WorldWideScience

Sample records for safety function approach

  1. Transient management using the safety function approach

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Barrow, J.H.; Bischoff, G.C.; Callaghan, V.M.; Pearce, R.T.

    1984-01-01

    The safety function approach is described. Its use in the development of a transient management procedures system includes optimal recovery procedures tailored to specific, anticipated symptom sets and a functional recovery procedure which is more general. Simulator evaluations are described

  2. An approach for functional safety improvement of an existing automotive system

    NARCIS (Netherlands)

    Khabbaz Saberi, A.; Luo, Y.; Pawel Cichosz, F.; Brand, M. van den; Jansen, S.T.H.

    2015-01-01

    Safety of automotive systems is becoming more involved, specially for the case of autonomous vehicles. The ISO 26262 standard offers a systematic approach for designing a safe road vehicle (or subsystems of a car) from design phase through its production. However, providing functional safety

  3. The critical safety functions and plant operation

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Church, J.F.; Cross, M.T.; Guinn, W.M.; Porter, N.J.

    1981-01-01

    The operator's role in nuclear safety is outlined and the concept of ''safety functions'' introduced. Safety functions are a group of actions that prevent core melt or minimize radiation releases to the general public. They can be used to provide a hierarchy of practical plant protection that an operator should use. The plant safety evaluation uses four inputs in predicting the results of an event: the event initiator, the plant design, the initial plant conditions and setup, and the operator actions. If any of these inputs are not as assumed in the evaluation, confidence that the consequences will be as predicted is reduced. Based on the safety evaluation, the operator has three roles in assuring that the consequences of an event will be no worse than the predicted acceptable results: Maintain plant setup in readiness to properly respond. Operate the plant in a manner such that fewer, milder events minimize the frequency and the severity of adverse events. Monitor the plant to verify that the safety functions are accomplished. The operator needs a systematic approach to mitigating the consequences of an event. The concept of safety functions introduces this systematic approach and presents a hierarchy of protection. If the operator has difficulty identifying an event for any reason, the systematic safety function approach allows accomplishing the overall path of mitigating consequences. Ten functions designed to protect against core melt, preserve containment integrity, prevent indirect release of radioactivity, and maintain vital auxiliaries needed to support the other safety functions are identified

  4. The critical safety functions and plant operation

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Church, J.F.; Porter, N.J.; Cross, M.T.; Guinn, W.M.

    1981-01-01

    The paper outlines the operator's role in nuclear safety and introduces the concept of ''safety functions''. Safety functions are a group of actions that prevent core melt or minimize radiation releases to the general public. They can be used to provide a hierarchy of practical plant protection that an operator should use. ''An accident identical to that at Three Mile Island is not going to happen again'', said the Rogovin investigators. The concepts put forward in this paper are intended to help the operator avoid serious consequence from the next unexpected threat. On the basis of the safety evaluation, the operator has three roles in assuring that the consequences of an event will be no worse than the predicted acceptable results. These three operator roles are: first, maintain plant setup in readiness to properly respond; second, operate the plant in a manner such that fewer, milder events minimize the frequency and the severity of adverse events; third, the operator needs to monitor the plant to verify that the safety functions are accomplished. The operator needs a systematic approach to mitigating the consequences of an event. The concept of ''safety function'' introduces that systematic approach and prevents a hierarchy of protection. If the operator has difficulty in identifying an event for any reason, the systematic safety function approach allows ones to accomplish the overall path of mitigating consequences. There are ten identified functions designed to protect against core melt, preserve containment integrity, prevent indirect release of radioactivity, and maintain vital auxiliaries needed to support the other safety functions. The paper describes in detail the operator's role and the safety functions, and provides many examples of the use of alternative success paths to accomplish the safety function

  5. A new approach to determine the environmental qualification requirements for the safety related equipment

    International Nuclear Information System (INIS)

    Hasnaoui, C.; Parent, G.

    2000-01-01

    The objective of the environmental qualification of safety related equipment is to ensure that the plant defense-in-depth is not compromised by common mode failures following design basis accidents with a harsh environment. A new approach based on safety functions has been developed to determine what safety-related equipment is required to function during and after a design basis accident, as well as their environmental qualification requirements. The main feature of this approach is to use auxiliary safety functions established from safety requirements as credited in the safety analyses. This approach is undertaken in three steps: identification of the auxiliary safety functions of each main safety function; determination of the main equipment groups required for each auxiliary safety function; and review of the safety analyses for design basis accidents in order to determine the credited auxiliary safety functions and their mission times for each accident scenario. Some of the benefits of the proposed approach for the determination of the safety environmental qualification requirements are: a systematic approach for the review of safety analyses based on a safety function check list, and the insurance, with the availability of the safety functions, that Gentilly-2 defense-in-depth would not be compromised by design basis accidents with a harsh environment. (author)

  6. An aspect-oriented approach for designing safety-critical systems

    Science.gov (United States)

    Petrov, Z.; Zaykov, P. G.; Cardoso, J. P.; Coutinho, J. G. F.; Diniz, P. C.; Luk, W.

    The development of avionics systems is typically a tedious and cumbersome process. In addition to the required functions, developers must consider various and often conflicting non-functional requirements such as safety, performance, and energy efficiency. Certainly, an integrated approach with a seamless design flow that is capable of requirements modelling and supporting refinement down to an actual implementation in a traceable way, may lead to a significant acceleration of development cycles. This paper presents an aspect-oriented approach supported by a tool chain that deals with functional and non-functional requirements in an integrated manner. It also discusses how the approach can be applied to development of safety-critical systems and provides experimental results.

  7. Probabilistic safety criteria at the safety function/system level

    International Nuclear Information System (INIS)

    1989-09-01

    A Technical Committee Meeting was held in Vienna, Austria, from 26-30 January 1987. The objectives of the meeting were: to review the national developments of PSC at the level of safety functions/systems including future trends; to analyse basic principles, assumptions, and objectives; to compare numerical values and the rationale for choosing them; to compile the experience with use of such PSC; to analyse the role of uncertainties in particular regarding procedures for showing compliance. The general objective of establishing PSC at the level of safety functions/systems is to provide a pragmatic tool to evaluate plant safety which is placing emphasis on the prevention principle. Such criteria could thus lead to a better understanding of the importance to safety of the various functions which have to be performed to ensure the safety of the plant, and the engineering means of performing these functions. They would reflect the state-of-the-art in modern PSAs and could contribute to a balance in system design. This report, prepared by the participants of the meeting, reviews the current status and future trends in the field and should assist Member States in developing their national approaches. The draft of this document was also submitted to INSAG to be considered in its work to prepare a document on safety principles for nuclear power plants. Five papers presented at the meeting are also included in this publication. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  8. Safety Design Approach for the Development of Safety Requirements for Design of Commercial HTGR

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Nishihara, Tetsuo; Yan, Xing; Sakaba, Nariaki; Kunitomi, Kazuhiko

    2014-01-01

    The research committee on “Safety requirements for HTGR design” was established in 2013 under the Atomic Energy Society of Japan to develop the draft safety requirements for the design of commercial High Temperature Gas-cooled Reactors (HTGRs), which incorporate the HTGR safety features demonstrated using the High Temperature Engineering Test Reactor (HTTR), lessons learned from the accident of Fukushima Daiichi Nuclear Power Station and requirements for the integration of the hydrogen production plants. The safety design approach for the commercial HTGRs which is a basement of the safety requirements is determined prior to the development of the safety requirements. The safety design approaches for the commercial HTGRs are to confine the radioactive materials within the coated fuel particles not only during normal operation but also during accident conditions, and the integrity of the coated fuel particles and other requiring physical barriers are protected by the inherent and passive safety features. This paper describes the main topics of the research committee, the safety design approaches and the safety functions of the commercial HTGRs determined in the research committee. (author)

  9. Regulatory Oversight of Safety Culture in Finland: A Systemic Approach to Safety

    International Nuclear Information System (INIS)

    Oedewald, P.; Väisäsvaara, J.

    2016-01-01

    In Finland the Radiation and Nuclear Safety Authority STUK specifies detailed regulatory requirements for good safety culture. Both the requirements and the practical safety culture oversight activities reflect a systemic approach to safety: the interconnections between the technical, human and organizational factors receive special attention. The conference paper aims to show how the oversight of safety culture can be integrated into everyday oversight activities. The paper also emphasises that the scope of the safety culture oversight is not specific safety culture activities of the licencees, but rather the overall functioning of the licence holder or the new build project organization from safety point of view. The regulatory approach towards human and organizational factors and safety culture has evolved throughout the years of nuclear energy production in Finland. Especially the recent new build projects have highlighted the need to systematically pay attention to the non-technical aspects of safety as it has become obvious how the HOF issues can affect the design processes and quality of construction work. Current regulatory guides include a set of safety culture related requirements. The requirements are binding to the licence holders and they set both generic and specific demands on the licencee to understand, monitor and to develop safety culture of their own organization but also that of their supplier network. The requirements set for the licence holders has facilitated the need to develop the regulator’s safety culture oversight practices towards a proactive and systemic approach.

  10. LFR safety approach and main ELFR safety analysis results

    International Nuclear Information System (INIS)

    Bubelis, E.; Schikorr, M.; Frogheri, M.; Mansani, L.; Bandini, G.; Burgazzi, L.; Mikityuk, K.; Zhang, Y.; Lo Frano, R.; Forgione, N.

    2013-01-01

    LFR safety approach: → A global safety approach for the LFR reference plant has been assessed and the safety analyses methodology has been developed. → LFR follows the general guidelines of the Generation IV safety concept recommendations. Thus, improved safety and higher reliability are recognized as an essential priority. → The fundamental safety objectives and the Defence-in-Depth (DiD) approach, as described by IAEA Safety Guides, have been preserved. → The recommendations of the Risk and Safety Working Group (RSWG) of GEN-IV IF has been taken into account: • safety is to be “built-in” in the fundamental design rather than “added on”; • full implementation of the Defence-in-Depth principles in a manner that is demonstrably exhaustive, progressive, tolerant, forgiving and well-balanced; • “risk-informed” approach - deterministic approach complemented with a probabilistic one; • adoption of an integrated methodology that can be used to evaluate and document the safety of Gen IV nuclear systems - ISAM. In particular the OPT tool is the fundamental methodology used throughout the design process

  11. Regulator Loss Functions and Hierarchical Modeling for Safety Decision Making.

    Science.gov (United States)

    Hatfield, Laura A; Baugh, Christine M; Azzone, Vanessa; Normand, Sharon-Lise T

    2017-07-01

    Regulators must act to protect the public when evidence indicates safety problems with medical devices. This requires complex tradeoffs among risks and benefits, which conventional safety surveillance methods do not incorporate. To combine explicit regulator loss functions with statistical evidence on medical device safety signals to improve decision making. In the Hospital Cost and Utilization Project National Inpatient Sample, we select pediatric inpatient admissions and identify adverse medical device events (AMDEs). We fit hierarchical Bayesian models to the annual hospital-level AMDE rates, accounting for patient and hospital characteristics. These models produce expected AMDE rates (a safety target), against which we compare the observed rates in a test year to compute a safety signal. We specify a set of loss functions that quantify the costs and benefits of each action as a function of the safety signal. We integrate the loss functions over the posterior distribution of the safety signal to obtain the posterior (Bayes) risk; the preferred action has the smallest Bayes risk. Using simulation and an analysis of AMDE data, we compare our minimum-risk decisions to a conventional Z score approach for classifying safety signals. The 2 rules produced different actions for nearly half of hospitals (45%). In the simulation, decisions that minimize Bayes risk outperform Z score-based decisions, even when the loss functions or hierarchical models are misspecified. Our method is sensitive to the choice of loss functions; eliciting quantitative inputs to the loss functions from regulators is challenging. A decision-theoretic approach to acting on safety signals is potentially promising but requires careful specification of loss functions in consultation with subject matter experts.

  12. Design an optimum safety policy for personnel safety management - A system dynamic approach

    International Nuclear Information System (INIS)

    Balaji, P.

    2014-01-01

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making

  13. Design an optimum safety policy for personnel safety management - A system dynamic approach

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, P. [The Glocal University, Mirzapur Pole, Delhi- Yamuntori Highway, Saharanpur 2470001 (India)

    2014-10-06

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  14. Design an optimum safety policy for personnel safety management - A system dynamic approach

    Science.gov (United States)

    Balaji, P.

    2014-10-01

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  15. Squale: evaluation criteria of functioning safety

    International Nuclear Information System (INIS)

    Deswarte, Y.; Kaaniche, M.; Benoit, P.

    1998-05-01

    The SQUALE (security, safety and quality evaluation for dependable systems) project is part of the ACTS (advanced communications, technologies and services) European program. Its aim is to develop confidence evaluation criteria to test the functioning safety of systems. All industrial sectors that use critical applications (nuclear, railway, aerospace..) are concerned. SQUALE evaluation criteria differ from the classical evaluation methods: they are independent of the application domains and industrial sectors, they take into account the overall functioning safety attributes, and they can progressively change according to the level of severity required. In order to validate the approach and to refine the criteria, a first experiment is in progress with the METEOR automatic underground railway and another will be carried out on a telecommunication system developed by Bouygues company. (J.S.)

  16. Knowledge Representation in Patient Safety Reporting: An Ontological Approach

    OpenAIRE

    Liang Chen; Yang Gong

    2016-01-01

    Purpose: The current development of patient safety reporting systems is criticized for loss of information and low data quality due to the lack of a uniformed domain knowledge base and text processing functionality. To improve patient safety reporting, the present paper suggests an ontological representation of patient safety knowledge. Design/methodology/approach: We propose a framework for constructing an ontological knowledge base of patient safety. The present paper describes our desig...

  17. An approach to maintenance optimization where safety issues are important

    International Nuclear Information System (INIS)

    Vatn, Jorn; Aven, Terje

    2010-01-01

    The starting point for this paper is a traditional approach to maintenance optimization where an object function is used for optimizing maintenance intervals. The object function reflects maintenance cost, cost of loss of production/services, as well as safety costs, and is based on a classical cost-benefit analysis approach where a value of prevented fatality (VPF) is used to weight the importance of safety. However, the rationale for such an approach could be questioned. What is the meaning of such a VPF figure, and is it sufficient to reflect the importance of safety by calculating the expected fatality loss VPF and potential loss of lives (PLL) as being done in the cost-benefit analyses? Should the VPF be the same number for all type of accidents, or should it be increased in case of multiple fatality accidents to reflect gross accident aversion? In this paper, these issues are discussed. We conclude that we have to see beyond the expected values in situations with high safety impacts. A framework is presented which opens up for a broader decision basis, covering considerations on the potential for gross accidents, the type of uncertainties and lack of knowledge of important risk influencing factors. Decisions with a high safety impact are moved from the maintenance department to the 'Safety Board' for a broader discussion. In this way, we avoid that the object function is used in a mechanical way to optimize the maintenance and important safety-related decisions are made implicit and outside the normal arena for safety decisions, e.g. outside the traditional 'Safety Board'. A case study from the Norwegian railways is used to illustrate the discussions.

  18. An approach to maintenance optimization where safety issues are important

    Energy Technology Data Exchange (ETDEWEB)

    Vatn, Jorn, E-mail: jorn.vatn@ntnu.n [NTNU, Production and Quality Engineering, 7491 Trondheim (Norway); Aven, Terje [University of Stavanger (Norway)

    2010-01-15

    The starting point for this paper is a traditional approach to maintenance optimization where an object function is used for optimizing maintenance intervals. The object function reflects maintenance cost, cost of loss of production/services, as well as safety costs, and is based on a classical cost-benefit analysis approach where a value of prevented fatality (VPF) is used to weight the importance of safety. However, the rationale for such an approach could be questioned. What is the meaning of such a VPF figure, and is it sufficient to reflect the importance of safety by calculating the expected fatality loss VPF and potential loss of lives (PLL) as being done in the cost-benefit analyses? Should the VPF be the same number for all type of accidents, or should it be increased in case of multiple fatality accidents to reflect gross accident aversion? In this paper, these issues are discussed. We conclude that we have to see beyond the expected values in situations with high safety impacts. A framework is presented which opens up for a broader decision basis, covering considerations on the potential for gross accidents, the type of uncertainties and lack of knowledge of important risk influencing factors. Decisions with a high safety impact are moved from the maintenance department to the 'Safety Board' for a broader discussion. In this way, we avoid that the object function is used in a mechanical way to optimize the maintenance and important safety-related decisions are made implicit and outside the normal arena for safety decisions, e.g. outside the traditional 'Safety Board'. A case study from the Norwegian railways is used to illustrate the discussions.

  19. Assessment of Safety and Functional Efficacy of Stem Cell-Based Therapeutic Approaches Using Retinal Degenerative Animal Models

    Directory of Open Access Journals (Sweden)

    Tai-Chi Lin

    2017-01-01

    Full Text Available Dysfunction and death of retinal pigment epithelium (RPE and or photoreceptors can lead to irreversible vision loss. The eye represents an ideal microenvironment for stem cell-based therapy. It is considered an “immune privileged” site, and the number of cells needed for therapy is relatively low for the area of focused vision (macula. Further, surgical placement of stem cell-derived grafts (RPE, retinal progenitors, and photoreceptor precursors into the vitreous cavity or subretinal space has been well established. For preclinical tests, assessments of stem cell-derived graft survival and functionality are conducted in animal models by various noninvasive approaches and imaging modalities. In vivo experiments conducted in animal models based on replacing photoreceptors and/or RPE cells have shown survival and functionality of the transplanted cells, rescue of the host retina, and improvement of visual function. Based on the positive results obtained from these animal experiments, human clinical trials are being initiated. Despite such progress in stem cell research, ethical, regulatory, safety, and technical difficulties still remain a challenge for the transformation of this technique into a standard clinical approach. In this review, the current status of preclinical safety and efficacy studies for retinal cell replacement therapies conducted in animal models will be discussed.

  20. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  1. Mathematical Safety Assessment Approaches for Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Zong-Xiao Yang

    2014-01-01

    Full Text Available How to use system analysis methods to identify the hazards in the industrialized process, working environment, and production management for complex industrial processes, such as thermal power plants, is one of the challenges in the systems engineering. A mathematical system safety assessment model is proposed for thermal power plants in this paper by integrating fuzzy analytical hierarchy process, set pair analysis, and system functionality analysis. In the basis of those, the key factors influencing the thermal power plant safety are analyzed. The influence factors are determined based on fuzzy analytical hierarchy process. The connection degree among the factors is obtained by set pair analysis. The system safety preponderant function is constructed through system functionality analysis for inherence properties and nonlinear influence. The decision analysis system is developed by using active server page technology, web resource integration, and cross-platform capabilities for applications to the industrialized process. The availability of proposed safety assessment approach is verified by using an actual thermal power plant, which has improved the enforceability and predictability in enterprise safety assessment.

  2. Safety functions and safety function indicators - key elements in SKB'S methodology for assessing long-term safety of a KBS-3 repository

    International Nuclear Information System (INIS)

    Hedin, A.

    2008-01-01

    The application of so called safety function indicators in SKB safety assessment of a KBS-3 repository for spent nuclear fuel is presented. Isolation and retardation are the two main safety functions of the KBS-3 concept. In order to quantitatively evaluate safety on a sub-system level, these functions need to be differentiated, associated with quantitative measures and, where possible, with quantitative criteria relating to the fulfillment of the safety functions. A safety function is defined as a role through which a repository component contributes to safety. A safety function indicator is a measurable or calculable property of a repository component that allows quantitative evaluation of a safety function. A safety function indicator criterion is a quantitative limit such that if the criterion is fulfilled, the corresponding safety function is upheld. The safety functions and their associated indicators and criteria developed for the KBS-3 repository are primarily related to the isolating potential and to physical states of the canister and the clay buffer surrounding the canister. They are thus not directly related to release rates of radionuclides. The paper also describes how the concepts introduced i) aid in focussing the assessment on critical, safety related issues, ii) provide a framework for the accounting of safety throughout the different time frames of the assessment and iii) provide key information in the selection of scenarios for the safety assessment. (author)

  3. Towards functional safety in drive-by-wire vehicles

    CERN Document Server

    Bergmiller, Peter Johannes

    2015-01-01

    This book presents approaches to address key challenges based on a vehicle level view and with a special emphasis on Drive-by-Wire systems. The design and testing of modern vehicle electronics are becoming more and more demanding due to increasing interdependencies among components and the safety criticality of tasks. The development towards Drive-by-Wire functionalities in vehicles with multiple actuators for vehicle control further increases the challenge. The book explicitly takes into account the interactions between components  and aims at bridging the gap between the need to generate additional customer benefits and the effort to achieve functional safety. The book follows a twofold approach: on the one side, it presents a toolchain to support efficient further development of novel functionalities for Drive-by-Wire vehicles. The toolchain comprises appropriate software tools and scaled and full-scale experimental vehicles. On the other side, development towards functionally safe and flexible Drive-by-W...

  4. Design of an artificial intelligence system for safety function maintenance

    International Nuclear Information System (INIS)

    Sharma, D.D.; Miller, D.W.; Chandrasekaran, B.

    1985-01-01

    The safety function (SF) maintenance concept provides a systematic approach to mitigate the consequences of an unforeseen event. Safety functions are a set of actions for mitigating or limiting consequences of a safety threatening event. The current approach to SF maintenance of selecting a success path (SP) from a library of predefined SPs is inadequate because it includes only anticipated modes of challenging an SF. To cover all possible modes of challenging an SF, the library of success paths would be extremely large and difficult to implement on any existing computer. In this paper the authors describe a method based on artificial intelligence (AI) theory of planning to synthesize an SP using available resources to satisfy a hierarchy of safety goals. The method has been applied to SF maintenance of a boiling water reactor (BWR) using data from the Perry nuclear power plant

  5. IAEA safety standards and approach to safety of advanced reactors

    International Nuclear Information System (INIS)

    Gasparini, M.

    2004-01-01

    The paper presents an overview of the IAEA safety standards including their overall structure and purpose. A detailed presentation is devoted to the general approach to safety that is embodied in the current safety requirements for the design of nuclear power plants. A safety approach is proposed for the future. This approach can be used as reference for a safe design, for safety assessment and for the preparation of the safety requirements. The method proposes an integration of deterministic and risk informed concepts in the general frame of a generalized concept of safety goals and defence in depth. This methodology may provide a useful tool for the preparation of safety requirements for the design and operation of any kind of reactor including small and medium sized reactors with innovative safety features.(author)

  6. Behavioral based safety approaches

    International Nuclear Information System (INIS)

    Maria Michael Raj, I.

    2009-01-01

    Approach towards the establishment of positive safety culture at Heavy Water Plant, Tuticorin includes the adoption of several important methodologies focused on human behavior and culminates with achievement of Total Safety Culture where Quality and Productivity are integrated with Safety

  7. An approach for risk informed safety culture assessment for Canadian nuclear power stations

    International Nuclear Information System (INIS)

    Nelson, W.R.

    2010-01-01

    One of the most important components of effective safety and risk management for nuclear power stations is a healthy safety culture. DNV has developed an approach for risk informed safety culture assessment that combines two complementary paradigms for safety and risk management: loss prevention - for preventing and intervening in accidents; and critical function management - for achieving safety and performance goals. Combining these two paradigms makes it possible to provide more robust systems for safety management and to support a healthy safety culture. This approach is being applied to safety culture assessment in partnership with a Canadian nuclear utility. (author)

  8. ELFR: The European Lead Fast Reactor. Design, Safety Approach and Safety Characteristics

    International Nuclear Information System (INIS)

    Alemberti, Alessandro

    2012-01-01

    • In the framework of the LEADER project, the safety approach for a Lead cooled fast reactor has been defined and, in particular, all the possible challenges to the main safety functions and their mechanisms have been specified, in order to better define the needed provisions. • On the basis of the above and taking into account the results of the safety analyses performed during previous project (ELSY), a reference configuration of the ELFR plant has been consolidated, by improving and updating the plant design features. In particular, the emerged safety concerns have been analyzed in the LEADER project and a new set of design options and safety provisions have been proposed. • The combination of favourable Lead coolant inherent characteristics and plant design features, specifically developed to face identified challenges, resulted in a very robust and forgiving design, even in very extreme conditions, as a Fukushima-like scenario

  9. Study on the KALIMER safety approach

    International Nuclear Information System (INIS)

    Kim, Eui Kwang; Han, Do Hee; Kim, Young Cheol.

    1997-01-01

    This study describes KALIMER's safety approach, how to establish the safety criteria and temperature limit, how to define safety evaluation events, and some safety research and development needs items. It is recommended that the KALIMER's approach to safety use seven levels of safety design and a defense-in-depth design approach with particular emphasis on inherent passive features. In order to establish as set DBEs for KALIMER safety evaluation, the procedure is explained how to define safety evaluation events. Final selection is to be determined later with the final establishment of design concepts. On the basis of preliminary studies and evaluation of the plant safety related areas, the KALIMER and PRISM have following three main difference that may require special research and development for KALIMER. (author). 7 refs., 6 tabs., 6 figs

  10. Towards integrated hygiene and food safety management systems: the Hygieneomic approach.

    Science.gov (United States)

    Armstrong, G D

    1999-09-15

    Integrated hygiene and food safety management systems in food production can give rise to exceptional improvements in food safety performance, but require high level commitment and full functional involvement. A new approach, named hygieneomics, has been developed to assist management in their introduction of hygiene and food safety systems. For an effective introduction, the management systems must be designed to fit with the current generational state of an organisation. There are, broadly speaking, four generational states of an organisation in their approach to food safety. They comprise: (i) rules setting; (ii) ensuring compliance; (iii) individual commitment; (iv) interdependent action. In order to set up an effective integrated hygiene and food safety management system a number of key managerial requirements are necessary. The most important ones are: (a) management systems must integrate the activities of key functions from research and development through to supply chain and all functions need to be involved; (b) there is a critical role for the senior executive, in communicating policy and standards; (c) responsibilities must be clearly defined, and it should be clear that food safety is a line management responsibility not to be delegated to technical or quality personnel; (d) a thorough and effective multi-level audit approach is necessary; (e) key activities in the system are HACCP and risk management, but it is stressed that these are ongoing management activities, not once-off paper generating exercises; and (f) executive management board level review is necessary of audit results, measurements, status and business benefits.

  11. Safety critical systems handbook a straightforward guide to functional safety : IEC 61508 (2010 edition) and related standards

    CERN Document Server

    Smith, David J

    2010-01-01

    Electrical, electronic and programmable electronic systems increasingly carry out safety functions to guard workers and the public against injury or death and the environment against pollution. The international functional safety standard IEC 61508 was revised in 2010, and this is the first comprehensive guide available to the revised standard. As functional safety is applicable to many industries, this book will have a wide readership beyond the chemical and process sector, including oil and gas, power generation, nuclear, aircraft, and automotive industries, plus project, instrumentation, design, and control engineers. * The only comprehensive guide to IEC 61508, updated to cover the 2010 amendments, that will ensure engineers are compliant with the latest process safety systems design and operation standards* Helps readers understand the process required to apply safety critical systems standards* Real-world approach helps users to interpret the standard, with case studies and best practice design examples...

  12. Expansion of passive safety function

    International Nuclear Information System (INIS)

    Inai, Nobuhiko; Nei, Hiromichi; Kumada, Toshiaki.

    1995-01-01

    Expansion of the use of passive safety functions is proposed. Two notions are presented. One is that, in the design of passive safety nuclear reactors where aversion of active components is stressed, some active components are purposely introduced, by which a system is built in such a way that it behaves in an apparently passive manner. The second notion is that, instead of using a passive safety function alone, a passive safety function is combined with some active components, relating the passivity in the safety function with enhanced controllability in normal operation. The nondormant system which the authors propose is one example of the first notion. This is a system in which a standby safety system is a portion of the normal operation system. An interpretation of the nondormant system via synergetics is made. As an example of the second notion, a PIUS density lock aided with active components is proposed and is discussed

  13. Safety Evaluation Approach with Security Controls for Safety I and C Systems on Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, D. H.; Jeong, S. Y.; Kim, Y. M.; Park, H. S.; Lee, M. S.; Kim, T. H.

    2016-01-01

    This paper addresses concepts of safety and security and relations between them for assessing effects of security features in safety systems. Also, evaluation approach for avoiding confliction with safety requirements and cyber security features which may be adopted in safety-related digital I and C system will be described. In this paper, safety-security life cycle model based confliction avoidance method was proposed to evaluate the effects when the cyber security control features are implemented in the safety I and C system. Also, safety effect evaluation results using the proposed evaluation method were described. In case of technical security controls, many of them are expected to conflict with safety requirements, otherwise operational and managerial controls are not relatively. Safety measures and cyber security measures for nuclear power plants should be implemented not to conflict with one another. Where safety function and security features are both required within the systems, and also where security features are implemented within safety systems, they should be justified

  14. Safety Evaluation Approach with Security Controls for Safety I and C Systems on Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Jeong, S. Y.; Kim, Y. M.; Park, H. S. [KINS, Daejeon (Korea, Republic of); Lee, M. S.; Kim, T. H. [Formal Works Inc., Seoul (Korea, Republic of)

    2016-05-15

    This paper addresses concepts of safety and security and relations between them for assessing effects of security features in safety systems. Also, evaluation approach for avoiding confliction with safety requirements and cyber security features which may be adopted in safety-related digital I and C system will be described. In this paper, safety-security life cycle model based confliction avoidance method was proposed to evaluate the effects when the cyber security control features are implemented in the safety I and C system. Also, safety effect evaluation results using the proposed evaluation method were described. In case of technical security controls, many of them are expected to conflict with safety requirements, otherwise operational and managerial controls are not relatively. Safety measures and cyber security measures for nuclear power plants should be implemented not to conflict with one another. Where safety function and security features are both required within the systems, and also where security features are implemented within safety systems, they should be justified.

  15. Towards an International Approach to Nuclear Safety

    International Nuclear Information System (INIS)

    Tomihiro Taniguchi

    2006-01-01

    This document presents in a series of transparencies the different activities of the IAEA: Introduction of International Atomic Energy Agency, Changing world, Changing Technology, Changing Global Security, Developing Innovative Nuclear Energy Systems, Global Nuclear Safety Regime, IAEA Safety Standards: Hierarchy - Global Reference for Striving for Excellence, IAEA Safety Reviews and Services: Integrated Safety Approach, Global Knowledge Network - Asian Nuclear Safety Network, Safety Issues and Challenges, Synergy between Safety and Security, Recent Developments: Safety and Security of Radioactive Sources, Convention on Physical Protection of Nuclear Material (CPPNM), Incident and Emergency Preparedness and Response, Holistic Approach for Safety and Security, Sustainable Development. (J.S.)

  16. Safety assessment of automated vehicle functions by simulation-based fault injection

    OpenAIRE

    Juez, Garazi; Amparan, Estibaliz; Lattarulo, Ray; Rastelli, Joshue Perez; Ruiz, Alejandra; Espinoza, Huascar

    2017-01-01

    As automated driving vehicles become more sophisticated and pervasive, it is increasingly important to assure its safety even in the presence of faults. This paper presents a simulation-based fault injection approach (Sabotage) aimed at assessing the safety of automated vehicle functions. In particular, we focus on a case study to forecast fault effects during the model-based design of a lateral control function. The goal is to determine the acceptable fault detection interval for pe...

  17. Statistical margin to DNB safety analysis approach for LOFT

    International Nuclear Information System (INIS)

    Atkinson, S.A.

    1982-01-01

    A method was developed and used for LOFT thermal safety analysis to estimate the statistical margin to DNB for the hot rod, and to base safety analysis on desired DNB probability limits. This method is an advanced approach using response surface analysis methods, a very efficient experimental design, and a 2nd-order response surface equation with a 2nd-order error propagation analysis to define the MDNBR probability density function. Calculations for limiting transients were used in the response surface analysis thereby including transient interactions and trip uncertainties in the MDNBR probability density

  18. Operator Actions Within a Safety Instrumented Function

    International Nuclear Information System (INIS)

    Suttinger, L.T.

    2002-01-01

    This paper presents an overview of the factors that should be considered when crediting operator action for performing a safety function or being a part of the process of enabling a safety function. Criteria for evaluating operator action, such as required time response and operator training among others, are discussed. The paper will address these and other factors that should be considered when determining the reliability of the operator to respond and perform his/her part of the safety function. The entire safety function includes the operator and the reliability of the instrumented system that provides the alarm or indication, the final control element, and support systems. The integration of the operator performance with the hardware safety availability, including the effects of the supporting systems is discussed. The analysis of these factors will provide the justification for the amount of risk reduction or safety integrity level that can be credited for the Safety Instrumented Function (SIF), including operator action

  19. Safety assessment in plant layout design using indexing approach: Implementing inherent safety perspective

    International Nuclear Information System (INIS)

    Tugnoli, Alessandro; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio

    2008-01-01

    Layout planning plays a key role in the inherent safety performance of process plants since this design feature controls the possibility of accidental chain-events and the magnitude of possible consequences. A lack of suitable methods to promote the effective implementation of inherent safety in layout design calls for the development of new techniques and methods. In the present paper, a safety assessment approach suitable for layout design in the critical early phase is proposed. The concept of inherent safety is implemented within this safety assessment; the approach is based on an integrated assessment of inherent safety guideword applicability within the constraints typically present in layout design. Application of these guidewords is evaluated along with unit hazards and control devices to quantitatively map the safety performance of different layout options. Moreover, the economic aspects related to safety and inherent safety are evaluated by the method. Specific sub-indices are developed within the integrated safety assessment system to analyze and quantify the hazard related to domino effects. The proposed approach is quick in application, auditable and shares a common framework applicable in other phases of the design lifecycle (e.g. process design). The present work is divided in two parts: Part 1 (current paper) presents the application of inherent safety guidelines in layout design and the index method for safety assessment; Part 2 (accompanying paper) describes the domino hazard sub-index and demonstrates the proposed approach with a case study, thus evidencing the introduction of inherent safety features in layout design

  20. Model-based Development of Safety-critical Functions and ISO 26262 Work Products using modified EAST-ADL

    Directory of Open Access Journals (Sweden)

    Bülent Sari

    2017-07-01

    Full Text Available Safety is becoming more and more important with the ever increasing level of safety related E/E Systems built into the cars. Increasing functionality of vehicle systems through electrification of power train, in future even more by autonomous driving, leads to complexity in designing system, software and safety architecture. ISO 26262 aims to reduce the complexity and to approve the traceability of the different safety activities. This paper presents an approach about model-based development of system, software and safety architecture using Electronics Architecture and Software Technology – Architecture Description Language (EAST-ADL, being in line with the relevant standard ISO 26262. In particular, we briefly discuss how the main safety related activities, such as hazard analysis and risk assessment, developing functional and technical safety concepts and performing safety analysis can be performed model-based and how the activities can be related with system and software development. The state-of-art is also provided and compared with the proposed approach.

  1. Descriptions and models of safety functions - a prestudy

    International Nuclear Information System (INIS)

    Harms-Ringdahl, L.

    1999-09-01

    A study has been made with the focus on different theories and applications concerning 'safety functions' and 'barriers'. In this report, a safety function is defined as a technical or organisational function with the aim to reduce probability and/or consequences associated with a hazard. The study contains a limited review of practice and theories related to safety, with a focus on applications from nuclear and industrial safety. The study is based on a literature review and interviews. A summary has been made of definitions and terminology, which shows a large variation. E.g. 'barrier' can have a precise physical and technical meaning, or it can include human, technical and organisational elements. Only a few theoretical models describing safety functions have been found. One section of the report summarises problems related to safety issues and procedures. They concern errors in procedure design and user compliance. A proposal for describing and structuring safety functions has been made. Dimensions in a description could be degree of abstraction, systems level, the different parts of the function, etc. A model for safety functions has been proposed, which includes the division of a safety function in a number connected 'safety function elements'. One conclusion is that there is a potential for improving theories and tools for safety work and procedures. Safety function could be a useful concept in such a development, and advantages and disadvantages with this is discussed. If further work should be done, it is recommended that this is made as a combination of theoretical analysis and case studies

  2. EDF's nuclear safety approach for pressurized water reactors

    International Nuclear Information System (INIS)

    Tanguy, P.; Kus, J.P.

    1987-01-01

    The realization of the important French program fifty-four units equipped with pressurized water reactors in service, or under construction-had led to the progressive implementation of an original approach in the field of nuclear safety. From an initial core consisting of the deterministic approach to safety devised on the other side of the Atlantic, which has been entirely preserved and often specified, further extras have been added which overall increase the level of safety of the installations, without any particular complications. This paper aims at presenting succinctly the outcome of the deliberation, which constitutes now the approach adopted by Electricite de France for the safety of nuclear units equipped with pressurized water reactors. This approach is explained in more detail in EDF's 'with book' on nuclear safety. (author)

  3. EDF'S nuclear safety approach for pressurized water reactors

    International Nuclear Information System (INIS)

    Tanguy, P.; Kus, J.P.

    1988-01-01

    The realization of the important French program fifty-four units equipped with pressurized water reactors in service, or under construction - had led to the progressive implementation of an original approach in the field of nuclear safety. From an initial core consisting of the deterministic approach to safety devised on the other side of the Atlantic, which has been entirely preserved and often specified, further extras have been added which overall increase the level of safety of the installations, without any particular complications. This paper aims at presenting succinctly the outcome of the deliberation, which constitutes now the approach adopted by Electricite de France for the safety of nuclear units equipped with pressurized water reactors. This approach is explained in more detail in EDF's white book on nuclear safety

  4. Operating environment threats influence on the maritime ferry technical system safety – the numerical approach

    Directory of Open Access Journals (Sweden)

    Kuligowska Ewa

    2017-06-01

    Full Text Available The material given in this paper delivers the procedure for numerical approach that allows finding the main practically important safety characteristics of the complex technical systems at the variable operation conditions including operating environment threats. The obtained results are applied to the safety evaluation of the maritime ferry technical system. It is assumed that the conditional safety functions are different at various operation states and have the exponential forms. Using the procedure and the program written in Mathematica, the considered maritime ferry technical system main characteristics including: the conditional and the unconditional expected values and standard deviations of the system lifetimes, the unconditional safety function and the risk function are determined.

  5. Driving and dementia: Efficient approach to driving safety concerns in family practice.

    Science.gov (United States)

    Lee, Linda; Molnar, Frank

    2017-01-01

    To provide primary care physicians with an approach to driving safety concerns when older persons present with memory difficulties. The approach is based on an accredited memory clinic training program developed by the Centre for Family Medicine Primary Care Collaborative Memory Clinic. One of the most challenging aspects of dementia care is the assessment of driving safety. Drivers with dementia are at higher risk of motor vehicle collisions, yet many drivers with mild dementia might be safely able to continue driving for several years. Because safe driving is dependent on multiple cognitive and functional skills, clinicians should carefully consider many factors when determining if cognitive concerns affect driving safety. Specific findings on corroborated history and office-based cognitive testing might aid in the physician's decisions to refer for comprehensive on-road driving evaluation and whether to notify transportation authorities in accordance with provincial reporting requirements. Sensitive communication and a person-centred approach are essential. Primary care physicians must consider many factors when determining if cognitive concerns might affect driving safety in older drivers. Copyright© the College of Family Physicians of Canada.

  6. Safety barriers and safety functions a comparison of different applications

    International Nuclear Information System (INIS)

    Harms-Ringdahl, L.

    1998-01-01

    A study is being made with the focus on different theories and applications concerning 'safety barriers' and 'safety functions'. One aim is to compare the characteristics of different kinds of safely functions, which can be purpose, efficiency, reliability, weak points etc. A further aim is to summarize how the combination of different barriers are described and evaluated. Of special interest are applications from nuclear and chemical process safety. The study is based on a literature review, interviews and discussions. Some preliminary conclusions are made. For example, it appears to exist a need for better tools to support the design and evaluation of procedures. There are a great number of theoretical models describing safety functions. However, it still appears to be an interest in further development of models, which might give the basis for improved practical tools. (author)

  7. Simplified probabilistic approach to determine safety factors in deterministic flaw acceptance criteria

    International Nuclear Information System (INIS)

    Barthelet, B.; Ardillon, E.

    1997-01-01

    The flaw acceptance rules in nuclear components rely on deterministic criteria supposed to ensure the safe operating of plants. The interest of having a reliable method of evaluating the safety margins and the integrity of components led Electricite de France to launch a study to link safety factors with requested reliability. A simplified analytical probabilistic approach is developed to analyse the failure risk in Fracture Mechanics. Assuming lognormal distributions of the main random variables, it is possible considering a simple Linear Elastic Fracture Mechanics model, to determine the failure probability as a function of mean values and logarithmic standard deviations. The 'design' failure point can be analytically calculated. Partial safety factors on the main variables (stress, crack size, material toughness) are obtained in relation with reliability target values. The approach is generalized to elastic plastic Fracture Mechanics (piping) by fitting J as a power law function of stress, crack size and yield strength. The simplified approach is validated by detailed probabilistic computations with PROBAN computer program. Assuming reasonable coefficients of variations (logarithmic standard deviations), the method helps to calibrate safety factors for different components taking into account reliability target values in normal, emergency and faulted conditions. Statistical data for the mechanical properties of the main basic materials complement the study. The work involves laboratory results and manufacture data. The results of this study are discussed within a working group of the French in service inspection code RSE-M. (authors)

  8. Benefits of a systematic approach to maintenance for safety and safety related systems

    International Nuclear Information System (INIS)

    Dam, R.F.; Ayazzudin, S.; Nickerson, J.H.

    2003-01-01

    For safety and safety-related systems, nuclear plants have to balance the requirements of demonstrating the reliability of each system, while maintaining the system and plant availability. With the goal of demonstrating statistical reliability, these systems have extensive testing programs, which often results in system unavailability and this can impact the plant capacity. The inputs to the process are often safety and regulatory related, resulting in programs that provide a high level of scrutiny. In such cases, the value of the application of a Systematic Assessment of Maintenance (SAM) process, such as Reliability Centered Maintenance (RCM), is questioned. The special case of Standby-Safety systems was discussed in a previous paper, where it was demonstrated how SAM techniques provide useful insight into current system performance, the impact of testing on component and system reliability, and how PSA considerations can be integrated into a comprehensive Maintenance, Surveillance, and Inspection (MSI) strategy. Although the system reliability requirements are an important part of the strategy evaluation, SAM techniques provide a systematic assessment within a broader context. Testing is only one part of an overall strategy focused on ensuring that component function is maintained through a combination of monitoring technologies (including testing), predictive techniques, and intrusive maintenance strategies. Each strategy is targeted to known component degradation mechanisms. This thinking can be extended to safety and safety related systems in general. Over the past 6 years, AECL has been working with CANDU utilities in the development and implementation of a comprehensive and integrated Plant Life Management (PLiM) program. As part of developing a comprehensive plant asset management approach, SAM techniques are used to develop a technical basis that not only works towards ensuring reliable operation of plant systems, but also facilitates the optimization and

  9. Leader communication approaches and patient safety: An integrated model.

    Science.gov (United States)

    Mattson, Malin; Hellgren, Johnny; Göransson, Sara

    2015-06-01

    Leader communication is known to influence a number of employee behaviors. When it comes to the relationship between leader communication and safety, the evidence is more scarce and ambiguous. The aim of the present study is to investigate whether and in what way leader communication relates to safety outcomes. The study examines two leader communication approaches: leader safety priority communication and feedback to subordinates. These approaches were assumed to affect safety outcomes via different employee behaviors. Questionnaire data, collected from 221 employees at two hospital wards, were analyzed using structural equation modeling. The two examined communication approaches were both positively related to safety outcomes, although leader safety priority communication was mediated by employee compliance and feedback communication by organizational citizenship behaviors. The findings suggest that leader communication plays a vital role in improving organizational and patient safety and that different communication approaches seem to positively affect different but equally essential employee safety behaviors. The results highlights the necessity for leaders to engage in one-way communication of safety values as well as in more relational feedback communication with their subordinates in order to enhance patient safety. Copyright © 2015 Elsevier Ltd. and National Safety Council. Published by Elsevier Ltd. All rights reserved.

  10. A Semantic Approach with Decision Support for Safety Service in Smart Home Management.

    Science.gov (United States)

    Huang, Xiaoci; Yi, Jianjun; Zhu, Xiaomin; Chen, Shaoli

    2016-08-03

    Research on smart homes (SHs) has increased significantly in recent years because of the convenience provided by having an assisted living environment. The functions of SHs as mentioned in previous studies, particularly safety services, are seldom discussed or mentioned. Thus, this study proposes a semantic approach with decision support for safety service in SH management. The focus of this contribution is to explore a context awareness and reasoning approach for risk recognition in SH that enables the proper decision support for flexible safety service provision. The framework of SH based on a wireless sensor network is described from the perspective of neighbourhood management. This approach is based on the integration of semantic knowledge in which a reasoner can make decisions about risk recognition and safety service. We present a management ontology for a SH and relevant monitoring contextual information, which considers its suitability in a pervasive computing environment and is service-oriented. We also propose a rule-based reasoning method to provide decision support through reasoning techniques and context-awareness. A system prototype is developed to evaluate the feasibility, time response and extendibility of the approach. The evaluation of our approach shows that it is more effective in daily risk event recognition. The decisions for service provision are shown to be accurate.

  11. A Semantic Approach with Decision Support for Safety Service in Smart Home Management

    Directory of Open Access Journals (Sweden)

    Xiaoci Huang

    2016-08-01

    Full Text Available Research on smart homes (SHs has increased significantly in recent years because of the convenience provided by having an assisted living environment. The functions of SHs as mentioned in previous studies, particularly safety services, are seldom discussed or mentioned. Thus, this study proposes a semantic approach with decision support for safety service in SH management. The focus of this contribution is to explore a context awareness and reasoning approach for risk recognition in SH that enables the proper decision support for flexible safety service provision. The framework of SH based on a wireless sensor network is described from the perspective of neighbourhood management. This approach is based on the integration of semantic knowledge in which a reasoner can make decisions about risk recognition and safety service. We present a management ontology for a SH and relevant monitoring contextual information, which considers its suitability in a pervasive computing environment and is service-oriented. We also propose a rule-based reasoning method to provide decision support through reasoning techniques and context-awareness. A system prototype is developed to evaluate the feasibility, time response and extendibility of the approach. The evaluation of our approach shows that it is more effective in daily risk event recognition. The decisions for service provision are shown to be accurate.

  12. A Systematic Analysis of Functional Safety Certification Practices in Industrial Robot Software Development

    Directory of Open Access Journals (Sweden)

    Tong Xie

    2017-01-01

    Full Text Available For decades, industry robotics have delivered on the promise of speed, efficiency and productivity. The last several years have seen a sharp resurgence in the orders of industrial robots in China, and the areas addressed within industrial robotics has extended into safety-critical domains. However, safety standards have not yet been implemented widely in academia and engineering applications, particularly in robot software development. This paper presents a systematic analysis of functional safety certification practices in software development for the safety-critical software of industrial robots, to identify the safety certification practices used for the development of industrial robots in China and how these practices comply with the safety standard requirements. Reviewing from Chinese academic papers, our research shows that safety standards are barely used in software development of industrial robot. The majority of the papers propose various solutions to achieve safety, but only about two thirds of the papers refer to non-standardized approaches that mainly address the systematic level rather than the software development level. In addition, our research shows that with the development of artificial intelligent, an emerging field is still on the quest for standardized and suitable approaches to develop safety-critical software.

  13. CONCEPTUAL APPROACHES TO FORMING MECHANISM OF INVESTMENT SAFETY REALIZATION

    Directory of Open Access Journals (Sweden)

    Vladimir Talover

    2016-11-01

    Full Text Available The purpose of the paper is theoretical justification of theoretical approaches while developing the mechanism of the state investment safety. The tasks of the system of the national economy investment safety are the following: developing investment potential, creating favourable investment climate, forming mechanisms of stable investment activity in the key branches of economy. At the same time, it should also be noted that the complex approach that would allow sufficiently justifying and practically solve the problems of defining indicators, factors of the investment policy and directions of its assurance in realization of the mechanism of investment policy is not sufficiently developed nowadays. This fact determines research topicality. The issue of assuring investment safety is of a special importance in Ukraine that has to assure market economy development, to overcome deformations in the economy structure, to renew products and production apparatus in the industry, to master new kinds of activities. Methodology. The survey is based on the generalization and development of views of the scientific-economic schools, uses approaches of the international agencies and recommendation and normative materials of Ukraine concerning realization of the state investment policy as a totality of interrelated levels and subsystems that allows establishing main functions of the investment safety system. Results of the survey shows that the mechanism of investment safety includes some kinds, forms and methods of organizing investment relations and investment activity, ways of their quantitative determination and establishing interdependence. The concept of investment policy is based on the complex approach and includes the blocks which are locally structured in such way that they allow forming adequate system of its indicators and conducting monitoring of their changes under the influence of the determined factors. The peculiarities and elements of

  14. Comparative approach between nuclear safety and security

    International Nuclear Information System (INIS)

    2009-04-01

    Adopting the definition of nuclear safety and nuclear security as they are specified by IAEA glossaries, this report first outlines that these both notions refer to similar risks but with causes of different nature. They discuss the notions of transparency and confidentiality and outline that security and safety both aims at the protection of population and of the environment. They discuss their organisational principles, notice that both have their own legal and regulatory framework, that authorities have expertise on both, that the responsibility is distributed among operators and the State, and that safety and security cultures are complementary. They analyse the design, exploitation and management principles of security and safety approaches: graded approach, defence-in-depth, synergy between security and safety, same daily monitoring requirement, same necessity to address the return on experience, same need to update a referential, a more constrained exchange of good practices in safety, a necessity to deal with their respective requirements, elaboration of emergency plans, performance of exercises

  15. Diagnosis function of safety status in the safety parameter display system (SPDS)

    International Nuclear Information System (INIS)

    Zhang Yuanfang

    1993-04-01

    An automatic diagnosis function of safety status for nuclear power plant adopted in the SPDS is introduced. To guarantee diagnosis diversification, two diagnosis criteria of a design basis accident monitoring and a critical safety function monitoring used in plant emergency operation are provided. As an extensive function, a parameter deviation monitoring used in plant normal operation is also provided

  16. Pedestrian safety management using the risk-based approach

    Directory of Open Access Journals (Sweden)

    Romanowska Aleksandra

    2017-01-01

    Full Text Available The paper presents a concept of a multi-level pedestrian safety management system. Three management levels are distinguished: strategic, tactical and operational. The basis for the proposed approach to pedestrian safety management is a risk-based method. In the approach the elements of behavioural and systemic theories were used, allowing for the development of a formalised and repeatable procedure integrating the phases of risk assessment and response to the hazards of road crashes involving pedestrians. Key to the method are tools supporting pedestrian safety management. According to the risk management approach, the tools can be divided into two groups: tools supporting risk assessment and tools supporting risk response. In the paper attention is paid to selected tools supporting risk assessment, with particular emphasis on the methods for estimating forecasted pedestrian safety measures (at strategic, national and regional level and identification of particularly dangerous locations in terms of pedestrian safety at tactical (regional and local and operational level. The proposed pedestrian safety management methods and tools can support road administration in making rational decisions in terms of road safety, safety of road infrastructure, crash elimination measures or reducing the consequences suffered by road users (particularly pedestrians as a result of road crashes.

  17. Knowledge Representation in Patient Safety Reporting: An Ontological Approach

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2016-10-01

    Full Text Available Purpose: The current development of patient safety reporting systems is criticized for loss of information and low data quality due to the lack of a uniformed domain knowledge base and text processing functionality. To improve patient safety reporting, the present paper suggests an ontological representation of patient safety knowledge. Design/methodology/approach: We propose a framework for constructing an ontological knowledge base of patient safety. The present paper describes our design, implementation, and evaluation of the ontology at its initial stage. Findings: We describe the design and initial outcomes of the ontology implementation. The evaluation results demonstrate the clinical validity of the ontology by a self-developed survey measurement. Research limitations: The proposed ontology was developed and evaluated using a small number of information sources. Presently, US data are used, but they are not essential for the ultimate structure of the ontology. Practical implications: The goal of improving patient safety can be aided through investigating patient safety reports and providing actionable knowledge to clinical practitioners. As such, constructing a domain specific ontology for patient safety reports serves as a cornerstone in information collection and text mining methods. Originality/value: The use of ontologies provides abstracted representation of semantic information and enables a wealth of applications in a reporting system. Therefore, constructing such a knowledge base is recognized as a high priority in health care.

  18. Discussion on safety analysis approach for sodium fast reactors

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Choo, Yeon Joon; Suh, Nam Duk; Shin, Ahn Dong; Bae, Moo Hoon

    2012-01-01

    Utilization of nuclear energy is increasingly necessary not only because of the increasing energy consumption but also because of the controls on greenhouse emissions against global warming. To keep step with such demands, advanced reactors are now world widely under development with the aims of highly economical advances, and enhanced safety. Recently, further elaborating is encouraged on the research and development program for Generation IV (GEN IV) reactors, and in collaboration with other interested countries through the Generation IV International Forum (GIF). Sodium cooled Fast Reactor (SFR) is a strong contender amongst the GEN IV reactor concepts. Korea also takes part in that program and plans to construct demonstration reactor of SFR. SFR is under the development for a candidate of small modular reactors, for example, PRISM (Power Reactor Innovative Small Module). Understanding of safety analysis approach has also advanced by the demand of increasing comprehensive safety requirement. Reviewing the past development of the licensing and safety basis in the advanced reactors, such approaches seemed primarily not so satisfactory because the reference framework of licensing and safety analysis approach in the advanced reactors was always the one in water reactors. And, the framework is very plant specific one and thereby the advanced reactors and their frameworks don't look like a well assorted couple. Recently as a result of considerable advances in probabilistic safety assessment (PSA), risk informed approaches are increasingly applied together with some of the deterministic approaches like as the ones in water reactors. Technology neutral framework (TNF) can be said to be the utmost works of such risk informed approaches, even though an intensive assessment of the applicability has not been sufficiently accomplished. This study discusses the viable safety analysis approaches for the urgent application to the construction of pool type SFR. As discussed in

  19. Safety analysis of autonomous excavator functionality

    International Nuclear Information System (INIS)

    Seward, D.; Pace, C.; Morrey, R.; Sommerville, I.

    2000-01-01

    This paper presents an account of carrying out a hazard analysis to define the safety requirements for an autonomous robotic excavator. The work is also relevant to the growing generic class of heavy automated mobile machinery. An overview of the excavator design is provided and the concept of a safety manager is introduced. The safety manager is an autonomous module responsible for all aspects of system operational safety, and is central to the control system's architecture. Each stage of the hazard analysis is described, i.e. system model creation, hazard definition and hazard analysis. Analysis at an early stage of the design process, and on a system that interfaces directly to an unstructured environment, exposes certain issues relevant to the application of current hazard analysis methods. The approach taken in the analysis is described. Finally, it is explained how the results of the hazard analysis have influenced system design, in particular, safety manager specifications. Conclusions are then drawn about the applicability of hazard analysis of requirements in general, and suggestions are made as to how the approach can be taken further

  20. Safety issues of botanicals and botanical preparations in functional foods

    International Nuclear Information System (INIS)

    Kroes, R.; Walker, R.

    2004-01-01

    Although botanicals have played a role in the marketing of health products for ages, there is an increased interest today due to their perceived health benefits. Not only do consumers increasingly take charge of their health, but the scientific information and understanding of the beneficial health effects of bioactive substances in food, functional foods and food supplements have improved. Increasing use of these products has also led to concerns about their actual safety. Recorded cases of intoxications have triggered such concerns. The safety assessment of these substances is complicated by, amongst others, the variability of composition. Furthermore, consumption of such functional products is expected to produce physiological effects, which may lead to low margins of safety as the margin between exposure of such products and the safe level of intake are likely to be small. The safety assessment of botanicals and botanical preparations in food and food supplement should at least involve: - the characterisation and quality of the material, its quality control; - the intended use and consequent exposure; - history of use and exposure; - product comparison(s); - toxicological information gathering; - Risk characterisation/safety assessment; As a guidance tool, a decision tree approach is proposed to assist in determining the extent of data requirements based on the nature of the such product. This guidance tool in safety assessment was developed by an expert group of the International Life Sciences Institute (ILSI), European Branch, and is currently in press. In this paper a summarised version of this tool is presented

  1. Some research results by risk-inform approaches for NPP safety and operational efficiency

    International Nuclear Information System (INIS)

    Komarov, Yu.A.

    2013-01-01

    Article is the presentation of the same name monograph, which is planned to be issued. In the article the perspective problems of further development risk-oriented approach (ROA) for the grounding and realization of measures on increase of safety and operational efficiency of NPP are considered. Unlike the traditional approach for the ROA, mean due the definition of probabilistic and/or deterministic methods of risk parameters, as criterion functions essence and the measure of the estimation are defined by the solution of specific problem in nuclear field. The ROA application allows essentially expanding opportunities of the substantiations and realizations of measures on safety and operational efficiency increase of NPP

  2. A multi-tiered approach to safety education.

    Science.gov (United States)

    Oates, Kim; Sammut, John; Kennedy, Peter

    2013-08-01

    The World Health Organization has recognised that patient safety education should begin at the undergraduate level. This should not just be for medical students, but for all students in the health professions. Although all students in the health professions should receive a basic grounding in patient safety, there is also a need to develop future leaders in this field. As a result of widespread early student exposure, some students may become interested in learning more. It follows that a postgraduate approach is also needed. The New South Wales Clinical Excellence Commission (CEC) has initiated a tiered approach to patient safety education by providing patient safety teaching in medical, nursing and allied health schools. Teaching is provided in cooperation with the host university, and is interactive, using a mixture of interactive lectures, video clips, films and break-out groups to discuss scenarios and feedback from students to their peers about the concepts they have discussed. For medical graduates, the CEC has initiated patient safety teaching in the early postgraduate years, and provides an elective in patient safety for trainee doctor specialists as part of their accredited training. This process helps to identify and mentor future medical leaders in this field. In addition to teaching the core principles of patient safety to a wide range of students in the health professions, an approach for developing future leaders will provide additional opportunities for motivated students and create opportunities for continuing development in the early postgraduate years and beyond. © 2013 John Wiley & Sons Ltd.

  3. The operator's role and safety functions

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Finnicum, D.J.; Hubbard, F.R.; Musick, C.R.; Walzer, R.F.

    1980-01-01

    A nuclear power plant can be thought of as a single system with two major subsystems: equipment and people. Both play important roles in nuclear safety. Whereas, in the past, the role of equipment had been emphasized in nuclear safety, the accident at Three Mile Island and its subsequent investigations point out the vital role of the operator. This paper outlines the operator's roles in nuclear safety and suggests how the concept of safety functions can be used to reduce economic losses and increase safety margins. (auth)

  4. Safety approach to the selection of design criteria for the CRBRP reactor refueling system

    International Nuclear Information System (INIS)

    Meisl, C.J.; Berg, G.E.; Sharkey, N.F.

