WorldWideScience

Sample records for safety factor analysis

  1. Classification analysis of organization factors related to system safety

    International Nuclear Information System (INIS)

    Liu Huizhen; Zhang Li; Zhang Yuling; Guan Shihua

    2009-01-01

    This paper analyzes the different types of organization factors which influence the system safety. The organization factor can be divided into the interior organization factor and exterior organization factor. The latter includes the factors of political, economical, technical, law, social culture and geographical, and the relationships among different interest groups. The former includes organization culture, communication, decision, training, process, supervision and management and organization structure. This paper focuses on the description of the organization factors. The classification analysis of the organization factors is the early work of quantitative analysis. (authors)

  2. Analysis of factors influencing safety management for metro construction in China.

    Science.gov (United States)

    Yu, Q Z; Ding, L Y; Zhou, C; Luo, H B

    2014-07-01

    With the rapid development of urbanization in China, the number and size of metro construction projects are increasing quickly. At the same time, and increasing number of accidents in metro construction make it a disturbing focus of social attention. In order to improve safety management in metro construction, an investigation of the participants' perspectives on safety factors in China metro construction has been conducted to identify the key safety factors, and their ranking consistency among the main participants, including clients, consultants, designers, contractors and supervisors. The result of factor analysis indicates that there are five key factors which influence the safety of metro construction including safety attitude, construction site safety, government supervision, market restrictions and task unpredictability. In addition, ANOVA and Spearman rank correlation coefficients were performed to test the consistency of the means rating and the ranking of safety factors. The results indicated that the main participants have significant disagreement about the importance of safety factors on more than half of the items. Suggestions and recommendations on practical countermeasures to improve metro construction safety management in China are proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Reliability Analysis and Calibration of Partial Safety Factors for Redundant Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    1998-01-01

    Redundancy is important to include in the design and analysis of structural systems. In most codes of practice redundancy is not directly taken into account. In the paper various definitions of a deterministic and reliability based redundancy measure are reviewed. It is described how reundancy can...... be included in the safety system and how partial safety factors can be calibrated. An example is presented illustrating how redundancy is taken into account in the safety system in e.g. the Danish codes. The example shows how partial safety factors can be calibrated to comply with the safety level...

  4. A hierarchical factor analysis of a safety culture survey.

    Science.gov (United States)

    Frazier, Christopher B; Ludwig, Timothy D; Whitaker, Brian; Roberts, D Steve

    2013-06-01

    Recent reviews of safety culture measures have revealed a host of potential factors that could make up a safety culture (Flin, Mearns, O'Connor, & Bryden, 2000; Guldenmund, 2000). However, there is still little consensus regarding what the core factors of safety culture are. The purpose of the current research was to determine the core factors, as well as the structure of those factors that make up a safety culture, and establish which factors add meaningful value by factor analyzing a widely used safety culture survey. A 92-item survey was constructed by subject matter experts and was administered to 25,574 workers across five multi-national organizations in five different industries. Exploratory and hierarchical confirmatory factor analyses were conducted revealing four second-order factors of a Safety Culture consisting of Management Concern, Personal Responsibility for Safety, Peer Support for Safety, and Safety Management Systems. Additionally, a total of 12 first-order factors were found: three on Management Concern, three on Personal Responsibility, two on Peer Support, and four on Safety Management Systems. The resulting safety culture model addresses gaps in the literature by indentifying the core constructs which make up a safety culture. This clarification of the major factors emerging in the measurement of safety cultures should impact the industry through a more accurate description, measurement, and tracking of safety cultures to reduce loss due to injury. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  5. Application of factor analysis in psychological diagnostics (sample: study of students’ social safety

    Directory of Open Access Journals (Sweden)

    Pavel Aleksandrovich Kislyakov

    2015-10-01

    Our recommendations for the use of factor analysis, with necessary restrictions and clear reasons of a possible ambiguity of solutions, will be useful to everyone interested in mastering an adequate mathematical tool for solving problems pertaining to the humanities, in particular, those of practical psychology. As a practical example is presented the research of the psychological factors which provide students’ social safety. With the help of the factor analysis relevant personal and professional qualities of a teacher were revealed which are the subjective factors of students’ social safety, namely: social anticipation, socio-psychological stress resistance, social tolerance, professional orientation, responsibility, communication skills.

  6. Time Based Workload Analysis Method for Safety-Related Operator Actions in Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eung Se [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-05-15

    During the design basis event, the safety system performs safety functions to mitigate the event. The most of safety system is actuated by automatic system however, there are operator manual actions that are needed for the plant safety. These operator actions are classified as important human actions in human factors engineering design. The human factors engineering analysis and evaluation is needed for these important human actions to assure that operator successfully perform their tasks for plant safety and operational goals. The work load analysis is one of the required analysis for the important human actions.

  7. Time Based Workload Analysis Method for Safety-Related Operator Actions in Safety Analysis

    International Nuclear Information System (INIS)

    Kim, Yun Goo; Oh, Eung Se

    2016-01-01

    During the design basis event, the safety system performs safety functions to mitigate the event. The most of safety system is actuated by automatic system however, there are operator manual actions that are needed for the plant safety. These operator actions are classified as important human actions in human factors engineering design. The human factors engineering analysis and evaluation is needed for these important human actions to assure that operator successfully perform their tasks for plant safety and operational goals. The work load analysis is one of the required analysis for the important human actions.

  8. Patient Safety Culture Survey in Pediatric Complex Care Settings: A Factor Analysis.

    Science.gov (United States)

    Hessels, Amanda J; Murray, Meghan; Cohen, Bevin; Larson, Elaine L

    2017-04-19

    Children with complex medical needs are increasing in number and demanding the services of pediatric long-term care facilities (pLTC), which require a focus on patient safety culture (PSC). However, no tool to measure PSC has been tested in this unique hybrid acute care-residential setting. The objective of this study was to evaluate the psychometric properties of the Nursing Home Survey on Patient Safety Culture tool slightly modified for use in the pLTC setting. Factor analyses were performed on data collected from 239 staff at 3 pLTC in 2012. Items were screened by principal axis factoring, and the original structure was tested using confirmatory factor analysis. Exploratory factor analysis was conducted to identify the best model fit for the pLTC data, and factor reliability was assessed by Cronbach alpha. The extracted, rotated factor solution suggested items in 4 (staffing, nonpunitive response to mistakes, communication openness, and organizational learning) of the original 12 dimensions may not be a good fit for this population. Nevertheless, in the pLTC setting, both the original and the modified factor solutions demonstrated similar reliabilities to the published consistencies of the survey when tested in adult nursing homes and the items factored nearly identically as theorized. This study demonstrates that the Nursing Home Survey on Patient Safety Culture with minimal modification may be an appropriate instrument to measure PSC in pLTC settings. Additional psychometric testing is recommended to further validate the use of this instrument in this setting, including examining the relationship to safety outcomes. Increased use will yield data for benchmarking purposes across these specialized settings to inform frontline workers and organizational leaders of areas of strength and opportunity for improvement.

  9. Factor Analysis and Framework Development for Incorporating Public Trust on Nuclear Safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seongkyung; Lee, Gyebong [The Myongji Univ., Seoul (Korea, Republic of); Lee, Gihyung; Lee, Gyehwi; Jeong, Jina [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    The Korea Institute of Nuclear Safety (KINS), a regulatory expert organization in charge of nuclear safety in Korea, realized that a more fundamental and systematic analysis of activities is needed to actively meet the greater variety of concerns people have and increase the reliability of the results of regulation. Nuclear safety, a highly specialized field, has previously been discussed primarily from the viewpoint of the engineers who deal with the technology, but now 'public trust in nuclear safety' has to be viewed from the standpoint of the general public and from the socio-cultural perspective. Specific measures must be taken to examine which factors affect public trust and how we can secure and reproduce those factors to gain it. Also, an efficient system for incorporating public trust in nuclear safety must be established. In this study, various case studies were examined to identify the factors that affect public trust in nuclear safety. First, nuclear safety laws and information disclosure systems of major countries were examined by investigating data and conducting in-depth interviews. To explore a public framework concerning nuclear safety, big data of social media were analyzed. Also, Q methodology was used to analyze the risk schemata of the opinion leaders living in areas near nuclear power plants. Several surveys were conducted to analyze the amount of trust the public had in nuclear safety as well as their awareness of nuclear safety issues. Based on these analyses, factors affecting public trust in nuclear safety were extracted, and measures to build systems incorporating public trust in nuclear safety were proposed. This study addresses the public trust in nuclear safety on condition that the safety is ensured technically and mechanically.

  10. Factor Analysis and Framework Development for Incorporating Public Trust on Nuclear Safety issues

    International Nuclear Information System (INIS)

    Cho, Seongkyung; Lee, Gyebong; Lee, Gihyung; Lee, Gyehwi; Jeong, Jina

    2014-01-01

    The Korea Institute of Nuclear Safety (KINS), a regulatory expert organization in charge of nuclear safety in Korea, realized that a more fundamental and systematic analysis of activities is needed to actively meet the greater variety of concerns people have and increase the reliability of the results of regulation. Nuclear safety, a highly specialized field, has previously been discussed primarily from the viewpoint of the engineers who deal with the technology, but now 'public trust in nuclear safety' has to be viewed from the standpoint of the general public and from the socio-cultural perspective. Specific measures must be taken to examine which factors affect public trust and how we can secure and reproduce those factors to gain it. Also, an efficient system for incorporating public trust in nuclear safety must be established. In this study, various case studies were examined to identify the factors that affect public trust in nuclear safety. First, nuclear safety laws and information disclosure systems of major countries were examined by investigating data and conducting in-depth interviews. To explore a public framework concerning nuclear safety, big data of social media were analyzed. Also, Q methodology was used to analyze the risk schemata of the opinion leaders living in areas near nuclear power plants. Several surveys were conducted to analyze the amount of trust the public had in nuclear safety as well as their awareness of nuclear safety issues. Based on these analyses, factors affecting public trust in nuclear safety were extracted, and measures to build systems incorporating public trust in nuclear safety were proposed. This study addresses the public trust in nuclear safety on condition that the safety is ensured technically and mechanically

  11. Analysis on Pollution Factors in Asparagus Production and Research on Safety Production Technology

    OpenAIRE

    Ma, Liping; Hao, Bianqing; Qiao, Xiongwu

    2013-01-01

    Based on the analysis on the infection degree, infection law and influencing factors of the main diseases on asparagus and the analysis on the pollution factors in asparagus production such as blind pesticide use, atmospheric pollution and acid rain, the pollution of soil and fertilizer, this article proposes asparagus safety production technologies which include the selection of disease-resistant variety and suitable planting field, scientific and reasonable disease control, balanced fertili...

  12. Partial Safety Factors for Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, H. F.; Christiani, E.

    1995-01-01

    On the basis of the failure modes formulated in the various subtasks calibration of partial safety factors are described in this paper. The partial safety factors can be used to design breakwaters under quite different design conditions, namely probabilities of failure from 0.01 to 0.4, design...... lifetimes from 20 to 100 years and different qualities of wave data. A code of practice where safety is taken into account using partial safety factors is called a level I code. The partial safety factors are calibrated using First Order Reliability Methods (FORM, see Madsen et al. [1]) where...... in section 3. First Order Reliability Methods are described in section 4, and in section 5 it is shown how partial safety factors can be introduced and calibrated. The format of a code for design and analysis of rubble mound breakwaters is discussed in section 6. The mathematical formulation of the limit...

  13. Human factors and fuzzy set theory for safety analysis

    International Nuclear Information System (INIS)

    Nishiwaki, Y.

    1987-01-01

    Human reliability and performance is affected by many factors: medical, physiological and psychological, etc. The uncertainty involved in human factors may not necessarily be probabilistic, but fuzzy. Therefore, it is important to develop a theory by which both the non-probabilistic uncertainties, or fuzziness, of human factors and the probabilistic properties of machines can be treated consistently. In reality, randomness and fuzziness are sometimes mixed. From the mathematical point of view, probabilistic measures may be considered a special case of fuzzy measures. Therefore, fuzzy set theory seems to be an effective tool for analysing man-machine systems. The concept 'failure possibility' based on fuzzy sets is suggested as an approach to safety analysis and fault diagnosis of a large complex system. Fuzzy measures and fuzzy integrals are introduced and their possible applications are also discussed. (author)

  14. Application of classification algorithms for analysis of road safety risk factor dependencies.

    Science.gov (United States)

    Kwon, Oh Hoon; Rhee, Wonjong; Yoon, Yoonjin

    2015-02-01

    Transportation continues to be an integral part of modern life, and the importance of road traffic safety cannot be overstated. Consequently, recent road traffic safety studies have focused on analysis of risk factors that impact fatality and injury level (severity) of traffic accidents. While some of the risk factors, such as drug use and drinking, are widely known to affect severity, an accurate modeling of their influences is still an open research topic. Furthermore, there are innumerable risk factors that are waiting to be discovered or analyzed. A promising approach is to investigate historical traffic accident data that have been collected in the past decades. This study inspects traffic accident reports that have been accumulated by the California Highway Patrol (CHP) since 1973 for which each accident report contains around 100 data fields. Among them, we investigate 25 fields between 2004 and 2010 that are most relevant to car accidents. Using two classification methods, the Naive Bayes classifier and the decision tree classifier, the relative importance of the data fields, i.e., risk factors, is revealed with respect to the resulting severity level. Performances of the classifiers are compared to each other and a binary logistic regression model is used as the basis for the comparisons. Some of the high-ranking risk factors are found to be strongly dependent on each other, and their incremental gains on estimating or modeling severity level are evaluated quantitatively. The analysis shows that only a handful of the risk factors in the data dominate the severity level and that dependency among the top risk factors is an imperative trait to consider for an accurate analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Human factors in nuclear safety oversight

    International Nuclear Information System (INIS)

    Taylor, K.

    1989-01-01

    The mission of the nuclear safety oversight function at the Savannah River Plant is to enhance the process and nuclear safety of site facilities. One of the major goals surrounding this mission is the reduction of human error. It is for this reason that several human factors engineers are assigned to the Operations assessment Group of the Facility Safety Evaluation Section (FSES). The initial task of the human factors contingent was the design and implementation of a site wide root cause analysis program. The intent of this system is to determine the most prevalent sources of human error in facility operations and to assist in determining where the limited human factors resources should be focused. In this paper the strategy used to educate the organization about the field of human factors is described. Creating an awareness of the importance of human factors engineering in all facets of design, operation, and maintenance is considered to be an important step in reducing the rate of human error

  16. Periodic safety review of the HTR-10 safety analysis

    International Nuclear Information System (INIS)

    Chen Fubing; Zheng Yanhua; Shi Lei; Li Fu

    2015-01-01

    Designed by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University, the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) is the first modular High Temperature Gas-cooled Reactor (HTGR) in China. According to the nuclear safety regulations of China, the periodic safety review (PSR) of the HTR-10 was initiated by INET after approved by the National Nuclear Safety Administration (NNSA) of China. Safety analysis of the HTR-10 is one of the key safety factors of the PSR. In this paper, the main contents in the review of safety analysis are summarized; meanwhile, the internal evaluation on the review results is presented by INET. (authors)

  17. The PIANC Safety Factor System for Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    2000-01-01

    The paper presents a summary of the recommendations for implementation of safety in breakwater designs given by the PIANC PTC IT Working Group No 12 on Analysis of Rubble Mound Breakwaters with Vertical and Inclined Concrete Walls. The working groups developed for the most important failure modes...... a system of partial safety factors which facilitate design to any target safety level....

  18. An Analysis of Trainers' Perspectives within an Ecological Framework: Factors that Influence Mine Safety Training Processes.

    Science.gov (United States)

    Haas, Emily J; Hoebbel, Cassandra L; Rost, Kristen A

    2014-09-01

    Satisfactory completion of mine safety training is a prerequisite for being hired and for continued employment in the coal industry. Although training includes content to develop skills in a variety of mineworker competencies, research and recommendations continue to specify that specific limitations in the self-escape portion of training still exist and that mineworkers need to be better prepared to respond to emergencies that could occur in their mine. Ecological models are often used to inform the development of health promotion programs but have not been widely applied to occupational health and safety training programs. Nine mine safety trainers participated in in-depth semi-structured interviews. A theoretical analysis of the interviews was completed via an ecological lens. Each level of the social ecological model was used to examine factors that could be addressed both during and after mine safety training. The analysis suggests that problems surrounding communication and collaboration, leadership development, and responsibility and accountability at different levels within the mining industry contribute to deficiencies in mineworkers' mastery and maintenance of skills. This study offers a new technique to identify limitations in safety training systems and processes. The analysis suggests that training should be developed and disseminated with consideration of various levels-individual, interpersonal, organizational, and community-to promote skills. If factors identified within and between levels are addressed, it may be easier to sustain mineworker competencies that are established during safety training.

  19. An Analysis of Trainers' Perspectives within an Ecological Framework: Factors that Influence Mine Safety Training Processes

    Directory of Open Access Journals (Sweden)

    Emily J. Haas

    2014-09-01

    Conclusion: This study offers a new technique to identify limitations in safety training systems and processes. The analysis suggests that training should be developed and disseminated with consideration of various levels—individual, interpersonal, organizational, and community—to promote skills. If factors identified within and between levels are addressed, it may be easier to sustain mineworker competencies that are established during safety training.

  20. Fusion integral experiments and analysis and the determination of design safety factors - I: Methodology

    International Nuclear Information System (INIS)

    Youssef, M.Z.; Kumar, A.; Abdou, M.A.; Oyama, Y.; Maekawa, H.

    1995-01-01

    The role of the neutronics experimentation and analysis in fusion neutronics research and development programs is discussed. A new methodology was developed to arrive at estimates to design safety factors based on the experimental and analytical results from design-oriented integral experiments. In this methodology, and for a particular nuclear response, R, a normalized density function (NDF) is constructed from the prediction uncertainties, and their associated standard deviations, as found in the various integral experiments where that response, R, is measured. Important statistical parameters are derived from the NDF, such as the global mean prediction uncertainty, and the possible spread around it. The method of deriving safety factors from many possible NDFs based on various calculational and measuring methods (among other variants) is also described. Associated with each safety factor is a confidence level, designers may choose to have, that the calculated response, R, will not exceed (or will not fall below) the actual measured value. An illustrative example is given on how to construct the NDFs. The methodology is applied in two areas, namely the line-integrated tritium production rate and bulk shielding integral experiments. Conditions under which these factors could be derived and the validity of the method are discussed. 72 refs., 17 figs., 4 tabs

  1. Safety analysis for research reactors

    International Nuclear Information System (INIS)

    2008-01-01

    computational tools and presentation of the results of the analysis. It also discusses various factors that need to be considered to ensure that the safety analysis is of an acceptable quality. In specific terms, the calculations and methods in this report can be used for the safety analysis of newly designed research reactors, modifications and experiments with impact on safety, and upgrades of existing reactors, and can also be used for updating or reassessing previous safety analyses of operating research reactors. This publication will be particularly useful to organizations, safety analysts and reviewers in fulfilling regulatory requirements and recommendations related to the preparation of the safety analysis and its presentation in the safety analysis report. In addition, it will help regulators conduct safety reviews and assessments of the topics covered

  2. Applications of probabilistic risk analysis in nuclear criticality safety design

    International Nuclear Information System (INIS)

    Chang, J.K.

    1992-01-01

    Many documents have been prepared that try to define the scope of the criticality analysis and that suggest adding probabilistic risk analysis (PRA) to the deterministic safety analysis. The report of the US Department of Energy (DOE) AL 5481.1B suggested that an accident is credible if the occurrence probability is >1 x 10 -6 /yr. The draft DOE 5480 safety analysis report suggested that safety analyses should include the application of methods such as deterministic safety analysis, risk assessment, reliability engineering, common-cause failure analysis, human reliability analysis, and human factor safety analysis techniques. The US Nuclear Regulatory Commission (NRC) report NRC SG830.110 suggested that major safety analysis methods should include but not be limited to risk assessment, reliability engineering, and human factor safety analysis. All of these suggestions have recommended including PRA in the traditional criticality analysis

  3. Case Study on Influence Factor Trend Analysis of the Accidents and Events of Nuclear Power Plants by applying Nuclear Safety Culture Framework

    International Nuclear Information System (INIS)

    Park, J. Y.; Park, Y. W.; Park, H.G.

    2016-01-01

    This study 1) established the standard based on frameworks of safety culture principles that show safety culture promotion goals, 2) analyzed the linkages with the frameworks that were established by analyzing each incident cause and weak point from selected 268 cases(rating over INES grade 1) among 4,088 cases (as of April 1, 2015). The 4,088 cases were selected as a result of database analysis from 702 accidents recorded in accident and rating evaluation reports that were published in the National Nuclear Safety Commission and overseas IRS (International Reporting System for operating Experience), and 3) finally conducted a trend analysis studies with these comprehensive results. From the investigations, followings were concluded. 1) In order to analyze the safety culture, analysis methodology is required. 2) Analytical methodology for building sustainable safety culture promoting a virtuous cycle system was developed 3) Among variety of process input data, 970 domestic and overseas incidents were selected as targets and 502 accidents were classified as safety culture related events by utilizing screen filter of IAEA GS-G-3.5 Appendix I and Framework (Nuclear Safety Culture Base Frame) developed by BEES, Inc. for safety culture analysis method. 4) As a result, complex safety culture influence factors for the one reason which was difficult to separate by conventional methods was able to be analyzed. 5) The cumulative data through the system was results of virtuous trend analysis rather than temporary results. Thus, it could be unique cultural factors of the domestic industry and could derive trend differences for domestic safety culture factors accordingly

  4. Case Study on Influence Factor Trend Analysis of the Accidents and Events of Nuclear Power Plants by applying Nuclear Safety Culture Framework

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. Y.; Park, Y. W.; Park, H.G. [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    This study 1) established the standard based on frameworks of safety culture principles that show safety culture promotion goals, 2) analyzed the linkages with the frameworks that were established by analyzing each incident cause and weak point from selected 268 cases(rating over INES grade 1) among 4,088 cases (as of April 1, 2015). The 4,088 cases were selected as a result of database analysis from 702 accidents recorded in accident and rating evaluation reports that were published in the National Nuclear Safety Commission and overseas IRS (International Reporting System for operating Experience), and 3) finally conducted a trend analysis studies with these comprehensive results. From the investigations, followings were concluded. 1) In order to analyze the safety culture, analysis methodology is required. 2) Analytical methodology for building sustainable safety culture promoting a virtuous cycle system was developed 3) Among variety of process input data, 970 domestic and overseas incidents were selected as targets and 502 accidents were classified as safety culture related events by utilizing screen filter of IAEA GS-G-3.5 Appendix I and Framework (Nuclear Safety Culture Base Frame) developed by BEES, Inc. for safety culture analysis method. 4) As a result, complex safety culture influence factors for the one reason which was difficult to separate by conventional methods was able to be analyzed. 5) The cumulative data through the system was results of virtuous trend analysis rather than temporary results. Thus, it could be unique cultural factors of the domestic industry and could derive trend differences for domestic safety culture factors accordingly.

  5. The PSA of safety-critical digital I and C system: the determination of important factors and sensitivity analysis

    International Nuclear Information System (INIS)

    Kang, H. G.; Sung, T. Y.; Eom, H. S.; Jeong, H. S.; Park, J. K.; Lee, K. Y.; Park, J. K.

    2002-01-01

    This report is prepared to suggest a practical Probabilistic Safety Assessment (PSA) methodology of safety-critical digital instrumentation and control (I and C) systems. Even though conventional probabilistic safety assessment methods are immature for applying to microprocessor-based digital systems, practical needs force to apply it because the result of probabilistic safety assessment plays very important role in proving the safety of a designed system. Microprocessors and software technologies make the digital system very complex and hard to analyze the safety of their applications. The aim of this is: (1) To summarize the factors which should be represented by the model for probabilistic safety assessment and to propose a standpoint of evaluation for digital systems. (2) To quantitatively presents the results of a mathematical case study which examines the analysis framework of the safety of digital systems in the context of the PSA. (3) To show the results of a sensitivity study for some critical factors

  6. Functionality of road safety devices – identification and analysis of factors

    Directory of Open Access Journals (Sweden)

    Jeliński Łukasz

    2017-01-01

    Full Text Available Road safety devices are designed to protect road users from the risk of injury or death. The principal type of restraint is the safety barrier. Deployed on sites with the highest risk of run-off-road accidents, safety barriers are mostly found on bridges, flyovers, central reservations, and on road edges which have fixed obstacles next to them. If properly designed and installed, safety barriers just as other road safety devices, should meet a number of functional features. This report analyses factors which may deteriorate functionality, ways to prevent this from happening and the thresholds for loss of road safety device functionality.

