicity. The LD50, given intraperitoneally, was estimated to be 4 g kg-1. Administration of extract (at a dose of 400 mg Kg-1 b.wt. to male and female rats for 30 days did not produce any significant (P < 0.05 effect on hematological and most biochemical parameters also vital organs weights. The root extract showed adverse effects on sexual hormones, by increasing estrogen secretion and reducing testosterone level in male rats. At the same time, the extract reduces progesterone level in female satellite group. Overall, Meswak aqueous extract is safe concerning liver and kidney functions and hematological assessments; however, it induces reversal effect on sexual hormones levels determined in sera.

  15. Use of quality parameters system in sphere of the radioactive waste management

    International Nuclear Information System (INIS)

    Loginov, A.P.; Sandul, G.A.

    2003-01-01

    Quality parameters system is used at quality ensuring assessment for such concrete situations: change of quality, including safety, radioactive waste at the stepwise management with them (the treatment stage is considered); quality level comparison of the same type containers for radioactive waste disposal (two types of containers are considered: in the form of a parallelepiped and a cylinder); research of kinetic properties of those containers quality parameters which are function of time (reliability parameters and ecological parameters closely connected to them). The received results potentially can find practical application at an assessment of safety in process of radioactive waste management, at the development of containers for radioactive waste, at the decision of line of optimization problems with observance of ALARA principle and in other adjacent areas

  16. Clear progress in nuclear safety worldwide: Convention on nuclear safety concludes

    International Nuclear Information System (INIS)

    2002-01-01

    It has been concluded that a significant progress has been observed in a number of key areas, such as strengthened legislation, regulatory independence, the availability of financial resources, enhanced emergency preparedness and safety improvements at nuclear power plants built to earlier standards. The objective of the Convention is to achieve and maintain a high level of nuclear safety worldwide. During the two week Review Meeting, parties engaged in a 'peer review' process in which the National Reports from individual States were collectively examined and discussed, with written replies provided to all the questions raised. Clear improvement was noted in the quality of the National Reports, the number of questions and the openness and quality of discussion and answers. The Contracting Parties praised the IAEA's various safety review missions and services, which they use widely to help enhance the effectiveness of their national safety arrangements. Forty-six contracting parties participated at the Review Meeting with over 400 delegates attending, including many heads and senior officers from regulatory bodies and experts from industry. To date, the Convention has been signed by sixty-five States and ratified by fifty-four, representing 428 of the 448 nuclear power reactors worldwide

  17. The effect of organisational culture on patient safety.

    Science.gov (United States)

    Kaufman, Gerri; McCaughan, Dorothy

    This article explores the links between organisational culture and patient safety. The key elements associated with a safety culture, most notably effective leadership, good teamwork, a culture of learning and fairness, and fostering patient-centred care, are discussed. The broader aspects of a systems approach to promoting quality and safety, with specific reference to clinical governance, human factors, and ergonomics principles and methods, are also briefly explored, particularly in light of the report of the public inquiry into care failings at Mid Staffordshire NHS Foundation Trust.

  18. Optimization of the nuclear power engineering safety on the basis of social and economic parameters

    International Nuclear Information System (INIS)

    Kozlov, V.F.; Kuz'min, I.I.; Lystsov, V.N.; Amosova, T.V.; Makhutov, N.A.; Men'shikov, V.F.

    1995-01-01

    Principle of optimization of nuclear power engineering safety is presented on the basis of estimating the risks to the man's health with an account of peculiarities of socio-economic system and other types of economic activities in the region. Average expected duration of forthcoming life and costs of its prolongation serve as a unit for measuring the man's safety. It is shown that if the expenditures on NPP technical safety exceed the scientifically substantiated costs for this region with application of the above principle, than the risk for population will exceed the minimum achievable level. 8 refs., 2 figs., 1 tab

  19. MAPLE research reactor safety uncertainty assessment methodology

    International Nuclear Information System (INIS)

    Sills, H.E.; Duffey, R.B.; Andres, T.H.

    1999-01-01

    The MAPLE (multipurpose Applied Physics Lattice Experiment) reactor is a low pressure, low temperature, open-tank-in pool type research reactor that operates at a power level of 5 to 35 MW. MAPLE is designed for ease of operation, maintenance, and to meet today's most demanding requirements for safety and licensing. The emphasis is on the use of passive safety systems and environmentally qualified components. Key safety features include two independent and diverse shutdown systems, two parallel and independent cooling loops, fail safe operation, and a building design that incorporates the concepts of primary containment supported by secondary confinement

  20. Key thrusts in next generation CANDU. Annex 10

    International Nuclear Information System (INIS)

    Shalaby, B.A.; Torgerson, D.F.; Duffey, R.B.

    2002-01-01

    Current electricity markets and the competitiveness of other generation options such as CCGT have influenced the directions of future nuclear generation. The next generation CANDU has used its key characteristics as the basis to leap frog into a new design featuring improved economics, enhanced passive safety, enhanced operability and demonstrated fuel cycle flexibility. Many enabling technologies spinning of current CANDU design features are used in the next generation design. Some of these technologies have been developed in support of existing plants and near term designs while others will need to be developed and tested. This paper will discuss the key principles driving the next generation CANDU design and the fuel cycle flexibility of the CANDU system which provide synergism with the PWR fuel cycle. (author)