    1979-01-01

    The selection of safety design criteria for Liquid Metal Fast Breeder Reactor (LMFBR) refueling systems required the extrapolation of regulations and guidelines intended for Light Water Reactor refueling systems and was encumbered by the lack of benefit from a commercially licensed predecessor other than Fermi. The overall approach and underlying logic are described for developing safety design criteria for the reactor refueling system (RRS) of the Clinch River Breeder Reactor Plant (CRBRP). The complete selection process used to establish the criteria is presented, from the definition of safety functions to the finalization of safety design criteria in the appropriate documents. The process steps are illustrated by examples

  5. Intermediate probabilistic safety assessment approach for safety critical digital systems

    International Nuclear Information System (INIS)

    Taeyong, Sung; Hyun Gook, Kang

    2001-01-01

    Even though the conventional probabilistic safety assessment methods are immature for applying to microprocessor-based digital systems, practical needs force to apply it. In the Korea, UCN 5 and 6 units are being constructed and Korean Next Generation Reactor is being designed using the digital instrumentation and control equipment for the safety related functions. Korean regulatory body requires probabilistic safety assessment. This paper analyzes the difficulties on the assessment of digital systems and suggests an intermediate framework for evaluating their safety using fault tree models. The framework deals with several important characteristics of digital systems including software modules and fault-tolerant features. We expect that the analysis result will provide valuable design feedback. (authors)

  6. A comparison of the difference of requirements between functional safety and nuclear safety controllers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.K.; Lee, C.L.; Shyu, S.S. [Inst. of Nuclear Energy Research, Taoyuan, Taiwan (China)

    2014-07-01

    In order to establish self-reliant capabilities of nuclear I&C systems in Taiwan, Taiwan's Nuclear I&C System (TNICS) project had been established by Institute of Nuclear Energy Research (INER). A Triple Modular Redundant (TMR) safety controller (SCS-2000) has been completed and gone through the IEC 61508 Safety Integrity Level 3 (SIL3) certification of Functional Safety for industries. Based on the certification processes, the difference of requirements between Functional Safety and Nuclear Safety controllers in term of hardware and software are addressed in this study. Besides, the measures used to determine and verify the reliability of the safety control system design are presented. (author)

  7. Assessment of safety culture: Changing regulatory approach in Hungary

    International Nuclear Information System (INIS)

    Ronaky, Jozsef; Toth, Andras

    2002-01-01

    Hungarian Atomic Energy Authority (HAEA) is changing its inspection practice and assessment methods of safety performance and safety culture in operating nuclear facilities. The new approach emphasises integrated team inspection of safety cornerstones and systematic assessment of safety performance of operators. (author)

  8. NUMO's approach for long-term safety assessment - 59404

    International Nuclear Information System (INIS)

    Ebashi, Takeshi; Kaku, Kenichi; Ishiguro, Katsuhiko

    2012-01-01

    One of NUMO's policies for ensuring safety is staged and flexible project implementation and decision-making based on iterative confirmation of safety. The safety assessment takes the central role in multiple lines of reasoning and argumentation by providing a quantitative evaluation of long-term safety; a key aspect is uncertainty management. This paper presents NUMO's basic strategies for long-term safety assessment based on the above policy. NUMO's approach considering Japanese boundary conditions is demonstrated as a starting-point for evaluating the long-term safety of an actual site. In Japan, the Act on Final Disposal of Specified Radioactive Waste states that the siting process shall consist of three stages. The Nuclear Waste Management Organization of Japan (NUMO) is responsible for geological disposal of vitrified high-level waste and some types of TRU waste. NUMO has chosen to implement a volunteer approach to siting. NUMO decided to prepare the so-called 2010 technical report, which sets out three safety policies, one of which is staged project implementation and decision-making based on iterative confirmation of safety. Based on this policy, NUMO will gradually integrate relevant interdisciplinary knowledge to build a safety case when a formal volunteer application is received that would allow site investigations to be initiated. The safety assessment takes the central role in multiple lines of reasoning and argumentation by providing a quantitative evaluation of long-term safety; one of a key aspect is uncertainty management. This paper presents the basic strategies for NUMO's long-term safety assessment based on the above policy. In concrete terms, the common procedures involved in safety assessment are applied in a stepwise manner, based on integration of knowledge obtained from site investigations/evaluations and engineered measures. The results of the safety assessment are then reflected in the planning of site investigations and engineered

  9. Safety of pulmonary function testing

    DEFF Research Database (Denmark)

    Roberts, Cara; Ward, Simon; Walsted, Emil

    2017-01-01

    BACKGROUND: Pulmonary function testing (PFT) is a key investigation in the evaluation of individuals with respiratory symptoms; however, the safety of routine and specialised PFT testing has not been reported in a large data set. Using patient safety incident (PSI) records, we aimed to assess risk...... was rated using the NHS National Patient Safety Agency and any hospital admission reported. RESULTS: There were 119 PSIs reported from 186 000 PFT; that is, 0.6 PSIs per 1000 tests. Cardiopulmonary PSIs were 3.3 times more likely to occur than non-cardiopulmonary (95% CI 2.17 to 5.12). Syncope was the most...

  10. Functional safety for road vehicles new challenges and solutions for e-mobility and automated driving

    CERN Document Server

    Ross, Hans-Leo

    2016-01-01

    This book highlights the current challenges for engineers involved in product development and the associated changes in procedure they make necessary. Methods for systematically analyzing the requirements for safety and security mechanisms are described using examples of how they are implemented in software and hardware, and how their effectiveness can be demonstrated in terms of functional and design safety are discussed. Given today’s new E-mobility and automated driving approaches, new challenges are arising and further issues concerning “Road Vehicle Safety” and “Road Traffic Safety” have to be resolved. To address the growing complexity of vehicle functions, as well as the increasing need to accommodate interdisciplinary project teams, previous development approaches now have to be reconsidered, and system engineering approaches and proven management systems need to be supplemented or wholly redefined. The book presents a continuous system development process, starting with the basic requiremen...

  11. A comparative approach to nuclear safety and nuclear security

    International Nuclear Information System (INIS)

    2009-01-01

    The operators in charge of nuclear facilities or activities have to deal with nuclear and radiological risks, which implies implementing two complementary approaches - safety and security - each of which entails specific methods. Targeting the same ultimate purpose, these two approaches must interact to mutually reinforce each other, without compromising one another. In this report, IRSN presents its reflections on the subject, drawing on its expertise in assessing risks on behalf of the French safety and security authorities, together with the lessons learned from sharing experience at international level. Contents: 1 - Purpose and context: Definitions, Similar risks but different causes, Transparency and confidentiality, Synergy in dealing with sabotage, A common purpose: protecting Man and the environment; 2 - Organizational principles: A legislative and regulatory framework relative to safety as well as security, The competent nuclear safety and security authorities, A difference in the distribution of responsibilities between the operators and the State (Prime responsibility of operators, A different involvement of the State), Safety culture and security culture; 3 - Principles for the application of safety and security approaches: Similar design principles (The graded approach, Defence-in-depth, Synergy between safety and security), Similar operating principles (The same requirement regarding constant monitoring, The same need to take account of feedback, The same need to update the baseline, Sharing good practices is more restricted in the area of security, The need to deal with the respective requirements of safety and security), Similar emergency management (Developing emergency and contingency plans, Carrying out exercises), Activities subject to quality requirements; 4 - Conclusion

  12. Safety critical software design approach developed for Canadian nuclear power plants

    International Nuclear Information System (INIS)

    Ichiyen, M.M.; Joannou, P.K.

    1995-01-01

    Recently two methodologies were developed that comply with a high safety critical standard: the Rational Design Process, which can be characterized as a methodology based on state machines where the required behaviour of the software is defined using mathematical functions written in a notation which has a well defined syntax and semantics, and the Integrated Approach, which uses a graphical functional notation to specify the functional software requirements. The first implementations based on the two methodologies are discussed. Results from all phases of testing show a remarkably low number of errors, demonstrating that the new methodologies have indeed led to a higher demonstrable level of software reliability. (orig./HP) [de

  13. Safety functions and component classification for BWR, PWR and PTR

    International Nuclear Information System (INIS)

    1979-01-01

    The Safety Guide forms part of the IAEA programme, referred to as the NUSS programme (Nuclear Safety Standards), for establishing Codes of Practice and Safety Guides relating to thermal neutron power plants. The present Safety Guide has the following chapters: safety functions, ranking of safety functions, assignment of safety class requirements. Design requirements for structural integrity of boundaries of fluid-retaining components are also discussed

  14. A survey of approaches combining safety and security for industrial control systems

    International Nuclear Information System (INIS)

    Kriaa, Siwar; Pietre-Cambacedes, Ludovic; Bouissou, Marc; Halgand, Yoran

    2015-01-01

    The migration towards digital control systems creates new security threats that can endanger the safety of industrial infrastructures. Addressing the convergence of safety and security concerns in this context, we provide a comprehensive survey of existing approaches to industrial facility design and risk assessment that consider both safety and security. We also provide a comparative analysis of the different approaches identified in the literature. - Highlights: • We raise awareness of safety and security convergence in numerical control systems. • We highlight safety and security interdependencies for modern industrial systems. • We give a survey of approaches combining safety and security engineering. • We discuss the potential of the approaches to model safety and security interactions

  15. European project SARGEN IV: safety approach and assessment of GEN IV reactors

    International Nuclear Information System (INIS)

    Ammirabile, L.

    2013-01-01

    • SARGEN I V has elaborated a proposal for the harmonization of safety assessment practices for GEN IV NPP. • An overall reinforcement of DiD is expected for GEN I V NPP, including improved independence between all levels of DiD. • An inherent approach should reinforce the fulfillment of fundamental safety functions e.g. the consequences for some situations should be reduced and the grace periods should be extended. For the same reason, the use of passive systems can be envisaged. • The need of complementary and integrated deterministic and probabilistic approaches is reiterated. • Methodologies: Some of them are not yet applied. • Assessment of hazards would be a challenging aspect of next generation of NPP safety assessment and should be improved, which is confirmed by the first insights of Fukushima Daiichi TEPCO reactors accidents. • Provisions to cope with extreme events notably to improve the grace period before cliff-edge effects and thus allowing back-up measures to be implemented have to be defined and should be considered as hardened equipments

  16. The Markov Latent Effects Approach to Safety and Decision -Making; TOPICAL

    International Nuclear Information System (INIS)

    COOPER, J. ARLIN

    2001-01-01

    The methodology in this report addresses the safety effects of organizational and operational factors that can be measured through ''inspection.'' The investigation grew out of a preponderance of evidence that the safety ''culture'' (attitude of employees and management toward safety) was frequently one of the major root causes behind accidents or safety-relevant failures. The approach is called ''Markov latent effects'' analysis. Since safety also depends on a multitude of factors that are best measured through well known risk analysis methods (e.g., fault trees, event trees, FMECA, physical response modeling, etc.), the Markov latent effects approach supplements conventional safety assessment and decision analysis methods. A top-down mathematical approach is developed for decomposing systems, for determining the most appropriate items to be measured, and for expressing the measurements as imprecise subjective metrics through possibilistic or fuzzy numbers. A mathematical model is developed that facilitates combining (aggregating) inputs into overall metrics and decision aids, also portraying the inherent uncertainty. A major goal of the modeling is to help convey the top-down system perspective. Metrics are weighted according to significance of the attribute with respect to subsystems and are aggregated nonlinearly. Since the accumulating effect responds less and less to additional contribution, it is termed ''soft'' mathematical aggregation, which is analogous to how humans frequently make decisions. Dependence among the contributing factors is accounted for by incorporating subjective metrics on commonality and by reducing the overall contribution of these combinations to the overall aggregation. Decisions derived from the results are facilitated in several ways. First, information is provided on input ''Importance'' and ''Sensitivity'' (both Primary and Secondary) in order to know where to place emphasis on investigation of root causes and in considering new

  17. A proposed approach for enhancing design safety assurance of future plants

    International Nuclear Information System (INIS)

    Oh, Kyu Myeng; Ahn, Sang Kyu; Lee, Chang Ju; Kim, Inn Seock

    2010-01-01

    This paper provides various insights from a detailed review of deterministic approaches typically applied to ensure design safety of nuclear power plants (NPPs) and risk-informed approaches proposed to evaluate safety of advanced reactors such as Generation IV reactors. Also considered herein are the risk-informed safety analysis (RISA) methodology suggested by Westinghouse as a means to improve the conventional accident analysis, together with the Technology Neutral Framework recently suggested by the U.S. NRC for safety evaluation of future plants. These insights from the comparative review of deterministic and risk-informed approaches could be used in further enhancing the methodology for design safety assurance of future plants

  18. A new safety approach in the design of fast reactors

    International Nuclear Information System (INIS)

    Neuhold, R.J.; Marchaterre, J.F.; Waltar, A.E.

    1987-01-01

    A new approach to achieving fast reactor safety goals is becoming really apparent in the US Fast Reactor Program. Whereas the ''defense is best'' philosophy still prevails, there has been a tangible shift toward emphasizing passive mechanisms to protect the reactor and provide public safety---rather than relying on add-on active, engineered safety systems. This paper reviews the technical basis for this new safety approach and provides discussion on its implementation in current US liquid metal-cooled reactor designs. 4 refs., 4 figs

  19. An Overview and Evaluation of U.S. SFR Safety Approach

    International Nuclear Information System (INIS)

    Sofu, Tanju

    2013-01-01

    Safety Approach: • The traditional approach to demonstrating adequacy of defense-in-depth in a design is deterministic, but a combination of deterministic and probabilistic approaches is increasingly recommended for especially for advanced reactors. – Deterministic approach classifies initiating events by likelihood, while the risk-informed approach introduces a quantified probability estimate. • Risk-informed and performance-based safety approach considers both probability and consequences of events. – Accidents with large consequences are reduced in risk significance by requiring that their probability are acceptably small

  20. Design of Safety Parameter Monitoring Function in a Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaekwan; Suh, Yongsuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The primary purpose of the safety parameter monitoring system (SPDS) is to help operating personnel in the control room make quick assessments of the plant safety status. Thus, the basic function of the SPDS is a provision of a continuous indication of plant parameters or derived variables representative of the safety status of the plant. NUREG-0737 Supplement 1 provides details of the functional criteria for the SPDS, as one of the action plan requirements from TMI accident. The system provides various functions as follows: · Alerting based on safety function decision logics, · Success path analysis to achieve the integrity of the safety functions, · 3 layer display architecture - safety function, success path display for each safety function, system summary and equipment details for each safety function, · Integration with computer-based procedure. According to a Notice of the NSSC No. 2012-31, a research reactor facility generating more than 2 MW of power should also be furnished with the SPDS for emergency preparedness. Generally, a research reactor is a small size facility, and its number of instrumentations is fewer than that of NPPs. In particular, it is actually hard to have various and powerful functions from an economic perspective. Therefore, a safety parameter display system optimized for a research reactor facility must be proposed. This paper provides the requirement analysis results and proposes the design of safety parameter monitoring function for a research reactor. The safety parameter monitoring function supporting control room personnel during emergency conditions should be designed in a research reactor facility. The facility size and number of signals are smaller than that of the power plants. Also, it is actually hard to have various and powerful functions of nuclear power plants from an economic perspective. Thus, a safety parameter display system optimized to a research reactor must be proposed. First, we found important design items

  1. Design of Safety Parameter Monitoring Function in a Research Reactor Facility

    International Nuclear Information System (INIS)

    Park, Jaekwan; Suh, Yongsuk

    2014-01-01

    The primary purpose of the safety parameter monitoring system (SPDS) is to help operating personnel in the control room make quick assessments of the plant safety status. Thus, the basic function of the SPDS is a provision of a continuous indication of plant parameters or derived variables representative of the safety status of the plant. NUREG-0737 Supplement 1 provides details of the functional criteria for the SPDS, as one of the action plan requirements from TMI accident. The system provides various functions as follows: · Alerting based on safety function decision logics, · Success path analysis to achieve the integrity of the safety functions, · 3 layer display architecture - safety function, success path display for each safety function, system summary and equipment details for each safety function, · Integration with computer-based procedure. According to a Notice of the NSSC No. 2012-31, a research reactor facility generating more than 2 MW of power should also be furnished with the SPDS for emergency preparedness. Generally, a research reactor is a small size facility, and its number of instrumentations is fewer than that of NPPs. In particular, it is actually hard to have various and powerful functions from an economic perspective. Therefore, a safety parameter display system optimized for a research reactor facility must be proposed. This paper provides the requirement analysis results and proposes the design of safety parameter monitoring function for a research reactor. The safety parameter monitoring function supporting control room personnel during emergency conditions should be designed in a research reactor facility. The facility size and number of signals are smaller than that of the power plants. Also, it is actually hard to have various and powerful functions of nuclear power plants from an economic perspective. Thus, a safety parameter display system optimized to a research reactor must be proposed. First, we found important design items

  2. Major accident prevention through applying safety knowledge management approach.

    Science.gov (United States)

    Kalatpour, Omid

    2016-01-01

    Many scattered resources of knowledge are available to use for chemical accident prevention purposes. The common approach to management process safety, including using databases and referring to the available knowledge has some drawbacks. The main goal of this article was to devise a new emerged knowledge base (KB) for the chemical accident prevention domain. The scattered sources of safety knowledge were identified and scanned. Then, the collected knowledge was formalized through a computerized program. The Protégé software was used to formalize and represent the stored safety knowledge. The domain knowledge retrieved as well as data and information. This optimized approach improved safety and health knowledge management (KM) process and resolved some typical problems in the KM process. Upgrading the traditional resources of safety databases into the KBs can improve the interaction between the users and knowledge repository.

  3. A systematic approach to safety case maintenance

    International Nuclear Information System (INIS)

    Kelly, T.P.; McDermid, J.A.

    2001-01-01

    A crucial aspect of safety case management is the ongoing maintenance of the safety argument through life. Throughout the operational life of any system, changing regulatory requirements, additional safety evidence and a changing design can challenge the corresponding safety case. In order to maintain an accurate account of the safety of the system, all such challenges must be assessed for their impact on the original safety argument. This is increasingly being recognised by many safety standards. However, many safety engineers are experiencing difficulties with safety case maintenance at present, the prime reason being that they do not have a systematic and methodical approach by which to examine the impact of change on safety argument. The size and complexity of safety arguments and evidence being presented within safety cases is increasing. Nowhere is this more apparent than for Electrical, Electronic and Programmable Electronic systems attempting to comply with the requirements and recommendations of software and hardware safety standards such as and UK Defence Standards 00-54 [MoD. 00-54 Requirements of Safety Related Electronic Hardware in Defence Equipment. Ministry of Defence, Interim Defence Standard, 1999], 00-55 []. However, this increase in safety case complexity exacerbates problems of comprehension and maintainability later on in the system lifecycle. This paper defines and describes a tool-supported process, based upon the principles of goal structuring, that attempts to address these difficulties through facilitating the systematic impact assessment of safety case challenges

  4. Incorporating Traffic Control and Safety Hardware Performance Functions into Risk-based Highway Safety Analysis

    Directory of Open Access Journals (Sweden)

    Zongzhi Li

    2017-04-01

    Full Text Available Traffic control and safety hardware such as traffic signs, lighting, signals, pavement markings, guardrails, barriers, and crash cushions form an important and inseparable part of highway infrastructure affecting safety performance. Significant progress has been made in recent decades to develop safety performance functions and crash modification factors for site-specific crash predictions. However, the existing models and methods lack rigorous treatments of safety impacts of time-deteriorating conditions of traffic control and safety hardware. This study introduces a refined method for computing the Safety Index (SI as a means of crash predictions for a highway segment that incorporates traffic control and safety hardware performance functions into the analysis. The proposed method is applied in a computation experiment using five-year data on nearly two hundred rural and urban highway segments. The root-mean square error (RMSE, Chi-square, Spearman’s rank correlation, and Mann-Whitney U tests are employed for validation.

  5. U.S. ALMR safety approach and licensing status

    International Nuclear Information System (INIS)

    Hardy, R.W.; Gyorey, G.L.

    1991-01-01

    The Advanced Liquid Metal Cooled Reactor in the United States is based on the PRISM concept originated by General Electric. This concept features a compact modular system suitable for factory fabrication, and a high degree of passive and natural safety characteristics. The safety approach emphasizes accident prevention, backed up by accident mitigation as required. First-round safety evaluations by the U.S. regulators have found that the design provides passive, natural and other desirable features enhancing the safety of the power plant. Licensing review continuing. (author)

  6. A dynamic probabilistic safety margin characterization approach in support of Integrated Deterministic and Probabilistic Safety Analysis

    International Nuclear Information System (INIS)

    Di Maio, Francesco; Rai, Ajit; Zio, Enrico

    2016-01-01

    The challenge of Risk-Informed Safety Margin Characterization (RISMC) is to develop a methodology for estimating system safety margins in the presence of stochastic and epistemic uncertainties affecting the system dynamic behavior. This is useful to support decision-making for licensing purposes. In the present work, safety margin uncertainties are handled by Order Statistics (OS) (with both Bracketing and Coverage approaches) to jointly estimate percentiles of the distributions of the safety parameter and of the time required for it to reach these percentiles values during its dynamic evolution. The novelty of the proposed approach consists in the integration of dynamic aspects (i.e., timing of events) into the definition of a dynamic safety margin for a probabilistic Quantification of Margin and Uncertainties (QMU). The system here considered for demonstration purposes is the Lead–Bismuth Eutectic- eXperimental Accelerator Driven System (LBE-XADS). - Highlights: • We integrate dynamic aspects into the definition of a safety margins. • We consider stochastic and epistemic uncertainties affecting the system dynamics. • Uncertainties are handled by Order Statistics (OS). • We estimate the system grace time during accidental scenarios. • We apply the approach to an LBE-XADS accidental scenario.

  7. Critical safety function guidelines for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1989-01-01

    As fusion experiments proceed toward deuterium-tritium operation, more attention is being given to public safety. This paper presents the four classes of functions that fusion experiments must provide to assure safe, stable shutdown and retention of radionuclides. These functions are referred to as critical safety functions (CSFs). Selecting CSFs is an important step in probabilistic risk assessment (PRA). An example of CSF selection and usage for the Compact Ignition Tokamak (CIT) is also presented

  8. Preparing a Safety Analysis Report using the building block approach

    International Nuclear Information System (INIS)

    Herrington, C.C.

    1990-01-01

    The credibility of the applicant in a licensing proceeding is severely impacted by the quality of the license application, particularly the Safety Analysis Report. To ensure the highest possible credibility, the building block approach was devised to support the development of a quality Safety Analysis Report. The approach incorporates a comprehensive planning scheme that logically ties together all levels of the investigation and provides the direction necessary to prepare a superior Safety Analysis Report

  9. Comparing performance level estimation of safety functions in three distributed structures

    International Nuclear Information System (INIS)

    Hietikko, Marita; Malm, Timo; Saha, Heikki

    2015-01-01

    The capability of a machine control system to perform a safety function is expressed using performance levels (PL). This paper presents the results of a study where PL estimation was carried out for a safety function implemented using three different distributed control system structures. Challenges relating to the process of estimating PLs for safety related distributed machine control functions are highlighted. One of these examines the use of different cabling schemes in the implementation of a safety function and its effect on the PL evaluation. The safety function used as a generic example in PL calculations relates to a mobile work machine. It is a safety stop function where different technologies (electrical, hydraulic and pneumatic) can be utilized. It was detected that by replacing analogue cables with digital communication the system structure becomes simpler with less number of failing components, which can better the PL of the safety function. - Highlights: • Integration in distributed systems enables systems with less components. • It offers high reliability and diagnostic properties. • Analogue signals create uncertainty in signal reliability and difficult diagnostics

  10. A hybrid approach to quantify software reliability in nuclear safety systems

    International Nuclear Information System (INIS)

    Arun Babu, P.; Senthil Kumar, C.; Murali, N.

    2012-01-01

    Highlights: ► A novel method to quantify software reliability using software verification and mutation testing in nuclear safety systems. ► Contributing factors that influence software reliability estimate. ► Approach to help regulators verify the reliability of safety critical software system during software licensing process. -- Abstract: Technological advancements have led to the use of computer based systems in safety critical applications. As computer based systems are being introduced in nuclear power plants, effective and efficient methods are needed to ensure dependability and compliance to high reliability requirements of systems important to safety. Even after several years of research, quantification of software reliability remains controversial and unresolved issue. Also, existing approaches have assumptions and limitations, which are not acceptable for safety applications. This paper proposes a theoretical approach combining software verification and mutation testing to quantify the software reliability in nuclear safety systems. The theoretical results obtained suggest that the software reliability depends on three factors: the test adequacy, the amount of software verification carried out and the reusability of verified code in the software. The proposed approach may help regulators in licensing computer based safety systems in nuclear reactors.

  11. A conceptual approach to the estimation of societal willingness-to-pay for nuclear safety programs

    International Nuclear Information System (INIS)

    Pandey, M.D.; Nathwani, J.S.

    2003-01-01

    The design, refurbishment and future decommissioning of nuclear reactors are crucially concerned with reducing the risk of radiation exposure that can result in adverse health effects and potential loss of life. To address this concern, large financial investments have been made to ensure safety of operating nuclear power plants worldwide. The efficacy of the expenditures incurred to provide safety must be judged against the safety benefit to be gained from such investments. We have developed an approach that provides a defendable basis for making that judgement. If the costs of risk reduction are disproportionate to the safety benefits derived, then the expenditures are not optimal; in essence the societal resources are being diverted away from other critical areas such as health care, education and social services that also enhance the quality of life. Thus, the allocation of society's resources devoted to nuclear safety must be continually appraised in light of competing needs, because there is a limit on the resources that any society can devote to extend life. The purpose of the paper is to present a simple and methodical approach to assessing the benefits of nuclear safety programs and regulations. The paper presents the Life-Quality Index (LQI) as a tool for the assessment of risk reduction initiatives that would support the public interest and enhance both safety and the quality of life. The LQI is formulated as a utility function consistent with the principles of rational decision analysis. The LQI is applied to quantify the societal willingness-to-pay (SWTP) for safety measures enacted to reduce of the risk of potential exposures to ionising radiation. The proposed approach provides essential support to help improve the cost-benefit analysis of engineering safety programs and safety regulations.

  12. Important viewpoints proposed for a safety approach of HTGR reactors in Europe

    International Nuclear Information System (INIS)

    Brinkmann, G.; Pirson, J.; Ehster, S.; Dominguez, M.T.; Mansani, L.; Coe, I.; Moormann, R.; Van der Mheen, W.

    2006-01-01

    The inherent safety features of modular High Temperature Reactors (HTRs) make events leading to severe core damage highly unlikely and constitute the main differentiating aspects compared to LWRs. Furthermore, while a known and stable regulatory environment has long been established for Light Water Reactors (LWRs), different ways of thinking may help to develop a more appropriate licensing process for HTR-based power plants. The HTR-L project funded by the European Commission in the 5th Framework Programme was dedicated to the definition of a common and coherent European safety approach and the identification of the main licensing issues for the licensing framework of the modular HTRs. Several topics were developed during the course of this project. Due to the characteristics of the HTR design, it has been necessary to define specific defence-in-depth requirements which have then been evaluated for implementation in the safety approach. Safety-related functions appropriate for the HTR design have also had to be identified and listed. On one hand, the different possible solicitations of the fuel particles constituted the starting point for the identification of the accidental conditions (by means of the Master Logic Diagrams methodology); these accidental conditions were classified and the most appropriate methods to consider ultra low probability severe accidents were examined. On the other hand, the elements constituting the source term and, in particular, the requirements for the confinement of radioactive products and the conditions required to prevent the need for a 'conventional' containment structure have been discussed. In the definition of the safety approach, attention has been paid to the need to maintain the potentially interesting economic perspectives of HTR reactors. Key issues to be addressed in the licensing process of the HTRs have also been identified. An innovative systems, structures and components classification method has been developed and

  13. Squale: evaluation criteria of functioning safety; Squale: criteres d`evaluation de la surete de fonctionnement

    Energy Technology Data Exchange (ETDEWEB)

    Deswarte, Y; Kaaniche, M [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Laboratoire d` Analyse et d` Architecture des Systemes; Corneillie, P [CE2A-DI, 92 - Courbevoie (France); Benoit, P [Matra Transport International, 92 - Montrouge (France)

    1998-05-01

    The SQUALE (security, safety and quality evaluation for dependable systems) project is part of the ACTS (advanced communications, technologies and services) European program. Its aim is to develop confidence evaluation criteria to test the functioning safety of systems. All industrial sectors that use critical applications (nuclear, railway, aerospace..) are concerned. SQUALE evaluation criteria differ from the classical evaluation methods: they are independent of the application domains and industrial sectors, they take into account the overall functioning safety attributes, and they can progressively change according to the level of severity required. In order to validate the approach and to refine the criteria, a first experiment is in progress with the METEOR automatic underground railway and another will be carried out on a telecommunication system developed by Bouygues company. (J.S.) 15 refs.

  14. Nuclear safety approach for PWRs design and operation

    International Nuclear Information System (INIS)

    Vignon, D.

    1988-01-01

    The implementation of France's major nuclear programme - 56 PWR units in service or under construction - has gone hand in hand with the development of an original philosophy in the field of nuclear safety. From an initial core of deterministic safety philosophy current in the seventies, which has been wholly retained and in some instances refined, a range of additions has been made to include consideration of a number of additional situations based on a probabilistic approach. This has resulted in a better coherence for safety and a mitigation of the severe accident probability. Furthermore, the establishment of emergency plans has enabled the Safety Authorities and the operator to adopt a coherent and logical approach to severe accidents with the aim of achieving greater defence in depth, this has resulted in the provision of certain additional measures designed to further reduce the consequences of severe accidents. This paper describes the culmination of this work, as exemplified in the new 1 400MWe - N4 advanced plant series currently under construction, of which the essential elements are also incorporated into all previous units, thereby giving them an equivalent level of safety. This now constitutes the French safety policy with respect to PWR nuclear units

  15. U.S. ALMR safety approach and licensing status

    International Nuclear Information System (INIS)

    Herczeg, J.W.; Hardy, R.W.; Gyorey, G.L.

    1992-01-01

    The Advanced Liquid Metal Cooled Reactor (ALMR) in the United States is based on the Power Reactor Innovative Small Module (PRISM) concept originated by the General Electric Company (GE). This concept features a compact modular system suitable for factory fabrication, and a high degree of passive and natural safety characteristics. The safety approach emphasizes accident prevention, backed up by accident mitigation. First-round safety evaluations by U.S. regulators have found that the design provides passive, natural, and other desirable features enhancing the safety of the power plant. A Preapplication Safety Evaluation Report (PSER) from the U.S. Nuclear Regulatory Commission (NRC) is anticipated in early 1993. (author)

  16. Approach to uncertainty evaluation for safety analysis

    International Nuclear Information System (INIS)

    Ogura, Katsunori

    2005-01-01

    Nuclear power plant safety used to be verified and confirmed through accident simulations using computer codes generally because it is very difficult to perform integrated experiments or tests for the verification and validation of the plant safety due to radioactive consequence, cost, and scaling to the actual plant. Traditionally the plant safety had been secured owing to the sufficient safety margin through the conservative assumptions and models to be applied to those simulations. Meanwhile the best-estimate analysis based on the realistic assumptions and models in support of the accumulated insights could be performed recently, inducing the reduction of safety margin in the analysis results and the increase of necessity to evaluate the reliability or uncertainty of the analysis results. This paper introduces an approach to evaluate the uncertainty of accident simulation and its results. (Note: This research had been done not in the Japan Nuclear Energy Safety Organization but in the Tokyo Institute of Technology.) (author)

  17. Critical safety function guidelines for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1989-01-01

    As fusion experiments proceed toward deuterium-tritium operation, more attention is being given to public safety. This paper presents the four classes of functions that fusion experiments must provide to assure safe, stable shutdown and retention of radionuclides. These functions are referred to as critical safety functions (CSFs). Selecting CSFs is an important step in probabilistic risk assessment (PRA). An example of CSF selection and usage for the Compact Ignition Tokamak (CIT) is also presented. 10 refs., 6 figs

  18. Safety assessment in plant layout design using indexing approach: Implementing inherent safety perspective

    International Nuclear Information System (INIS)

    Tugnoli, Alessandro; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio

    2008-01-01

    The design of layout plans requires adequate assessment tools for the quantification of safety performance. The general focus of the present work is to introduce an inherent safety perspective at different points of the layout design process. In particular, index approaches for safety assessment and decision-making in the early stages of layout design are developed and discussed in this two-part contribution. Part 1 (accompanying paper) of the current work presents an integrated index approach for safety assessment of early plant layout. In the present paper (Part 2), an index for evaluation of the hazard related to the potential of domino effects is developed. The index considers the actual consequences of possible escalation scenarios and scores or ranks the subsequent accident propagation potential. The effects of inherent and passive protection measures are also assessed. The result is a rapid quantification of domino hazard potential that can provide substantial support for choices in the early stages of layout design. Additionally, a case study concerning selection among various layout options is presented and analyzed. The case study demonstrates the use and applicability of the indices developed in both parts of the current work and highlights the value of introducing inherent safety features early in layout design

  19. [Concept analysis of a participatory approach to occupational safety and health].

    Science.gov (United States)

    Yoshikawa, Etsuko

    2013-01-01

    The purpose of this study was to analyze a participatory approach to occupational safety and health, and to examine the possibility of applying the concept to the practice and research of occupational safety and health. According to Rodger's method, descriptive data concerning antecedents, attributes and consequences were qualitatively analyzed. A total of 39 articles were selected for analysis. Attributes with a participatory approach were: "active involvement of both workers and employers", "focusing on action-oriented low-cost and multiple area improvements based on good practices", "the process of emphasis on consensus building", and "utilization of a local network". Antecedents of the participatory approach were classified as: "existing risks at the workplace", "difficulty of occupational safety and health activities", "characteristics of the workplace and workers", and "needs for the workplace". The derived consequences were: "promoting occupational safety and health activities", "emphasis of self-management", "creation of safety and healthy workplace", and "contributing to promotion of quality of life and productivity". A participatory approach in occupational safety and health is defined as, the process of emphasis on consensus building to promote occupational safety and health activities with emphasis on self-management, which focuses on action-oriented low-cost and multiple area improvements based on good practices with active involvement of both workers and employers through utilization of local networks. We recommend that the role of the occupational health professional be clarified and an evaluation framework be established for the participatory approach to promote occupational safety and health activities by involving both workers and employers.

  20. Fundamentals of a graded approach to safety-related equipment setpoints

    International Nuclear Information System (INIS)

    Woodruff, B.A.; Cash, J.S. Jr.; Bockhorst, R.M.

    1993-01-01

    The concept of using a graded approach to reconstitute instrument setpoints associated with safety-related equipment was first presented to the industry by the U.S. Nuclear Regulatory Commission during the 1992 ISA/POWID Symposium in Kansas City, Missouri. The graded approach establishes that the manner in which a utility analyzes and documents setpoints is related to each setpoint's relative importance to safety. This allows a utility to develop separate requirements for setpoints of varying levels of safety significance. A graded approach to setpoints is a viable strategy that minimizes extraneous effort expended in resolving difficult issues that arise when formal setpoint methodology is applied blindly to all setpoints. Close examination of setpoint methodology reveals that the application of a graded approach is fundamentally dependent on the analytical basis of each individual setpoint

  1. Safety Concepts in Structural Glass Engineering : Towards an Integrated Approach

    NARCIS (Netherlands)

    Bos, F.P.

    2009-01-01

    This dissertation proposes the Integrated Approach to Structural Glass Safety, based on four clearly defined element safety properties, damage sensitivity, relative resistance, redundancy, and fracture mode. The Element Safety Diagram (ESD) is introduced to provide an easy-to-read graphical

  2. Soft systems methodology as a systemic approach to nuclear safety management

    International Nuclear Information System (INIS)

    Vieira Neto, Antonio S.; Guilhen, Sabine N.; Rubin, Gerson A.; Caldeira Filho, Jose S.; Camargo, Iara M.C.

    2017-01-01

    Safety approach currently adopted by nuclear installations is built almost exclusively upon analytical methodologies based, mainly, on the belief that the properties of a system, such as its safety, are given by its constituent parts. This approach, however, does not properly address the complex dynamic interactions between technical, human and organizational factors occurring within and outside the organization. After the accident at Fukushima Daiichi nuclear power plant in March 2011, experts of the International Atomic Energy Agency (IAEA) recommended a systemic approach as a complementary perspective to nuclear safety. The aim of this paper is to present an overview of the systems thinking approach and its potential use for structuring socio technical problems involved in the safety of nuclear installations, highlighting the methodologies related to the soft systems thinking, in particular the Soft Systems Methodology (SSM). The implementation of a systemic approach may thus result in a more holistic picture of the system by the complex dynamic interactions between technical, human and organizational factors. (author)

  3. Soft systems methodology as a systemic approach to nuclear safety management

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Neto, Antonio S.; Guilhen, Sabine N.; Rubin, Gerson A.; Caldeira Filho, Jose S.; Camargo, Iara M.C., E-mail: asvneto@ipen.br, E-mail: snguilhen@ipen.br, E-mail: garubin@ipen.br, E-mail: jscaldeira@ipen.br, E-mail: icamargo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Safety approach currently adopted by nuclear installations is built almost exclusively upon analytical methodologies based, mainly, on the belief that the properties of a system, such as its safety, are given by its constituent parts. This approach, however, does not properly address the complex dynamic interactions between technical, human and organizational factors occurring within and outside the organization. After the accident at Fukushima Daiichi nuclear power plant in March 2011, experts of the International Atomic Energy Agency (IAEA) recommended a systemic approach as a complementary perspective to nuclear safety. The aim of this paper is to present an overview of the systems thinking approach and its potential use for structuring socio technical problems involved in the safety of nuclear installations, highlighting the methodologies related to the soft systems thinking, in particular the Soft Systems Methodology (SSM). The implementation of a systemic approach may thus result in a more holistic picture of the system by the complex dynamic interactions between technical, human and organizational factors. (author)

  4. Recent achievement within the French-German safety approach for future PWRs

    International Nuclear Information System (INIS)

    Gros, G.; Rollinger, F.; Frisch, W.; Simon, M.

    1999-12-01

    The development of the common French-German safety approach was accomplished on three working levels: the technical safety organisations GRS and IPSN provided the technical basis, the advisory groups GPR and RSK developed common recommendations, and the authorities BMU and DSIN adopted and issued the recommendations. The general safety approach issued in May 1993 contains safety objectives, general principles and some technical principles for future PWRs. Based on this general approach, more detailed recommendations have been developed in 1994 on key issues. The following period from 1995 on was characterised by a further refinement of the recommendations and the treatment of some new subjects such as digital I and C, man-machine-interface and core design. (authors)

  5. ENSI Approach to Oversight of Safety Culture

    International Nuclear Information System (INIS)

    Humbel Haag, Claudia

    2012-01-01

    Claudia Humbel Haag presented developments in ENSI approach to safety culture oversight. ENSI has developed a definition/understanding of Safety Culture and a concept of how to perform oversight of Safety Culture. ENSI defines safety culture in the following way: Safety Culture comprises the behaviour, world views (in the sense of conceptualisations of reality and explanation models), values (in the sense of aims and evaluation scales), and features of the physical environment (specifically, the nuclear power plant and the documents used) which are shared by many members of an organization, in as much as these are of significance to nuclear safety. A model of the accessibility of safety culture was presented ranging from the observable (external aspects of safety culture), to aspects that are accessible by asking questions, through to aspects that are not accessible (internal part of safety culture). ENSI considers observable aspects through the existing systematic safety assessment compliance program. Aspects that are observable by asking questions will be addressed by additional oversight activities outside the systematic assessment program. Aspects that are not accessible are addressed by helping the licensee to re-think its safety culture through proactive discussions on safety culture. Reports are issued to the licensee on assumptions and observations identified through the discussions. The conclusions of the presentation emphasised the importance of basing any interventions in this area on a solid understanding of the concept of safety culture. ENSI safety culture oversight principles were also described. These include licensee responsibility for safety, and the need for the regulator to critically review their own activities to ensure a positive influence on the licensee

  6. Approaches to nuclear safety

    International Nuclear Information System (INIS)

    Watkins, J.D.

    1990-01-01

    This article examines the factors which affect the safe operation of a nuclear power plant. Some of these are an organizational and individual dedication to safety and excellence in every aspect of plant functions, international cooperation, and advanced reactor design. These are in addition to excellence in management of nuclear plants and the training of key operations personnel. The author feels all of these are necessary to restore public confidence in nuclear power

  7. Nuclear safety

    International Nuclear Information System (INIS)

    Tarride, Bruno

    2015-10-01

    The author proposes an overview of methods and concepts used in the nuclear industry, at the design level as well as at the exploitation level, to ensure an acceptable safety level, notably in the case of nuclear reactors. He first addresses the general objectives of nuclear safety and the notion of acceptable risk: definition and organisation of nuclear safety (relationships between safety authorities and operators), notion of acceptable risk, deterministic safety approach and main safety principles (safety functions and confinement barriers, concept of defence in depth). Then, the author addresses the safety approach at the design level: studies of operational situations, studies of internal and external aggressions, safety report, design principles for important-for-safety systems (failure criterion, redundancy, failure prevention, safety classification). The next part addresses safety during exploitation and general exploitation rules: definition of the operation domain and of its limits, periodic controls and tests, management in case of incidents, accidents or aggressions

  8. Functionality of road safety devices – identification and analysis of factors

    Directory of Open Access Journals (Sweden)

    Jeliński Łukasz

    2017-01-01

    Full Text Available Road safety devices are designed to protect road users from the risk of injury or death. The principal type of restraint is the safety barrier. Deployed on sites with the highest risk of run-off-road accidents, safety barriers are mostly found on bridges, flyovers, central reservations, and on road edges which have fixed obstacles next to them. If properly designed and installed, safety barriers just as other road safety devices, should meet a number of functional features. This report analyses factors which may deteriorate functionality, ways to prevent this from happening and the thresholds for loss of road safety device functionality.

  9. A reliability program approach to operational safety

    International Nuclear Information System (INIS)

    Mueller, C.J.; Bezella, W.A.

    1985-01-01

    A Reliability Program (RP) model based on proven reliability techniques is being formulated for potential application in the nuclear power industry. Methods employed under NASA and military direction, commercial airline and related FAA programs were surveyed and a review of current nuclear risk-dominant issues conducted. The need for a reliability approach to address dependent system failures, operating and emergency procedures and human performance, and develop a plant-specific performance data base for safety decision making is demonstrated. Current research has concentrated on developing a Reliability Program approach for the operating phase of a nuclear plant's lifecycle. The approach incorporates performance monitoring and evaluation activities with dedicated tasks that integrate these activities with operation, surveillance, and maintenance of the plant. The detection, root-cause evaluation and before-the-fact correction of incipient or actual systems failures as a mechanism for maintaining plant safety is a major objective of the Reliability Program. (orig./HP)

  10. A Framework Based on a Systems Approach to Developing Safety Indicators in Fish Farming

    Directory of Open Access Journals (Sweden)

    Siri Mariane Holen

    2018-05-01

    Full Text Available The fish farming industry is one of the industries in Norway with the highest occupational fatality and injury rate. Despite the serious health, safety, and environmental issues in the industry, little is done to measure changes in safety over time beyond the traditional Lost Time Injury (LTI registrations. In this article the objective is twofold; (i to propose a framework for developing safety indicators based on Systems-Theoretic Process Analysis (STPA, and (ii to apply the framework to find indicators relevant for hazards in operations where subcontractors participate. STPA uses a hierarchical portrayal of the system in focus, in contrast to sequential models, and views safety as a control problem. It is believed that a systemic approach to indicator development better captures the complex safety challenges in aquaculture. Thirteen indicators are identified within areas such as maintenance, training, and planning. The indicators identified may function as a basis for decisions and actions that must be undertaken to ensure safe operations.

  11. Generative Programming for Functional Safety in Mobile Robots

    DEFF Research Database (Denmark)

    Adam, Marian Sorin

    2018-01-01

    execution environment. The effective usage of DeRoS to specify safetyrelated properties of mobile robots and generation of a runtime verification infrastructure for the different controllers has been experimentally demonstrated on ROS-based systems, safety PLCs and microcontrollers. The key issue of making......Safety is a major challenge in robotics, in particular for mobile robots operating in an open and unpredictable environment. Safety certification is desired for commercial robots, but the existing approaches for addressing safety do not provide a clearly defined and isolated programmatic safety...... layer, with an easily understandable specification for facilitating safety certification. Moreover, mobile robots are advanced systems often implemented using a distributed architecture where software components are deployed on heterogeneous hardware modules. Many components are key to the overall...

  12. Perceived Neighborhood Safety and Adolescent School Functioning

    Science.gov (United States)

    Martin-Storey, Alexa; Crosnoe, Robert

    2014-01-01

    This study examined the association between adolescents' perceptions of their neighborhoods' safety and multiple elements of their functioning in school with data on 15 year olds from the NICHD Study of Early Child Care and Youth Development (n = 924). In general, perceived neighborhood safety was more strongly associated with aspects of schooling…

  13. Safety assessment in plant layout design using indexing approach: implementing inherent safety perspective. Part 1 - guideword applicability and method description.

    Science.gov (United States)

    Tugnoli, Alessandro; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio

    2008-12-15

    Layout planning plays a key role in the inherent safety performance of process plants since this design feature controls the possibility of accidental chain-events and the magnitude of possible consequences. A lack of suitable methods to promote the effective implementation of inherent safety in layout design calls for the development of new techniques and methods. In the present paper, a safety assessment approach suitable for layout design in the critical early phase is proposed. The concept of inherent safety is implemented within this safety assessment; the approach is based on an integrated assessment of inherent safety guideword applicability within the constraints typically present in layout design. Application of these guidewords is evaluated along with unit hazards and control devices to quantitatively map the safety performance of different layout options. Moreover, the economic aspects related to safety and inherent safety are evaluated by the method. Specific sub-indices are developed within the integrated safety assessment system to analyze and quantify the hazard related to domino effects. The proposed approach is quick in application, auditable and shares a common framework applicable in other phases of the design lifecycle (e.g. process design). The present work is divided in two parts: Part 1 (current paper) presents the application of inherent safety guidelines in layout design and the index method for safety assessment; Part 2 (accompanying paper) describes the domino hazard sub-index and demonstrates the proposed approach with a case study, thus evidencing the introduction of inherent safety features in layout design.

  14. The 4th Missing Element of the ITO Systemic Approach to Safety

    International Nuclear Information System (INIS)

    Smetnik, A.; Murlis, D.

    2016-01-01

    According to the IAEA Report the Fukushima Daiichi accident was a wake-up call for the nuclear community to recognise the complexity of safety and to respect the entire systems interaction of ITOs. The complexity of nuclear organizations is increasing, and different and more unique approaches are needed to ensure that safety is maintained. The Fukushima Daiichi accident was avoidable, according to the presentations of experts from Japan. Taking into account the ongoing interaction between all the individual, technical and organizational (ITO) factors reveals the complexity and non-linearity of the operations at a nuclear power plant. It is necessary to better examine how the weaknesses and strengths of all these factors influence one another and to facilitate the proactive elimination of risks. The International Experts Meeting (IEM) participants emphasised that an integrated approach to safety through consideration of the interaction of ITO systems is needed to complement the more traditional approach to safety. The concept of a systemic approach to safety represents a new way of thinking about safety for some Member States and even for some IAEA activities and services.

  15. 2005 dossier: clay. Tome: safety evaluation of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of an argilite-type geologic disposal facility for high-level and long-lived (HLLL) radioactive wastes. Content: 1 - safety approach: context and general goals, general safety principles, specificity of the argilite repository safety approach, general approach; 2 - general description: HLLL wastes, geologic context of the Meuse/Haute-Marne site, repository architecture; 3 - safety functions and disposal design: time and space scales, safety approach by functions, functional analysis methodology, analysis of safety functions during the construction, exploitation and observation phases, safety functions analysis during post-closure phase; 4 - operational safety: dosimetric evaluation, risk analysis (explosible gases, fire hazards, lift cage drop, container drop); 5 - long-term efficiency of the disposal facility: normal evolution scenario, from conceptual models to the safety calculation model, description of the safety model, quantitative evaluation of the normal evolution scenario, main lessons learnt from the efficiency analysis; 6 - management of uncertainties: identification, building up of altered situations, mastery of uncertainties; 7 - evaluation of altered evolution scenarios: sealing defect scenario, container defect scenario, drilling scenario, strongly degraded operation scenario; 8 - conclusions: lessons learnt, possible improvements. (J.S.)

  16. New trends in safety approach for commercial LMFBRS after SPX1

    International Nuclear Information System (INIS)

    Bergeonneau, P.; Moreau, J.; Cowking, C.B.; Friedel, G.; Pezzxilli, M.

    1988-01-01

    The experience gained from SPX1 project safety studies shows the trends for the definition of the new safety approach for the next generation of commercial LMFBR's. New trends in safety criteria, as seen in Europe, are presented in the first part of this paper. It is shown that they greatly emphasize the prevention actions even for minor events which can, in certain cases, lead to severe accidents. In the second part, an attempt is made to compare these new trends in Europe with the ones developed in the USA that put forward the inherent safety approach

  17. An Innovative Multimedia Approach to Laboratory Safety

    Science.gov (United States)

    Anderson, M. B.; Constant, K. P.

    1996-01-01

    A new approach for teaching safe laboratory practices has been developed for materials science laboratories at Iowa State university. Students are required to complete a computerized safety tutorial and pass an exam before working in the laboratory. The safety tutorial includes sections on chemical, electrical, radiation, and high temperature safety. The tutorial makes use of a variety of interactions, including 'assembly' interactions where a student is asked to drag and drop items with the mouse (either labels or pictures) to an appropriate place on the screen (sometimes in a specific order). This is extremely useful for demonstrating safe lab practices and disaster scenarios. Built into the software is a record tracking scheme so that a professor can access a file that records which students have completed the tutorial and their scores on the exam. This paper will describe the development and assessment of the safety tutorials.

  18. The advanced neutron source safety approach and plans

    International Nuclear Information System (INIS)

    Harrington, R.M.

    1989-01-01

    The Advanced Neutron Source (ANS) is a user facility for all areas of neutron research proposed for construction at the Oak Ridge National Laboratory. The neutron source is planned to be a 350-MW research reactor. The reactor, currently in conceptual design, will belong to the United States Department of Energy (USDOE). The safety approach and planned elements of the safety program for the ANS are described. The safety approach is to incorporate USDOE requirements [which, by reference, include appropriate requirements from the United States Nuclear Regulatory Commission (USNRC) and other national and state regulatory agencies] into the design, and to utilize probabilistic risk assessment (PRA) techniques during design to achieve extremely low probability of severe core damage. The PRA has already begun and will continue throughout the design and construction of the reactor. Computer analyses will be conducted for a complete spectrum of accidental events, from anticipated events to very infrequent occurrences. 8 refs., 2 tabs

  19. The Advanced Neutron Source safety approach and plans

    International Nuclear Information System (INIS)

    Harrington, R.M.

    1990-01-01

    The Advanced Neutron Source (ANS) is a user facility proposed for construction at the Oak Ridge National Laboratory for all areas of neutron research. The neutron source is planned to be a 350-MW research reactor. The reactor, currently in conceptual design, will belong to the United States Department of Energy (USDOE). The safety approach and planned elements of the safety program for the ANS are described. The safety approach is to incorporate USDOE requirements (which, by reference, include appropriate requirements from the United States Nuclear Regulatory Commission (USNRC) and other national and state regulatory agencies) into the design, and to utilize probabilistic risk assessment (PRA) techniques during design to achieve extremely low probability of severe core damage. The PRA has already begun and will continue throughout the design and construction of the reactor. Computer analyses will be conducted for a complete spectrum of accidental events, from anticipated events to very infrequent occurrences

  20. An approach for assessing ALWR passive safety system reliability

    International Nuclear Information System (INIS)

    Hake, T.M.

    1991-01-01

    Many of the advanced light water reactor (ALWR) concepts proposed for the next generation of nuclear power plants rely on passive rather than active systems to perform safety functions. Despite the reduced redundancy of the passive systems as compared to active systems in current plants, the assertion is that the overall safety of the plant is enhanced due to the much higher expected reliability of the passive systems. In order to investigate this assertion, a study is being conducted at Sandia National Laboratories to evaluate the reliability of ALWR passive safety features in the context of probabilistic risk assessment (PRA). The purpose of this paper is to provide a brief overview of the approach to this study. The quantification of passive system reliability is not as straightforward as for active systems, due to the lack of operating experience, and to the greater uncertainty in the governing physical phenomena. Thus, the adequacy of current methods for evaluating system reliability must be assessed, and alternatives proposed if necessary. For this study, the Westinghouse Advanced Passive 600 MWe reactor (AP600) was chosen as the advanced reactor for analysis, because of the availability of AP600 design information. This study compares the reliability of AP600 emergency cooling system with that of corresponding systems in a current generation reactor

  1. New Approach for Nuclear Safety and Regulation - Application of Complexity Theory and System Dynamics

    International Nuclear Information System (INIS)

    Choi, Kwang Sik; Choi, Young Sung; Han, Kyu Hyun; Kim, Do Hyoung

    2007-01-01

    The methodology being used today for assuring nuclear safety is based on analytic approaches. In the 21st century, holistic approaches are increasingly used over traditional analytic method that is based on reductionism. Presently, it leads to interest in complexity theory or system dynamics. In this paper, we review global academic trends, social environments, concept of nuclear safety and regulatory frameworks for nuclear safety. We propose a new safety paradigm and also regulatory approach using holistic approach and system dynamics now in fashion

  2. Relational approach in managing construction project safety: a social capital perspective.

    Science.gov (United States)

    Koh, Tas Yong; Rowlinson, Steve

    2012-09-01

    Existing initiatives in the management of construction project safety are largely based on normative compliance and error prevention, a risk management approach. Although advantageous, these approaches are not wholly successful in further lowering accident rates. A major limitation lies with the approaches' lack of emphasis on the social and team processes inherent in construction project settings. We advance the enquiry by invoking the concept of social capital and project organisational processes, and their impacts on project safety performance. Because social capital is a primordial concept and affects project participants' interactions, its impact on project safety performance is hypothesised to be indirect, i.e. the impact of social capital on safety performance is mediated by organisational processes in adaptation and cooperation. A questionnaire survey was conducted within Hong Kong construction industry to test the hypotheses. 376 usable responses were received and used for analyses. The results reveal that, while the structural dimension is not significant, the mediational thesis is generally supported with the cognitive and relational dimensions affecting project participants' adaptation and cooperation, and the latter two processes affect safety performance. However, the cognitive dimension also directly affects safety performance. The implications of these results for project safety management are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Can we use IEC 61850 for safety related functions?

    Directory of Open Access Journals (Sweden)

    Luca Rocca

    2016-08-01

    Full Text Available Safety is an essential issue for processes that present high risk for human beings and environment. An acceptable level of risk is obtained both with actions on the process itself (risk reduction and with the use of special safety systems that switch the process into safe mode when a fault or an abnormal operation mode happens. These safety systems are today based on digital devices that communicate through digital networks. The IEC 61508 series specifies the safety requirements of all the devices that are involved in a safety function, including the communication network. Also electrical generation and distribution systems are processes that may have a significant level of risk, so the criteria stated by the IEC 61508 applies. Starting from this consideration, the paper analyzes the safety requirement for the communication network and compare them with the services of the communication protocol IEC 61850 that represents the most used protocol for automation of electrical plants. The goal of this job is to demonstrate that, from the technical point of view, IEC 61850 can be used for implementing safety-related functions, even if a formal safety certification is still missing.

  4. 2005 dossier: granite. Tome: safety analysis of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of the geologic disposal of high-level and long-lived (HLLL) radioactive wastes in granite formations. Content: 1 - safety approach: context and general goal, references, design approach by safety functions, safety approach during the construction-exploitation-observation-closure phase, safety analysis during the post-closure phase; 2 - general description: HLLL wastes, granitic environment, general structure of the architecture of a disposal facility; 3 - safety functions and disposal design: general context, safety functions of the long-term disposal, design dispositions retained to answer the functions; 4 - operational safety: people's protection, radiological risks during exploitation, risk analysis in accident situation; 5 - qualitative safety analysis: methodology, main results of the analysis of the features, events and processes (FEP) database; 6 - disposal efficiency evaluation during post-closure phase: calculation models, calculation tools used for the modeling of radionuclides transport, calculation results and main lessons. (J.S.)

  5. Approaches to the mathematical description of NPP operational safety management and oversight

    International Nuclear Information System (INIS)

    Bilej, D.V.; Berzhanskij, S.V.

    2014-01-01

    The paper presents analysis of features related to NPP operational safety management and oversight. According to analysis results, approaches are proposed to perform mathematical description of specific processes and to develop a scale for management to the current safety level as regards NPP power generation. Proposed approaches are making experimental equations and process approach of ISO-9001 quality system

  6. Innovative Modelling Approach of Safety Culture Assessment in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ahn, N.

    2016-01-01

    A culture is commonly defined as the shared set of norms and values that govern appropriate individual behavior. Safety culture is the subset of organizational culture that reflects the general attitude and approaches to safety and risk management. While safety is sometimes narrowly defined in terms of human death and injury, we use a more inclusive definition that also considers mission loss as a safety problem and is thus applicable to nuclear power plants and missions. The recent accident reports and investigations of the nuclear power plant mission failures (i.e., TMI, Chernobyl, and Fukushima) point to safety cultural problems in nuclear power plants. Many assessment approaches have been developed by organizations such as IAEA and INPO based on the assessment of parameters at separate levels — individuals, groups, and organizations.

  7. A fuzzy-logic-based approach to qualitative safety modelling for marine systems

    International Nuclear Information System (INIS)

    Sii, H.S.; Ruxton, Tom; Wang Jin

    2001-01-01

    Safety assessment based on conventional tools (e.g. probability risk assessment (PRA)) may not be well suited for dealing with systems having a high level of uncertainty, particularly in the feasibility and concept design stages of a maritime or offshore system. By contrast, a safety model using fuzzy logic approach employing fuzzy IF-THEN rules can model the qualitative aspects of human knowledge and reasoning processes without employing precise quantitative analyses. A fuzzy-logic-based approach may be more appropriately used to carry out risk analysis in the initial design stages. This provides a tool for working directly with the linguistic terms commonly used in carrying out safety assessment. This research focuses on the development and representation of linguistic variables to model risk levels subjectively. These variables are then quantified using fuzzy sets. In this paper, the development of a safety model using fuzzy logic approach for modelling various design variables for maritime and offshore safety based decision making in the concept design stage is presented. An example is used to illustrate the proposed approach

  8. Contribution to a quantitative assessment model for reliability-based metrics of electronic and programmable safety-related functions

    International Nuclear Information System (INIS)

    Hamidi, K.

    2005-10-01

    The use of fault-tolerant EP architectures has induced growing constraints, whose influence on reliability-based performance metrics is no more negligible. To face up the growing influence of simultaneous failure, this thesis proposes, for safety-related functions, a new-trend assessment method of reliability, based on a better taking into account of time-aspect. This report introduces the concept of information and uses it to interpret the failure modes of safety-related function as the direct result of the initiation and propagation of erroneous information until the actuator-level. The main idea is to distinguish the apparition and disappearance of erroneous states, which could be defined as intrinsically dependent of HW-characteristic and maintenance policies, and their possible activation, constrained through architectural choices, leading to the failure of safety-related function. This approach is based on a low level on deterministic SED models of the architecture and use non homogeneous Markov chains to depict the time-evolution of probabilities of errors. (author)

  9. An Approach to Enhancement of the Safety Culture of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The culture of an organization is very complex to study and evaluate, but it is possible to examine the specific norms that figure out the culture for the safety of a system. This paper describes an initiation plan to study the safety culture issue in Korean NPPs. Recently there happened successively events that turned out to be socially prominent in Korea. Many issues on the safety culture aspect of NPPs have been raised including the types of errors such as violations, an intended concealment of safety-related information, counterfeit items, forgery process in procurement, and so on. Those were investigated in detail for the root causes of these issues as human and organizational errors and for the countermeasures to prevent those events. They are integrated into a correspondent long-term plan including the establishment of a fundamental infrastructure of safety culture management for operating NPPs in Korea. A monitoring system with analysis functions utilizing system dynamics simulation and data mining is proposed to be incorporated into a safety culture management system. Additionally, a set of training and support programs are to be developed for the enhancement of some selected competence of the operating personnel in Korean NPPs. The safe operation of NPPs requires the typical safety culture characteristics of the high reliability organization (HRO). The culture of an organization is very complex to study and evaluate, but it is possible to examine the specific norms that figure out the culture for the safety of a system. This paper describes an integrated systems approach as an initiating plan to study the safety culture issue in Korean NPPs.

  10. An Approach to Enhancement of the Safety Culture of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Yong Hee

    2014-01-01

    The culture of an organization is very complex to study and evaluate, but it is possible to examine the specific norms that figure out the culture for the safety of a system. This paper describes an initiation plan to study the safety culture issue in Korean NPPs. Recently there happened successively events that turned out to be socially prominent in Korea. Many issues on the safety culture aspect of NPPs have been raised including the types of errors such as violations, an intended concealment of safety-related information, counterfeit items, forgery process in procurement, and so on. Those were investigated in detail for the root causes of these issues as human and organizational errors and for the countermeasures to prevent those events. They are integrated into a correspondent long-term plan including the establishment of a fundamental infrastructure of safety culture management for operating NPPs in Korea. A monitoring system with analysis functions utilizing system dynamics simulation and data mining is proposed to be incorporated into a safety culture management system. Additionally, a set of training and support programs are to be developed for the enhancement of some selected competence of the operating personnel in Korean NPPs. The safe operation of NPPs requires the typical safety culture characteristics of the high reliability organization (HRO). The culture of an organization is very complex to study and evaluate, but it is possible to examine the specific norms that figure out the culture for the safety of a system. This paper describes an integrated systems approach as an initiating plan to study the safety culture issue in Korean NPPs

  11. Integrated approach to knowledge acquisition and safety management of complex plants with emphasis on human factors

    International Nuclear Information System (INIS)

    Kosmowski, K.T.

    1998-01-01

    In this paper an integrated approach to the knowledge acquisition and safety management of complex industrial plants is proposed and outlined. The plant is considered within a man-technology-environment (MTE) system. The knowledge acquisition is aimed at the consequent reliability evaluation of human factor and probabilistic modeling of the plant. Properly structured initial knowledge is updated in life-time of the plant. The data and knowledge concerning the topology of safety related systems and their functions are created in a graphical CAD system and are object oriented. Safety oriented monitoring of the plant includes abnormal situations due to external and internal disturbances, failures of hard/software components and failures of human factor. The operation and safety related evidence is accumulated in special data bases. Data/knowledge bases are designed in such a way to support effectively the reliability and safety management of the plant. (author)

  12. Sociodrama approach for enhancing nuclear safety

    International Nuclear Information System (INIS)

    Choi, K. S.; Kim, C. B.; Ha, Y. H.

    2004-01-01

    A role playing or sociodrama has been experimentally conducted among residents from 4 NPP sites in Korea and KINS employees as a psychological approach for enhancing nuclear safety and improving public communication and public confidence in regulator in Dec. 2004. In this paper, the results were analyzed and presented and future plan and area of further study were suggested. This socio-psychological approach can be used as a new communication method for improving mutual understanding between residents and NPP operators at sites. It can be also used to solve conflicts among stakeholders and interest groups in nuclear industry

  13. IR-360 nuclear power plant safety functions and component classification

    International Nuclear Information System (INIS)

    Yousefpour, F.; Shokri, F.; Soltani, H.