  7. Safety analysis of spent fuel packaging

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi; Taniuchi, Hiroaki; Tai, Hideto

    1987-01-01

    Many types of spent fuel packagings have been manufactured and been used for transport of spent fuels discharged from nuclear power plant. These spent fuel packagings need to be assesed thoroughly about safety transportation because spent fuels loaded into the packaging have high radioactivity and generation of heat. This paper explains the outline of safety analysis of a packaging, Safety analysis is performed for structural, thermal, containment, shielding and criticality factors, and MARC-CDC, TRUMP, ORIGEN, QAD, ANISN, KENO, etc computer codes are used for such analysis. (author)

  8. A study of software safety analysis system for safety-critical software

    International Nuclear Information System (INIS)

    Chang, H. S.; Shin, H. K.; Chang, Y. W.; Jung, J. C.; Kim, J. H.; Han, H. H.; Son, H. S.

    2004-01-01

    The core factors and requirements for the safety-critical software traced and the methodology adopted in each stage of software life cycle are presented. In concept phase, Failure Modes and Effects Analysis (FMEA) for the system has been performed. The feasibility evaluation of selected safety parameter was performed and Preliminary Hazards Analysis list was prepared using HAZOP(Hazard and Operability) technique. And the check list for management control has been produced via walk-through technique. Based on the evaluation of the check list, activities to be performed in requirement phase have been determined. In the design phase, hazard analysis has been performed to check the safety capability of the system with regard to safety software algorithm using Fault Tree Analysis (FTA). In the test phase, the test items based on FMEA have been checked for fitness guided by an accident scenario. The pressurizer low pressure trip algorithm has been selected to apply FTA method to software safety analysis as a sample. By applying CASE tool, the requirements traceability of safety critical system has been enhanced during all of software life cycle phases

  9. Safety balance: Analysis of safety systems

    International Nuclear Information System (INIS)

    Delage, M.; Giroux, C.

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses

  10. Analysis of contributing factors associated to related patients safety incidents in Intensive Care Medicine.

    Science.gov (United States)

    Martín Delgado, M C; Merino de Cos, P; Sirgo Rodríguez, G; Álvarez Rodríguez, J; Gutiérrez Cía, I; Obón Azuara, B; Alonso Ovies, Á

    2015-01-01

    To explore contributing factors (CF) associated to related critical patients safety incidents. SYREC study pos hoc analysis. A total of 79 Intensive Care Departments were involved. The study sample consisted of 1.017 patients; 591 were affected by one or more incidents. The CF were categorized according to a proposed model by the National Patient Safety Agency from United Kingdom that was modified. Type, class and severity of the incidents was analyzed. A total 2,965 CF were reported (1,729 were associated to near miss and 1,236 to adverse events). The CF group more frequently reported were related patients factors. Individual factors were reported more frequently in near miss and task related CF in adverse events. CF were reported in all classes of incidents. The majority of CF were reported in the incidents classified such as less serious, even thought CF patients factors were associated to serious incidents. Individual factors were considered like avoidable and patients factors as unavoidable. The CF group more frequently reported were patient factors and was associated to more severe and unavoidable incidents. By contrast, individual factors were associated to less severe and avoidable incidents. In general, CF most frequently reported were associated to near miss. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  11. Human Factors and Safety Culture in Maritime Safety (revised

    Directory of Open Access Journals (Sweden)

    Heinz Peter Berg

    2013-09-01

    Full Text Available As in every industry at risk, the human and organizational factors constitute the main stakes for maritime safety. Furthermore, several events at sea have been used to develop appropriate risk models. The investigation on maritime accidents is, nowadays, a very important tool to identify the problems related to human factor and can support accident prevention and the improvement of maritime safety. Part of this investigation should in future also be near misses. Operation of ships is full of regulations, instructions and guidelines also addressing human factors and safety culture to enhance safety. However, even though the roots of a safety culture have been established, there are still serious barriers to the breakthrough of the safety management. One of the most common deficiencies in the case of maritime transport is the respective monitoring and documentation usually lacking of adequacy and excellence. Nonetheless, the maritime area can be exemplified from other industries where activities are ongoing to foster and enhance safety culture.

  12. Gap Analysis Approach for Construction Safety Program Improvement

    Directory of Open Access Journals (Sweden)

    Thanet Aksorn

    2007-06-01

    Full Text Available To improve construction site safety, emphasis has been placed on the implementation of safety programs. In order to successfully gain from safety programs, factors that affect their improvement need to be studied. Sixteen critical success factors of safety programs were identified from safety literature, and these were validated by safety experts. This study was undertaken by surveying 70 respondents from medium- and large-scale construction projects. It explored the importance and the actual status of critical success factors (CSFs. Gap analysis was used to examine the differences between the importance of these CSFs and their actual status. This study found that the most critical problems characterized by the largest gaps were management support, appropriate supervision, sufficient resource allocation, teamwork, and effective enforcement. Raising these priority factors to satisfactory levels would lead to successful safety programs, thereby minimizing accidents.

  13. Analysis of human factors effects on the safety of transporting radioactive waste materials: Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Abkowitz, M.D.; Abkowitz, S.B.; Lepofsky, M.

    1989-04-01

    This report examines the extent of human factors effects on the safety of transporting radioactive waste materials. It is seen principally as a scoping effort, to establish whether there is a need for DOE to undertake a more formal approach to studying human factors in radioactive waste transport, and if so, logical directions for that program to follow. Human factors effects are evaluated on driving and loading/transfer operations only. Particular emphasis is placed on the driving function, examining the relationship between human error and safety as it relates to the impairment of driver performance. Although multi-modal in focus, the widespread availability of data and previous literature on truck operations resulted in a primary study focus on the trucking mode from the standpoint of policy development. In addition to the analysis of human factors accident statistics, the report provides relevant background material on several policies that have been instituted or are under consideration, directed at improving human reliability in the transport sector. On the basis of reported findings, preliminary policy areas are identified. 71 refs., 26 figs., 5 tabs.

  14. Safety margins in deterministic safety analysis

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    The concept of safety margins has acquired certain prominence in the attempts to demonstrate quantitatively the level of the nuclear power plant safety by means of deterministic analysis, especially when considering impacts from plant ageing and discovery issues. A number of international or industry publications exist that discuss various applications and interpretations of safety margins. The objective of this presentation is to bring together and examine in some detail, from the regulatory point of view, the safety margins that relate to deterministic safety analysis. In this paper, definitions of various safety margins are presented and discussed along with the regulatory expectations for them. Interrelationships of analysis input and output parameters with corresponding limits are explored. It is shown that the overall safety margin is composed of several components each having different origins and potential uses; in particular, margins associated with analysis output parameters are contrasted with margins linked to the analysis input. While these are separate, it is possible to influence output margins through the analysis input, and analysis method. Preserving safety margins is tantamount to maintaining safety. At the same time, efficiency of operation requires optimization of safety margins taking into account various technical and regulatory considerations. For this, basic definitions and rules for safety margins must be first established. (author)

  15. Features, events, processes, and safety factor analysis applied to a near-surface low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, M.E.; Dolinar, G.M.; Lange, B.A. [Atomic Energy of Canada Limited, Ontario (Canada)] [and others

    1995-12-31

    An analysis of features, events, processes (FEPs) and other safety factors was applied to AECL`s proposed IRUS (Intrusion Resistant Underground Structure) near-surface LLRW disposal facility. The FEP analysis process which had been developed for and applied to high-level and transuranic disposal concepts was adapted for application to a low-level facility for which significant efforts in developing a safety case had already been made. The starting point for this process was a series of meetings of the project team to identify and briefly describe FEPs or safety factors which they thought should be considered. At this early stage participants were specifically asked not to screen ideas. This initial list was supplemented by selecting FEPs documented in other programs and comments received from an initial regulatory review. The entire list was then sorted by topic and common issues were grouped, and issues were classified in three priority categories and assigned to individuals for resolution. In this paper, the issue identification and resolution process will be described, from the initial description of an issue to its resolution and inclusion in the various levels of the safety case documentation.

  16. Safety analysis fundamentals

    International Nuclear Information System (INIS)

    Wright, A.C.D.

    2002-01-01

    This paper discusses the safety analysis fundamentals in reactor design. This study includes safety analysis done to show consequences of postulated accidents are acceptable. Safety analysis is also used to set design of special safety systems and includes design assist analysis to support conceptual design. safety analysis is necessary for licensing a reactor, to maintain an operating license, support changes in plant operations

  17. Safety analysis factors for environmental restoration and decontamination and decommissioning

    International Nuclear Information System (INIS)

    Ellingson, D.R.

    1993-04-01

    Environmental restoration (ER) and facility decontamination/decommissioning (D ampersand D) operations can be grouped into two general categories. ''Nonstationary cleanup'' or simply ''cleanup'' activities are where the operation must relocate to the site of new contaminated material at the completion of each task (i.e., the operation moves to the contaminated material). ''Stationary production'' or simply ''production'' activities are where the contaminated material is moved to a centralized location (i.e., the contaminated material is moved to the operation) for analysis, sorting, treatment, storage, and disposal. This paper addresses the issue of nonstationary cleanup design. The following are the specific assigned action items: Collect and compile a list of special safety-related ER/D ampersand D design factors, especially ones that don't follow DOE Order 6430.1A requirements. Develop proposal of what makes sense to recommend to designers; especially consider recommendations for short-term projects. Present proposal at the January meeting. To achieve the action items, applicable US Department of Energy (DOE) design requirements, and cleanup operations and differences from production activities are reviewed and summarized; basic safety requirements influencing design are summarized; and finally, approaches, considerations, and methods for safe, cost-effective design of cleanup activities are discussed

  18. Assessment of the factors with significant influence on safety culture

    International Nuclear Information System (INIS)

    Farcasiu, M.; Nitoi, M.

    2013-01-01

    In this paper, a qualitative and a quantitative evaluation of the factors with significant impact on safety culture were performed. These techniques were established and applied in accordance with IAEA standards. In order to show the applicability and opportunity of the methodology a specific case study was prepared: safety culture evaluation for INR Pitesti. The qualitative evaluation was performed using specific developed questionnaires. Through analysis of the completed questionnaires was established the development stage of safety culture at INR. The quantitative evaluation was performed using a guide to rate the influence factors. For each factor was identified the influence (negative or positive) and ranking score was estimated using scoring criteria. The results have emphasized safety culture stages. The paper demonstrates the fact that using both quantitative and qualitative assessment techniques, a practical value of the safety culture concept is given. (authors)

  19. Analysis of Traffic Safety Factors at Level Rail-Road Crossings

    Directory of Open Access Journals (Sweden)

    Tomislav Mlinarić

    2012-10-01

    Full Text Available The paper analyses the main factors of traffic safety andreliabilityat level crossings. The number and causes of accidentsare stated, that result from ignorance, insufficient training ofthe traffic participants, their ilnsponsibility and insufficient orincomplete legislation, as well as from insufficiently professionaland scientifically not serious enough approach to solvingthis cardinal problem in road and railway traffic. Based on theanalysis the causes are determined and solutions proposed, aswell as more efficient methods to improve safety and reduce thenumber of traffic accidents at level crossings.

  20. 14 CFR 31.25 - Factor of safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Factor of safety. 31.25 Section 31.25... STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.25 Factor of safety. (a) Except as specified in paragraphs (b) and (c) of this section, the factor of safety is 1.5. (b) A factor of safety of at least five...

  1. Human factors in safety and business management.

    Science.gov (United States)

    Vogt, Joachim; Leonhardt, Jorg; Koper, Birgit; Pennig, Stefan

    2010-02-01

    Human factors in safety is concerned with all those factors that influence people and their behaviour in safety-critical situations. In aviation these are, for example, environmental factors in the cockpit, organisational factors such as shift work, human characteristics such as ability and motivation of staff. Careful consideration of human factors is necessary to improve health and safety at work by optimising the interaction of humans with their technical and social (team, supervisor) work environment. This provides considerable benefits for business by increasing efficiency and by preventing incidents/accidents. The aim of this paper is to suggest management tools for this purpose. Management tools such as balanced scorecards (BSC) are widespread instruments and also well known in aviation organisations. Only a few aviation organisations utilise management tools for human factors although they are the most important conditions in the safety management systems of aviation organisations. One reason for this is that human factors are difficult to measure and therefore also difficult to manage. Studies in other domains, such as workplace health promotion, indicate that BSC-based tools are useful for human factor management. Their mission is to develop a set of indicators that are sensitive to organisational performance and help identify driving forces as well as bottlenecks. Another tool presented in this paper is the Human Resources Performance Model (HPM). HPM facilitates the integrative assessment of human factors programmes on the basis of a systematic performance analysis of the whole system. Cause-effect relationships between system elements are defined in process models in a first step and validated empirically in a second step. Thus, a specific representation of the performance processes is developed, which ranges from individual behaviour to system performance. HPM is more analytic than BSC-based tools because HPM also asks why a certain factor is

  2. Impact of Geotechnical Factors on the Safety of Low Embankment Dams From the Perspective of Technical and Safety Supervision

    Directory of Open Access Journals (Sweden)

    Kasana Andrej

    2015-03-01

    Full Text Available Our research deals with a broad spectrum of problems concerning the variability of geotechnical factors and their influence on the safety of the biggest group of dam constructions in Slovakia, i.e., low earthfill dams. Its specific aim is the observation of their risk factors by using our experience and knowledge gained while working in the sector of technical and safety supervision. To achieve the aims of a research thesis, we analyzed 39 low earthfill dams. We performed observations and documented their conditions with the aim of clarifying the risk factors. After an analysis of the information materials that characterize dams and after a statistical analysis of the measurement results in situ, including measurements from technical and safety supervision databases, we performed an analysis by using mathematical modeling to evaluate the safety of the dam constructions. Out of the total number of 39 dam constructions, an analysis of the stability of the dam slopes was performed on 37 dams, and deformation problems were analyzed on 28 of the dams. Filtration problems were analyzed at 26 dams, and a complete evaluation of the intensity of filtration movements was performed on 19 of the constructions.

  3. Safety factors for neutron fluences in NPP safety assessment

    International Nuclear Information System (INIS)

    Demekhin, V.L.; Bukanov, V.N.; Il'kovich, V.V.; Pugach, A.M.

    2016-01-01

    In accordance with global practice and a number of existing regulations, the use of conservative approach is required for the calculations related to nuclear safety assessment of NPP. It implies the need to consider the determination of neutron fluence errors that is rather complicated. It is proposed to carry out the consideration by the way of multiplying the neutron fluences obtained with transport calculations by safety factors. The safety factor values are calculated by the developed technique based on the theory of errors, features of the neutron transport calculation code and the results obtained with the code. It is shown that the safety factor value is equal 1.18 with the confidence level of not less than 0.95 for the majority of VVER-1000 reactor places where neutron fluences are determined by MCPV code, and its maximum value is 1.25

  4. 14 CFR 29.303 - Factor of safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Factor of safety. 29.303 Section 29.303... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements General § 29.303 Factor of safety. Unless otherwise provided, a factor of safety of 1.5 must be used. This factor applies to external and inertia...

  5. 14 CFR 27.303 - Factor of safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Factor of safety. 27.303 Section 27.303... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements General § 27.303 Factor of safety. Unless otherwise provided, a factor of safety of 1.5 must be used. This factor applies to external and inertia...

  6. Statistical considerations on safety analysis

    International Nuclear Information System (INIS)

    Pal, L.; Makai, M.

    2004-01-01

    The authors have investigated the statistical methods applied to safety analysis of nuclear reactors and arrived at alarming conclusions: a series of calculations with the generally appreciated safety code ATHLET were carried out to ascertain the stability of the results against input uncertainties in a simple experimental situation. Scrutinizing those calculations, we came to the conclusion that the ATHLET results may exhibit chaotic behavior. A further conclusion is that the technological limits are incorrectly set when the output variables are correlated. Another formerly unnoticed conclusion of the previous ATHLET calculations that certain innocent looking parameters (like wall roughness factor, the number of bubbles per unit volume, the number of droplets per unit volume) can influence considerably such output parameters as water levels. The authors are concerned with the statistical foundation of present day safety analysis practices and can only hope that their own misjudgment will be dispelled. Until then, the authors suggest applying correct statistical methods in safety analysis even if it makes the analysis more expensive. It would be desirable to continue exploring the role of internal parameters (wall roughness factor, steam-water surface in thermal hydraulics codes, homogenization methods in neutronics codes) in system safety codes and to study their effects on the analysis. In the validation and verification process of a code one carries out a series of computations. The input data are not precisely determined because measured data have an error, calculated data are often obtained from a more or less accurate model. Some users of large codes are content with comparing the nominal output obtained from the nominal input, whereas all the possible inputs should be taken into account when judging safety. At the same time, any statement concerning safety must be aleatory, and its merit can be judged only when the probability is known with which the

  7. Mathematical models for prediction of safety factors for a simply ...

    African Journals Online (AJOL)

    From the results obtained, mathematical prediction models were developed using a least square regression analysis for bending, shear and deflection modes of failure considered in the study. The results showed that the safety factors for material, dead and live load are not unique, but they are influenced by safety index ...

  8. 14 CFR 23.303 - Factor of safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Factor of safety. 23.303 Section 23.303... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure General § 23.303 Factor of safety. Unless otherwise provided, a factor of safety of 1.5 must be used. ...

  9. 14 CFR 25.303 - Factor of safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Factor of safety. 25.303 Section 25.303... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure General § 25.303 Factor of safety. Unless otherwise specified, a factor of safety of 1.5 must be applied to the prescribed limit load which are considered...

  10. Improving Safety through Human Factors Engineering.

    Science.gov (United States)

    Siewert, Bettina; Hochman, Mary G

    2015-10-01

    Human factors engineering (HFE) focuses on the design and analysis of interactive systems that involve people, technical equipment, and work environment. HFE is informed by knowledge of human characteristics. It complements existing patient safety efforts by specifically taking into consideration that, as humans, frontline staff will inevitably make mistakes. Therefore, the systems with which they interact should be designed for the anticipation and mitigation of human errors. The goal of HFE is to optimize the interaction of humans with their work environment and technical equipment to maximize safety and efficiency. Special safeguards include usability testing, standardization of processes, and use of checklists and forcing functions. However, the effectiveness of the safety program and resiliency of the organization depend on timely reporting of all safety events independent of patient harm, including perceived potential risks, bad outcomes that occur even when proper protocols have been followed, and episodes of "improvisation" when formal guidelines are found not to exist. Therefore, an institution must adopt a robust culture of safety, where the focus is shifted from blaming individuals for errors to preventing future errors, and where barriers to speaking up-including barriers introduced by steep authority gradients-are minimized. This requires creation of formal guidelines to address safety concerns, establishment of unified teams with open communication and shared responsibility for patient safety, and education of managers and senior physicians to perceive the reporting of safety concerns as a benefit rather than a threat. © RSNA, 2015.

  11. A Study on the Allowable Safety Factor of Cut-Slopes for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Soo; Yee, Eric [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    In this study, the issues of allowable safety factor design criteria for cut-slopes in nuclear facilities is derived through case analysis, a proposed construction work slope design criteria that provides relatively detailed conditions can be applied in case of the dry season and some unclear parts of slope design criteria be modified in case of the rainy season. This safety factor can be further subdivided into two; normal and earthquake factors, a factor of 1.5 is applied for normal conditions and a factor of 1.2 is applied for seismic conditions. This safety factor takes into consideration the effect of ground water and rainfall conditions. However, no criteria for the case of cut-slope in nuclear facilities and its response to seismic conditions is clearly defined, this can cause uncertainty in design. Therefore, this paper investigates the allowable safety factor for cut-slopes in nuclear facilities, reviews conditions of both local and international cut-slope models and finally suggests an alternative method of analysis. It is expected that the new design criteria adequately ensures the stability of the cut-slope to reflect clear conditions for both the supervising and design engineers.

  12. Survey of factors associated with nurses' perception of patient safety.

    Science.gov (United States)

    Park, Sun A; Lee, Sui Jin; Choi, Go Un

    2011-01-01

    To describe the nurses' perception of hospital organization related to cultural issues on the safety of the patient and reporting medical errors. In addition, to identify factors associated with the safety of the patient and the nurse. A survey conducted during December 2008-Jannuary 2009, with 126 nurses using the Korean version of the AHRQ patient safety survey, a self-report 5-point Likert scale. Stata 10.0 was used for descriptive analysis, ANOVA (Analysis of variance) and logistic regression. National Cancer Center in Korea. The means for a working environment related to patient safety was 3.4 (±0.62). The associated factors of duration were at a present hospital, a special area, and direct contact with patients. Among organizational culture factors related to patient safety, the means were 3.81(±0.54) for the boss/manager's perception of patient safety and 3.37(±0.49) for the cooperation/collaboration between units. The frequent number of errors reported by nurses were 1~2(22.2%) times over the past 12 months. For incidence reporting, the items that the 'nurses perceived for communication among clinicians as fair' had a means of 3.23(±0.40) and the 'overall evaluation of patient safety was a good' 3.34(±0.73). The nurses' perception of cooperation and collaboration between units were associated with the direct contact between the patient and the nurse. The frequency of incidence reporting was associated with the duration of working hours at the present hospital and also their work experience. The nurses' perception of hospital environment, organizational culture, and incidence reporting was above average and mostly associated with organizational culture.

  13. Assessment of NPP safety taking into account seismic and engineering-geological factors

    International Nuclear Information System (INIS)

    Yakovlev, E.A.

    1990-01-01

    Consideration is given to the problem of probabilistic analysis of NPP safety with account of risk of destructive effect of earthquakes and the danger of accidental geological processes (diapirism, karst etc.) under NPP operation. It is shown that account of seismic and engineering-geological (engineering-seismological) risk factors in probabilistic analysis of safety enables to perform anticipatory analysis of behaviour of principle plant objects and to improve safety of their operation by revealing the most unstable elements of geotechnical system forming the main contribution to the total NPP risk

  14. Empirical analysis of selected nuclear power plant maintenance factors and plant safety

    International Nuclear Information System (INIS)

    Olson, J.; Osborn, R.N.; Thurber, J.A.; Sommers, P.E.; Jackson, D.H.

    1985-07-01

    This report contains a statistical analysis of the relationship between selected aspects of nuclear power plant maintenance programs and safety related performance. The report identifies a large number of maintenance resources which can be expected to influence maintenance performance and subsequent plant safety performance. The resources for which data were readily available were related statistically to two sets of performance indicators: maintenance intermediate safety indicators and final safety performance indicators. The results show that the administrative structure of the plant maintenance program is a significant predictor of performance on both sets of indicators

  15. Analysis on Dangerous Source of Large Safety Accident in Storage Tank Area

    Science.gov (United States)

    Wang, Tong; Li, Ying; Xie, Tiansheng; Liu, Yu; Zhu, Xueyuan

    2018-01-01

    The difference between a large safety accident and a general accident is that the consequences of a large safety accident are particularly serious. To study the tank area which factors directly or indirectly lead to the occurrence of large-sized safety accidents. According to the three kinds of hazard source theory and the consequence cause analysis of the super safety accident, this paper analyzes the dangerous source of the super safety accident in the tank area from four aspects, such as energy source, large-sized safety accident reason, management missing, environmental impact Based on the analysis of three kinds of hazard sources and environmental analysis to derive the main risk factors and the AHP evaluation model is established, and after rigorous and scientific calculation, the weights of the related factors in four kinds of risk factors and each type of risk factors are obtained. The result of analytic hierarchy process shows that management reasons is the most important one, and then the environmental factors and the direct cause and Energy source. It should be noted that although the direct cause is relatively low overall importance, the direct cause of Failure of emergency measures and Failure of prevention and control facilities in greater weight.

  16. To the problem of the statistical basis of evaluation of the mechanical safety factor

    International Nuclear Information System (INIS)

    Tsyganov, S.V.

    2009-01-01

    The methodology applied for the safety factor assessment of the WWER fuel cycles uses methods and terms of statistics. Value of the factor is calculated on the basis of estimation of probability to meet predefined limits. Such approach demands the special attention to the statistical properties of parameters of interest. Considering the mechanical constituents of the engineering factor it is assumed uncertainty factors of safety parameters are stochastic values. It characterized by probabilistic distributions that can be unknown. Traditionally in the safety factor assessment process the unknown parameters are estimated from the conservative points of view. This paper analyses how the refinement of the factors distribution parameters is important for the assessment of the mechanical safety factor. For the analysis the statistical approach is applied for modelling of different type of factor probabilistic distributions. It is shown the significant influence of the shape and parameters of distributions for some factors on the value of mechanical safety factor. (Authors)

  17. To the problem of the statistical basis of evaluation of the mechanical safety factor

    International Nuclear Information System (INIS)

    Tsyganov, S.