    2010-01-01

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  14. IR-360 nuclear power plant safety functions and component classification

    Energy Technology Data Exchange (ETDEWEB)

    Yousefpour, F., E-mail: fyousefpour@snira.co [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of); Shokri, F.; Soltani, H. [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of)

    2010-10-15

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  15. An integrated quality function deployment and capital budgeting methodology for occupational safety and health as a systems thinking approach: the case of the construction industry.

    Science.gov (United States)

    Bas, Esra

    2014-07-01

    In this paper, an integrated methodology for Quality Function Deployment (QFD) and a 0-1 knapsack model is proposed for occupational safety and health as a systems thinking approach. The House of Quality (HoQ) in QFD methodology is a systematic tool to consider the inter-relationships between two factors. In this paper, three HoQs are used to consider the interrelationships between tasks and hazards, hazards and events, and events and preventive/protective measures. The final priority weights of events are defined by considering their project-specific preliminary weights, probability of occurrence, and effects on the victim and the company. The priority weights of the preventive/protective measures obtained in the last HoQ are fed into a 0-1 knapsack model for the investment decision. Then, the selected preventive/protective measures can be adapted to the task design. The proposed step-by-step methodology can be applied to any stage of a project to design the workplace for occupational safety and health, and continuous improvement for safety is endorsed by the closed loop characteristic of the integrated methodology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Reactor design and safety approach for a tank-type fast reactor

    International Nuclear Information System (INIS)

    Davies, S.M.; Yamaki, Hideo; Goodman, L.

    1984-06-01

    A tank type plant has been designed that offers compactness, high reliability under seismic and thermal transients, and a safety design approach that provides a balance between public safety and plant availability. This report provides a description of the design philosophy and safety features of the reactor

  17. Design of plant safety model in plant enterprise engineering environment

    International Nuclear Information System (INIS)

    Gabbar, Hossam A.; Suzuki, Kazuhiko; Shimada, Yukiyasu

    2001-01-01

    Plant enterprise engineering environment (PEEE) is an approach aiming to manage the plant through its lifecycle. In such environment, safety is considered as the common objective for all activities throughout the plant lifecycle. One approach to achieve plant safety is to embed safety aspects within each function and activity within such environment. One ideal way to enable safety aspects within each automated function is through modeling. This paper proposes a theoretical approach to design plant safety model as integrated with the plant lifecycle model within such environment. Object-oriented modeling approach is used to construct the plant safety model using OO CASE tool on the basis of unified modeling language (UML). Multiple views are defined for plant objects to express static, dynamic, and functional semantics of these objects. Process safety aspects are mapped to each model element and inherited from design to operation stage, as it is naturally embedded within plant's objects. By developing and realizing the plant safety model, safer plant operation can be achieved and plant safety can be assured

  18. Towards a Usability and Error "Safety Net": A Multi-Phased Multi-Method Approach to Ensuring System Usability and Safety.

    Science.gov (United States)

    Kushniruk, Andre; Senathirajah, Yalini; Borycki, Elizabeth

    2017-01-01

    The usability and safety of health information systems have become major issues in the design and implementation of useful healthcare IT. In this paper we describe a multi-phased multi-method approach to integrating usability engineering methods into system testing to ensure both usability and safety of healthcare IT upon widespread deployment. The approach involves usability testing followed by clinical simulation (conducted in-situ) and "near-live" recording of user interactions with systems. At key stages in this process, usability problems are identified and rectified forming a usability and technology-induced error "safety net" that catches different types of usability and safety problems prior to releasing systems widely in healthcare settings.

  19. Common safety approach for future pressurized water reactors in France and Germany

    International Nuclear Information System (INIS)

    Queniart, D.; Gros, G.

    1994-01-01

    In France and Germany all major activities related to future pressurized water reactors are now proceeding in a coordinated way among the two countries. This holds for utilities and industry in the development of a joint PWR project, the ''European Pressurized Water Reactor (EPR)'' by Electricite de France (EDF), German utilities, Nuclear Power International (NPI), Framatome and Siemens as well as for the technical safety objectives for future evolutionary reactors on the basis of a common safety approach adopted by the safety authorities of both countries for plants to operate form the beginning of the next century. The proposed paper covers this common development of a safety approach and particular technical safety objectives. (authors). 5 refs. 1 fig

  20. Safety inspection guide, Mod III (a systematic approach to conducting a safety inspection)

    International Nuclear Information System (INIS)

    Davidson, J.E.

    1977-06-01

    This guide was developed as a comprehensive/systematic approach to the problem of performing a safety inspection. Five basic sections (categories) are considered in the guide: physical work place; machines/mechanical equipment; hazardous materials/processes/environments; energy sources; and management hazard . control factors. The basic concept is that one starts evaluating hazard potentials from the physical work place and continues considering other elements as they are added to the physical work place. This approach provides a better understanding of the interfaces of each section to the entire group. The guide is supported by an Area Safety Inspection Result form to record defects or conditions found, the evaluation (best estimate) of the urgency or priority for correcting deficiencies or areas of noncompliance, and the status of corrective action. Additionally, the guide serves as an educational tool in accident prevention for supervisors and employees

  1. Key issues of the common French-German safety approach for future PWRs

    International Nuclear Information System (INIS)

    Frisch, W.; Rohde, J.; Gros, G.; Queniart, D.

    1996-01-01

    The general common safety approach issued in May 1993 contains safety objectives, general principles and already some technical principles. Based on general safety approach, detailed recommendations have been developed in 1994 on key issues such as: system design and use of PSA; integrity of the primary circuit; external hazards; severe accidents and containment design; radiological consequences of reference accidents and low pressure core melt accidents. A selection of the detailed recommendations is presented in the full paper. (author)

  2. Guards: An approach safety-related systems using cots example of MMI and reactor automation in nuclear submarine application

    International Nuclear Information System (INIS)

    Brun, M.

    1998-01-01

    For at least 10 years, the nuclear industry designs and licences specific digital safety-critical systems (IEC 1226 class A). One key issue for future programs is to design and licence safety-related systems providing more complex functions and using Commercial-Off-The-Shelf components. This issue is especially raised for Reactor automation and Man-Machine-Interface. The usual I and C (Instrumentation and Control) organisation for these functions is based on redundancy between a commercial, up-to-date, unclassified > system and a simplified classified > system using traditional technologies. It clearly appears that such organisation is not satisfying from the point of view of people who have actually to operate these systems: The operator is supposed not to trust the normal system and rely on the back-up system which is less helpful and that he use very few. This paper presents a new approach to that problem using COTS components in low-level layers, safety architecture and mechanisms at medium level layer (GUARDS architecture developed in the current ESPRIT project number 20716), and a pre-validated functional layer. The aim of this solution is to comply with the > IEC 1226 class B requirements, at lower overall cost (design, implementation, licensing, long term confidence). This approach is illustrated by its application in Man-Machine-Interface (MMI) for our future program of Nuclear submarine. (author)

  3. A dynamic Bayesian network based approach to safety decision support in tunnel construction

    International Nuclear Information System (INIS)

    Wu, Xianguo; Liu, Huitao; Zhang, Limao; Skibniewski, Miroslaw J.; Deng, Qianli; Teng, Jiaying

    2015-01-01

    This paper presents a systemic decision approach with step-by-step procedures based on dynamic Bayesian network (DBN), aiming to provide guidelines for dynamic safety analysis of the tunnel-induced road surface damage over time. The proposed DBN-based approach can accurately illustrate the dynamic and updated feature of geological, design and mechanical variables as the construction progress evolves, in order to overcome deficiencies of traditional fault analysis methods. Adopting the predictive, sensitivity and diagnostic analysis techniques in the DBN inference, this approach is able to perform feed-forward, concurrent and back-forward control respectively on a quantitative basis, and provide real-time support before and after an accident. A case study in relating to dynamic safety analysis in the construction of Wuhan Yangtze Metro Tunnel in China is used to verify the feasibility of the proposed approach, as well as its application potential. The relationships between the DBN-based and BN-based approaches are further discussed according to analysis results. The proposed approach can be used as a decision tool to provide support for safety analysis in tunnel construction, and thus increase the likelihood of a successful project in a dynamic project environment. - Highlights: • A dynamic Bayesian network (DBN) based approach for safety decision support is developed. • This approach is able to perform feed-forward, concurrent and back-forward analysis and control. • A case concerning dynamic safety analysis in Wuhan Yangtze Metro Tunnel in China is presented. • DBN-based approach can perform a higher accuracy than traditional static BN-based approach

  4. Comparison of a Traditional Probabilistic Risk Assessment Approach with Advanced Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis L; Mandelli, Diego; Zhegang Ma

    2014-11-01

    As part of the Light Water Sustainability Program (LWRS) [1], the purpose of the Risk Informed Safety Margin Characterization (RISMC) [2] Pathway research and development (R&D) is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” (SBO) wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario. We also describe our approach we are using to represent advanced flooding analysis.

  5. Reliability-based approaches for safety margin assessment in the French nuclear industry

    International Nuclear Information System (INIS)

    Ardillon, E.; Barthelet, B.; Meister, E.; Cambefort, P.; Hornet, P.; Le Delliou, P.

    2003-01-01

    The prevention of the fast fracture damage of the mechanical equipment important for the safety of nuclear islands of the French PWR relies on deterministic rules. These rules include flaw acceptance criteria involving safety factors applied to characteristic values (implicit margins) of the physical variables. The sets of safety factors that are currently under application in the industrial analyses with the agreement of the Safety Authority, are distributed across the two main physical parameters and have partly been based on a semi-probabilistic approach. After presenting the generic probabilistic pro-codification approach this paper shows its application to the evaluation of the performances of the existing regulatory flaw acceptance criteria. This application can be carried out in a realistic manner or in a more simplified one. These two approaches are applied to representative mechanical components. Their results are consistent. (author)

  6. Proposal for a technology-neutral safety approach for new reactor designs

    International Nuclear Information System (INIS)

    2007-09-01

    Many states are considering an expansion of their nuclear power generation programmes. Many of the technologies and concepts are new and innovative. The current design and licensing rules are applicable to mostly large water reactors and there are no accepted rules in place for design, safety assessment and licensing for new innovative nuclear power plants. This TECDOC proposes a (new) safety approach and a methodology to generate technology-neutral (i.e. independent of reactor technology) safety requirements and a 'safe design' for advanced and innovative reactors. The experience gained in decades of design and licensing, combined with the development of risk-based concepts, has provided insights that will form the basis for new safety rules and requirements. Many lessons learned acknowledge the importance of such concepts as safety goals and defence in depth and the benefits of integrating risk insights early in an iterative design process. A new safety approach will incorporate many of the new developments in these concepts. For example, the probabilistic elements of defence in depth will help define the cumulative provisions to compensate for uncertainty and incompleteness of our knowledge of accident initiation and progression. This TECDOC also identifies areas of work, which will require further definition, research and development and guidance on application. This publication is to be used as a guide to developing a new technology-neutral safety approach, and as a guide in the application of methodologies to define the safety requirements for an innovative reactor designs. The method proposes an integration of deterministic and probabilistic considerations with established principles and concepts such as safety goals and defence in depth. The TECDOC recommends that the structure of the new technology-neutral main pillars for the design and licensing of innovative nuclear reactors be developed following a top-down approach to reflect a newer risk-informed and

  7. Adult Learning in Health and Safety: Some Issues and Approaches.

    Science.gov (United States)

    O Fathaigh, Mairtin

    This document, which was developed for presentation at a seminar on adult learning and safety, examines approaches to occupational safety and health (OSH) learning/training in the workplace. Section 1 examines selected factors affecting adults' learning in workplace OSH programs. The principal dimensions along which individual adult learners will…

  8. Approaches to construction of systems of safety management in airlines

    Directory of Open Access Journals (Sweden)

    2015-01-01

    Full Text Available The article presents three approaches of building a safety management system (SMS in airlines in the framework of implementation of ICAO SARPs that apply methods of risk assessment based on use of operational activity of airline taking into account existing and implementing "protections" or "safety barriers".

  9. 2nd ILK symposium 2003: harmonisation of nuclear safety approaches

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The 2 nd International ILK Symposium held on October 28 and 29, 2003, in Munich aimed to identify the basic principles, methodologies and policies that can improve the transparency and effectiveness of safety practices within the frame work of harmonized approaches. Over the course of three sessions, each covering a series of presentations and a concluding round table discussion, the topics 'Current status of harmonisation and needs for further developments', 'Basic approaches to a well-balanced safety and risk management' and 'Strategic solutions and policies' were explored in detail. (orig.)

  10. Introduction to Safety Analysis Approach for Research Reactors

    International Nuclear Information System (INIS)

    Park, Suki

    2016-01-01

    The research reactors have a wide variety in terms of thermal powers, coolants, moderators, reflectors, fuels, reactor tanks and pools, flow direction in the core, and the operating pressure and temperature of the cooling system. Around 110 research reactors have a thermal power greater than 1 MW. This paper introduces a general approach to safety analysis for research reactors and deals with the experience of safety analysis on a 10 MW research reactor with an open-pool and open-tank reactor and a downward flow in the reactor core during normal operation. The general approach to safety analysis for research reactors is described and the design features of a typical open-pool and open-tank type reactor are discussed. The representative events expected in research reactors are investigated. The reactor responses and the thermal hydraulic behavior to the events are presented and discussed. From the minimum CHFR and the maximum fuel temperature calculated, it is ensured that the fuel is not damaged in the step insertion of reactivity by 1.8 mk and the failure of all primary pumps for the reactor with a 10 MW thermal power and downward core flow

  11. A holistic approach to control process safety risks: Possible ways forward

    International Nuclear Information System (INIS)

    Pasman, H.J.; Knegtering, B.; Rogers, W.J.

    2013-01-01

    Pursuing process safety in a world of continuously increasing requirements is not a simple matter. Keeping balance between producing quality and volume under budget constraints while maintaining an adequate safety level proves time and time again a difficult task given that evidently major accidents cannot be avoided. Lack of resilience from an organizational point of view to absorb unwanted and unforeseen disturbances has in recent years been put forward as a major cause, while organizational erosive drift is shown to be responsible for complacency and degradation of safety attitude. A systems approach to safety provides a new paradigm with the promise of new comprehensive tools. At the same time, one realizes that risk assessment will fall short of identifying and quantifying all possible scenarios. First, human error is in most assessments not included. It is even argued that determining human failure probability by decomposing it to basic elements of error is not possible. Second, the crux of the systemic approach is that safety is an emergent property, which means the same holds for the technological aspect: risk is not fully predictable from failure of components. By surveying and applying recent literature, besides analysing, this paper proposes a way forward by considering resilience of a socio-technical system both from an organizational and a technical side. The latter will for a large part be determined by the plant design. Sufficient redundancy and reserve shall be kept to preserve sufficient resilience, but the question that rises is how. Available methods are risk assessment and process simulation. It is helpful that the relation between risk and resilience analysis has been recently defined. Also, in a preliminary study the elements of resilience of a process have become listed. In the latter, receiving and interpreting weak signals to boost situational awareness plays an important role. To maintain alertness on the functioning of a safety management

  12. Cognitive functioning differentially predicts different dimensions of older drivers' on-road safety.

    Science.gov (United States)

    Aksan, Nazan; Anderson, Steve W; Dawson, Jeffrey; Uc, Ergun; Rizzo, Matthew

    2015-02-01

    The extent to which deficits in specific cognitive domains contribute to older drivers' safety risk in complex real-world driving tasks is not well understood. We selected 148 drivers older than 70 years of age both with and without neurodegenerative diseases (Alzheimer disease-AD and Parkinson disease-PD) from an existing driving database of older adults. Participant assessments included on-road driving safety and cognitive functioning in visuospatial construction, speed of processing, memory, and executive functioning. The standardized on-road drive test was designed to examine multiple facets of older driver safety including navigation performance (e.g., following a route, identifying landmarks), safety errors while concurrently performing secondary navigation tasks ("on-task" safety errors), and safety errors in the absence of any secondary navigation tasks ("baseline" safety errors). The inter-correlations of these outcome measures were fair to moderate supporting their distinctiveness. Participants with diseases performed worse than the healthy aging group on all driving measures and differences between those with AD and PD were minimal. In multivariate analyses, different domains of cognitive functioning predicted distinct facets of driver safety on road. Memory and set-shifting predicted performance in navigation-related secondary tasks, speed of processing predicted on-task safety errors, and visuospatial construction predicted baseline safety errors. These findings support broad assessments of cognitive functioning to inform decisions regarding older driver safety on the road and suggest navigation performance may be useful in evaluating older driver fitness and restrictions in licensing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A discussion of approaches to transforming care: contemporary strategies to improve patient safety.

    Science.gov (United States)

    Burston, Sarah; Chaboyer, Wendy; Wallis, Marianne; Stanfield, Jane

    2011-11-01

    This article presents a discussion of three contemporary approaches to transforming care: Transforming Care at the Bedside, Releasing Time to Care: the Productive Ward and the work of the Studer Group(®). International studies of adverse events in hospitals have highlighted the need to focus on patient safety. The case for transformational change was identified and recently several approaches have been developed to effect this change. Despite limited evaluation, these approaches have spread and have been adopted outside their country of origin and contextual settings. Medline and CINAHL databases were searched for the years 1999-2009. Search terms included derivatives of 'transformation' combined with 'care', 'nursing', 'patient safety', 'Transforming Care at the Bedside', 'the Productive Ward' and 'Studer Group'. A comparison of the three approaches revealed similarities including: the foci of the approaches; interventions employed; and the outcomes measured. Key differences identified are the implementation models used, spread strategies and sustainability of the approaches. The approaches appear to be complementary and a hybrid of the approaches such as a blend of a top-down and bottom-up leadership strategy may offer more sustainable behavioural change. These approaches transform the way nurses do their work, how they work with others and how they view the care they provide to promote patient safety. All the approaches involve the implementation of multiple interventions occurring simultaneously to affect improvements in patient safety. The approaches are complementary and a hybrid approach may offer more sustainable outcomes. © 2011 Blackwell Publishing Ltd.

  14. Reliability analysis of software based safety functions

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1993-05-01

    The methods applicable in the reliability analysis of software based safety functions are described in the report. Although the safety functions also include other components, the main emphasis in the report is on the reliability analysis of software. The check list type qualitative reliability analysis methods, such as failure mode and effects analysis (FMEA), are described, as well as the software fault tree analysis. The safety analysis based on the Petri nets is discussed. The most essential concepts and models of quantitative software reliability analysis are described. The most common software metrics and their combined use with software reliability models are discussed. The application of software reliability models in PSA is evaluated; it is observed that the recent software reliability models do not produce the estimates needed in PSA directly. As a result from the study some recommendations and conclusions are drawn. The need of formal methods in the analysis and development of software based systems, the applicability of qualitative reliability engineering methods in connection to PSA and the need to make more precise the requirements for software based systems and their analyses in the regulatory guides should be mentioned. (orig.). (46 refs., 13 figs., 1 tab.)

  15. Analysis of international approaches which are used at development of theoperational safety performance indicators

    International Nuclear Information System (INIS)

    Lyigots'kij, O.Yi.; Nosovs'kij, A.V.; Chemeris, Yi.O.

    2009-01-01

    Description of international approaches and experience of the use of theoperational safety performance indicators system is provided for estimationof current status and making a decision on corrections in the operationpractice. The state of development of the operational safety performanceindicators system by the operating organization is overviewed. Thepossibility of application of international approaches during development ofthe integral safety performance indicators system is analyzed. Aims and tasksof future researches are formulated in relation to development of theintegral safety performance indicators system.

  16. Swedish REGULATORY APPROACH TO SAFETY Assessment AND SEVERE ACCIDENT MANAGEMENT

    International Nuclear Information System (INIS)

    Frid, W.; Sandervaag, O.

    1997-01-01

    The Swedish regulatory approach to safety assessment and severe accident management is briefly described. The safety assessment program, which focuses on prevention of incidents and accidents, has three main components: periodic safety reviews, probabilistic safety analysis, and analysis of postulated disturbances and accident progression sequences. Management and man-technology-organisation issues, as well as inspections, play a key role in safety assessment. Basis for severe accident management were established by the Government decisions in 1981 and 1986. By the end of 1988, the severe accident mitigation systems and emergency operating procedures were implemented at all Swedish reactors. The severe accident research has continued after 1988 for further verification of the protection provided by the systems and reduction of remaining uncertainties in risk dominant phenomena

  17. A situational approach to the measurement of safety culture

    International Nuclear Information System (INIS)

    Semmer, N.; Regennass, A.

    1997-01-01

    Values and social norms are the main target of most approaches to the study of safety culture and many existing survey methodologies directly ask for these norms and values. However, a number of considerations point to the dangers of limiting the evaluation of safety culture to the analysis of these responses. Therefore the necessity is stressed to also consider how actual situations activate norms and behaviours. This relates to the fact that in any given situation both aspects of the appraisal of reality are present: the objective definition of the situation and its personal evaluation. The latter not only reflects the ''official'' norms and values but also ''basic underlying assumptions''. The situational approach introduced in this paper confronts people with situations which contain a dilemma with conflicting social norms and where various costs and benefits are associated with different types of behaviour. In addition, the prerequisites and limitations of the situational approach are discussed. (author). 9 refs, 1 fig

  18. European Workshop Industrical Computer Science Systems approach to design for safety

    Science.gov (United States)

    Zalewski, Janusz

    1992-01-01

    This paper presents guidelines on designing systems for safety, developed by the Technical Committee 7 on Reliability and Safety of the European Workshop on Industrial Computer Systems. The focus is on complementing the traditional development process by adding the following four steps: (1) overall safety analysis; (2) analysis of the functional specifications; (3) designing for safety; (4) validation of design. Quantitative assessment of safety is possible by means of a modular questionnaire covering various aspects of the major stages of system development.

  19. On the functional failures concept and probabilistic safety margins: challenges in application for evaluation of effectiveness of shutdown systems - 15318

    International Nuclear Information System (INIS)

    Serghiuta, D.; Tholammakkil, J.

    2015-01-01

    The use of level-3 reliability approach and the concept of functional failure probability could provide the basis for defining a safety margin metric which would include a limit for the probability of functional failure, in line with the definition of a reliability-based design. It can also allow a quantification of level of confidence, by explicit modeling and quantification of uncertainties, and provide a better framework for representation of actual design and optimization of design margins within an integrated probabilistic-deterministic model. This paper reviews the attributes and challenges in application of functional failure concept in evaluation of risk-informed safety margins using as illustrative example the case of CANDU reactors shutdown systems effectiveness. A risk-informed formulation is first introduced for estimation of a reasonable limit for the functional failure probability using a Swiss cheese model. It is concluded that more research is needed in this area and a deterministic - probabilistic approach may be a reasonable intermediate step for evaluation of functional failure probability at the system level. The views expressed in this paper are those of the authors and do not necessarily reflect those of CNSC, or any part thereof. (authors)

  20. Presurized water reactor safety approach and analysis. From conception to experience feedback

    International Nuclear Information System (INIS)

    Libmann, J.

    1987-04-01

    This report deals in ten chapters, with the following subjects: 1. Safety approach methods; 2. Study of accidents; 3. Safety analysis; 4. Study of internal aggressions or those involved by the site; 5. Consideration of complementary situations; 6. Three Mile Island accident; 7. Safety during operation and experience feedback; 8. An example of analysis: steam generator closure plug; 9. Probabilistic safety evaluation; 10. Chernobyl accident. 30 refs [fr

  1. Ensuring a proactive, evidence-based, patient safety approach to patient assessment.

    Science.gov (United States)

    Considine, Julie; Currey, Judy

    2015-01-01

    To argue that if all nurses were to adopt the primary survey approach (assessment of airway, breathing, circulation and disability) as the first element of patient assessment, they would be more focused on active detection of clinical deterioration rather than passive collection of patient data. Nurses are the professional group that carry the highest level of responsibility for patient assessment, accurate data collection and interpretation. The timely recognition of, and response to deteriorating patients, is dependent on the measurement and interpretation of pertinent physiological data by nurses. Discursive paper. Traditionally taught and commonly used approaches to patient assessment such as 'vital signs' and 'body systems' are not evidence-based nor framed in patient safety. The primary survey approach as the first element in patient assessment has three major advantages: (1) data are collected according to clinical importance; (2) data are collected using the same framework as most organisation's rapid response system activation criteria; and (3) the primary survey acts as a patient safety checklist, thereby decreasing the risk of failure to recognise, and therefore respond to, deteriorating patients. The vital signs and body systems approaches to patient assessment have significant limitations in identifying clinical deterioration. The primary survey approach provides nurses with a consistent, evidence-based and sequenced approach to patient assessment in every clinical setting. All nurses should use a primary survey approach as the first element of patient assessment in every patient encounter as a patient safety strategy. © 2014 John Wiley & Sons Ltd.

  2. Nuclear safety, security and safeguards. An application of an integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Howard; Edwards, Jeremy; Fitzpatrick, Joshua; Grundy, Colette; Rodger, Robert; Scott, Jonathan [National Nuclear Laboratory, Warrington (United Kingdom)

    2018-01-15

    National Nuclear Laboratory has recently produced a paper regarding the integrated approach of nuclear safety, security and safeguards. The paper considered the international acknowledgement of the inter-relationships and potential benefits to be gained through improved integration of the nuclear '3S'; Safety, Security and Safeguards. It considered that combining capabilities into one synergistic team can provide improved performance and value. This approach to integration has been adopted, and benefits realised by the National Nuclear Laboratory through creation of a Safety, Security and Safeguards team. In some instances the interface is clear and established, as is the case between safety and security in the areas of Vital Area Identification. In others the interface is developing such as the utilisation of safeguards related techniques such as nuclear material accountancy and control to enhance the security of materials. This paper looks at a practical example of the progress to date in implementing Triple S by a duty holder.

  3. Common safety approach for future pressurized water reactors in France and Germany

    International Nuclear Information System (INIS)

    Frisch, W.; Jahns, A.; Queniart, D.; Gros, G.

    1995-01-01

    In France and Germany all major activities related to future pressurized water reactors are now proceeding in a coordinated way among the two countries. The proposed paper covers this common development of a safety approach and particular technical safety objectives. The main topics of this document are presented in this paper, together with a rationale for the approach and the recommended technical principles. (K.A.). 5 refs., 1 fig

  4. Characterising influences on safety culture in military aviation:a methodologically grounded approach

    OpenAIRE

    Bennett, Anthea; Hellier, Elizabeth; Weyman, Andrew

    2015-01-01

    Historically, much effort has been expended in safety culture / climate research toward identifying a generic core set of components, predominately using the self-administered questionnaire approach. However, no stable unified model has emerged, and much of this research has taken a methodologically top-down approach to depicting organisational safety culture. In light of this, the benefits of qualitative exploration as a precursor to and foundation for the development of quantitative climate...

  5. Nuclear Safety and Radiation Protection in Europe - a common approach

    International Nuclear Information System (INIS)

    McGarry, Ann

    2010-01-01

    In Europe, the European Union has adopted directives and implemented other measures which form the basis of a common approach to nuclear safety and radiation protection across all Member States. In particular, there are EU directives setting out radiation protection standards and establishing a Community framework for the nuclear safety of nuclear installations. There are also arrangements in place to provide for an effective response to nuclear emergencies and to facilitate high quality research into nuclear and radiation protection related topics. Inevitably the stage of development in each area is somewhat different, but generally progress is ongoing in each area. From the point of view of a small country like Ireland, the development of common standards and arrangements across Europe is beneficial as they are based on the best available knowledge and expertise; they provide for greater transparency; they facilitate public confidence and make best use of the available resources. However, there are some areas in which common approaches could be further advanced. For example, the medical exposure of patients is increasingly of concern across Europe and the further development of common approaches in this area would be helpful. It would also be useful to develop a more integrated approach to nuclear safety and radiation protection regulation and to better integrate nuclear and radiation issues with other public health and environment concerns. (author)

  6. Professional conceptualisation and accomplishment of patient safety in mental healthcare: an ethnographic approach

    Directory of Open Access Journals (Sweden)

    Braithwaite Jeffrey

    2011-05-01

    Full Text Available Abstract Background This study seeks to broaden current understandings of what patient safety means in mental healthcare and how it is accomplished. We propose a qualitative observational study of how safety is produced or not produced in the complex context of everyday professional mental health practice. Such an approach intentionally contrasts with much patient safety research which assumes that safety is achieved and improved through top-down policy directives. We seek instead to understand and articulate the connections and dynamic interactions between people, materials, and organisational, legal, moral, professional and historical safety imperatives as they come together at particular times and places to perform safe or unsafe practice. As such we advocate an understanding of patient safety 'from the ground up'. Methods/Design The proposed project employs a six-phase data collection framework in two mental health settings: an inpatient unit and a community team. The first four phases comprise multiple modes of focussed, unobtrusive observation of professionals at work, to enable us to trace the conceptualisation and enactment of safety as revealed in dialogue and narrative, use of artefacts and space, bodily activity and patterns of movement, and in the accomplishment of specific work tasks. An interview phase and a social network analysis phase will subsequently be conducted to offer comparative perspectives on the observational data. This multi-modal and holistic approach to studying patient safety will complement existing research, which is dominated by instrumentalist approaches to discovering factors contributing to error, or developing interventions to prevent or manage adverse events. Discussion This ethnographic research framework, informed by the principles of practice theories and in particular actor-network ideas, provides a tool to aid the understanding of patient safety in mental healthcare. The approach is novel in that it

  7. Professional conceptualisation and accomplishment of patient safety in mental healthcare: an ethnographic approach

    Science.gov (United States)

    2011-01-01

    Background This study seeks to broaden current understandings of what patient safety means in mental healthcare and how it is accomplished. We propose a qualitative observational study of how safety is produced or not produced in the complex context of everyday professional mental health practice. Such an approach intentionally contrasts with much patient safety research which assumes that safety is achieved and improved through top-down policy directives. We seek instead to understand and articulate the connections and dynamic interactions between people, materials, and organisational, legal, moral, professional and historical safety imperatives as they come together at particular times and places to perform safe or unsafe practice. As such we advocate an understanding of patient safety 'from the ground up'. Methods/Design The proposed project employs a six-phase data collection framework in two mental health settings: an inpatient unit and a community team. The first four phases comprise multiple modes of focussed, unobtrusive observation of professionals at work, to enable us to trace the conceptualisation and enactment of safety as revealed in dialogue and narrative, use of artefacts and space, bodily activity and patterns of movement, and in the accomplishment of specific work tasks. An interview phase and a social network analysis phase will subsequently be conducted to offer comparative perspectives on the observational data. This multi-modal and holistic approach to studying patient safety will complement existing research, which is dominated by instrumentalist approaches to discovering factors contributing to error, or developing interventions to prevent or manage adverse events. Discussion This ethnographic research framework, informed by the principles of practice theories and in particular actor-network ideas, provides a tool to aid the understanding of patient safety in mental healthcare. The approach is novel in that it seeks to articulate an 'anatomy

  8. Development of the methodology and approaches to validate safety and accident management

    International Nuclear Information System (INIS)

    Asmolov, V.G.

    1997-01-01

    The article compares the development of the methodology and approaches to validate the nuclear power plant safety and accident management in Russia and advanced industrial countries. It demonstrates that the development of methods of safety validation is dialectically related to the accumulation of the knowledge base on processes and events during NPP normal operation, transients and emergencies, including severe accidents. The article describes the Russian severe accident research program (1987-1996), the implementation of which allowed Russia to reach the world level of the safety validation efforts, presents future high-priority study areas. Problems related to possible approaches to the methodological accident management development are discussed. (orig.)

  9. Innovative approach to training radiation safety regulatory professionals

    International Nuclear Information System (INIS)

    Gilley, Debbie Bray

    2008-01-01

    Full text: The supply of human resources required to adequately manage a radiation safety regulatory program has diminished in the last five years. Competing professional opportunities and a reduction in the number of health physics secondary schools have made it necessary to look at alternative methods of training. There are limited educational programs in the US that prepare our professionals for careers in the Radiation Regulatory Programs. The state of Florida's radiation control program embraced a new methodology using a combination of didactic and work experience using qualification journals, subject matter experts, and formalized training to develop a qualified pool of employees to perform the regulatory functions and emergency response requirements of a state radiation control program. This program uses a task-based approach to identify training needs and draws upon current staff to develop and implement the training. This has led to a task-oriented staff capable of responding to basic regulatory and emergency response activities within one year of employment. Florida's program lends itself to other states or countries with limited resources that have experienced staff attrition due to retirement or competing employment opportunities. Information on establishing a 'task-based' pool of employees that can perform basic regulatory functions and emergency response after one year of employment will be described. Initial task analysis of core functions and methodology is used to determine the appropriate training methodology for these functions. Instructions will be provided on the methodology used to 'mentor' new employees and then incorporate the new employees into the established core functions and be a useful employee at the completion of the first year of employment. New training philosophy and regime may be useful in assisting in the development of programs in countries and states with limited resources for training radiation protection personnel. (author)

  10. Analysis approach for common cause failure on non-safety digital control system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eungse [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    The effects of common cause failure (CCF) on safety digital instrumentation and control (I and C) system had been considered in defense in depth and diversity coping analysis with safety analysis method. For the non-safety system, single failure had been considered for safety analysis. IEEE Std. 603-1991, Clause 5.6.3.1(2), 'Isolation' states that no credible failure on the non-safety side of an isolation device shall prevent any portion of a safety system from meeting its minimum performance requirements during and following any design basis event requiring that safety function. The software CCF is one of the credible failure on the non-safety side. In advanced digital I and C system, same hardware component is used for different control system and the defect in manufacture or common external event can generate CCF. Moreover, the non-safety I and C system uses complex software for its various function and software quality assurance for the development process is less severe than safety software for the cost effective design. Therefore the potential defects in software cannot be ignored and the effect of software CCF on non-safety I and C system is needed to be evaluated. This paper proposes the general process and considerations for the analysis of CCF on non-safety I and C system.

  11. Public safety around dams : Ontario Power Generation's approach

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, T; Rowat, L [Ontario Power Generation Inc., Toronto, ON (Canada)

    2009-04-01

    Ontario Power Generation (OPG) has developed a Waterways Public Safety Program that includes elements such as integrating public safety considerations into normal business practices and decisions; applying conservative decision making principles regarding operations where there are issues of public safety; and seeking partnership opportunities that enhance public safety awareness. The key steps to the public safety risk assessment process include identifying each type of known public interaction at a facility; identifying the hazards associated with those interactions; assigning a rating of likelihood and consequence for each separate public interaction at a facility; and assigning a risk rating, with a risk matrix for each public interaction. OPG now requires that a new public safety risk assessment be completed every 3 years. The risk assessment is a guide to implementing control measures to lower the risk of injury at dam facilities. OPG has adopted the model that every water conveyance structure will have an established hazardous area, typically adjacent to the structure. These areas are delineated with red danger signs and other control measures installed as needed. Yellow signs are used to delineate warning areas where there is a reasonable likelihood of minor injury or where the public may become stranded. As a minimum, OPG uses signage, sluicegate audible alarms, a stepped approach to sluicegate openings and public education. Safety booms and buoys as well as fencing and barricades may be used as additional control measures along with security patrols and video surveillance to target specific public interactions. 6 figs.

  12. The function of specialized organization in work safety engineering for nuclear installations

    International Nuclear Information System (INIS)

    Salvatore, J.E.L.

    1989-01-01

    The attributions of Brazilian CNEN in the licensing procedures of any nuclear installation are discussed. It is shown that the work safety engineering and industrial safety constitute important functions for nuclear safety. (M.C.K.) [pt

  13. Safety class methodology

    International Nuclear Information System (INIS)

    Donner, E.B.; Low, J.M.; Lux, C.R.

    1992-01-01

    DOE Order 6430.1A, General Design Criteria (GDC), requires that DOE facilities be evaluated with respect to ''safety class items.'' Although the GDC defines safety class items, it does not provide a methodology for selecting safety class items. The methodology described in this paper was developed to assure that Safety Class Items at the Savannah River Site (SRS) are selected in a consistent and technically defensible manner. Safety class items are those in the highest of four categories determined to be of special importance to nuclear safety and, merit appropriately higher-quality design, fabrication, and industrial test standards and codes. The identification of safety class items is approached using a cascading strategy that begins at the 'safety function' level (i.e., a cooling function, ventilation function, etc.) and proceeds down to the system, component, or structure level. Thus, the items that are required to support a safety function are SCls. The basic steps in this procedure apply to the determination of SCls for both new project activities, and for operating facilities. The GDC lists six characteristics of SCls to be considered as a starting point for safety item classification. They are as follows: 1. Those items whose failure would produce exposure consequences that would exceed the guidelines in Section 1300-1.4, ''Guidance on Limiting Exposure of the Public,'' at the site boundary or nearest point of public access 2. Those items required to maintain operating parameters within the safety limits specified in the Operational Safety Requirements during normal operations and anticipated operational occurrences. 3. Those items required for nuclear criticality safety. 4. Those items required to monitor the release of radioactive material to the environment during and after a Design Basis Accident. Those items required to achieve, and maintain the facility in a safe shutdown condition 6. Those items that control Safety Class Item listed above

  14. Safety system function trends

    International Nuclear Information System (INIS)

    Johnson, C.

    1989-01-01

    This paper describes research to develop risk-based indicators of plant safety performance. One measure of the safety-performance of operating nuclear power plants is the unavailability of important safety systems. Brookhaven National Laboratory and Science Applications International Corporation are evaluating ways to aggregate train-level or component-level data to provide such an indicator. This type of indicator would respond to changes in plant safety margins faster than the currently used indicator of safety system unavailability (i.e., safety system failures reported in licensee event reports). Trends in the proposed indicator would be one indication of trends in plant safety performance and maintenance effectiveness. This paper summarizes the basis for such an indicator, identifies technical issues to be resolved, and illustrates the potential usefullness of such indicators by means of computer simulations and case studies

  15. Integrated Approaches to Occupational Health and Safety: A Systematic Review.

    Science.gov (United States)

    Cooklin, A; Joss, N; Husser, E; Oldenburg, B

    2017-09-01

    The study objective was to conduct a systematic review of the effectiveness of integrated workplace interventions that combine health promotion with occupational health and safety. Electronic databases (n = 8), including PsychInfo and MEDLINE, were systematically searched. Studies included were those that reported on workplace interventions that met the consensus definition of an "integrated approach," published in English, in the scientific literature since 1990. Data extracted were occupation, worksite, country, sample size, intervention targets, follow-up period, and results reported. Quality was assessed according to American College of Occupational and Environmental Medicine Practice Guidelines. Heterogeneity precluded formal meta-analyses. Results were classified according to the outcome(s) assessed into five categories (health promotion, injury prevention, occupational health and safety management, psychosocial, and return-on-investment). Narrative synthesis of outcomes was performed. A total of 31 eligible studies were identified; 23 (74%) were (quasi-)experimental trials. Effective interventions were most of those aimed at improving employee physical or mental health. Less consistent results were reported from integrated interventions targeting occupational health and safety management, injury prevention, or organizational cost savings. Integrated approaches have been posed as comprehensive solutions to complex issues. Empirical evidence, while still emerging, provides some support for this. Continuing investment in, and evaluation of, integrated approaches are worthwhile.

  16. Is Model-Based Development a Favorable Approach for Complex and Safety-Critical Computer Systems on Commercial Aircraft?

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2014-01-01

    A system is safety-critical if its failure can endanger human life or cause significant damage to property or the environment. State-of-the-art computer systems on commercial aircraft are highly complex, software-intensive, functionally integrated, and network-centric systems of systems. Ensuring that such systems are safe and comply with existing safety regulations is costly and time-consuming as the level of rigor in the development process, especially the validation and verification activities, is determined by considerations of system complexity and safety criticality. A significant degree of care and deep insight into the operational principles of these systems is required to ensure adequate coverage of all design implications relevant to system safety. Model-based development methodologies, methods, tools, and techniques facilitate collaboration and enable the use of common design artifacts among groups dealing with different aspects of the development of a system. This paper examines the application of model-based development to complex and safety-critical aircraft computer systems. Benefits and detriments are identified and an overall assessment of the approach is given.

  17. A rational approach to public safety

    International Nuclear Information System (INIS)

    Sidall, E.A.

    The proposed approach considers safety from the point of view of the victims, i.e. the public. It is taken as axiomatic that all premature loss of life is equal and that the cost of public safety measures falls in the last analysis on the public. The effort to counter risk is considered to be divided into many safety activities and sub-activities. At present, there is virtually no coordination between activities, but sub-activities are effectively compared with each other within each activity. If an activity is organized for best efficiency, its sub-activities would be carried out in order of diminishing return for money, or in other words in increasing cost per extra statistical life saved (CSX), up to a cut-off point. Evidence is quoted which indicates that, at present, the CSX at cut-off varies over several orders of magnitude between different activities. It is suggested that it is the ease or otherwise with which money can be made available for the activity which accounts for this wide range. If these activities with a high terminal CSX are cut back and the money saved is diverted to activities of low CSX, it appears that large amounts of money could be saved for the same overall cost. These measures simply amount to spending money when it will save most lives. The implementation of these ideas is discussed. (author)

  18. Regulatory role and approach of BARC Safety Council in safety and occupational health in BARC facilities

    International Nuclear Information System (INIS)

    Rajdeep; Jayarajan, K.; Taly, Y.K.

    2016-01-01

    Bhabha Atomic Research Centre is involved in multidisciplinary research and developmental activities, related to peaceful use of nuclear energy and its societal benefits. In order to achieve high level of performance of these facilities, the best efforts are made to maintain good health of the plant personnel and good working conditions. BARC Safety Council (BSC), which is the regulatory body for BARC facilities, regulates radiation safety, industrial safety and surveillance of occupational health, by implementing various rules and guidelines in BARC facilities. BARC Safety framework consists of various committees in a 3-tier system. The first tier is BSC, which is the apex body authorized for issuing directives, permissions, consents and authorizations. It is having responsibility of ensuring protection and safety of public, environment, personnel and facilities of BARC through enforcement of radiation protection and industrial safety programmes. Besides the 18 committees in 2"n"d tier, there are 6 other expert committees which assist in functioning of BSC. (author)

  19. Safety program of the Oak Ridge National Laboratory: a different approach

    International Nuclear Information System (INIS)

    Burger, G.H.

    1981-01-01

    The uniqueness and therefore different approach to Oak Ridge National Laboratory's safety program is not a result of elimination of the usual industrial safety organization, but results from the three organizations which supplement it and the areas of safety concerns that they cover. While industrial safety is primarily concerned with day-to-day routine worker activities (wearing of safety glasses and hard hats, adherence to electrical safety work procedures, proper safety lockout and tagout of equipment for maintenance activities, etc.), the other organizations, the Office of Operational Safety, Division Safety Officers and Radiation Control Officers, and the Laboratory director's Review Committees, are concerned with themuch broader spectrum of the total work environment. These organizations are concerned not only with the day-to-day worker activities but the design and conduction of all operations from a process viewpoint. The emphasis of these groups is assuring first that operations, experiments, facilities, etc., are designed properly and then secondly operated properly to assure safety of the operators, Laboratory population, and the public. Responsibilities of the three safety organizations constituting operational or process safety are described and discussed

  20. ERC Safety and Hygiene Programs functional organization structure and mission statement

    International Nuclear Information System (INIS)

    Coleman, S.R.

    2000-01-01

    This document provides a description of the functions, structure, commitments, and goals of the Environmental Restoration Contractor Safety and Hygiene Program. The current structure of the ERC Safety and Hygiene organization is described herein

  1. Stabilization with guaranteed safety using Control Lyapunov–Barrier Function

    NARCIS (Netherlands)

    Romdlony, Muhammad Zakiyullah; Jayawardhana, Bayu

    2016-01-01

    We propose a novel nonlinear control method for solving the problem of stabilization with guaranteed safety for nonlinear systems. The design is based on the merging of the well-known Control Lyapunov Function (CLF) and the recent concept of Control Barrier Function (CBF). The proposed control

  2. Safety assessment of botanicals and botanical preparations used as ingredients in food supplements: testing an European Food Safety Authority-tiered approach.

    Science.gov (United States)

    Speijers, Gerrit; Bottex, Bernard; Dusemund, Birgit; Lugasi, Andrea; Tóth, Jaroslav; Amberg-Müller, Judith; Galli, Corrado L; Silano, Vittorio; Rietjens, Ivonne M C M

    2010-02-01

    This article describes results obtained by testing the European Food Safety Authority-tiered guidance approach for safety assessment of botanicals and botanical preparations intended for use in food supplements. Main conclusions emerging are as follows. (i) Botanical ingredients must be identified by their scientific (binomial) name, in most cases down to the subspecies level or lower. (ii) Adequate characterization and description of the botanical parts and preparation methodology used is needed. Safety of a botanical ingredient cannot be assumed only relying on the long-term safe use of other preparations of the same botanical. (iii) Because of possible adulterations, misclassifications, replacements or falsifications, and restorations, establishment of adequate quality control is necessary. (iv) The strength of the evidence underlying concerns over a botanical ingredient should be included in the safety assessment. (v) The matrix effect should be taken into account in the safety assessment on a case-by-case basis. (vi) Adequate data and methods for appropriate exposure assessment are often missing. (vii) Safety regulations concerning toxic contaminants have to be complied with. The application of the guidance approach can result in the conclusion that safety can be presumed, that the botanical ingredient is of safety concern, or that further data are needed to assess safety.

  3. An innovative approach to interdisciplinary occupational safety and health education.

    Science.gov (United States)

    Rosen, Mitchel A; Caravanos, Jack; Milek, Debra; Udasin, Iris

    2011-07-01

    The New York and New Jersey Education and Research Center (ERC) provides a range of graduate continuing education for occupational safety and health (OSH) professionals in training. A key element of the education is to provide interdisciplinary training to industrial hygienists, ergonomists, occupational medicine physicians and other health and safety trainees to prepare them for the collaboration required to solve the complex occupational health and safety problems they will face in their careers. This center has developed an innovative interdisciplinary training approach that provides an historical aspect, while allowing the graduate students to identify solutions to occupational issues from a multi-disciplinary approach. The ERC developed a tour that brings students to sites of historical and/or contemporary significance in the occupational safety and health and environmental fields. The ERC has conducted five tours, and has included 85 students and residents as participants. 80% of participants rated the tour as providing a high amount of OSH knowledge gained. 98% of the participants felt the goal of providing interdisciplinary education was achieved. This tour has been successful in bridging the OSH fields to better understand how occupational and environmental exposures have occurred, in order to prevent future exposures so that workplace conditions and health can be improved. Copyright © 2011 Wiley-Liss, Inc.

  4. The role of hazard- and risk-based approaches in ensuring food safety

    DEFF Research Database (Denmark)

    Barlow, Susan M.; Boobis, Alan R.; Bridges, Jim

    2015-01-01

    action. Risk-based approaches allow consideration of exposure in assessing whether there may be unacceptable risks to health. Scope and approach The advantages and disadvantages of hazard- and risk-based approaches for ensuring the safety of food chemicals, allergens, ingredients and microorganisms were...

  5. Human factors and systems engineering approach to patient safety for radiotherapy.

    Science.gov (United States)

    Rivera, A Joy; Karsh, Ben-Tzion

    2008-01-01

    The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety.

  6. Human Factors and Systems Engineering Approach to Patient Safety for Radiotherapy

    International Nuclear Information System (INIS)

    Rivera, A. Joy; Karsh, Ben-Tzion

    2008-01-01

    The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety

  7. The french safety approach regarding equipment qualification

    International Nuclear Information System (INIS)

    Jalouneix, J.; Deletre, G.; Henry, J.Y.; Rousseau, L.

    1989-10-01

    The qualification of the equipment, used in France on nuclear reactors and reactor components, is discussed. The approach on safety involves the qualification of mechanical and electrical components, under operating and under seismic conditions. The principles of the qualification program and the list of the equipment concerned, are given. The conditions in which qualification tests are performed and the methods applied, are summarized. The actions for preserving the qualification procedures, are considered

  8. Total safety management: An approach to improving safety culture

    International Nuclear Information System (INIS)

    Blush, S.M.

    1993-01-01

    A little over 4 yr ago, Admiral James D. Watkins became Secretary of Energy. President Bush, who had appointed him, informed Watkins that his principal task would be to clean up the nuclear weapons complex and put the US Department of Energy (DOE) back in the business of producing tritium for the nation's nuclear deterrent. Watkins recognized that in order to achieve these objectives, he would have to substantially improve the DOE's safety culture. Safety culture is a relatively new term. The International Atomic Energy Agency (IAEA) used it in a 1986 report on the root causes of the Chernobyl nuclear accident. In 1990, the IAEA's International Nuclear Safety Advisory Group issued a document focusing directly on safety culture. It provides guidelines to the international nuclear community for measuring the effectiveness of safety culture in nuclear organizations. Safety culture has two principal aspects: an organizational framework conducive to safety and the necessary organizational and individual attitudes that promote safety. These obviously go hand in hand. An organization must create the right framework to foster the right attitudes, but individuals must have the right attitudes to create the organizational framework that will support a good safety culture. The difficulty in developing such a synergistic relationship suggests that achieving and sustaining a strong safety culture is not easy, particularly in an organization whose safety culture is in serious disrepair

  9. IAEA’s Approach to Leadership, Management and Culture for Safety

    International Nuclear Information System (INIS)

    Rzentkowski, G.

    2016-01-01

    In this session the director of the Division of Nuclear Installation Safety (NSNI) will describe the division’s approach to leadership, management and culture for safety and outline the strategy adopted for this work. The IAEA has developed a safety culture foundation framework which is used to support all installations’ and organisations’ work for continuous improvement to achieve excellence in nuclear safety performance. The framework has been developing since 1986 through the work of the IAEA and the nuclear community, and is based on nuclear organisations’ experiences (both in practices applied and events experienced) and the development of scientific knowledge on human and organisation factors that support nuclear safety performance. The main aim for the IAEA is to assist the Member States to translate the knowledge into practical and successful practise, and to further enhance the safety on nuclear installations. The Strategy of the division is to share the common foundation of the framework across the different nuclear sectors and ensure that application of improvement activities are firmly based on knowledge and appropriate context based solutions.

  10. VDMA contribution to functional safety of turbomachinery. Required risk reduction by safety functions for steam turbines; VDMA-Beitrag zur Funktionalen Sicherheit von Turbomaschinen. Notwendige Risikoreduktion durch Schutzfunktionen fuer Dampfturbinen

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, Bernhard [Alstom Power Systems GmbH, Mannheim (Germany); Zelinger, Matthias [VDMA Power Systems, Frankfurt am Main (Germany); Havemann, Juergen [Siemens AG, Muelheim an der Ruhr (Germany). Energy Sector; Potten, Christian [MAN Diesel und Turbo SE, Oberhausen (Germany)

    2011-07-01

    Turbomachinery in power plants and industrial plants has to satisfy high safety standards. To meet these requirements, mechanical, hydraulic and electromechanical components have been used, most of them well-established already for decades. In recent years new standards for functional safety have been developed which address different target groups (IEC 61 528/511 for process industry IEC 62061 and ISO 13849 for mechanical engineering). The Working Panel 'Functional Safety of Turbomachinery' of VDMA defines rules for turbomachinery that will be presented with their background. (orig.)

  11. The Argentine Approach to Radiation Safety: Its Ethical Basis

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2011-01-01

    The ethical bases of Argentina's radiation safety approach are reviewed. The applied principles are those recommended and established internationally, namely: the principle of justification of decisions that alters the radiation exposure situation; the principle of optimization of protection and safety; the principle of individual protection for restricting possible inequitable outcomes of optimized safety; and the implicit principle of inter generational prudence for protection future generations and the habitat. The principles are compared vis-a-vis the prevalent ethical doctrines: justification vis-a-vis teleology; optimization vis-a-vis utilitarianism; individual protection vis-a-vis de ontology; and, inter generational prudence vis-a-vis aretaicism (or virtuosity). The application of the principles and their ethics in Argentina is analysed. These principles are applied to All exposure to radiation harm; namely, to exposures to actual doses and to exposures to actual risk and potential doses, including those related to the safety of nuclear installations, and they are harmonized and applied in conjunction. It is concluded that building a bridge among all available ethical doctrines and applying it to radiation safety against actual doses and actual risk and potential doses is at the roots of the successful nuclear regulatory experience in Argentina.

  12. Preliminary study on functional performance of compound type multistage safety injection tank

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo

    2015-01-01

    Highlights: • Functional performance of compound type multistage safety injection tanks is studied. • Effects of key design parameters are scrutinized. • Distinctive flow features in compound type safety injection tanks are explored. - Abstract: A parametric study is carried out to evaluate the functional performance of a compound type multistage safety injection tank that would be considered one of the components for the passive safety injection systems in nuclear power plants. The effects of key design parameters such as the initial volume fraction and charging pressure of gas, tank elevation, vertical location of a sparger, resistance coefficient, and operating condition on the injection flow rate are scrutinized along with a discussion of the relevant flow features. The obtained results indicate that the compound type multistage safety injection tank can effectively control the injection flow rate in a passive manner, by switching the driving force for the safety injection from gas pressure to gravity during the refill and reflood phases, respectively

  13. ESR statement on radiation protection: globalisation, personalised medicine and safety (the GPS approach).

    Science.gov (United States)

    2013-12-01

    In keeping with its responsibility for the radiation protection of patients undergoing radiological examinations and procedures, as well as of staff who are getting exposed, and with due regard to requirements under European Directives, the European Society of Radiology (ESR) issues this statement. It provides a holistic approach, termed as Globalisation (indicating all the steps and involving all stakeholders), Personalisation (referring to patient-centric) and Safety-thus called GPS. While being conscious that there is need to increase access of radiological imaging, ESR is aware about the increasing inappropriate medical exposures to ionising radiation and wide variation in patient doses for the same examination. The ESR is convinced that the different components of radiation protection are often interrelated and cannot be considered in isolation The ESR's GPS approach stands for: Globalisation (indicating all the steps and involving all stakeholders), Personalisation (referring to patient-centric) and Safety-thus called GPS It can be anticipated that enhanced protection of patients in Europe will result through the GPS approach. Although the focus is on patient safety, staff safety issues will find a place wherever pertinent.

  14. Radiation safety standards : an environmentalist's approach

    International Nuclear Information System (INIS)

    Murthy, M.S.S.S.

    1977-01-01

    An integrated approach to the problem of environmental mutagenic hazards leads to the recommendation of a single dose-limit to the exposure of human beings to all man-made mutagenic agents including chemicals and radiation. However, because of lack of : (1) adequate information on chemical mutagens, (2) sufficient data on their risk estimates and (3) universally accepted dose-limites, control of chemical mutagens in the environment has not reached that advanced stage as that of radiation. In this situation, the radiation safety standards currently in use should be retained at their present levels. (M.G.B.)

  15. Systematic approach to training for competence building in radiation safety

    International Nuclear Information System (INIS)

    Asiamah, S.D.; Schandorf, C.; Darko, E.O.

    2003-01-01

    Competence building involves four main attributes, namely, knowledge, skills, operating experience and attitude to radiation safety. These multi-attribute requirements demand a systematic approach to education and training of regulatory staff, licensees/registrants and service providers to ensure commensurate competence in performance of responsibilities and duties to specified standards. In order to address issues of competencies required in radiation safety a national programme for qualification and certification has been initiated for regulatory staff, operators, radiation safety officers and qualified experts. Since the inception of this programme in 1993, 40 training events have been organized involving 423 individuals. This programme is at various levels of implementation due to financial and human resource constraints. A department for Human Resource Development and Research was established in 2000 to enhance and ensure the sustainability of the effectiveness of capacity building in radiation safety. (author)

  16. Bayesian approach and application to operation safety

    International Nuclear Information System (INIS)

    Procaccia, H.; Suhner, M.Ch.

    2003-01-01

    The management of industrial risks requires the development of statistical and probabilistic analyses which use all the available convenient information in order to compensate the insufficient experience feedback in a domain where accidents and incidents remain too scarce to perform a classical statistical frequency analysis. The Bayesian decision approach is well adapted to this problem because it integrates both the expertise and the experience feedback. The domain of knowledge is widen, the forecasting study becomes possible and the decisions-remedial actions are strengthen thanks to risk-cost-benefit optimization analyzes. This book presents the bases of the Bayesian approach and its concrete applications in various industrial domains. After a mathematical presentation of the industrial operation safety concepts and of the Bayesian approach principles, this book treats of some of the problems that can be solved thanks to this approach: softwares reliability, controls linked with the equipments warranty, dynamical updating of databases, expertise modeling and weighting, Bayesian optimization in the domains of maintenance, quality control, tests and design of new equipments. A synthesis of the mathematical formulae used in this approach is given in conclusion. (J.S.)

  17. Manual of functions, assignments, and responsibilities for nuclear safety: Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-15

    The FAR Manual is a convenient easy-to-use collection of the functions, assignments, and responsibilities (FARs) of DOE nuclear safety personnel. Current DOE directives, including Orders, Secretary of Energy Notices, and other assorted policy memoranda, are the source of this information and form the basis of the FAR Manual. Today, the majority of FARs for DOE personnel are contained in DOE`s nuclear safety Orders. As these Orders are converted to rules in the Code of Federal Regulations, the FAR Manual will become the sole source for information relating to the functions, assignments, responsibilities of DOE nuclear safety personnel. The FAR Manual identifies DOE directives that relate to nuclear safety and the specific DOE personnel who are responsible for implementing them. The manual includes only FARs that have been extracted from active directives that have been approved in accordance with the procedures contained in DOE Order 1321.1B.

  18. The French-German common safety approach for future reactors

    International Nuclear Information System (INIS)

    Birkhofer, A.; Chevet, P.F.

    1995-01-01

    A common safety approach has been defined for future electronuclear plants in the framework of the French-German European Pressurised water Reactor (EPR) project. Improvements in the domain of containment are required in future reactors conception to prevent any risk of core fusion under high and low pressure. Another objective is to reduce significantly the radioactive releases due to other accidents in order to reduce spatial and temporal environmental and human protection procedures. Protection against external aggressions (plane fall, explosions, earthquakes,..), prevention of pipe rupture in the primary circuits, limitation of hydrogen production in the case of water-zirconium complete reaction, cooling of the reactor in the case of core fusion, and radiologic consequences of accidents are the main points discussed by the French-German safety authorities to define the common safety standards of the EPR project. (J.S.)

  19. Comparative approach between nuclear safety and security; Approche comparative entre surete et securite nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-04-15

    Adopting the definition of nuclear safety and nuclear security as they are specified by IAEA glossaries, this report first outlines that these both notions refer to similar risks but with causes of different nature. They discuss the notions of transparency and confidentiality and outline that security and safety both aims at the protection of population and of the environment. They discuss their organisational principles, notice that both have their own legal and regulatory framework, that authorities have expertise on both, that the responsibility is distributed among operators and the State, and that safety and security cultures are complementary. They analyse the design, exploitation and management principles of security and safety approaches: graded approach, defence-in-depth, synergy between security and safety, same daily monitoring requirement, same necessity to address the return on experience, same need to update a referential, a more constrained exchange of good practices in safety, a necessity to deal with their respective requirements, elaboration of emergency plans, performance of exercises

  20. Enhancing Road Safety Behaviour Using a Psychological and Spiritual Approaches

    Directory of Open Access Journals (Sweden)

    Ghous Mohd Tarmizi

    2017-01-01

    Full Text Available Main causes of accident is due to driver itself that is influenced by their bad attitude while driving. Human attitude is closely related to the human psychology. Apart from that, spiritual aspect also influence human attitude. Hence, this study carried out to improve driver safety using a new approach through psychology and spiritual factors. Objectives of this study are to identify then analyze factors of psychological and spiritual that contribute towards safety driving. A self-administered questionnaire were distributed among 256 respondents from various type of background. An analysis descriptive statistics show demographic and experience of respondents. Chi-square analysis showed only education level and traffic summon are significant to safety driving. Furthermore, correlation analysis shows psychological factors has strong linear relationship on attitude of drivers towards safety driving while spiritual factor, the perception of the spiritual and practices, both have a strong relationship to safety driving. Regression analysis demonstrates boths psychological and spiritual factors have strong evidence and significant relationship with safety driving. Thus, it can be identified that spiritual psychological factors encourage drivers to drive more safely and reduce road accidents. Therefore, this study propose useful guidelines to related agencies in order to enhance safety among drivers to be able drive safely on the road.