    2009-01-01

    The methodology applied for the safety factor assessment of the VVER fuel cycles uses methods and terms of statistics. Value of the factor is calculated on the basis of estimation of probability to meet predefined limits. Such approach demands the special attention to the statistical properties of parameters of interest. Considering the mechanical constituents of the engineering factor it is assumed uncertainty factors of safety parameters are stochastic values. It characterized by probabilistic distributions that can be unknown. Traditionally in the safety factor assessment process the unknown parameters are estimated from the conservative points of view. This paper analyses how the refinement of the factors distribution parameters is important for the assessment of the mechanical safety factor. For the analysis the statistical approach is applied for modelling of different type of factor probabilistic distributions. It is shown the significant influence of the shape and parameters of distributions for some factors on the value of mechanical safety factor. (author)

  18. Factors associated with the enactment of safety belt and motorcycle helmet laws.

    Science.gov (United States)

    Law, Teik Hua; Noland, Robert B; Evans, Andrew W

    2013-07-01

    It has been shown that road safety laws, such as motorcycle helmet and safety belt laws, have a significant effect in reducing road fatalities. Although an expanding body of literature has documented the effects of these laws on road safety, it remains unclear which factors influence the likelihood that these laws are enacted. This study attempts to identify the factors that influence the decision to enact safety belt and motorcycle helmet laws. Using panel data from 31 countries between 1963 and 2002, our results reveal that increased democracy, education level, per capita income, political stability, and more equitable income distribution within a country are associated with the enactment of road safety laws. © 2012 Society for Risk Analysis.

  19. Linking Safety Analysis to Safety Requirements

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark

    Software for safety critical systems must deal with the hazards identified by safety analysistechniques: Fault trees, event trees,and cause consequence diagrams can be interpreted as safety requirements and used in the design activity. We propose that the safety analysis and the system design use...

  20. Studying the Relationship between Individual and Organizational Factors and Nurses' Perception of Patient Safety Culture

    Directory of Open Access Journals (Sweden)

    Farahnaz Abdolahzadeh

    2012-11-01

    Full Text Available Introduction: Safety culture is considered as an important factor in improving patient safety. Therefore, identifying individual and organizational factors affecting safety culture is crucial. This study was carried out to determine individual and organizational factors associated with nurses' perception of patient safety culture. Methods: The present descriptive study included 940 nurses working in four training hospitals affiliated with Urmia University of Medical Sciences (Iran. Data was collected through the self-report questionnaire of patient safety culture. Descriptive (number, percent, mean, and standard deviation and inferential (t-test and analysis of variance statistics were used to analyze the data in SPSS. Results: Nurses' perception of patient safety culture was significantly correlated with marital status, workplace, and overtime hours. Conclusion: The results of this study revealed that some individual and organizational factors can impact on nurses' perception of patient safety culture. Nursing authorities should thus pay more attention to factors which promote patient safety culture and ultimately the safety of provided services.

  1. Verification of Overall Safety Factors In Deterministic Design Of Model Tested Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    2001-01-01

    The paper deals with concepts of safety implementation in design. An overall safety factor concept is evaluated on the basis of a reliability analysis of a model tested rubble mound breakwater with monolithic super structure. Also discussed are design load identification and failure mode limit...

  2. Safety analysis and risk assessment handbook

    International Nuclear Information System (INIS)

    Peterson, V.L.; Colwell, R.G.; Dickey, R.L.

    1997-01-01

    This Safety Analysis and Risk Assessment Handbook (SARAH) provides guidance to the safety analyst at the Rocky Flats Environmental Technology Site (RFETS) in the preparation of safety analyses and risk assessments. Although the older guidance (the Rocky Flats Risk Assessment Guide) continues to be used for updating the Final Safety Analysis Reports developed in the mid-1980s, this new guidance is used with all new authorization basis documents. With the mission change at RFETS came the need to establish new authorization basis documents for its facilities, whose functions had changed. The methodology and databases for performing the evaluations that support the new authorization basis documents had to be standardized, to avoid the use of different approaches and/or databases for similar accidents in different facilities. This handbook presents this new standardized approach. The handbook begins with a discussion of the requirements of the different types of authorization basis documents and how to choose the one appropriate for the facility to be evaluated. It then walks the analyst through the process of identifying all the potential hazards in the facility, classifying them, and choosing the ones that need to be analyzed further. It then discusses the methods for evaluating accident initiation and progression and covers the basic steps in a safety analysis, including consequence and frequency binning and risk ranking. The handbook lays out standardized approaches for determining the source terms of the various accidents (including airborne release fractions, leakpath factors, etc.), the atmospheric dispersion factors appropriate for Rocky Flats, and the methods for radiological and chemical consequence assessments. The radiological assessments use a radiological open-quotes templateclose quotes, a spreadsheet that incorporates the standard values of parameters, whereas the chemical assessments use the standard codes ARCHIE and ALOHA

  3. Organizational factors in nuclear safety

    International Nuclear Information System (INIS)

    Wilpert, Bernhard

    2000-01-01

    The overall picture of factors which contributed to the event presents a panorama of a NPP where organizational and managerial characteristics were intricately intertwined and emerged as crucial for a general deterioration of the plant's capabilities to continually correct its deficiencies and optimize its operations. In the following author shall attempt to first cover various important efforts to modeling organizational factors relevant to safety. The second part of my presentation will offer an attempt towards an integrative model. The third part concludes with an agenda for research and practice. Most of the twelve different approaches above attempt to consider safety relevant organizational factors by way of pragmatic classifications. Together with their sub-categories we can count close to 160 different factors on various levels of abstraction. This is tantamount to say that most approaches lack systematic theoretical underpinnings. Thus then arises the question whether we need to develop a generic model, which promises to encompass these three major approaches altogether. Practical issues emerge particularly in the domain of organizational development, i.e. the goal oriented efforts to change the structures and the functioning of nuclear operations in such a way that the desired outputs in terms safety and reliability result in a sustained fashion. Again, these practical concerns are intimately related to developments and advances in theory and methodology. Only a close cooperation among scientists from various disciplines and of practitioners holds the promise of adequately understanding and use of organizational factors in future improving the safety record of nuclear industry worldwide. (S.Y.)

  4. A probabilistic analysis method to evaluate the effect of human factors on plant safety

    International Nuclear Information System (INIS)

    Ujita, H.

    1987-01-01

    A method to evaluate the effect of human factors on probabilistic safety analysis (PSA) is developed. The main features of the method are as follows: 1. A time-dependent multibranch tree is constructed to treat time dependency of human error probability. 2. A sensitivity analysis is done to determine uncertainty in the PSA due to branch time of human error occurrence, human error data source, extraneous act probability, and human recovery probability. The method is applied to a large-break, loss-of-coolant accident of a boiling water reactor-5. As a result, core melt probability and risk do not depend on the number of time branches, which means that a small number of branches are sufficient. These values depend on the first branch time and the human error probability

  5. Safety climate in university and college laboratories: impact of organizational and individual factors.

    Science.gov (United States)

    Wu, Tsung-Chih; Liu, Chi-Wei; Lu, Mu-Chen

    2007-01-01

    Universities and colleges serve to be institutions of education excellence; however, problems in the areas of occupational safety may undermine such goals. Occupational safety must be the concern of every employee in the organization, regardless of job position. Safety climate surveys have been suggested as important tools for measuring the effectiveness and improvement direction of safety programs. Thus, this study aims to investigate the influence of organizational and individual factors on safety climate in university and college laboratories. Employees at 100 universities and colleges in Taiwan were mailed a self-administered questionnaire survey; the response rate was 78%. Multivariate analysis of variance revealed that organizational category of ownership, the presence of a safety manager and safety committee, gender, age, title, accident experience, and safety training significantly affected the climate. Among them, accident experience and safety training affected the climate with practical significance. The authors recommend that managers should address important factors affecting safety issues and then create a positive climate by enforcing continuous improvements.

  6. Requirements to amend the main influence factors on the safety culture after fukushima accident

    International Nuclear Information System (INIS)

    Farcasiu, M.; Nitoi, M.

    2015-01-01

    The paper presents a general model that provides a framework for the safety culture assessment, creating the possibility to identify factors that can significantly influence the safety culture. The main safety culture influence factors (SCIF) used by model are the following: regulatory environment, organizational environment, worker characteristics, socio-political environment, national culture, organization history, business and technological characteristics. After the analysis of the deficiencies and weaknesses of SCIFc in evolution of the Fukushima accident, some issues that may become necessities and requirements to change and improve both the safety culture and safety of the nuclear installations were highlighted. For each influence factor were identified some requirements to amend. The results will emphasize the necesity of the human - technology - organization system assessment. Hence it was demonstrated that the safety culture results from the interaction of individuals with technology and with the organization. (authors)

  7. Relationship between organizational factors, safety culture and PSA in nuclear power plant operations

    International Nuclear Information System (INIS)

    Joksimovich, V.; Orvis, D.D.

    1997-01-01

    There are four nuclear safety imperatives or ''4Ms'': machine (hardware, design, QA/QC), milieux (operating conditions, environment, natural phenomena), man (human reliability) and management (organizational and management influences). Nuclear safety evaluations as well as evolution of its most powerful tool, Probabilistic Safety Assessment (PSA), followed chronologically the 4M constituents. The nuclear industry worldwide, and the nuclear safety regulators in particular, have been preoccupied with the first M almost to the point of obsession with belated and only intuitive interest in the third and fourth M (human dimension). Human factors or economics in the nuclear industry was an afterthought. Human reliability was essentially born in the aftermath of the Three Mile Island (TMI) accident. Impact of organizational factors on nuclear safety is only in the early stages of R and D. This paper describes some of the concepts being pursued by APG to link organizational factors and safety culture to Human Reliability Analysis (HRA) and to integrate such into probabilistic safety assessment (PSA), e.g. [APG, 1993]. (author). 11 refs, 4 figs, 1 tab

  8. Safety analysis of tritium processing system based on PHA

    International Nuclear Information System (INIS)

    Fu Wanfa; Luo Deli; Tang Tao

    2012-01-01

    Safety analysis on primary confinement of tritium processing system for TBM was carried out with Preliminary Hazard Analysis. Firstly, the basic PHA process was given. Then the function and safe measures with multiple confinements about tritium system were described and analyzed briefly, dividing the two kinds of boundaries of tritium transferring through, that are multiple confinement systems division and fluid loops division. Analysis on tritium releasing is the key of PHA. Besides, PHA table about tritium releasing was put forward, the causes and harmful results being analyzed, and the safety measures were put forward also. On the basis of PHA, several kinds of typical accidents were supposed to be further analyzed. And 8 factors influencing the tritium safety were analyzed, laying the foundation of evaluating quantitatively the safety grade of various nuclear facilities. (authors)

  9. Key Factors Affecting Construction Safety Performance in Developing Countries: Evidence from Cambodia

    Directory of Open Access Journals (Sweden)

    Serdar Durdyev

    2017-12-01

    Full Text Available Although proper safety management in construction is of utmost importance; anecdotal evidence suggests that safety is not adequately considered in many developing countries. This paper considers the key variables affecting construction safety performance in Cambodia. Using an empirical questionnaire survey targeting local construction professionals, respondents were invited to rate the level of importance of 30 variables identified from the seminal literature. The data set was subjected to factor analysis. Correlations between the variables show that five key factors underlie the challenges facing the local industry; management and organisation, resources, site management, cosmetic and workforce. It is found that the forefront construction professionals (top management and government authorities should take more responsibilities for further improvements in safety performance on project sites. Findings and recommendations of this study may be useful to construction professional who are seeking ways to improve safety records in developing countries.

  10. Organizational factors influencing improvements in safety

    International Nuclear Information System (INIS)

    Marcus, A.; Nichols, M.L.; Olson, J.; Osborn, R.; Thurber, J.

    1992-01-01

    Research reported here seeks to identify the key organizational factors that influence safety-related performance indicators in nuclear power plants over time. It builds upon organizational factors identified in NUREG/CR-5437, and begins to develop a theory of safety-related performance and performance improvement based on economic and behavioral theories of the firm. Central to the theory are concepts of past performance, problem recognition, resource availability, resource allocation, and business strategies that focus attention. Variables which reflect those concepts are combined in statistical models and tested for their ability to explain scrams, safety system actuations, significant events, safety system failures, radiation exposure, and critical hours. Results show the performance indicators differ with respect to the sets of variables which serve as the best predictors of future performance, and past performance is the most consistent predictor of future performance

  11. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this Safety Guide is to provide harmonized guidance to designers, operators, regulators and providers of technical support on deterministic safety analysis for nuclear power plants. It provides information on the utilization of the results of such analysis for safety and reliability improvements. The Safety Guide addresses conservative, best estimate and uncertainty evaluation approaches to deterministic safety analysis and is applicable to current and future designs. Contents: 1. Introduction; 2. Grouping of initiating events and associated transients relating to plant states; 3. Deterministic safety analysis and acceptance criteria; 4. Conservative deterministic safety analysis; 5. Best estimate plus uncertainty analysis; 6. Verification and validation of computer codes; 7. Relation of deterministic safety analysis to engineering aspects of safety and probabilistic safety analysis; 8. Application of deterministic safety analysis; 9. Source term evaluation for operational states and accident conditions; References

  12. Modification and analysis of engineering hot spot factor of HFETR

    International Nuclear Information System (INIS)

    Hu Yuechun; Deng Caiyu; Li Haitao; Xu Taozhong; Mo Zhengyu

    2014-01-01

    This paper presents the modification and analysis of engineering hot spot factors of HFETR. The new factors are applied in the fuel temperature analysis and the estimated value of the safety allowable operating power of HFETR. The result shows the maximum cladding temperature of the fuel is lower when the new factor are in utilization, and the safety allowable operating power of HFETR if higher, thus providing the economical efficiency of HFETR. (authors)

  13. IRSN-ANCCLI partnership. Organizational and human factors in nuclear safety - April 2014

    International Nuclear Information System (INIS)

    Jeffroy, Francois; Garron, Joel; Mercel, Philippe; Compagnat, Gilles; Gaucher, Eric; Gaillard, Pierre; Fanchini, Henri; Jacquemont, Vincent

    2013-06-01

    The contributions (Power Point presentations) of this seminar first address the history of the taking into account of organizational and human factors until the Fukushima accident (history of their taking into account in nuclear safety expertise in France, history of the development of policy of organizational and human factors by an operator). The next contributions discuss the main issues regarding these factors after Fukushima: report by a work-group, work performed by the the Comite d'Orientation sur les Facteurs Sociaux, Organisationnels et Humains (Committee of orientation on social, organizational and human factors). The third session addresses the implication of stakeholders in expertise on these factors: analysis of organizational and human factors by a local information commission or by a CHSCT (committee of hygiene, safety and working conditions)

  14. Research on review technology for three key safety factors of periodic safety review (PSR) and its application to Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Xu Shoulv; Yao Weida; Dou Yikang; Lin Shaoxuan; Cao Yenan; Zhou Quanfu; Zheng Jiong; Zhang Ming

    2009-04-01

    In 2001, after 10 years' operation, Qinshan Nuclear Power Plant (Q1) started to carry out periodic safety review (PSR) based on a nuclear safety guideline, Periodic Safety Review for Operational Nuclear Power Plants (HAF0312), issued by National Nuclear Safety Administration of China (NNSA). Entrusted by the owner of Q1, Shanghai Nuclear Engineering Research and Design Institute (SNERDI) implemented reviews of three key safety factors including safety analysis, equipment qualification and ageing. PSR was a challenging work in China at that time and through three years' research and practice, SNERDI summarized a systematic achievement for the review including review methodology, scoping, review contents and implementation steps, etc.. During the process of review for the three safety factors, totally 148 review reports and 341 recommendations for corrections were submitted to Q1. These reports and recommendations have provided guidance for correction actions as follow-up of PSR. This paper focuses on technical aspects to carry out PSR for the above-mentioned three safety factors, including review scoping, contents, methodology and main steps. The review technology and relevant experience can be taken for reference for other NPPs to carry out PSR. (authors)

  15. K Basin safety analysis

    International Nuclear Information System (INIS)

    Porten, D.R.; Crowe, R.D.

    1994-01-01

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall

  16. Influence of organizational factors on safety

    International Nuclear Information System (INIS)

    Haber, S.B.; Metlay, D.S.; Crouch, D.A.

    1990-01-01

    There is a need for a better understanding of exactly how organizational management factors at a nuclear power plant (NPP) affect plant safety performance, either directly or indirectly, and how these factors might be observed, measured, and evaluated. The purpose of this research project is to respond to that need by developing a general methodology for characterizing these organizational and management factors, systematically collecting information on their status and integrating that information into various types of evaluative activities. Research to date has included the development of the Nuclear Organization and Management Analysis Concept (NOMAC) of a NPP, the identification of key organizational and management factors, and the identification of the methods for systematically measuring and analyzing the influence of these factors on performance. Most recently, two field studies, one at a fossil fuel plant and the other at a NPP, were conducted using the developed methodology. Results are presented from both studies highlighting the acceptability, practicality, and usefulness of the methods used to assess the influence of various organizational and management factors including culture, communication, decision-making, standardization, and oversight. 6 refs., 3 figs., 1 tab

  17. Preparation of the requirements for the safety regulation related to human and organizational factors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The outline of the project in the current fiscal year is to investigate and analyze issues associated with Human and Organizational Factors involved in incidents of nuclear facilities, and to study and develop evaluation methods of these countermeasures. The guideline to evaluate licensee's safety culture and root cause analysis (RCA) had been developed for further improving safety on nuclear power plants at 2007. These guidelines have been used at regulatory inspection since that time. Based on experience of using these existing guidelines, some activities for improving guidelines are now under investigation; these are selecting candidate quantitative indicators for safety culture evaluation and researching good practices for RCA issues. JNES implemented human factor analysis about 18 domestic events including the Fukushima Dai-ichi nuclear power plant accident. (author)

  18. Safety analysis of passing maneuvers using extreme value theory

    Directory of Open Access Journals (Sweden)

    Haneen Farah

    2017-04-01

    The results indicate that this is a promising approach for safety evaluation. On-going work of the authors will attempt to generalize this method to other safety measures related to passing maneuvers, test it for the detailed analysis of the effect of demographic factors on passing maneuvers' crash probability and for its usefulness in a traffic simulation environment.

  19. Safety analysis for 'Fugen'

    International Nuclear Information System (INIS)

    1997-10-01

    The improvement of safety in nuclear power stations is an important proposition. Therefore also as to the safety evaluation, it is important to comprehensively and systematically execute it by referring to the operational experience and the new knowledge which is important for the safety throughout the period of use as well as before the construction and the start of operation of nuclear power stations. In this report, the results when the safety analysis for ''Fugen'' was carried out by referring to the newest technical knowledge are described. As the result, it was able to be confirmed that the safety of ''Fugen'' has been secured by the inherent safety and the facilities which were designed for securing the safety. The basic way of thinking on the safety analysis including the guidelines to be conformed to is mentioned. As to the abnormal transient change in operation and accidents, their definition, the events to be evaluated and the standards for judgement are reported. The matters which were taken in consideration at the time of the analysis are shown. The computation programs used for the analysis were REACT, HEATUP, LAYMON, FATRAC, SENHOR, LOTRAC, FLOOD and CONPOL. The analyses of the abnormal transient change in operation and accidents are reported on the causes, countermeasures, protective functions and results. (K.I.)

  20. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    International Nuclear Information System (INIS)

    Rao, Suman

    2007-01-01

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly

  1. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    2000-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of two main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents. Main achievements in 1999 are reported

  2. Importance of human factors on nuclear installations safety

    International Nuclear Information System (INIS)

    Caruso, G.J.

    1990-01-01

    Actually, installations safety and, in particular the nuclear installations infer a strong incidence in human factors related to the design and operation of such installations. In general, the experience aims to that the most important accidents have happened as result of the components' failures combination and human failures in the operation of safety systems. Human factors in the nuclear installations may be divided into two areas: economy and human reliability. Human factors treatments for the safety evaluation of the nuclear installations allow to diagnose the weak points of man-machine interaction. (Author) [es

  3. Incorporating Hofstede’ National Culture in Human Factor Analysis and Classification System (HFACS: Cases of Indonesian Aviation Safety

    Directory of Open Access Journals (Sweden)

    Pratama Gradiyan Budi

    2018-01-01

    Full Text Available National culture plays an important role in the application of ergonomics and safety. This research examined role of national culture in accident analysis of Indonesian aviation using framework of Human Factors Analysis and Classification System (HFACS. 53 Indonesian aviation accidents during year of 2001-2012 were analyzed using the HFACS framework by authors and were validated to 14 air-transport experts in Indonesia. National culture is viewed with Hofstede’ lens of national culture. Result shows that high collectivistic, low uncertainty avoidance, high power distance, and masculinity dimension which are characteristics of Indonesian culture, play an important role in Indonesian aviation accident and should be incorporated within HFACS. Result is discussed in relation with HFACS and Indonesian aviation accident analysis.

  4. The role of psychological factors in workplace safety.

    Science.gov (United States)

    Kotzé, Martina; Steyn, Leon

    2013-01-01

    Workplace safety researchers and practitioners generally agree that it is necessary to understand the psychological factors that influence people's workplace safety behaviour. Yet, the search for reliable individual differences regarding psychological factors associated with workplace safety has lead to sparse results and inconclusive findings. The aim of this study was to investigate whether there are differences between the psychological factors, cognitive ability, personality and work-wellness of employees involved in workplace incidents and accidents and/or driver vehicle accidents and those who are not. The study population (N = 279) consisted of employees employed at an electricity supply organisation in South Africa. Mann-Whitney U-test and one-way ANOVA were conducted to determine the differences in the respective psychological factors between the groups. These results showed that cognitive ability did not seem to play a role in workplace incident/accident involvement, including driver vehicle accidents, while the wellness factors burnout and sense of coherence, as well as certain personality traits, namely conscientiousness, pragmatic and gregariousness play a statistically significant role in individuals' involvement in workplace incidents/accidents/driver vehicle accidents. Safety practitioners, managers and human resource specialists should take cognisance of the role of specifically work-wellness in workplace safety behaviour, as management can influence these negative states that are often caused by continuously stressful situations, and subsequently enhance work place safety.

  5. Reliability analysis of PLC safety equipment

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.; Kim, J. Y. [Chungnam Nat. Univ., Daejeon (Korea, Republic of)

    2006-06-15

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system.

  6. Reliability analysis of PLC safety equipment

    International Nuclear Information System (INIS)

    Yu, J.; Kim, J. Y.

    2006-06-01

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system

  7. Reactor safety analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    Risk assessments of nuclear installations require accurate safety and reliability analyses to estimate the consequences of accidental events and their probability of occurrence. The objective of the work performed in this field at the Belgian Nuclear Research Centre SCK-CEN is to develop expertise in probabilistic and deterministic reactor safety analysis. The four main activities of the research project on reactor safety analysis are: (1) the development of software for the reliable analysis of large systems; (2) the development of an expert system for the aid to diagnosis; (3) the development and the application of a probabilistic reactor-dynamics method, and (4) to participate in the international PHEBUS-FP programme for severe accidents. Progress in research during 1997 is described

  8. Lithium-thionyl chloride cell system safety hazard analysis

    Science.gov (United States)

    Dampier, F. W.

    1985-03-01

    This system safety analysis for the lithium thionyl chloride cell is a critical review of the technical literature pertaining to cell safety and draws conclusions and makes recommendations based on this data. The thermodynamics and kinetics of the electrochemical reactions occurring during discharge are discussed with particular attention given to unstable SOCl2 reduction intermediates. Potentially hazardous reactions between the various cell components and discharge products or impurities that could occur during electrical or thermal abuse are described and the most hazardous conditions and reactions identified. Design factors influencing the safety of Li/SOCl2 cells, shipping and disposal methods and the toxicity of Li/SOCl2 battery components are additional safety issues that are also addressed.

  9. Incorporating Traffic Control and Safety Hardware Performance Functions into Risk-based Highway Safety Analysis

    Directory of Open Access Journals (Sweden)

    Zongzhi Li

    2017-04-01

    Full Text Available Traffic control and safety hardware such as traffic signs, lighting, signals, pavement markings, guardrails, barriers, and crash cushions form an important and inseparable part of highway infrastructure affecting safety performance. Significant progress has been made in recent decades to develop safety performance functions and crash modification factors for site-specific crash predictions. However, the existing models and methods lack rigorous treatments of safety impacts of time-deteriorating conditions of traffic control and safety hardware. This study introduces a refined method for computing the Safety Index (SI as a means of crash predictions for a highway segment that incorporates traffic control and safety hardware performance functions into the analysis. The proposed method is applied in a computation experiment using five-year data on nearly two hundred rural and urban highway segments. The root-mean square error (RMSE, Chi-square, Spearman’s rank correlation, and Mann-Whitney U tests are employed for validation.

  10. Organizational factors affecting safety implementation in food companies in Thailand.

    Science.gov (United States)

    Chinda, Thanwadee

    2014-01-01

    Thai food industry employs a massive number of skilled and unskilled workers. This may result in an industry with high incidences and accident rates. To improve safety and reduce the accident figures, this paper investigates factors influencing safety implementation in small, medium, and large food companies in Thailand. Five factors, i.e., management commitment, stakeholders' role, safety information and communication, supportive environment, and risk, are found important in helping to improve safety implementation. The statistical analyses also reveal that small, medium, and large food companies hold similar opinions on the risk factor, but bear different perceptions on the other 4 factors. It is also found that to improve safety implementation, the perceptions of safety goals, communication, feedback, safety resources, and supervision should be aligned in small, medium, and large companies.

  11. Safety of GM crops: compositional analysis.

    Science.gov (United States)

    Brune, Philip D; Culler, Angela Hendrickson; Ridley, William P; Walker, Kate

    2013-09-04

    The compositional analysis of genetically modified (GM) crops has continued to be an important part of the overall evaluation in the safety assessment program for these materials. The variety and complexity of genetically engineered traits and modes of action that will be used in GM crops in the near future, as well as our expanded knowledge of compositional variability and factors that can affect composition, raise questions about compositional analysis and how it should be applied to evaluate the safety of traits. The International Life Sciences Institute (ILSI), a nonprofit foundation whose mission is to provide science that improves public health and well-being by fostering collaboration among experts from academia, government, and industry, convened a workshop in September 2012 to examine these and related questions, and a series of papers has been assembled to describe the outcomes of that meeting.

  12. Determination of engineering safety factor -routine in Hungary (a methodology for the normal operation local power engineering safety factors)

    International Nuclear Information System (INIS)

    Szecsenyi, Z.; Korpas, L.; Bona, G.; Kereszturi, A.

    2010-01-01

    From the late nineties Paks Nuclear Power Plant-in collaboration with KFKI Atomic Energy Research Institute (KFKI AEKI)- is developing a system for determining the normal operation local power engineering safety factors. The system is based on a Monte Carlo sampling of the uncertain model input parameters. Additionally, the comparison of the calculation to the in-core measurements plays essential role for determining some important input parameters. By using new fuel types and the corresponding more recent detailed technological data, the applied method is being improved from time to time. Presently, the actually used and authorized engineering safety factors at Paks NPP are determined by using this method. In the paper, the system.s main properties are described (not going beyond the possible extent). The main points are as follows:-Mathematical definition of the engineering safety factor;-Sources of the uncertainties;-Input error propagation method constituting the basis of the system;-Flow-chart of the subsequent steps of the determination Finally, in the paper the engineering safety factors values of some selected parameters are presented as examples for demonstration of the capability of the method. (Authors)

  13. Safety Analysis Report for Ignalina NPP

    International Nuclear Information System (INIS)

    Negrivoda, G.

    1997-01-01

    In December 1994 an agreement was signed between the European Bank for Reconstruction and Development and the Republic of Lithuania for the grant of 32.86 MECU for the safety Improvement at Ignalina NPP. One of the conditions for the provision of the grant, was a requirement for an in-depth analysis of the safety level at Ignalina NPP in the scope and according to the standards acceptable for a western nuclear power plant, and to publish a Safety Analysis Report (SAR). The report should investigate and analyze any factor that could limit a safe operation of the plant, and provide recommendations for actual safety improvements. According to the agreement, Lithuania had to finalize the SAR until 31 December, 1995. The bank has also organized and financed investigation of safety at Ignalina NPP and preparation of the SAR. EBRD made an agreement with Sweden's Vattenfall, which subcontracted well-known companies from Canada, USA, Germany, etc., and also the Russian Research and Development Institute of Power Engineering (NIKIET), reactor designer of Ignalina NPP. The SAR is a very comprehensive document and contains about 8000 pages of text, diagrams and tables. The main findings of the SAR are provided in the article. A large number of discrepancies with modern rules and western practices was detected, but they were not proved to be serious enough to require reactors shutdown. Based on the recommendations of the SAR Ignalina NPP has worked out Safety Improvement Program No. 2 (SIP-2), which is planned for three years and will cost 486 MLT. (author)

  14. New engineering safety factors for Loviisa NPP core calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kuopanportti, Jaakko; Saarinen, Simo; Lahtinen, Tuukka; Ekstroem, Karoliina [Fortum Power and Heat Ltd., Fortum (Finland)

    2017-09-15

    In Loviisa NPP, there are two limiting thermal margins called the enthalpy rise margin and the linear heat rate margin that are monitored during normal operation. Engineering safety factors are applied in determination of both of these factors. The factors take into account the effect of various manufacturing tolerances, impact of the irradiation and simulation uncertainties on the local heat rate and on the enthalpy of the coolant. The engineering factors were re-evaluated during 2015 and the factors were approved by the Finnish radiation and nuclear safety authority in 2016. The re-evaluation was performed by considering all of the identified phenomena that affect the local heat rate or the enthalpy of the coolant. This paper summarizes the work that was performed during the re-evaluation of the engineering safety factors and presents the results for each uncertainty component. The new engineering safety factors are 1.115 for the linear heat rate and 1.100 for the enthalpy rise margin when the old factors were 1.12 and 1.16, respectively. The new factors improve the fuel economy by about 1%.

  15. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Suman [Risk Analyst (India)]. E-mail: sumanashokrao@yahoo.co.in

    2007-04-11

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly.

  16. Cultural factors influencing safety need to be addressed in design and operation of technology.

    Science.gov (United States)

    Meshkati, N

    1996-10-01

    Cultural factors which influence aviation safety in aircraft design, air traffic control, and human factors training are examined. Analysis of the Avianca Flight 052 crash in New York in January, 1990, demonstrates the catastrosphic effects cultural factors can play. Cultural factors include attitude toward work and technology, organizational hierarchy, religion, and population stereotyping.

  17. Safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Selvatici, E.

    1981-01-01

    A study about the safety analysis of nuclear power plant, giving emphasis to how and why to do is presented. The utilization of the safety analysis aiming to perform the licensing requirements is discussed, and an example of the Angra 2 and 3 safety analysis is shown. Some presented tendency of the safety analysis are presented and examples are shown.(E.G.) [pt

  18. Application of the AHP method to analyze the significance of the factors affecting road traffic safety

    Directory of Open Access Journals (Sweden)

    Justyna SORDYL

    2015-06-01

    Full Text Available Over the past twenty years, the number of vehicles registered in Poland has grown rapidly. At the same time, a relatively small increase in the length of the road network has been observed. As a result of the limited capacity of available infrastructure, it leads to significant congestion and to increase of the probability of road accidents. The overall level of road safety depends on many factors - the behavior of road users, infrastructure solutions and the development of automotive technology. Thus the detailed assessment of the importance of individual elements determining road safety is difficult. The starting point is to organize the factors by grouping them into categories which are components of the DVE system (driver - vehicle - environment. In this work, to analyze the importance of individual factors affecting road safety, the use of analytic hierarchy process method (AHP was proposed. It is one of the multi-criteria methods which allows us to perform hierarchical analysis of the decision process, by means of experts’ opinions. Usage of AHP method enabled us to evaluate and rank the factors affecting road safety. This work attempts to link the statistical data and surveys in significance analysis of the elements determining road safety.

  19. Computational methods for criticality safety analysis within the scale system

    International Nuclear Information System (INIS)

    Parks, C.V.; Petrie, L.M.; Landers, N.F.; Bucholz, J.A.

    1986-01-01

    The criticality safety analysis capabilities within the SCALE system are centered around the Monte Carlo codes KENO IV and KENO V.a, which are both included in SCALE as functional modules. The XSDRNPM-S module is also an important tool within SCALE for obtaining multiplication factors for one-dimensional system models. This paper reviews the features and modeling capabilities of these codes along with their implementation within the Criticality Safety Analysis Sequences (CSAS) of SCALE. The CSAS modules provide automated cross-section processing and user-friendly input that allow criticality safety analyses to be done in an efficient and accurate manner. 14 refs., 2 figs., 3 tabs

  20. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Science.gov (United States)

    2010-01-01

    ...; (iv) Potential accident sequences caused by process deviations or other events internal to the... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process... this safety program; namely, process safety information, integrated safety analysis, and management...

  1. The practical implementation of integrated safety management for nuclear safety analysis and fire hazards analysis documentation

    International Nuclear Information System (INIS)

    COLLOPY, M.T.

    1999-01-01

    In 1995 Mr. Joseph DiNunno of the Defense Nuclear Facilities Safety Board issued an approach to describe the concept of an integrated safety management program which incorporates hazard and safety analysis to address a multitude of hazards affecting the public, worker, property, and the environment. Since then the U S . Department of Energy (DOE) has adopted a policy to systematically integrate safety into management and work practices at all levels so that missions can be completed while protecting the public, worker, and the environment. While the DOE and its contractors possessed a variety of processes for analyzing fire hazards at a facility, activity, and job; the outcome and assumptions of these processes have not always been consistent for similar types of hazards within the safety analysis and the fire hazard analysis. Although the safety analysis and the fire hazard analysis are driven by different DOE Orders and requirements, these analyses should not be entirely independent and their preparation should be integrated to ensure consistency of assumptions, consequences, design considerations, and other controls. Under the DOE policy to implement an integrated safety management system, identification of hazards must be evaluated and agreed upon to ensure that the public. the workers. and the environment are protected from adverse consequences. The DOE program and contractor management need a uniform, up-to-date reference with which to plan. budget, and manage nuclear programs. It is crucial that DOE understand the hazards and risks necessarily to authorize the work needed to be performed. If integrated safety management is not incorporated into the preparation of the safety analysis and the fire hazard analysis, inconsistencies between assumptions, consequences, design considerations, and controls may occur that affect safety. Furthermore, confusion created by inconsistencies may occur in the DOE process to grant authorization of the work. In accordance with

  2. The human factors and the safety of experimentation reactors

    International Nuclear Information System (INIS)

    Jeffroy, F.; Delaporte-Normier, M.L.

    2007-01-01

    Inside IRSN (Institute for Radiological protection and Nuclear Safety), the mission of the Human Factors Group is to assess the way operators of nuclear installations take into account the risks related to human activities. In the last few years, IRSN has been involved in the safety analysis of different installations where Cea develops research programs, in particular experimental reactors. The first part of this article presents the methodology used by IRSN to evaluate how operators take into account risks related to human activities. This methodology is made up of 4 steps: 1) the identification of the human activities that convey a risk for the installation nuclear safety (safety-sensitive activities), for instance in the case of the Masurca reactor, it has been shown that errors made during the manufacturing of fuel tubes can lead to a criticality accident; 2) listing all the dispositions or arrangements taken to make human safety-sensitive activities more reliable; 3) checking the efficiency of such dispositions or arrangements; and 4) assessing the ability of the operators to generate the adequate dispositions or arrangements. The second part highlights the necessity to develop inside these research installations an organisation that facilitates cooperation between experimenters and operators

  3. Criticality safety analysis for plutonium dissolver using silver mediated electrolytic oxidation method

    International Nuclear Information System (INIS)

    Umeda, Miki; Sugikawa, Susumu; Nakamura, Kazuhito; Egashira, Tetsurou

    1998-08-01

    Design and construction of a plutonium dissolver using silver mediated electrolytic oxidation method are promoted in NUCEF. Criticality safety analysis for the plutonium dissolver is described in this report. The electrolytic plutonium dissolver consists of connection pipes and three pots for MOX powder supply, circulation and electrolysis. The criticality control for the dissolver is made by geometrically safe shape with mass limitation. Monte Carlo code KENO-IV using MGCL-137 library based on ENDF/B-IV was used for the criticality safety analysis for the plutonium dissolver. Considering the required size for construction and criticality safety, diameter of pot and distance between two pots were determined. On this condition, the criticality safety analysis for the plutonium dissolver with connection pipes was carried out. As the result of the criticality safety analysis, an effective neutron multiplication factor keff of 0.91 was obtained and the criticality safety of the plutonium dissolver was confirmed on the basis of criteria of ≤0.95. (author)

  4. Human Factors engineering criteria and design for the Hanford Waste Vitrification Plant preliminary safety analysis report

    International Nuclear Information System (INIS)

    Wise, J.A.; Schur, A.; Stitzel, J.C.L.

    1993-09-01

    This report provides a rationale and systematic methodology for bringing Human Factors into the safety design and operations of the Hanford Waste Vitrification Plant (HWVP). Human Factors focuses on how people perform work with tools and machine systems in designed settings. When the design of machine systems and settings take into account the capabilities and limitations of the individuals who use them, human performance can be enhanced while protecting against susceptibility to human error. The inclusion of Human Factors in the safety design of the HWVP is an essential ingredient to safe operation of the facility. The HWVP is a new construction, nonreactor nuclear facility designed to process radioactive wastes held in underground storage tanks into glass logs for permanent disposal. Its design and mission offer new opposites for implementing Human Factors while requiring some means for ensuring that the Human Factors assessments are sound, comprehensive, and appropriately directed

  5. IAEA Review for Gap Analysis of Safety Analysis Capability

    International Nuclear Information System (INIS)

    Basic, Ivica; Kim, Manwoong; Huges, Peter; Lim, B-K; D'Auria, Francesco; Louis, Vidard Michael

    2014-01-01

    The IAEA Asian Nuclear Safety Network (ANSN) was launched in 2002 in the framework of the Extra Budgetary Programme (EBP) on the Safety of Nuclear Installations in the South East Asia, Pacific and Far East Countries. The main objective is to strengthen and expand human and advanced Information Technology (IT) network to pool, analyse and share nuclear safety knowledge and practical experience for peaceful uses in this region. Under the ANSN framework, a technical group on Safety Analysis (SATG) was established in 2004 aimed to providing a forum for the exchange of experience in the following areas of safety analysis: · To provide a forum for an exchange of experience in the area of safety analysis, · To maintain and improve the knowledge on safety analysis method, · To enhance the utilization of computer codes, · To pool and analyse the issues related with safety analysis of research reactor, and · To facilitate mutual interested on safety analysis among member countries. A sustainable and successful nuclear energy programme requires a strong technical infrastructure, including a workforce made up of highly specialized and well-educated professionals. A significant portion of this technical capacity must be dedicated to safety- especially to safety analysis- as only then can it serve as the basis for making the right decisions during the planning, licensing, construction and operation of new nuclear facilities. In this regard, the IAEA has provided ANSN member countries with comprehensive training opportunities for capacity building in safety analysis. Nevertheless, the SATG recognizes that it is difficult to achieve harmonization in this area among all member countries because of their different competency levels. Therefore, it is necessary to quickly identify the most obvious gaps in safety analysis capability and then to use existing resources to begin to fill those gaps. The goal of this Expert Mission (EM) for gap finding service is to facilitate

  6. Prescribing safety, negotiating expertise. Building of nuclear safety human factors expertise

    International Nuclear Information System (INIS)

    Rolina, Gregory

    2008-01-01

    This Ph.D thesis is dedicated to a specific type of expertise, the safety of nuclear installations in the field of human and organisational factors. Empirical work is at the foundation of this thesis: the monitoring of experts 'in action', allowed a detailed reconstruction of three cases they were examining. The analysis, at the core of which lies the definition of what an efficient expertise can be, emphasizes the incompleteness of the knowledge that links together the nuclear facilities' organisational characteristics and their safety. This leads us to identify the expert's three ranges of actions (rhetorical, cognitive, operative). Defined from objectives and constraints likely to influence the expert's behaviour, those three ranges each require specific skills. A conception of expertise based on these ranges seems adaptable to other sectors and allows an enrichment of models of expertise cited in literature. Historical elements from French institutions of nuclear safety are also called upon to take into consideration some of the determinants of the expertise; its efficiency relies on the upholding of a continuous dialogue between the regulators (the experts and the control authority) and the regulated (the operators). This type of historically inherited regulation makes up a specificity of the French system of external control of nuclear risks. (author) [fr

  7. CCF analysis of high redundancy systems safety/relief valve data analysis and reference BWR application

    International Nuclear Information System (INIS)

    Mankamo, T.; Bjoere, S.; Olsson, Lena

    1992-12-01

    Dependent failure analysis and modeling were developed for high redundancy systems. The study included a comprehensive data analysis of safety and relief valves at the Finnish and Swedish BWR plants, resulting in improved understanding of Common Cause Failure mechanisms in these components. The reference application on the Forsmark 1/2 reactor relief system, constituting of twelve safety/relief lines and two regulating relief lines, covered different safety criteria cases of reactor depressurization and overpressure protection function, and failure to re close sequences. For the quantification of dependencies, the Alpha Factor Model, the Binomial Probability Model and the Common Load Model were compared for applicability in high redundancy systems

  8. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of four main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents, the development of an expert system for the aid to diagnosis; the development and application of a probabilistic reactor dynamics method. Main achievements in 1999 are reported

  9. Probabilistic safety analysis of earth retaining structures during earthquakes

    Science.gov (United States)

    Grivas, D. A.; Souflis, C.

    1982-07-01

    A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.

  10. Safety analysis SFR 1. Long-term safety

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the regulatory

  11. Safety analysis SFR 1. Long-term safety

    International Nuclear Information System (INIS)

    2008-12-01

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the regulatory

  12. Safety analysis SFR 1. Long-term safety

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the

  13. mathematical models for prediction of safety factors for a simply

    African Journals Online (AJOL)

    HOD

    Keywords: reliability, code calibration, load factor, safety factor, design, steel beam. 1. INTRODUCTION ... safety factors for the design of a simply supported steel beam using regression .... 5 design criteria for a solid timber portal frame.

  14. Factors impacting perceived safety among staff working on mental health wards.

    Science.gov (United States)

    Haines, Alina; Brown, Andrew; McCabe, Rhiannah; Rogerson, Michelle; Whittington, Richard

    2017-09-01

    Safety at work is a core issue for mental health staff working on in-patient units. At present, there is a limited theoretical base regarding which factors may affect staff perceptions of safety. This study attempted to identify which factors affect perceived staff safety working on in-patient mental health wards. A cross-sectional design was employed across 101 forensic and non-forensic mental health wards, over seven National Health Service trusts nationally. Measures included an online staff survey, Ward Features Checklist and recorded incident data. Data were analysed using categorical principal components analysis and ordinal regression. Perceptions of staff safety were increased by ward brightness, higher number of patient beds, lower staff to patient ratios, less dayroom space and more urban views. The findings from this study do not represent common-sense assumptions. Results are discussed in the context of the literature and may have implications for current initiatives aimed at managing in-patient violence and aggression. None. © The Royal College of Psychiatrists 2017. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license.

  15. SafetyNet. Human factors safety training on the Internet

    DEFF Research Database (Denmark)

    Hauland, G.; Pedrali, M.

    2002-01-01

    This report describes user requirements to an Internet based distance learning system of human factors training, i.e. the SafetyNet prototype, within the aviation (pilots and air traffic control), maritime and medical domains. User requirements totraining have been elicited through 19 semi...

  16. Systems engineered health and safety criteria for safety analysis reports

    International Nuclear Information System (INIS)

    Beitel, G.A.; Morcos, N.

    1993-01-01

    The world of safety analysis is filled with ambiguous words: codes and standards, consequences and risks, hazard and accident, and health and safety. These words have been subject to disparate interpretations by safety analysis report (SAR) writers, readers, and users. open-quotes Principal health and safety criteriaclose quotes has been one of the most frequently misused phrases; rarely is it used consistently or effectively. This paper offers an easily understood definition for open-quotes principal health and safety criteriaclose quotes and uses systems engineering to convert an otherwise mysterious topic into the primary means of producing an integrated SAR. This paper is based on SARs being written for environmental restoration and waste management activities for the U.S. Department of Energy (DOE). Requirements for these SARs are prescribed in DOE Order 5480-23, open-quotes Nuclear Safety Analysis Reports.close quotes

  17. Finite element analysis to determine the stress distribution, displacement and safety factor on a microplate for the fractured jaw case

    Science.gov (United States)

    Pratama, Juan; Mahardika, Muslim

    2018-03-01

    Microplate is a connecting plate that can be used for jaw bone fixation. In the last two decades, microplate has been used so many times to help reconstruction of fractured jaw bone which is called mandibular bone or mandible bone. The plate is used to provide stable fixation of the fractured bone tissue during healing and reconstruction process. In this study Finite Element Analysis was used to predict the stress concentration and distribution on a microplate, displacement on the microplate and also to determine the safety factor of the microplate based on maximum allowable stress value, and finally to ascertain whether microplate is safe to use or not. The microplate was produced from punching process using titanium grade 1 (pure titanium) as material with a thickness of 500 µm. The results of the research indicated that the microplate was safe to use according to the maximum stress around the hole, displacement around the hole and also the safety factor of the microplate.

  18. Hazard Management Dealt by Safety Professionals in Colleges: The Impact of Individual Factors

    Directory of Open Access Journals (Sweden)

    Tsung-Chih Wu

    2016-12-01

    Full Text Available Identifying, evaluating, and controlling workplace hazards are important functions of safety professionals (SPs. The purpose of this study was to investigate the content and frequency of hazard management dealt by safety professionals in colleges. The authors also explored the effects of organizational factors/individual factors on SPs’ perception of frequency of hazard management. The researchers conducted survey research to achieve the objective of this study. The researchers mailed questionnaires to 200 SPs in colleges after simple random sampling, then received a total of 144 valid responses (response rate = 72%. Exploratory factor analysis indicated that the hazard management scale (HMS extracted five factors, including physical hazards, biological hazards, social and psychological hazards, ergonomic hazards, and chemical hazards. Moreover, the top 10 hazards that the survey results identified that safety professionals were most likely to deal with (in order of most to least frequent were: organic solvents, illumination, other chemicals, machinery and equipment, fire and explosion, electricity, noise, specific chemicals, human error, and lifting/carrying. Finally, the results of one-way multivariate analysis of variance (MANOVA indicated there were four individual factors that impacted the perceived frequency of hazard management which were of statistical and practical significance: job tenure in the college of employment, type of certification, gender, and overall job tenure. SPs within colleges and industries can now discuss plans revolving around these five areas instead of having to deal with all of the separate hazards.

  19. Failure and factors of safety in piping system design

    International Nuclear Information System (INIS)

    Antaki, G.A.

    1993-01-01

    An important body of test and performance data on the behavior of piping systems has led to an ongoing reassessment of the code stress allowables and their safety margin. The codes stress allowables, and their factors of safety, are developed from limits on the incipient yield (for ductile materials), or incipient rupture (for brittle materials), of a test specimen loaded in simple tension. In this paper, we examine the failure theories introduced in the B31 and ASME III codes for piping and their inherent approximations compared to textbook failure theories. We summarize the evolution of factors of safety in ASME and B31 and point out that, for piping systems, it is appropriate to reconsider the concept and definition of factors of safety

  20. Ignalina Safety Analysis Group

    International Nuclear Information System (INIS)

    Ushpuras, E.

    1995-01-01

    The article describes the fields of activities of Ignalina NPP Safety Analysis Group (ISAG) in the Lithuanian Energy Institute and overview the main achievements gained since the group establishment in 1992. The group is working under the following guidelines: in-depth analysis of the fundamental physical processes of RBMK-1500 reactors; collection, systematization and verification of the design and operational data; simulation and analysis of potential accident consequences; analysis of thermohydraulic and neutronic characteristics of the plant; provision of technical and scientific consultations to VATESI, Governmental authorities, and also international institutions, participating in various projects aiming at Ignalina NPP safety enhancement. The ISAG is performing broad scientific co-operation programs with both Eastern and Western scientific groups, supplying engineering assistance for Ignalina NPP. ISAG is also participating in the joint Lithuanian - Swedish - Russian project - Barselina, the first Probabilistic Safety Assessment (PSA) study of Ignalina NPP. The work is underway together with Maryland University (USA) for assessment of the accident confinement system for a range of breaks in the primary circuit. At present the ISAG personnel is also involved in the project under the grant from the Nuclear Safety Account, administered by the European Bank for reconstruction and development for the preparation and review of an in-depth safety assessment of the Ignalina plant

  1. Preliminary safety analysis methodology for the SMART

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoo Hwan; Chung, Y. J.; Kim, H. C.; Sim, S. K.; Lee, W. J.; Chung, B. D.; Song, J. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This technical report was prepared for a preliminary safety analysis methodology of the 330MWt SMART (System-integrated Modular Advanced ReacTor) which has been developed by Korea Atomic Energy Research Institute (KAERI) and funded by the Ministry of Science and Technology (MOST) since July 1996. This preliminary safety analysis methodology has been used to identify an envelope for the safety of the SMART conceptual design. As the SMART design evolves, further validated final safety analysis methodology will be developed. Current licensing safety analysis methodology of the Westinghouse and KSNPP PWRs operating and under development in Korea as well as the Russian licensing safety analysis methodology for the integral reactors have been reviewed and compared to develop the preliminary SMART safety analysis methodology. SMART design characteristics and safety systems have been reviewed against licensing practices of the PWRs operating or KNGR (Korean Next Generation Reactor) under construction in Korea. Detailed safety analysis methodology has been developed for the potential SMART limiting events of main steam line break, main feedwater pipe break, loss of reactor coolant flow, CEA withdrawal, primary to secondary pipe break and the small break loss of coolant accident. SMART preliminary safety analysis methodology will be further developed and validated in parallel with the safety analysis codes as the SMART design further evolves. Validated safety analysis methodology will be submitted to MOST as a Topical Report for a review of the SMART licensing safety analysis methodology. Thus, it is recommended for the nuclear regulatory authority to establish regulatory guides and criteria for the integral reactor. 22 refs., 18 figs., 16 tabs. (Author)

  2. Transient analysis for resolving safety issues

    International Nuclear Information System (INIS)

    Chao, J.; Layman, W.