  1. Stochastic methods for uncertainty treatment of functional variables in computer codes: application to safety studies

    International Nuclear Information System (INIS)

    Nanty, Simon

    2015-01-01

    This work relates to the framework of uncertainty quantification for numerical simulators, and more precisely studies two industrial applications linked to the safety studies of nuclear plants. These two applications have several common features. The first one is that the computer code inputs are functional and scalar variables, functional ones being dependent. The second feature is that the probability distribution of functional variables is known only through a sample of their realizations. The third feature, relative to only one of the two applications, is the high computational cost of the code, which limits the number of possible simulations. The main objective of this work was to propose a complete methodology for the uncertainty analysis of numerical simulators for the two considered cases. First, we have proposed a methodology to quantify the uncertainties of dependent functional random variables from a sample of their realizations. This methodology enables to both model the dependency between variables and their link to another variable, called co-variate, which could be, for instance, the output of the considered code. Then, we have developed an adaptation of a visualization tool for functional data, which enables to simultaneously visualize the uncertainties and features of dependent functional variables. Second, a method to perform the global sensitivity analysis of the codes used in the two studied cases has been proposed. In the case of a computationally demanding code, the direct use of quantitative global sensitivity analysis methods is intractable. To overcome this issue, the retained solution consists in building a surrogate model or meta model, a fast-running model approximating the computationally expensive code. An optimized uniform sampling strategy for scalar and functional variables has been developed to build a learning basis for the meta model. Finally, a new approximation approach for expensive codes with functional outputs has been

  2. French Approach for Long Term Storage Safety

    International Nuclear Information System (INIS)

    Marciano, Jacob; Carreton, Jean-Pierre; Lizot, Marie Therese; Lhomme, Veronique

    2014-01-01

    IRSN presents its statement regarding long-term storage facilities; in France, the regulatory documents do not define the long term duration. The storage facility lifetime can only be appreciated according to the needs and materials stored therein. However, the magnitude of the long-term can be estimated at a few hundred years compared to a few decades for current storage. Usually, in France, construction of storage facilities is driven from the necessity various necessities, linked to the management of radioactive material (eg spent fuel) and to the management of radioactive waste. Because of the variety of 'stored materials and objects' (fission product solutions, plutonium oxide powders, activated solids, drums containing technological waste, spent fuel...), a great number of storage facility design solutions have been developed (surface, subsurface areas, dry or wet conditions...) in the World. After describing the main functions of a storage facility, IRSN displays the safety principles and the associated design principles. The specific design principles applied to particular storage (dry or wet spent fuel storage, depleted uranium or reprocessed uranium storage, plutonium storage, waste containing tritium storage, HLW and ILLW storage...) are also presented. Finally, the concerns due to the long-term duration storage and related safety assessment are developed. After discussing these issues, IRSN displays its statement. The authorization procedures governing the facility lifetime are similar to those of any basic nuclear installation, the continuation of the facility operation remaining subject to periodic safety reviews (in France, every 10 years). The applicant safety cases have to show, that the safety requirements are always met; this requires, at minimum, to take into account at the design stage, comfortable design margins. (author)

  3. Systemic Approach to Safety from a Regulatory Perspective

    International Nuclear Information System (INIS)

    Edland, A.

    2016-01-01

    In Sweden and especially in the Swedish oversight of nuclear power plants there has been a strong commitment to the interactions between Man-Technology-Organization (MTO) for many years. Safety issues and the importance of working with these issues have often been highlighted in specific oversight actions. Since 30 years there has been a tradition and a development of experience in Sweden taking a systemic MTO approach to safety. Inspection teams have been created with both psychologists and technical expertise in order to cover the whole MTO perspective during oversight inspections at the nuclear power plants. Safety is based on preventive actions where both technology and human behaviour are taken into account. To do this, it is important to have knowledge about the different factors that influence the performance of individuals, groups and organizations. However, it is also important to remember to not only discuss humans, management and organizations in terms of their limitations, errors and shortcomings but also in terms of their strengths in stopping a chain of events, in learning, inventing and improving. Having an integrated view of safety, focussing on the relations between human, technology and organization (MTO) refers to a systemic perspective on how radiation safety are affected by the relationship between: Human’s abilities and limitations; Technical equipment and the surrounding environment; The organization and the opportunities this provides. The Section of Man-Technology-Organization in the Swedish authority consist today of 12 Human factors specialists with behaviour science education. The section is responsible for the oversight at nuclear power plants in many areas; safety management, leadership and organization, safety culture, competence assurance, fitness for duty, suitability, education and staffing, knowledge management, working conditions, MTO perspective/ergonomics of control room work and plant modification, incident analysis and risk

  4. Sociotechnical approaches to workplace safety: Research needs and opportunities

    Science.gov (United States)

    Robertson, Michelle M.; Hettinger, Lawrence J.; Waterson, Patrick E.; Ian Noy, Y.; Dainoff, Marvin J.; Leveson, Nancy G.; Carayon, Pascale; Courtney, Theodore K.

    2015-01-01

    The sociotechnical systems perspective offers intriguing and potentially valuable insights into problems associated with workplace safety. While formal sociotechnical systems thinking originated in the 1950s, its application to the analysis and design of sustainable, safe working environments has not been fully developed. To that end, a Hopkinton Conference was organised to review and summarise the state of knowledge in the area and to identify research priorities. A group of 26 international experts produced collaborative articles for this special issue of Ergonomics, and each focused on examining a key conceptual, methodological and/or theoretical issue associated with sociotechnical systems and safety. In this concluding paper, we describe the major conference themes and recommendations. These are organised into six topic areas: (1) Concepts, definitions and frameworks, (2) defining research methodologies, (3) modelling and simulation, (4) communications and decision-making, (5) sociotechnical attributes of safe and unsafe systems and (6) potential future research directions for sociotechnical systems research. Practitioner Summary: Sociotechnical complexity, a characteristic of many contemporary work environments, presents potential safety risks that traditional approaches to workplace safety may not adequately address. In this paper, we summarise the investigations of a group of international researchers into questions associated with the application of sociotechnical systems thinking to improve worker safety. PMID:25728246

  5. A program approach for site safety at oil spills

    International Nuclear Information System (INIS)

    Whipple, F.L.; Glenn, S.P.; Ocken, J.J.; Ott, G.L.

    1993-01-01

    When OSHA developed the hazardous waste operations (Hazwoper) regulations (29 CFR 1910.120) members of the response community envisioned a separation of oil and open-quotes hazmatclose quotes response operations. Organizations that deal with oil spills have had difficulty applying Hazwoper regulations to oil spill operations. This hinders meaningful implementation of the standard for their personnel. We should approach oil spills with the same degree of caution that is applied to hazmat response. Training frequently does not address the safety of oil spill response operations. Site-specific safety and health plans often are neglected or omitted. Certain oils expose workers to carcinogens, as well as chronic and acute hazards. Significant physical hazards are most important. In responding to oil spills, the hazards must be addressed. It is the authors' contention that a need exists for safety program at oil spill sites. Gone are the days of labor pool hires cleaning up spills in jeans and sneakers. The key to meaningful programs for oil spills requires application of controls focused on relevant safety risks rather than minimal chemical exposure hazards. Working with concerned reviewers from other agencies and organizations, the authors have developed a general safety and health program for oil spill response. It is intended to serve as the basis for organizations to customize their own written safety and health program (required by OSHA). It also provides a separate generic site safety plan for emergency phase oil spill operations (check-list) and long term post-emergency phase operations

  6. A new approach to the criticality safety assessment of PCM at BNFL Sellafield

    International Nuclear Information System (INIS)

    Darby, Sam; Kirkwood, Dave

    2003-01-01

    Plutonium Contaminated Material (PCM) arises as a solid waste on the Sellafield Site and is packaged into 200 litre drums which are placed into interim surface storage arrays. These wastes may also contain 235 U. The traditional approach to criticality safety has been based on ''worst-case'' reactivity modelling. This has recently led to a number of difficulties by implying that the 230 g (Pu + 235 U) drum limit is very important for criticality safety and the assay instruments used to demonstrate compliance with the limit need a high level of safety reliability. Also, the reliability and accuracy of the assay results of historical or legacy PCM became an issue. The new focus on substantiation of safety related equipment in BNFL has highlighted reliability shortfalls for the assay instruments. To overcome these shortfalls, additional operational practices on the PCM handling regimes were introduced to give increased confidence in the fissile assay results. These practices significantly delayed processing PCM waste stocks and resulted in significant additional operator dose uptake. Thus there were strong reasons to improve the existing approach. This paper describes a new approach to the criticality modelling of PCM. (author)

  7. Multimethods approach to safety-parameter-display evaluation

    International Nuclear Information System (INIS)

    Banks, W.W.; Blackman, H.S.; Gertman, D.I.; Petersen, R.J.

    1982-01-01

    The Human Factors Engineering Office of EG and G Idaho performed this NRC-funded study to assist the NRC in objectively assessing licensee-developed safety parameter display (SPD) formats and designs. The purpose of this study was to quantitatively measure the degree to which a tachistoscopic method of display evaluation would correlate with the results of a multidimensional rating approach to display evaluation. Results of the following three experiments will be presented; (a) tachistoscopic, (b) multidimensional rating scale, and (c) the combined results of a and b. The test material for all experiments consisted of three multivariate data display formats all under development as SPDs for reactor control rooms presenting safety parameter display data at the loss-of-fluid test (LOFT) facility. The three display formats studied were stars, deviation bar graphs, and meters. Eighteen adult volunteers were used as subjects. All were currently qualified reactor operators from the LOFT reactor plant, with a mean of 9.4 years reactor operating experience

  8. Strengthening Safety Culture as an Overriding Priority, in Achieving Global Nuclear Security Approach

    International Nuclear Information System (INIS)

    Kolundzija, V.

    2006-01-01

    In the IAEA glossary safety culture is defined as the assembly of characteristics and attitudes in organizations and individuals, which establishes that, as an overriding priority, protection and safety issues receive the attention warranted by their significance. It has been observed that a safety culture, as a part of both security and safety, possesses a few obstacles that should be noticed: safety culture cannot be directly regulated; variation in national cultures means that what constitutes as a good approach to enhancing safety culture in one country may not be the best approach in another. Three stages have been identified in developing and strengthening safety culture: 1 A technical issue (rules and regulations)/ first stage 2 Good safety performance (primarily in terms of safety targets or goals)/ second stage 3 A continuing process of improvement to which everyone can contribute/ third stage There are several key issues in safety culture, such as: a commitment, use of procedures, a conservative decision making (STAR) a reporting culture. Organizations and individuals should have attention on these. Overall common goals are to achieve and maintain a high level of safety and security of radioactive sources as well as facilities. Measures that are concerned on safeguards restrict access to the radioactive sources, conditioning and/or recycling of sources, and systems for detection the passage of the radioactive sources at strategic points, have gained main support. The main partners in implementation these measures are: IAEA, USA, Russian Federation, G8- Global Partnership, and European Union The member states of the IAEA have at their disposal internationally agreed standards. Current differences in applying standards in the IAEA member states are mainly related to state preparedness to cope with demands. Developing and less developed countries with small and medium nuclear programmes have difficulties to accept rules and regulations, to establish

  9. Engineering systems reliability, safety, and maintenance an integrated approach

    CERN Document Server

    Dhillon, B S

    2017-01-01

    Today, engineering systems are an important element of the world economy and each year billions of dollars are spent to develop, manufacture, operate, and maintain various types of engineering systems around the globe. Many of these systems are highly sophisticated and contain millions of parts. For example, a Boeing jumbo 747 is made up of approximately 4.5 million parts including fasteners. Needless to say, reliability, safety, and maintenance of systems such as this have become more important than ever before.  Global competition and other factors are forcing manufacturers to produce highly reliable, safe, and maintainable engineering products. Therefore, there is a definite need for the reliability, safety, and maintenance professionals to work closely during design and other phases. Engineering Systems Reliability, Safety, and Maintenance: An Integrated Approach eliminates the need to consult many different and diverse sources in the hunt for the information required to design better engineering syste...

  10. Qualified Presumption of Safety (QPS) is a generic risk assessment approach applied by the European Food Safety Authority (EFSA)

    DEFF Research Database (Denmark)

    Leuschner, R. G. K.; Robinson, T. P.; Hugas, M.

    2010-01-01

    Qualified Presumption of Safety (QPS) is a generic risk assessment approach applied by the European Food Safety Authority (EFSA) to notified biological agents aiming at simplifying risk assessments across different scientific Panels and Units. The aim of this review is to outline the implementation...... and value of the QPS assessment for EFSA and to explain its principles such as the unambiguous identity of a taxonomic unit, the body of knowledge including potential safety concerns and how these considerations lead to a list of biological agents recommended for QPS which EFSA keeps updated through...

  11. Safety-barrier diagrams as a tool for modelling safety of hydrogen applications

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan; Markert, Frank

    2009-01-01

    Safety-barrier diagrams have proven to be a useful tool in documenting the safety measures taken to prevent incidents and accidents in process industry. Especially during the introduction of new hydrogen technologies or applications, as e.g. hydrogen refuelling stations, safety-barrier diagrams...... are considered a valuable supplement to other traditional risk analysis tools to support the communication with authorities and other stakeholders during the permitting process. Another advantage of safety-barrier diagrams is that they highlight the importance of functional and reliable safety barriers in any...... system and here is a direct focus on those barriers that need to be subject to safety management in terms of design and installation, operational use, inspection and monitoring, and maintenance. Safety-barrier diagrams support both quantitative and qualitative approaches. The paper will describe...

  12. Modelling safety of multistate systems with ageing components

    Energy Technology Data Exchange (ETDEWEB)

    Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna [Gdynia Maritime University, Department of Mathematics ul. Morska 81-87, Gdynia 81-225 Poland (Poland)

    2016-06-08

    An innovative approach to safety analysis of multistate ageing systems is presented. Basic notions of the ageing multistate systems safety analysis are introduced. The system components and the system multistate safety functions are defined. The mean values and variances of the multistate systems lifetimes in the safety state subsets and the mean values of their lifetimes in the particular safety states are defined. The multi-state system risk function and the moment of exceeding by the system the critical safety state are introduced. Applications of the proposed multistate system safety models to the evaluation and prediction of the safty characteristics of the consecutive “m out of n: F” is presented as well.

  13. Modelling safety of multistate systems with ageing components

    International Nuclear Information System (INIS)

    Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna

    2016-01-01

    An innovative approach to safety analysis of multistate ageing systems is presented. Basic notions of the ageing multistate systems safety analysis are introduced. The system components and the system multistate safety functions are defined. The mean values and variances of the multistate systems lifetimes in the safety state subsets and the mean values of their lifetimes in the particular safety states are defined. The multi-state system risk function and the moment of exceeding by the system the critical safety state are introduced. Applications of the proposed multistate system safety models to the evaluation and prediction of the safty characteristics of the consecutive “m out of n: F” is presented as well.

  14. Packaging Evaluation Approach to Improve Cosmetic Product Safety

    Directory of Open Access Journals (Sweden)

    Benedetta Briasco

    2016-09-01

    Full Text Available In the Regulation 1223/2009, evaluation of packaging has become mandatory to assure cosmetic product safety. In fact, the safety assessment of a cosmetic product can be successfully carried out only if the hazard deriving from the use of the designed packaging for the specific product is correctly evaluated. Despite the law requirement, there is too little information about the chemical-physical characteristics of finished packaging and the possible interactions between formulation and packaging; furthermore, different from food packaging, the cosmetic packaging is not regulated and, to date, appropriate guidelines are still missing. The aim of this work was to propose a practical approach to investigate commercial polymeric containers used in cosmetic field, especially through mechanical properties’ evaluation, from a safety point of view. First of all, it is essential to obtain complete information about raw materials. Subsequently, using an appropriate full factorial experimental design, it is possible to investigate the variables, like polymeric density, treatment, or type of formulation involved in changes to packaging properties or in formulation-packaging interaction. The variation of these properties can greatly affect cosmetic safety. In particular, mechanical properties can be used as an indicator of pack performances and safety. As an example, containers made of two types of polyethylene with different density, low-density polyethylene (LDPE and high-density polyethylene (HDPE, are investigated. Regarding the substances potentially extractable from the packaging, in this work the headspace solid-phase microextraction method (HSSPME was used because this technique was reported in the literature as suitable to detect extractables from the polymeric material here employed.

  15. Safety concerns and suggested design approaches to the HTGR Reformer process concept

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.C.

    1981-09-01

    This report is a safety review of the High Temperature Gas-Cooled Reactor Reformer Application Study prepared by Gas-Cooled Reactor Associates (GCRA) of La Jolla, California. The objective of this review was to identify safety concerns and suggests design approaches to minimize risk in the High Temperature Gas-Cooled Reactor Reformer (HTGR-R) process concept.

  16. Safety concerns and suggested design approaches to the HTGR Reformer process concept

    International Nuclear Information System (INIS)

    Green, R.C.

    1981-09-01

    This report is a safety review of the High Temperature Gas-Cooled Reactor Reformer Application Study prepared by Gas-Cooled Reactor Associates (GCRA) of La Jolla, California. The objective of this review was to identify safety concerns and suggests design approaches to minimize risk in the High Temperature Gas-Cooled Reactor Reformer (HTGR-R) process concept

  17. Data Analysis Approaches for the Risk-Informed Safety Margins Characterization Toolkit

    International Nuclear Information System (INIS)

    Mandelli, Diego; Alfonsi, Andrea; Maljovec, Daniel P.; Parisi, Carlo; Cogliati, Joshua J.; Talbot, Paul W.; Smith, Curtis L.; Rabiti, Cristian; Picoco, Claudia

    2016-01-01

    In the past decades, several numerical simulation codes have been employed to simulate accident dynamics (e.g., RELAP5-3D, RELAP-7, MELCOR, MAAP). In order to evaluate the impact of uncertainties into accident dynamics, several stochastic methodologies have been coupled with these codes. These stochastic methods range from classical Monte-Carlo and Latin Hypercube sampling to stochastic polynomial methods. Similar approaches have been introduced into the risk and safety community where stochastic methods (such as RAVEN, ADAPT, MCDET, ADS) have been coupled with safety analysis codes in order to evaluate the safety impact of timing and sequencing of events. These approaches are usually called Dynamic PRA or simulation-based PRA methods. These uncertainties and safety methods usually generate a large number of simulation runs (database storage may be on the order of gigabytes or higher). The scope of this paper is to present a broad overview of methods and algorithms that can be used to analyze and extract information from large data sets containing time dependent data. In this context, ''extracting information'' means constructing input-output correlations, finding commonalities, and identifying outliers. Some of the algorithms presented here have been developed or are under development within the RAVEN statistical framework.

  18. Data Analysis Approaches for the Risk-Informed Safety Margins Characterization Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maljovec, Daniel P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, Paul W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Picoco, Claudia [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    In the past decades, several numerical simulation codes have been employed to simulate accident dynamics (e.g., RELAP5-3D, RELAP-7, MELCOR, MAAP). In order to evaluate the impact of uncertainties into accident dynamics, several stochastic methodologies have been coupled with these codes. These stochastic methods range from classical Monte-Carlo and Latin Hypercube sampling to stochastic polynomial methods. Similar approaches have been introduced into the risk and safety community where stochastic methods (such as RAVEN, ADAPT, MCDET, ADS) have been coupled with safety analysis codes in order to evaluate the safety impact of timing and sequencing of events. These approaches are usually called Dynamic PRA or simulation-based PRA methods. These uncertainties and safety methods usually generate a large number of simulation runs (database storage may be on the order of gigabytes or higher). The scope of this paper is to present a broad overview of methods and algorithms that can be used to analyze and extract information from large data sets containing time dependent data. In this context, “extracting information” means constructing input-output correlations, finding commonalities, and identifying outliers. Some of the algorithms presented here have been developed or are under development within the RAVEN statistical framework.

  19. Designing a Safety Reporting Smartphone Application to Improve Patient Safety After Total Hip Arthroplasty.

    Science.gov (United States)

    Krumsvik, Ole Andreas; Babic, Ankica

    2017-01-01

    This paper presents a safety reporting smartphone application which is expected to reduce the occurrence of postoperative adverse events after total hip arthroplasty (THA). A user-centered design approach was utilized to facilitate optimal user experience. Two main implemented functionalities capture patient pain levels and well-being, the two dimensions of patient status that are intuitive and commonly checked. For these and other functionalities, mobile technology could enable timely safety reporting and collection of patient data out of a hospital setting. The HCI expert, and healthcare professionals from the Haukeland University Hospital in Bergen have assessed the design with respect to the interaction flow, information content, and self-reporting functionalities. They have found it to be practical, intuitive, sufficient and simple for users. Patient self-reporting could help recognizing safety issues and adverse events.

  20. 33 CFR 96.240 - What functional requirements must a safety management system meet?

    Science.gov (United States)

    2010-07-01

    ... a safety management system meet? 96.240 Section 96.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.240 What functional...

  1. Developing safety performance functions incorporating reliability-based risk measures.

    Science.gov (United States)

    Ibrahim, Shewkar El-Bassiouni; Sayed, Tarek

    2011-11-01

    Current geometric design guides provide deterministic standards where the safety margin of the design output is generally unknown and there is little knowledge of the safety implications of deviating from these standards. Several studies have advocated probabilistic geometric design where reliability analysis can be used to account for the uncertainty in the design parameters and to provide a risk measure of the implication of deviation from design standards. However, there is currently no link between measures of design reliability and the quantification of safety using collision frequency. The analysis presented in this paper attempts to bridge this gap by incorporating a reliability-based quantitative risk measure such as the probability of non-compliance (P(nc)) in safety performance functions (SPFs). Establishing this link will allow admitting reliability-based design into traditional benefit-cost analysis and should lead to a wider application of the reliability technique in road design. The present application is concerned with the design of horizontal curves, where the limit state function is defined in terms of the available (supply) and stopping (demand) sight distances. A comprehensive collision and geometric design database of two-lane rural highways is used to investigate the effect of the probability of non-compliance on safety. The reliability analysis was carried out using the First Order Reliability Method (FORM). Two Negative Binomial (NB) SPFs were developed to compare models with and without the reliability-based risk measures. It was found that models incorporating the P(nc) provided a better fit to the data set than the traditional (without risk) NB SPFs for total, injury and fatality (I+F) and property damage only (PDO) collisions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. A New approach to the spread of safety culture. The trend of studies and practice in the foreign nuclear power industry, and future approach

    International Nuclear Information System (INIS)

    Hasegawa, Naoko; Takano, Kenichi

    2001-01-01

    The purpose of this study is to clarify organizational factors influencing on safety and to suggest future approach for the spread of safety culture. As the results of investigations on safety companies, characteristics of organizational policies, those of safety activities' purposes, and organizational factors which encourage workers to take a positive attitude toward the safety activities were clarified. Based on the clarified characteristics and the trend of studies and practice in the foreign nuclear power industry, it was suggested that it would be necessary for the spread of safety culture in an organization to learn lessons for the prevention of accidents' recurring and to maintain safety behavior and attitude for the prevention of accidents' occurring. For support of this, it is desired to develop the assessment system of organizational safety and the planning system of safety management. The new approach was also suggested with the process model for influence of organizational factors which include workers' psychological aspects. (author)

  3. Safety approach and R and D program for future french sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Beils, Stephane; Carluec, Bernard; Devictor, Nicolas; Fiorini, Gian Luigi; Sauvage, Jean Francois

    2011-01-01

    This paper presents briefly the safety approach as well as the R and D program that is underway to support the deployment of future French Sodium-Cooled fast Reactors (SFRs): A) Safety objectives and principles for future reactors. The content of the first section reflects the works of AREVA, CEA, and EDF concerning the safety orientations for the future reactors. The availability of such orientations and requirements for the SFRs has to allow introducing and managing the process that will lead to the detailed definition of the safety approach, to the selection of the corresponding safety options, and to the identification and motivation of the supporting R and D. B) Strategy and roadmap in support of the R and D for future SFRs. This section describes the R and D program led jointly by CEA, EDF, and AREVA, which has been developed with the objectives to be able to preliminarily define, by 2012, the safety orientations for the future SFRs, and to deduce from them the characteristics of the ASTRID prototype. (author)

  4. Most common road safety engineering deficiencies in South Eastern Europe as a part of safe system approach

    Science.gov (United States)

    Jovanov, D.; Vollpracht, H. J.; Beles, H.; Popa, V.; Tolea, B. A.

    2017-10-01

    Most common road safety engineering deficiencies identified by the authors in South Eastern Europe, including Romania, have been collected together and presented in this paper as a part of road safety unbreakably connected to the safe system approach (driver-vehicle-road). In different South Eastern Europe countries Road Safety Audit (RSA), Road Safety Inspection (RSI), as well as Black Spot Management (BSM) was introduced and practical implementation experience enabled the authors to analyze the road safety problems. Typical road safety engineering deficiencies have been presented in 8 different subsections, based on PIARC (World Road Association) RSA approach. This paper presents collected common road safety problems with relevant illustrations (real pictures) with associated accident risks.

  5. Approaches to safety, environment and regulatory approval for the International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Saji, G.; Bartels, H.W.; Chuyanov, V.; Holland, D.; Kashirski, A.V.; Morozov, S.I.; Piet, S.J.; Poucet, A.; Raeder, J.; Rebut, P.H.; Topilski, L.N.

    1995-01-01

    International Thermonuclear Experimental Reactor (ITER) Engineering Design Activities (EDA) in safety and environment are approaching the point where conceptual safety design, topic studies and research will give way to project oriented engineering design activities. The Joint Central Team (JCT) is promoting safety design and analysis necessary for siting and regulatory approval. Scoping studies are underway at the general level, in terms of laying out the safety and environmental design framework for ITER. ITER must follow the nuclear regulations of the host country as the future construction site of ITER. That is, regulatory approval is required before construction of ITER. Thus, during the EDA, some preparations are necessary for the future application for regulatory approval. Notwithstanding the future host country's jurisdictional framework of nuclear regulations, the primary responsibility for safety and reliability of ITER rests with the legally responsible body which will operate ITER. Since scientific utilization of ITER and protection of the large investment depends on safe and reliable operation of ITER, we are highly motivated to achieve maximum levels of operability, maintainability, and safety. ITER will be the first fusion facility in which overall 'nuclear safety' provisions need to be integrated into the facility. For example, it will be the first fusion facility with significant decay heat and structural radiational damage. Since ITER is an experimental facility, it is also important that necessary experiments can be performed within some safety design limits without requiring extensive regulatory procedures. ITER will be designed with such a robust safety envelope compatible with the fusion power and the energy inventories. The basic approach to safety will be realized by 'defense-in-depth'. (orig.)

  6. The current CEA/DRN safety approach for the design and the assessment of future nuclear installations

    International Nuclear Information System (INIS)

    Fiorini, G.L.; Pinto, P.L.; Costa, M.

    1999-01-01

    The purpose of the document is to present the basis of the safety approach currently implemented by the CEA/DRN, both for the design and the assessment of innovative systems and future nuclear installations. This approach is the result of the experience maturated, within the context of the CEA/DRN Innovative Programme through practical applications over several future concepts, both for fission and fusion reactors, as well as for waste disposal. The background of this experience is structured coherently with the European Safety Authorities recommendations and the European Utilities Requirements (EUR). The Defence In Depth principle and its application, by means, among others, of the barrier concept, remains the basis of the safety design process of future nuclear installations. Its adequacy is checked through the safety assessment. The methodology for Lines Of Defence (LOD) implementation as well as the one for the LOD architecture assessment is shown and motivated. The document shows that the clear and unambiguous definition of the safety approach provides an essential base for the organisation of the design tasks, being sure that the safety aspects are correctly taken into account and implemented, and for an adequate safety assessment of the final design, both from qualitative point of view as well as for the quantitative safety analysis. (author)

  7. Teamwork and communication: an effective approach to patient safety.

    Science.gov (United States)

    Mujumdar, Sandhya; Santos, Diana

    2014-01-01

    Teamwork and communication failures are leading causes of patient safety incidents in health care. Though health care providers must work in teams, they are not well-trained in teamwork and communication skills. Health care faces the problems of differences in communication styles, communication failures and poor teamwork. There is enough evidence in the literature to show that communication failure is detrimental to patient safety. It is estimated that 80% of serious medical errors worldwide take place because of miscommunication between medical providers. NUH recognizes that effective communication and teamwork are essential in the delivery of high quality safe patient care, especially in a complex organization. NUH is a good example, where there is a rich mix of nationalities and races, in staff and in patients, and there is a rapidly expanding care environment. NUH had to overcome these challenges by adopting a multi-pronged approach. The trials and tribulations of NUH in this journey were worthwhile as the patient safety climate survey scores improved over the years.

  8. Integration of the functional reliability of two passive safety systems to mitigate a SBLOCA+BO in a CAREM-like reactor PSA

    Energy Technology Data Exchange (ETDEWEB)

    Mezio, Federico, E-mail: federico.mezio@cab.cnea.gov.ar [CNEA, Sede Central, Av. Del Libertador 8250, CABA (Argentina); Grinberg, Mariela [CNEA, Centro Atómico Bariloche, S.C. de Bariloche, Río Negro (Argentina); Lorenzo, Gabriel [CNEA, Sede Central, Av. Del Libertador 8250, CABA (Argentina); Giménez, Marcelo [CNEA, Centro Atómico Bariloche, S.C. de Bariloche, Río Negro (Argentina)

    2014-04-01

    Highlights: • An estimation of the Functional Unreliability was performed using RMPS methodology. • The methodology uses an improved response surface in order to estimate the FU. • The FU may become relevant to be analyzed in the Passive Safety Systems. • There were proposed two ways to incorporate the FU into an APS. - Abstract: This paper describes a case study of a methodological approach for assessing the functional reliability of passive safety systems (PSS) and its treatment within a probabilistic safety assessment (PSA). The functional unreliability (FU) can be understood as the failure probability of PSS to fulfill its mission due to the impairment of the related passive safety function. The safety function accomplishment is characterized and quantified by a performance indicator (PI), which is a measure of how far the system is from verifying its mission. PI uncertainties are estimated from uncertainty propagation of selected parameters. A methodology based on the reliability methodology for passive system (RMPS) one is used to estimate the FU associated to the isolation condensers (ICs) in combination with the accumulators (medium pressure injection system) of a CAREM-like integral advanced reactor. A small break loss of coolant accident with black-out is selected as an evaluation case. This implies success of reactor shut-down (inherent) and failure of residual heat removal by active systems. The safety function to accomplish is to refill the reactor pressure vessel (RPV) in order to avoid core damage. For this case, to allow the discharge of accumulators into RPV, the pressure must be reduced by the IC. The methodology for passive safety function assessment considers uncertainties in code parameters, besides uncertainties in engineering parameters (design, construction, operation and maintenance), in order to perform Monte Carlo simulations based on best estimate (B-E) plant model. Then, response surfaces based on PI are used for improving the

  9. An interprofessional approach to improving paediatric medication safety

    Directory of Open Access Journals (Sweden)

    Kennedy Neil

    2010-02-01

    Full Text Available Abstract Background Safe drug prescribing and administration are essential elements within undergraduate healthcare curricula, but medication errors, especially in paediatric practice, continue to compromise patient safety. In this area of clinical care, collective responsibility, team working and communication between health professionals have been identified as key elements in safe clinical practice. To date, there is limited research evidence as to how best to deliver teaching and learning of these competencies to practitioners of the future. Methods An interprofessional workshop to facilitate learning of knowledge, core competencies, communication and team working skills in paediatric drug prescribing and administration at undergraduate level was developed and evaluated. The practical, ward-based workshop was delivered to 4th year medical and 3rd year nursing students and evaluated using a pre and post workshop questionnaire with open-ended response questions. Results Following the workshop, students reported an increase in their knowledge and awareness of paediatric medication safety and the causes of medication errors (p Conclusion This study has helped bridge the knowledge-skills gap, demonstrating how an interprofessional approach to drug prescribing and administration has the potential to improve quality and safety within healthcare.

  10. Development of safety function assessment trees for pressurized heavy water reactor LP/SD operations

    International Nuclear Information System (INIS)

    Yang, Hui Chang; Chung, Chang Hyun; Kim, Ki Yong; Jee, Moon Hak; Sung, Chang Kyoung

    2003-01-01

    The objective of Configuration Risk Management Program(CRMP) is to maintain the safety level by assuring the defense-in-depth of nuclear power plant while the configurations are changed during plant operations, especially for the LP/SD. Such a safety purpose can be achieved by establishing the risk monitoring programs with both quantitative and qualitative features. Generally, the quantitative risk evaluation models, i.e., PRA models are used for the risk evaluation during full power operation, and the qualitative risk evaluation models such as safety function assessment trees are used. Through this study, safety function assessment trees were developed

  11. Psychology in nuclear power plants: an integrative approach to safety - general statement

    International Nuclear Information System (INIS)

    Shikiar, R.

    1983-08-01

    Since the accident at the Three Mile Island nuclear power plant on March 28, 1979, the commercial nuclear industry in the United States has paid increasing attention to the role of humans in overall plant safety. As the regulatory body with primary responsibility for ensuring public health and safety involving nuclear operations, the United States Nuclear Regulatory Commission (NRC) has also become increasingly involved with the ''human'' side of nuclear operations. The purpose of this symposium is to describe a major program of research and technical assistance that the Pacific Northwest Laboratory is performing for the NRC that deals with the issues of safety at nuclear power plants (NPPs). This program addresses safety from several different levels of analysis, which are all important within the context of an integrative approach to system safety

  12. Quality management, a directive approach to patient safety.

    Science.gov (United States)

    Ayuso-Murillo, Diego; de Andrés-Gimeno, Begoña; Noriega-Matanza, Concha; López-Suárez, Rafael Jesús; Herrera-Peco, Ivan

    Nowadays the implementation of effective quality management systems and external evaluation in healthcare is a necessity to ensure not only transparency in activities related to health but also access to health and patient safety. The key to correctly implementing a quality management system is support from the managers of health facilities, since it is managers who design and communicate to health professionals the strategies of action involved in quality management systems. This article focuses on nursing managers' approach to quality management through the implementation of cycles of continuous improvement, participation of improvement groups, monitoring systems and external evaluation quality models (EFQM, ISO). The implementation of a quality management system will enable preventable adverse effects to be minimized or eliminated, and promote patient safety and safe practice by health professionals. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  13. Behavior based safety approach towards fire

    International Nuclear Information System (INIS)

    Suresh Kumar, R.

    2009-01-01

    The behavior of the individual who notice fire first is very important because it affect the safety of all occupants of the area. Human behavior on fire depends on variables of the buildings in which fire occurs and by the appearance of the fire when it is detected. Altruistic behavior of human being will help to handle the critical conditions due to fire emergencies. NPCIL have developed a culture of systematic approach to safeguard men and materials from fire by training and awareness. In our Nuclear Power Plants, we have an effective plan and system to test the plans. In each emergency exercises, the behavior of individuals will be monitored and recorded

  14. Safety design approach for JSFR toward the realization of GEN IV SFR

    International Nuclear Information System (INIS)

    Kubo, S.; Yamano, H.; Chikazawa, Y.; Shimakawa, Y.

    2013-01-01

    Conclusion: Safety Design Approach for JSFR: • Based on the safety design criteria for Generation-IV SFR • DECs, Situations practically eliminated and related design measures are identified and selected with due consideration of the safety features of SFR and the lessons learned from the TEPCO’s Fukushima Dai-ichi nuclear power plants accident Safety Design Concept of JSFR: • For failure to shutdown: Passive shutdown capability, Mitigation of core damage (Prevention of severe mechanical energy release, In-Vessel Retention) • For failure to remove heat: Prevention of significant core damage (Natural circulation DHR, Alternative cooling measures) • Containment: Prevention of sever dynamic loads by design measures (IVR, double boundary concept, inertization)

  15. The role of hazard- and risk-based approaches in ensuring food safety

    NARCIS (Netherlands)

    Barlow, S.M.; Boobis, A.R.; Bridges, J.; Cockburn, A.; Dekant, W.; Hepburn, P.; Houben, G.F.; König, J.; Nauta, M.J.; Schuermans, J.; Bánáti, D.

    2015-01-01

    Background: Food legislation in the European Union and elsewhere includes both hazard- and risk-based approaches for ensuring safety. In hazard-based approaches, simply the presence of a potentially harmful agent at a detectable level in food is used as a basis for legislation and/or risk management

  16. Approaches to the safety of future nuclear power plants. Report of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-09-01

    The Technical Committee Meeting on Approaches to Safety of Future Nuclear Power Plants in Different Countries, held from 29 May to 2 June 1995, contributed to this process. Experts from 14 different countries and two international organizations participated in the meeting, which provided the opportunity to exchange information and to review the answers developed to date to these issues (primarily form the IAEA's technical document ''Development of Safety Principles for the Design of Future Nuclear Power Plants'' IAEA-TECDOC-801) and the report of the International Nuclear Safety Advisory Group ''Basic Safety Principles for Nuclear Power Plants'' (INSAG-3). These references were then used as a starting point for answering the question ''to what degree does general agreement (or harmonization) exist on these desired safety approaches for future reactors, and what opportunities remain for further harmonization? 11 refs, 1 tab

  17. Safety system function trend indicator: Theory and test application

    International Nuclear Information System (INIS)

    Azarm, M.A.; Carbonaro, J.F.; Boccio, J.L.; Vesely, W.E.

    1989-01-01

    The purpose of this paper is to summarize research conducted on the development and validation of quantitative indicators of safety performance. This work, performed under the Risk-Based Performance Indicator (RBPI) Project, FIN A-3295, for the Office of Research (RES), is considered part of NRC's Performance Indicator Program which is being coordinated through the Office for the Analysis and Evaluation of Operational Data (AEOD). The program originally focused on risk-based indicators at high levels of safety indices (e.g., core-damage frequency, functional unavailabilities, and sequence monitoring). The program was then redirected towards a more amenable goal, safety system unavailability indicators, mainly due to the lack of PRA models and plant data. In that regard, BNL published a technical report that introduced the concept of cycle-based indicators and also described various alternatives of monitoring safety system unavailabilities. Further simplification of these indicators was requested by NRC to facilitate their applications to all plants in a timely manner. This resulted in the development of Safety System Function Trend (SSFT) indicators which minimize the need for detailed system model as well as component history. The theoretical bases for these indicators were developed through various simulation studies to determine the ease of detecting a trend and/or unacceptable performance. These indicators, along with several other indicators, were then generated and compared using plant data as a part of a test application. The SSFT indicators, specifically, were constructed for a total of eight plants, consisting of two systems per plant. Emphasis was placed on examining relative changes, as well as the indicator's actual level. Both the trend and actual indicator level were found to be important in identifying plants with potential problems

  18. Risk allocation approach to reactor safety design and evaluation

    International Nuclear Information System (INIS)

    Gokcek, O.; Temme, M.I.; Derby, S.L.

    1978-01-01

    This paper describes a risk allocation technique used for determining nuclear power plant design reliability requirements. The concept of risk allocation-optimum choice of safety function reliabilities under a maximum risk constraint - is described. An example of risk allocation is presented to demonstrate the application of the methodology

  19. Towards an integrated approach in supporting microbiological food safety decisions

    DEFF Research Database (Denmark)

    Havelaar, A.H.; Braunig, J.; Christiansen, K.

    2007-01-01

    an integrated scientific approach combining veterinary and medical epidemiology, risk assessment for the farm-to-fork food chain as well as agricultural and health economy. Scientific advice is relevant in all stages of the policy cycle: to assess the magnitude of the food safety problem, to define...

  20. OECD/NEA WGFCS Workshop: Safety Assessment of Fuel Cycle Facilities - Regulatory Approaches and Industry Perspectives

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear fuel is produced, processed, and stored mainly in industrial-scale facilities. Uranium ores are processed and refined to produce a pure uranium salt stream, Uranium is converted and enriched, nuclear fuel is fabricated (U fuel and U/Pu fuel for the closed cycle option); and spent fuel is stored and reprocessed in some countries (close cycle option). Facilities dedicated to the research and development of new fuel or new processes are also considered as Fuel Cycle Facilities. The safety assessment of nuclear facilities has often been led by the methodology and techniques initially developed for Nuclear Power Plants. As FCFs cover a wide diversity of installations the various approaches of national regulators, and their technical support organizations, for the Safety Assessment of Fuel Cycle Facilities are also diverse, as are the approaches by their industries in providing safety justifications for their facilities. The objective of the Working Group on Fuel Cycle Safety is to advance the understanding for both regulators and operators of relevant aspects of nuclear fuel cycle safety in member countries. A large amount of experience is available in safety assessment of FCFs, which should be shared to develop ideas in this field. To contribute to this task, the Workshop on 'Safety Assessment of Fuel Cycle Facilities - Regulatory Approaches and Industry Perspectives' was held in Toronto, on 27 - 29 September 2011. The workshop was hosted by Canadian Nuclear Safety Commission. The current proceedings provide summary of the results of the workshop with the text of the papers given and presentations made

  1. AGR core safety assessment methodologies

    International Nuclear Information System (INIS)

    McLachlan, N.; Reed, J.; Metcalfe, M.P.

    1996-01-01

    To demonstrate the safety of its gas-cooled graphite-moderated AGR reactors, nuclear safety assessments of the cores are based upon a methodology which demonstrates no component failures, geometrical stability of the structure and material properties bounded by a database. All AGRs continue to meet these three criteria. However, predictions of future core behaviour indicate that the safety case methodology will eventually need to be modified to deal with new phenomena. A new approach to the safety assessment of the cores is currently under development, which can take account of these factors while at the same time providing the same level of protection for the cores. This approach will be based on the functionality of the core: unhindered movement of control rods, continued adequate cooling of the fuel and the core, continued ability to charge and discharge fuel. (author). 5 figs

  2. The role of hazard- and risk-based approaches in ensuring food safety

    OpenAIRE

    Barlow, Susan M.; Boobis, Alan R.; Bridges, Jim; Cockburn, Andrew; Dekant, Wolfgang; Hepburn, Paul; Houben, Geert F.; König, Jürgen; Nauta, Maarten; Schuermans, Jeroen; Bánáti, Diána

    2015-01-01

    BackgroundFood legislation in the European Union and elsewhere includes both hazard- and risk-based approaches for ensuring safety. In hazard-based approaches, simply the presence of a potentially harmful agent at a detectable level in food is used as a basis for legislation and/or risk management action. Risk-based approaches allow consideration of exposure in assessing whether there may be unacceptable risks to health.Scope and approachThe advantages and disadvantages of hazard- and risk-ba...

  3. A 3S Risk ?3SR? Assessment Approach for Nuclear Power: Safety Security and Safeguards.

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Robert; Reinhardt, Jason Christian; Wheeler, Timothy A.; Williams, Adam David

    2017-11-01

    Safety-focused risk analysis and assessment approaches struggle to adequately include malicious, deliberate acts against the nuclear power industry's fissile and waste material, infrastructure, and facilities. Further, existing methods do not adequately address non- proliferation issues. Treating safety, security, and safeguards concerns independently is inefficient because, at best, it may not take explicit advantage of measures that provide benefits against multiple risk domains, and, at worst, it may lead to implementations that increase overall risk due to incompatibilities. What is needed is an integrated safety, security and safeguards risk (or "3SR") framework for describing and assessing nuclear power risks that can enable direct trade-offs and interactions in order to inform risk management processes -- a potential paradigm shift in risk analysis and management. These proceedings of the Sandia ePRA Workshop (held August 22-23, 2017) are an attempt to begin the discussions and deliberations to extend and augment safety focused risk assessment approaches to include security concerns and begin moving towards a 3S Risk approach. Safeguards concerns were not included in this initial workshop and are left to future efforts. This workshop focused on four themes in order to begin building out a the safety and security portions of the 3S Risk toolkit: 1. Historical Approaches and Tools 2. Current Challenges 3. Modern Approaches 4. Paths Forward and Next Steps This report is organized along the four areas described above, and concludes with a summary of key points. 2 Contact: rforres@sandia.gov; +1 (925) 294-2728

  4. 2005 dossier: granite. Tome: safety analysis of the geologic disposal; Dossier 2005: granite. Tome analyse de surete du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of the geologic disposal of high-level and long-lived (HLLL) radioactive wastes in granite formations. Content: 1 - safety approach: context and general goal, references, design approach by safety functions, safety approach during the construction-exploitation-observation-closure phase, safety analysis during the post-closure phase; 2 - general description: HLLL wastes, granitic environment, general structure of the architecture of a disposal facility; 3 - safety functions and disposal design: general context, safety functions of the long-term disposal, design dispositions retained to answer the functions; 4 - operational safety: people's protection, radiological risks during exploitation, risk analysis in accident situation; 5 - qualitative safety analysis: methodology, main results of the analysis of the features, events and processes (FEP) database; 6 - disposal efficiency evaluation during post-closure phase: calculation models, calculation tools used for the modeling of radionuclides transport, calculation results and main lessons. (J.S.)

  5. 2005 dossier: granite. Tome: safety analysis of the geologic disposal; Dossier 2005: granite. Tome analyse de surete du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of the geologic disposal of high-level and long-lived (HLLL) radioactive wastes in granite formations. Content: 1 - safety approach: context and general goal, references, design approach by safety functions, safety approach during the construction-exploitation-observation-closure phase, safety analysis during the post-closure phase; 2 - general description: HLLL wastes, granitic environment, general structure of the architecture of a disposal facility; 3 - safety functions and disposal design: general context, safety functions of the long-term disposal, design dispositions retained to answer the functions; 4 - operational safety: people's protection, radiological risks during exploitation, risk analysis in accident situation; 5 - qualitative safety analysis: methodology, main results of the analysis of the features, events and processes (FEP) database; 6 - disposal efficiency evaluation during post-closure phase: calculation models, calculation tools used for the modeling of radionuclides transport, calculation results and main lessons. (J.S.)

  6. Conceptual Grounds of Navigation Safety

    Directory of Open Access Journals (Sweden)

    Vladimir Torskiy

    2016-04-01

    Full Text Available The most important global problem being solved by the whole world community nowadays is to provide sustainable mankind development. Recent research in the field of sustainable development states that civilization safety is impossible without transfer sustainable development. At the same time, sustainable development (i.e. preservation of human culture and biosphere is impossible as a system that serves to meet economical, cultural, scientific, recreational and other human needs without safety. Safety plays an important role in sustainable development goals achievement. An essential condition of effective navigation functioning is to provide its safety. The “prescriptive” approach to the navigation safety, which is currently used in the world maritime field, is based on long-term experience and ship accidents investigation results. Thus this approach acted as an the great fact in reduction of number of accidents at sea. Having adopted the International Safety Management Code all the activities connected with navigation safety problems solution were transferred to the higher qualitative level. Search and development of new approaches and methods of ship accidents prevention during their operation have obtained greater importance. However, the maritime safety concept (i.e. the different points on ways, means and methods that should be used to achieve this goal hasn't been formed and described yet. The article contains a brief review of the main provisions of Navigation Safety Conceptions, which contribute to the number of accidents and incidents at sea reduction.

  7. Mixcore safety analysis approach used for introduction of Westinghouse fuel assemblies in Ukraine

    International Nuclear Information System (INIS)

    Abdullayev, A.; Baidullin, V.; Maryochin, A.; Sleptsov, S.; Kulish, G.

    2008-01-01

    Six Westinghouse Lead Test Assemblies (LTA) were installed in 2005 and are currently operated in Unit 3 of the South Ukraine NPP (SUNPP) under the Ukraine Nuclear Fuel Qualification Project. At the early stages of the LTAs implementation in Ukraine, there was no experience of licensing of new fuel types, which explains the need to develop approaches for safety substantiation of LTAs. This presentation considers some approaches for performing of safety analysis of the design basis Initiating Events (IE) for the LTA fuel cycles. These approaches are non-standard in terms of the established practices for obtaining the regulatory authorities' permission for the core operation. The analysis was based on the results of the FA and reactor core thermal hydraulic and nuclear design

  8. A consistent approach to assess safety criteria for reactivity initiated accidents

    International Nuclear Information System (INIS)

    Sartoris, C.; Taisne, A.; Petit, M.; Barre, F.; Marchand, O.

    2010-01-01

    In the context of more and more demanding reactor managements, the fuel assembly discharge burn-up increases and raises the question of the current safety criteria relevance. In order to assess new safety criteria for reactivity initiated accidents, the IRSN is developing a consistent and original approach to assess safety. This approach is based on: -A thorough understanding of the physical mechanisms involved in each phase (PCMI and post-boiling phases) of the RIA, supported by the interpretation of the experimental database. This experimental data is constituted of global test outcomes, such as CABRI or Nuclear Safety Research Reactor (NSRR) experiments, and analytical program outcomes, such as PATRICIA tests, intending to understand some particular physical phenomena; -The development of computing codes, modelling the physical phenomena. The physical phenomena observed during the tests mentioned above were modelled in the SCANAIR code. SCANAIR is a thermal-mechanical code calculating fuel and clad temperatures and strains during RIA. The CLARIS module is used as a post-calculation tool to evaluate the clad failure risk based on critical flaw depth. These computing codes were validated by global and analytical tests results; -The development of a methodology. The first step of this methodology is the identification of all the parameters affecting the hydride rim depth. Besides, an envelope curve resulting from burst tests giving the hydride rim depth versus oxidation thickness is defined. After that, the critical flaw depth for a given energy pulse is calculated then compared to the hydride rim depth. This methodology results in an energy or enthalpy limit versus burn-up. This approach is planned to be followed for each phase of the RIA. An example of application is presented to evaluate a PCMI limit for a zircaloy-4 cladding UO 2 rod at Hot Zero Power.

  9. Adverse Outcome Pathways can drive non-animal approaches for safety assessment.

    Science.gov (United States)

    Burden, Natalie; Sewell, Fiona; Andersen, Melvin E; Boobis, Alan; Chipman, J Kevin; Cronin, Mark T D; Hutchinson, Thomas H; Kimber, Ian; Whelan, Maurice

    2015-09-01

    Adverse Outcome Pathways (AOPs) provide an opportunity to develop new and more accurate safety assessment processes for drugs and other chemicals, and may ultimately play an important role in regulatory decision making. Not only can the development and application of AOPs pave the way for the development of improved evidence-based approaches for hazard and risk assessment, there is also the promise of a significant impact on animal welfare, with a reduced reliance on animal-based methods. The establishment of a useable and coherent knowledge framework under which AOPs will be developed and applied has been a first critical step towards realizing this opportunity. This article explores how the development of AOPs under this framework, and their application in practice, could benefit the science and practice of safety assessment, while in parallel stimulating a move away from traditional methods towards an increased acceptance of non-animal approaches. We discuss here the key areas where current, and future initiatives should be focused to enable the translation of AOPs into routine chemical safety assessment, and lasting 3Rs benefits. © 2015 The Authors. Journal of Applied Toxicology published by John Wiley & Sons Ltd.

  10. Nuclear safety and security culture - an integrated approach to regulatory oversight

    International Nuclear Information System (INIS)

    Tronea, M.; Ciurea Ercau, C.

    2013-01-01

    The paper presents the development and implementation of regulatory guidelines for the oversight of safety and security culture within licensees organizations. CNCAN (the National Commission for Nuclear Activities of Romania) has used the International Atomic Energy Agency (IAEA) attributes for a strong safety culture as the basis for its regulatory guidelines providing support to the reviewers and inspectors for recognizing and gathering information relevant to safety culture. These guidelines are in process of being extended to address also security culture, based on the IAEA Nuclear Security Series No. 7 document Nuclear Security Culture: Implementing Guide. Recognizing that safety and security cultures coexist and need to reinforce each other because they share the common objective of limiting risk and that similar regulatory review and inspection processes are in place for nuclear security oversight, an integrated approach is considered justified, moreover since the common elements of these cultures outweigh the differences. (authors)

  11. Risk informed approach and its application in Daya Bay NPP operation safety management

    International Nuclear Information System (INIS)

    He Yu; Zhang Jinlong; Bao Yukun

    2004-01-01

    The paper presents a systematic risk assessment approach based on probabilistic theory, and discusses its significance and application process in safety management. Risk informed approach that uses deterministic engineering principles and probabilistic methods is the appropriate approach to decision making at nuclear power plants. The paper also studies an actual case taken place at Daya Bay Nuclear Power Station using PSA approach to equipment maintenance. (authors)

  12. Safety assessment in plant layout design using indexing approach: implementing inherent safety perspective. Part 2-Domino Hazard Index and case study.

    Science.gov (United States)

    Tugnoli, Alessandro; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio

    2008-12-15

    The design of layout plans requires adequate assessment tools for the quantification of safety performance. The general focus of the present work is to introduce an inherent safety perspective at different points of the layout design process. In particular, index approaches for safety assessment and decision-making in the early stages of layout design are developed and discussed in this two-part contribution. Part 1 (accompanying paper) of the current work presents an integrated index approach for safety assessment of early plant layout. In the present paper (Part 2), an index for evaluation of the hazard related to the potential of domino effects is developed. The index considers the actual consequences of possible escalation scenarios and scores or ranks the subsequent accident propagation potential. The effects of inherent and passive protection measures are also assessed. The result is a rapid quantification of domino hazard potential that can provide substantial support for choices in the early stages of layout design. Additionally, a case study concerning selection among various layout options is presented and analyzed. The case study demonstrates the use and applicability of the indices developed in both parts of the current work and highlights the value of introducing inherent safety features early in layout design.

  13. Non-animal approaches for consumer safety risk assessments: Unilever's scientific research programme.

    Science.gov (United States)

    Carmichael, Paul; Davies, Michael; Dent, Matt; Fentem, Julia; Fletcher, Samantha; Gilmour, Nicola; MacKay, Cameron; Maxwell, Gavin; Merolla, Leona; Pease, Camilla; Reynolds, Fiona; Westmoreland, Carl

    2009-12-01

    Non-animal based approaches to risk assessment are now routinely used for assuring consumer safety for some endpoints (such as skin irritation) following considerable investment in developing and applying new methods over the past 20 years. Unilever's research programme into non-animal approaches for safety assessment is currently focused on the application of new technologies to risk assessments in the areas of skin allergy, cancer and general toxicity (including inhalation toxicity). In all of these areas, a long-term investment is essential to increase the scientific understanding of the underlying biological and chemical processes that we believe will ultimately form a sound basis for novel risk assessment approaches. Our research programme in these priority areas consists of in-house research as well as Unilever-sponsored academic research, involvement with EU-funded projects (e.g. Sens-it-iv, carcinoGENOMICS), participation in cross-industry collaborative research (e.g. COLIPA, EPAA) and ongoing involvement with other scientific initiatives on non-animal approaches to risk assessment (e.g. UK NC3Rs, US 'Human Toxicology Project' consortium). 2009 FRAME.

  14. Hazard Identification and Risk Assessment of Health and Safety Approach JSA (Job Safety Analysis) in Plantation Company

    Science.gov (United States)

    Sugarindra, Muchamad; Ragil Suryoputro, Muhammad; Tiya Novitasari, Adi

    2017-06-01

    Plantation company needed to identify hazard and perform risk assessment as an Identification of Hazard and Risk Assessment Crime and Safety which was approached by using JSA (Job Safety Analysis). The identification was aimed to identify the potential hazards that might be the risk of workplace accidents so that preventive action could be taken to minimize the accidents. The data was collected by direct observation to the workers concerned and the results were recorded on a Job Safety Analysis form. The data were as forklift operator, macerator worker, worker’s creeper, shredder worker, workers’ workshop, mechanical line worker, trolley cleaning workers and workers’ crepe decline. The result showed that shredder worker value was 30 and had the working level with extreme risk with the risk value range was above 20. So to minimize the accidents could provide Personal Protective Equipment (PPE) which were appropriate, information about health and safety, the company should have watched the activities of workers, and rewards for the workers who obey the rules that applied in the plantation.

  15. Examining quality function deployment in safety promotion in Sweden.

    Science.gov (United States)

    Kullberg, Agneta; Nordqvist, Cecilia; Lindqvist, Kent; Timpka, Toomas

    2014-09-01

    The first-hand needs and demands of laypersons are not always considered when safety promotion programmes are being developed. We compared focal areas for interventions identified from residents' statements of safety needs with focal areas for interventions identified by local government professionals in a Swedish urban community certified by the international Safe Community movement supported by the World Health Organization. Quantitative and qualitative data on self-expressed safety needs from 787 housing residents were transformed into an intervention design, using the quality function deployment (QFD) technique and compared with the safety intervention programme developed by professionals at the municipality administrative office. The outcome of the comparison was investigated with regard to implications for the Safe Community movement. The QFD analysis identified the initiation and maintenance of social integrative processes in housing areas as the most highly prioritized interventions among the residents, but failed to highlight the safety needs of several vulnerable groups (the elderly, infants and persons with disabilities). The intervention programme designed by the public health professionals did not address the social integrative processes, but it did highlight the vulnerable groups. This study indicates that the QFD technique is suitable for providing residential safety promotion efforts with a quality orientation from the layperson's perspective. Views of public health professionals have to be included to ascertain that the needs of socially deprived residents are adequately taken into account. QFD can augment the methodological toolbox for safety promotion programmes, including interventions in residential areas. © The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Rule-based Dynamic Safety Monitoring for Mobile Robots

    DEFF Research Database (Denmark)

    Adam, Marian Sorin; Larsen, Morten; Jensen, Kjeld

    2016-01-01

    Safety is a key challenge in robotics, in particular for mobile robots operating in an open and unpredictable environment. Safety certification is desired for commercial robots, but no existing approaches for addressing the safety challenge provide a clearly specified and isolated safety layer......, defined in an easily understandable way for facilitating safety certification. In this paper, we propose that functional-safety-critical concerns regarding the robot software be explicitly declared separately from the main program, in terms of externally observable properties of the software. Concretely...

  17. The screening approach for review of accident management programmes

    International Nuclear Information System (INIS)

    Misak, J.

    1999-01-01

    In this lecture the screening approach for review of accident management programmes are presented. It contains objective trees for accident management: logic structure of the approach; objectives and safety functions for accident management; safety principles

  18. Radiation safety management in health care - The application of Quality Function Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Moores, B.M. [Integrated Radiological Services Ltd., Century Building, Unit 188, Tower Street, Brunswick Park, Liverpool L3 4BJ (United Kingdom)]. E-mail: mikemoores@irs-limited.com

    2006-11-15

    The paper presents a study of the potential for applying the Quality Function Deployment (QFD) method to the analysis of the framework for safety management contained in the Ionising Radiation (Medical Exposure) Regulations (IRMER) of 2000. The QFD method has been successfully applied to many industrial and manufacturing processes in order to ensure that quality is built into products at the outset rather than tested for after their production. In this context, the term quality is used to describe the degree to which the needs and requirements of the customer are fulfilled. More frequently, now, the QFD approach is being applied to health care in order to engineer clinical processes that can best fulfil the needs of the patient. In the case of diagnostic radiology, safety management must not only be concerned with radiation protection but, more importantly, with the accuracy and consistency of any diagnostic outcome. Both are important patient needs. A first stage analysis of IRMER 2000 is presented that assesses how patients' needs are expressed by the individual IRMER components of justification, optimisation, clinical audit, expert advice, equipment and training. The analysis involved a QFD assessment by four radiation protection experts with over 100 man-years of experience. A second stage analysis assesses how the individual IRMER components have been engineered into a safety management framework through specific requirements embodied in IRMER 2000. The results of this assessment are discussed in terms of clinical, human, operational management and equipment related aspects of the radiological process. This study highlights how the QFD approach may be applied to engineer specific aspects of radiological practice that play a key role in ensuring that patients' needs are fully met. As an example, clinical audit requirements are analysed by means of the QFD method to indicate the design requirements of information and knowledge based systems that can

  19. Radiation safety management in health care - The application of Quality Function Deployment

    International Nuclear Information System (INIS)

    Moores, B.M.

    2006-01-01

    The paper presents a study of the potential for applying the Quality Function Deployment (QFD) method to the analysis of the framework for safety management contained in the Ionising Radiation (Medical Exposure) Regulations (IRMER) of 2000. The QFD method has been successfully applied to many industrial and manufacturing processes in order to ensure that quality is built into products at the outset rather than tested for after their production. In this context, the term quality is used to describe the degree to which the needs and requirements of the customer are fulfilled. More frequently, now, the QFD approach is being applied to health care in order to engineer clinical processes that can best fulfil the needs of the patient. In the case of diagnostic radiology, safety management must not only be concerned with radiation protection but, more importantly, with the accuracy and consistency of any diagnostic outcome. Both are important patient needs. A first stage analysis of IRMER 2000 is presented that assesses how patients' needs are expressed by the individual IRMER components of justification, optimisation, clinical audit, expert advice, equipment and training. The analysis involved a QFD assessment by four radiation protection experts with over 100 man-years of experience. A second stage analysis assesses how the individual IRMER components have been engineered into a safety management framework through specific requirements embodied in IRMER 2000. The results of this assessment are discussed in terms of clinical, human, operational management and equipment related aspects of the radiological process. This study highlights how the QFD approach may be applied to engineer specific aspects of radiological practice that play a key role in ensuring that patients' needs are fully met. As an example, clinical audit requirements are analysed by means of the QFD method to indicate the design requirements of information and knowledge based systems that can provide the

  20. FOOD SAFETY SYSTEMS’ FUNCTIONING IN POLISH NETWORKS OF GROCERY STORES

    Directory of Open Access Journals (Sweden)

    Paweł NOWICKI

    2013-04-01

    Full Text Available This article shows the way how the food safety systems are functioning in Polish networks of grocery stores. The study was conducted in the fourth quarter of 2012 in the south‐eastern Poland. There were chosen three organizations that meet certain conditions: medium size Polish grocery network without participation of foreign capital and up to 30 retail locations within the group. Studies based on a case study model. The research found that regular and unannounced inspections carried out to each store's, impact on increasing safety of food offered and the verification of GHP requirements on the headquarters level has a significant impact on the safety of food offered as well as on the knowledge and behavior of employees. In addition it was found that the verification and analysis of food safety management system is an effective tool for improving food safety. It was also shown that in most cases there is no formal crisis management system for the food protection in the surveyed companies and employees are only informed of what to do in case of an emergency.

  1. Basis for the safety approach for design and assessment of Generation IV nuclear systems

    International Nuclear Information System (INIS)

    Fiorini, G.L.; Leahy, T.