    1987-01-01

    The Nuclear Safety Analysis Center (NSAC) has a Generic Safety Analysis Program to help resolve high priority generic safety issues. This paper describes several high priority safety issues considered at NSAC and how they were resolved by transient analysis using thermal hydraulics and neutronics codes. These issues are pressurized thermal shock (PTS), anticipated transients without scram (ATWS), steam generator tube rupture (SGTR), and reactivity transients in light of the Chernobyl accident

  3. Patient and carer identified factors which contribute to safety incidents in primary care: a qualitative study.

    Science.gov (United States)

    Hernan, Andrea L; Giles, Sally J; Fuller, Jeffrey; Johnson, Julie K; Walker, Christine; Dunbar, James A

    2015-09-01

    Patients can have an important role in reducing harm in primary-care settings. Learning from patient experience and feedback could improve patient safety. Evidence that captures patients' views of the various contributory factors to creating safe primary care is largely absent. The aim of this study was to address this evidence gap. Four focus groups and eight semistructured interviews were conducted with 34 patients and carers from south-east Australia. Participants were asked to describe their experiences of primary care. Audio recordings were transcribed verbatim and specific factors that contribute to safety incidents were identified in the analysis using the Yorkshire Contributory Factors Framework (YCFF). Other factors emerging from the data were also ascertained and added to the analytical framework. Thirteen factors that contribute to safety incidents in primary care were ascertained. Five unique factors for the primary-care setting were discovered in conjunction with eight factors present in the YCFF from hospital settings. The five unique primary care contributing factors to safety incidents represented a range of levels within the primary-care system from local working conditions to the upstream organisational level and the external policy context. The 13 factors included communication, access, patient factors, external policy context, dignity and respect, primary-secondary interface, continuity of care, task performance, task characteristics, time in the consultation, safety culture, team factors and the physical environment. Patient and carer feedback of this type could help primary-care professionals better understand and identify potential safety concerns and make appropriate service improvements. The comprehensive range of factors identified provides the groundwork for developing tools that systematically capture the multiple contributory factors to patient safety. Published by the BMJ Publishing Group Limited. For permission to use (where not

  4. Factors affecting construction performance: exploratory factor analysis

    Science.gov (United States)

    Soewin, E.; Chinda, T.

    2018-04-01

    The present work attempts to develop a multidimensional performance evaluation framework for a construction company by considering all relevant measures of performance. Based on the previous studies, this study hypothesizes nine key factors, with a total of 57 associated items. The hypothesized factors, with their associated items, are then used to develop questionnaire survey to gather data. The exploratory factor analysis (EFA) was applied to the collected data which gave rise 10 factors with 57 items affecting construction performance. The findings further reveal that the items constituting ten key performance factors (KPIs) namely; 1) Time, 2) Cost, 3) Quality, 4) Safety & Health, 5) Internal Stakeholder, 6) External Stakeholder, 7) Client Satisfaction, 8) Financial Performance, 9) Environment, and 10) Information, Technology & Innovation. The analysis helps to develop multi-dimensional performance evaluation framework for an effective measurement of the construction performance. The 10 key performance factors can be broadly categorized into economic aspect, social aspect, environmental aspect, and technology aspects. It is important to understand a multi-dimension performance evaluation framework by including all key factors affecting the construction performance of a company, so that the management level can effectively plan to implement an effective performance development plan to match with the mission and vision of the company.

  5. Analysis of rainfall-induced slope instability using a field of local factor of safety

    Science.gov (United States)

    Lu, Ning; Şener-Kaya, Başak; Wayllace, Alexandra; Godt, Jonathan W.

    2012-01-01

    Slope-stability analyses are mostly conducted by identifying or assuming a potential failure surface and assessing the factor of safety (FS) of that surface. This approach of assigning a single FS to a potentially unstable slope provides little insight on where the failure initiates or the ultimate geometry and location of a landslide rupture surface. We describe a method to quantify a scalar field of FS based on the concept of the Coulomb stress and the shift in the state of stress toward failure that results from rainfall infiltration. The FS at each point within a hillslope is called the local factor of safety (LFS) and is defined as the ratio of the Coulomb stress at the current state of stress to the Coulomb stress of the potential failure state under the Mohr-Coulomb criterion. Comparative assessment with limit-equilibrium and hybrid finite element limit-equilibrium methods show that the proposed LFS is consistent with these approaches and yields additional insight into the geometry and location of the potential failure surface and how instability may initiate and evolve with changes in pore water conditions. Quantitative assessments applying the new LFS field method to slopes under infiltration conditions demonstrate that the LFS has the potential to overcome several major limitations in the classical FS methodologies such as the shape of the failure surface and the inherent underestimation of slope instability. Comparison with infinite-slope methods, including a recent extension to variably saturated conditions, shows further enhancement in assessing shallow landslide occurrence using the LFS methodology. Although we use only a linear elastic solution for the state of stress with no post-failure analysis that require more sophisticated elastoplastic or other theories, the LFS provides a new means to quantify the potential instability zones in hillslopes under variably saturated conditions using stress-field based methods.

  6. An Analysis of Construction Accident Factors Based on Bayesian Network

    OpenAIRE

    Yunsheng Zhao; Jinyong Pei

    2013-01-01

    In this study, we have an analysis of construction accident factors based on bayesian network. Firstly, accidents cases are analyzed to build Fault Tree method, which is available to find all the factors causing the accidents, then qualitatively and quantitatively analyzes the factors with Bayesian network method, finally determines the safety management program to guide the safety operations. The results of this study show that bad condition of geological environment has the largest posterio...

  7. Impact of demographic factors on employees perceptions on health and safety management in the Greek Ministries

    Directory of Open Access Journals (Sweden)

    Pavlopoulou Georgia

    2016-10-01

    Full Text Available The purpose of the present study was to investigate the impact of selected demographic factors on perceptions of office workers regarding the management of health and safety in the office work place. For the data collection it was used a scale validated with a sample of 155 office employees. The final sample of the study was 301 subjects from three large Ministries in the Athens region of Greece, selected randomly. Exploratory factor analysis revealed four factors. A further comparison of the health and safety scale factors toward gender, marital status, working hours, monitoring or not seminars related to workplace safety and involvement or not in accidents in the office revealed that: (a The male employees had more positive perceptions than their female counterparts (t = 2.62, p <0.010. (b Positive perceptions showed and those who had attended seminars on safety and those who were not involved in office accidents (t = 2.16, p <0.032 and t = -2.19, p <0.033, respectively. (c It was also founded that men had more positive perceptions than women in the factor workplace environmental conditions (t = 2.40, p <0.018, while employees who had attended seminars on safety had a higher score on the factor health and safety issues in the office in comparison with their colleagues who did not, (t = 2.17, p <0.031. (d Employees who were involved in office accidents rated higher the questions of the factor health and safety issues in the office (t = -2.52, p <0. 015 and lower the factor workplace environmental conditions (t = -2.07, p = .043. It is concluded that despite the differences in the rating health and safety scale, in relation to selected variables, perceptions of employees regarding the management health and safety in the office work are positive.

  8. Human Factors Engineering and Ergonomics Analysis for the Canister Storage Building (CSB) Results and Findings

    International Nuclear Information System (INIS)

    GARVIN, L.J.

    1999-01-01

    The purpose for this supplemental report is to follow-up and update the information in SNF-3907, Human Factors Engineering (HFE) Analysis: Results and Findings. This supplemental report responds to applicable U.S. Department of Energy Safety Analysis Report review team comments and questions. This Human Factors Engineering and Ergonomics (HFE/Erg) analysis was conducted from April 1999 to July 1999; SNF-3907 was based on analyses accomplished in October 1998. The HFE/Erg findings presented in this report and SNF-3907, along with the results of HNF-3553, Spent Nuclear Fuel Project, Final Safety Analysis Report. Annex A, ''Canister Storage Building Final Safety Analysis Report,'' Chapter A3.0, ''Hazards and Accidents Analyses,'' provide the technical basis for preparing or updating HNF-3553, Annex A, Chapter A13.0, ''Human Factors Engineering.'' The findings presented in this report allow the HNF-3553 Chapter 13.0, ''Human Factors,'' to respond fully to the HFE requirements established in DOE Order 5480.23, Nuclear Safety Analysis Reports

  9. Human Factors Engineering and Ergonomics Analysis for the Canister Storage Building (CSB): Results and Findings

    International Nuclear Information System (INIS)

    GARVIN, L.J.

    1999-01-01

    The purpose for this supplemental report is to follow-up and update the information in SNF-3907, Human Factors Engineering (HFE) Analysis: Results and Findings. This supplemental report responds to applicable U.S. Department of Energy Safety Analysis Report review team comments and questions. This Human Factors Engineering and Ergonomics (HFE/Erg) analysis was conducted from April 1999 to July 1999; SNF-3907 was based on analyses accomplished in October 1998. The HFE/Erg findings presented in this report and SNF-3907, along with the results of HNF-3553, Spent Nuclear Fuel Project, Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report,'' Chapter A3.0, ''Hazards and Accidents Analyses,'' provide the technical basis for preparing or updating HNF-3553. Annex A, Chaptex A13.0, ''Human Factors Engineering.'' The findings presented in this report allow the HNF-3553 Chapter 13.0, ''Human Factors,'' to respond fully to the HFE requirements established in DOE Order 5480.23, Nuclear Safety Analysis Reports

  10. Confirmatory Factor Analysis of Patient Safety Culture in an Iranian Hospital: A Case Study of Fatemeh Zahra Hospital in Najafabad, Iran

    Directory of Open Access Journals (Sweden)

    Mohammadkarim Bahadori

    2016-04-01

    Full Text Available Introduction: Transformation of patient safety culture towards developing an open culture can be the greatest challenge for achieving a safe healthcare system. This study aimed to carry out a structural analysis of the Persian translation version of a questionnaire assessing patient safety culture. Materials and Methods: The study was conducted to evaluate the Persian translation of patient safety culture questionnaire, developed by the National Patient Safety Agency. The questionnaire includes seven sections and 43 items investigating 12 dimensions of patient safety culture. The reliability of this questionnaire was confirmed with Cronbach's alpha (α>0.8. The questionnaire was distributed among employees of the Fatemeh Zahra Hospital in Najafabad, Iran, 2015. The collected data were analyzed using SPSS 18 and Amos 18. Results: Sufficiency of the sample size, as determined by Kaiser-Meyer-Olkin measure, was 0.809, which was significantly associated with zero; therefore, performing factor analysis was acceptable and justifiable. The value of Bartlett's test was 696, P-value was less than 0.001, and degree of freedom was equal to 91. In the final model, the relative Chi-square was equal to 1.75 and P-value was less than 0.001. Also, parsimony normed fit index, parsimony-adjusted comparative fit index, and root mean square error of approximation were equal to 0.571, 0.621, and 0.065, respectively. Conclusion: Based on the results of fitting indices for the model and the questionnaire used in the present study for assessing patient safety culture, it can be stated that the Persian translation of this instrument is valid and hospitals can use it to monitor patient safety culture improvement.

  11. 76 FR 35130 - Pipeline Safety: Control Room Management/Human Factors

    Science.gov (United States)

    2011-06-16

    ...: Control Room Management/Human Factors AGENCY: Pipeline and Hazardous Materials Safety Administration... the Control Room Management/Human Factors regulations in order to realize the safety benefits sooner... FR 5536). By this amendment to the Control Room Management/Human Factors (CRM) rule, an operator must...

  12. Nuclear safety regulation on nuclear safety equipment activities in relation to human and organizational factors

    International Nuclear Information System (INIS)

    Li Tianshu

    2013-01-01

    Based on years of knowledge in nuclear safety supervision and experience of investigating and dealing with violation events in repair welding of DFHM, this paper analyzes major faults in manufacturing and maintaining activities of nuclear safety equipment in relation to human and organizational factors. It could be deducted that human and organizational factors has definitely become key features in the development of nuclear energy and technology. Some feasible measures to reinforce supervision on nuclear safety equipment activities have also been proposed. (author)

  13. The consideration of the humane factor is essential in safety systems

    International Nuclear Information System (INIS)

    Parisot, F.

    2010-01-01

    In most risk analysis we consider that the staff fit perfectly the tasks to do in terms of training and competence but in fact a lot of factors intervene like the level of stress of the operator, the time available to identify the trouble or to take a decision, the relevance of the procedures, or the level of coordination and communication between the members of the staff. Different methods exist to assess the human factor, most have been designed to be used in the nuclear sector for instance: THERP (Technique for Human Error Rate Prediction) or OATS (Operation Action Tree) or SHARP (Systematic Human Action Reliability Procedure). These methods apply as early as the design stage of the engineered safety systems. Virtual reality has entered these methods because it allows operators to learn by making errors since errors in virtual reality have no consequences. Learning by making errors is an efficient method to get the operator used to accidental situations and as a consequence to reduce his level of stress. Some methods incorporate human elements into system safety analysis through the definition of performance shaping factors that describe the behaviour of operators in terms of physical and psychological abilities. (A.C.)

  14. Safety analysis of autonomous excavator functionality

    International Nuclear Information System (INIS)

    Seward, D.; Pace, C.; Morrey, R.; Sommerville, I.

    2000-01-01

    This paper presents an account of carrying out a hazard analysis to define the safety requirements for an autonomous robotic excavator. The work is also relevant to the growing generic class of heavy automated mobile machinery. An overview of the excavator design is provided and the concept of a safety manager is introduced. The safety manager is an autonomous module responsible for all aspects of system operational safety, and is central to the control system's architecture. Each stage of the hazard analysis is described, i.e. system model creation, hazard definition and hazard analysis. Analysis at an early stage of the design process, and on a system that interfaces directly to an unstructured environment, exposes certain issues relevant to the application of current hazard analysis methods. The approach taken in the analysis is described. Finally, it is explained how the results of the hazard analysis have influenced system design, in particular, safety manager specifications. Conclusions are then drawn about the applicability of hazard analysis of requirements in general, and suggestions are made as to how the approach can be taken further

  15. Solid waste burial grounds interim safety analysis

    International Nuclear Information System (INIS)

    Saito, G.H.

    1994-01-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment

  16. Solid waste burial grounds interim safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  17. Partial Safety Factors and Target Reliability Level in Danish Structural Codes

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Hansen, J. O.; Nielsen, T. A.

    2001-01-01

    The partial safety factors in the newly revised Danish structural codes have been derived using a reliability-based calibration. The calibrated partial safety factors result in the same average reliability level as in the previous codes, but a much more uniform reliability level has been obtained....... The paper describes the code format, the stochastic models and the resulting optimised partial safety factors....

  18. Restrictive mechanism for safety behaviors and safety attitudes. An analysis focusing on confidence in skills and knowledge

    International Nuclear Information System (INIS)

    Fujita, Tomohiro

    2017-01-01

    This paper investigates the relationship between confidence in skills and knowledge, and safety behaviors and safety attitudes in industrial organizations. According to previous studies, the influence of individual factors such as confidence in skills and knowledge about safety behaviors and attitudes is not as large as that of organizational factors such as leadership and open communication. However, it is possible that having more skills and knowledge contributes to giving workers a better ability to identify perceived hidden risks leading to injuries and accidents in industrial organizations than among those who have fewer skills and less knowledge. Therefore, this study carried out surveys in 2015 and 2016 targeting workers in the energy industry, and reconsidered the relationship between them by adding unexplored factors such as age and work motivations to the existing model. Multivariate analysis revealed that confidence in skills and knowledge have a negative impact on safety behaviors and attitudes, and aging and work motivations have a positive impact on confidence in skills and knowledge. Then, these results suggest that confidence in skills and knowledge which increases along with aging has a restrictive mechanism for safety behaviors and attitudes. Future studies should cover multidimensional aspects of skills and knowledge and focus on the complex relationship between an organization and groups and individuals in the organization. (author)

  19. Factors Contribute to Safety Culture in the Manufacturing Industry in Malaysia

    OpenAIRE

    Ong Choon Hee

    2014-01-01

    The purpose of this paper is to explain the role of safety culture in the manufacturing industry in Malaysia and identify factors contribute to safety culture. It is suggested in this study that leadership support, management commitment and safety management system are important factors that contribute to safety culture. This study also provides theoretical implications to guide future research and offers practical implications to the managers in the development of safety culture. Given that ...

  20. Organizational analysis and safety for utilities with nuclear power plants: an organizational overview. Volume 1

    International Nuclear Information System (INIS)

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Scott, W.G.; Connor, P.E.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. A model is introduced for the purposes of organizing the literature review and showing key relationships among identified organizational factors and nuclear power plant safety. Volume I of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety

  1. Human Factors Engineering and Ergonomics Analysis for the Canister Storage Building (CSB) Results and Findings

    Energy Technology Data Exchange (ETDEWEB)

    GARVIN, L.J.

    1999-09-20

    The purpose for this supplemental report is to follow-up and update the information in SNF-3907, Human Factors Engineering (HFE) Analysis: Results and Findings. This supplemental report responds to applicable U.S. Department of Energy Safety Analysis Report review team comments and questions. This Human Factors Engineering and Ergonomics (HFE/Erg) analysis was conducted from April 1999 to July 1999; SNF-3907 was based on analyses accomplished in October 1998. The HFE/Erg findings presented in this report and SNF-3907, along with the results of HNF-3553, Spent Nuclear Fuel Project, Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report,'' Chapter A3.0, ''Hazards and Accidents Analyses,'' provide the technical basis for preparing or updating HNF-3553. Annex A, Chaptex A13.0, ''Human Factors Engineering.'' The findings presented in this report allow the HNF-3553 Chapter 13.0, ''Human Factors,'' to respond fully to the HFE requirements established in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  2. Use of safety analysis to site comfirmation procedure in case of hard rock repository

    International Nuclear Information System (INIS)

    Peltonen, E.K.

    1984-02-01

    The role of safety analysis in a confirmation procedure of a candidate disposal site of radioactive wastes is discussed. Items dealt with include principle reasons and practical goals of the use of safety analysis, methodology of safety analysis and assessment, as well as usefulness and adequacy of the present safety analysis. Safety analysis is a tool, which enables one to estimate quantitatively the possible radiological impacts from the disposal. The results can be compared with the criteria and the suitability conclusions drawn. Because of its systems analytical nature safety analysis is an effective method to reveal, what are the most important factors of the disposal system and the most critical site characteristics inside the lumped parameters often provided by the experimental site investigation methods. Furthermore it gives information on the accuracy needs of different site properties. This can be utilized to judge whether the quality and quantity of the measurements for the characterization are sufficient as well as to guide the further site investigations. A more practical discussion regarding the applicability of the use of safety analysis is presented by an example concerning the assessment of a Finnish candidate site for low- and intermediate-level radioactive waste repository. (author)

  3. Idaho National Engineering Laboratory (INEL) Environmental Restoration Program (ERP), Baseline Safety Analysis File (BSAF). Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-20

    This document was prepared to take the place of a Safety Evaluation Report since the Baseline Safety Analysis File (BSAF)and associated Baseline Technical Safety Requirements (TSR) File do not meet the requirements of a complete safety analysis documentation. Its purpose is to present in summary form the background of how the BSAF and Baseline TSR originated and a description of the process by which it was produced and approved for use in the Environmental Restoration Program.The BSAF is a facility safety reference document for INEL environmental restoration activities including environmental remediation of inactive waste sites and decontamination and decommissioning (D&D) of surplus facilities. The BSAF contains safety bases common to environmental restoration activities and guidelines for performing and documenting safety analysis. The common safety bases can be incorporated by reference into the safety analysis documentation prepared for individual environmental restoration activities with justification and any necessary revisions. The safety analysis guidelines in BSAF provide an accepted method for hazard analysis; analysis of normal, abnormal, and accident conditions; human factors analysis; and derivation of TSRS. The BSAF safety bases and guidelines are graded for environmental restoration activities.

  4. Idaho National Engineering Laboratory (INEL) Environmental Restoration Program (ERP), Baseline Safety Analysis File (BSAF). Revision 1

    International Nuclear Information System (INIS)

    1994-01-01

    This document was prepared to take the place of a Safety Evaluation Report since the Baseline Safety Analysis File (BSAF)and associated Baseline Technical Safety Requirements (TSR) File do not meet the requirements of a complete safety analysis documentation. Its purpose is to present in summary form the background of how the BSAF and Baseline TSR originated and a description of the process by which it was produced and approved for use in the Environmental Restoration Program.The BSAF is a facility safety reference document for INEL environmental restoration activities including environmental remediation of inactive waste sites and decontamination and decommissioning (D ampersand D) of surplus facilities. The BSAF contains safety bases common to environmental restoration activities and guidelines for performing and documenting safety analysis. The common safety bases can be incorporated by reference into the safety analysis documentation prepared for individual environmental restoration activities with justification and any necessary revisions. The safety analysis guidelines in BSAF provide an accepted method for hazard analysis; analysis of normal, abnormal, and accident conditions; human factors analysis; and derivation of TSRS. The BSAF safety bases and guidelines are graded for environmental restoration activities

  5. Safety analysis procedures for PHWR

    International Nuclear Information System (INIS)

    Min, Byung Joo; Kim, Hyoung Tae; Yoo, Kun Joong

    2004-03-01

    The methodology of safety analyses for CANDU reactors in Canada, a vendor country, uses a combination of best-estimate physical models and conservative input parameters so as to minimize the uncertainty of the plant behavior predictions. As using the conservative input parameters, the results of the safety analyses are assured the regulatory requirements such as the public dose, the integrity of fuel and fuel channel, the integrity of containment and reactor structures, etc. However, there is not the comprehensive and systematic procedures for safety analyses for CANDU reactors in Korea. In this regard, the development of the safety analyses procedures for CANDU reactors is being conducted not only to establish the safety analyses system, but also to enhance the quality assurance of the safety assessment. In the first phase of this study, the general procedures of the deterministic safety analyses are developed. The general safety procedures are covered the specification of the initial event, selection of the methodology and accident sequences, computer codes, safety analysis procedures, verification of errors and uncertainties, etc. Finally, These general procedures of the safety analyses are applied to the Large Break Loss Of Coolant Accident (LBLOCA) in Final Safety Analysis Report (FSAR) for Wolsong units 2, 3, 4

  6. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the System-Wide Safety and Assurance Technologies Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2015-01-01

    The Aviation Safety Program (AvSP) System-Wide Safety and Assurance Technologies (SSAT) Project asked the AvSP Systems and Portfolio Analysis Team to identify SSAT-related trends. SSAT had four technical challenges: advance safety assurance to enable deployment of NextGen systems; automated discovery of precursors to aviation safety incidents; increasing safety of human-automation interaction by incorporating human performance, and prognostic algorithm design for safety assurance. This report reviews incident data from the NASA Aviation Safety Reporting System (ASRS) for system-component-failure- or-malfunction- (SCFM-) related and human-factor-related incidents for commercial or cargo air carriers (Part 121), commuter airlines (Part 135), and general aviation (Part 91). The data was analyzed by Federal Aviation Regulations (FAR) part, phase of flight, SCFM category, human factor category, and a variety of anomalies and results. There were 38 894 SCFM-related incidents and 83 478 human-factorrelated incidents analyzed between January 1993 and April 2011.

  7. Safety culture evaluation and asset root cause analysis

    International Nuclear Information System (INIS)

    Okrent, D.; Xiong, Y.

    1995-01-01

    This paper examines the role of organizational and management factors in nuclear power plant safety through the use of operating experiences. The ASSET (Assessment of Safety Significant Events Team) reports of thirteen plants (total thirty events) have been analyzed in term of twenty organizational dimensions (factors) identified by Brookhaven National Laboratory and Pennsylvania State University. For three plants detailed results are reported in this paper. The results of thirteen plants are summarized in the form of a table. The study tends to confirm that organizational and management factors play an important role in plant safety. The twenty organizational dimensions and their definitions, in general, were adequate in this study. Formalization, Safety Culture, Technical Knowledge, Training, Roles-Responsibilities and Problem Identification appear to be key organizational factors which influence the safety of nuclear power plants studied

  8. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eom, H S; Kim, J H; Lee, J C; Choi, Y R; Moon, S S

    2000-12-01

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system.

  9. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    International Nuclear Information System (INIS)

    Eom, H.S.; Kim, J.H.; Lee, J.C.; Choi, Y.R.; Moon, S.S.

    2000-12-01

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system

  10. Bayesian-network-based safety risk analysis in construction projects

    International Nuclear Information System (INIS)

    Zhang, Limao; Wu, Xianguo; Skibniewski, Miroslaw J.; Zhong, Jingbing; Lu, Yujie

    2014-01-01

    This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical

  11. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  12. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    International Nuclear Information System (INIS)

    E.N. Lindner

    2004-01-01

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  13. Safety balance: Analysis of safety systems; Bilans de surete: analyse par les organismes de surete

    Energy Technology Data Exchange (ETDEWEB)

    Delage, M; Giroux, C

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses.

  14. Design of Vertical Wall Caisson Breakwaters using Partial Safety Factors

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Sørensen, John Dalsgaard

    1999-01-01

    The paper presents a new system for implementation of target reliability in caisson breakwater designs by means of partial safety factors. The development of the system is explained, and tables of partial safety factors are presented for important overall stability failure modes related to caisson...

  15. SIMMER as a safety analysis tool

    International Nuclear Information System (INIS)

    Smith, L.L.; Bell, C.R.; Bohl, W.R.; Bott, T.F.; Dearing, J.F.; Luck, L.B.

    1982-01-01

    SIMMER has been used for numerous applications in fast reactor safety, encompassing both accident and experiment analysis. Recent analyses of transition-phase behavior in potential core disruptive accidents have integrated SIMMER testing with the accident analysis. Results of both the accident analysis and the verification effort are presented as a comprehensive safety analysis program

  16. Modelling of safety barriers including human and organisational factors to improve process safety

    DEFF Research Database (Denmark)

    Markert, Frank; Duijm, Nijs Jan; Thommesen, Jacob

    2013-01-01

    It is believed that traditional safety management needs to be improved on the aspect of preparedness for coping with expected and unexpected deviations, avoiding an overly optimistic reliance on safety systems. Remembering recent major accidents, such as the Deep Water Horizon, the Texas City....... A valuable approach is the inclusion of human and organisational factors into the simulation of the reliability of the technical system using event trees and fault trees and the concept of safety barriers. This has been demonstrated e.g. in the former European research project ARAMIS (Accidental Risk...

  17. Human factor in the problem of Russian nuclear industry safety

    International Nuclear Information System (INIS)

    Abramova, V.

    2002-01-01

    The approach to human factor definition, considered in the paper, consists of recognition of as many as possible factors for developing a complete list of factors, which have influence on mistakes or successful work of NPP personnel. Safety culture is considered as the main factor. The enhancement in nuclear power industry includes an optimization of organizational structures and development of personnel safety attitudes. The organizational factors, as possible root causes for human errors, need to be identified, assessed and improved. The organizational activities taken in Russia are presented

  18. Development of safety analysis technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Suk K.; Song, J. H.; Chung, Y. J. and others

    1999-03-01

    Inherent safety features and safety system characteristics of the SMART integral reactor are investigated in this study. Performance and safety of the SMART conceptual design have been evaluated and confirmed through the performance and safety analyses using safety analysis system codes as well as a preliminary performance and safety analysis methodology. SMART design base events and their acceptance criteria are identified to develop a preliminary PIRT for the SMART integral reactor. Using the preliminary PIRT, a set of experimental program for the thermal hydraulic separate effect tests and the integral effect tests was developed for the thermal hydraulic model development and the system code validation. Safety characteristics as well as the safety issues of the integral reactor has been identified during the study, which will be used to resolve the safety issues and guide the regulatory criteria for the integral reactor. The results of the performance and safety analyses performed during the study were used to feedback for the SMART conceptual design. The performance and safety analysis code systems as well as the preliminary safety analysis methodology developed in this study will be validated as the SMART design evolves. The performance and safety analysis technology developed during the study will be utilized for the SMART basic design development. (author)

  19. Factors influencing workers to follow food safety management systems in meat plants in Ontario, Canada.

    Science.gov (United States)

    Ball, Brita; Wilcock, Anne; Aung, May

    2009-06-01

    Small and medium sized food businesses have been slow to adopt food safety management systems (FSMSs) such as good manufacturing practices and Hazard Analysis Critical Control Point (HACCP). This study identifies factors influencing workers in their implementation of food safety practices in small and medium meat processing establishments in Ontario, Canada. A qualitative approach was used to explore in-plant factors that influence the implementation of FSMSs. Thirteen in-depth interviews in five meat plants and two focus group interviews were conducted. These generated 219 pages of verbatim transcripts which were analysed using NVivo 7 software. Main themes identified in the data related to production systems, organisational characteristics and employee characteristics. A socio-psychological model based on the theory of planned behaviour is proposed to describe how these themes and underlying sub-themes relate to FSMS implementation. Addressing the various factors that influence production workers is expected to enhance FSMS implementation and increase food safety.

  20. Probabilistic Safety Assessment: An Effective Tool to Support “Systemic Approach” to Nuclear Safety and Analysis of Human and Organizational Aspects

    International Nuclear Information System (INIS)

    Kuzmina, I.

    2016-01-01

    The Probabilistic Safety Assessment (PSA) represents a comprehensive conceptual and analytical tool for quantitative evaluation of risk of undesirable consequences from nuclear facilities and drawing on qualitative insights for nuclear safety. PSA considers various technical, human, and organizational factors in an integral manner thus explicitly pursuing a true ‘systemic approach’ to safety and enabling holistic insights for further safety improvement. Human Reliability Analysis (HRA) is one of the major tasks within PSA. The poster paper provides an overview of the objectives and scope of PSA and HRA and discusses on further needs in the area of HRA. (author)

  1. Factors influencing safety in a sample of marked pedestrian crossings selected for safety inspections in the city of Oslo.

    Science.gov (United States)

    Elvik, Rune; Sørensen, Michael W J; Nævestad, Tor-Olav

    2013-10-01

    This paper reports an analysis of factors influencing safety in a sample of marked pedestrian crossings in the city of Oslo, Norway. The sample consists of 159 marked pedestrian crossings where a total of 316 accidents were recorded during a period of five years. The crossings were selected for inspection because of they were, for various reasons, regarded as sub-standard. The sample of crossings is therefore not representative of all pedestrian crossings in Oslo. Factors influencing the number of accidents were studied by means of negative binomial regression. Factors that were studied included the volume of pedestrians and vehicles, the number of traffic lanes at the crossing, the location of the crossing (midblock or junction), the type of traffic control, the share of pedestrians using the crossing and the speed of approaching vehicles. The analysis confirmed the presence of a "safety-in-numbers" effect, meaning that an increase in the number of pedestrians is associated with a lower risk of accident for each pedestrian. Crossings located in four-leg junctions or roundabouts had more accidents than crossings located in three-leg junctions or on sections between junctions. A high share of pedestrians crossing the road outside the marked crossing was associated with a high number of accidents. Increased speed was associated with an increased number of accidents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Computer aided safety analysis 1989

    International Nuclear Information System (INIS)

    1990-04-01

    The meeting was conducted in a workshop style, to encourage involvement of all participants during the discussions. Forty-five (45) experts from 19 countries, plus 22 experts from the GDR participated in the meeting. A list of participants can be found at the end of this volume. Forty-two (42) papers were presented and discussed during the meeting. Additionally an open discussion was held on the possible directions of the IAEA programme on Computer Aided Safety Analysis. A summary of the conclusions of these discussions is presented in the publication. The remainder of this proceedings volume comprises the transcript of selected technical papers (22) presented in the meeting. It is the intention of the IAEA that the publication of these proceedings will extend the benefits of the discussions held during the meeting to a larger audience throughout the world. The Technical Committee/Workshop on Computer Aided Safety Analysis was organized by the IAEA in cooperation with the National Board for Safety and Radiological Protection (SAAS) of the German Democratic Republic in Berlin. The purpose of the meeting was to provide an opportunity for discussions on experiences in the use of computer codes used for safety analysis of nuclear power plants. In particular it was intended to provide a forum for exchange of information among experts using computer codes for safety analysis under the Technical Cooperation Programme on Safety of WWER Type Reactors (RER/9/004) and other experts throughout the world. A separate abstract was prepared for each of the 22 selected papers. Refs, figs tabs and pictures

  3. Subseabed disposal safety analysis

    International Nuclear Information System (INIS)

    Koplick, C.M.; Kabele, T.J.

    1982-01-01

    This report summarizes the status of work performed by Analytic Sciences Corporation (TASC) in FY'81 on subseabed disposal safety analysis. Safety analysis for subseabed disposal is divided into two phases: pre-emplacement which includes all transportation, handling, and emplacement activities; and long-term (post-emplacement), which is concerned with the potential hazard after waste is safely emplaced. Details of TASC work in these two areas are provided in two technical reports. The work to date, while preliminary, supports the technical and environmental feasibility of subseabed disposal of HLW

  4. 14 CFR 33.75 - Safety analysis.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Safety analysis. 33.75 Section 33.75... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.75 Safety analysis. (a... consequences of all failures that can reasonably be expected to occur. This analysis will take into account, if...

  5. 14 CFR 35.15 - Safety analysis.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Safety analysis. 35.15 Section 35.15... STANDARDS: PROPELLERS Design and Construction § 35.15 Safety analysis. (a)(1) The applicant must analyze the.... This analysis will take into account, if applicable: (i) The propeller system in a typical installation...

  6. Safety of Factor XIII Concentrate: Analysis of More than 20 Years of Pharmacovigilance Data

    Science.gov (United States)

    Solomon, Cristina; Korte, Wolfgang; Fries, Dietmar; Pendrak, Inna; Joch, Christine; Gröner, Albrecht; Birschmann, Ingvild

    2016-01-01

    Background Plasma-derived factor XIII (FXIII) concentrate is an effective treatment for FXIII deficiency. We describe adverse drug reactions (ADRs) reported during pharmacovigilance monitoring of Fibrogammin®/Corifact® and review published safety data. Methods Postmarketing safety reports recorded by CSL Behring from June 1993 to September 2013 were analyzed. Clinical studies published during the same period were also reviewed. Results Commercial data indicated that 1,653,450,333 IU FXIII concentrate were distributed over the review period, equivalent to 1,181,036 doses for a 70 kg patient. 75 cases were reported (one/15,700 standard doses or 22,046,000 IU). Reports of special interest included 12 cases of possible hypersensitivity reactions (one/98,400 doses or 137,787,500 IU), 7 with possible thromboembolic events (one/168,700 doses or 236,207,200 IU), 5 of possible inhibitor development (one/236,200 doses or 330,690,100 IU), and 20 of possible pathogen transmission (one/59,100 doses or 82,672,500 IU). 19 pathogen transmission cases involved viral infection; 4 could not be analyzed due to insufficient data, but for all others a causal relationship to the product was assessed as unlikely. A review of published literature revealed a similar safety profile. Conclusion Assessment of ADRs demonstrated that FXIII concentrate carries a low risk of ADRs across various clinical situations, suggesting a favorable safety profile. PMID:27781024

  7. Analysis of safety culture components based on site interviews

    International Nuclear Information System (INIS)

    Ueno, Akira; Nagano, Yuko; Matsuura, Shojiro

    2002-01-01

    Safety culture of an organization is influenced by many factors such as employee's moral, safety policy of top management and questioning attitude among site staff. First this paper analyzes key factors of safety culture on the basis of site interviews. Then the paper presents a safety culture composite model and its applicability in various contexts. (author)

  8. Safety-critical human factors issues derived from analysis of the TEPCO Fukushima Daiichi accident investigation reports

    International Nuclear Information System (INIS)

    Sakuda, Hiroshi; Takeuchi, Michiru

    2013-01-01

    The Fukushima Daiichi nuclear power plant accident on March 11, 2011 had a large impact both in and outside Japan, and is not yet concluded. After Tokyo Electric Power Co.'s (TEPCO's) Fukushima accident, electric power suppliers have taken measures to respond in the event that the same state of emergency occurs - deploying mobile generators, temporary pumps and hoses, and training employees in the use of this equipment. However, it is not only the “hard” problems including the design of equipment, but the “soft” problems such as organization and safety culture that have been highlighted as key contributors in this accident. Although a number of organizations have undertaken factor analysis of the accident and proposed issues to be reviewed and measures to be taken, a systematic overview about electric power suppliers' organization and safety culture has not yet been undertaken. This study is based on three major reports: the report by the national Diet of Japan Fukushima Nuclear Accident Independent Investigation Commission (the Diet report), the report by the Investigation Committee on the Accident at Fukushima Nuclear Power Stations of Tokyo Electric Power Company (Government report), and the report by the non-government committee supported by the Rebuild Japan Initiative Foundation (Non-government report). From these reports, the sections relevant to electric power suppliers' organization and safety culture were extracted. These sections were arranged to correspond with the prerequisites for the ideal organization, and 30 issues to be reviewed by electric power suppliers were extracted using brainstorming methods. It is expected that the identified issues will become a reference for every organization concerned to work on preventive measures hereafter. (author)

  9. Patient safety - the role of human factors and systems engineering.

    Science.gov (United States)

    Carayon, Pascale; Wood, Kenneth E

    2010-01-01

    Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety.

  10. Patient Safety: The Role of Human Factors and Systems Engineering

    Science.gov (United States)

    Carayon, Pascale; Wood, Kenneth E.

    2011-01-01

    Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety. PMID:20543237

  11. Software FMEA analysis for safety-related application software

    International Nuclear Information System (INIS)

    Park, Gee-Yong; Kim, Dong Hoon; Lee, Dong Young

    2014-01-01

    Highlights: • We develop a modified FMEA analysis suited for applying to software architecture. • A template for failure modes on a specific software language is established. • A detailed-level software FMEA analysis on nuclear safety software is presented. - Abstract: A method of a software safety analysis is described in this paper for safety-related application software. The target software system is a software code installed at an Automatic Test and Interface Processor (ATIP) in a digital reactor protection system (DRPS). For the ATIP software safety analysis, at first, an overall safety or hazard analysis is performed over the software architecture and modules, and then a detailed safety analysis based on the software FMEA (Failure Modes and Effect Analysis) method is applied to the ATIP program. For an efficient analysis, the software FMEA analysis is carried out based on the so-called failure-mode template extracted from the function blocks used in the function block diagram (FBD) for the ATIP software. The software safety analysis by the software FMEA analysis, being applied to the ATIP software code, which has been integrated and passed through a very rigorous system test procedure, is proven to be able to provide very valuable results (i.e., software defects) that could not be identified during various system tests

  12. Organizational analysis and safety for utilities with nuclear power plants: an organizational overview. Volume 1. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Scott, W.G.; Connor, P.E.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. A model is introduced for the purposes of organizing the literature review and showing key relationships among identified organizational factors and nuclear power plant safety. Volume I of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety.

  13. Gas-cooled reactor safety and accident analysis

    International Nuclear Information System (INIS)

    1985-12-01

    The Specialists' Meeting on Gas-Cooled Reactor Safety and Accident Analysis was convened by the International Atomic Energy Agency in Oak Ridge on the invitation of the Department of Energy in Washington, USA. The meeting was hosted by the Oak Ridge National Laboratory. The purpose of the meeting was to provide an opportunity to compare and discuss results of safety and accident analysis of gas-cooled reactors under development, construction or in operation, to review their lay-out, design, and their operational performance, and to identify areas in which additional research and development are needed. The meeting emphasized the high safety margins of gas-cooled reactors and gave particular attention to the inherent safety features of small reactor units. The meeting was subdivided into four technical sessions: Safety and Related Experience with Operating Gas-Cooled Reactors (4 papers); Risk and Safety Analysis (11 papers); Accident Analysis (9 papers); Miscellaneous Related Topics (5 papers). A separate abstract was prepared for each of these papers

  14. Safety analysis - current and future regulatory challenges

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, T., E-mail: Terry.Jamieson@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2015-07-01

    'Full text:' The current and future regulatory challenges associated with deterministic safety analysis are reviewed, including: 1. The CNSC's and safety control areas. 2. Traditional safety analysis approach. 3. Experience gained and impact. 4. Current analysis and regulatory approaches. 5. Current status. 6. Complexity and challenges In particular, the technical, regulatory and strategic aspects of these challenges are discussed. (author)

  15. Safety analysis - current and future regulatory challenges

    International Nuclear Information System (INIS)

    Jamieson, T.

    2015-01-01

    'Full text:' The current and future regulatory challenges associated with deterministic safety analysis are reviewed, including: 1. The CNSC's and safety control areas. 2. Traditional safety analysis approach. 3. Experience gained and impact. 4. Current analysis and regulatory approaches. 5. Current status. 6. Complexity and challenges In particular, the technical, regulatory and strategic aspects of these challenges are discussed. (author)

  16. Development of safety analysis technology for LMR

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kwon, Y. M.; Kim, K. D.

    2000-05-01

    The analysis methodologies as well as the analysis computer code system for the transient, HCDA, and containment performance analyses, which are required for KALIMER safety analyses, have been developed. The SSC-K code has been developed based on SSC-L which is an analysis code for loop type LMR, by improving models necessary for the KALIMER system analysis, and additional models have been added to the code. In addition, HCDA analysis model has been developed and the containment performance analysis code has been also improved. The preliminary basis for the safety analysis has been established, and the preliminary safety analyses for the key design features have been performed. In addition, a state-of-art analysis for LMR PSA and overseas safety and licensing requirements have been reviewed. The design database for the systematic management of the design documents as well as design processes has been established as well

  17. Development of safety analysis technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kwon, Y. M.; Kim, K. D. [and others

    2000-05-01

    The analysis methodologies as well as the analysis computer code system for the transient, HCDA, and containment performance analyses, which are required for KALIMER safety analyses, have been developed. The SSC-K code has been developed based on SSC-L which is an analysis code for loop type LMR, by improving models necessary for the KALIMER system analysis, and additional models have been added to the code. In addition, HCDA analysis model has been developed and the containment performance analysis code has been also improved. The preliminary basis for the safety analysis has been established, and the preliminary safety analyses for the key design features have been performed. In addition, a state-of-art analysis for LMR PSA and overseas safety and licensing requirements have been reviewed. The design database for the systematic management of the design documents as well as design processes has been established as well.

  18. Safety analysis report upgrade program at the Plutonium Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pan, P.Y.

    1993-01-01

    Plutonium research and development activities have resided at the Los Alamos National Laboratory (LANL) since 1943. The function of the Plutonium Facility (PF-4) has been to perform basic special nuclear materials research and development and to support national defense and energy programs. The original Final Safety Analysis Report (FSAR) for PF-4 was approved by DOE in 1978. This FSAR analyzed design-basis and bounding accidents. In 1986, DOE/AL published DOE/AL Order 5481.1B, ''Safety Analysis and Review System'', as a requirement for preparation and review of safety analyses. To meet the new DOE requirements, the Facilities Management Group of the Nuclear Material Technology Division submitted a draft FSAR to DOE for approval in April 1991. This draft FSAR analyzed the new configurations and used a limited-scope probabilistic risk analysis for accident analysis. During the DOE review of the draft FSAR, DOE Order 5480.23 ''Nuclear Safety Analysis Reports'', was promulgated and was later officially released in April 1992. The new order significantly expands the scope, preparation, and maintenance efforts beyond those required in DOE/AL Order 5481.1B by requiring: description of institutional and human-factor safety programs; clear definitions of all facility-specific safety commitments; more comprehensive and detailed hazard assessment; use of new safety analysis methods; and annual updates of FSARs. This paper describes the safety analysis report (SAR) upgrade program at the Plutonium Facility in LANL. The SAR upgrade program is established to meet the requirements in DOE Order 5480.23. Described in this paper are the SAR background, authorization basis for operations, hazard classification, and technical program elements

  19. Safety analysis reports - new strategies

    International Nuclear Information System (INIS)

    Booth, J.A.

    1994-01-01

    Within the past year there have been many external changes in the requirements of safety analysis reports. Now there is emphasis on open-quotes graded approachesclose quotes depending on the Hazard Classification of the project. The Energy Facility Contractors Group (EFCOG) has a Safety Analysis Working Group. The results of this group for the past year are discussed as well as the implications for EG ampersand G. New strategies include ideas for incorporating the graded approach, auditable safety documents, additional guidance for Hazard Classification per DOE-STD-1027-92. The emphasis in the paper is on those projects whose hazard classification is category three or less

  20. Deep Borehole Disposal Safety Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Tillman, Jack Bruce [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.

  1. Factor analysis on hazards for safety assessment in decommissioning workplace of nuclear facilities using a semantic differential method

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwan-Seong [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)], E-mail: ksjeongl@kaeri.re.kr; Lim, Hyeon-Kyo [Chungbuk National University, 410 Sungbong-ro, Heungduk-gu, Cheongju, Chungbuk 361-763 (Korea, Republic of)

    2009-10-15

    The decommissioning of nuclear facilities must be accomplished according to its structural conditions and radiological characteristics. An effective risk analysis requires basic knowledge about possible risks, characteristics of potential hazards, and comprehensive understanding of the associated cause-effect relationships within a decommissioning for nuclear facilities. The hazards associated with a decommissioning plan are important not only because they may be a direct cause of harm to workers but also because their occurrence may, indirectly, result in increased radiological and non-radiological hazards. Workers need to be protected by eliminating or reducing the radiological and non-radiological hazards that may arise during routine decommissioning activities as well as during accidents. Therefore, to prepare the safety assessment for decommissioning of nuclear facilities, the radiological and non-radiological hazards should be systematically identified and classified. With a semantic differential method of screening factor and risk perception factor, the radiological and non-radiological hazards are screened and identified.

  2. National Waste Repository Novi Han operational safety analysis report. Safety assessment methodology

    International Nuclear Information System (INIS)

    2003-01-01

    The scope of the safety assessment (SA), presented includes: waste management functions (acceptance, conditioning, storage, disposal), inventory (current and expected in the future), hazards (radiological and non-radiological) and normal and accidental modes. The stages in the development of the SA are: criteria selection, information collection, safety analysis and safety assessment documentation. After the review the facilities functions and the national and international requirements, the criteria for safety level assessment are set. As a result from the 2nd stage actual parameters of the facility, necessary for safety analysis are obtained.The methodology is selected on the base of the comparability of the results with the results of previous safety assessments and existing standards and requirements. The procedure and requirements for scenarios selection are described. A radiological hazard categorisation of the facilities is presented. Qualitative hazards and operability analysis is applied. The resulting list of events are subjected to procedure for prioritization by method of 'criticality analysis', so the estimation of the risk is given for each event. The events that fall into category of risk on the boundary of acceptability or are unacceptable are subjected to the next steps of the analysis. As a result the lists with scenarios for PSA and possible design scenarios are established. PSA logical modeling and quantitative calculations of accident sequences are presented

  3. Time series analysis in road safety research uisng state space methods

    OpenAIRE

    BIJLEVELD, FD

    2008-01-01

    In this thesis we present a comprehensive study into novel time series models for aggregated road safety data. The models are mainly intended for analysis of indicators relevant to road safety, with a particular focus on how to measure these factors. Such developments may need to be related to or explained by external influences. It is also possible to make forecasts using the models. Relevant indicators include the number of persons killed permonth or year. These statistics are closely watch...

  4. Patient safety risk factors in minimally invasive surgery : A validation study

    NARCIS (Netherlands)

    Rodrigues, S.P.; Ter Kuile, M.; Dankelman, J.; Jansen, F.W.

    2012-01-01

    This study was conducted to adapt and validate a patient safety (PS) framework for minimally invasive surgery (MIS) as a first step in understanding the clinical relevance of various PS risk factors in MIS. Eight patient safety risk factor domains were identified using frameworks from a systems

  5. PSA methodology including new design, operational and safety factors, 'Level of recognition of phenomena with a presumed dominant influence upon operational safety' (failures of conventional as well as non-conventional passive components, dependent failures, influence of operator, fires and external threats, digital control, organizational factors)

    International Nuclear Information System (INIS)

    Jirsa, P.

    2001-10-01

    The document represents a specific type of discussion of existing methodologies for the creation and application of probabilistic safety assessment (PSA) in light of the EUR document summarizing requirements placed by Western European NPP operators on the future design of nuclear power plants. A partial goal of this discussion consists in mapping, from the PSA point of view, those selected design, operational and/or safety factors of future NPPs that may be entirely new or, at least, newly addressed. Therefore, the terms of reference for this stage were formulated as follows: Assess current level of knowledge and procedures in the analysis of factors and phenomena with a dominant influence upon operational safety of new generation reactors, especially in the following areas: (1) Phenomenology of failure types and mechanisms and reliability of conventional passive safety system components; (2) Phenomenology of failure types and mechanisms and reliability of non-conventional passive components of newly designed safety systems; (3) Phenomenology of types and mechanisms of dependent failures; (4) Human factor role in new generation reactors and its effect upon safety; (5) Fire safety and other external threats to new nuclear installations; (6) Reliability of the digital systems of the I and C system and their effect upon safety; and (7) Organizational factors in new nuclear installations. (P.A.)

  6. Human factors and safety in emergency medicine

    Science.gov (United States)

    Schaefer, H. G.; Helmreich, R. L.; Scheidegger, D.

    1994-01-01

    A model based on an input process and outcome conceptualisation is suggested to address safety-relevant factors in emergency medicine. As shown in other dynamic and demanding environments, human factors play a decisive role in attaining high quality service. Attitudes held by health-care providers, organisational shells and work-cultural parameters determine communication, conflict resolution and workload distribution within and between teams. These factors should be taken into account to improve outcomes such as operational integrity, job satisfaction and morale.