    2009-01-01

    The primary objective of the RSWG is the implementation of a harmonized approach on long-term safety, and to address risk and regulatory issues in development of the next generation of nuclear systems. To this end, the group is proposing safety goals and evaluation methodology applicable for the design and assessment of future systems. The paper resumes the content of the first RSWG report which provides insights for the safety approach and assists the GIF Systems Steering Committee as well as the GIF Experts Group and the GIF Policy Group for the definition of the most adequate safety related Gen IV R and D. The document is also an essential contributor to help identifying the needed supportive crosscut R and D effort (i.e. applicable to all the innovative nuclear technologies). Although the report presents a number of thoughts and recommendations, it really represents only the start of the efforts for the RSWG. (author)

  2. Seismic Safety Margins Research Program (Phase I). Project VII. Systems analysis specification of computational approach

    International Nuclear Information System (INIS)

    Wall, I.B.; Kaul, M.K.; Post, R.I.; Tagart, S.W. Jr.; Vinson, T.J.

    1979-02-01

    An initial specification is presented of a computation approach for a probabilistic risk assessment model for use in the Seismic Safety Margin Research Program. This model encompasses the whole seismic calculational chain from seismic input through soil-structure interaction, transfer functions to the probability of component failure, integration of these failures into a system model and thereby estimate the probability of a release of radioactive material to the environment. It is intended that the primary use of this model will be in sensitivity studies to assess the potential conservatism of different modeling elements in the chain and to provide guidance on priorities for research in seismic design of nuclear power plants

  3. Safety in Schools: An Integral Approach

    Science.gov (United States)

    Gairin, Joaquin; Castro, Diego

    2011-01-01

    The present paper summarizes a research project into integral safety in schools. The aims of this particular research are, firstly, to evaluate the degree of integral safety in schools, secondly, to propose means for improving prevention and integral safety systems and thirdly, to identify the characteristics of safety culture. The field work was…

  4. Scientific Approach for Optimising Performance, Health and Safety in High-Altitude Observatories

    Science.gov (United States)

    Böcker, Michael; Vogy, Joachim; Nolle-Gösser, Tanja

    2008-09-01

    The ESO coordinated study “Optimising Performance, Health and Safety in High-Altitude Observatories” is based on a psychological approach using a questionnaire for data collection and assessment of high-altitude effects. During 2007 and 2008, data from 28 staff and visitors involved in APEX and ALMA were collected and analysed and the first results of the study are summarised. While there is a lot of information about biomedical changes at high altitude, relatively few studies have focussed on psychological changes, for example with respect to performance of mental tasks, safety consciousness and emotions. Both, biomedical and psychological changes are relevant factors in occupational safety and health. The results of the questionnaire on safety, health and performance issues demonstrate that the working conditions at high altitude are less detrimental than expected.

  5. Safety Teams: An Approach to Engage Students in Laboratory Safety

    Science.gov (United States)

    Alaimo, Peter J.; Langenhan, Joseph M.; Tanner, Martha J.; Ferrenberg, Scott M.

    2010-01-01

    We developed and implemented a yearlong safety program into our organic chemistry lab courses that aims to enhance student attitudes toward safety and to ensure students learn to recognize, demonstrate, and assess safe laboratory practices. This active, collaborative program involves the use of student "safety teams" and includes…

  6. Fast reactor safety and computational thermo-fluid dynamics approaches

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Shimizu, Takeshi

    1993-01-01

    This article provides a brief description of the safety principle on which liquid metal cooled fast breeder reactors (LMFBRs) is based and the roles of computations in the safety practices. A number of thermohydraulics models have been developed to date that successfully describe several of the important types of fluids and materials motion encountered in the analysis of postulated accidents in LMFBRs. Most of these models use a mixture of implicit and explicit numerical solution techniques in solving a set of conservation equations formulated in Eulerian coordinates, with special techniques included to specific situations. Typical computational thermo-fluid dynamics approaches are discussed in particular areas of analyses of the physical phenomena relevant to the fuel subassembly thermohydraulics design and that involve describing the motion of molten materials in the core over a large scale. (orig.)

  7. Formal Safety versus Real Safety: Quantitative and Qualitative Approaches to Safety Culture – Evidence from Estonia

    Directory of Open Access Journals (Sweden)

    Järvis Marina

    2016-10-01

    Full Text Available This paper examines differences between formal safety and real safety in Estonian small and medium-sized enterprises. The results reveal key issues in safety culture assessment. Statistical analysis of safety culture questionnaires showed many organisations with an outstanding safety culture and positive safety attitudes. However, qualitative data indicated some important safety weaknesses and aspects that should be included in the process of evaluation of safety culture in organisations.

  8. Study of different fitness functions with safety restriction for nuclear reactor reload problem using QDPSO

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Paulo C. de, E-mail: paulocaixeta@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Nuclear; Lima, Alan M.M. de; Schirru, Roberto, E-mail: alan@lmp.ufrj.br, E-mail: schirru@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Nuclear Reactor Reload Problem (NRRP) is a classical problem in Nuclear Engineering that has been studied for more than 40 years, which focuses on the economics and safety of the Nuclear Power Plant (NPP). This problem consists in searching for the best loading pattern of fuel assemblies (FA) in the core, aiming to determine the permutation of fuel assemblies that optimizes the uranium utilization, with fitness function evaluated according to specific criteria and methods of nuclear reactor physics, such as the maximum mean power peak and the boron concentration. In this article will be presented different methodologies to obtain a representative fitness function for NRRP, where Quantum particle Swarm optimization (QPSO) was used to determine which one gives the best array of fuel assemblies that will make the maximum EFPD (Effective Full Power Days) with the least computational effort. In this approach, as well as others in literature, was not used Burnable Poison in the simulations and the results will be compared in relation of the maximization of the cycle length considering the boron concentration yield by the reactor physics code, to make sure that the configuration is valid from a safety point of view. This paper was based on Angra 1's seventh reload cycle. (author)

  9. Critical safety parameters: The logical approach to refresher training

    International Nuclear Information System (INIS)

    Johnson, A.R.; Pilkington, W.; Turner, S.

    1991-01-01

    Nuclear power plant managers must ensure that control room staff are able to perform effectively. This is of particular importance through the longer term after initial authorization. Traditionally refresher training has been based on delivery of fragmented training packages typically derived from the initial authorization training programs. Various approaches have been taken to provide a more integrated refresher training program. However, methods such as job and task analysis and subject matter expert derived training have tended to develop without a focused clear overall training objective. The primary objective of all control room staff training is to ensure a proper and safe response to all plant transients. At the Point Lepreau Nuclear Plant, this has defined the Critical Safety Parameter based refresher training program. The overall objective of the Critical Safety Parameter training program is to ensure that control room staff can monitor and control a discrete set of plant parameters. Maintenance of the selected parameters within defined boundaries assures adequate cooling of the fuel and containment of radioactivity. Control room staff need to be able to reliably respond correctly to plant transients under potentially high stress conditions,. utilizing the essential knowledge and skills to deal with such transients. The inference is that the knowledge and skills must be limited to that which can be reliably recalled. This paper describes how the Point Lepreau Nuclear Plant has developed a refresher training program on the basis of a limited number of Critical Safety Parameters. Through this approach, it has been possible to define the essential set of knowledge and skills which ensures a correct response to plant transients

  10. Dynamics of safety performance and culture: a group model building approach.

    Science.gov (United States)

    Goh, Yang Miang; Love, Peter E D; Stagbouer, Greg; Annesley, Chris

    2012-09-01

    The management of occupational health and safety (OHS) including safety culture interventions is comprised of complex problems that are often hard to scope and define. Due to the dynamic nature and complexity of OHS management, the concept of system dynamics (SD) is used to analyze accident prevention. In this paper, a system dynamics group model building (GMB) approach is used to create a causal loop diagram of the underlying factors influencing the OHS performance of a major drilling and mining contractor in Australia. While the organization has invested considerable resources into OHS their disabling injury frequency rate (DIFR) has not been decreasing. With this in mind, rich individualistic knowledge about the dynamics influencing the DIFR was acquired from experienced employees with operations, health and safety and training background using a GMB workshop. Findings derived from the workshop were used to develop a series of causal loop diagrams that includes a wide range of dynamics that can assist in better understanding the causal influences OHS performance. The causal loop diagram provides a tool for organizations to hypothesize the dynamics influencing effectiveness of OHS management, particularly the impact on DIFR. In addition the paper demonstrates that the SD GMB approach has significant potential in understanding and improving OHS management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The safety function in Scottish Nuclear

    International Nuclear Information System (INIS)

    McKeown, J.

    1991-01-01

    The Director of Safety for Scottish Nuclear Ltd, the company which has owned and operated Scotland's nuclear power generating capacity since privatization, explains how the management of safety is realized within the company, in line with the company's motto of ''Quality, Safety, Excellence''. A commitment to the highest levels of safety management in all its aspects is emphasized, from Board level down. The various measures taken to ensure these aims are realized are explained in three broad areas, radiological protection, operational nuclear safety and industrial safety. (UK)

  12. Aspects of using a best-estimate approach for VVER safety analysis in reactivity initiated accidents

    Energy Technology Data Exchange (ETDEWEB)

    Ovdiienko, Iurii; Bilodid, Yevgen; Ieremenko, Maksym [State Scientific and Technical Centre on Nuclear and Radiation, Safety (SSTC N and RS), Kyiv (Ukraine); Loetsch, Thomas [TUEV SUED Industrie Service GmbH, Energie und Systeme, Muenchen (Germany)

    2016-09-15

    At present time, Ukraine faces the problem of small margins of acceptance criteria in connection with the implementation of a conservative approach for safety evaluations. The problem is particularly topical conducting feasibility analysis of power up-rating for Ukrainian nuclear power plants. Such situation requires the implementation of a best-estimate approach on the basis of an uncertainty analysis. For some kind of accidents, such as loss-of-coolant accident (LOCA), the best estimate approach is, more or less, developed and established. However, for reactivity initiated accident (RIA) analysis an application of best estimate method could be problematical. A regulatory document in Ukraine defines a nomenclature of neutronics calculations and so called ''generic safety parameters'' which should be used as boundary conditions for all VVER-1000 (V-320) reactors in RIA analysis. In this paper the ideas of uncertainty evaluations of generic safety parameters in RIA analysis in connection with the use of the 3D neutron kinetic code DYN3D and the GRS SUSA approach are presented.

  13. Fulfillment of the long-term safety functions by the different barriers during the main time frames after repository closure

    International Nuclear Information System (INIS)

    Preter, P. de; Lalieux, Ph.

    2002-01-01

    In general terms the basis long-term safety functions of a disposal system (i.e. the engineered barrier system, including the waste forms and the host rock) are the functions that the system as a whole or its constituents must fulfill in order to assure an adequate level of long-term radiological safety. The long-term safety functions of a disposal system constitute a generic and methodological tool that can be used in a double sense. In the first place these functions provide an a priori instrument for designing the system: the implementer must ensure that these safety functions are fulfilled by a series of robust system barriers and components. These functions can also be used as an a posteriori means to describe and assess in general terms the functioning of the system. In this way they are an important qualitative element to help to support the safety case and to identify further R and D priorities. By providing a general description of system functioning they are also a communication tool to stakeholders who are less familiar with the details of a safety case. Instead of limiting the description to a multi-barrier system, the safety functions enable to better explain how the different barriers contribute to one or more safety functions and by which processes this is performed. By doing so the system description moves from multi-barrier to multi-function. The aim of this paper is to provide such a general description of the system functioning for the Belgian case of deep disposal of high-level waste (mainly spent fuel or vitrified waste from fuel reprocessing) in the Boom Clay, o poorly-indurated argillaceous formation. From the detailed safety and performance evaluations the main time frames after repository closure are identified. Each time frame relates to a period during which the successive safety functions play a key role. Also, in each time frame the radiological impact on the environment is distinctly different. (authors)

  14. Draft pilot report - Approaches to the resolution of safety issues

    International Nuclear Information System (INIS)

    2006-01-01

    The purpose of this report is to present in a concise form how some safety matters associated with currently operating light water reactors have been addressed. The issues discussed in this report are common to member countries with currently operating LWRs (PWR, BWR, VVER) and, as such, have wide interest in the nuclear safety community. Accordingly, this report can serve as a reference for researchers, regulations and others (e.g., industry) interested in understanding the approach and status of issues. This report should also be useful for knowledge transfer by documenting what has been done or is planned regarding selected safety matters and as a source for identifying reference material containing additional detail. The issues addressed in this report should not be viewed as questioning the safety of operating reactors, which have reached very high operational safety record, but rather as areas where uncertainty in knowledge exists, where safety assessment has been based on conservative assumptions, and where regulatory decisions need, or will need to be confirmed. Thus, the development of sound technical bases through continuing research will improve the current knowledge and allow for more realistic safety assessment. The safety issues discussed in this initial version of the report are: - design basis accident spectrum; - severe accident issues; - reactor pressure vessel integrity; - hydrogen control; - containment integrity; - accident management; - station blackout; - high burnup fuel; - power up-rates; - ECCS strainer clogging; - boron dilution. For each issue, the scope of the issue is defined, its status discussed and planned work or research described, including schedule. This pilot version of the report is limited to input from nine countries (Belgium, Czech Republic, Finland, France, Germany, Japan, Korea, Sweden and the U.S.). An overview of this information for each issue by country is provided in the table. This document does not contain a

  15. A Strategic Approach to Establishing and Strengthening National Infrastructure for Radiation, Transport and Waste Safety

    International Nuclear Information System (INIS)

    Mastauskas, A.

    2016-01-01

    In Lithuania, as in the other countries of the world, in various areas, such as medicine, industry, education and training, agriculture the different technologies with the radioactive substances or devices, which generate ionizing radiation, are used. The responsibilities of each party and concern is to ensure the safe use ensure the radiation protection of the population and the environment. For every IAEA Member State in order to ensure the radiation safety, it is necessary to create the States radiation safety infrastructure: legislation, Regulatory Authority, technical support organizations. The International Atomic Energy Agency (IAEA) develops safety standards and assists Member States to create radiation safety infrastructure according the IAEA safety standards requirements. Noting that many Member States would benefit from bringing their radiation safety infrastructure more in line with IAEA Safety Standards, the Secretariat organized a meeting in May of 2014 of senior radiation safety experts from Africa, Asia & the Pacific, Europe, Latin America and North America, with the aim of developing a model strategic approach to establishing and strengthening national radiation safety infrastructure, with a special focus on Member States receiving assistance from the Agency. This model approach was presented to a wider audience on the margins of the IAEA General Conference in September 2014, where it was well received. This paper describes how the key elements of the model strategic approach were applied in Lithuania. The outcome of which showed that there is an adequate radiation safety infrastructure in place covering more than 50 legal acts, the establishment and empowerment of a Regulatory Authority – Radiation Protection Centre, technical support organizations – metrology and dosimetry services, and training centres. In Lithuania there exists a State registry of sources of ionizing radiation and occupational doses of exposure, a strong system of the

  16. Effects of Different Types of Cognitive Training on Cognitive Function, Brain Structure, and Driving Safety in Senior Daily Drivers: A Pilot Study.

    Science.gov (United States)

    Nozawa, Takayuki; Taki, Yasuyuki; Kanno, Akitake; Akimoto, Yoritaka; Ihara, Mizuki; Yokoyama, Ryoichi; Kotozaki, Yuka; Nouchi, Rui; Sekiguchi, Atsushi; Takeuchi, Hikaru; Miyauchi, Carlos Makoto; Ogawa, Takeshi; Goto, Takakuni; Sunda, Takashi; Shimizu, Toshiyuki; Tozuka, Eiji; Hirose, Satoru; Nanbu, Tatsuyoshi; Kawashima, Ryuta

    2015-01-01

    Increasing proportion of the elderly in the driving population raises the importance of assuring their safety. We explored the effects of three different types of cognitive training on the cognitive function, brain structure, and driving safety of the elderly. Thirty-seven healthy elderly daily drivers were randomly assigned to one of three training groups: Group V trained in a vehicle with a newly developed onboard cognitive training program, Group P trained with a similar program but on a personal computer, and Group C trained to solve a crossword puzzle. Before and after the 8-week training period, they underwent neuropsychological tests, structural brain magnetic resonance imaging, and driving safety tests. For cognitive function, only Group V showed significant improvements in processing speed and working memory. For driving safety, Group V showed significant improvements both in the driving aptitude test and in the on-road evaluations. Group P showed no significant improvements in either test, and Group C showed significant improvements in the driving aptitude but not in the on-road evaluations. The results support the effectiveness of the onboard training program in enhancing the elderly's abilities to drive safely and the potential advantages of a multimodal training approach.

  17. Impact of proof test interval and coverage on probability of failure of safety instrumented function

    International Nuclear Information System (INIS)

    Jin, Jianghong; Pang, Lei; Hu, Bin; Wang, Xiaodong

    2016-01-01

    Highlights: • Introduction of proof test coverage makes the calculation of the probability of failure for SIF more accurate. • The probability of failure undetected by proof test is independently defined as P TIF and calculated. • P TIF is quantified using reliability block diagram and simple formula of PFD avg . • Improving proof test coverage and adopting reasonable test period can reduce the probability of failure for SIF. - Abstract: Imperfection of proof test can result in the safety function failure of safety instrumented system (SIS) at any time in its life period. IEC61508 and other references ignored or only elementarily analyzed the imperfection of proof test. In order to further study the impact of the imperfection of proof test on the probability of failure for safety instrumented function (SIF), the necessity of proof test and influence of its imperfection on system performance was first analyzed theoretically. The probability of failure for safety instrumented function resulted from the imperfection of proof test was defined as probability of test independent failures (P TIF ), and P TIF was separately calculated by introducing proof test coverage and adopting reliability block diagram, with reference to the simplified calculation formula of average probability of failure on demand (PFD avg ). Research results show that: the shorter proof test period and the higher proof test coverage indicate the smaller probability of failure for safety instrumented function. The probability of failure for safety instrumented function which is calculated by introducing proof test coverage will be more accurate.

  18. Proposed quantitative approach to safety for nuclear power plants in Canada

    International Nuclear Information System (INIS)

    1995-07-01

    A set of quantitative risk and frequency limits plus required processes is proposed to help ensure that a nuclear power plant in Canada meets the qualitative safety objectives defined in ACNS-2 and in IAEA 75-INSAG-3. As emphasized in this report, risks and hence doses are to be reduced below the limits using ALARA (As Low as Reasonably Achievable, economic and social factors being taken into account) or VIA (value-impact analysis) processes unless, in general, calculated risks and hence doses are below recommended de minimis levels. An updated version of ACNS-4, which will be issued as ACNS-21, will incorporate a statement of these limits and objectives as well as assessment criteria and procedures that will facilitate their application. The quantitative approach proposed here is consistent with a growing consensus on the need for, and the elements of, a quantitative approach to risk management of all major activities in an advanced industrial society. The ACNS recommends that the Atomic Energy Control Board adopt the proposed approach as a rational and coherent basis for nuclear power plant safety policy and requirements in Canada. (author). 68 refs., 4 tabs., 1 fig

  19. Proposed quantitative approach to safety for nuclear power plants in Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    A set of quantitative risk and frequency limits plus required processes is proposed to help ensure that a nuclear power plant in Canada meets the qualitative safety objectives defined in ACNS-2 and in IAEA 75-INSAG-3. As emphasized in this report, risks and hence doses are to be reduced below the limits using ALARA (As Low as Reasonably Achievable, economic and social factors being taken into account) or VIA (value-impact analysis) processes unless, in general, calculated risks and hence doses are below recommended de minimis levels. An updated version of ACNS-4, which will be issued as ACNS-21, will incorporate a statement of these limits and objectives as well as assessment criteria and procedures that will facilitate their application. The quantitative approach proposed here is consistent with a growing consensus on the need for, and the elements of, a quantitative approach to risk management of all major activities in an advanced industrial society. The ACNS recommends that the Atomic Energy Control Board adopt the proposed approach as a rational and coherent basis for nuclear power plant safety policy and requirements in Canada. (author). 68 refs., 4 tabs., 1 fig.

  20. Dynamic probability evaluation of safety levels of earth-rockfill dams using Bayesian approach

    Directory of Open Access Journals (Sweden)

    Zi-wu Fan

    2009-06-01

    Full Text Available In order to accurately predict and control the aging process of dams, new information should be collected continuously to renew the quantitative evaluation of dam safety levels. Owing to the complex structural characteristics of dams, it is quite difficult to predict the time-varying factors affecting their safety levels. It is not feasible to employ dynamic reliability indices to evaluate the actual safety levels of dams. Based on the relevant regulations for dam safety classification in China, a dynamic probability description of dam safety levels was developed. Using the Bayesian approach and effective information mining, as well as real-time information, this study achieved more rational evaluation and prediction of dam safety levels. With the Bayesian expression of discrete stochastic variables, the a priori probabilities of the dam safety levels determined by experts were combined with the likelihood probability of the real-time check information, and the probability information for the evaluation of dam safety levels was renewed. The probability index was then applied to dam rehabilitation decision-making. This method helps reduce the difficulty and uncertainty of the evaluation of dam safety levels and complies with the current safe decision-making regulations for dams in China. It also enhances the application of current risk analysis methods for dam safety levels.

  1. Quantum functional analysis non-coordinate approach

    CERN Document Server

    Helemskii, A Ya

    2010-01-01

    This book contains a systematic presentation of quantum functional analysis, a mathematical subject also known as operator space theory. Created in the 1980s, it nowadays is one of the most prominent areas of functional analysis, both as a field of active research and as a source of numerous important applications. The approach taken in this book differs significantly from the standard approach used in studying operator space theory. Instead of viewing "quantized coefficients" as matrices in a fixed basis, in this book they are interpreted as finite rank operators in a fixed Hilbert space. This allows the author to replace matrix computations with algebraic techniques of module theory and tensor products, thus achieving a more invariant approach to the subject. The book can be used by graduate students and research mathematicians interested in functional analysis and related areas of mathematics and mathematical physics. Prerequisites include standard courses in abstract algebra and functional analysis.

  2. Safety analysis and synthesis using fuzzy sets and evidential reasoning

    International Nuclear Information System (INIS)

    Wang, J.; Yang, J.B.; Sen, P.

    1995-01-01

    This paper presents a new methodology for safety analysis and synthesis of a complex engineering system with a structure that is capable of being decomposed into a hierarchy of levels. In this methodology, fuzzy set theory is used to describe each failure event and an evidential reasoning approach is then employed to synthesise the information thus produced to assess the safety of the whole system. Three basic parameters--failure likelihood, consequence severity and failure consequence probability, are used to analyse a failure event. These three parameters are described by linguistic variables which are characterised by a membership function to the defined categories. As safety can also be clearly described by linguistic variables referred to as the safety expressions, the obtained fuzzy safety score can be mapped back to the safety expressions which are characterised by membership functions over the same categories. This mapping results in the identification of the safety of each failure event in terms of the degree to which the fuzzy safety score belongs to each of the safety expressions. Such degrees represent the uncertainty in safety evaluations and can be synthesised using an evidential reasoning approach so that the safety of the whole system can be evaluated in terms of these safety expressions. Finally, a practical engineering example is presented to demonstrate the proposed safety analysis and synthesis methodology

  3. Plant functional modelling as a basis for assessing the impact of management on plant safety

    International Nuclear Information System (INIS)

    Rasmussen, Birgitte; Petersen, Kurt E.

    1999-01-01

    A major objective of the present work is to provide means for representing a chemical process plant as a socio-technical system, so as to allow hazard identification at a high level in order to identify major targets for safety development. The main phases of the methodology are: (1) preparation of a plant functional model where a set of plant functions describes coherently hardware, software, operations, work organization and other safety related aspects. The basic principle is that any aspect of the plant can be represented by an object based upon an Intent and associated with each Intent are Methods, by which the Intent is realized, and Constraints, which limit the Intent. (2) Plant level hazard identification based on keywords/checklists and the functional model. (3) Development of incident scenarios and selection of hazardous situation with different safety characteristics. (4) Evaluation of the impact of management on plant safety through interviews. (5) Identification of safety critical ways of action in the management system, i.e. identification of possible error- and violation-producing conditions

  4. Establishing and communicating confidence in the safety of deep geologic disposal. Approaches and arguments

    International Nuclear Information System (INIS)

    2002-01-01

    Confidence among both technical experts and the public in the safety of deep geologic repositories for radioactive waste is a key element in the successful development of the repositories. This report presents the approaches and arguments that are currently used in OECD countries to establish and communicate confidence in their safety. It evaluates the state of the art for obtaining, presenting and demonstrating confidence in long-term safety, and makes recommendations on future directions and initiatives to be taken for improving confidence. (author)

  5. Application of safety and reliability approaches in the power sector: Inside-sectoral overview

    DEFF Research Database (Denmark)

    Kozine, Igor

    2010-01-01

    This chapter summarizes the state-of-the-art and state-of-practice on the applications of safety and reliability approaches in the Power Sector. The nature and composition of this industrial sector including the characteristics of major hazards are summarized. The present situation with regard...... to a number of key technical aspects involved in the use of safety and reliability approaches in the power sector is discussed. Based on this review a Technology Maturity Matrix is synthesized. Barriers to the wider use of risk and reliability methods in the design and operation of power installations...... are identified and possible ways of overcoming these barriers are suggested. Key issues and priorities for research are identified....

  6. In Vivo Transplantation of Enteric Neural Crest Cells into Mouse Gut; Engraftment, Functional Integration and Long-Term Safety.

    Directory of Open Access Journals (Sweden)

    Julie E Cooper

    Full Text Available Enteric neuropathies are severe gastrointestinal disorders with unsatisfactory outcomes. We aimed to investigate the potential of enteric neural stem cell therapy approaches for such disorders by transplanting mouse enteric neural crest cells (ENCCs into ganglionic and aganglionic mouse gut in vivo and analysing functional integration and long-term safety.Neurospheres generated from yellow fluorescent protein (YFP expressing ENCCs selected from postnatal Wnt1-cre;R26R-YFP/YFP murine gut were transplanted into ganglionic hindgut of wild-type littermates or aganglionic hindgut of Ednrbtm1Ywa mice (lacking functional endothelin receptor type-B. Intestines were then assessed for ENCC integration and differentiation using immunohistochemistry, cell function using calcium imaging, and long-term safety using PCR to detect off-target YFP expression.YFP+ ENCCs engrafted, proliferated and differentiated into enteric neurons and glia within recipient ganglionic gut. Transplanted cells and their projections spread along the endogenous myenteric plexus to form branching networks. Electrical point stimulation of endogenous nerve fibres resulted in calcium transients (F/F0 = 1.16 ± 0.01;43 cells, n = 6 in YFP+ transplanted ENCCs (abolished with TTX. Long-term follow-up (24 months showed transplanted ENCCs did not give rise to tumours or spread to other organs (PCR negative in extraintestinal sites. In aganglionic gut ENCCs similarly spread and differentiated to form neuronal and glial networks with projections closely associated with endogenous neural networks of the transition zone.Transplanted ENCCs successfully engrafted into recipient ganglionic and aganglionic gut showing appropriate spread, localisation and, importantly, functional integration without any long-term safety issues. This study provides key support for the development and use of enteric neural stem cell therapies.

  7. A new approach to preparing safety cases for existing nuclear plant (COSR)

    International Nuclear Information System (INIS)

    Rice, S.A.; Buchan, A.B.

    2000-01-01

    BNFL is committed to achieving world class safety performance, through a process of continuously reviewing and improving its safety practices. In the mid 1990s, as part of this process, the company began to develop a new type of safety case, for existing non-reactor nuclear plants, called the continued operation safety report (COSR). Following a significant amount of development work from experts within BNFL and important contributions from its regulators, the first approved COSR was recently completed and submitted to the Nuclear Installations Inspectorate. The COSR aims to provide a visibly integrated safety and engineering case for the adequacy of continued operation of a nuclear facility. It achieves this by identifying the main plant structures, systems and components that have a safety function and provides the appropriate supporting engineering substantiation. The COSR aims to explore plant safety and identify worthwhile improvements. The document also aims to be reader-friendly by focusing on the main safety issues. It is therefore a slim safety summary which provides operators, safety specialists and regulators with an overview and introduction into the broader, more detailed safety case. This paper provides an overview of the COSR and its production process, describing the safety case improvements that have been made by comparing it to its predecessor, the fully developed safety case. The paper also illustrates the benefits of the COSR by providing current examples of its application on existing BNFL plant. Finally, the paper describes ongoing development work aimed at further improving the COSR and its production process. (author)

  8. Nanotechnology in food science: Functionality, applicability, and safety assessment

    Directory of Open Access Journals (Sweden)

    Xiaojia He

    2016-10-01

    Full Text Available Rapid development of nanotechnology is expected to transform many areas of food science and food industry with increasing investment and market share. In this article, current applications of nanotechnology in food systems are briefly reviewed. Functionality and applicability of food-related nanotechnology are highlighted in order to provide a comprehensive view on the development and safety assessment of nanotechnology in the food industry. While food nanotechnology offers great potential benefits, there are emerging concerns arising from its novel physicochemical properties. Therefore, the safety concerns and regulatory policies on its manufacturing, processing, packaging, and consumption are briefly addressed. At the end of this article, the perspectives of nanotechnology in active and intelligent packaging applications are highlighted.

  9. Alternate approaches to nuclear safety

    International Nuclear Information System (INIS)

    Crane, A.T.

    1985-01-01

    For the US nuclear power industry to expand, a greatly increased portion of the public must come to share the industry's confidence in reactor safety. Major obstacles to establishing this confidence are frequent incidents with potential safety implications and a lack of incontrovertible proof that the risk of a major accident is very low. The most important step toward overcoming these obstacles would be for each utility to operate, maintain, and evaluate its reactors according to far higher standards. With improvements in reliability and safety margins, existing plants would be a stimulus for building new ones rather than an impediment. If changes to the operation of existing plants and improvements to the design of future ones were inadequate, the only hope for a revival of the nuclear industry would be an alternative reactor so obviously safe that risk would no longer be an issue. Three possible concepts are the modular high-temperature gas reactor, the process inherent ultimate safety reactor, and the liquid-metal fast reactor. All three have inherent safety features that should make a meltdown essentially impossible. They cannot know just how great the advantage of these alternate reactors would be, but the benefits of developing one or more of the concepts appear great

  10. Barrier and system performances within a safety case: their functioning and evolution with time

    International Nuclear Information System (INIS)

    Hedin, A.; Voinis, S.; Fillion, E.; Keller, S.; Lalieux, Ph.; Nachmilner, L.; Nys, V.; Rodriguez, J.; Sevougian, D.; Wollrath, J.

    2002-01-01

    The following six questions were used as the basis for the discussions in a Working Group: - What is the role of each barrier as a function of time or in the different time frames? What is its contribution to the overall system performance or safety as a function of time? - Which are the main uncertainties on the performance of barriers in the timescales? To what extent should we enhance the robustness of barriers because of the uncertainties of some component behaviour with time? - What is the requested or required performance versus the expected realistic or conservative behaviour with time? How are these safety margins used as arguments in a safety case? - What is the issue associated with the geosphere stability for different geological systems? - How are barriers and system performances, as a function of time, evaluated (presented and communicated) in a safety case? - What kind of measures are used for siting, designing and optimising robust barriers corresponding to situations that can vary with time? Are human actions considered to be relevant? (authors)

  11. The current CEA/DRN safety approach for the design and the assessment of non-electrical applications of nuclear heat

    International Nuclear Information System (INIS)

    Fiorini, G.L.; Costa, M.

    2000-01-01

    This paper presents the basis of the safety approach currently implemented by the Commissariat a l'Energie Atomique - Nuclear Reactor Directorate (CEA/DRN), both for the design and the assessment of innovative systems and future nuclear installations. It is considered that the described approach is applicable to the plants built for non-electrical applications of nuclear heat. This is typically the case of Nuclear Desalination Installations. This approach is the result of the experience maturated, within the context of the CEA/DRN Innovative Programme, through practical applications over several future concepts (both fission and fusion plants). The background of this experience is structured coherently with the European Safety Authorities recommendations, the European Utilities Requirements (EUR) and the ''fundamental safety objectives'' defined by the IAEA. The Defence In Depth principle and its application, by means, among others, of the barrier concept, remains the basis of the safety design process of future nuclear installations. Its adequacy is checked through the safety assessment. The methodology for Lines of Defence (LOD) implementation as well as the one for the LOD architecture assessment is shown and motivated. The document shows that the clear and unambiguous definition of the safety approach provides an essential base for the organisation of the design tasks, being sure that the safety aspects are correctly taken into account and implemented, and for an adequate safety assessment of the final design, both from qualitative point of view as well as for the quantitative safety analysis. (author)

  12. IAEA activities on education and training in radiation and waste safety: Strategic approach for a sustainable system

    International Nuclear Information System (INIS)

    Mrabit, Khammar; Sadagopan; Geetha

    2003-01-01

    The statutory safety functions of the International Atomic Energy Agency (IAEA) include the establishment of and provision for the application of safety standards for protection of health, life and property against ionizing radiation. The safety standards are based on the presumption that a national infrastructure is in place enabling the Government to discharge its responsibilities for protection and safety. Education and training is an essential element of the infrastructure. The IAEA education and training activities follows the resolutions of its General Conferences and reflects the latest IAEA standards and guidance. In response to GC(44)/RES/13, the IAEA prepared a 'Strategic Approach to Education and Training in Radiation and Waste Safety' aiming at establishing, by 2010, sustainable education a training programmes in Member States. This Strategy was endorsed by General Conference resolution GC(45)/RES/10C that, inter alia, urged the Secretariat to implement the Strategy on Education and Training and to continue to strengthen, subject to available resources, its current effort in this area, and in particular to assist Member States' national, regional and collaborating centres in conducting such education and training activities in the relevant official languages of the IAEA. In the last General Conference 2002, the IAEA was urged to continue to implement the Strategy, including the convening of the Steering Committee. The first Technical Committee meeting took place during the week 25-29 November 2002. (author)

  13. Thought for food (safety) in the EU: a discourse-analytical approach

    NARCIS (Netherlands)

    Paul, K.T.

    2008-01-01

    This paper seeks to explain the development of a transnational food safety policy approach in the context of the European Union (EU). The diverse reactions to the series of food scares over the past decade, such as the discovery of the link between BSE (Bovine Spongiform Encephalopathy) and the

  14. Risk-based approach to long-term safety assessment for near surface disposal of radioactive waste in Korea

    International Nuclear Information System (INIS)

    Jeong, C.W.; Kim, K.I.; Lee, J.I.

    2000-01-01

    This paper presents the Korean regulatory approach to safety assessment consistent with probabilistic, risk-based long-term safety requirements for near surface disposal facilities. The approach is based on: (1) From the standpoint of risk limitation, normal processes and probabilistic disruptive events should be integrated in a similar manner in terms of potential exposures; and (2) The uncertainties inherent in the safety assessment should be reduced using appropriate exposure scenarios. In addition, this paper emphasizes the necessity of international guidance for quantifying potential exposures and the corresponding risks from radioactive waste disposal. (author)

  15. The KNICS approach for verification and validation of safety software

    International Nuclear Information System (INIS)

    Cha, Kyung Ho; Sohn, Han Seong; Lee, Jang Soo; Kim, Jang Yeol; Cheon, Se Woo; Lee, Young Joon; Hwang, In Koo; Kwon, Kee Choon

    2003-01-01

    This paper presents verification and validation (VV) to be approached for safety software of POSAFE-Q Programmable Logic Controller (PLC) prototype and Plant Protection System (PPS) prototype, which consists of Reactor Protection System (RPS) and Engineered Safety Features-Component Control System (ESF-CCS) in development of Korea Nuclear Instrumentation and Control System (KNICS). The SVV criteria and requirements are selected from IEEE Std. 7-4.3.2, IEEE Std. 1012, IEEE Std. 1028 and BTP-14, and they have been considered for acceptance framework to be provided within SVV procedures. SVV techniques, including Review and Inspection (R and I), Formal Verification and Theorem Proving, and Automated Testing, are applied for safety software and automated SVV tools supports SVV tasks. Software Inspection Support and Requirement Traceability (SIS-RT) supports R and I and traceability analysis, a New Symbolic Model Verifier (NuSMV), Statemate MAGNUM (STM) ModelCertifier, and Prototype Verification System (PVS) are used for formal verification, and McCabe and Cantata++ are utilized for static and dynamic software testing. In addition, dedication of Commercial-Off-The-Shelf (COTS) software and firmware, Software Safety Analysis (SSA) and evaluation of Software Configuration Management (SCM) are being performed for the PPS prototype in the software requirements phase

  16. Kaizen: ergonomics approach to occupational health and safety.

    Science.gov (United States)

    Kumashiro, Masaharu

    2011-12-01

    Kaizen (work improvement) is the forte of Japanese industry. Kaizen activities were born in the early 20th century under the name efficiency research. These activities were the beginning of industrial engineering (IE). Later on people began to rethink the single-minded devotion to improving productivity. Then the job re-design concept was developed. The main target of kaizen in the area of occupational health and safety in Japanese manufacturing is the improvement of inadequate working posture followed by the improvement of work for transporting and lifting heavy objects. Unfortunately, the kaizen activities undertaken by most Japanese companies are still focused on improving productivity and quality. The know-how for promoting kaizen activities that integrate the three aspects of IE, occupational health, and ergonomics is not being accumulated, however. In particular, the IE techniques should be incorporated into kaizen activities aimed at occupational safety and health, and the quantitative assessment of workload is required. In addition, it is important for on-the-job kaizen training in the ERGOMA Approach for production supervisors, who are the main advocates of IE kaizen.

  17. Collaborative Approaches in Developing Environmental and Safety Management Systems for Commercial Space Transportation

    Science.gov (United States)

    Zee, Stacey; Murray, D.

    2009-01-01

    The Federal Aviation Administration (FAA), Office of Commercial Space Transportation (AST) licenses and permits U.S. commercial space launch and reentry activities, and licenses the operation of non-federal launch and reentry sites. ASTs mission is to ensure the protection of the public, property, and the national security and foreign policy interests of the United States during commercial space transportation activities and to encourage, facilitate, and promote U.S. commercial space transportation. AST faces unique challenges of ensuring the protection of public health and safety while facilitating and promoting U.S. commercial space transportation. AST has developed an Environmental Management System (EMS) and a Safety Management System (SMS) to help meet its mission. Although the EMS and SMS were developed independently, the systems share similar elements. Both systems follow a Plan-Do-Act-Check model in identifying potential environmental aspects or public safety hazards, assessing significance in terms of severity and likelihood of occurrence, developing approaches to reduce risk, and verifying that the risk is reduced. This paper will describe the similarities between ASTs EMS and SMS elements and how AST is building a collaborative approach in environmental and safety management to reduce impacts to the environment and risks to the public.

  18. Advances in safety related maintenance

    International Nuclear Information System (INIS)

    2000-03-01

    The maintenance of systems, structures and components in nuclear power plants (NPPs) plays an important role in assuring their safe and reliable operation. Worldwide, NPP maintenance managers are seeking to reduce overall maintenance costs while maintaining or improving the levels of safety and reliability. Thus, the issue of NPP maintenance is one of the most challenging aspects of nuclear power generation. There is a direct relation between safety and maintenance. While maintenance alone (apart from modifications) will not make a plant safer than its original design, deficient maintenance may result in either an increased number of transients and challenges to safety systems or reduced reliability and availability of safety systems. The confidence that NPP structures, systems and components will function as designed is ultimately based on programmes which monitor both their reliability and availability to perform their intended safety function. Because of this, approaches to monitor the effectiveness of maintenance are also necessary. An effective maintenance programme ensures that there is a balance between the improvement in component reliability to be achieved and the loss of component function due to maintenance downtime. This implies that the safety level of an NPP should not be adversely affected by maintenance performed during operation. The nuclear industry widely acknowledges the importance of maintenance in NPP safety and operation and therefore devotes great efforts to develop techniques, methods and tools to aid in maintenance planning, follow-up and optimization, and in assuring the effectiveness of maintenance

  19. New approaches to food safety economics

    NARCIS (Netherlands)

    Velthuis, A.G.J.; Unnevehr, L.J.; Hogeveen, H.; Huirne, R.B.M.

    2002-01-01

    Food-safety economics is a new research field, which needs a solid framework of concepts, procedures and data to support the decision-making process in food-safety improvement. Food safety is a theme that plays at many levels in the community: at the consumer level, at the farm or business level, at

  20. Nuclear safety: an international approach: the convention on nuclear safety

    International Nuclear Information System (INIS)

    Rosen, M.

    1994-01-01

    This paper is a general presentation of the IAEA Convention on Nuclear Safety which has already be signed by 50 countries and which is the first legal instrument that directly addresses the safety of nuclear power plants worldwide. The paper gives a review of its development and some key provisions for a better understanding of how this agreement will operate in practice. The Convention consists of an introductory preamble and four chapters consisting of 35 articles dealing with: the principal objectives, definitions and scope of application; the various obligations (general provisions, legislation, responsibility and regulation, general safety considerations taking into account: the financial and human resources, the human factors, the quality assurance, the assessment and verification of safety, the radiation protection and the emergency preparedness; the safety of installations: sitting, design and construction, operation); the periodic meetings of the contracting parties to review national reports on the measures taken to implement each of the obligations, and the final clauses and other judicial provisions common to international agreements. (J.S.). 1 append

  1. The communicative construction of safety in wildland firefighting (Proceedings)

    Science.gov (United States)

    Jody Jahn

    2012-01-01

    This dissertation project used a two-study mixed methods approach, examining the communicative accomplishment of safety from two perspectives: high reliability organizing (Weick, Sutcliffe, & Obstfeld 1999), and safety climate (Zohar 1980). In Study One, 27 firefighters from two functionally similar wildland firefighting crews were interviewed about their crew-...

  2. Nanotechnology in food science: Functionality, applicability, and safety assessment.

    Science.gov (United States)

    He, Xiaojia; Hwang, Huey-Min

    2016-10-01

    Rapid development of nanotechnology is expected to transform many areas of food science and food industry with increasing investment and market share. In this article, current applications of nanotechnology in food systems are briefly reviewed. Functionality and applicability of food-related nanotechnology are highlighted in order to provide a comprehensive view on the development and safety assessment of nanotechnology in the food industry. While food nanotechnology offers great potential benefits, there are emerging concerns arising from its novel physicochemical properties. Therefore, the safety concerns and regulatory policies on its manufacturing, processing, packaging, and consumption are briefly addressed. At the end of this article, the perspectives of nanotechnology in active and intelligent packaging applications are highlighted. Copyright © 2016. Published by Elsevier B.V.

  3. Development of a harmonized approach to safety assessment of decommissioning: Lessons learned from international experience (DeSa project)

    International Nuclear Information System (INIS)

    Percival, K.; Nokhamzon, J.-G.; Ferch, R.; Batandjieva, B.

    2006-01-01

    The number of nuclear facilities being or planned to be shutdown as they reach the end of their design life, due to accidents or other political and social factors has been increasing worldwide. This has led to an increase in the awareness of regulators and operators of the importance of development and implementation of adequate safety requirements and criteria for decommissioning of these facilities. A general requirement at international and national levels, even for new facilities to be commissioned, is the development of a decommissioning plan, which includes evaluation of potential radiological consequences to public and workers during planned and accidental decommissioning activities. Experience has been gained in the safety assessment of decommissioning at various sites with different complexities and hazard potentials. This experience shows that various approaches have been used in conducting safety assessments and that there is a need for harmonisation of these approaches and for transferring the good practice and lessons learned to other countries, in particular developing countries with limited financial and human resources. The IAEA launched an international project on Evaluation and Demonstration of Safety during Decommissioning (DeSa) in 2004 to provide a forum for exchange of lessons learned between site operators, regulators, safety assessors and other specialists in safety assessment of decommissioning of nuclear power plants, research reactors, laboratories, nuclear fuel cycle facilities, etc. This paper presents the lessons learned through the project up to date, i.e.; (i) a common approach to safety assessment is being applied worldwide with the following steps - establishment of assessment framework; description of the facility; definition of decommissioning activities; hazard identification and analysis; calculation of consequences; and analysis of results; (ii) a deterministic approach to safety assessment is most commonly applied; (iii) a

  4. Economic approaches to measuring the significance of food safety in international trade.

    Science.gov (United States)

    Caswell, J A

    2000-12-20

    International trade in food products has expanded rapidly in recent years. This paper presents economic approaches for analyzing the effects on trade in food products of the food safety requirements of governments and private buyers. Important economic incentives for companies to provide improved food safety arise from (1) public incentives such as ex ante requirements for sale of a product with sufficient quality and ex post penalties (liability) for sale of products with deficient quality, and (2) private incentives for producing quality such as internal performance goals (self-regulation) and the external (certification) requirements of buyers. The World Trade Organization's Sanitary Phytosanitary Agreement facilitates scrutiny of the benefits and costs of country-level regulatory programs and encourages regulatory rapprochement on food safety issues. Economists can help guide risk management decisions by providing estimates of the benefits and costs of programs to improve food safety and by analyzing their effect on trade in food products.

  5. Safety approach for the design and the assessment of future nuclear systems

    International Nuclear Information System (INIS)

    Clement, Ch.; Maliverney, B.; Mulet-Marquis, D.; Sauvage, J.F.; Guesdon, B.; Carluec, B.; Ehster, S.; Greneche, D.; Anzieu, P.; Fiorini, G.L.; Rozenholc, M.; Vitton, F.; Rouyer, J.L.

    2007-01-01

    The Technology road-map for fourth-generation reactors sets out ambitious technological requirements. They concern sustainability, competitiveness, safety and reliability, resistance to proliferation and physical protection. Deliberations on the safety policies applicable to these systems are conducted at both international and national level. In France, deliberations are organized within the GCFS (French Advisory Group on Safety), which brings together industrial and researchers involved in the development of these systems. Within this international harmonization initiative, the GCFS proposes to define recommendations common to all fourth generation concepts and then, on the basis of this technologically neutral framework. The safety approach proposed by GCFS is based mainly on the 'defence in depth' concept. It aims to prevent disturbed situations but also includes reasonable minimization of their consequences. It has a mainly deterministic basis but includes a contribution from probabilistic tools. The 'defence in depth' concept is applied to the fourth-generation sodium fast reactor

  6. [Probiotics as functional food products: manufacture and approaches to evaluating of the effectiveness].

    Science.gov (United States)

    Markova, Iu M; Sheveleva, S A

    2014-01-01

    This review concerns the issues of foodfortifications and the creation of functional foods (FF) and food supplements based on probiotics and covers an issue of approaches to the regulation of probiotic food products in various countries. The status of functional foods, optimizing GIT functions, as a separate category of FF is emphasized. Considering the strain-specificity effect of probiotics, the minimum criteria used for probiotics in food products are: 1) the need to identify a probiotics at genus, species, and strain levels, using the high-resolution techniques, 2) the viability and the presence of a sufficient amount of the probiotic in product at the end of shelf life, 3) the proof of functional characteristics inherent to probiotic strains, in the controlled experiments. The recommended by FA O/WHO three-stage evaluation procedure offunctional efficiency of FF includes: Phase I--safety assessment in in vitro and in vivo experiments, Phase II--Evaluation in the Double-Blind, Randomized, Placebo-Controlled trial (DBRPC) and Phase III--Post-approval monitoring. It is noted that along with the ability to obtain statistically significant results of the evaluation, there are practical difficulties of conducting DBRPC (duration, costs, difficulties in selection of target biomarkers and populations). The promising approach for assessing the functional efficacy of FF is the concept of nutrigenomics. It examines the link between the human diet and the characteristics of his genome to determine the influence of food on the expression of genes and, ultimately, to human health. Nutrigenomic approaches are promising to assess the impact of probiotics in healthy people. The focusing on the nutrigenomic response of intestinal microbial community and its individual populations (in this regard the lactobacilli can be very informative) was proposed.

  7. The current status of exposure-driven approaches for chemical safety assessment: A cross-sector perspective.

    Science.gov (United States)

    Sewell, Fiona; Aggarwal, Manoj; Bachler, Gerald; Broadmeadow, Alan; Gellatly, Nichola; Moore, Emma; Robinson, Sally; Rooseboom, Martijn; Stevens, Alexander; Terry, Claire; Burden, Natalie

    2017-08-15

    For the purposes of chemical safety assessment, the value of using non-animal (in silico and in vitro) approaches and generating mechanistic information on toxic effects is being increasingly recognised. For sectors where in vivo toxicity tests continue to be a regulatory requirement, there has been a parallel focus on how to refine studies (i.e. reduce suffering and improve animal welfare) and increase the value that in vivo data adds to the safety assessment process, as well as where to reduce animal numbers where possible. A key element necessary to ensure the transition towards successfully utilising both non-animal and refined safety testing is the better understanding of chemical exposure. This includes approaches such as measuring chemical concentrations within cell-based assays and during in vivo studies, understanding how predicted human exposures relate to levels tested, and using existing information on human exposures to aid in toxicity study design. Such approaches promise to increase the human relevance of safety assessment, and shift the focus from hazard-driven to risk-driven strategies similar to those used in the pharmaceutical sectors. Human exposure-based safety assessment offers scientific and 3Rs benefits across all sectors marketing chemical or medicinal products. The UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) convened an expert working group of scientists across the agrochemical, industrial chemical and pharmaceutical industries plus a contract research organisation (CRO) to discuss the current status of the utilisation of exposure-driven approaches, and the challenges and potential next steps for wider uptake and acceptance. This paper summarises these discussions, highlights the challenges - particularly those identified by industry - and proposes initial steps for moving the field forward. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. A defence in depth approach to safety assessment of existing nuclear power plant

    International Nuclear Information System (INIS)

    Butcher, P.; Holloway, N.J.

    1998-01-01

    The safety assessment of plant built to earlier standards requires an approach to prioritisation of upgrades that is based on sound engineering and safety principles. The principles of defence in depth are universally accepted and can form the basis of a prioritisation scheme for safety issues, and hence for the upgrading required to address them. The described scheme includes criteria for acceptability and issue prioritisation that are based on the number of lines of defence and the consequences of their failure. They are thus equivalent in concept to risk criteria, but are based on deterministic principles. This scheme has been applied successfully to the RBMK plant at Ignalina in Lithuania, for which a Western-style Safety Analysis Report has recently been produced and reviewed by joint Western and Eastern teams. An extended Safety Improvement Programme (SIP2) has been developed and agreed, based on prioritisations from the defence in depth assessment. (author)

  9. An inverse approach for elucidating dendritic function

    Directory of Open Access Journals (Sweden)

    Benjamin Torben-Nielsen

    2010-09-01

    Full Text Available We outline an inverse approach for investigating dendritic function-structure relationships by optimizing dendritic trees for a-priori chosen computational functions. The inverse approach can be applied in two different ways. First, we can use it as a `hypothesis generator' in which we optimize dendrites for a function of general interest. The optimization yields an artificial dendrite that is subsequently compared to real neurons. This comparison potentially allows us to propose hypotheses about the function of real neurons. In this way, we investigated dendrites that optimally perform input-order detection. Second, we can use it as a `function confirmation' by optimizing dendrites for functions hypothesized to be performed by classes of neurons. If the optimized, artificial, dendrites resemble the dendrites of real neurons the artificial dendrites corroborate the hypothesized function of the real neuron. Moreover, properties of the artificial dendrites can lead to predictions about yet unmeasured properties. In this way, we investigated wide-field motion integration performed by the VS cells of the fly visual system. In outlining the inverse approach and two applications, we also elaborate on the nature of dendritic function. We furthermore discuss the role of optimality in assigning functions to dendrites and point out interesting future directions.

  10. Effects of Different Types of Cognitive Training on Cognitive Function, Brain Structure, and Driving Safety in Senior Daily Drivers: A Pilot Study

    Science.gov (United States)

    Taki, Yasuyuki; Kanno, Akitake; Akimoto, Yoritaka; Ihara, Mizuki; Yokoyama, Ryoichi; Kotozaki, Yuka; Sekiguchi, Atsushi; Takeuchi, Hikaru; Miyauchi, Carlos Makoto; Ogawa, Takeshi; Goto, Takakuni; Sunda, Takashi; Shimizu, Toshiyuki; Tozuka, Eiji; Hirose, Satoru; Nanbu, Tatsuyoshi; Kawashima, Ryuta

    2015-01-01

    Background. Increasing proportion of the elderly in the driving population raises the importance of assuring their safety. We explored the effects of three different types of cognitive training on the cognitive function, brain structure, and driving safety of the elderly. Methods. Thirty-seven healthy elderly daily drivers were randomly assigned to one of three training groups: Group V trained in a vehicle with a newly developed onboard cognitive training program, Group P trained with a similar program but on a personal computer, and Group C trained to solve a crossword puzzle. Before and after the 8-week training period, they underwent neuropsychological tests, structural brain magnetic resonance imaging, and driving safety tests. Results. For cognitive function, only Group V showed significant improvements in processing speed and working memory. For driving safety, Group V showed significant improvements both in the driving aptitude test and in the on-road evaluations. Group P showed no significant improvements in either test, and Group C showed significant improvements in the driving aptitude but not in the on-road evaluations. Conclusion. The results support the effectiveness of the onboard training program in enhancing the elderly's abilities to drive safely and the potential advantages of a multimodal training approach. PMID:26161000

  11. Effects of Different Types of Cognitive Training on Cognitive Function, Brain Structure, and Driving Safety in Senior Daily Drivers: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Takayuki Nozawa

    2015-01-01

    Full Text Available Background. Increasing proportion of the elderly in the driving population raises the importance of assuring their safety. We explored the effects of three different types of cognitive training on the cognitive function, brain structure, and driving safety of the elderly. Methods. Thirty-seven healthy elderly daily drivers were randomly assigned to one of three training groups: Group V trained in a vehicle with a newly developed onboard cognitive training program, Group P trained with a similar program but on a personal computer, and Group C trained to solve a crossword puzzle. Before and after the 8-week training period, they underwent neuropsychological tests, structural brain magnetic resonance imaging, and driving safety tests. Results. For cognitive function, only Group V showed significant improvements in processing speed and working memory. For driving safety, Group V showed significant improvements both in the driving aptitude test and in the on-road evaluations. Group P showed no significant improvements in either test, and Group C showed significant improvements in the driving aptitude but not in the on-road evaluations. Conclusion. The results support the effectiveness of the onboard training program in enhancing the elderly’s abilities to drive safely and the potential advantages of a multimodal training approach.

  12. Rad waste disposal safety analysis / Integrated safety assessment of a waste repository

    International Nuclear Information System (INIS)

    Jeong, Jongtae; Choi, Jongwon; Kang, Chulhyung

    2012-04-01

    We developed CYPRUS+and adopted PID and RES method for the development of scenario. Safety performance assessment program was developed using GoldSim for the safety assessment of disposal system for the disposal of spnet fuels and wastes resulting from the pyrpoprocessing. Biosphere model was developed and verified in cooperation with JAEA. The capability to evaluate post-closure performance and safety was added to the previously developed program. And, nuclide migration and release to the biosphere considering site characteristics was evaluated by using deterministic and probabilistic approach. Operational safety assessment for drop, fire, and earthquake was also statistically evaluated considering well-established input parameter distribution. Conservative assessment showed that dose rate is below the limit value of low- and intermediate-level repository. Gas generation mechanism within engineered barrier was defined and its influence on safety was evaluated. We made probabilistic safety assessment by obtaining the probability distribution functions of important input variables and also made a sensitivity analysis. The maximum annual dose rate was shown to be below the safety limit value of 10 mSv/yr. The structure and element of safety case was developed to increase reliability of safety assessment methodology for a deep geological repository. Finally, milestone for safety case development and implementation strategy for each safety case element was also proposed

  13. Functional verification of a safety class controller for NPPs using a UVM register Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu Chull [Dept. of Applied Computer Engineering, Dankook University, Cheonan (Korea, Republic of)

    2014-06-15

    A highly reliable safety class controller for NPPs (Nuclear Power Plants) is mandatory as even a minor malfunction can lead to disastrous consequences for people, the environment or the facility. In order to enhance the reliability of a safety class digital controller for NPPs, we employed a diversity approach, in which a PLC-type controller and a PLD-type controller are to be operated in parallel. We built and used structured testbenches based on the classes supported by UVM for functional verification of the PLD-type controller designed for NPPs. We incorporated a UVM register model into the testbenches in order to increase the controllability and the observability of the DUT(Device Under Test). With the increased testability, we could easily verify the datapaths between I/O ports and the register sets of the DUT, otherwise we had to perform black box tests for the datapaths, which is very cumbersome and time consuming. We were also able to perform constrained random verification very easily and systematically. From the study, we confirmed the various advantages of using the UVM register model in verification such as scalability, reusability and interoperability, and set some design guidelines for verification of the NPP controllers.

  14. A hybrid simulation approach for integrating safety behavior into construction planning: An earthmoving case study.

    Science.gov (United States)

    Goh, Yang Miang; Askar Ali, Mohamed Jawad

    2016-08-01

    One of the key challenges in improving construction safety and health is the management of safety behavior. From a system point of view, workers work unsafely due to system level issues such as poor safety culture, excessive production pressure, inadequate allocation of resources and time and lack of training. These systemic issues should be eradicated or minimized during planning. However, there is a lack of detailed planning tools to help managers assess the impact of their upstream decisions on worker safety behavior. Even though simulation had been used in construction planning, the review conducted in this study showed that construction safety management research had not been exploiting the potential of simulation techniques. Thus, a hybrid simulation framework is proposed to facilitate integration of safety management considerations into construction activity simulation. The hybrid framework consists of discrete event simulation (DES) as the core, but heterogeneous, interactive and intelligent (able to make decisions) agents replace traditional entities and resources. In addition, some of the cognitive processes and physiological aspects of agents are captured using system dynamics (SD) approach. The combination of DES, agent-based simulation (ABS) and SD allows a more "natural" representation of the complex dynamics in construction activities. The proposed hybrid framework was demonstrated using a hypothetical case study. In addition, due to the lack of application of factorial experiment approach in safety management simulation, the case study demonstrated sensitivity analysis and factorial experiment to guide future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Objective Provision Trees of Reactivity Control Safety Function for Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Bongsuk; Yang, Huichang [TUEV Rheinland Korea Ltd., Seoul (Korea, Republic of); Suh, Namduk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of this OPT is first to assure the DiD design during the licensing of Sf, but it will also contribute in evaluating the completeness of regulatory requirements under development by Korea Institute of Nuclear Safety (KINS). Based on the definition of Defense-in-Depth (DiD) levels and safety functions for KALIMER Sodium-Cooled Fast Reactor (SFR), suggested in the reference and, Objective Provision Trees (OPTs) of reactivity control function for level 1, 2, 3 and 4 DiD were developed and suggested in this paper. The challenges and mechanisms and provisions were briefly explained in this paper. Comparing the mechanisms and provisions with the requirements will contribute in identifying the missing requirements. Since the design of Prototype Gen-IV Sf (PGSFR) is not mature yet, the OPT is developed for KALIMER design. Developed level 1 to 4 OPTs in this study can be used for the identification of potential design vulnerabilities. When detailed identification of provisions in terms of design features were achieved through the next step of this study, it can contribute to the establishment of defense-in-depth evaluation frame for the regulatory reviews for the licensing process. In the next stage of this study, other safety function will be researched and findings can be suggested as recommendations for the safety improvement.

  16. Objective Provision Trees of Reactivity Control Safety Function for Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Kang, Bongsuk; Yang, Huichang; Suh, Namduk

    2014-01-01

    The purpose of this OPT is first to assure the DiD design during the licensing of Sf, but it will also contribute in evaluating the completeness of regulatory requirements under development by Korea Institute of Nuclear Safety (KINS). Based on the definition of Defense-in-Depth (DiD) levels and safety functions for KALIMER Sodium-Cooled Fast Reactor (SFR), suggested in the reference and, Objective Provision Trees (OPTs) of reactivity control function for level 1, 2, 3 and 4 DiD were developed and suggested in this paper. The challenges and mechanisms and provisions were briefly explained in this paper. Comparing the mechanisms and provisions with the requirements will contribute in identifying the missing requirements. Since the design of Prototype Gen-IV Sf (PGSFR) is not mature yet, the OPT is developed for KALIMER design. Developed level 1 to 4 OPTs in this study can be used for the identification of potential design vulnerabilities. When detailed identification of provisions in terms of design features were achieved through the next step of this study, it can contribute to the establishment of defense-in-depth evaluation frame for the regulatory reviews for the licensing process. In the next stage of this study, other safety function will be researched and findings can be suggested as recommendations for the safety improvement

  17. Functional safety of health information technology.

    LENUS (Irish Health Repository)

    Chadwick, Liam

    2012-03-01

    In an effort to improve patient safety and reduce adverse events, there has been a rapid growth in the utilisation of health information technology (HIT). However, little work has examined the safety of the HIT systems themselves, the methods used in their development or the potential errors they may introduce into existing systems. This article introduces the conventional safety-related systems development standard IEC 61508 to the medical domain. It is proposed that the techniques used in conventional safety-related systems development should be utilised by regulation bodies, healthcare organisations and HIT developers to provide an assurance of safety for HIT systems. In adopting the IEC 61508 methodology for HIT development and integration, inherent problems in the new systems can be identified and corrected during their development. Also, IEC 61508 should be used to develop a healthcare-specific standard to allow stakeholders to provide an assurance of a system\\'s safety.