  7. Assessment of Factors Associated with the Safety Depth of GV15 Yamen

    Directory of Open Access Journals (Sweden)

    Park Soo-Jung

    2014-03-01

    Full Text Available Objectives: Yamen is the fifteenth acupoint of the Governor Vessel Meridian (GV15. It is anatomically close to the medulla oblongata, so finding the safety depth of the acupoint is very important. However, few studies on the safety depth of GV15 have been done. Methods: This study tried to measure the safety depth of GV15 by using magnetic resonance imaging (MRI scans and to analyze the factors affecting the safety depth through multiple regression analyses. This study was carried out for patients who had a brain MRI scan while visiting Jeonju Wonkwang Hospital, Korea. The shortest distance between the glabella and the occipital protuberance (DGO, the horizontal distance between the glabella and the back of the head (DGB and the dangerous depth (DD were measured from the sagittal views of the MRI images. The DD is the horizontal distance from the skin’s surface at GV15 to the spinal dura mater. Results: The model suggested that the safety depth (SD was significantly associated with gender (β = 0.474, P < 0.0001, DGO (β = 0.272, P = 0.027, and BMI (β = 0.249, P = 0.005 and the combination of three variables can explain the SD, with R2 = 0.571 (Table 3 A longer SD was associated with males and with greater BMI and DGO. Conclusion: This study suggests that gender, BMI and DGO may be important factors when the SD of GV15 is considered clinically through a multiple regression analysis of GV15.

  8. NPP Temelin safety analysis reports and PSA status

    International Nuclear Information System (INIS)

    Mlady, O.

    1999-01-01

    To enhance the safety level of Temelin NPP, recommendations of the international reviews were implemented into the design as well as into organization of the plant construction and preparation for operation. The safety assessment of these design changes has been integrated and reflected in the Safety Analysis Reports, which follow the internationally accepted guidelines. All safety analyses within Safety Analysis Reports were repeated carefully considering technical improvements and replacements to complement preliminary safety documentation. These analyses were performed by advanced western computer codes to the depth and in the structure required by western standards. The Temelin NPP followed a systematic approach in the functional design of the Reactor Protection System and related safety analyses. Modifications of reactor protection system increase defense in depth and facilitate demonstrating that LOCA and radiological limits are met for non-LOCA events. The rigorous safety analysis methodology provides assurance that LOCA and radiological limits are met. Established and accepted safety analysis methodology and accepted criteria were applied to Temelin NPP meeting US NRC and Czech Republic requirements. IAEA guidelines and recommendations

  9. System safety engineering analysis handbook

    Science.gov (United States)

    Ijams, T. E.

    1972-01-01

    The basic requirements and guidelines for the preparation of System Safety Engineering Analysis are presented. The philosophy of System Safety and the various analytic methods available to the engineering profession are discussed. A text-book description of each of the methods is included.

  10. Safety climate and attitude as evaluation measures of organizational safety.

    Science.gov (United States)

    Isla Díaz, R; Díaz Cabrera, D

    1997-09-01

    The main aim of this research is to develop a set of evaluation measures for safety attitudes and safety climate. Specifically it is intended: (a) to test the instruments; (b) to identify the essential dimensions of the safety climate in the airport ground handling companies; (c) to assess the quality of the differences in the safety climate for each company and its relation to the accident rate; (d) to analyse the relationship between attitudes and safety climate; and (e) to evaluate the influences of situational and personal factors on both safety climate and attitude. The study sample consisted of 166 subjects from three airport companies. Specifically, this research was centered on ground handling departments. The factor analysis of the safety climate instrument resulted in six factors which explained 69.8% of the total variance. We found significant differences in safety attitudes and climate in relation to type of enterprise.

  11. Current status of safety analysis report for ANPP

    International Nuclear Information System (INIS)

    Amirjanyan, A.

    1999-01-01

    Current situation concerning Armenian NPP safety analysis report is considered within the frame of accepted safety practice. Licensing procedure is being developed. Technical support group was established in the Armenian Nuclear Regulatory Authority (ANRA). The task of the group is to study modern methods of NPP in depth safety analysis for technical assistance for the ANRA, and perform independent safety assessments. ANRA will be obliged to demand assistance from various foreign organisations for preparation of different parts of the Safety Analysis Report like determination though certain parts can be prepared in Armenia

  12. NKS/SOS-1 seminar on safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, K. [Risoe National Lab., Roskilde (Denmark); Anderson, K. [Karinta-Konsult (Sweden); Pulkkinen, U. [VTT Automation (Finland)

    2001-05-01

    The report describes presentations and discussions at a seminar held at Risoe on March 22-23, 2000. The title of the seminar was NKS/SOS-1 - Safety Analysis. It dealt with issues of relevance for the safety analysis for the entire nuclear safety field (notably reactors and nuclear waste repositories). Such issues were: objectives of safety analysis, risk criteria, decision analysis, expert judgement and risk communication. In addition, one talk dealt with criteria for chemical industries in Europe. The seminar clearly showed that the concept of risk is multidimensional, which makes clarity and transparency essential elements in risk communication, and that there are issues of common concern between different applications, such as how to deal with different kinds of uncertainty and expert judgement. (au)

  13. A Methodology To Incorporate The Safety Culture Into Probabilistic Safety Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sunghyun; Kim, Namyeong; Jae, Moosung [Hanyang University, Seoul (Korea, Republic of)

    2015-10-15

    In order to incorporate organizational factors into PSA, a methodology needs to be developed. Using the AHP to weigh organizational factors as well as the SLIM to rate those factors, a methodology is introduced in this study. The safety issues related to nuclear safety culture have occurred increasingly. The quantification tool has to be developed in order to include the organizational factor into Probabilistic Safety Assessments. In this study, the state-of-the-art for the organizational evaluation methodologies has been surveyed. This study includes the research for organizational factors, maintenance process, maintenance process analysis models, a quantitative methodology using Analytic Hierarchy Process, Success Likelihood Index Methodology. The purpose of this study is to develop a methodology to incorporate the safety culture into PSA for obtaining more objective risk than before. The organizational factor considered in nuclear safety culture might affect the potential risk of human error and hardware-failure. The safety culture impact index to monitor the plant safety culture can be assessed by applying the developed methodology into a nuclear power plant.

  14. A Methodology To Incorporate The Safety Culture Into Probabilistic Safety Assessments

    International Nuclear Information System (INIS)

    Park, Sunghyun; Kim, Namyeong; Jae, Moosung

    2015-01-01

    In order to incorporate organizational factors into PSA, a methodology needs to be developed. Using the AHP to weigh organizational factors as well as the SLIM to rate those factors, a methodology is introduced in this study. The safety issues related to nuclear safety culture have occurred increasingly. The quantification tool has to be developed in order to include the organizational factor into Probabilistic Safety Assessments. In this study, the state-of-the-art for the organizational evaluation methodologies has been surveyed. This study includes the research for organizational factors, maintenance process, maintenance process analysis models, a quantitative methodology using Analytic Hierarchy Process, Success Likelihood Index Methodology. The purpose of this study is to develop a methodology to incorporate the safety culture into PSA for obtaining more objective risk than before. The organizational factor considered in nuclear safety culture might affect the potential risk of human error and hardware-failure. The safety culture impact index to monitor the plant safety culture can be assessed by applying the developed methodology into a nuclear power plant

  15. HANFORD SAFETY ANALYSIS & RISK ASSESSMENT HANDBOOK (SARAH)

    Energy Technology Data Exchange (ETDEWEB)

    EVANS, C B

    2004-12-21

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S&M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard.

  16. Safety analysis reports. Current status (third key report)

    International Nuclear Information System (INIS)

    1999-01-01

    A review of Ukrainian regulations and laws concerned with Nuclear power and radiation safety is presented with an overview of the requirements for the Safety Analysis Report Contents. Status of Safety Analysis Reports (SAR) is listed for each particular Ukrainian NPP including SAR development schedules. Organisational scheme of SAR development works includes: general technical co-ordination on Safety Analysis Report development; list of leading organisations and utilization of technical support within international projects

  17. Nuclear critical safety analysis for UX-30 transport of freight package

    International Nuclear Information System (INIS)

    Quan Yanhui; Zhou Qi; Yin Shenggui

    2014-01-01

    The nuclear critical safety analysis and evaluation for UX-30 transport freight package in the natural condition and accident condition were carried out with MONK-9A code and MCNP code. Firstly, the critical benchmark experiment data of public in international were selected, and the deflection and subcritical limiting value with MONK-9A code and MCNP code in calculating same material form were validated and confirmed. Secondly, the neutron efficiency multiplication factors in the natural condition and accident condition were calculated and analyzed, and the safety in transport process was evaluated by taking conservative suppose of nuclear critical safety. The calculation results show that the max value of k eff for UX-30 transport freight package is less than the subcritical limiting value, and the UX-30 transport freight package is in the state of subcritical safety. Moreover, the critical safety index (CSI) for UX-30 package can define zero based on the definition of critical safety index. (authors)

  18. Factors impacting on the microbiological quality and safety of ...

    African Journals Online (AJOL)

    Problems with the safety and shelf life of export hake have been raised by the Namibian fishing industry. This prompted an investigation into the factors that may have an impact on the microbiological quality and safety of processed hake. Samples were collected along the processing line; the general microbiological quality ...

  19. Predicting safety culture: the roles of employer, operations manager and safety professional.

    Science.gov (United States)

    Wu, Tsung-Chih; Lin, Chia-Hung; Shiau, Sen-Yu

    2010-10-01

    This study explores predictive factors in safety culture. In 2008, a sample 939 employees was drawn from 22 departments of a telecoms firm in five regions in central Taiwan. The sample completed a questionnaire containing four scales: the employer safety leadership scale, the operations manager safety leadership scale, the safety professional safety leadership scale, and the safety culture scale. The sample was then randomly split into two subsamples. One subsample was used for measures development, one for the empirical study. A stepwise regression analysis found four factors with a significant impact on safety culture (R²=0.337): safety informing by operations managers; safety caring by employers; and safety coordination and safety regulation by safety professionals. Safety informing by operations managers (ß=0.213) was by far the most significant predictive factor. The findings of this study provide a framework for promoting a positive safety culture at the group level. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  20. Status of Ignalina's safety analysis reports

    International Nuclear Information System (INIS)

    Uspuras, E.

    1999-01-01

    Ignalina NPP is unique among RBMK type reactors in the scope and comprehensiveness of international studies which have been performed to verify its design parameters and analyze risk levels. International assistance took several forms, a very valuable mod of assistance utilized the knowledge of international experts in extensive international studies whose purpose was: collection, systematization and verification of plant design data; analysis of risk levels; recommendations leading to improvements in the safety lave; transfer of state of the art analytical methodology to Lithuanian specialists. The major large scale international studies include: probabilistic risk analysis; extensive international study meant to provide comprehensive overview of plant status with special emphasis on safety aspects; an extensive review of the Safety Analysis Report by an independent group of international experts. In spite of the safety improvements and analyses which have been performed at the Ignalina NPP, much remains to be done in the nearest future

  1. Hot Cell Facility (HCF) Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  2. Approach to uncertainty evaluation for safety analysis

    International Nuclear Information System (INIS)

    Ogura, Katsunori

    2005-01-01

    Nuclear power plant safety used to be verified and confirmed through accident simulations using computer codes generally because it is very difficult to perform integrated experiments or tests for the verification and validation of the plant safety due to radioactive consequence, cost, and scaling to the actual plant. Traditionally the plant safety had been secured owing to the sufficient safety margin through the conservative assumptions and models to be applied to those simulations. Meanwhile the best-estimate analysis based on the realistic assumptions and models in support of the accumulated insights could be performed recently, inducing the reduction of safety margin in the analysis results and the increase of necessity to evaluate the reliability or uncertainty of the analysis results. This paper introduces an approach to evaluate the uncertainty of accident simulation and its results. (Note: This research had been done not in the Japan Nuclear Energy Safety Organization but in the Tokyo Institute of Technology.) (author)

  3. Hot Cell Facility (HCF) Safety Analysis Report

    International Nuclear Information System (INIS)

    MITCHELL, GERRY W.; LONGLEY, SUSAN W.; PHILBIN, JEFFREY S.; MAHN, JEFFREY A.; BERRY, DONALD T.; SCHWERS, NORMAN F.; VANDERBEEK, THOMAS E.; NAEGELI, ROBERT E.

    2000-01-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR

  4. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos

    2009-01-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  5. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: vasconv@cdtn.br, e-mail: silvaem@cdtn.br, e-mail: aclc@cdtn.br, e-mail: reissc@cdtn.br

    2009-07-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  6. Sensitivity analysis of the reactor safety study. Final report

    International Nuclear Information System (INIS)

    Parkinson, W.J.; Rasmussen, N.C.; Hinkle, W.D.

    1979-01-01

    The Reactor Safety Study (RSS) or Wash 1400 developed a methodology estimating the public risk from light water nuclear reactors. In order to give further insights into this study, a sensitivity analysis has been performed to determine the significant contributors to risk for both the PWR and BWR. The sensitivity to variation of the point values of the failure probabilities reported in the RSS was determined for the safety systems identified therein, as well as for many of the generic classes from which individual failures contributed to system failures. Increasing as well as decreasing point values were considered. An analysis of the sensitivity to increasing uncertainty in system failure probabilities was also performed. The sensitivity parameters chosen were release category probabilities, core melt probability, and the risk parameters of early fatalities, latent cancers and total property damage. The latter three are adequate for describing all public risks identified in the RSS. The results indicate reductions of public risk by less than a factor of two for factor reductions in system or generic failure probabilities as high as one hundred. There also appears to be more benefit in monitoring the most sensitive systems to verify adherence to RSS failure rates than to backfitting present reactors. The sensitivity analysis results do indicate, however, possible benefits in reducing human error rates

  7. Study on the factors affecting the quality of public bus transportation service in Bali Province using factor analysis

    Science.gov (United States)

    Susilawati, M.; Nilakusmawati, D. P. E.

    2017-06-01

    The volume of mobility flows are increasing day by day and the condition of the number of people using private transport modes contribute to traffic congestion. With the limited capacity of the road, one of the alternatives solution to reduce congestion is to optimize the use of public transport. The purposes of this study are to determine the factors that influence user’s satisfaction on the quality of public bus transportation service and determine variables that became identifier on the dominant factor affecting user’s satisfaction. The study was conducted for the public bus transportation between districts in the province of Bali, which is among the eight regencies and one municipality, using a questionnaire as a data collection instrument. Service variables determinant of user’s satisfaction in this study, described in 25 questions, which were analyzed using factor analysis. The results showed there were six factors that explain the satisfaction of users of public transport in Bali, with a total diversity of data that can be parsed by 61.436%. These factors are: Safety and comfort, Responsiveness, Capacity, Tangible, Safety, Reliability. The dominant factor affecting public transport user satisfaction is the safety and comfort, with the most influential variable is feeling concerned about the personal safety of users when on the bus.

  8. Evaluating the impact of grade crossing safety factors through signal detection theory

    Science.gov (United States)

    2012-10-22

    The purpose of this effort was to apply signal detection theory to descriptively model the impact : of five grade crossing safety factors to understand their effect on driver decision making. The : safety factors consisted of: improving commercial mo...

  9. Manpower analysis in transportation safety. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.S.; Bowden, H.M.; Colford, C.A.; DeFilipps, P.J.; Dennis, J.D.; Ehlert, A.K.; Popkin, H.A.; Schrader, G.F.; Smith, Q.N.

    1977-05-01

    The project described provides a manpower review of national, state and local needs for safety skills, and projects future manning levels for transportation safety personnel in both the public and private sectors. Survey information revealed that there are currently approximately 121,000 persons employed directly in transportation safety occupations within the air carrier, highway and traffic safety, motor carrier, pipeline, rail carrier, and marine carrier transportation industry groups. The projected need for 1980 is over 145,000 of which over 80 percent will be in highway safety. An analysis of transportation tasks is included, and shows ten general categories about which the majority of safety activities are focused. A skills analysis shows a generally high level of educational background and several years of experience are required for most transportation safety jobs. An overall review of safety programs in the transportation industry is included, together with chapters on the individual transportation modes.

  10. Safety analysis of a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shimazu, Akira; Morimoto, Toshio

    1975-01-01

    In recent years, in order to satisfy the social requirements of environment and safety and also to cope with the current energy stringency, the installation of safe nuclear power plants is indispensable. Herein, safety analysis and evaluation to confirm quantitatively the safety design of a nuclear power plant become more and more important. The safety analysis and its methods for a high temperature gas-cooled reactor are described, with emphasis placed on the practices by Fuji Electric Manufacturing Co. Fundamental rule of securing plant safety ; safety analysis in normal operation regarding plant dynamic characteristics and radioactivity evaluation ; and safety analysis at the time of accidents regarding plant response to the accidents and radioactivity evaluation are explained. (Mori, K.)

  11. Human factors in safety assessment. Safety culture assessment

    International Nuclear Information System (INIS)

    Zhang Li; Deng Zhiliang; Wang Yiqun; Huang Weigang

    1996-01-01

    This paper analyses the present conditions and problems in enterprises safety assessment, and introduces the characteristics and effects of safety culture. The authors think that safety culture must be used as a 'soul' to form the pattern of modern safety management. Furthermore, they propose that the human safety and synthetic safety management assessment in a system should be changed into safety culture assessment. Finally, the assessment indicators are discussed

  12. Human factors and systems engineering approach to patient safety for radiotherapy.

    Science.gov (United States)

    Rivera, A Joy; Karsh, Ben-Tzion

    2008-01-01

    The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety.

  13. Human Factors and Systems Engineering Approach to Patient Safety for Radiotherapy

    International Nuclear Information System (INIS)

    Rivera, A. Joy; Karsh, Ben-Tzion

    2008-01-01

    The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety

  14. Partial safety factor calibration from stochastic finite element computation of welded joint with random geometries

    International Nuclear Information System (INIS)

    Schoefs, Franck; Chevreuil, Mathilde; Pasqualini, Olivier; Cazuguel, Mikaël

    2016-01-01

    Welded joints are used in various structures and infrastructures like bridges, ships and offshore structures, and are submitted to cyclic stresses. Their fatigue behaviour is an industrial key issue to deal with and still offers original research subjects. One of the available methods relies on the computing of the stress concentration factor. Even if some studies were previously driven to evaluate this factor onto some cases of welded structures, the shape of the weld joint is generally idealized through a deterministic parametric geometry. Previous experimental works however have shown that this shape plays a key role in the lifetime assessment. We propose in this paper a methodology for computing the stress concentration factor in presence of random geometries of welded joints. In view to make the results available by engineers, this method merges stochastic computation and semi-probabilistic analysis by computing partial safety factors with a dedicated method. - Highlights: • Numerical computation of stress concentration factor with random geometry of weld. • Real data are used for probabilistic modelling. • Identification of partial safety factor from SFEM computation in case of random geometries.

  15. Hospital survey on patient safety culture: psychometric analysis on a Scottish sample.

    Science.gov (United States)

    Sarac, Cakil; Flin, Rhona; Mearns, Kathryn; Jackson, Jeanette

    2011-10-01

    To investigate the psychometric properties of the Hospital Survey on Patient Safety Culture on a Scottish NHS data set. The data were collected from 1969 clinical staff (estimated 22% response rate) from one acute hospital from each of seven Scottish Health boards. Using a split-half validation technique, the data were randomly split; an exploratory factor analysis was conducted on the calibration data set, and confirmatory factor analyses were conducted on the validation data set to investigate and check the original US model fit in a Scottish sample. Following the split-half validation technique, exploratory factor analysis results showed a 10-factor optimal measurement model. The confirmatory factor analyses were then performed to compare the model fit of two competing models (10-factor alternative model vs 12-factor original model). An S-B scaled χ(2) square difference test demonstrated that the original 12-factor model performed significantly better in a Scottish sample. Furthermore, reliability analyses of each component yielded satisfactory results. The mean scores on the climate dimensions in the Scottish sample were comparable with those found in other European countries. This study provided evidence that the original 12-factor structure of the Hospital Survey on Patient Safety Culture scale has been replicated in this Scottish sample. Therefore, no modifications are required to the original 12-factor model, which is suggested for use, since it would allow researchers the possibility of cross-national comparisons.

  16. Preliminary Assessment of ICRP Dose Conversion Factor Recommendations for Accident Analysis Applications

    International Nuclear Information System (INIS)

    Vincent, A.M.

    2002-01-01

    Accident analysis for U.S. Department of Energy (DOE) nuclear facilities is an integral part of the overall safety basis developed by the contractor to demonstrate facility operation can be conducted safely. An appropriate documented safety analysis for a facility discusses accident phenomenology, quantifies source terms arising from postulated process upset conditions, and applies a standardized, internationally-recognized database of dose conversion factors (DCFs) to evaluate radiological conditions to offsite receptors

  17. Software safety hazard analysis

    International Nuclear Information System (INIS)

    Lawrence, J.D.

    1996-02-01

    Techniques for analyzing the safety and reliability of analog-based electronic protection systems that serve to mitigate hazards in process control systems have been developed over many years, and are reasonably well understood. An example is the protection system in a nuclear power plant. The extension of these techniques to systems which include digital computers is not well developed, and there is little consensus among software engineering experts and safety experts on how to analyze such systems. One possible technique is to extend hazard analysis to include digital computer-based systems. Software is frequently overlooked during system hazard analyses, but this is unacceptable when the software is in control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully cover the software. A method for performing software hazard analysis is proposed in this paper

  18. Aircraft accident analysis for emergency planning and safety analysis

    International Nuclear Information System (INIS)

    Nicolosi, S.L.; Jordan, H.; Foti, D.; Mancuso, J.

    1996-01-01

    Potential aircraft accidents involving facilities at the Rocky Flats Environmental Technology Site (Site) are evaluated to assess their safety significance. This study addresses the probability and facility penetrability of aircraft accidents at the Site. The types of aircraft (large, small, etc.) that may credibly impact the Site determine the types of facilities that may be breached. The methodology used in this analysis follows elements of the draft Department of Energy Standard ''Accident Analysis for Aircraft Crash into Hazardous Facilities'' (July 1995). Key elements used are: the four-factor frequency equation for aircraft accidents; the distance criteria for consideration of airports, airways, and jet routes; the consideration of different types of aircraft; and the Modified National Defense Research Committee (NDRC) formula for projectile penetration, perforation, and minimum resistant thickness. The potential aircraft accident frequency for each type of aircraft applicable to the Site is estimated using a four-factor formula described in the draft Standard. The accident frequency is the product of the annual number of operations, probability of an accident, probability density function, and area. The annual number of operations is developed from site-specific and state-wide data

  19. A Risk Analysis Methodology to Address Human and Organizational Factors in Offshore Drilling Safety: With an Emphasis on Negative Pressure Test

    Science.gov (United States)

    Tabibzadeh, Maryam

    According to the final Presidential National Commission report on the BP Deepwater Horizon (DWH) blowout, there is need to "integrate more sophisticated risk assessment and risk management practices" in the oil industry. Reviewing the literature of the offshore drilling industry indicates that most of the developed risk analysis methodologies do not fully and more importantly, systematically address the contribution of Human and Organizational Factors (HOFs) in accident causation. This is while results of a comprehensive study, from 1988 to 2005, of more than 600 well-documented major failures in offshore structures show that approximately 80% of those failures were due to HOFs. In addition, lack of safety culture, as an issue related to HOFs, have been identified as a common contributing cause of many accidents in this industry. This dissertation introduces an integrated risk analysis methodology to systematically assess the critical role of human and organizational factors in offshore drilling safety. The proposed methodology in this research focuses on a specific procedure called Negative Pressure Test (NPT), as the primary method to ascertain well integrity during offshore drilling, and analyzes the contributing causes of misinterpreting such a critical test. In addition, the case study of the BP Deepwater Horizon accident and their conducted NPT is discussed. The risk analysis methodology in this dissertation consists of three different approaches and their integration constitutes the big picture of my whole methodology. The first approach is the comparative analysis of a "standard" NPT, which is proposed by the author, with the test conducted by the DWH crew. This analysis contributes to identifying the involved discrepancies between the two test procedures. The second approach is a conceptual risk assessment framework to analyze the causal factors of the identified mismatches in the previous step, as the main contributors of negative pressure test

  20. Infusing Reliability Techniques into Software Safety Analysis

    Science.gov (United States)

    Shi, Ying

    2015-01-01

    Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.

  1. Construction Safety And Health Factors At The Industry Level: The Case Of Singapore

    Directory of Open Access Journals (Sweden)

    Charles Y.J. Cheah

    2007-12-01

    Full Text Available The construction industry is one of the most hazardous industries due to the unique nature of its products and the processes involved. Recent occurrences of highly publicized construction site accidents in Singapore have highlighted the immediate needs for the local industry to address safety and attention at the industry level. The objective of this paper is to examine issues and critical factors affecting S&H standards in Singapore. Clearly, collective efforts should be pursued at the industry level as the country moves towards the ultimate safety management strategy of self-regulation. The findings also indicate that the challenge of making worksites safe should not be placed solely on the contractors but should be shared by all parties affecting the value chain of construction, including the developers, the consultants and the government. The factors identified through factor analysis may inform legislators and industry practitioners in terms of the sources of problems and help develop effective strategies for improvement. Some of the experiences mentioned in the paper could also be relevant to other countries facing similar circumstances.