  18. Industrial safety management with emphasis on construction safety

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2016-01-01

    Safety professionals, line managers, team leaders and concerned workers today eagerly discuss to find out the best safety approach for their workplace. Some research suggested that behaviour based and comprehensive ergonomics approaches lead in average reduction of injuries. This article discusses 'the science and engineering' behind improvement in industrial safety aspects particularly at construction sites through various safety approaches. A high degree of commitment to safety by the project management and rigorous and proactive measures are essential to prevent accidents at construction sites particularly in DAE units because of its sensitivity. Persistent efforts by the project management are needed for sustainable and committed safety at work place. The number of fatalities occurring from construction work in DAE units is sometimes disturbing and fall of person from height and through openings are the major causes for serious accidents

  19. Systemic-Functional Approach to Utilities Supplys

    Directory of Open Access Journals (Sweden)

    Nikolay I. Komkov

    2017-01-01

    Full Text Available Purpose: the purpose of the article consists in statement of management approach to development of utilities supply processes based on conflict situations decision – making search. It had appeared in the period of the transition from the planned and directive management to market development. Methods: the research methodology is based on the system analysis of full life cycle processes functioning, forecasting of complex systems development, mathematical modeling of processes of services supply and innovative and investment projects modeling as well as development of supplying services processes. Results: the results of the work are concentrated in the presentation of systemic-functional approach to managing the development of processes of municipal services, able to resolve conflict situations in this sphere. Conclusions and Relevance: the traditional management approach on the basis of elimination of "bottlenecks" and emergencies prevailing within planned and directive system at its transformation in the market conditions has led to accumulation of conflict situations and unsolvable problems. The offered systemic-functional approach based on forecasting of full life cycle of the modernized processes and the services providing systems allows to consider costs of modernization, prime cost and quality of the rendered services. 

  20. Modern licensing approaches for analysis of important to safety processes in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Andreeva, M.; Groudev, P.; Pavlova, M.; Stoyanov, S.

    2008-01-01

    It is presented within the paper the modern approaches for analysis of important to safety assessment processes in Nuclear Power Plants, included Bulgarian Regulatory Agency's requirements for quantity assessment of these processes applying deterministic and probabilistic approaches for establishing and confirming the design basis and defence-in-depth effectiveness. (authors)

  1. Safety based on organisational learning (SOL) - Conceptual approach and verification of a method for event analysis

    International Nuclear Information System (INIS)

    Miller, R.; Wilpert, B.; Fahlbruch, B.

    1999-01-01

    This paper discusses a method for analysing safety-relevant events in NPP which is known as 'SOL', safety based on organisational learning. After discussion of the specific organisational and psychological problems examined in the event analysis, the analytic process using the SOL approach is explained as well as the required general setting. The SOL approach has been tested both with scientific experiments and from the practical perspective, by operators of NPPs and experts from other branches of industry. (orig./CB) [de

  2. The driver, the road, the rules … and the rest? A systems-based approach to young driver road safety.

    Science.gov (United States)

    Scott-Parker, B; Goode, N; Salmon, P

    2015-01-01

    The persistent overrepresentation of young drivers in road crashes is universally recognised. A multitude of factors influencing their behaviour and safety have been identified through methods including crash analyses, simulated and naturalistic driving studies, and self-report measures. Across the globe numerous, diverse, countermeasures have been implemented; the design of the vast majority of these has been informed by a driver-centric approach. An alternative approach gaining popularity in transport safety is the systems approach which considers not only the characteristics of the individual, but also the decisions and actions of other actors within the road transport system, along with the interactions amongst them. This paper argues that for substantial improvements to be made in young driver road safety, what has been learnt from driver-centric research needs to be integrated into a systems approach, thus providing a holistic appraisal of the young driver road safety problem. Only then will more effective opportunities and avenues for intervention be realised. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Radioactive wastes. Safety of storage facilities

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2001-01-01

    A radioactive waste storage facility is designed in a way that ensures the isolation of wastes with respect to the biosphere. This function comprises the damping of the gamma and neutron radiations from the wastes, and the confinement of the radionuclides content of the wastes. The safety approach is based on two time scales: the safety of the insulation system during the main phase of radioactive decay, and the assessment of the radiological risks following this phase. The safety of a surface storage facility is based on a three-barrier concept (container, storage structures, site). The confidence in the safety of the facility is based on the quality assurance of the barriers and on their surveillance and maintenance. The safety of a deep repository will be based on the site quality, on the design and construction of structures and on the quality of the safety demonstration. This article deals with the safety approach and principles of storage facilities: 1 - recall of the different types of storage facilities; 2 - different phases of the life of a storage facility and regulatory steps; 3 - safety and radiation protection goals (time scales, radiation protection goals); 4 - safety approach and principles of storage facilities: safety of the isolation system (confinement system, safety analysis, scenarios, radiological consequences, safety principles), assessment of the radiation risks after the main phase of decay; 5 - safety of surface storage facilities: safety analysis of the confinement system of the Aube plant (barriers, scenarios, modeling, efficiency), evaluation of radiological risks after the main phase of decay; experience feedback of the Manche plant; variants of surface storage facilities in France and abroad (very low activity wastes, mine wastes, short living wastes with low and average activity); 6 - safety of deep geological disposal facilities: legal framework of the French research; international context; safety analysis of the confinement system

  4. Safety research for evolutionary light water reactors

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1996-01-01

    The development of nuclear energy has been characterized by a continuous evolution of the technological and philosophical underpinnings of reactor safety to enable operation of the plant without causing harm to either the plant operators or the public. Currently, the safety of a nuclear plant is assured through the combined use of procedures and engineered safety features together with a system of multiple protective barriers against the release of radioactivity. This approach is embodied in the concept of Design-Basis Accidents (DBA), which requires the designers to demonstrate that all credible accidents have been identified and that all safety equipment and procedures perform their functions extremely reliably. Particularly important functions are the automatic protection to shut the reactor down and to remove the decay heat while ensuring the integrity of the containment structure. Within the DBA concept, the so-called severe accidents were conveniently defined to be those accidents that lie beyond the DBA envelope; hence, they did not form part of the safety case. (author)

  5. Safety research for evolutionary light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D G [Karlsruhe Univ. (T.H.) (Germany). Universitaetsbibliothek

    1996-12-01

    The development of nuclear energy has been characterized by a continuous evolution of the technological and philosophical underpinnings of reactor safety to enable operation of the plant without causing harm to either the plant operators or the public. Currently, the safety of a nuclear plant is assured through the combined use of procedures and engineered safety features together with a system of multiple protective barriers against the release of radioactivity. This approach is embodied in the concept of Design-Basis Accidents (DBA), which requires the designers to demonstrate that all credible accidents have been identified and that all safety equipment and procedures perform their functions extremely reliably. Particularly important functions are the automatic protection to shut the reactor down and to remove the decay heat while ensuring the integrity of the containment structure. Within the DBA concept, the so-called severe accidents were conveniently defined to be those accidents that lie beyond the DBA envelope; hence, they did not form part of the safety case. (author).

  6. MODELS AND METHODS OF SAFETY-ORIENTED PROJECT MANAGEMENT OF DEVELOPMENT OF COMPLEX SYSTEMS: METHODOLOGICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Олег Богданович ЗАЧКО

    2016-03-01

    Full Text Available The methods and models of safety-oriented project management of the development of complex systems are proposed resulting from the convergence of existing approaches in project management in contrast to the mechanism of value-oriented management. A cognitive model of safety oriented project management of the development of complex systems is developed, which provides a synergistic effect that is to move the system from the original (pre condition in an optimal one from the viewpoint of life safety - post-project state. The approach of assessment the project complexity is proposed, which consists in taking into account the seasonal component of a time characteristic of life cycles of complex organizational and technical systems with occupancy. This enabled to take into account the seasonal component in simulation models of life cycle of the product operation in complex organizational and technical system, modeling the critical points of operation of systems with occupancy, which forms a new methodology for safety-oriented management of projects, programs and portfolios of projects with the formalization of the elements of complexity.

  7. Assessment of multi-version NPP I and C systems safety. Metric-based approach, technique and tool

    International Nuclear Information System (INIS)

    Kharchenko, Vyacheslav; Volkovoy, Andrey; Bakhmach, Eugenii; Siora, Alexander; Duzhyi, Vyacheslav

    2011-01-01

    The challenges related to problem of assessment of actual diversity level and evaluation of diversity-oriented NPP I and C systems safety are analyzed. There are risks of inaccurate assessment and problems of insufficient decreasing probability of CCFs. CCF probability of safety-critical systems may be essentially decreased due to application of several different types of diversity (multi-diversity). Different diversity types of FPGA-based NPP I and C systems, general approach and stages of diversity and safety assessment as a whole are described. Objectives of the report are: (a) analysis of the challenges caused by use of diversity approach in NPP I and C systems in context of FPGA and other modern technologies application; (b) development of multi-version NPP I and C systems assessment technique and tool based on check-list and metric-oriented approach; (c) case-study of the technique: assessment of multi-version FPGA-based NPP I and C developed by use of Radiy TM Platform. (author)

  8. International Atomic Energy Agency Activities on Education and Training in Radiation, Transport and Waste Safety: Strategic Approach for a Sustainable System

    International Nuclear Information System (INIS)

    Marbit, K.; Sadagopan, G.

    2005-01-01

    The statutory safety functions of the international Atomic Energy Agency (IAEA) include the establishment of and provision for the application of safety standards for protection of health, life and property against ionizing radiation. The safety standards are based on the presumption that a national infrastructure is in place enabling the government to discharge its responsibilities for protection and safety. Education and training is an essential element of the infrastructure. The IAEA education and training activities follows the the resolutions of its general conferences and reflects the latest IAEA standards and guidance. several general conference resolutions have emphasized the importance of education and training (e.g. GC (XXXV)/RES/552 in 1991,GC (XXXVI)/ RES/584 in 1992, GC (43)/RES/13 in 1999 and more recently GC (44)/RES/13 in 2000). In response to GC (44) /RES/13, the IAEA prepared a strategic approach to education and training in radiation and waste safety (strategy on education and training) aiming at establishing, by 2010 sustainable education and training programmes in member states. This strategy was endorsed by the general conference resolution GC(45)/RES/10C that, inter alia, urged the secretariat to implement the strategy on education and training, and to continue to strengthen, subject to available resources, its current effort in this area, and in particular to assist Member States national, regional and collaborating centres in conducting such education and training activities in the relevant official languages of the IAEA. The General Conference resolutions GC(46)RES/9C in 2002 and GC(47)RES/7 in 2003 urged the Agency to continue its efforts to implement the Strategy. The purpose of this paper is to present the newly established Strategic Approach to Education and Training in Radiation, Transport and Waste Safety and its implementation

  9. International Atomic Energy Agency Activities on Education and Training in Radiation Transport and Waste Safety: Strategic Approach for a Sustainable System

    International Nuclear Information System (INIS)

    Mrabit, K.; Sadagopan, G.

    2004-01-01

    The statutory safety functions of the International Atomic Energy Agency (IAEA) include the establishment of and provision for the application of safety standards for protection of health, life and property against ionizing radiation. The safety standards are based on the presumption that a national infrastructure is in place enabling the Government to discharge its responsibilities for protection and safety. Education and training is an essential element of the infrastructure. The IAEA education and training activities follows the resolutions of its General Conferences and reflects the latest IAEA standards and guidance. Several General Conference resolutions have emphasized the importance of education and training [e.g. GC(XXXV)/RES/552 in 1991; GC(XXXVI)/RES/584 in 1992; GC(43)/RES/13 in 1999 and more recently GC(44)/RES/13 in 2000]. In response to GC(44)/RES/13, the IAEA prepared a S trategic Approach to Education and Training in Radiation and Waste Safety ( Strategy on Education and Training) aiming at establishing, by 2010, sustainable education and training programmes in Member States. This Strategy was endorsed by the General Conference resolution GC(45)/RES/10C that, inter alia, urged the Secretariat to implement the Strategy on Education and Training, and to continue to strengthen, subject to available resources, its current effort in this area, and in particular to assist Member State' national, regional and collaborating centres in conducting such education and training activities in the relevant official languages of the IAEA. The General Conference resolutions GC(46)RES/9C in 2002 and GC(47)RES/7 in 2003 urged the Agency to continue its efforts to implement the Strategy. The purpose of this paper is to present the newly established Strategic Approach to Education and Training in Radiation, Transport and Waste Safety and its implementation. (Author)

  10. A Functional Approach to User Guides

    DEFF Research Database (Denmark)

    Nielsen, Sandro

    2007-01-01

    to fulfil the requirements of users. By applying the functional approach lexicographers are forced to reconsider the scope of the user guide. The user guide has traditionally centred on the structures of entries - and consequently on the word list - but its scope should be widened, so as to include all......The functional approach opens up exciting new possibilities for theoretical and practical lexicography. It encourages lexicographers to adopt a new way of thinking when planning and compiling dictionaries and when discussing and developing new lexicographic principles. One area in which it impacts...... on lexicography and lexicographic products is the writing of a really crafted and valuable user guide for instance by giving increased consideration to the user perspective. This involves the identification of the functions of the dictionary in terms of communication-oriented and cognitive functions, which helps...

  11. Validation of a functional model for integration of safety into process system design

    DEFF Research Database (Denmark)

    Wu, J.; Lind, M.; Zhang, X.

    2015-01-01

    with the process system functionalities as required for the intended safety applications. To provide the scientific rigor and facilitate the acceptance of qualitative modelling, this contribution focuses on developing a scientifically based validation method for functional models. The Multilevel Flow Modeling (MFM...

  12. Developing an integrated dam safety program

    International Nuclear Information System (INIS)

    Nielsen, N. M.; Lampa, J.

    1996-01-01

    An effort has been made to demonstrate that dam safety is an integral part of asset management which, when properly done, ensures that all objectives relating to safety and compliance, profitability, stakeholders' expectations and customer satisfaction, are achieved. The means to achieving this integration of the dam safety program and the level of effort required for each core function have been identified using the risk management approach to pinpoint vulnerabilities, and subsequently to focus priorities. The process is considered appropriate for any combination of numbers, sizes and uses of dams, and is designed to prevent exposure to unacceptable risks. 5 refs., 1 tab

  13. U.S. Nuclear Regulatory Commission Safety Culture Oversight

    International Nuclear Information System (INIS)

    Sieracki, D. J.

    2016-01-01

    The NRC recognises that it is important for all organizations performing or overseeing regulated activities to establish and maintain a positive safety culture commensurate with the safety and security significance of their activities and the nature and complexity of their organizations and functions. The NRC’s approach to safety culture is based on the premise that licencees bear the primary responsibility for safety. The NRC provides oversight of safety culture through expectations detailed in policy statements, safety culture assessor training for NRC inspectors, the oversight process, and the Allegations and Enforcement Programs. The NRC’s Safety Culture Policy Statement (SCPS) sets forth the Commission’s expectation that individuals and organizations establish and maintain a positive safety culture commensurate with the safety and security significance of their activities and the nature and complexity of their organizations and functions. The SCPS is not a regulation. It applies to all licencees, certificate holders, permit holders, authorisation holders, holders of quality assurance program approvals, vendors and suppliers of safety-related components, and applicants for a licence, certificate, permit, authorisation, or quality assurance program approval, subject to NRC authority.

  14. WSRC approach to validation of criticality safety computer codes

    International Nuclear Information System (INIS)

    Finch, D.R.; Mincey, J.F.

    1991-01-01

    Recent hardware and operating system changes at Westinghouse Savannah River Site (WSRC) have necessitated review of the validation for JOSHUA criticality safety computer codes. As part of the planning for this effort, a policy for validation of JOSHUA and other criticality safety codes has been developed. This policy will be illustrated with the steps being taken at WSRC. The objective in validating a specific computational method is to reliably correlate its calculated neutron multiplication factor (K eff ) with known values over a well-defined set of neutronic conditions. Said another way, such correlations should be: (1) repeatable; (2) demonstrated with defined confidence; and (3) identify the range of neutronic conditions (area of applicability) for which the correlations are valid. The general approach to validation of computational methods at WSRC must encompass a large number of diverse types of fissile material processes in different operations. Special problems are presented in validating computational methods when very few experiments are available (such as for enriched uranium systems with principal second isotope 236 U). To cover all process conditions at WSRC, a broad validation approach has been used. Broad validation is based upon calculation of many experiments to span all possible ranges of reflection, nuclide concentrations, moderation ratios, etc. Narrow validation, in comparison, relies on calculations of a few experiments very near anticipated worst-case process conditions. The methods and problems of broad validation are discussed

  15. An Integrated Approach for Characterization of Uncertainty in Complex Best Estimate Safety Assessment

    International Nuclear Information System (INIS)

    Pourgol-Mohamad, Mohammad; Modarres, Mohammad; Mosleh, Ali

    2013-01-01

    This paper discusses an approach called Integrated Methodology for Thermal-Hydraulics Uncertainty Analysis (IMTHUA) to characterize and integrate a wide range of uncertainties associated with the best estimate models and complex system codes used for nuclear power plant safety analyses. Examples of applications include complex thermal hydraulic and fire analysis codes. In identifying and assessing uncertainties, the proposed methodology treats the complex code as a 'white box', thus explicitly treating internal sub-model uncertainties in addition to the uncertainties related to the inputs to the code. The methodology accounts for uncertainties related to experimental data used to develop such sub-models, and efficiently propagates all uncertainties during best estimate calculations. Uncertainties are formally analyzed and probabilistically treated using a Bayesian inference framework. This comprehensive approach presents the results in a form usable in most other safety analyses such as the probabilistic safety assessment. The code output results are further updated through additional Bayesian inference using any available experimental data, for example from thermal hydraulic integral test facilities. The approach includes provisions to account for uncertainties associated with user-specified options, for example for choices among alternative sub-models, or among several different correlations. Complex time-dependent best-estimate calculations are computationally intense. The paper presents approaches to minimize computational intensity during the uncertainty propagation. Finally, the paper will report effectiveness and practicality of the methodology with two applications to a complex thermal-hydraulics system code as well as a complex fire simulation code. In case of multiple alternative models, several techniques, including dynamic model switching, user-controlled model selection, and model mixing, are discussed. (authors)

  16. Passive and inherent safety technologies for light-water nuclear reactors

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1990-07-01

    Passive/inherent safety implies a technical revolution in our approach to nuclear power safety. This direction is discussed herein for light-water reactors (LWRs) -- the predominant type of power reactor used in the world today. At Oak Ridge National Laboratory (ORNL) the approach to the development of passive/inherent safety for LWRs consists of four steps: identify and quantify safety requirements and goals; identify and quantify the technical functional requirements needed for safety; identify, invent, develop, and quantify technical options that meet both of the above requirements; and integrate safety systems into designs of economic and reliable nuclear power plants. Significant progress has been achieved in the first three steps of this program. The last step involves primarily the reactor vendors. These activities, as well as related activities worldwide, are described here. 27 refs., 7 tabs

  17. ITER-FEAT safety

    International Nuclear Information System (INIS)

    Gordon, C.W.; Bartels, H.-W.; Honda, T.; Raeder, J.; Topilski, L.; Iseli, M.; Moshonas, K.; Taylor, N.; Gulden, W.; Kolbasov, B.; Inabe, T.; Tada, E.

    2001-01-01

    Safety has been an integral part of the design process for ITER since the Conceptual Design Activities of the project. The safety approach adopted in the ITER-FEAT design and the complementary assessments underway, to be documented in the Generic Site Safety Report (GSSR), are expected to help demonstrate the attractiveness of fusion and thereby set a good precedent for future fusion power reactors. The assessments address ITER's radiological hazards taking into account fusion's favourable safety characteristics. The expectation that ITER will need regulatory approval has influenced the entire safety design and assessment approach. This paper summarises the ITER-FEAT safety approach and assessments underway. (author)

  18. The principal approaches to the problem of nuclear power plant safety in the USSR

    International Nuclear Information System (INIS)

    Sidorenko, V.A.; Kovalevich, O.M.; Kramerov, A.Ya.; Bagdasarov, Yu.E.

    1977-01-01

    The paper sets forth methods of ensuring the safety of nuclear power plants in the USSR on the basis of the scientific and engineering experience gained during the design, construction and operation of such plants, and describes the complex of technical and organizational problems whose solution determines the actual safety of nuclear power plants in the USSR. High-quality nuclear power plant equipment and components and their constant checking during the whole life of the plant are the prerequisites for preventing failures and accidents. The pattern of protective measures is discussed on the basis of possible failures and 'safe limits' for failures. The potentialities of the quantitative probabilistic method are analysed together with the need for a deterministic approach. The relationship of the maximum design accident with the protection and localization systems is considered in the case of nuclear power plants of different generations. The authors deal with the questions of State regulation of power plant safety on the basis of the adopted organizational structure and the system of standards. In conclusion, they briefly consider the application of the safety approach here described to power plants using water-water reactors, high-power boiling-water reactors and fast reactors in accordance with their place and role in the nuclear power development programme of the USSR. (author)

  19. Resilience Engineering in Critical Long Term Aerospace Software Systems: A New Approach to Spacecraft Software Safety

    Science.gov (United States)

    Dulo, D. A.

    Safety critical software systems permeate spacecraft, and in a long term venture like a starship would be pervasive in every system of the spacecraft. Yet software failure today continues to plague both the systems and the organizations that develop them resulting in the loss of life, time, money, and valuable system platforms. A starship cannot afford this type of software failure in long journeys away from home. A single software failure could have catastrophic results for the spaceship and the crew onboard. This paper will offer a new approach to developing safe reliable software systems through focusing not on the traditional safety/reliability engineering paradigms but rather by focusing on a new paradigm: Resilience and Failure Obviation Engineering. The foremost objective of this approach is the obviation of failure, coupled with the ability of a software system to prevent or adapt to complex changing conditions in real time as a safety valve should failure occur to ensure safe system continuity. Through this approach, safety is ensured through foresight to anticipate failure and to adapt to risk in real time before failure occurs. In a starship, this type of software engineering is vital. Through software developed in a resilient manner, a starship would have reduced or eliminated software failure, and would have the ability to rapidly adapt should a software system become unstable or unsafe. As a result, long term software safety, reliability, and resilience would be present for a successful long term starship mission.

  20. Current Methods Applied to Biomaterials - Characterization Approaches, Safety Assessment and Biological International Standards.

    Science.gov (United States)

    Oliveira, Justine P R; Ortiz, H Ivan Melendez; Bucio, Emilio; Alves, Patricia Terra; Lima, Mayara Ingrid Sousa; Goulart, Luiz Ricardo; Mathor, Monica B; Varca, Gustavo H C; Lugao, Ademar B

    2018-04-10

    Safety and biocompatibility assessment of biomaterials are themes of constant concern as advanced materials enter the market as well as products manufactured by new techniques emerge. Within this context, this review provides an up-to-date approach on current methods for the characterization and safety assessment of biomaterials and biomedical devices from a physicalchemical to a biological perspective, including a description of the alternative methods in accordance with current and established international standards. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Towards a Unified Approach to Safety and Security in Automotive Systems

    Science.gov (United States)

    Jesty, Peter H.; Ward, David D.

    At the time when IEC 61508 was being created, analogous work was also being done to harmonise security evaluation criteria. Although there was no cross-fertilisation between these two activities, the MISRA project did use the ITSEC evaluation criteria as the basis for its recommendations on the requirements for software at varying levels of integrity. This paper points out the advantages of this approach for safety engineers, and explains how it overcomes some of the difficulties that people now have in applying IEC 61508. It also shows how the approach can be used for other attributes such as electromagnetic compatibility.

  2. A risk assessment approach to evaluating food safety based on product surveillance

    NARCIS (Netherlands)

    Notermans, S.; Nauta, M.J.; Jansen, J.; Jouve, J.L.; Mead, G.C.

    1998-01-01

    This paper outlines a risk assessment approach to food safety evaluation, which is based on testing a particular type of food, or group of similar foods, for relevant microbial pathogens. The results obtained are related to possible adverse effects on the health of consumers. The paper also gives an

  3. Vehicle safety performance improvements using a performance-based standards approach: four case studies

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2014-01-01

    Full Text Available programme is to gain practical experience in the PBS approach and to quantify and evaluate the potential infrastructure preservation, safety and productivity benefits for road freight transport. The Smart Truck demonstration vehicles have been designed...

  4. A new safety concept for geological disposal in Japan (II) - 59357

    International Nuclear Information System (INIS)

    Kitayama, Kazumi

    2012-01-01

    This paper provides further discussion of a new defence-in-depth safety concept that was presented at ICEM09[1]. The basic idea is that it is rational to assume that the performance of passive engineered barriers with suitably chosen characteristics and the natural barrier will maintain their safety functions for a sufficiently long time due to geochemical buffering occurring deep underground, The approach can be used to enhance and embed public understanding of the long-term safety of geological disposal. This paper summarizes the logic of the approach focusing on the following topics, which are the basic themes of the new safety concept. 1. Applicability of the defence-in-depth concept to the geological disposal of radioactive waste; 2. Natural Analogue approach to explaining the long-term behaviour of the barriers; and 3. Approach for the Social Dialogue with stakeholder, which is the most important issue for site selection. (authors)

  5. Evaluation of common mode failure of safety functions for limiting fault events

    International Nuclear Information System (INIS)

    Rezendes, J.P.; Hyde, A.W.

    2004-01-01

    The draft U.S. Nuclear Regulatory Commission (NRC) policy on digital protection system software requires all Advanced Light Water Reactors (ALWRs) to be evaluated assuming a hypothetical common mode failure (CMF) which incapacitates the normal automatic initiation of safety functions. The System 80 + ALWR has been evaluated for such hypothetical conditions. The results show that the diverse automatic and manual protective systems in System 80 + provide ample safety performance margins relative to core coolability, offsite radiological releases. Reactor Coolant System (RCS) pressurization and containment integrity. This deterministic evaluation served to quantify the significant inherent safety margins in the System 80 + Standard Plant design even in the event of this extremely low probability scenario of a common mode failure. (author)

  6. Color Functionality Used in Visual Display for Occupational and Environmental Safety and Managing Color Vision Deficiency.

    Science.gov (United States)

    Ochiai, Nobuhisa; Kondo, Hiroyuki

    2017-01-01

    The effects of color perception are utilized in visual displays for the purpose of safety in the workplace and in daily life. These effects, generally known as color functionality, are divided into four classifications: visibility, legibility, conspicuity and discriminability. This article focuses on the relationship between the color functionality of color schemes used in visual displays for occupational and environmental safety and color vision deficiency (particularly congenital red-green color deficiency), a critical issue in ophthalmology, and examines the effects of color functionality on the perception of the color red in individuals with protan defects. Due to abrupt system reforms, current Japanese clinical ophthalmology finds itself in a situation where it is insufficiently prepared to handle congenital red-green color deficiencies. Indeed, occupational problems caused by color vision deficiencies have been almost completely neglected, and are an occupational safety and health concern that will need to be solved in the future. This report will present the guidelines for the color vision testing established by the British Health and Safety Executive (HSE), a pioneering example of a model meant to solve these problems. Issues relating to the creation of guidelines adapted to Japanese clinical ophthalmology will also be examined, and we will discuss ways to utilize color functionality used in visual displays for occupational and environmental safety to help manage color vision deficiency.

  7. Wind Turbine Generator System Safety and Function Test Report for the Southwest Windpower H40 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.; Link, H.; Meadors, M.; Bianchi, J.

    2002-06-01

    The objective of this test was to evaluate the safety and function characteristics of the Whisper H40 wind turbine. The general requirements of wind turbine safety and function tests are defined in the IEC standard WT01. The testing was conducted in accordance with the National Wind Technology Center (NWTC) Quality Assurance System, including the NWTC Certification Team Certification Quality Manual and the NWTC Certification Team General Quality Manual for the Testing of Wind Turbines, as well as subordinate documents. This safety and function test was performed as part of the U.S. Department of Energy's Field Verification Program for small wind turbines.

  8. Usability Methods for Ensuring Health Information Technology Safety: Evidence-Based Approaches. Contribution of the IMIA Working Group Health Informatics for Patient Safety.

    Science.gov (United States)

    Borycki, E; Kushniruk, A; Nohr, C; Takeda, H; Kuwata, S; Carvalho, C; Bainbridge, M; Kannry, J

    2013-01-01

    Issues related to lack of system usability and potential safety hazards continue to be reported in the health information technology (HIT) literature. Usability engineering methods are increasingly used to ensure improved system usability and they are also beginning to be applied more widely for ensuring the safety of HIT applications. These methods are being used in the design and implementation of many HIT systems. In this paper we describe evidence-based approaches to applying usability engineering methods. A multi-phased approach to ensuring system usability and safety in healthcare is described. Usability inspection methods are first described including the development of evidence-based safety heuristics for HIT. Laboratory-based usability testing is then conducted under artificial conditions to test if a system has any base level usability problems that need to be corrected. Usability problems that are detected are corrected and then a new phase is initiated where the system is tested under more realistic conditions using clinical simulations. This phase may involve testing the system with simulated patients. Finally, an additional phase may be conducted, involving a naturalistic study of system use under real-world clinical conditions. The methods described have been employed in the analysis of the usability and safety of a wide range of HIT applications, including electronic health record systems, decision support systems and consumer health applications. It has been found that at least usability inspection and usability testing should be applied prior to the widespread release of HIT. However, wherever possible, additional layers of testing involving clinical simulations and a naturalistic evaluation will likely detect usability and safety issues that may not otherwise be detected prior to widespread system release. The framework presented in the paper can be applied in order to develop more usable and safer HIT, based on multiple layers of evidence.

  9. Value of a statistical life in road safety: a benefit-transfer function with risk-analysis guidance based on developing country data.

    Science.gov (United States)

    Milligan, Craig; Kopp, Andreas; Dahdah, Said; Montufar, Jeannette

    2014-10-01

    We model a value of statistical life (VSL) transfer function for application to road-safety engineering in developing countries through an income-disaggregated meta-analysis of scope-sensitive stated preference VSL data. The income-disaggregated meta-analysis treats developing country and high-income country data separately. Previous transfer functions are based on aggregated datasets that are composed largely of data from high-income countries. Recent evidence, particularly with respect to the income elasticity of VSL, suggests that the aggregate approach is deficient because it does not account for a possible change in income elasticity across income levels. Our dataset (a minor update of the OECD database published in 2012) includes 123 scope-sensitive VSL estimates from developing countries and 185 scope-sensitive estimates from high-income countries. The transfer function for developing countries gives VSL=1.3732E-4×(GDP per capita)(∧)2.478, with VSL and GDP per capita expressed in 2005 international dollars (an international dollar being a notional currency with the same purchasing power as the U.S. dollar). The function can be applied for low- and middle-income countries with GDPs per capita above $1268 (with a data gap for very low-income countries), whereas it is not useful above a GDP per capita of about $20,000. The corresponding function built using high-income country data is VSL=8.2474E+3×(GDP per capita)(∧).6932; it is valid for high-income countries but over-estimates VSL for low- and middle-income countries. The research finds two principal significant differences between the transfer functions modeled using developing-country and high-income-country data, supporting the disaggregated approach. The first of these differences relates to between-country VSL income elasticity, which is 2.478 for the developing country function and .693 for the high-income function; the difference is significant at peconomic performance measures for road-safety

  10. Integrated approach for combining sustainability and safety into a RAM analysis, RAM2S (Reliability, Availability, Maintainability, Sustainability and Safety) towards greenhouse gases emission targets

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Tobias V. [Det Norske Veritas (DNV), Hovik, Oslo (Norway)

    2009-07-01

    This paper aims to present an approach to integrate sustainability and safety concerns on top of a typical RAM Analysis to support new enterprises to find alternatives to align themselves to the greenhouse gases emission targets, measured as CO{sub 2} (carbon dioxide) equivalent. This approach can be used to measure the impact of the potential CO{sub 2} equivalent emission levels mainly related to new enterprises with high CO{sub 2} content towards environment and production, as per example, the extraction of oil and gas from the Brazilian Pre-salt layers. In this sense, this integrated approach, combining Sustainability and Safety into a RAM analysis, RAM2S (Reliability, Availability, Maintainability, Sustainability and Safety), can be used to assess the impact of CO{sub 2} 'production' along the entire enterprise life-cycle, including the impact of possible facility shutdown due to emission restrictions limits, as well as due to the occurrence of additional failures modes related to CO{sub 2} corrosion capabilities. Thus, at the end, this integrated approach would allow companies to find out a more cost-effective alternative to adapt their business into the global warming reality, overcoming the inherent threats of greenhouse gases. (author)

  11. Patient safety: Safety culture and patient safety ethics

    DEFF Research Database (Denmark)

    Madsen, Marlene Dyrløv

    2006-01-01

    ,demonstrating significant, consistent and sometimes large differences in terms of safety culture factors across the units participating in the survey. Paper 5 is the results of a study of the relation between safety culture, occupational health andpatient safety using a safety culture questionnaire survey......Patient safety - the prevention of medical error and adverse events - and the initiative of developing safety cultures to assure patients from harm have become one of the central concerns in quality improvement in healthcare both nationally andinternationally. This subject raises numerous...... challenging issues of systemic, organisational, cultural and ethical relevance, which this dissertation seeks to address through the application of different disciplinary approaches. The main focus of researchis safety culture; through empirical and theoretical studies to comprehend the phenomenon, address...

  12. Closing the Health Care Gap in Communities: A Safety Net System Approach.

    Science.gov (United States)

    Gabow, Patricia A

    2016-10-01

    The goal of U.S. health care should be good health for every American. This daunting goal will require closing the health care gap in communities with a particular focus on the most vulnerable populations and the safety net institutions that disproportionately serve these communities. This Commentary describes Denver Health's (DH's) two-pronged approach to achieving this goal: (1) creating an integrated system that focuses on the needs of vulnerable populations, and (2) creating an approach for financial viability, quality of care, and employee engagement. The implementation and outcomes of this approach at DH are described to provide a replicable model. An integrated delivery system serving vulnerable populations should go beyond the traditional components found in most integrated health systems and include components such as mental health services, school-based clinics, and correctional health care, which address the unique and important needs of, and points of access for, vulnerable populations. In addition, the demands that a safety net system experiences from an open-door policy on access and revenue require a disciplined approach to cost, quality of care, and employee engagement. For this, DH chose Lean, which focuses on reducing waste to respect the patients and employees within its health system, as well as all citizens. DH's Lean effort produced almost $195 million of financial benefit, impressive clinical outcomes, and high employee engagement. If this two-pronged approach were widely adopted, health systems across the United States would improve their chances of giving better care at costs they can afford for every person in society.

  13. Improving economics and safety of water cooled reactors. Proven means and new approaches

    International Nuclear Information System (INIS)

    2002-05-01

    Nuclear power plants (NPPs) with water cooled reactors [either light water reactors (LWRs) or heavy water reactors (HWRs)] constitute the large majority of the currently operating plants. Water cooled reactors can make a significant contribution to meeting future energy needs, to reducing greenhouse gas emissions, and to energy security if they can compete economically with fossil alternatives, while continuing to achieve a very high level of safety. It is generally agreed that the largest commercial barrier to the addition of new nuclear power capacity is the high capital cost of nuclear plants relative to other electricity generating alternatives. If nuclear plants are to form part of the future generating mix in competitive electricity markets, capital cost reduction through simplified designs must be an important focus. Reductions in operating, maintenance and fuel costs should also be pursued. The Department of Nuclear Energy of the IAEA is examining the competitiveness of nuclear power and the means for improving its economics. The objective of this TECDOC is to emphasize the need, and to identify approaches, for new nuclear plants with water cooled reactors to achieve competitiveness while maintaining high levels of safety. The cost reduction methods discussed herein can be implemented into plant designs that are currently under development as well as into designs that may be developed in the longer term. Many of the approaches discussed also generally apply to other reactor types (e.g. gas cooled and liquid metal cooled reactors). To achieve the largest possible cost reductions, proven means for reducing costs must be fully implemented, and new approaches described in this document should be developed and implemented. These new approaches include development of advanced technologies, increased use of risk-informed methods for evaluating the safety benefit of design features, and international consensus regarding commonly acceptable safety requirements that

  14. Improving economics and safety of water cooled reactors. Proven means and new approaches

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    Nuclear power plants (NPPs) with water cooled reactors [either light water reactors (LWRs) or heavy water reactors (HWRs)] constitute the large majority of the currently operating plants. Water cooled reactors can make a significant contribution to meeting future energy needs, to reducing greenhouse gas emissions, and to energy security if they can compete economically with fossil alternatives, while continuing to achieve a very high level of safety. It is generally agreed that the largest commercial barrier to the addition of new nuclear power capacity is the high capital cost of nuclear plants relative to other electricity generating alternatives. If nuclear plants are to form part of the future generating mix in competitive electricity markets, capital cost reduction through simplified designs must be an important focus. Reductions in operating, maintenance and fuel costs should also be pursued. The Department of Nuclear Energy of the IAEA is examining the competitiveness of nuclear power and the means for improving its economics. The objective of this TECDOC is to emphasize the need, and to identify approaches, for new nuclear plants with water cooled reactors to achieve competitiveness while maintaining high levels of safety. The cost reduction methods discussed herein can be implemented into plant designs that are currently under development as well as into designs that may be developed in the longer term. Many of the approaches discussed also generally apply to other reactor types (e.g. gas cooled and liquid metal cooled reactors). To achieve the largest possible cost reductions, proven means for reducing costs must be fully implemented, and new approaches described in this document should be developed and implemented. These new approaches include development of advanced technologies, increased use of risk-informed methods for evaluating the safety benefit of design features, and international consensus regarding commonly acceptable safety requirements that

  15. Functions of the National Board for Atomic Safety and Radiation Protection of the German Democratic Republic

    International Nuclear Information System (INIS)

    1985-01-01

    Functions of the National Board for Atomic Safety and Radiation Protection of the GDR are described considering the following aspects: Nuclear plant safety, nuclear safeguards, physical protection, safety in working areas, environmental protection including radioactive waste management, protection of man by medical supervision and dosimetry, further training, international co-operation and information. (author)

  16. A statistical mechanical approach to restricted integer partition functions

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-05-01

    The main aim of this paper is twofold: (1) suggesting a statistical mechanical approach to the calculation of the generating function of restricted integer partition functions which count the number of partitions—a way of writing an integer as a sum of other integers under certain restrictions. In this approach, the generating function of restricted integer partition functions is constructed from the canonical partition functions of various quantum gases. (2) Introducing a new type of restricted integer partition functions corresponding to general statistics which is a generalization of Gentile statistics in statistical mechanics; many kinds of restricted integer partition functions are special cases of this restricted integer partition function. Moreover, with statistical mechanics as a bridge, we reveal a mathematical fact: the generating function of restricted integer partition function is just the symmetric function which is a class of functions being invariant under the action of permutation groups. Using this approach, we provide some expressions of restricted integer partition functions as examples.

  17. Estimating Function Approaches for Spatial Point Processes

    Science.gov (United States)

    Deng, Chong

    Spatial point pattern data consist of locations of events that are often of interest in biological and ecological studies. Such data are commonly viewed as a realization from a stochastic process called spatial point process. To fit a parametric spatial point process model to such data, likelihood-based methods have been widely studied. However, while maximum likelihood estimation is often too computationally intensive for Cox and cluster processes, pairwise likelihood methods such as composite likelihood, Palm likelihood usually suffer from the loss of information due to the ignorance of correlation among pairs. For many types of correlated data other than spatial point processes, when likelihood-based approaches are not desirable, estimating functions have been widely used for model fitting. In this dissertation, we explore the estimating function approaches for fitting spatial point process models. These approaches, which are based on the asymptotic optimal estimating function theories, can be used to incorporate the correlation among data and yield more efficient estimators. We conducted a series of studies to demonstrate that these estmating function approaches are good alternatives to balance the trade-off between computation complexity and estimating efficiency. First, we propose a new estimating procedure that improves the efficiency of pairwise composite likelihood method in estimating clustering parameters. Our approach combines estimating functions derived from pairwise composite likeli-hood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate its efficacy through a simulation study and an application to the longleaf pine data. Second, we further explore the quasi-likelihood approach on fitting

  18. A Sampling Based Approach to Spacecraft Autonomous Maneuvering with Safety Specifications

    Science.gov (United States)

    Starek, Joseph A.; Barbee, Brent W.; Pavone, Marco

    2015-01-01

    This paper presents a methods for safe spacecraft autonomous maneuvering that leverages robotic motion-planning techniques to spacecraft control. Specifically the scenario we consider is an in-plan rendezvous of a chaser spacecraft in proximity to a target spacecraft at the origin of the Clohessy Wiltshire Hill frame. The trajectory for the chaser spacecraft is generated in a receding horizon fashion by executing a sampling based robotic motion planning algorithm name Fast Marching Trees (FMT) which efficiently grows a tree of trajectories over a set of probabillistically drawn samples in the state space. To enforce safety the tree is only grown over actively safe samples for which there exists a one-burn collision avoidance maneuver that circularizes the spacecraft orbit along a collision-free coasting arc and that can be executed under potential thrusters failures. The overall approach establishes a provably correct framework for the systematic encoding of safety specifications into the spacecraft trajectory generations process and appears amenable to real time implementation on orbit. Simulation results are presented for a two-fault tolerant spacecraft during autonomous approach to a single client in Low Earth Orbit.

  19. Validation of risk-based performance indicators: Safety system function trends

    International Nuclear Information System (INIS)

    Boccio, J.L.; Vesely, W.E.; Azarm, M.A.; Carbonaro, J.F.; Usher, J.L.; Oden, N.

    1989-10-01

    This report describes and applies a process for validating a model for a risk-based performance indicator. The purpose of the risk-based indicator evaluated, Safety System Function Trend (SSFT), is to monitor the unavailability of selected safety systems. Interim validation of this indicator is based on three aspects: a theoretical basis, an empirical basis relying on statistical correlations, and case studies employing 25 plant years of historical data collected from five plants for a number of safety systems. Results using the SSFT model are encouraging. Application of the model through case studies dealing with the performance of important safety systems shows that statistically significant trends in, and levels of, system performance can be discerned which thereby can provide leading indications of degrading and/or improving performances. Methods for developing system performance tolerance bounds are discussed and applied to aid in the interpretation of the trends in this risk-based indicator. Some additional characteristics of the SSFT indicator, learned through the data-collection efforts and subsequent data analyses performed, are also discussed. The usefulness and practicality of other data sources for validation purposes are explored. Further validation of this indicator is noted. Also, additional research is underway in developing a more detailed estimator of system unavailability. 9 refs., 18 figs., 5 tabs

  20. A SIL quantification approach based on an operating situation model for safety evaluation in complex guided transportation systems

    International Nuclear Information System (INIS)

    Beugin, J.; Renaux, D.; Cauffriez, L.

    2007-01-01

    Safety analysis in guided transportation systems is essential to avoid rare but potentially catastrophic accidents. This article presents a quantitative probabilistic model that integrates Safety Integrity Levels (SIL) for evaluating the safety of such systems. The standardized SIL indicator allows the safety requirements of each safety subsystem, function and/or piece of equipment to be specified, making SILs pivotal parameters in safety evaluation. However, different interpretations of SIL exist, and faced with the complexity of guided transportation systems, the current SIL allocation methods are inadequate for the task of safety assessment. To remedy these problems, the model developed in this paper seeks to verify, during the design phase of guided transportation system, whether or not the safety specifications established by the transport authorities allow the overall safety target to be attained (i.e., if the SIL allocated to the different safety functions are sufficient to ensure the required level of safety). To meet this objective, the model is based both on the operating situation concept and on Monte Carlo simulation. The former allows safety systems to be formalized and their dynamics to be analyzed in order to show the evolution of the system in time and space, and the latter make it possible to perform probabilistic calculations based on the scenario structure obtained

  1. The Climate Change-Road Safety-Economy Nexus: A System Dynamics Approach to Understanding Complex Interdependencies

    Directory of Open Access Journals (Sweden)

    Mehdi Alirezaei

    2017-01-01

    Full Text Available Road accidents have the highest externality costs to society and to the economy, even when compared to the externality damages associated with air emissions and oil dependency. Road safety is one of the most complicated topics, which involves many interdependencies, and so, a sufficiently thorough analysis of roadway safety will require a novel system-based approach in which the associated feedback relationships and causal effects are given appropriate consideration. The factors affecting accident frequency and severity are highly dependent on economic parameters, environmental factors and weather conditions. In this study, we try to use a system dynamics modeling approach to model the climate change-road safety-economy nexus, thereby investigating the complex interactions among these important areas by tracking how they affect each other over time. For this purpose, five sub-models are developed to model each aspect of the overall nexus and to interact with each other to simulate the overall system. As a result, this comprehensive model can provide a platform for policy makers to test the effectiveness of different policy scenarios to reduce the negative consequences of traffic accidents and improve road safety.

  2. A systematic approach for safety evidence collection in the safety-critical domain

    NARCIS (Netherlands)

    Lin, H.; Wu, Ji; Yuan, C.; Luo, Y.; Brand, van den M.G.J.; Engelen, L.J.P.

    2015-01-01

    In order to show that the required safety objectives are met, it is necessary to collect safety evidence in the form of consistent and complete data. However, manual safety evidence collection is usually tedious and time-consuming, due to a large number of artifacts and implicit relations between

  3. An approach to safety problems relating to ageing of nuclear power plant components

    International Nuclear Information System (INIS)

    Conte, M.; Deletre, G.; Henry, J.Y.; Le Meur, M.

    1989-10-01

    The safety of nuclear power plants, in France, is discussed. The attention is focused on the ageing phenomena, as a potential cause of the degradation of the systems functional capabilities. The allowance for ageing in design and its importance on safety, are analyzed. The understanding of phenomena relating to ageing and the components surveillance, are considered. As the effective ageing on the components of nuclear power plants is not fully understood, technical improvements and more accurate analysis are required

  4. China's approach to nuclear safety — From the perspective of policy and institutional system

    International Nuclear Information System (INIS)

    Mu, Ruimin; Zuo, Jian; Yuan, Xueliang

    2015-01-01

    Nuclear energy plays an important role in the energy sector in the world. It has achieved a rapid development during the past six decades and contributes to over 11% of the world's electricity supply. On the other side, nuclear accidents have triggered substantial debates with a growing public concern on nuclear facilities. Followed by the Fukushima nuclear accident, some developed countries decided to shut down the existing nuclear power plants or to abandon plans to build new ones. Given this background, accelerating the development of nuclear power on the basis of safety in China will make it a bellwether for other countries. China assigns the top priority to the nuclear safety in nuclear energy development and has maintained a good record in this field. The policy and institutional system provide the necessary guarantee for the nuclear energy development and safety management. Furthermore, China's approach to nuclear safety provides a benchmark for the safe development and utilization of nuclear power. This research draws an overall picture of the nuclear energy development and nuclear safety in China from the policy and institutional perspective. - Highlights: • China's Approach to Nuclear Safety. • Policy and Institutional System for Nuclear Energy Development. • A Benchmark for the Peaceful and Safe Utilization of Nuclear Power. • Further Efforts for Specific Laws and Administrative System

  5. Canadian approach to nuclear power safety

    International Nuclear Information System (INIS)

    Atchison, R.J.; Boyd, F.C.; Domaratzki, Z.

    1983-01-01

    The development of the Canadian nuclear power safety philosophy and practice is traced from its early roots at the Chalk River Nuclear Laboratories to the licensing of the current generation of power reactors. Basic to the philosophy is a recognition that the licensee is primarily responsible for achieving a high standard safety. As a consequence, regulatory requirements have emphasized numerical safety goals and objectives and minimized specific design or operating rules. In this article the Canadian licensing process is described with a discussion of some of the difficulties encountered. Examples of specific licensing considerations for each phase of a project are included

  6. Leadership and Management for Safety. General Safety Requirements

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factor, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations (registrants and licensees) and other organizations concerned with facilities and activities that give rise to radiation risks

  7. Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel-Induced Pipeline Damage.

    Science.gov (United States)

    Zhang, Limao; Wu, Xianguo; Qin, Yawei; Skibniewski, Miroslaw J; Liu, Wenli

    2016-02-01

    Tunneling excavation is bound to produce significant disturbances to surrounding environments, and the tunnel-induced damage to adjacent underground buried pipelines is of considerable importance for geotechnical practice. A fuzzy Bayesian networks (FBNs) based approach for safety risk analysis is developed in this article with detailed step-by-step procedures, consisting of risk mechanism analysis, the FBN model establishment, fuzzification, FBN-based inference, defuzzification, and decision making. In accordance with the failure mechanism analysis, a tunnel-induced pipeline damage model is proposed to reveal the cause-effect relationships between the pipeline damage and its influential variables. In terms of the fuzzification process, an expert confidence indicator is proposed to reveal the reliability of the data when determining the fuzzy probability of occurrence of basic events, with both the judgment ability level and the subjectivity reliability level taken into account. By means of the fuzzy Bayesian inference, the approach proposed in this article is capable of calculating the probability distribution of potential safety risks and identifying the most likely potential causes of accidents under both prior knowledge and given evidence circumstances. A case concerning the safety analysis of underground buried pipelines adjacent to the construction of the Wuhan Yangtze River Tunnel is presented. The results demonstrate the feasibility of the proposed FBN approach and its application potential. The proposed approach can be used as a decision tool to provide support for safety assurance and management in tunnel construction, and thus increase the likelihood of a successful project in a complex project environment. © 2015 Society for Risk Analysis.

  8. Integrated occupational safety and health management solutions and industrial cases

    CERN Document Server

    Häkkinen, Kari; Niskanen, Toivo

    2015-01-01

    Maximizing reader insights into a new movement toward leadership approaches that are collaborated and shared,  and which views Occupational Safety and Health (OSH) and performance excellence within the wider examination of leadership relationships and practices, this book argues that these relationships and processes are so central to the establishment of OSH functioning that studying them warrants a broad, cross-disciplinary, multiple method analysis. Exploring the complexity of leadership by the impact that contexts (e.g., national and organizational culture) may have on leaders, this book discusses the related literature, then moves forward to show how a more comprehensive practical approach to Occupational Safety and Health and performance excellence can function on levels pertaining to events, individuals, groups, and organizations. This book proposes that greater clarity in understanding leadership in Occupational Safety and Health and performance excellence can be developed from addressing two fundame...

  9. Defining mental disorder. Exploring the 'natural function' approach.

    Science.gov (United States)

    Varga, Somogy

    2011-01-21

    Due to several socio-political factors, to many psychiatrists only a strictly objective definition of mental disorder, free of value components, seems really acceptable. In this paper, I will explore a variant of such an objectivist approach to defining metal disorder, natural function objectivism. Proponents of this approach make recourse to the notion of natural function in order to reach a value-free definition of mental disorder. The exploration of Christopher Boorse's 'biostatistical' account of natural function (1) will be followed an investigation of the 'hybrid naturalism' approach to natural functions by Jerome Wakefield (2). In the third part, I will explore two proposals that call into question the whole attempt to define mental disorder (3). I will conclude that while 'natural function objectivism' accounts fail to provide the backdrop for a reliable definition of mental disorder, there is no compelling reason to conclude that a definition cannot be achieved.

  10. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos

    2009-01-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  11. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: vasconv@cdtn.br, e-mail: silvaem@cdtn.br, e-mail: aclc@cdtn.br, e-mail: reissc@cdtn.br

    2009-07-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  12. Behavior based safety process - a pragmatic approach

    International Nuclear Information System (INIS)

    Sharma, R.K.; Malaikar, N.L.; Belokar, S.G.; Arora, Yashpal

    2009-01-01

    Materials handling, processing and storage of hazardous chemicals has grown exponentially. The chemical industries has reacted to the situation by introducing numerous safety systems such as IS18001, 'HAZOP', safety audits, risk assessment, training etc, which has reduced hazards and improved safety performance, but has not totally eliminated exposure to the hazards. These safety systems aim to bring change in attitude of the persons which is difficult to change or control. However, behaviour of plant personnel can be controlled or improved upon, which should be our aim. (author)

  13. Food and Health Safety: a Macro-policy Approach in the EU

    Directory of Open Access Journals (Sweden)

    Francesco Losurdo

    2012-08-01

    Full Text Available Food safety could be considered as a representative case of „market failure”. This would justify State regulatory intervention. Unfortunately, the lack of an organically policy framework is causing large loopholes specially in the quality control system which normally developed on the whole production process of value, including supply chain. The Common Agriculture Policy for 2014-2020 looks to be once again based on a partial and micro-economic approach while the growing interdependences between agriculture, industry and services are suggesting a different „macro-policy” method in theoretical, technical and political settings. An industrial macro-policy is more „holistic” than micro and sectoral one able to intervene on market in order to contribute to a stronger governance and control system of food safety and consumers choices.

  14. A quantitative approach for risk-informed safety significance categorization in option-2

    International Nuclear Information System (INIS)

    Ha, Jun Su; Seong, Poong Hyun

    2004-01-01

    OPTION-2 recommends that Structures, Systems, or Components (SSCs) of Nuclear Power Plants (NPPs) should be categorized into four groups according to their safety significance as well as whether they are safety-related or not. With changes to the scope of SSCs covered by 10 CFR 50, safety-related components which categorized into low safety significant SSC (RISC-3 SSC) can be exempted from the existing conservative burden (or requirements). As OPTION-2 paradigm is applied, a lot of SSCs may be categorized into RISC-3 SSCs. Changes in treatment of the RISC-3 SSCs will be recommended and then finally the recommended changes shall be evaluated. Consequently, before recommending the changes in treatment, probable candidate SSCs for the changes in treatment need to be identified for efficient risk-informed regulation and application (RIRA). Hence, in this work, a validation focused on the RISC-3 SSCs is proposed to identify probable candidate SSCs. Burden to Importance Ratio (BIR) is utilized as a quantitative measure for the validation. BIR is a measure representing the extent of resources or requirements imposed on a SSC with respect to the value of the importance measure of the SSC. Therefore SSCs having high BIR can be considered as probable candidate SSCs for the changes in treatment. In addition, the final decision whether RISC-3 SSCs can be considered as probable candidate SSCs or not should be made by an expert panel. For the effective decision making, a structured mathematical decision-making process is constructed based on Belief Networks (BBN) to overcome demerits of conventional group meeting based on unstructured discussion for decision-making. To demonstrate the usefulness of the proposed approach, the approach is applied to 22 components selected from 512 In-Service Test (IST) components of Ulchin unit 3. The results of the application show that the proposed approach can identify probable candidate SSCs for changes in treatment. The identification of the

  15. Safety design guide for safety related systems for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    In general, two types of safety related systems and structures exist in the nuclear plant; The one is a systems and structures which perform safety functions during the normal operation of the plant, and the other is a systems and structures which perform safety functions to mitigate events caused by failure of the normally operating systems or by naturally occurring phenomena. In this safety design guide, these systems are identified in detail, and the major events for which the safety functions are required and the major safety requirements are identified in the list. As the probabilistic safety assessments are completed during the course of the project, additions or deletions to the list may be justified. 3 tabs. (Author) .new

  16. Safety design guide for safety related systems for CANDU 9

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of); Wright, A.C.D. [Atomic Energy of Canada Ltd., Toronto (Canada)

    1996-03-01

    In general, two types of safety related systems and structures exist in the nuclear plant; The one is a systems and structures which perform safety functions during the normal operation of the plant, and the other is a systems and structures which perform safety functions to mitigate events caused by failure of the normally operating systems or by naturally occurring phenomena. In this safety design guide, these systems are identified in detail, and the major events for which the safety functions are required and the major safety requirements are identified in the list. As the probabilistic safety assessments are completed during the course of the project, additions or deletions to the list may be justified. 3 tabs. (Author) .new.

  17. A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation.

    Science.gov (United States)

    Choi, Ji Yeh; Hwang, Heungsun; Yamamoto, Michio; Jung, Kwanghee; Woodward, Todd S

    2017-06-01

    Functional principal component analysis (FPCA) and functional multiple-set canonical correlation analysis (FMCCA) are data reduction techniques for functional data that are collected in the form of smooth curves or functions over a continuum such as time or space. In FPCA, low-dimensional components are extracted from a single functional dataset such that they explain the most variance of the dataset, whereas in FMCCA, low-dimensional components are obtained from each of multiple functional datasets in such a way that the associations among the components are maximized across the different sets. In this paper, we propose a unified approach to FPCA and FMCCA. The proposed approach subsumes both techniques as special cases. Furthermore, it permits a compromise between the techniques, such that components are obtained from each set of functional data to maximize their associations across different datasets, while accounting for the variance of the data well. We propose a single optimization criterion for the proposed approach, and develop an alternating regularized least squares algorithm to minimize the criterion in combination with basis function approximations to functions. We conduct a simulation study to investigate the performance of the proposed approach based on synthetic data. We also apply the approach for the analysis of multiple-subject functional magnetic resonance imaging data to obtain low-dimensional components of blood-oxygen level-dependent signal changes of the brain over time, which are highly correlated across the subjects as well as representative of the data. The extracted components are used to identify networks of neural activity that are commonly activated across the subjects while carrying out a working memory task.

  18. 78 FR 10181 - Global Quality Systems-An Integrated Approach To Improving Medical Product Safety; Public Workshop

    Science.gov (United States)

    2013-02-13

    ...] Global Quality Systems--An Integrated Approach To Improving Medical Product Safety; Public Workshop... (AFDO), is announcing a public workshop entitled ``Global Quality Systems--An Integrated Approach to... topics concerning FDA requirements related to the production and marketing of drugs and/or devices...

  19. Construction safety monitoring based on the project's characteristic with fuzzy logic approach

    Science.gov (United States)

    Winanda, Lila Ayu Ratna; Adi, Trijoko Wahyu; Anwar, Nadjadji; Wahyuni, Febriana Santi

    2017-11-01

    Construction workers accident is the highest number compared with other industries and falls are the main cause of fatal and serious injuries in high rise projects. Generally, construction workers accidents are caused by unsafe act and unsafe condition that can occur separately or together, thus a safety monitoring system based on influencing factors is needed to achieve zero accident in construction industry. The dynamic characteristic in construction causes high mobility for workers while doing the task, so it requires a continuously monitoring system to detect unsafe condition and to protect workers from potential hazards. In accordance with the unique nature of project, fuzzy logic approach is one of the appropriate methods for workers safety monitoring on site. In this study, the focus of discussion is based on the characteristic of construction projects in analyzing "potential hazard" and the "protection planning" to be used in accident prevention. The data have been collected from literature review, expert opinion and institution of safety and health. This data used to determine hazard identification. Then, an application model is created using Delphi programming. The process in fuzzy is divided into fuzzification, inference and defuzzification, according to the data collection. Then, the input and final output data are given back to the expert for assessment as a validation of application model. The result of the study showed that the potential hazard of construction workers accident could be analysed based on characteristic of project and protection system on site and fuzzy logic approach can be used for construction workers accident analysis. Based on case study and the feedback assessment from expert, it showed that the application model can be used as one of the safety monitoring tools.

  20. Application of Safety Instrumented System (SIS) approach in older nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Nasimi, Elnara; Gabbar, Hossam A., E-mail: hossam.gabbar@uoit.ca

    2016-05-15

    Highlights: • Study Safety Instrumented System (SIS) design for older nuclear power plant. • Apply SIS on Reheater Drains (RD) system. • Apply IEC 61508/61511 to design safety system. • Evaluate risk reduction based on proposed SIS design. - Abstract: In order to remain economically effective and financially profitable, the modern industries have to take their safety culture to a higher level and consider production losses in addition to simple accident prevention techniques. Ideally, compliance with safety requirements start during early design stages, but in some older facilities provisions for Safety Instrumented Systems (SIS) may not have been originally included. In this paper, a case study of a Reheater Drains (RD) system is used to illustrate such an example. Frequent failures of tank level controller lead to transients where the operation of shutting down RD pumps requires operators to manually isolate the quenching water and to close the main steam admission valves. Water in this system is at saturation temperature for the reheater steam side pressure, and any manual operation of the system is highly undesirable due to hazards of working with wet steam at approximately 758 kPa(g) pressure, preheated to 237 °C. Additionally, losses of inventory are highly undesirable as well and challenge other systems in the plant. In this paper, it is suggested that RD system can benefit from installation of an independent SIS system in order to address current challenges. This idea is being explored using IEC 61508 framework for “Functional safety of electrical/electronic/programmable electronic safety-related systems” to provide assurance that the SIS will offer the necessary risk reduction required to achieve required safety for the equipment.

  1. National HTGR safety program

    International Nuclear Information System (INIS)

    Davis, D.E.; Kelley, A.P. Jr.

    1982-01-01

    This paper presents an overview of the National HTGR Program in the US with emphasis on the safety and licensing strategy being pursued. This strategy centers upon the development of an integrated approach to organizing and classifying the functions needed to produce safe and economical nuclear power production. At the highest level, four plant goals are defined - Normal Operation, Core and Plant Protection, Containment Integrity and Emergency Preparedness. The HTGR features which support the attainment of each goal are described and finally a brief summary is provided of the current status of the principal safety development program supporting the validation of the four plant goals

  2. Defining mental disorder. Exploring the 'natural function' approach

    Directory of Open Access Journals (Sweden)

    Varga Somogy

    2011-01-01

    Full Text Available Abstract Due to several socio-political factors, to many psychiatrists only a strictly objective definition of mental disorder, free of value components, seems really acceptable. In this paper, I will explore a variant of such an objectivist approach to defining metal disorder, natural function objectivism. Proponents of this approach make recourse to the notion of natural function in order to reach a value-free definition of mental disorder. The exploration of Christopher Boorse's 'biostatistical' account of natural function (1 will be followed an investigation of the 'hybrid naturalism' approach to natural functions by Jerome Wakefield (2. In the third part, I will explore two proposals that call into question the whole attempt to define mental disorder (3. I will conclude that while 'natural function objectivism' accounts fail to provide the backdrop for a reliable definition of mental disorder, there is no compelling reason to conclude that a definition cannot be achieved.

  3. Introducing linear functions: an alternative statistical approach

    Science.gov (United States)

    Nolan, Caroline; Herbert, Sandra

    2015-12-01

    The introduction of linear functions is the turning point where many students decide if mathematics is useful or not. This means the role of parameters and variables in linear functions could be considered to be `threshold concepts'. There is recognition that linear functions can be taught in context through the exploration of linear modelling examples, but this has its limitations. Currently, statistical data is easily attainable, and graphics or computer algebra system (CAS) calculators are common in many classrooms. The use of this technology provides ease of access to different representations of linear functions as well as the ability to fit a least-squares line for real-life data. This means these calculators could support a possible alternative approach to the introduction of linear functions. This study compares the results of an end-of-topic test for two classes of Australian middle secondary students at a regional school to determine if such an alternative approach is feasible. In this study, test questions were grouped by concept and subjected to concept by concept analysis of the means of test results of the two classes. This analysis revealed that the students following the alternative approach demonstrated greater competence with non-standard questions.

  4. Functional Safety Specification of Communication Profile PROFIsafe

    Directory of Open Access Journals (Sweden)

    Jan Rofar

    2006-01-01

    Full Text Available Paper maps the trends in area of safety-related communication within PROFIBUS and PROFINET industry networks. There are analyses safety measures and Fail-safe parameters of PROFIsafe profile in version V2 and their localisation in Safety Communication Layer SCL, which guarantees Safety Integrity Level SIL according to standard IEC 61508. The last chapter analyses the reaction in the event of fault during transmission of messages.

  5. [Systemic approach to ecologic safety at objects with radiation jeopardy, involved into localization of low and medium radioactive waste].

    Science.gov (United States)

    Veselov, E I

    2011-01-01

    The article deals with specifying systemic approach to ecologic safety of objects with radiation jeopardy. The authors presented stages of work and algorithm of decisions on preserving reliability of storage for radiation jeopardy waste. Findings are that providing ecologic safety can cover 3 approaches: complete exemption of radiation jeopardy waste, removal of more dangerous waste from present buildings and increasing reliability of prolonged localization of radiation jeopardy waste at the initial place. The systemic approach presented could be realized at various radiation jeopardy objects.

  6. Direct anticoagulants and nursing: an approach from patient's safety.

    Science.gov (United States)

    Romero Ruiz, Adolfo; Romero-Arana, Adolfo; Gómez-Salgado, Juan

    In recent years, a new line of treatment for the prevention of stroke in non-valvular atrial fibrillation, the so-called direct anticoagulants or new anticoagulants has appeared. The proper management and follow-up of these patients is essential to minimize their side effects and ensure patient safety. In this article, a description of these drugs is given, analyzing their characteristics, functioning and interactions together with the most habitual nursing interventions, as well as a reflection on the implications for the practice. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  7. Different design approaches to structural fire safety

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Budny, I.

    2013-01-01

    -priori evaluate which design is the safest or the most economical one: a punctual analysis of the different aspects and a comparison of the resulting designs is therefore of interest and is presented in this paper with reference to the case study considered.The third approach refers instead to a performance......-based fire design of the structure(PBFD), where safety goals are explicitly defined and a deeper knowledge of the structural response to fire effects can be achieved, for example with the avail of finite element analyses (FEA). On the other hand, designers can’t follow established procedures when undertaking...... such advanced investigations, which are generally quite complex ones, due to the presence of material degradation and large displacements induced by fire, as well as the possible triggering of local mechanism in the system. An example of advanced investigations for fire design is given in the paper...

  8. Safety assessment of botanicals and botanical preparations used as ingredients in food supplements: Testing an EFS tired approach

    NARCIS (Netherlands)

    Speijers, G.; Bottex, B.; Dusemund, B.; Lugasi, A.; Toth, J.; Amberg-Muller, J.; Galli, C.; Silano, V.; Rietjens, I.

    2010-01-01

    This article describes results obtained by testing the European Food Safety Authority-tiered guidance approach for safety assessment of botanicals and botanical preparations intended for use in food supplements. Main conclusions emerging are as follows. (i) Botanical ingredients must be identified

  9. Evolution of a holistic systems approach to planning and managing road safety: the Victorian case study, 1970-2015.

    Science.gov (United States)

    Muir, Carlyn; Johnston, Ian R; Howard, Eric

    2018-06-01

    The Victorian Safe System approach to road safety slowly evolved from a combination of the Swedish Vision Zero philosophy and the Sustainable Safety model developed by the Dutch. The Safe System approach reframes the way in which road safety is viewed and managed. This paper presents a case study of the institutional change required to underpin the transformation to a holistic approach to planning and managing road safety in Victoria, Australia. The adoption and implementation of a Safe System approach require strong institutional leadership and close cooperation among all the key agencies involved, and Victoria was fortunate in that it had a long history of strong interagency mechanisms in place. However, the challenges in the implementation of the Safe System strategy in Victoria are generally neither technical nor scientific; they are predominantly social and political. While many governments purport to develop strategies based on Safe System thinking, on-the-ground action still very much depends on what politicians perceive to be publicly acceptable, and Victoria is no exception. This is a case study of the complexity of institutional change and is presented in the hope that the lessons may prove useful for others seeking to adopt more holistic planning and management of road safety. There is still much work to be done in Victoria, but the institutional cultural shift has taken root. Ongoing efforts must be continued to achieve alert and compliant road users; however, major underpinning benefits will be achieved through focusing on road network safety improvements (achieving forgiving infrastructure, such as wire rope barriers) in conjunction with reviews of posted speed limits (to be set in response to the level of protection offered by the road infrastructure) and by the progressive introduction into the fleet of modern vehicle safety features. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights

  10. Training for an effective health and safety committee in a small business setting.

    Science.gov (United States)

    Crollard, Allison; Neitzel, Richard L; Dominguez, Carlos F; Seixas, Noah S

    2013-01-01

    Health and safety committees are often heralded as a key element of successful health and safety programs, and are thought to represent a means of engaging workers in health and safety efforts. While the understanding of the factors that make these committees effective is growing, there are few resources for how to assist committees in developing these characteristics. This paper describes one approach to creating and implementing a training intervention aimed at improving health and safety committee function at one multilingual worksite. Short-term impacts were evaluated via questionnaire and qualitative observations of committee function. Results indicated high satisfaction with the training as well as modest increases in participation, cooperation, role clarity, and comfort with health and safety skills among committee members. The committee also made considerable achievements in establishing new processes for effective function. Similar interventions may be useful in other workplaces to increase health and safety committee success.

  11. Development of a Reliability Program approach to assuring operational nuclear safety

    International Nuclear Information System (INIS)

    Mueller, C.J.; Bezella, W.A.

    1985-01-01

    A Reliability Program (RP) model based on proven reliability techniques used in other high technology industries is being formulated for potential application in the nuclear power industry. Research findings are discussed. The reliability methods employed under NASA and military direction, commercial airline and related FAA programs were surveyed with several reliability concepts (e.g., quantitative reliability goals, reliability centered maintenance) appearing to be directly transferable. Other tasks in the RP development effort involved the benchmarking and evaluation of the existing nuclear regulations and practices relevant to safety/reliability integration. A review of current risk-dominant issues was also conducted using results from existing probabilistic risk assessment studies. The ongoing RP development tasks have concentrated on defining a RP for the operating phase of a nuclear plant's lifecycle. The RP approach incorporates safety systems risk/reliability analysis and performance monitoring activities with dedicated tasks that integrate these activities with operating, surveillance, and maintenance of the plant. The detection, root-cause evaluation and before-the-fact correction of incipient or actual systems failures as a mechanism for maintaining plant safety is a major objective of the RP

  12. Modeling approach for safety of high activity waste disposal

    International Nuclear Information System (INIS)

    Serres, Christophe; Besnus, Francois

    2005-01-01

    This paper presents two examples of numerical modeling studies performed by IRSN for assessing geochemical interactions and the role of engineered barriers for the confinement of radionuclides. These examples illustrate the ability of numerical calculations to contribute to the long-term safety assessment approach. In the first example, disturbances and interactions between cementitious materials, bentonite and clayey host rock are tackled by numerical calculations at process level that enable addressing main issues of interest for performance assessment, e.g. extension and intensity of mineralogical transformations and alkaline plume spreading in the vicinity of the disposal tunnels. Once main disturbances and their effects on confinement properties of repository barriers have been identified and quantified, one may assess the role of each barrier on the overall safety of the repository for various scenarios of evolution. This assessment is tackled by integrated level calculations allowing quantifying radionuclide confinement performance of the whole repository for different stages of alteration of its components. The second example highlights the role played by bentonite engineered barriers, plugs and seals as hydraulic and migration barrier in presence of an excavation damaged zone around the vaults, drifts and shafts for different hydrogeological settings. (author)

  13. HSI for monitoring the critical safety functions status tree of a NPP

    International Nuclear Information System (INIS)

    Oliveira, Mauro Vitor de; Almeida, Jose Carlos Soares de; Augusto, Silas Cordeiro; Jaime, Guilherme Dutra Gonzaga

    2013-01-01

    Critical safety function (CSF) is the most significant design concept for prioritize operator actions based on the potential threat to the three barriers (fuel cladding, primary coolant system boundary, and containment) and allows the operator to respond to these threats prior to event diagnosis. CSF has a hierarchical information structure that organizes the system variables affecting the plant safety in terms of goal-means relations. It is important that the operator should be aware of various success paths associated with each CSF in order to respond to unanticipated system failures quickly. When an emergency occurs in NPPs, the operator should monitor CSFs periodically and identify possible success paths as necessary, and try to stabilize or safely shut down the plant using emergency operating procedure (EOP) that includes steps to check the CSFs. This implies that safety function status check may become a cognitively burdensome task that needs to be supported by proper information display. The advanced human-system interface (HSI) in nuclear power plants provides an information environment that supports the operators' burdensome cognitive tasks. This paper describes a CSFs interface design for supporting the operator's tasks to monitor and identify the associated success path for Westinghouse 3-loops NPP. (author)

  14. Gap Analysis Approach for Construction Safety Program Improvement

    Directory of Open Access Journals (Sweden)

    Thanet Aksorn

    2007-06-01

    Full Text Available To improve construction site safety, emphasis has been placed on the implementation of safety programs. In order to successfully gain from safety programs, factors that affect their improvement need to be studied. Sixteen critical success factors of safety programs were identified from safety literature, and these were validated by safety experts. This study was undertaken by surveying 70 respondents from medium- and large-scale construction projects. It explored the importance and the actual status of critical success factors (CSFs. Gap analysis was used to examine the differences between the importance of these CSFs and their actual status. This study found that the most critical problems characterized by the largest gaps were management support, appropriate supervision, sufficient resource allocation, teamwork, and effective enforcement. Raising these priority factors to satisfactory levels would lead to successful safety programs, thereby minimizing accidents.

  15. An approach for assessing ALWR passive safety system reliability

    International Nuclear Information System (INIS)

    Hake, T.M.

    1991-01-01

    Many advanced light water reactor designs incorporate passive rather than active safety features for front-line accident response. A method for evaluating the reliability of these passive systems in the context of probabilistic risk assessment has been developed at Sandia National Laboratories. This method addresses both the component (e.g. valve) failure aspect of passive system failure, and uncertainties in system success criteria arising from uncertainties in the system's underlying physical processes. These processes provide the system's driving force; examples are natural circulation and gravity-induced injection. This paper describes the method, and provides some preliminary results of application of the approach to the Westinghouse AP600 design

  16. European regulations on nutraceuticals, dietary supplements and functional foods: A framework based on safety

    International Nuclear Information System (INIS)

    Coppens, Patrick; Fernandes da Silva, Miguel; Pettman, Simon

    2006-01-01

    This article describes the legislation that is relevant in the marketing of functional foods in the European Union (EU), how this legislation was developed as well as some practical consequences for manufacturers, marketers and consumers. It also addresses some concrete examples of how the EU's safety requirements for food products have impacted a range of product categories. In the late nineties, research into functional ingredients was showing promising prospects for the use of such ingredients in foodstuffs. Due mainly to safety concerns, these new scientific developments were accompanied by an urgent call for legislation. The European Commission 2000 White Paper on Food Safety announced some 80 proposals for new and improved legislation in this field. Among others, it foresaw the establishment of a General Food Law Regulation, laying down the principles of food law and the creation of an independent Food Authority endowed with the task of giving scientific advice on issues based upon scientific risk assessment with clearly separated responsibilities for risk assessment, risk management and risk communication. Since then, more than 90% of the White Paper proposals have been implemented. However, there is not, as such, a regulatory framework for 'functional foods' or 'nutraceuticals' in EU Food Law. The rules to be applied are numerous and depend on the nature of the foodstuff. The rules of the general food law Regulation are applicable to all foods. In addition, legislation on dietetic foods, on food supplements or on novel foods may also be applicable to functional foods depending on the nature of the product and on their use. Finally, the two proposals on nutrition and health claims and on the addition of vitamins and minerals and other substances to foods, which are currently in the legislative process, will also be an important factor in the future marketing of 'nutraceuticals' in Europe. The cornerstone of EU legislation on food products, including

  17. Dose assessment and approach to the safety for the public in the emergency. Proceedings

    International Nuclear Information System (INIS)

    Nakajima, Toshiyuki

    1994-03-01

    This issue is the collection of the papers presented at the 21st NIRS seminar on Dose Assessment and Approach to the Safety for the Public in the Emergency. The 16 of the presented papers are indexed individually. (J.P.N.)

  18. A Core Design Approach Aimed at Sustainability and Intrinsic Safety

    International Nuclear Information System (INIS)

    Grasso, Giacomo

    2013-01-01

    The comprehensive approach adopted for the core design of all LFRs investigated within the LEADER project, proved to effectively drive the design to the fulfillment of the aimed sustainability performances, and the respect of the design constraints for the robust implementation of the inherent safety principle: • the ELFR core is able to operate adiabatically, with a very narrow reactivity swing along a 2.5 y cycle; • wide margins are provided for protecting the fuel and the structures even in case of unprotected transients, allowing for very long grace times

  19. State-of-the-art report on systematic approaches to safety management - Special Expert Group on Human and Organisational Factors (SEGHOF)

    International Nuclear Information System (INIS)

    Van den Berghe, Yves; Frischknecht, Albert; Gil, Benito; Martin, Anibal; McRobbie, Helen; Reiersen, Craig; Tasset, Daniel; Aastrand, Kaisa; Dahlgren-Persson, Kerstin; Pyy, Pekka; Mauny, Elisabeth

    2006-02-01

    There is a growing awareness of the significant contribution which human and organisational factors (HOF) make to nuclear safety. Within the HOF area, attention is increasingly focused on addressing management and organisational issues. This reflects an evolving recognition that the members of a nuclear licensee form part of a socio-technological system, and that their performance is influenced by the organisation and the culture within that organisation. A series of events across the nuclear industry and other sectors has reinforced the appreciation of the importance of robust safety management. Also, the management and organisation of nuclear installations is impacted by a number of current challenges such as deregulation, change in institutional ownership of the industry, contractorization and an ageing plant and workforce. It is in this context that the CSNI (Committee on Safety of Nuclear Installations) Special Experts' Group on Human and Organisational Factors (SEGHOF) was requested by the CNRA (Committee on Nuclear Regulatory Actions) to examine the role and influence of safety management in nuclear plant operations in 2000. A workshop on 'systematic approaches to safety management' was held in spring 2002 and this was followed by a survey in 2003-4 of relevant practices and developments across licensees and regulators. This report provides a brief explanation of the relationship between safety management and safety culture. It reinforces the need for nuclear licensees and regulators to take positive steps to ensure that licensees develop and sustain a robust safety management system as a part of their management systems as a whole. The report draws out the main findings of the workshop and presents the results of the survey in more detail. It seeks to identify current issues and areas warranting further consideration. The workshop explored the development of current organisational theories and their application to nuclear plant safety management. It

  20. ALWR safety approaches and trends. Implementation of passive safety features in the design

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V

    1995-11-01

    Reactor vendors world-wide are examining various advanced light water reactors (ALWR) options to reach utility goals. The amount of information available about each design varies essentially depending on its maturity. Some advanced reactor designs are the evolutionary results of combining old structures, systems and components in new ways, others use innovative solutions. A summary review is given for better understanding of new ALWR design trends and approaches in different countries and subsequent R and D activities. An attempt was made to describe and assess specific innovative and passive features implemented in the leading ALWR designs for further plant design safety improvements. The advantages and disadvantages of these innovations in obtaining reliable systems have been considered. Also, this report indicates the importance of uncertainties remaining and identifies the additional work needed. 51 refs, 27 figs, 7 tabs.

  1. ALWR safety approaches and trends. Implementation of passive safety features in the design

    International Nuclear Information System (INIS)

    Ignatiev, V.

    1995-11-01

    Reactor vendors world-wide are examining various advanced light water reactors (ALWR) options to reach utility goals. The amount of information available about each design varies essentially depending on its maturity. Some advanced reactor designs are the evolutionary results of combining old structures, systems and components in new ways, others use innovative solutions. A summary review is given for better understanding of new ALWR design trends and approaches in different countries and subsequent R and D activities. An attempt was made to describe and assess specific innovative and passive features implemented in the leading ALWR designs for further plant design safety improvements. The advantages and disadvantages of these innovations in obtaining reliable systems have been considered. Also, this report indicates the importance of uncertainties remaining and identifies the additional work needed. 51 refs, 27 figs, 7 tabs

  2. Test interval optimization of safety systems of nuclear power plant using fuzzy-genetic approach

    International Nuclear Information System (INIS)

    Durga Rao, K.; Gopika, V.; Kushwaha, H.S.; Verma, A.K.; Srividya, A.

    2007-01-01

    Probabilistic safety assessment (PSA) is the most effective and efficient tool for safety and risk management in nuclear power plants (NPP). PSA studies not only evaluate risk/safety of systems but also their results are very useful in safe, economical and effective design and operation of NPPs. The latter application is popularly known as 'Risk-Informed Decision Making'. Evaluation of technical specifications is one such important application of Risk-Informed decision making. Deciding test interval (TI), one of the important technical specifications, with the given resources and risk effectiveness is an optimization problem. Uncertainty is inherently present in the availability parameters such as failure rate and repair time due to the limitation in assessing these parameters precisely. This paper presents a solution to test interval optimization problem with uncertain parameters in the model with fuzzy-genetic approach along with a case of application from a safety system of Indian pressurized heavy water reactor (PHWR)

  3. Modeling the Non-functional Requirements in the Context of Usability, Performance, Safety and Security

    OpenAIRE

    Sadiq, Mazhar

    2007-01-01

    Requirement engineering is the most significant part of the software development life cycle. Until now great emphasis has been put on the maturity of the functional requirements. But with the passage of time it reveals that the success of software development does not only pertain to the functional requirements rather non-functional requirements should also be taken into consideration. Among the non-functional requirements usability, performance, safety and security are considered important. ...

  4. A safety design approach for sodium cooled fast reactor core toward commercialization in Japan

    International Nuclear Information System (INIS)

    Kubo, Shigenobu

    2012-01-01

    JAEA’s safety approach for SFR core design is based on defence‐in‐depth concept, which includes DBAs and DECs (prevention and mitigation): • The reactor core is designed to have inherent reactivity feedback characteristics with negative power coefficient. • Operation temperature range is set sufficiently below the coolant boiling temperature so as to avoid coolant boiling against anticipated operational occurrences and DBAs. • If the plant state deviates from operational states, the safe reactor shutdown is achieved by automatic insertion of control rods. 2 active reactor shutdown systems are provided. • Failure of active reactor shutdown is assumed in a design extension condition . Passive shutdown capability is provided by SASS under such condition. • As a design extension condition, core disruptive accident is assumed. In order to prevent severe mechanical energy release which might cause containment function failure, core sodium void worth is limited below 6 dollars and molten fuel discharge capability is utilized by FAIDUS. (author)

  5. DASS: A decision aid integrating the safety parameter display system and emergency functional recovery procedures. Final report

    International Nuclear Information System (INIS)

    Johnson, S.E.

    1984-08-01

    Using a stand-alone developmental test-bed consisting of a minicomputer and a high-resolution color graphics computer, displays and supporting software incorporating advanced on-line decision-aid concepts were developed and evaluated. The advanced concepts embodied in displays designed for the operating crew of a PWR plant include: (1) an integrated display format which supports a top-down approach to problem detection, recovery planning, and control; (2) introduction of nonobservable plant parameters derived from first principles mass and energy balances as part of the displayed information; and (3) systematic processing and display of key success path (plant safety system) attributes. The prototype system, referred to as the PWR-DASS (Disturbance Analysis and Surveillance System), consists of 18 displays targeted for principal use by the control room systems manager. PWR-DASS was conceived to fulfill an operational void not fully supported by safety parameter display systems or reformulated emergency procedure guidelines. The results from the evaluation by licensed operators suggest that organization and display of desired critical safety function and success path information as incorporated in the PWR-DASS prototype can support the systems manager's overview. The results also point to the need for several refinements required for a field grade system, and to the need for a simulator-based evaluation of the prototype or its successor. (author)

  6. Contemporary Approaches to Safety Culture: Lessons from Developing a Regulatory Oversight Approach

    International Nuclear Information System (INIS)

    Goebel, V.; Heppell-Masys, K.

    2016-01-01

    The Canadian Nuclear Safety Commission (CNSC) regulates the use of nuclear energy and materials to protect health, safety, security and the environment, and to implement Canada’s international commitments on the peaceful use of nuclear energy; and to disseminate objective scientific, technical and regulatory information to the public. In the late 1990s, the CNSC conducted research into an Organization and Management (O&M) assessment method. Based on this research the CNSC conducted O&M assessments at all Canadian nuclear power plants and conducted additional assessments of nuclear research and uranium mine and mill operations. The results of these assessments were presented to licencees and used to inform their ongoing actions related to safety culture. Additional safety culture outreach and oversight activities provided licencees with opportunities to develop effective safety culture assessment methods, to share best practices across industry, and to strive for continual improvement of their organizations. Recent changes to the Canadian Standards Association (CSA) management system standard have resulted in the inclusion of requirements associated to safety culture and human performance. Representatives from several sectors of Canada’s nuclear industry, as well as participation from regulators such as the CNSC took part to the development of this consensus standard. Specifically, these requirements focus on monitoring and understanding safety culture, integrating safety into all of the requirements of the management system, committing workers to adhere to the management system and supporting excellence in workers’ performance. The CNSC is currently developing a regulatory document on safety culture which includes key concepts applicable to all licencees and specific requirements related to self-assessment, and additional guidance for nuclear power plants. Developing a regulatory document on safety culture requires consultation and fact finding initiatives at

  7. Frame-based safety analysis approach for decision-based errors

    International Nuclear Information System (INIS)

    Fan, Chin-Feng; Yihb, Swu

    1997-01-01

    A frame-based approach is proposed to analyze decision-based errors made by automatic controllers or human operators due to erroneous reference frames. An integrated framework, Two Frame Model (TFM), is first proposed to model the dynamic interaction between the physical process and the decision-making process. Two important issues, consistency and competing processes, are raised. Consistency between the physical and logic frames makes a TFM-based system work properly. Loss of consistency refers to the failure mode that the logic frame does not accurately reflect the state of the controlled processes. Once such failure occurs, hazards may arise. Among potential hazards, the competing effect between the controller and the controlled process is the most severe one, which may jeopardize a defense-in-depth design. When the logic and physical frames are inconsistent, conventional safety analysis techniques are inadequate. We propose Frame-based Fault Tree; Analysis (FFTA) and Frame-based Event Tree Analysis (FETA) under TFM to deduce the context for decision errors and to separately generate the evolution of the logical frame as opposed to that of the physical frame. This multi-dimensional analysis approach, different from the conventional correctness-centred approach, provides a panoramic view in scenario generation. Case studies using the proposed techniques are also given to demonstrate their usage and feasibility

  8. Oversight and Influencing of Licensee Leadership and Management for Safety, Including Safety Culture - Regulatory Approaches and Methods. Proceedings of an NEA/IAEA Workshop, Chester, United Kingdom, 26-28 September 2011

    International Nuclear Information System (INIS)

    2012-01-01

    Both regulators and the nuclear industry recognise the need for licensees to develop a strong, positive safety culture to support successful and sustainable nuclear safety performance. A number of reports have been issued by the IAEA and the NEA on the role of the regulator in relation to oversight of safety culture (References 1 to 5). There has been less clarity on how this should be achieved - in particular, with regard to strategies and practical approaches for maintaining oversight of, and influencing, those facets of licensee leadership and management which have a profound influence on safety culture. In recognition of this, the CSNI Working Group on Human and Organisational Factors (WGHOF), together with the CNRA Working Group on Inspection Practices (WGIP) and the IAEA, organised a workshop in Chester, United Kingdom, in May 2007 to provide a forum for gathering and sharing international experience, including good practices and learning points. The results of the workshop are reported in Reference 6. Workshop participants agreed that, in view of the rapidly developing approaches in this area, it would be sensible to hold a further workshop ('Chester 2') in 3-5 years in order to discuss how regulatory approaches have moved on and to share lessons learned from their application. In 2010, the WGIP hosted a workshop which included regulatory approaches for the assessment of licensee safety culture as a discussion topic. The outputs of the workshop included a list of commendable practices for monitoring and evaluating licensee safety culture (Reference 7). The 'Chester 2' workshop took place in September 2011. This report sets out the findings of the workshop, organised by the UK Office for Nuclear Regulation (ONR) on behalf of the CSNI/WGHOF and the IAEA. The workshop was attended by over 40 representatives of nuclear regulatory bodies and licensees from 15 countries plus IAEA and NEA. The workshop featured keynote papers on learning from major events, and from

  9. Risk-informed approach for safety, safeguards, and security (3S) by design

    International Nuclear Information System (INIS)

    Suzuki, Mitsutoshi; Burr, Tom; Howell, John

    2011-01-01

    Over several decades the nuclear energy society worldwide has developed safety assessment methodology based on probabilistic risk analysis for incorporating its benefit into design and accident prevention for nuclear reactors. Although safeguards and security communities have different histories and technical aspects compared to safety, risk assessment as a supplement to their current requirements could be developed to promote synergism between Safety, Safeguards, and Security (3S) and to install effective countermeasures in the design of complex nuclear fuel cycle facilities. Since the 3S initiative was raised by G8 countries at Hokkaido Toyako-Summit in 2008, one approach to developing synergism in a 3S By Design (3SBD) process has been the application of risk-oriented assessment methodology. In the existing regulations of safeguards and security, a risk notion has already been considered for inherent threat and hazard recognition. To integrate existing metrics into a risk-oriented approach, several mathematical methods have already been surveyed, with attention to the scarcity of intentional acts in the case of safeguards and the sparseness of actual event data. A two-dimensional probability distribution composed of measurement error and incidence probabilities has been proposed to formalize inherent difficulties in the International Atomic Energy Agency (IAEA) safeguards criteria. In particular, the incidence probability that is difficult to estimate has been explained using a Markov model and game theory. In this work, a feasibility study of 3SBD is performed for an aqueous reprocessing process, and synergetic countermeasures are presented for preliminary demonstration of 3SBD. Although differences and conflicts between individual 'S' communities exist, the integrated approach would be valuable for optimization and balance between the 3S design features as well as for effective and efficient implementation under existing regulation frameworks. In addition

  10. A multidisciplinary three-phase approach to improve the clinical utility of patient safety indicators.

    Science.gov (United States)

    Najjar, Peter; Kachalia, Allen; Sutherland, Tori; Beloff, Jennifer; David-Kasdan, Jo Ann; Bates, David W; Urman, Richard D

    2015-01-01

    The AHRQ Patient Safety Indicators (PSIs) are used for calculation of risk-adjusted postoperative rates for adverse events. The payers and quality consortiums are increasingly requiring public reporting of hospital performance on these metrics. We discuss processes designed to improve the accuracy and clinical utility of PSI reporting in practice. The study was conducted at a 793-bed tertiary care academic medical center where PSI processes have been aggressively implemented to track patient safety events at discharge. A three-phased approach to improving administrative data quality was implemented. The initiative consisted of clinical review of all PSIs, documentation improvement, and provider outreach including active querying for patient safety events. This multidisciplinary effort to develop a streamlined process for PSI calculation reduced the reporting of miscoded PSIs and increased the clinical utility of PSI monitoring. Over 4 quarters, 4 of 41 (10%) PSI-11 and 9 of 138 (7%) PSI-15 errors were identified on review of clinical documentation and appropriate adjustments were made. A multidisciplinary, phased approach leveraging existing billing infrastructure for robust metric coding, ongoing clinical review, and frontline provider outreach is a novel and effective way to reduce the reporting of false-positive outcomes and improve the clinical utility of PSIs.

  11. An Integrated Approach of Model checking and Temporal Fault Tree for System Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kwang Yong; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-10-15

    Digitalization of instruments and control systems in nuclear power plants offers the potential to improve plant safety and reliability through features such as increased hardware reliability and stability, and improved failure detection capability. It however makes the systems and their safety analysis more complex. Originally, safety analysis was applied to hardware system components and formal methods mainly to software. For software-controlled or digitalized systems, it is necessary to integrate both. Fault tree analysis (FTA) which has been one of the most widely used safety analysis technique in nuclear industry suffers from several drawbacks as described in. In this work, to resolve the problems, FTA and model checking are integrated to provide formal, automated and qualitative assistance to informal and/or quantitative safety analysis. Our approach proposes to build a formal model of the system together with fault trees. We introduce several temporal gates based on timed computational tree logic (TCTL) to capture absolute time behaviors of the system and to give concrete semantics to fault tree gates to reduce errors during the analysis, and use model checking technique to automate the reasoning process of FTA.

  12. Efficiency evaluation of a safety department in a construction company-A case study: A DEA approach

    Directory of Open Access Journals (Sweden)

    Solomon Odeyale

    2015-01-01

    Full Text Available Data Envelopment Analysis (DEA is a decision making tool based on linear programming for measuring the relative efficiency of a set of comparable units. DEA helps us identify the sources and level of inefficiency for each of the inputs and outputs. This approach has been used to evaluate the efficiency of the safety department in five construction companies. A three-input, safety workforce, safety training, and safety budget, and two-output, Perfect days and Uptime, constant returns-to-scale (CRS model was developed. The model indicated the necessary improvements required in the inefficient unit’s inputs and outputs to make it efficient, by identifying what factor is responsible for the low efficiency of performance, and also what factor should be improved in order to improve the efficiency of the safety department. The result shows that the safety department of firm A, B and D are efficient, but Firm C and Firm E can improve their efficiency by reducing inputs up to 3.34% and 6.05%, respectively. The inputs identified for reduction were; number of safety staffs and safety budget for Firm C and E respectively.

  13. A Weibull Approach for Enabling Safety-Oriented Decision-Making for Electronic Railway Signaling Systems

    Directory of Open Access Journals (Sweden)

    Emanuele Pascale

    2018-04-01

    Full Text Available This paper presents the advantages of using Weibull distributions, within the context of railway signaling systems, for enabling safety-oriented decision-making. Failure rates are used to statistically model the basic event of fault-tree analysis, and their value sizes the maximum allowable latency of failures to fulfill the safety target for which the system has been designed. Relying on field-return failure data, Weibull parameters have been calculated for an existing electronic signaling system and a comparison with existing predictive reliability data, based on exponential distribution, is provided. Results are discussed in order to drive considerations on the respect of quantitative targets and on the impact that a wrong hypothesis might have on the choice of a given architecture. Despite the huge amount of information gathered through the after-sales logbook used to build reliability distribution, several key elements for reliable estimation of failure rate values are still missing. This might affect the uncertainty of reliability parameters and the effort required to collect all the information. We then present how to intervene when operational failure rates present higher values compared to the theoretical approach: increasing the redundancies of the system or performing preventive maintenance tasks. Possible consequences of unjustified adoption of constant failure rate are presented. Some recommendations are also shared in order to build reliability-oriented logbooks and avoid data censoring phenomena by enhancing the functions of the electronic boards composing the system.

  14. A qualified presumption of safety approach for the safety assessment of Grana Padano whey starters.

    Science.gov (United States)

    Rossetti, Lia; Carminati, Domenico; Zago, Miriam; Giraffa, Giorgio

    2009-03-15

    A Qualified Presumption of Safety (QPS) approach was applied to dominant lactic acid bacteria (LAB) associated with Grana Padano cheese whey starters. Thirty-two strains belonging to Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis, Streptococcus thermophilus, and Lactobacillus fermentum, and representing the overall genotypic LAB diversity associated with 24 previously collected whey starters [Rossetti, L., Fornasari, M.E., Gatti, M., Lazzi, C., Neviani, E., Giraffa, G., 2008. Grana Padano cheese whey starters: microbial composition and strain distribution. International Journal of Food Microbiology 127, 168-171], were analyzed. All L. helveticus, L. delbrueckii subsp. lactis, and S. thermophilus isolates were susceptible to four (i.e. vancomycin, gentamicin, tetracycline, and erythromycin) of the clinically most relevant antibiotics. One L. fermentum strain displayed phenotypic resistance to tetracycline (Tet(R)), with MIC of 32 microg/ml, and gentamycin (Gm(R)), with MIC of 32 microg/ml. PCR was applied to this strain to test the presence of genes tet(L), tet(M), tet(S), and aac(6')-aph(2')-Ia, which are involved in horizontal transfer of Tet(R) and Gm(R), respectively but no detectable amplification products were observed. According to QPS criteria, we conclude that Grana cheese whey starters do not present particular safety concerns.

  15. Leadership and Management for Safety. General Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  16. Leadership and Management for Safety. General Safety Requirements (Chinese Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  17. Leadership and Management for Safety. General Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  18. Leadership and Management for Safety. General Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    his Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  19. Quantum gravity and the functional renormalization group the road towards asymptotic safety

    CERN Document Server

    Reuter, Martin

    2018-01-01

    During the past two decades the gravitational asymptotic safety scenario has undergone a major transition from an exotic possibility to a serious contender for a realistic theory of quantum gravity. It aims at a mathematically consistent quantum description of the gravitational interaction and the geometry of spacetime within the realm of quantum field theory, which keeps its predictive power at the highest energies. This volume provides a self-contained pedagogical introduction to asymptotic safety, and introduces the functional renormalization group techniques used in its investigation, along with the requisite computational techniques. The foundational chapters are followed by an accessible summary of the results obtained so far. It is the first detailed exposition of asymptotic safety, providing a unique introduction to quantum gravity and it assumes no previous familiarity with the renormalization group. It serves as an important resource for both practising researchers and graduate students entering thi...

  20. Multi-approach model for improving agrochemical safety among rice farmers in Pathumthani, Thailand

    Directory of Open Access Journals (Sweden)

    Siriwong W

    2012-07-01

    safety precautions and the use of faulty protective gear. After 6 months, the intervention program showed significant improvements in the overall scores on knowledge, beliefs, behaviors, and home pesticide safety in the study group (P < 0.05. Therefore, this intervention model is effective in improving agrochemical safety behaviors among Khlong Seven Community rice farmers. These findings demonstrate that a multi-approach model for improving agrochemical safety behaviors can lead to sustainable prevention of agrochemical hazards for farmers.Keywords: rice farmer, agrochemical safety, community-based intervention, model

  1. Visual function, driving safety, and the elderly.

    Science.gov (United States)

    Keltner, J L; Johnson, C A

    1987-09-01

    The authors have conducted a survey of the Departments of Motor Vehicles in all 50 states, the District of Columbia, and Puerto Rico requesting information about the visual standards, accidents, and conviction rates for different age groups. In addition, we have reviewed the literature on visual function and traffic safety. Elderly drivers have a greater number of vision problems that affect visual acuity and/or peripheral visual fields. Although the elderly are responsible for a small percentage of the total number of traffic accidents, the types of accidents they are involved in (e.g., failure to yield the right-of-way, intersection collisions, left turns onto crossing streets) may be related to peripheral and central visual field problems. Because age-related changes in performance occur at different rates for various individuals, licensing of the elderly driver should be based on functional abilities rather than age. Based on information currently available, we can make the following recommendations: (1) periodic evaluations of visual acuity and visual fields should be performed every 1 to 2 years in the population over age 65; (2) drivers of any age with multiple accidents or moving violations should have visual acuity and visual fields evaluated; and (3) a system should be developed for physicians to report patients with potentially unsafe visual function. The authors believe that these recommendations may help to reduce the number of traffic accidents that result from peripheral visual field deficits.

  2. Framework conditions and requirements to ensure the technical functional safety of reprocessed medical devices.

    Science.gov (United States)

    Kraft, Marc

    2008-09-03

    Testing and restoring technical-functional safety is an essential part of medical device reprocessing. Technical functional tests have to be carried out on the medical device in the course of the validation of reprocessing procedures. These ensure (in addition to the hygiene tests) that the reprocessing procedure is suitable for the medical device. Functional tests are, however, also a part of reprocessing procedures. As a stage in the reprocessing, they ensure for the individual medical device that no damage or other changes limit the performance. When determining which technical-functional tests are to be carried out, the current technological standard has to be taken into account in the form of product-specific and process-oriented norms. Product-specific norms primarily define safety-relevant requirements. The risk management method described in DIN EN ISO 14971 is the basis for recognising hazards; the likelihood of such hazards arising can be minimised through additional technical-functional tests, which may not yet have been standardised. Risk management is part of a quality management system, which must be bindingly certified for manufacturers and processors of critical medical devices with particularly high processing demands by a body accredited by the competent authority.

  3. Are area-based initiatives able to improve area safety in deprived areas? A quasi-experimental evaluation of the Dutch District Approach.

    Science.gov (United States)

    Kramer, Daniëlle; Jongeneel-Grimen, Birthe; Stronks, Karien; Droomers, Mariël; Kunst, Anton E

    2015-07-28

    Numerous area-based initiatives have been implemented in deprived areas across Western-Europe with the aim to improve the socio-economic and environmental conditions in these areas. Only few of these initiatives have been scientifically evaluated for their impact on key social determinants of health, like perceived area safety. Therefore, this study aimed to assess the impact of a Dutch area-based initiative called the District Approach on trends in perceived area safety and underlying problems in deprived target districts. A quasi-experimental design was used. Repeated cross-sectional data on perceived area safety and underlying problems were obtained from the National Safety Monitor (2005-2008) and its successor the Integrated Safety Monitor (2008-2011). Study population consisted of 133,522 Dutch adults, including 3,595 adults from target districts. Multilevel logistic regression analyses were performed to assess trends in self-reported general safety, physical order, social order, and non-victimization before and after the start of the District Approach mid-2008. Trends in target districts were compared with trends in various control groups. Residents of target districts felt less safe, perceived less physical and social order, and were victimized more often than adults elsewhere in the Netherlands. For non-victimization, target districts showed a somewhat more positive change in trend after the start of the District Approach than the rest of the Netherlands or other deprived districts. Differences were only statistically significant in women, older adults, and lower educated adults. For general safety, physical order, and social order, there were no differences in trend change between target districts and control groups. Results suggest that the District Approach has been unable to improve perceptions of area safety and disorder in deprived areas, but that it did result in declining victimization rates.

  4. Functional integral approach to classical statistical dynamics

    International Nuclear Information System (INIS)

    Jensen, R.V.

    1980-04-01

    A functional integral method is developed for the statistical solution of nonlinear stochastic differential equations which arise in classical dynamics. The functional integral approach provides a very natural and elegant derivation of the statistical dynamical equations that have been derived using the operator formalism of Martin, Siggia, and Rose

  5. EC-funded project (HTR-L) for the definition of a European safety approach for HTR's

    International Nuclear Information System (INIS)

    Ehster, S.; Dominguez, M.T.; Coe, I.; Brinkmann, G.; Lensa, W. von; Mheen, W. van der; Alessandroni, C.; Pirson, J.

    2002-01-01

    The inherent safety features of the HTRs make events leading to severe core damage highly unlikely and constitute the main differentiating aspects compared to LWRs. While a known and stable regulatory environment has long been established for Light Water Reactors, a different approach is necessary for the licensing of HTR based power plants. Among the R and D projects funded by the European Commission for HTR reactors, the HTR-L project is dedicated to the definition of a common and coherent European safety approach and the identification of the main licensing issues for the licensing framework of the Modular HTRs. Other specific objectives of this project are : To develop a methodology to classify the accidental conditions; To define the preliminary requirements for the confinement of radioactive products and to assess the need for a 'conventional' containment structure; To establish a SSC (2) classification and to define the rules for equipment qualification; To identify the key issues that need to be addressed in the licensing process of the HTRs; To organize a workshop with the concerned Safety Authorities at the end of the project. This paper will explain the project objectives and its final expected outcomes. (author)

  6. Safety assessment methodologies for near surface disposal facilities. Results of a co-ordinated research project (ISAM). Volume 1: Review and enhancement of safety assessment approaches and tools. Volume 2: Test cases

    International Nuclear Information System (INIS)

    2004-07-01

    For several decades, countries have made use of near surface facilities for the disposal of low and intermediate level radioactive waste. In line with the internationally agreed principles of radioactive waste management, the safety of these facilities needs to be ensured during all stages of their lifetimes, including the post-closure period. By the mid 1990s, formal methodologies for evaluating the long term safety of such facilities had been developed, but intercomparison of these methodologies had revealed a number of discrepancies between them. Consequently, in 1997, the International Atomic Energy Agency launched a Co-ordinated Research Project (CRP) on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM). The particular objectives of the CRP were to provide a critical evaluation of the approaches and tools used in post-closure safety assessment for proposed and existing near-surface radioactive waste disposal facilities, enhance the approaches and tools used and build confidence in the approaches and tools used. The CRP ran until 2000 and resulted in the development of a harmonized assessment methodology (the ISAM project methodology), which was applied to a number of test cases. Over seventy participants from twenty-two Member States played an active role in the project and it attracted interest from around seven hundred persons involved with safety assessment in seventy-two Member States. The results of the CRP have contributed to the Action Plan on the Safety of Radioactive Waste Management which was approved by the Board of Governors and endorsed by the General Conference in September 2001. Specifically, they contribute to Action 5, which requests the IAEA Secretariat to 'develop a structured and systematic programme to ensure adequate application of the Agency's waste safety standards', by elaborating on the Safety Requirements on 'Near Surface Disposal of Radioactive Waste' (Safety Standards Series No. WS-R-1) and

  7. A new modeling approach to the safety evaluation of N-modular redundant computer systems in presence of imperfect maintenance

    International Nuclear Information System (INIS)

    Flammini, Francesco; Marrone, Stefano; Mazzocca, Nicola; Vittorini, Valeria

    2009-01-01

    A large number of safety-critical control systems are based on N-modular redundant architectures, using majority voters on the outputs of independent computation units. In order to assess the compliance of these architectures with international safety standards, the frequency of hazardous failures must be analyzed by developing and solving proper formal models. Furthermore, the impact of maintenance faults has to be considered, since imperfect maintenance may degrade the safety integrity level of the system. In this paper, we present both a failure model for voting architectures based on Bayesian networks and a maintenance model based on continuous time Markov chains, and we propose to combine them according to a compositional multiformalism modeling approach in order to analyze the impact of imperfect maintenance on the system safety. We also show how the proposed approach promotes the reuse and the interchange of models as well the interchange of solving tools.

  8. Assessment of importance for protection subsystems at analysis of reliability and safety

    International Nuclear Information System (INIS)

    Pereguda, A.I.; Povyakalo, A.A.

    1995-01-01

    Importance of the element estimation in the system, including protection and safety subsystems, by individual variation of the system failure probability relative to the element failure in the case, when the variation constitutes the single step-like function, is considered. The importance of elements by such an approach is the function of time. It is shown that introduction of the safety system not only diminishes the accident probability but essentially decreases the importance of danger source for the object under protection. 6 refs

  9. Expanding pedestrian injury risk to the body region level: how to model passive safety systems in pedestrian injury risk functions.

    Science.gov (United States)

    Niebuhr, Tobias; Junge, Mirko; Achmus, Stefanie

    2015-01-01

    Assessment of the effectiveness of advanced driver assistance systems (ADAS) plays a crucial role in accident research. A common way to evaluate the effectiveness of new systems is to determine the potentials for injury severity reduction. Because injury risk functions describe the probability of an injury of a given severity conditional on a technical accident severity (closing speed, delta V, barrier equivalent speed, etc.), they are predestined for such evaluations. Recent work has stated an approach on how to model the pedestrian injury risk in pedestrian-to-passenger car accidents as a family of functions. This approach gave explicit and easily interpretable formulae for the injury risk conditional on the closing speed of the car. These results are extended to injury risk functions for pedestrian body regions. Starting with a double-checked German In-depth Accident Study (GIDAS) pedestrian-to-car accident data set (N = 444) and a functional-anatomical definition of the body regions, investigations on the influence of specific body regions on the overall injury severity will be presented. As the measure of injury severity, the ISSx, a rescaled version of the well-known Injury Severity Score (ISS), was used. Though traditional ISS is computed by summation of the squares of the 3 most severe injured body regions, ISSx is computed by the summation of the exponentials of the Abbreviated Injury Scale (AIS) severities of the 3 most severely injured body regions. The exponentials used are scaled to fit the ISS range of values between 0 and 75. Three body regions (head/face/neck, thorax, hip/legs) clearly dominated abdominal and upper extremity injuries; that is, the latter 2 body regions had no influence at all on the overall injury risk over the range of technical accident severities. Thus, the ISSx is well described by use of the injury codes from the same body regions for any pedestrian injury severity. As a mathematical consequence, the ISSx becomes explicitly

  10. Innovative nuclear reactor - Indian approach to meet user requirements for safety

    International Nuclear Information System (INIS)

    Saha, D.; Sinha, R.K.

    2002-01-01

    Full text: For sustainable development of nuclear energy, a number of key issues are to be addressed. It should be economically competitive; it must address the issues related to nuclear safety, proliferation resistance, environmental impact, waste disposal and cross cutting issues like social and infra-structural aspects. To compete successfully in the long term, in the highly competitive energy market and to overcome other challenges, it is necessary to introduce innovative reactor and fuel cycle concepts. Indian Advanced Heavy Water Reactor (AHWR) is one such innovative reactor. To guide the research and development activities related to innovative concepts, user requirements are to be formulated. User requirements covering various aspects of sustainable development are being formulated at both national and international levels. One such international project involved in the formulation of user requirements is the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). This paper deals with INPRO user requirements for safety and Indian approach to meet these requirements through AHWR

  11. Organizational factors in nuclear safety

    International Nuclear Information System (INIS)

    Wilpert, Bernhard

    2000-01-01

    The overall picture of factors which contributed to the event presents a panorama of a NPP where organizational and managerial characteristics were intricately intertwined and emerged as crucial for a general deterioration of the plant's capabilities to continually correct its deficiencies and optimize its operations. In the following author shall attempt to first cover various important efforts to modeling organizational factors relevant to safety. The second part of my presentation will offer an attempt towards an integrative model. The third part concludes with an agenda for research and practice. Most of the twelve different approaches above attempt to consider safety relevant organizational factors by way of pragmatic classifications. Together with their sub-categories we can count close to 160 different factors on various levels of abstraction. This is tantamount to say that most approaches lack systematic theoretical underpinnings. Thus then arises the question whether we need to develop a generic model, which promises to encompass these three major approaches altogether. Practical issues emerge particularly in the domain of organizational development, i.e. the goal oriented efforts to change the structures and the functioning of nuclear operations in such a way that the desired outputs in terms safety and reliability result in a sustained fashion. Again, these practical concerns are intimately related to developments and advances in theory and methodology. Only a close cooperation among scientists from various disciplines and of practitioners holds the promise of adequately understanding and use of organizational factors in future improving the safety record of nuclear industry worldwide. (S.Y.)

  12. Evolutionary approaches for the safety evaluation of the nuclear fuel cycle facilities: lessons learnt from french experiences and assessment of future challenges

    International Nuclear Information System (INIS)

    Greneche, D.

    2007-01-01

    This paper is aimed at presenting the recent work carried out in France on the evolution of the safety of the nuclear fuel cycle facilities (FCF). 5 main categories of FCF have been dealt with in this article: uranium conversion, uranium enrichment, fresh fuel fabrication (including Mox fuel), spent fuel storage, and spent fuel reprocessing. The specific of FCF are reviewed and it appears that FCF have generally a safety advantage over reactors: the relatively slow evolution of physico-chemical phenomena causing severe accident conditions. Generally speaking, nuclear safety is ensured through the combination of actions taken at 4 levels: design, implementation, operation and inspection. It must be underlined that the French safety analysis process is primarily based on a deterministic approach (itself based on the fundamental principle of defense-in-depth), supplemented if necessary with probabilistic safety assessment (PSA) to detect potential weak points in a nuclear facility. All this process is well implemented in reactors but in the case of FCF it is generally limited to the deterministic approach. It is showed that the approaches and general principles implemented in the safety analysis of reactors apply well to FCF but the probabilistic analysis of safety remains nevertheless little practiced in FCF for which they still require significant developments. (A.C.)

  13. Improved safety at CERN

    CERN Multimedia

    2006-01-01

    As announced in Weekly Bulletin No. 43/2006, a new approach to the implementation of Safety at CERN has been decided, which required taking some managerial decisions. The guidelines of the new approach are described in the document 'New approach to Safety implementation at CERN', which also summarizes the main managerial decisions I have taken to strengthen compliance with the CERN Safety policy and Rules. To this end I have also reviewed the mandates of the Safety Commission and the Safety Policy Committee (SAPOCO). Some details of the document 'Safety Policy at CERN' (also known as SAPOCO42) have been modified accordingly; its essential principles, unchanged, remain the basis for the safety policy of the Organisation. I would also like to inform you that I have appointed Dr M. Bona as the new Head of the Safety Commission until 31.12.2008, and that I will proceed soon to the appointment of the members of the new Safety Policy Committee. All members of the personnel are deemed to have taken note of the d...

  14. A Safety Case Approach for Deep Geologic Disposal of DOE HLW and DOE SNF in Bedded Salt - 13350

    Energy Technology Data Exchange (ETDEWEB)

    Sevougian, S. David [Advanced Nuclear Energy Programs Group, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); MacKinnon, Robert J. [Advanced Nuclear Energy Programs Group, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); Leigh, Christi D. [Defense Waste Management Programs Group, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); Hansen, Frank D. [Geoscience Research and Applications Group, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States)

    2013-07-01

    The primary objective of this study is to investigate the feasibility and utility of developing a defensible safety case for disposal of United States Department of Energy (U.S. DOE) high-level waste (HLW) and DOE spent nuclear fuel (SNF) in a conceptual deep geologic repository that is assumed to be located in a bedded salt formation of the Delaware Basin [1]. A safety case is a formal compilation of evidence, analyses, and arguments that substantiate and demonstrate the safety of a proposed or conceptual repository. We conclude that a strong initial safety case for potential licensing can be readily compiled by capitalizing on the extensive technical basis that exists from prior work on the Waste Isolation Pilot Plant (WIPP), other U.S. repository development programs, and the work published through international efforts in salt repository programs such as in Germany. The potential benefits of developing a safety case include leveraging previous investments in WIPP to reduce future new repository costs, enhancing the ability to effectively plan for a repository and its licensing, and possibly expediting a schedule for a repository. A safety case will provide the necessary structure for organizing and synthesizing existing salt repository science and identifying any issues and gaps pertaining to safe disposal of DOE HLW and DOE SNF in bedded salt. The safety case synthesis will help DOE to plan its future R and D activities for investigating salt disposal using a risk-informed approach that prioritizes test activities that include laboratory, field, and underground investigations. It should be emphasized that the DOE has not made any decisions regarding the disposition of DOE HLW and DOE SNF. Furthermore, the safety case discussed herein is not intended to either site a repository in the Delaware Basin or preclude siting in other media at other locations. Rather, this study simply presents an approach for accelerated development of a safety case for a potential

  15. A Safety Case Approach for Deep Geologic Disposal of DOE HLW and DOE SNF in Bedded Salt - 13350

    International Nuclear Information System (INIS)

    Sevougian, S. David; MacKinnon, Robert J.; Leigh, Christi D.; Hansen, Frank D.

    2013-01-01

    The primary objective of this study is to investigate the feasibility and utility of developing a defensible safety case for disposal of United States Department of Energy (U.S. DOE) high-level waste (HLW) and DOE spent nuclear fuel (SNF) in a conceptual deep geologic repository that is assumed to be located in a bedded salt formation of the Delaware Basin [1]. A safety case is a formal compilation of evidence, analyses, and arguments that substantiate and demonstrate the safety of a proposed or conceptual repository. We conclude that a strong initial safety case for potential licensing can be readily compiled by capitalizing on the extensive technical basis that exists from prior work on the Waste Isolation Pilot Plant (WIPP), other U.S. repository development programs, and the work published through international efforts in salt repository programs such as in Germany. The potential benefits of developing a safety case include leveraging previous investments in WIPP to reduce future new repository costs, enhancing the ability to effectively plan for a repository and its licensing, and possibly expediting a schedule for a repository. A safety case will provide the necessary structure for organizing and synthesizing existing salt repository science and identifying any issues and gaps pertaining to safe disposal of DOE HLW and DOE SNF in bedded salt. The safety case synthesis will help DOE to plan its future R and D activities for investigating salt disposal using a risk-informed approach that prioritizes test activities that include laboratory, field, and underground investigations. It should be emphasized that the DOE has not made any decisions regarding the disposition of DOE HLW and DOE SNF. Furthermore, the safety case discussed herein is not intended to either site a repository in the Delaware Basin or preclude siting in other media at other locations. Rather, this study simply presents an approach for accelerated development of a safety case for a potential

  16. Mathematical modelling of active safety system functions as tools for development of driverless vehicles

    Science.gov (United States)

    Ryazantsev, V.; Mezentsev, N.; Zakharov, A.

    2018-02-01

    This paper is dedicated to a solution of the issue of synthesis of the vehicle longitudinal dynamics control functions (acceleration and deceleration control) based on the element base of the vehicle active safety system (ESP) - driverless vehicle development tool. This strategy helps to reduce time and complexity of integration of autonomous motion control systems (AMCS) into the vehicle architecture and allows direct control of actuators ensuring the longitudinal dynamics control, as well as reduction of time for calibration works. The “vehicle+wheel+road” longitudinal dynamics control is complicated due to the absence of the required prior information about the control object. Therefore, the control loop becomes an adaptive system, i.e. a self-adjusting monitoring system. Another difficulty is the driver’s perception of the longitudinal dynamics control process in terms of comfort. Traditionally, one doesn’t pay a lot of attention to this issue within active safety systems, and retention of vehicle steerability, controllability and stability in emergency situations are considered to be the quality criteria. This is mainly connected to its operational limits, since it is activated only in critical situations. However, implementation of the longitudinal dynamics control in the AMCS poses another challenge for the developers - providing the driver with comfortable vehicle movement during acceleration and deceleration - while the possible highest safety level in terms of the road grip is provided by the active safety system (ESP). The results of this research are: universal active safety system - AMCS interaction interface; block diagram for the vehicle longitudinal acceleration and deceleration control as one of the active safety system’s integrated functions; ideology of adaptive longitudinal dynamics control, which enables to realize the deceleration and acceleration requested by the AMCS; algorithms synthesised; analytical experiments proving the

  17. The Canadian approach to nuclear power safety

    International Nuclear Information System (INIS)

    Atchison, R.J.; Boyd, F.C.; Domaratski, Z.

    1983-07-01

    The development of the Canadian nuclear power safety philosophy and practice is traced from its early roots at the Chalk River Nuclear Laboratory to the licensing of the current generation of power reactors. Basic to the philosophy is a recognition that the primary responsibility for achieving a high standard of safety resides with the licensee. As a consequence, regulatory requirements have emphasized numerical safety goals and objectives and minimized specific design or operating rules. The Canadian licensing process is described along with a discussion of some of the difficulties encountered. Examples of specific licensing considerations for each phase of a project are included

  18. The ConCom Safety Management Scale: developing and testing a measurement instrument for control-based and commitment-based safety management approaches in hospitals.

    Science.gov (United States)

    Alingh, Carien W; Strating, Mathilde M H; van Wijngaarden, Jeroen D H; Paauwe, Jaap; Huijsman, Robbert

    2018-03-06

    Nursing management is considered important for patient safety. Prior research has predominantly focused on charismatic leadership styles, although it is questionable whether these best characterise the role of nurse managers. Managerial control is also relevant. Therefore, we aimed to develop and test a measurement instrument for control-based and commitment-based safety management of nurse managers in clinical hospital departments. A cross-sectional survey design was used to test the newly developed questionnaire in a sample of 2378 nurses working in clinical departments. The nurses were asked about their perceptions of the leadership behaviour and management practices of their direct supervisors. Psychometric properties were evaluated using confirmatory factor analysis and reliability estimates. The final 33-item questionnaire showed acceptable goodness-of-fit indices and internal consistency (Cronbach's α of the subscales range: 0.59-0.90). The factor structure revealed three subdimensions for control-based safety management: (1) stressing the importance of safety rules and regulations; (2) monitoring compliance; and (3) providing employees with feedback. Commitment-based management consisted of four subdimensions: (1) showing role modelling behaviour; (2) creating safety awareness; (3) showing safety commitment; and (4) encouraging participation. Construct validity of the scale was supported by high factor loadings and provided preliminary evidence that control-based and commitment-based safety management are two distinct yet related constructs. The findings were reconfirmed in a cross-validation procedure. The results provide initial support for the construct validity and reliability of our ConCom Safety Management Scale. Both management approaches were found to be relevant for managing patient safety in clinical hospital departments. The scale can be used to deepen our understanding of the influence of patient safety management on healthcare professionals

  19. Engineering approach to relative quantitative assessment of safety culture and related social issues in NPP operation

    International Nuclear Information System (INIS)

    Sivokon, V.; Gladyshev, M.; Malkin, S.

    2005-01-01

    The report is devoted to presentation of engineering approach and software tool developed for Safety Culture (SC) assessment as well as to the results of their implementation at Smolensk NPP. The engineering approach is logic evolution of the IAEA ASSET method broadly used at European NPPs in 90-s. It was implemented at Russian and other plants including Olkiluoto NPP in Finland. The approach allows relative quantitative assessing and trending the aspects of SC by the analysis of evens features and causes, calculation and trending corresponding indicators. At the same time plant's operational performances and related social issues, including efficiency of plant operation and personnel reliability, can be monitored. With the help of developed tool the joint team combined from personnel of Smolensk NPP and RRC 'Kurchatov Institute' ('KI') issued the SC self-assessment report, which identifies: families of recurrent events, main safety and operational problems ; their trends and importance to SC and plant efficiency; recommendations to enhance SC and operational performance

  20. Training and qualification of health and safety technicians at a national laboratory

    International Nuclear Information System (INIS)

    Egbert, W.F.; Trinoskey, P.A.

    1994-10-01

    Over the last 30 years, Lawrence Livermore National Laboratory (LLNL) has successfully implemented the concept of a multi-disciplined technician. LLNL Health and Safety Technicians have responsibilities in industrial hygiene, industrial safety, health physics, as well as fire, explosive, and criticality safety. One of the major benefits to this approach is the cost-effective use of workers who display an ownership of health and safety issues which is sometimes lacking when responsibilities are divided. Although LLNL has always promoted the concept of a multi-discipline technician, this concept is gaining interest within the Department of Energy (DOE) community. In November 1992, individuals from Oak Ridge Institute of Science and Education (ORISE) and RUST Geotech, joined by LLNL established a committee to address the issues of Health and Safety Technicians. In 1993, the DOE Office of Environmental, Safety and Health, in response to the Defense Nuclear Facility Safety Board Recommendation 91-6, stated DOE projects, particularly environmental restoration, typically present hazards other than radiation such as chemicals, explosives, complex construction activities, etc., which require additional expertise by Radiological Control Technicians. They followed with a commitment that a training guide would be issued. The trend in the last two decades has been toward greater specialization in the areas of health and safety. In contrast, the LLNL has moved toward a generalist approach integrating the once separate functions of the industrial hygiene and health physics technician into one function

  1. Modeling the critical safety functions status tree of a NPP using FPGA

    International Nuclear Information System (INIS)

    Farias, Marcos Santana; Oliveira, Mauro Vitor de; Jaime, Guilherme Dutra Gonzaga; Almeida, Jose Carlos Soares de; Augusto, Silas Cordeiro

    2013-01-01

    Field Programmable Gate Arrays (FPGAs) based systems and equipment are beginning to appear in new plants I and C applications, as well as in retrofits for operating plants, in particular for safety applications due to their capability to face the systems obsolescence since they are circuit independent. The circuits implemented can be portable to different FPGAs architectures. Moreover, they reduce complexity for regulatory approval as compared to conventional microprocessor-based systems. Critical safety function (CSF) is the most significant design concept for prioritize operator actions for NPP based on the potential threat to the three barriers (fuel cladding, primary coolant system boundary, and containment) and allows the operator to respond to these threats prior to event diagnosis. CSF has a hierarchical information structure that organizes the system variables affecting the plant safety in terms of goal-means relations. This paper describes the application of FPGA in the implementation of the CSFs status tree logic for a Westinghouse 3-loops NPP simulator. (author)

  2. Knowledge management as an approach to strengthen safety culture in nuclear organizations

    International Nuclear Information System (INIS)

    Karseka, T.S.; Yanev, Y.L.

    2013-01-01

    In the last 10 years knowledge management (KM) in nuclear organizations has emerged as a powerful strategy to deal with important and frequently critical issues of attrition, generation change and knowledge transfer. Applying KM practices in operating organizations, in technical support organizations and regulatory bodies has proven to be efficient and necessary for maintaining competence and skills for achieving high level of safety and operational performance. The IAEA defines KM as an integrated, systematic approach to identifying, acquiring, transforming, developing, disseminating, using, sharing, and preserving knowledge, relevant to achieving specified objectives. KM focuses on people and organizational culture to stimulate and nurture the sharing and use of knowledge; on processes or methods to find, create, capture and share knowledge; and on technology to store and assimilate knowledge and to make it readily accessible in a manner which will allow people to work together even if they are not located together. A main objective of this paper is to describe constructive actions which can sponsor knowledge sharing and solidarity in safety conscious attitude among all employees. All principles and approaches refer primarily to Nuclear Power Plant (NPP) operating organizations but are also applicable to other institutions involved into nuclear sector. (orig.)

  3. Knowledge management as an approach to strengthen safety culture in nuclear organizations

    Energy Technology Data Exchange (ETDEWEB)

    Karseka, T.S.; Yanev, Y.L. [International Atomic Energy Agency, Vienna (Austria). Nuclear Energy Dept.

    2013-04-15

    In the last 10 years knowledge management (KM) in nuclear organizations has emerged as a powerful strategy to deal with important and frequently critical issues of attrition, generation change and knowledge transfer. Applying KM practices in operating organizations, in technical support organizations and regulatory bodies has proven to be efficient and necessary for maintaining competence and skills for achieving high level of safety and operational performance. The IAEA defines KM as an integrated, systematic approach to identifying, acquiring, transforming, developing, disseminating, using, sharing, and preserving knowledge, relevant to achieving specified objectives. KM focuses on people and organizational culture to stimulate and nurture the sharing and use of knowledge; on processes or methods to find, create, capture and share knowledge; and on technology to store and assimilate knowledge and to make it readily accessible in a manner which will allow people to work together even if they are not located together. A main objective of this paper is to describe constructive actions which can sponsor knowledge sharing and solidarity in safety conscious attitude among all employees. All principles and approaches refer primarily to Nuclear Power Plant (NPP) operating organizations but are also applicable to other institutions involved into nuclear sector. (orig.)

  4. Safety through organizational learning

    International Nuclear Information System (INIS)

    Fahlbruch, B.; Miller, R.; Wilpert, B.

    1998-01-01

    Systems safety is a characteristic of a system enabling it to function under the required operating conditions with a minimum of losses and unforeseen damage to the system and its environment and without any systems breakdowns. The system is influenced by human factors as those factors which, in a general way, influence people in working with a technical system, i.e., people, technology, and organization. Different approaches to learning from events, and processes of event analysis in nuclear technology are presented. The theoretical basis of the 'Safety through Organizational Learning' event analysis technique is the sociotechnical event creation model, which postulates that events can be described as a chain of individual events arising from the joint action of factors contributing directly and indirectly. (orig.) [de

  5. IAEA activity related to safety of nuclear desalination

    International Nuclear Information System (INIS)

    Gasparini, M.

    2000-01-01

    The nuclear plants for desalination to be built in the future will have to meet the standards of safety required for the best nuclear power plants currently in operation or being designed. The current safety approach, based on the achievement of the fundamental safety functions and defence in depth strategy, has been shown to be a sound foundation for the safety and protection of public health, and gives the plant the capability of dealing with a large variety of sequences, even beyond the design basis. The Department of Nuclear Safety of the IAEA is involved in many activities, the most important of which are to establish safety standards, and to provide various safety services and technical knowledge in many Technical Co-operation assistance projects. The department is also involved in other safety areas, notably in the field of future reactors. The IAEA is carrying out a project on the safety of new generation reactors, including those used for desalination, with the objective of fostering an exchange of information on safety approaches, promoting harmonization among Member States and contributing towards the development and revision of safety standards and guidelines for nuclear power plant design. The safety, regulatory and environmental concerns in nuclear powered desalination are those related directly to nuclear power plants, with due consideration given to the coupling process. The protection of product water against radioactive contamination must be ensured. An effective infrastructure, including appropriate training, a legal framework and regulatory regime, is a prerequisite to considering use of nuclear power for desalination plants, also in those countries with limited industrial infrastructures and little experience in nuclear technology or safety. (author)

  6. Formal safety assessment based on relative risks model in ship navigation

    Energy Technology Data Exchange (ETDEWEB)

    Hu Shenping [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: sphu@mmc.shmtu.edu.cn; Fang Quangen [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: qgfang@mmc.shmtu.edu.cn; Xia Haibo [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: hbxia@mmc.shmtu.edu.cn; Xi Yongtao [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: xiyt@mmc.shmtu.edu.cn

    2007-03-15

    Formal safety assessment (FSA) is a structured and systematic methodology aiming at enhancing maritime safety. It has been gradually and broadly used in the shipping industry nowadays around the world. On the basis of analysis and conclusion of FSA approach, this paper discusses quantitative risk assessment and generic risk model in FSA, especially frequency and severity criteria in ship navigation. Then it puts forward a new model based on relative risk assessment (MRRA). The model presents a risk-assessment approach based on fuzzy functions and takes five factors into account, including detailed information about accident characteristics. It has already been used for the assessment of pilotage safety in Shanghai harbor, China. Consequently, it can be proved that MRRA is a useful method to solve the problems in the risk assessment of ship navigation safety in practice.

  7. Formal safety assessment based on relative risks model in ship navigation

    International Nuclear Information System (INIS)

    Hu Shenping; Fang Quangen; Xia Haibo; Xi Yongtao

    2007-01-01

    Formal safety assessment (FSA) is a structured and systematic methodology aiming at enhancing maritime safety. It has been gradually and broadly used in the shipping industry nowadays around the world. On the basis of analysis and conclusion of FSA approach, this paper discusses quantitative risk assessment and generic risk model in FSA, especially frequency and severity criteria in ship navigation. Then it puts forward a new model based on relative risk assessment (MRRA). The model presents a risk-assessment approach based on fuzzy functions and takes five factors into account, including detailed information about accident characteristics. It has already been used for the assessment of pilotage safety in Shanghai harbor, China. Consequently, it can be proved that MRRA is a useful method to solve the problems in the risk assessment of ship navigation safety in practice

  8. An Approach for Integrating the Prioritization of Functional and Nonfunctional Requirements

    Directory of Open Access Journals (Sweden)

    Mohammad Dabbagh

    2014-01-01

    Full Text Available Due to the budgetary deadlines and time to market constraints, it is essential to prioritize software requirements. The outcome of requirements prioritization is an ordering of requirements which need to be considered first during the software development process. To achieve a high quality software system, both functional and nonfunctional requirements must be taken into consideration during the prioritization process. Although several requirements prioritization methods have been proposed so far, no particular method or approach is presented to consider both functional and nonfunctional requirements during the prioritization stage. In this paper, we propose an approach which aims to integrate the process of prioritizing functional and nonfunctional requirements. The outcome of applying the proposed approach produces two separate prioritized lists of functional and non-functional requirements. The effectiveness of the proposed approach has been evaluated through an empirical experiment aimed at comparing the approach with the two state-of-the-art-based approaches, analytic hierarchy process (AHP and hybrid assessment method (HAM. Results show that our proposed approach outperforms AHP and HAM in terms of actual time-consumption while preserving the quality of the results obtained by our proposed approach at a high level of agreement in comparison with the results produced by the other two approaches.

  9. An approach for integrating the prioritization of functional and nonfunctional requirements.

    Science.gov (United States)

    Dabbagh, Mohammad; Lee, Sai Peck

    2014-01-01

    Due to the budgetary deadlines and time to market constraints, it is essential to prioritize software requirements. The outcome of requirements prioritization is an ordering of requirements which need to be considered first during the software development process. To achieve a high quality software system, both functional and nonfunctional requirements must be taken into consideration during the prioritization process. Although several requirements prioritization methods have been proposed so far, no particular method or approach is presented to consider both functional and nonfunctional requirements during the prioritization stage. In this paper, we propose an approach which aims to integrate the process of prioritizing functional and nonfunctional requirements. The outcome of applying the proposed approach produces two separate prioritized lists of functional and non-functional requirements. The effectiveness of the proposed approach has been evaluated through an empirical experiment aimed at comparing the approach with the two state-of-the-art-based approaches, analytic hierarchy process (AHP) and hybrid assessment method (HAM). Results show that our proposed approach outperforms AHP and HAM in terms of actual time-consumption while preserving the quality of the results obtained by our proposed approach at a high level of agreement in comparison with the results produced by the other two approaches.

  10. IAEA Activities on Education and training in Radiation and Waste Safety: Strategic approach for a sustainable system

    International Nuclear Information System (INIS)

    Marabit, K.; Sadagopan, G.

    2003-01-01

    The statutory safety functions of the International Atomic Energy(IAEA) include the establishment of and provision for the application of safety standards for protection of health, life and property against ionizing radiation. The safety standards are based on the presumption that a national infrastructure is in place, enabling the Government to discharge its responsibilities for protection and safety. Education and training is an essential element of the infrastructure. the IAEA education and training activities follow the resolutions of its General Conference and reflect the latest IAEA standards and guidance. Several General Conference resolutions have emphasized the importance of education and training (e. g. GC(XXXV)/RES/552 in 1991; GC(XXXVI)/RES/584 in 1992; GC(43)/RES/13 in 1999 and more recently GC(44)/RES/13 in 2000). In response to GC(44)/RES/13, the IAEA prepared a Strategic Approach to Education and Training in Radiation and Waste Safety (Strategy on Education and Training) aiming at establishing, by 2010, sustainable education and training programmes in its Member States. This Strategy was endorsed by the General Conference resolution GC(45)/RES/10C that, inter alia, urged the Secretariat to implement the Strategy on Education and Training, and to continue to strengthen, subject to available resources, its current effort in this area, and in particular to assist Member States national, regional and collaborating centres in conducting such education and training activities in the relevant official languages of the IAEA. A technical meeting was held in Vienna in March 2002 and concluded with an action plan for implementing the strategy up to 2010, the immediate action being the formation of a Steering Committee by the middle of 2002. This Steering Committee has the general remit to advise on the development and implementation of the strategy, as well as monitoring its progress. The first technical meeting of the Steering Committee took place on 25

  11. Implications of Functional Capacity Loss and Fatality for Vehicle Safety Prioritization.

    Science.gov (United States)

    McMurry, Timothy L; Sherwood, Chris; Poplin, Gerald S; Seguí-Gómez, María; Crandall, Jeff

    2015-01-01

    We investigate the use of the Functional Capacity Index (FCI) as a tool for establishing vehicle safety priorities by comparing the life year burden of injuries to the burden of fatality in frontal and side automotive crashes. We demonstrate FCI's utility by investigating in detail the resulting disabling injuries and their life year costs. We selected occupants in the 2000-2013 NASS-CDS database involved in frontal and side crashes, merged their injuries with FCI, and then used the merged data to estimate each occupant's overall functional loss. Lifetime functional loss was assessed by combining this measure of impairment with the occupants' expected future life spans, estimated from the Social Security Administration's Actuarial Life Table. Frontal crashes produce a large number of disabling injuries, particularly to the lower extremities. In our population, these crashes are estimated to account for approximately 400,000 life years lost to disability in comparison with 500,000 life years lost to fatality. Victims of side crashes experienced a higher rate of fatality but a significantly lower rate of disabling injury (0.3 vs. 1.0%), resulting in approximately 370,000 life years lost to fatality versus 50,000 life years lost to disability. The burden of disabling injuries to car crash survivors should be considered when setting vehicle safety design priorities. In frontal crashes this burden in life years is similar to the burden attributable to fatality.

  12. Crossing safety barriers: influence of children's morphological and functional variables.

    Science.gov (United States)

    Cordovil, Rita; Vieira, Filomena; Barreiros, João

    2012-05-01

    Thirty-three children between 3 and 6 years of age were asked to climb four different types of safety barriers. Morphological and functional variables of the children, which were expected to influence climbing or passing through skills, were collected. The influence of those variables on children's success rate and time to cross was tested. No barrier offered a total restraining efficacy. The horizontal bars barrier was crossed by 97% of the children. In the group of children that succeeded in crossing the four barriers, mean time to cross the most difficult barrier was 15 s. Age was the best predictor for success in crossing most barriers but morphology and strength were important predictors of time to cross. The influence of anthropometric variables in time to cross was dependent upon the characteristics of the barrier. A good design of safety barriers should consider children's age, morphology and strength. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. General Approaches and Requirements on Safety and Security of Radioactive Materials Transport in Russian Federation

    International Nuclear Information System (INIS)

    Ershov, V.N.; Buchel'nikov, A.E.; Komarov, S.V.

    2016-01-01

    Development and implementation of safety and security requirements for transport of radioactive materials in the Russian Federation are addressed. At the outset it is worth noting that the transport safety requirements implemented are in full accordance with the IAEA's ''Regulations for the Safe Transport of Radioactive Material (2009 Edition)''. However, with respect to security requirements for radioactive material transport in some cases the Russian Federation requirements for nuclear material are more stringent compared to IAEA recommendations. The fundamental principles of safety and security of RM managements, recommended by IAEA documents (publications No. SF-1 and GOV/41/2001) are compared. Its correlation and differences concerning transport matters, the current level and the possibility of harmonization are analysed. In addition a reflection of the general approaches and concrete transport requirements is being evaluated. Problems of compliance assessment, including administrative and state control problems for safety and security provided at internal and international shipments are considered and compared. (author)

  14. 2011 Annual Meeting of the Safety Pharmacology Society: an overview.

    Science.gov (United States)

    Cavero, Icilio

    2012-03-01

    The keynote address of 2011 Annual Meeting of the Safety Pharmacology Society examined the known and the still to be known on drug-induced nephrotoxicity. The nominee of the Distinguished Service Award Lecture gave an account of his career achievements particularly on the domain of chronically instrumented animals for assessing cardiovascular safety. The value of Safety Pharmacology resides in the benefits delivered to Pharma organizations, regulators, payers and patients. Meticulous due diligence concerning compliance of Safety Pharmacology studies to best practices is an effective means to ensure that equally stringent safety criteria are applied to both in-licensed and in-house compounds. Innovative technologies of great potential for Safety Pharmacology presented at the meeting are organs on chips (lung, heart, intestine) displaying mechanical and biochemical features of native organs, electrical field potential (MEA) or impedance (xCELLigence Cardio) measurements in human induced pluripotent stem cell-derived cardiomyocytes for unveiling cardiac electrophysiological and mechanical liabilities, functional human airway epithelium (MucilAir™) preparations with unique 1-year shelf-life for acute and chronic in vitro evaluation of drug efficacy and toxicity. Custom-designed in silico and in vitro assay platforms defining the receptorome space occupied by chemical entities facilitate, throughout the drug discovery phase, the selection of candidates with optimized safety profile on organ function. These approaches can now be complemented by advanced computational analysis allowing the identification of compounds with receptorome, or clinically adverse effect profiles, similar to those of the drug candidate under scrutiny for extending the safety assessment to potential liability targets not captured by classical approaches. Nonclinical data supporting safety can be quite reassuring for drugs with a discovered signal of risk. However, for marketing authorization

  15. Do we need an integrative approach to food safety at the country level?

    International Nuclear Information System (INIS)

    Ristic, G.

    2002-01-01

    Scientific data show increasing evidence of relationship between food safety and food standards on one hand and public health concern on the other hand. In FR Yugoslavia in 1989 the system of reporting on food safety issues on federal and republic level was established. The system provides data on laboratory analysis of 22 food items (bread, milk, meat and meat products, vegetables, processed vegetables etc). Those items were and still are tested on food quality and safety parameters such as microbiological, chemical and radio nuclides. Seldom all required testing on chemical and radio nuclides are performed, so we lack exact risk assessment for those contaminants. Further, during war conflict in FR Yugoslavia and also due to industrial hazards in neighbouring countries (Rumania, Hungary) high quantities of PCBs, dioxins, heavy metals, arsenic compounds and other toxic compounds contaminated the environment. In the soil and in some food products (animal fats predominantly) radionuclides originating from Chernobyl hazard can still be detected. In order to identify the level of exposure to chemical and radio nuclide contaminants in the food chain it is essential to test intensively and systematically food from animal and from plant origin. In order to prevent entering the contaminants to the food chain new recommendations from WHO, FAO and EU suggest implementation of integrative approach to food safety and control over the whole chain of food production from 'farm to table'. This approach provides control of the contaminants in soil, water, air, control over primary food production (covering animal feed too), intensive control over processing with implementation of HACCP system, but also, over transportation, retail trade, street food and home made food too. In our country creation of the map of the polluted areas, and actions in order to treat the pollution should accompany implementation of this new food safety system. The need for assessment of the level of

  16. Do we need an integrative approach to food safety at the country level?

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, G E-mail:risticg@eunet yu [Department of Nutrition, Medical Faculty, Belgrade (Yugoslavia)

    2002-05-01

    Scientific data show increasing evidence of relationship between food safety and food standards on one hand and public health concern on the other hand. In FR Yugoslavia in 1989 the system of reporting on food safety issues on federal and republic level was established. The system provides data on laboratory analysis of 22 food items (bread, milk, meat and meat products, vegetables, processed vegetables etc). Those items were and still are tested on food quality and safety parameters such as microbiological, chemical and radio nuclides. Seldom all required testing on chemical and radio nuclides are performed, so we lack exact risk assessment for those contaminants. Further, during war conflict in FR Yugoslavia and also due to industrial hazards in neighbouring countries (Rumania, Hungary) high quantities of PCBs, dioxins, heavy metals, arsenic compounds and other toxic compounds contaminated the environment. In the soil and in some food products (animal fats predominantly) radionuclides originating from Chernobyl hazard can still be detected. In order to identify the level of exposure to chemical and radio nuclide contaminants in the food chain it is essential to test intensively and systematically food from animal and from plant origin. In order to prevent entering the contaminants to the food chain new recommendations from WHO, FAO and EU suggest implementation of integrative approach to food safety and control over the whole chain of food production from 'farm to table'. This approach provides control of the contaminants in soil, water, air, control over primary food production (covering animal feed too), intensive control over processing with implementation of HACCP system, but also, over transportation, retail trade, street food and home made food too. In our country creation of the map of the polluted areas, and actions in order to treat the pollution should accompany implementation of this new food safety system. The need for assessment of the level of

  17. Safety Basis Report

    International Nuclear Information System (INIS)

    R.J. Garrett

    2002-01-01

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities

  18. Safety Basis Report

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2002-01-14

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  19. Assuring the safety of genetically modified (GM) foods: the importance of an holistic, integrative approach.

    Science.gov (United States)

    Cockburn, Andrew

    2002-09-11

    Genes change continuously by natural mutation and recombination enabling man to select and breed crops having the most desirable traits such as yield or flavour. Genetic modification (GM) is a recent development which allows specific genes to be identified, isolated, copied and inserted into other plants with a high level of specificity. The food safety considerations for GM crops are basically the same as those arising from conventionally bred crops, very few of which have been subject to any testing yet are generally regarded as being safe to eat. In contrast a rigorous safety testing paradigm has been developed for GM crops, which utilises a systematic, stepwise and holistic approach. The resultant science based process, focuses on a classical evaluation of the toxic potential of the introduced novel trait and the wholesomeness of the transformed crop. In addition, detailed consideration is given to the history and safe use of the parent crop as well as that of the gene donor. The overall safety evaluation is conducted under the concept known as substantial equivalence which is enshrined in all international crop biotechnology guidelines. This provides the framework for a comparative approach to identify the similarities and differences between the GM product and its comparator which has a known history of safe use. By building a detailed profile on each step in the transformation process, from parent to new crop, and by thoroughly evaluating the significance from a safety perspective, of any differences that may be detected, a very comprehensive matrix of information is constructed which enables the conclusion as to whether the GM crop, derived food or feed is as safe as its traditional counterpart. Using this approach in the evaluation of more than 50 GM crops which have been approved worldwide, the conclusion has been that foods and feeds derived from genetically modified crops are as safe and nutritious as those derived from traditional crops. The lack of

  20. Consumer trust in food safety--a multidisciplinary approach and empirical evidence from Taiwan.

    Science.gov (United States)

    Chen, Mei-Fang

    2008-12-01

    Food scandals that happened in recent years have increased consumers' risk perceptions of foods and decreased their trust in food safety. A better understanding of the consumer trust in food safety can improve the effectiveness of public policy and allow the development of the best practice in risk communication. This study proposes a research framework from a psychometric approach to investigate the relationships between the consumer's trust in food safety and the antecedents of risk perceptions of foods based on a reflexive modernization perspective and a cultural theory perspective in the hope of benefiting the future empirical study. The empirical results from a structural equation modeling analysis of Taiwan as a case in point reveal that this research framework based on a multidisciplinary perspective can be a valuable tool for a growing understanding of consumer trust in food safety. The antecedents in the psychometric research framework comprised reflexive modernization factors and cultural theory factors have all been supported in this study except the consumer's perception of pessimism toward food. Moreover, the empirical results of repeated measures analysis of variance give more detailed information to grasp empirical implications and to provide some suggestions to the actors and institutions involved in the food supply chain in Taiwan.

  1. Panel 1: Safety design criteria

    International Nuclear Information System (INIS)

    Yllera, Javier

    2013-01-01

    There is general consensus in the nuclear community, and more after the Fukushima accident, that the deployment of nuclear energy has to be done at the highest levels of nuclear safety and that safety cannot be compromised by other factors. It is well understood that reactors that are being licensed and the new generations of reactors that will be constructed in the future will need to reach higher safety levels than the existing ones. Several countries and international organizations or international groups are launching initiatives to harmonise safety goals, safety requirements, safety objectives, regulations, criteria or safety reference levels. There are differences in the meanings of these terms and the working approaches, but the overall purpose is the same: to specify how new plants can be safer. In this context, the IAEA has an statutory function for developing international nuclear safety standards. The IAEA safety standards are per se not mandatory for IAEA Member States. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA’s standards for use in their national regulations in different ways. The IAEA Safety Standards represent international consensus on what must constitute a high level of safety for nuclear installations. In the area of NPP design, IAEA safety standards that are published are intended to apply primarily to new plants. It might not be practicable to apply all the requirements to plants that are already in operation. In addition, the focus is primarily on plants with water cooled reactors

  2. Concept for creating program-technical complex of safety monitoring with system of safety parameters presentation functions on the basis of routine WWER-1000 systems

    International Nuclear Information System (INIS)

    Dunaev, V.G.; Tarasov, M. V.; Povarov, P.V.

    2005-01-01

    Prerequisites of creating the software-hardware complex for reactor safety monitoring on the Volgodonsk NPP are analyzed and generalized. The concept of this complex is based on functions of the safety parameters presentation system. It will serve as an interface between operator and technological process and give to operator a possibility to estimate quickly the state of the safety of the nuclear power unit. The complex will be created on the basis of routine reactor monitoring and control systems intended for the WWER-1000 reactor. In addition to existing soft- and hard-wares for reactor monitoring and for analysis of technological archive, it is proposed to create and connect in parallel the new software-hardware complex which ensures calculation and presentation of generalized factors of reactor safety [ru

  3. Assessment of safety and health of storage workers - a psychosocial approach

    Directory of Open Access Journals (Sweden)

    Joanna Sadłowska-Wrzesińska

    2016-03-01

    Full Text Available Background: Although there is still a lot to do as far as prevention and elimination of traditional health and work safety hazards is concerned, the problem of psychosocial risk prevention is extremely important nowadays. It is crucial to take into consideration the health of workers and promotion of health in the workplace, as the occupational stress epidemics is getting more and more widespread. Methods: The article is based on the statistic analysis of accidents at work as well as the analysis of health problems resulting from the job itself. The latest work safety reports have been reviewed and special attention has been paid to psychosocial risk analysis. The author has tried to explicate the terms of new and emerging risks as regards storage work. Results: Various threat aspects of storage work have been evaluated. Deficits in psychosocial hazard identification have been indicated. What is more, no correlation between occupational tasks of storage workers and their knowledge about psychosocial risks has been emphasized.  An exemplified approach to warehouse psychosocial threat identification has been presented. The approach is based on the diagnosis of the current situation.  Conclusions: The psychosocial risk of storage work may lead to health deterioration, greater accident risk and worse performance at work. Such consequences mean that the psychosocial risks affect both an individual and the organization. Therefore, we should expect more intense efforts to increase psychosocial risk awareness of both employers and employees.

  4. Prerequisites of ideal safety-critical organizations

    International Nuclear Information System (INIS)

    Takeuchi, Michiru; Hikono, Masaru; Matsui, Yuko; Goto, Manabu; Sakuda, Hiroshi

    2013-01-01

    This study explores the prerequisites of ideal safety-critical organizations, marshalling arguments of 4 areas of organizational research on safety, each of which has overlap: a safety culture, high reliability organizations (HROs), organizational resilience, and leadership especially in safety-critical organizations. The approach taken in this study was to retrieve questionnaire items or items on checklists of the 4 research areas and use them as materials of abduction (as referred to in the KJ method). The results showed that the prerequisites of ideal safety-oriented organizations consist of 9 factors as follows: (1) The organization provides resources and infrastructure to ensure safety. (2) The organization has a sharable vision. (3) Management attaches importance to safety. (4) Employees openly communicate issues and share wide-ranging information with each other. (5) Adjustments and improvements are made as the organization's situation changes. (6) Learning activities from mistakes and failures are performed. (7) Management creates a positive work environment and promotes good relations in the workplace. (8) Workers have good relations in the workplace. (9) Employees have all the necessary requirements to undertake their own functions, and act conservatively. (author)

  5. NPP Temelin safety analysis reports and PSA status

    International Nuclear Information System (INIS)

    Mlady, O.

    1999-01-01

    To enhance the safety level of Temelin NPP, recommendations of the international reviews were implemented into the design as well as into organization of the plant construction and preparation for operation. The safety assessment of these design changes has been integrated and reflected in the Safety Analysis Reports, which follow the internationally accepted guidelines. All safety analyses within Safety Analysis Reports were repeated carefully considering technical improvements and replacements to complement preliminary safety documentation. These analyses were performed by advanced western computer codes to the depth and in the structure required by western standards. The Temelin NPP followed a systematic approach in the functional design of the Reactor Protection System and related safety analyses. Modifications of reactor protection system increase defense in depth and facilitate demonstrating that LOCA and radiological limits are met for non-LOCA events. The rigorous safety analysis methodology provides assurance that LOCA and radiological limits are met. Established and accepted safety analysis methodology and accepted criteria were applied to Temelin NPP meeting US NRC and Czech Republic requirements. IAEA guidelines and recommendations

  6. Strategy for safety case development: impact of a volunteering approach to siting a japanese HLW repository

    International Nuclear Information System (INIS)

    Kitayama, K.; Ishiguro, K.; Takeuchi, M.; Tsuchi, H.; Kato, T.; Sakabe, Y.; Wakasugi, K.

    2008-01-01

    NUMO strategy for safety case development is constrained by a staged siting approach, which has been initiated by a call for volunteer municipalities to host the HLW repository. For each site, the safety case is an important factor to be considered at the selection steps which narrow down towards the preferred repository location. This is particularly challenging, however, as every site requires a tailored repository concept, with associated performance assessment and an individual site evaluation programme all of which evolve with gradually increasing understanding of the host environment. In order to maintain flexibility without losing focus, NUMO has developed a formalized tailoring procedure, termed the NUMO Structured Approach (NSA). The NSA guides the interaction of the key site characterisation, repository design and performance assessment groups and is facilitated by tools to help the decision making associated with the tailoring process (e.g. a requirements management system) and with comparison of siting and design options (e.g. multi-attribute analysis). Pragmatically, the post-closure safety case will initially emphasize near-field processes and a robust engineering barrier system, considering the limited geological information at early stages. This will be complemented by a more realistic assessment of total system performance, as needed to compare options. In addition, efforts to rigorously assess operational phase safety and the practicality of assuring quality of the constructed engineered barriers are components of the total safety case which are receiving particular attention now, as they may better discriminate between sites while information is still limited. (authors)

  7. Combining formal and functional approaches to topic structure

    NARCIS (Netherlands)

    Zellers, M.; Post, B.

    2012-01-01

    Fragmentation between formal and functional approaches to prosodic variation is an ongoing problem in linguistic research. In particular, the frameworks of the Phonetics of Talk-in-Interaction (PTI) and Empirical Phonology (EP) take very different theoretical and methodological approaches to this

  8. The approaches of safety design and safety evaluation at HTTR (High Temperature Engineering Test Reactor)

    International Nuclear Information System (INIS)

    Iigaki, Kazuhiko; Saikusa, Akio; Sawahata, Hiroaki; Shinozaki, Masayuki; Tochio, Daisuke; Honma, Fumitaka; Tachibana, Yukio; Iyoku, Tatsuo; Kawasaki, Kozo; Baba, Osamu

    2006-06-01

    Gas Cooled Reactor has long history of nuclear development, and High Temperature Gas Cooled Reactor (HTGR) has been expected that it can be supply high temperature energy to chemical industry and to power generation from the points of view of the safety, the efficiency, the environment and the economy. The HTGR design is tried to installed passive safety equipment. The current licensing review guideline was made for a Low Water Reactor (LWR) on safety evaluation therefore if it would be directly utilized in the HTGR it needs the special consideration for the HTGR. This paper describes that investigation result of the safety design and the safety evaluation traditions for the HTGR, comparison the safety design and safety evaluation feature for the HTGT with it's the LWR, and reflection for next HTGR based on HTTR operational experiment. (author)

  9. PHWR safety: design, siting and construction

    International Nuclear Information System (INIS)

    Sharma, V.K.

    2002-01-01

    In all activities associated with NPPs viz. siting, design, construction, commissioning and operation, safety is given overriding importance. The safety design principles of PHWRs are based on defence-in-depth approach, physical and functional separation between process and safety systems and also among various safety systems, redundancy to meet single failure criteria and postulation of a number of design basis events for which the plant must be designed. Apart from engineered safety systems, PHWRs have inherent characteristics which contribute to safety. In siting of a NPP, it is required to ensure that the given site does not pose undue radiological hazard to public and the environment both during normal operation as well as during and following an accident condition. For this purpose, all site related external events, both natural and man induced, are assessed for their effect on the plant and are considered as part of the design basis. Possible radiological impact of the NPP on environment and surrounding population is assessed and ensured to be within acceptable limits. During construction phase, it is essential that the NPP be built in accordance with design intent and with required quality of workmanship to ensure that the NPP will remain safe during all states of operation. This is achieved through careful execution and QA activities encompassing all aspects of component fabrication at manufacturer works, civil construction, site erection, assembly, and commissioning. Future trends in nuclear safety will continue to be based on existing principles which have proved to be sound. These will be further strengthened by features such as increasing use of passive means of performing safety functions and a more explicit treatment of severe accidents. (author)

  10. Threats to safety during sedation outside of the operating room and the death of Michael Jackson.

    Science.gov (United States)

    Webster, Craig S; Mason, Keira P; Shafer, Steven L

    2016-03-01

    From an understanding of human psychology and the reliability of high-technology systems, this review considers critical threats to the safety of patients undergoing sedation outside of the operating room, and will stratify these threats along what we define as the 'Patient Risk Continuum'. We then consider interventions suitable for addressing identified risks. The technology, organization and delivery of healthcare continue to become more complex, highlighting the importance of maintaining the safety of patients. Sedation outside of the operating room is known to be associated with higher rates of adverse events. However, a number of recent safety initiatives have shown benefit in improving patient safety. The following threats to patients undergoing sedation, in increasing order of risk, are discussed: equipment and environmental factors, known patient risks, poor team performance, combinatorial problems and egregious violations. To address these threats, we discuss a number of approaches consistent with the systems approach to safety, namely: encouraging functions, forcing functions, cognitive safety nets, information sharing, recovery strategies and regulatory change. Demonstrating improvement with any safety initiative relies critically on quality data collected on the problem area in question.

  11. Functional approaches in translation studies in Germany Functional approaches in translation studies in Germany

    Directory of Open Access Journals (Sweden)

    Paul Kussmaul

    2008-04-01

    Full Text Available In the early phase of translation studies in Germany, contrastive linguistics played a major role. I shall briefly describe this approach so that the functional approach will become clearer by contrast. Influenced by the representatives of stylistique comparée, Vinay/Darbelnet (1968 Wolfram Wilss, for instance, in his early work (1971, 1977 makes frequent use of the notion transposition (German “Ausdrucksverschiebung“, cf. also Catford’s (1965 term shift. As a whole, of course, Wilss’ work has a much broader scope. More recently, he has investigated the role of cognition (1988 and the various factors in translator behaviour (1996. Nevertheless, transposition is still a very important and useful notion in describing the translation process. The need for transpositions arises when there is no possibility of formal one-to-one correspondence between source and target-language structures. The basic idea is that whenever there is a need for transposition, we are faced with a translation problem. In the early phase of translation studies in Germany, contrastive linguistics played a major role. I shall briefly describe this approach so that the functional approach will become clearer by contrast. Influenced by the representatives of stylistique comparée, Vinay/Darbelnet (1968 Wolfram Wilss, for instance, in his early work (1971, 1977 makes frequent use of the notion transposition (German “Ausdrucksverschiebung“, cf. also Catford’s (1965 term shift. As a whole, of course, Wilss’ work has a much broader scope. More recently, he has investigated the role of cognition (1988 and the various factors in translator behaviour (1996. Nevertheless, transposition is still a very important and useful notion in describing the translation process. The need for transpositions arises when there is no possibility of formal one-to-one correspondence between source and target-language structures. The basic idea is that whenever there is a need for

  12. Dynamic Safety Cases for Through-Life Safety Assurance

    Science.gov (United States)

    Denney, Ewen; Pai, Ganesh; Habli, Ibrahim

    2015-01-01

    We describe dynamic safety cases, a novel operationalization of the concept of through-life safety assurance, whose goal is to enable proactive safety management. Using an example from the aviation systems domain, we motivate our approach, its underlying principles, and a lifecycle. We then identify the key elements required to move towards a formalization of the associated framework.

  13. The development of an inherent safety approach to the prevention of domino accidents.

    Science.gov (United States)

    Cozzani, Valerio; Tugnoli, Alessandro; Salzano, Ernesto

    2009-11-01

    The severity of industrial accidents in which a domino effect takes place is well known in the chemical and process industry. The application of an inherent safety approach for the prevention of escalation events leading to domino accidents was explored in the present study. Reference primary scenarios were analyzed and escalation vectors were defined. Inherent safety distances were defined and proposed as a metric to express the intensity of the escalation vectors. Simple rules of thumb were presented for a preliminary screening of these distances. Swift reference indices for layout screening with respect to escalation hazard were also defined. Two case studies derived from existing layouts of oil refineries were selected to understand the potentialities coming from the application in the methodology. The results evidenced that the approach allows a first comparative assessment of the actual domino hazard in a layout, and the identification of critical primary units with respect to escalation events. The methodology developed also represents a useful screening tool to identify were to dedicate major efforts in the design of add-on measures, optimizing conventional passive and active measures for the prevention of severe domino accidents.

  14. A holistic approach to food safety risks: Food fraud as an example.

    Science.gov (United States)

    Marvin, Hans J P; Bouzembrak, Yamine; Janssen, Esmée M; van der Fels-Klerx, H J; van Asselt, Esther D; Kleter, Gijs A

    2016-11-01

    Production of sufficient, safe and nutritious food is a global challenge faced by the actors operating in the food production chain. The performance of food-producing systems from farm to fork is directly and indirectly influenced by major changes in, for example, climate, demographics, and the economy. Many of these major trends will also drive the development of food safety risks and thus will have an effect on human health, local societies and economies. It is advocated that a holistic or system approach taking into account the influence of multiple "drivers" on food safety is followed to predict the increased likelihood of occurrence of safety incidents so as to be better prepared to prevent, mitigate and manage associated risks. The value of using a Bayesian Network (BN) modelling approach for this purpose is demonstrated in this paper using food fraud as an example. Possible links between food fraud cases retrieved from the RASFF (EU) and EMA (USA) databases and features of these cases provided by both the records themselves and additional data obtained from other sources are demonstrated. The BN model was developed from 1393 food fraud cases and 15 different data sources. With this model applied to these collected data on food fraud cases, the product categories that thus showed the highest probabilities of being fraudulent were "fish and seafood" (20.6%), "meat" (13.4%) and "fruits and vegetables" (10.4%). Features of the country of origin appeared to be important factors in identifying the possible hazards associated with a product. The model had a predictive accuracy of 91.5% for the fraud type and demonstrates how expert knowledge and data can be combined within a model to assist risk managers to better understand the factors and their interrelationships. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Safety and function of a new clinical intracerebral microinjection instrument for stem cells and therapeutics examined in the Göttingen minipig

    DEFF Research Database (Denmark)

    Bjarkam, Carsten R; GLUD, AN; Margolin, Lee

    2010-01-01

    Safety and function of a new clinical intracerebral microinjection instrument for stem cells and therapeutics examined in the Göttingen minipig......Safety and function of a new clinical intracerebral microinjection instrument for stem cells and therapeutics examined in the Göttingen minipig...

  16. NEA/IAEA Workshop on Leadership and Management for Safety. ONR approach

    International Nuclear Information System (INIS)

    Harvey, Paul

    2012-01-01

    Paul Harvey summarised the progress made by the UK ONR on oversight of LMfS since the previous workshop in 2007. The ONR approach is based on published Safety Assessment Principles (SAPs) on Leadership and Management for Safety. The four principles cover Leadership, Capable Organisation, Decision Making and Learning. Safety culture is embodied within the LMfS SAPs/strategy rather than being treated as a specific topic. The ONR LMfS strategy draws on the lessons from major events (e.g., Texas City, Davis Besse, Columbia) and includes integration of LMfS into existing types of regulatory interventions. Key elements of the strategy include more attention to organisational and cultural factors, increased focus on Board/Director/Executive Team levels in licensees, more focus on how licensees oversee themselves, and improving ONR ability to identify precursors and influencing in combination with regulation. Guidance on Leadership and Management for safety has been produced and is undergoing trial use by ONR inspectors. The guidance is structured around the four LMfS safety assessment principles. It provides help on what to look for during interactions with licensees. ONR staff record significant points (both potential concerns and good practices) in their Intervention Reports under the 'LMfS' heading. This should enable ONR to build up a picture of strengths and weaknesses and plan interventions. Workshops on LMfS have been held for inspectors and managers. These cover organisational and cultural lessons from a range of major events and relate these to ONR LMfS strategy and draft guidance. Other interventions which form part of the strategy include 'deep slice' inspections on specific LMfS topics, and interactions with some licensee Company Boards on lessons from major events and the ONR LMfS strategy. These have been received positively by licensees. It was concluded that ongoing effort is needed to fully implement and embed the ONR LMfS strategy

  17. Uncertainty and conservatism in safety evaluations based on a BEPU approach

    International Nuclear Information System (INIS)

    Yamaguchi, A.; Mizokami, S.; Kudo, Y.; Hotta, A.

    2009-01-01

    Atomic Energy Society of Japan has published 'Standard Method for Safety Evaluation using Best Estimate Code Based on Uncertainty and Scaling Analyses with Statistical Approach' to be applied to accidents and AOOs in the safety evaluation of LWRs. In this method, hereafter named as the AESJ-SSE (Statistical Safety Evaluation) method, identification and quantification of uncertainties will be performed and then a combination of the best estimate code and the evaluation of uncertainty propagation will be performed. Uncertainties are categorized into bias and variability. In general, bias is related to our state-of-knowledge on uncertainty objects (modeling, scaling, input data, etc.) while variability reflects stochastic features involved in these objects. Considering many kinds of uncertainties in thermal-hydraulics models and experimental databases show variabilities that will be strongly influenced by our state of knowledge, it seems reasonable that these variabilities are also related to state-of-knowledge. The design basis events (DBEs) that are employed for licensing analyses form a main part of the given or prior conservatism. The regulatory acceptance criterion is also regarded as the prior conservatism. In addition to these prior conservatisms, a certain amount of the posterior conservatism is added with maintaining intimate relationships with state-of-knowledge. In the AESJ-SSE method, this posterior conservatism can be incorporated into the safety evaluation in a combination of the following three ways, (1) broadening ranges of variability relevant to uncertainty objects, (2) employing more disadvantageous biases relevant to uncertainty objects and (3) adding an extra bias to the safety evaluation results. Knowing implemented quantitative bases of uncertainties and conservatism, the AESJ-SSE method provides a useful ground for rational decision-making. In order to seek for 'the best estimation' as well as reasonably setting the analytical margin, a degree

  18. Safety Management Characteristics Reflected in Interviews at Swedish Nuclear Power Plants: A System Perspective Approach

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Ilkka (Risk Analysis, Social and Decision Research Unit, Dept. of Psychology, Stockholm Univ., Stockholm (Sweden))

    2005-12-15

    that the area ought to be explored further. Future research in the areas of: (a) outsourcing; (b) system theoretical integration of MTO features at a unitary level of abstraction, exemplified in relation to the development of organizational safety indicators; and (c) new approaches to organizational optimization in contrast to traditional restructuring, were suggested and discussed

  19. Safety Management Characteristics Reflected in Interviews at Swedish Nuclear Power Plants: A System Perspective Approach

    International Nuclear Information System (INIS)

    Salo, Ilkka

    2005-12-01

    ought to be explored further. Future research in the areas of: (a) outsourcing; (b) system theoretical integration of MTO features at a unitary level of abstraction, exemplified in relation to the development of organizational safety indicators; and (c) new approaches to organizational optimization in contrast to traditional restructuring, were suggested and discussed

  20. A Holistic Approach to Protection and Safety

    International Nuclear Information System (INIS)

    Yankovich, L.T.

    2017-01-01

    Natural Ecosystems Undergo Inherent Fluctuations and Changes that are Related to Physical, Geological, Biological and other Natural Processes Associated with the Cycles of Life and the Earth. In other words, the effects of human activities must be evaluated in the context of the 'baseline' processes that are inherent to and imposed on natural ecosystems. The IAEA has established ahierarchy of Safety Standards, consisting of a set of ''Safety Fundamentals'' at the highest level, followed by ''Requirements'', then recommendations or ''guidance''. Human activities involving the use of radiation and radioactive substances can cause radiation exposure to people and the environment. This exposure should be regulated and monitored in accordance with international safety standards and national legislation

  1. Challenging patient safety culture: survey results

    NARCIS (Netherlands)

    Hellings, Johan; Schrooten, Ward; Klazinga, Niek; Vleugels, Arthur

    2007-01-01

    PURPOSE: The purpose of this paper is to measure patient safety culture in five Belgian general hospitals. Safety culture plays an important role in the approach towards greater patient safety in hospitals. DESIGN/METHODOLOGY/APPROACH: The Patient Safety Culture Hospital questionnaire was

  2. Identifying Similarities in Cognitive Subtest Functional Requirements: An Empirical Approach

    Science.gov (United States)

    Frisby, Craig L.; Parkin, Jason R.

    2007-01-01

    In the cognitive test interpretation literature, a Rational/Intuitive, Indirect Empirical, or Combined approach is typically used to construct conceptual taxonomies of the functional (behavioral) similarities between subtests. To address shortcomings of these approaches, the functional requirements for 49 subtests from six individually…

  3. Participatory approach to improving safety, health and working conditions in informal economy workplaces in Cambodia.

    Science.gov (United States)

    Kawakami, Tsuyoshi; Tong, Leng; Kannitha, Yi; Sophorn, Tun

    2011-01-01

    The present study aimed to improve safety and health in informal economy workplaces such as home workplaces, small construction sites, and rural farms in Cambodia by using "participatory" approach. The government, workers' and employers' organizations and NGOs jointly assisted informal economy workers in improving safety and health by using participatory training methodologies. The steps taken were: (1) to collect existing good practices in safety and health in Cambodia; (2) to develop new participatory training programmes for home workers and small construction sites referring to ILO's WISE training programme, and (3) to train government officers, workers, employers and NGOs as safety and health trainers. The participatory training programmes developed consisted of action-checklists associated with illustrations, good example photo sheets, and texts explaining practical, low-cost improvement measures. The established safety and health trainers reached many informal economy workers through their human networks, and trained them by using the developed participatory training programmes. More than 3,000 informal economy workers were trained and they implemented improvements by using low-cost methods. Participatory training methodologies and active cooperation between the government, workers, employers and NGOs made it possible to provide practical training for those involved in the informal economy workplaces.

  4. Modem Communications Systems Development Guidelines in Function of Air Traffic Safety ...

    Directory of Open Access Journals (Sweden)

    Petar Obradović

    2007-05-01

    Full Text Available The communications requirements in air traffic control areincreasing in complexity. From the middle 90s, huge progress inairport infrastructure, especially in air traffic control systems,has been made in Bosnia and Herzegovina in damage rehabilitation,caused by war conflicts, owing, first of all, to the EuropeanUnion aid that contributed to the re-establishment of regularinternational air traffic. The current air traffic control systemhas matured in its functionality. Therefore, the phase of advancementand preparation for the technological improvementis the next logical step. However, before establishing a new communicationsstrategy, the current application trends have to beanalyzed in details according to the existing communicationsenvironment interfaces. The goal of this work is to find theguidelines of technological development that will result in moreefficiency, safety and economic benefit in the near future, butthe air traffic safety must not be compromised by economicbenefit.

  5. Toward introduction of risk informed safety regulation. Nuclear Safety Commission taskforce's interim report

    International Nuclear Information System (INIS)

    2006-01-01

    Nuclear Safety Commission's taskforce on 'Introduction of Safety Regulation Utilizing Risk Information' completed the interim report on its future subjects and directions in December 2005. Although current safety regulatory activities have been based on deterministic approach, this report shows the risk informed approach is expected to be very useful for making nuclear safety regulation and assurance activities reasonable and also for appropriate allocation of regulatory resources. For introduction of risk informed regulation, it also recommends pileups of experiences with gradual introduction and trial of the risk informed approach, improvement of plant maintenance rules and regulatory requirements utilizing risk information, and establishment of framework to assure quality of risk evaluation. (T. Tanaka)

  6. A study to develop the domestic functional requirements of the specific safety systems of CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Woong [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Lee, Jae Young; Park, Kun Chul [Handong Global Univ., Pohang (Korea, Republic of)] (and others)

    2003-03-15

    The present research has been made to develop and review critically the functional requirements of the specific safety systems of CANDU such as SDS-1, SDS2, ECCS, and containment. Based on R documents for this, a systematic study was made to develop the domestic regulation statements. Also, the conventional laws are carefully reviewed to see the compatibility to CANDU. Also, the safety assessment method for CANDU was studied by reviewing C documents and recommendation of IAEA. Through the present works, the vague policy in the CANDU safety regulation is cleaning up in a systematic form and a new frame to measure the objective risk of nuclear power plants was developed.

  7. A study to develop the domestic functional requirements of the specific safety systems of CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Woong; Lee, Jae Young; Bang, Kwang Hyun [Handong Global Univ., Pohang (Korea, Republic of)] (and others)

    2001-03-15

    The present research has been made to develop and review critically the functional requirements of the specific safety systems of CANDU such as SOS-1, SOS-2, ECCS and containment. Based on R documents for this, a systematic study was made to develop the domestic regulation statements. Also, the conventional laws are carefully reviewed to see the compatibility to CANDU. Also, the safety assessment method for CANDU was studied by reviewing C documents and recommendation of IAEA. Through the present works, the vague policy in the CANDU safety regulation is cleaning up in a systematic form and a new frame to measure the objective risk of nuclear power plants was developed.

  8. An OSHA based approach to safety analysis for nonradiological hazardous materials

    International Nuclear Information System (INIS)

    Yurconic, M.

    1992-08-01

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office's program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities

  9. Functional safety requirements of the propulsion and power supply equipment of the MAGLEV system; Umgang mit funktionalen Sicherheitsanforderungen bei Antrieb und Energieversorgung der Magnetbahn

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, A. [IFB Inst. fuer Bahntechnik GmbH, Dresden (Germany)

    2008-07-01

    In the Transrapid high-speed MAGLEV railway system, the operating control subsystem provides for the higher-level safety function. Within the system also selected components of the stationary linear-motor drive have important safety functions. Under the approval procedure, the safety-relevant functions must be certified. This makes specific requirements on the development and integration of the components used. (orig.)

  10. TSO Study Project on Development of a Common Safety Approach in the EU for Large Evolutionary Pressurised Water Reactors

    International Nuclear Information System (INIS)

    2001-10-01

    In pursuance of the objectives of the Council Resolutions of 1975 and 1992 on the technological issues of nuclear safety, the European Commission (EC) is seeking to promote a sustained joint in-depth study on possible significant future nuclear power reactor safety cases. To that end the EC decided to support financially a study by the grouping of the European Union Technical Safety Organisations (TSOG). The general objective of the study programme was to promote, through a collaboration of European Union Technical Safety Organisations (TSOs), common views on technical safety issues related to large evolutionary PWRs in Europe, which could be ready for operation during the next decade. AVN (Belgium) (Technical project leader), AEA Technology (United Kingdom), ANPA (Italy) CIEMAT (Spain), GRS (Germany), IPSN (France), were the TSOs participating in the study which was co-ordinated by RISKAUDIT. The study focused notably on the EPR project initiated by the French and German utilities and vendors. It also considered relevant projects, even of plants of different size, developed outside the European Union in order to provide elements important for the safety characterisation and which could contribute to the credibility and confidence of EPR. It is expected that this study will constitute a significant step towards the development of a common safety approach in EU countries. The study constitutes an important step forward in the development of a common approach of the TSOs to the safety of advanced evolutionary pressurised water reactors. This goal was mainly achieved by an in-depth analysis of the key safety issues, taking into account new developments in the national technical safety objectives and in the EPR design. For this reason the Commission has decided to publish at least the present summary report containing the main outcomes of the TSO study. Confidentiality considerations unfortunately prevent the open publication of the full series of reports. (author)

  11. Using an Ecosystem Approach to complement protection schemes based on organism-level endpoints

    International Nuclear Information System (INIS)

    Bradshaw, Clare; Kapustka, Lawrence; Barnthouse, Lawrence; Brown, Justin; Ciffroy, Philippe; Forbes, Valery; Geras'kin, Stanislav; Kautsky, Ulrik; Bréchignac, François

    2014-01-01

    Radiation protection goals for ecological resources are focussed on ecological structures and functions at population-, community-, and ecosystem-levels. The current approach to radiation safety for non-human biota relies on organism-level endpoints, and as such is not aligned with the stated overarching protection goals of international agencies. Exposure to stressors can trigger non-linear changes in ecosystem structure and function that cannot be predicted from effects on individual organisms. From the ecological sciences, we know that important interactive dynamics related to such emergent properties determine the flows of goods and services in ecological systems that human societies rely upon. A previous Task Group of the IUR (International Union of Radioecology) has presented the rationale for adding an Ecosystem Approach to the suite of tools available to manage radiation safety. In this paper, we summarize the arguments for an Ecosystem Approach and identify next steps and challenges ahead pertaining to developing and implementing a practical Ecosystem Approach to complement organism-level endpoints currently used in radiation safety. - Highlights: • An Ecosystem Approach to radiation safety complements the organism-level approach. • Emergent properties in ecosystems are not captured by organism-level endpoints. • The proposed Ecosystem Approach better aligns with management goals. • Practical guidance with respect to system-level endpoints is needed. • Guidance on computational model selection would benefit an Ecosystem Approach

  12. Development of a methodology for an environmental safety case in the United Kingdom

    International Nuclear Information System (INIS)

    Bailey, L.E.F.

    2008-01-01

    This presentation introduced the notion of an environmental safety case that focuses on the protection of both humans and the environment. The UK safety case will address operational, transport and post-closure safety for intermediate-level waste (ILW) and high-level waste (HLW). As there is yet no agreed site or design for a deep geological repository in the UK, the first iteration of the safety case will be generic, drawing on examples from international repository concepts. These concepts will be considered in appropriate generic geological environments typical of those found in the UK. The performance of these example concepts will be assessed using a time frames-based approach that focuses on the evolution of the multiple barriers and their associated safety functions. This approach recognizes that the relative importance of the different barriers in providing safety will evolve over time. For example, at early times the engineered barriers provide containment and the geological barriers protect the engineered barriers and provide isolation of the wastes. At later times, as the engineered barriers degrade, the geosphere provides the major barrier to radionuclide migration back to the surface and ensures the long-term stability of the system. A multi-factor safety case will be presented, using multiple lines of reasoning, including comparisons with natural and anthropogenic analogues, to provide assurance of the intrinsic safety functions of the system and their evolution over time. (author)

  13. Reactor safety impact of functional test intervals: an application of Bayesian decision theory

    International Nuclear Information System (INIS)

    Buoni, F.B.

    1978-01-01

    Functional test intervals for important nuclear reactor systems can be obtained by viewing safety assessment as a decision process and functional testing as a Bayesian learning or information process. A preposterior analysis is used as the analytical model to find the preposterior expected reliability of a system as a function of test intervals. Persistent and transitory failure models are shown to yield different results. Functional tests of systems subject to persistent failure are effective in maintaining system reliability goals. Functional testing is not effective for systems subject to transitory failure; preventive maintenance must be used. A Bayesian posterior analysis of testing data can discriminate between persistent and transitory failure. The role of functional testing is seen to be an aid in assessing the future performance of reactor systems

  14. Safety applications of computer based systems for the process industry

    International Nuclear Information System (INIS)

    Bologna, Sandro; Picciolo, Giovanni; Taylor, Robert

    1997-11-01

    Computer based systems, generally referred to as Programmable Electronic Systems (PESs) are being increasingly used in the process industry, also to perform safety functions. The process industry as they intend in this document includes, but is not limited to, chemicals, oil and gas production, oil refining and power generation. Starting in the early 1970's the wide application possibilities and the related development problems of such systems were recognized. Since then, many guidelines and standards have been developed to direct and regulate the application of computers to perform safety functions (EWICS-TC7, IEC, ISA). Lessons learnt in the last twenty years can be summarised as follows: safety is a cultural issue; safety is a management issue; safety is an engineering issue. In particular, safety systems can only be properly addressed in the overall system context. No single method can be considered sufficient to achieve the safety features required in many safety applications. Good safety engineering approach has to address not only hardware and software problems in isolation but also their interfaces and man-machine interface problems. Finally, the economic and industrial aspects of the safety applications and development of PESs in process plants are evidenced throughout all the Report. Scope of the Report is to contribute to the development of an adequate awareness of these problems and to illustrate technical solutions applied or being developed

  15. Improving heavy vehicle safety and road transport efficiency: a Performance-Based Standards approach in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2018-04-01

    Full Text Available practical experience in the PBS approach and to quantify and evaluate the potential infrastructure preservation, safety and productivity benefits for road freight transport. To date, 450 permits for PBS demonstration vehicles (including 200 car...

  16. ENHANCED PROACTIVE PLANNING APPROACH: A CRUCIAL TO AN IMPROVED WORKERS’ SAFETY IN WESTERN NIGERIA SMALL SCALE INDUSTRY

    Directory of Open Access Journals (Sweden)

    H.O. ADEYEMI

    2016-12-01

    Full Text Available This study evaluated managements’ proactive planning approach (PPA to enhance safety among workers in South-western Nigeria small scale industry (SSI. The main objective was to rate the managements’ efforts at eliminating risk among their employees. By worker participatory and psychological survey approach, three tools were used; workplace observation (visual, management safety culture (questionnaire and managers interviews (oral. The survey included 200 workers, 120 supervisors and 80 managers, in 82 SSI. Four steps to a safety proactive action plans (PAP, (looking for clues, prioritization of identified potential hazard, making improvements to eliminate the risk and follow up, were rated by employees on a scale from 0 to 5. Paired t-test was used to appraise the significant difference between the managers’ mean scores rated by the supervisors and other workers. 77.1% of workers and 64.2% supervisors rated their managers as either “not done at all” or “poorly done”. Workers’ scores for managers PPA had statistically significantly lower ratings (mean=1.09, SEM = 0.22 compared to that of the supervisors rating (mean= 1.55, SEM = 0.32, with t (14 = -1.185, p = 0.784. There is a closed poor performance perception gaps, of managers’ PPA, of the two groups of employees. It can be concluded that safety is not emphasized, by managers of SSI, as overriding priority and this may have contributed to high reported injuries among their workforce. Courses to enhance managements’ understanding for inclusion of safety among the leading priorities becomes necessary. This will reduce work-related risks and promotes occupational safety and health among the group of workers.

  17. Safety practice and regulations in different IGORR member countries

    International Nuclear Information System (INIS)

    Hickman, C.; Minguet, J.L.; Arnould, F.

    1999-01-01

    In the suggestions of the 1996 IGORR 5 conference, Technicatome proposed 'Comparing Regulations for Research Reactors in Participating Countries'. The aim was to enhance and facilitate the dissemination of pertinent information amongst potential utilities of operational research reactors. A questionnaire on the following topics was subsequently sent out to IGORR 5 participants : Procedures for Research Reactors and Associated Equipment, Safety Analysis, Safety Related Components, Radiation Protection and Management of Nuclear materials. The objective of the present paper is to identify major trends, similarities and differences in the approaches adopted by different countries. Its scope has been limited to: Licensing and Regulatory approach; Operating and Safety documents; Safety Analysis; Radiological Safety; Management of Nuclear Materials. The investigations carried out indicate that to a large extent international recommendations (IAEA, ICPR,..) are being followed and that there is a general tendency to integrate them into national legislation and regulations. Although Safety Culture varies from one country to another an overall general consensus exists on the basic approach to safety inasmuch as: different countries have their own legally defined Safety Authorities, a Preliminary Safety Report is required before a research reactor can be built, and a final Safety Report before the core can be loaded with nuclear fuel and the reactor made critical; these documents must be accepted by the Safety Authorities concerned; a combination of defense-in-depth strategy (deterministic approach) and probabilistic analysis is applied; three or more safety classes are used to categorize systems and components; the single failure criterion is taken into consideration for systems and components having safety functions; both Operating Basis and Safety Shutdown type earthquakes are considered; the crashing of an aircraft onto a research reactor is taken into consideration

  18. Understanding Nuclear Safety Culture: A Systemic Approach

    International Nuclear Information System (INIS)

    Afghan, A.N.

    2016-01-01

    The Fukushima accident was a systemic failure (Report by Director General IAEA on the Fukushima Daiichi Accident). Systemic failure is a failure at system level unlike the currently understood notion which regards it as the failure of component and equipment. Systemic failures are due to the interdependence, complexity and unpredictability within systems and that is why these systems are called complex adaptive systems (CAS), in which “attractors” play an important role. If we want to understand the systemic failures we need to understand CAS and the role of these attractors. The intent of this paper is to identify some typical attractors (including stakeholders) and their role within complex adaptive system. Attractors can be stakeholders, individuals, processes, rules and regulations, SOPs etc., towards which other agents and individuals are attracted. This paper will try to identify attractors in nuclear safety culture and influence of their assumptions on safety culture behavior by taking examples from nuclear industry in Pakistan. For example, if the nuclear regulator is an attractor within nuclear safety culture CAS then how basic assumptions of nuclear plant operators and shift in-charges about “regulator” affect their own safety behavior?

  19. An approach to the structure function for nucleon

    International Nuclear Information System (INIS)

    Long Ming

    1986-01-01

    The structure function for nucleon is discussed by using the method given in a previous paper. The formula are compared with the experimental data from low Q 2 to high Q 2 . The results show that the way that the structure function for nucleon can be obtained from the hadronic wavefunction is a possible approach of investigating structure functions for hadron

  20. A Resilience Engineering Approach for Sustainable Safety in Green Construction

    Directory of Open Access Journals (Sweden)

    Lucio V. Rosa

    2017-12-01

    Full Text Available Sustainable construction is a complex endeavour, involving various stakeholders and resulting in situations that are incompletely described or underspecified. Traditional risk assessment methods require a detailed description of the system and safety, focusing on undesirable outcomes, losses, incidents and accidents. Developing this principle, this research describes a new way to deal with risk assessment in the green construction industry using a resilience engineering method based on the functional resonanceanalysis method and analytic hierarchy process methodologies. The functional resonance analysis method defines a systemic framework to model complex systems based on combinations of function variabilities during normal work. Therefore, to quantify the outcomes for risk assessment, this method was used together with the analytic hierarchy process in a case study during the modernisation work on the Maracanã stadium in Rio de Janeiro. The results of this case study demonstrate that the combined utilisation of the functional resonance analysis method and analytic hierarchy process can be utilised to recognise situations where developments could potentially be without control, which enables this to be used as a basis for performing indicators or a monitoring system. Furthermore, this combined technique can be used to assess and quantify the performance variabilities that may lead to occupational or environmental accidents, and provide new recommendations about how work processes should function, minimising production losses, incidents and accidents.