  2. Finite element analysis in defining the optimal shape and safety factor of retentive clasp arms of removable partial denture

    Directory of Open Access Journals (Sweden)

    Šćepanović Miodrag

    2013-01-01

    Full Text Available Bacground/Aim. Retentive force of removable partial denture (RPD directly depends on elastic force of stretched retentive clasp arms (RCAs. During deflection RCA must have even stress distribution. Safety factor is the concept which can be applied in estimating durability and functionality of RCAs. This study was based on analyzing properties of clasps designed by conventional clasp wax profiles and defining the optimal shapes of RCAs for stress distribution and safety factor aspects. Methods. Computer-aided-design (CAD models of RCAs with simulated properties of materials used for fabrication of RPD cobalt-chromium-molybdenum (CoCrMo alloy, commercially pure titanium (CPTi and polyacetale were analyzed. Results. The research showed that geometrics of Rapidflex profiles from the BIOS concept are defined for designing and modeling RCAs from CoCrMo alloys. I-Bar and Bonihard clasps made from CPTi might have the same design as Co- CrMo clasp only by safety factor aspect, but it is obvious that CPTi are much more flexible, so their shape must be more massive. Polyacetale clasps should not be fabricated by BIOS concept for CoCrMo alloy. A proof for that is the low value of safety factor. Conclusion. The BIOS concept should be used only for RCAs made of CoCrMo alloy and different wax profiles should be used for fabricating clasps of other investigated materials. The contribution of this study may be the improvement of present systems for defining the clasps shapes made from CoCrMo alloys. The more significant application is possibility of creating new concepts in defining shapes of RCA made from CPTi and polyacetale.

  3. Modelling of Safety Factors in the Design of GRP Composite Products

    DEFF Research Database (Denmark)

    Babu, B.J.C.; Prabhakaran, R.T. Durai; Lystrup, Aage

    2010-01-01

    as independent, while in real applications these factors may interact/influence each other. Following the concept developed by the authors, a simple graph theoretic model has been used to determine overall factor of safety. This is described with the help of an example and it has been demonstrated......An attempt has been made in this paper to arrive at the safety factor design of glass fibre reinforced polymer (GRP) composite products using graph theoretic model. In the conventional design and recommendations of the standards, these design factors affecting properties have been considered...

  4. Incorporation of advanced accident analysis methodology into safety analysis reports

    International Nuclear Information System (INIS)

    2003-05-01

    The IAEA Safety Guide on Safety Assessment and Verification defines that the aim of the safety analysis should be by means of appropriate analytical tools to establish and confirm the design basis for the items important to safety, and to ensure that the overall plant design is capable of meeting the prescribed and acceptable limits for radiation doses and releases for each plant condition category. Practical guidance on how to perform accident analyses of nuclear power plants (NPPs) is provided by the IAEA Safety Report on Accident Analysis for Nuclear Power Plants. The safety analyses are performed both in the form of deterministic and probabilistic analyses for NPPs. It is customary to refer to deterministic safety analyses as accident analyses. This report discusses the aspects of using the advanced accident analysis methods to carry out accident analyses in order to introduce them into the Safety Analysis Reports (SARs). In relation to the SAR, purposes of deterministic safety analysis can be further specified as (1) to demonstrate compliance with specific regulatory acceptance criteria; (2) to complement other analyses and evaluations in defining a complete set of design and operating requirements; (3) to identify and quantify limiting safety system set points and limiting conditions for operation to be used in the NPP limits and conditions; (4) to justify appropriateness of the technical solutions employed in the fulfillment of predetermined safety requirements. The essential parts of accident analyses are performed by applying sophisticated computer code packages, which have been specifically developed for this purpose. These code packages include mainly thermal-hydraulic system codes and reactor dynamics codes meant for the transient and accident analyses. There are also specific codes such as those for the containment thermal-hydraulics, for the radiological consequences and for severe accident analyses. In some cases, codes of a more general nature such

  5. Software safety analysis practice in installation phase

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. W.; Chen, M. H.; Shyu, S. S., E-mail: hwhwang@iner.gov.t [Institute of Nuclear Energy Research, No. 1000 Wenhua Road, Chiaan Village, Longtan Township, 32546 Taoyuan County, Taiwan (China)

    2010-10-15

    This work performed a software safety analysis in the installation phase of the Lung men nuclear power plant in Taiwan, under the cooperation of Institute of Nuclear Energy Research and Tpc. The US Nuclear Regulatory Commission requests licensee to perform software safety analysis and software verification and validation in each phase of software development life cycle with Branch Technical Position 7-14. In this work, 37 safety grade digital instrumentation and control systems were analyzed by failure mode and effects analysis, which is suggested by IEEE standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The failure mode and effects analysis showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (Author)

  6. Software safety analysis practice in installation phase

    International Nuclear Information System (INIS)

    Huang, H. W.; Chen, M. H.; Shyu, S. S.

    2010-10-01

    This work performed a software safety analysis in the installation phase of the Lung men nuclear power plant in Taiwan, under the cooperation of Institute of Nuclear Energy Research and Tpc. The US Nuclear Regulatory Commission requests licensee to perform software safety analysis and software verification and validation in each phase of software development life cycle with Branch Technical Position 7-14. In this work, 37 safety grade digital instrumentation and control systems were analyzed by failure mode and effects analysis, which is suggested by IEEE standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The failure mode and effects analysis showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (Author)

  7. Dimensions of Safety Climate among Iranian Nurses.

    Science.gov (United States)

    Konjin, Z Naghavi; Shokoohi, Y; Zarei, F; Rahimzadeh, M; Sarsangi, V

    2015-10-01

    Workplace safety has been a concern of workers and managers for decades. Measuring safety climate is crucial in improving safety performance. It is also a method of benchmarking safety perception. To develop and validate a psychometrics scale for measuring nurses' safety climate. Literature review, subject matter experts and nurse's judgment were used in items developing. Content validity and reliability for new tool were tested by content validity index (CVI) and test-retest analysis, respectively. Exploratory factor analysis (EFA) with varimax rotation was used to improve the interpretation of latent factors. A 40-item scale in 6 factors was developed, which could explain 55% of the observed variance. The 6 factors included employees' involvement in safety and management support, compliance with safety rules, safety training and accessibility to personal protective equipment, hindrance to safe work, safety communication and job pressure, and individual risk perception. The proposed scale can be used in identifying the needed areas to implement interventions in safety climate of nurses.

  8. Guidelines for nuclear reactor equipments safety-analysis

    International Nuclear Information System (INIS)

    1978-01-01

    The safety analysis in approving the applications for nuclear reactor constructions (or alterations) is performed by the Committee on Examination of Reactor Safety in accordance with various guidelines prescribed by the Atomic Energy Commission. In addition, the above Committee set forth its own regulations for the safety analysis on common problems among various types of nuclear reactors. This book has collected and edited those guidelines and regulations. It has two parts: Part I includes the guidelines issued to date by the Atomic Energy Commission: and Part II - regulations of the Committee. Part I has collected 8 categories of guidelines which relate to following matters: nuclear reactor sites analysis guidelines and standards for their applications; standard exposure dose of plutonium; nuclear ship operation guidelines; safety design analysis guidelines for light-water type, electricity generating nuclear reactor equipments; safety evaluation guidelines for emergency reactor core cooling system of light-water type power reactors; guidelines for exposure dose target values around light-water type electricity generating nuclear reactor equipments, and guidelines for evaluation of above target values; and meteorological guidelines for the safety analysis of electricity generating nuclear reactor equipments. Part II includes regulations of the Committee concerning - the fuel assembly used in boiling-water type and in pressurized-water type reactors; techniques of reactor core heat designs, etc. in boiling-water reactors; and others

  9. Preliminary Integrated Safety Analysis Status Report

    International Nuclear Information System (INIS)

    Gwyn, D.

    2001-01-01

    This report provides the status of the potential Monitored Geologic Repository (MGR) Integrated Safety Analysis (EA) by identifying the initial work scope scheduled for completion during the ISA development period, the schedules associated with the tasks identified, safety analysis issues encountered, and a summary of accomplishments during the reporting period. This status covers the period from October 1, 2000 through March 30, 2001

  10. A cross-cultural study of organizational factors on safety: Japanese vs. Taiwanese oil refinery plants.

    Science.gov (United States)

    Hsu, Shang Hwa; Lee, Chun-Chia; Wu, Muh-Cherng; Takano, Kenichi

    2008-01-01

    This study attempts to identify idiosyncrasies of organizational factors on safety and their influence mechanisms in Taiwan and Japan. Data were collected from employees of Taiwanese and Japanese oil refinery plants. Results show that organizational factors on safety differ in the two countries. Organizational characteristics in Taiwanese plants are highlighted as: higher level of management commitment to safety, harmonious interpersonal relationship, more emphasis on safety activities, higher devotion to supervision, and higher safety self-efficacy, as well as high quality of safety performance. Organizational characteristics in Japanese plants are highlighted as: higher level of employee empowerment and attitude towards continuous improvement, more emphasis on systematic safety management approach, efficient reporting system and teamwork, and high quality of safety performance. The casual relationships between organizational factors and workers' safety performance were investigated using structural equation modeling (SEM). Results indicate that the influence mechanisms of organizational factors in Taiwan and Japan are different. These findings provide insights into areas of safety improvement in emerging countries and developed countries respectively.

  11. A formal safety analysis for PLC software-based safety critical system using Z

    International Nuclear Information System (INIS)

    Koh, Jung Soo; Seong, Poong Hyun

    1997-01-01

    This paper describes a formal safety analysis technique which is demonstrated by performing empirical formal safety analysis with the case study of beamline hutch door Interlock system that is developed by using PLC (Programmable Logic Controller) systems at the Pohang Accelerator Laboratory. In order to perform formed safety analysis, we have built the Z formal specifications representation from user requirement written in ambiguous natural language and target PLC ladder logic, respectively. We have also studied the effective method to express typical PLC timer component by using specific Z formal notation which is supported by temporal history. We present a formal proof technique specifying and verifying that the hazardous states are not introduced into ladder logic in the PLC-based safety critical system

  12. Safety factor profile control in a tokamak

    CERN Document Server

    Bribiesca Argomedo, Federico; Prieur, Christophe

    2014-01-01

    Control of the Safety Factor Profile in a Tokamak uses Lyapunov techniques to address a challenging problem for which even the simplest physically relevant models are represented by nonlinear, time-dependent, partial differential equations (PDEs). This is because of the  spatiotemporal dynamics of transport phenomena (magnetic flux, heat, densities, etc.) in the anisotropic plasma medium. Robustness considerations are ubiquitous in the analysis and control design since direct measurements on the magnetic flux are impossible (its estimation relies on virtual sensors) and large uncertainties remain in the coupling between the plasma particles and the radio-frequency waves (distributed inputs). The Brief begins with a presentation of the reference dynamical model and continues by developing a Lyapunov function for the discretized system (in a polytopic linear-parameter-varying formulation). The limitations of this finite-dimensional approach motivate new developments in the infinite-dimensional framework. The t...

  13. A formal safety analysis for PLC software-based safety critical system using Z

    International Nuclear Information System (INIS)

    Koh, Jung Soo

    1997-02-01

    This paper describes a formal safety analysis technique which is demonstrated by performing empirical formal safety analysis with the case study of beamline hutch door Interlock system that is developed by using PLC (Programmable Logic Controller) systems at the Pohang Accelerator Laboratory. In order to perform formal safety analysis, we have built the Z formal specifications representation from user requirement written in ambiguous natural language and target PLC ladder logic, respectively. We have also studied the effective method to express typical PLC timer component by using specific Z formal notation which is supported by temporal history. We present a formal proof technique specifying and verifying that the hazardous states are not introduced into ladder logic in the PLC-based safety critical system. And also, we have found that some errors or mismatches in user requirement and final implemented PLC ladder logic while analyzing the process of the consistency and completeness of Z translated formal specifications. In the case of relatively small systems like Beamline hutch door interlock system, a formal safety analysis including explicit proof is highly recommended so that the safety of PLC-based critical system may be enhanced and guaranteed. It also provides a helpful benefits enough to comprehend user requirement expressed by ambiguous natural language

  14. A Study on the Holding Capacity Safety Factors for Torpedo Anchors

    Directory of Open Access Journals (Sweden)

    Luís V. S. Sagrilo

    2012-01-01

    Full Text Available The use of powerful numerical tools based on the finite-element method has been improving the prediction of the holding capacity of fixed anchors employed by the offshore oil industry. One of the main achievements of these tools is the reduction of the uncertainty related to the holding capacity calculation of these anchors. Therefore, it is also possible to reduce the values of the associated design safety factors, which have been calibrated relying on models with higher uncertainty, without impairing the original level of structural safety. This paper presents a study on the calibration of reliability-based safety factors for the design of torpedo anchors considering the statistical model uncertainty evaluated using results from experimental tests and their correspondent finite-element-based numerical predictions. Both working stress design (WSD and load and resistance factors design (LRFD design methodologies are investigated. Considering the WSD design methodology, the single safety is considerably lower than the value typically employed in the design of torpedo anchors. Moreover, a LRFD design code format for torpedo anchors is more appropriate since it leads to designs having less-scattered safety levels around the target value.

  15. Calibration of partial safety factors for wind turbine rotor blades against fatigue failure; Kalibrering af partielle sikkerhedsfaktorer for udmattelse af vindmoellerotorer

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, C.J.; Ronold, K.O.; Thoegersen, M.L.

    2000-08-01

    The report describes a calibration of partial safety factors for wind turbine rotor blades subjected to fatigue loading in flapwise and edgewise bending. While earlier models - developed by the authors - dealt with such calibrations for site-specific individual turbines only, the calibration model applied herein covers an integrated analysis with different turbines on different sites and with different blade materials. The result is an optimized set of partial safety factors, i.e. a set of safety factors that lead to minimum deviation from the target reliability of the achieved reliabilities over the selected scope of turbines, sites and materials. The turbines included in the study cover rated powers of 450-600 kW. The result from the calibration are discussed in relation to the partial safety factors that are given in the Danish codes for design of glass fibre reinforced rotor blades (DS472 and DS456). (au)

  16. An overview-probabilistic safety analysis for research reactors

    International Nuclear Information System (INIS)

    Liu Jinlin; Peng Changhong

    2015-01-01

    For long-term application, Probabilistic Safety Analysis (PSA) has proved to be a valuable tool for improving the safety and reliability of power reactors. In China, 'Nuclear safety and radioactive pollution prevention 'Twelfth Five Year Plan' and the 2020 vision' raises clearly that: to develop probabilistic safety analysis and aging evaluation for research reactors. Comparing with the power reactors, it reveals some specific features in research reactors: lower operating power, lower coolant temperature and pressure, etc. However, the core configurations may be changed very often and human actions play an important safety role in research reactors due to its specific experimental requirement. As a result, there is a necessary to conduct the PSA analysis of research reactors. This paper discusses the special characteristics related to the structure and operation and the methods to develop the PSA of research reactors, including initiating event analysis, event tree analysis, fault tree analysis, dependent failure analysis, human reliability analysis and quantification as well as the experimental and external event evaluation through the investigation of various research reactors and their PSAs home and abroad, to provide the current situation and features of research reactors PSAs. (author)

  17. A quantitative assessment of organizational factors affecting safety using a system dynamics model

    International Nuclear Information System (INIS)

    Yoo, J. K.; Yoon, T. S.

    2003-01-01

    The purpose of this study is to develop a system dynamics model for the assessment of organizational and human factors in the nuclear power plant safety. Previous studies are classified into two major approaches. One is the engineering approach such as ergonomics and Probabilistic Safety Assessment (PSA). The other is socio-psychology one. Both have contributed to find organizational and human factors and increased nuclear safety However, since these approaches assume that the relationship among factors is independent they do not explain the interactions between factors or variables in NPP's. To overcome these restrictions, a system dynamics model, which can show causal relations between factors and quantify organizational and human factors, has been developed. Operating variables such as degree of leadership, adjustment of number of employee, and workload in each department, users can simulate various situations in nuclear power plants in the organization side. Through simulation, user can get an insight to improve safety in plants and to find managerial tools in the organization and human side

  18. Ignalina Safety Analysis Group's report for the year 1998

    International Nuclear Information System (INIS)

    Uspuras, E.; Augutis, J.; Bubelis, E.; Cesna, B.; Kaliatka, A.

    1999-02-01

    Results of Ignalina NPP Safety Analysis Group's research are presented. The main fields of group's activities in 1998 were following: safety analysis of reactor's cooling system, safety analysis of accident localization system, investigation of the problem graphite - fuel channel, reactor core modelling, assistance to the regulatory body VATESI in drafting regulations and reviewing safety reports presented by Ignalina NPP during the process of licensing of unit 1

  19. Operating plant safety analysis needs

    International Nuclear Information System (INIS)

    Young, M.Y.; Love, D.S.

    1992-01-01

    The primary objective for nuclear power station owners is to operate and manage their plants safely. However, there is also a need to provide economical electric power, which requires that the unit be operated as efficiently as possible, consistent with the safety requirements. The objectives cited above can be achieved through the identification and use of available margins inherent in the plant design. As a result of conservative licensing and analytical approaches taken in the past, many of these margins may be found in the safety analysis limits within which plants currently operate. Improvements in the accuracy of the safety analysis, and a more realistic treatment of plant initial and boundary conditions, can make this margin available for a variety of uses which enhance plant performance, help to reduce O and M costs, and may help to extend licensed operation. Opportunities for improvement exist in several areas in the accident analysis normally performed for Chapter 15 of the FSAR. For example, recent modifications to the ECCS rule, 10CFR50.46 and Appendix K, allow use of margins previously unavailable in the analysis of the Loss of Coolant Accident (LOCA). To take advantage of this regulatory change, new methods are being developed to analyze both the large and small break loss of coolant accident (LOCA). As this margin is used, enhancements in the analysis of other transients will become necessary. The paper discusses accident analysis methods, future development needs, and analysis margin utilization in specific accident scenarios

  20. Computer codes for safety analysis

    International Nuclear Information System (INIS)

    Holland, D.F.

    1986-11-01

    Computer codes for fusion safety analysis have been under development in the United States for about a decade. This paper will discuss five codes that are currently under development by the Fusion Safety Program. The purpose and capability of each code will be presented, a sample given, followed by a discussion of the present status and future development plans

  1. Determinants of job stress in chemical process industry: A factor analysis approach.

    Science.gov (United States)

    Menon, Balagopal G; Praveensal, C J; Madhu, G

    2015-01-01

    Job stress is one of the active research domains in industrial safety research. The job stress can result in accidents and health related issues in workers in chemical process industries. Hence it is important to measure the level of job stress in workers so as to mitigate the same to avoid the worker's safety related problems in the industries. The objective of this study is to determine the job stress factors in the chemical process industry in Kerala state, India. This study also aims to propose a comprehensive model and an instrument framework for measuring job stress levels in the chemical process industries in Kerala, India. The data is collected through a questionnaire survey conducted in chemical process industries in Kerala. The collected data out of 1197 surveys is subjected to principal component and confirmatory factor analysis to develop the job stress factor structure. The factor analysis revealed 8 factors that influence the job stress in process industries. It is also found that the job stress in employees is most influenced by role ambiguity and the least by work environment. The study has developed an instrument framework towards measuring job stress utilizing exploratory factor analysis and structural equation modeling.

  2. HSE assessment of explosion risk analysis in offshore safety cases

    Energy Technology Data Exchange (ETDEWEB)

    Brighton, P.W.M.; Fearnley, P.J.; Brearley, I.G. [Health and Safety Executive, Bootle (United Kingdom). Offshore Safety Div.

    1995-12-31

    In the past two years HSE has assessed around 250 Safety Cases for offshore oil and gas installations, building up a unique overview of the current state of the art on fire and explosion risk assessment. This paper reviews the explosion risk methods employed, focusing on the aspects causing most difficulty for assessment and acceptance of Safety Cases. Prediction of overpressures in offshore explosions has been intensively researched in recent years but the justification of the means of prevention, control and mitigation of explosions often depends on much additional analysis of the frequency and damage potential of explosions. This involves a number of factors, the five usually considered being: leak sizes; gas dispersion; ignition probabilities; the frequency distribution of explosion strength; and the prediction of explosion damage. Sources of major uncertainty in these factors and their implications for practical risk management decisions are discussed. (author)

  3. Removing unreasonable conservatisms in DOE safety analysis

    International Nuclear Information System (INIS)

    BISHOP, G.E.

    1999-01-01

    While nuclear safety analyses must always be conservative, invoking excessive conservatisms does not provide additional margins of safety. Rather, beyond a fairly narrow point, conservatisms skew a facility's true safety envelope by exaggerating risks and creating unreasonable bounds on what is required for safety. The conservatism has itself become unreasonable. A thorough review of the assumptions and methodologies contained in a facility's safety analysis can provide substantial reward, reducing both construction and operational costs without compromising actual safety

  4. HANFORD SAFETY ANALYSIS and RISK ASSESSMENT HANDBOOK (SARAH)

    International Nuclear Information System (INIS)

    EVANS, C.B.

    2004-01-01

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S and M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard

  5. Safety Criteria and Standards for Bearing Capacity of Foundation

    Directory of Open Access Journals (Sweden)

    Yanlong Li

    2017-01-01

    Full Text Available This paper focuses on the evaluation standards of factor of safety for foundation stability analysis. The problem of foundation stability is analyzed via the methods of risk analysis of engineering structures and reliability-based design, and the factor of safety for foundation stability is determined by using bearing capacity safety-factor method (BSFM and strength safety-factor method (SSFM. Based on a typical example, the admissible factors of safety were calibrated with a target reliability index specified in relevant standards. Two safety criteria and their standards of bearing capacity of foundation for these two methods (BSFM and SSFM were established. The universality of the safety criteria and their standards for foundation reliability was verified based on the concept of the ratio of safety margin (RSM.

  6. Patient safety in the operating room: an intervention study on latent risk factors

    Directory of Open Access Journals (Sweden)

    van Beuzekom Martie

    2012-06-01

    Full Text Available Abstract Background Patient safety is one of the greatest challenges in healthcare. In the operating room errors are frequent and often consequential. This article describes an approach to a successful implementation of a patient safety program in the operating room, focussing on latent risk factors that influence patient safety. We performed an intervention to improve these latent risk factors (LRFs and increase awareness of patient safety issues amongst OR staff. Methods Latent risk factors were studied using a validated questionnaire applied to the OR staff before and after an intervention. A pre-test/post-test control group design with repeated measures was used to evaluate the effects of the interventions. The staff from one operating room of an university hospital acted as the intervention group. Controls consisted of the staff of the operating room in another university hospital. The outcomes were the changes in LRF scores, perceived incident rate, and changes in incident reports between pre- and post-intervention. Results Based on pre-test scores and participants’ key concerns about organizational factors affecting patient safety in their department the intervention focused on the following LRFs: Material Resources, Training and Staffing Recourses. After the intervention, the intervention operating room - compared to the control operating room - reported significantly fewer problems on Material Resources and Staffing Resources and a significantly lower score on perceived incident rate. The contribution of technical factors to incident causation decreased significantly in the intervention group after the intervention. Conclusion The change of state of latent risk factors can be measured using a patient safety questionnaire aimed at these factors. The change of the relevant risk factors (Material and Staffing resources concurred with a decrease in perceived and reported incident rates in the relevant categories. We conclude that

  7. Consensus achievement of leadership, organisational and individual factors that influence safety climate: Implications for nursing management.

    Science.gov (United States)

    Fischer, Shelly A; Jones, Jacqueline; Verran, Joyce A

    2018-01-01

    To validate a framework of factors that influence the relationship of transformational leadership and safety climate, and to enable testing of safety chain factors by generating hypotheses regarding their mediating and moderating effects. Understanding the patient safety chain and mechanisms by which leaders affect a strong climate of safety is essential to transformational leadership practice, education, and research. A systematic review of leadership and safety literature was used to develop an organising framework of factors proposed to influence the climate of safety. A panel of 25 international experts in leadership and safety engaged a three-round modified Delphi study with Likert-scored surveys. Eighty per cent of participating experts from six countries were retained to the final survey round. Consensus (>66% agreement) was achieved on 40 factors believed to influence safety climate in the acute care setting. Consensus regarding specific factors that play important roles in an organisation's climate of safety can be reached. Generally, the demonstration of leadership commitment to safety is key to cultivating a culture of patient safety. Transformational nurse leaders should consider and employ all three categories of factors in daily leadership activities and decision-making to drive a strong climate of patient safety. © 2017 John Wiley & Sons Ltd.

  8. Safety assessment of research reactors and preparation of the safety analysis report

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide presents guidelines, approved by international consensus, for the preparation, review and assessment of safety documentation for research reactors such as the Safety Analysis Report. While the Guide is most applicable to research reactors in the design and construction stage, it is also recommended for use during relicensing or reassessment of existing reactors

  9. Safety assessment of human and organizational factors in French fuel cycle facilities

    International Nuclear Information System (INIS)

    Menuet, Lise; Beauquier, Sophie

    2013-01-01

    According to the French law, each nuclear facility has to provide a safety demonstration every ten years. The assessment of this demonstration supports the decision of the French Safety Authority regarding the authorisation of operating for the ten years to come. In addition, transversal topics, which are linked with safety performance, such as safety management, management of competencies, maintenance's policy are periodically evaluated. One aspect of these assessments relates to Human and Organizational Factors (HOF) and their contribution to safety. Our communication will describe the assessment of the HOF-related part, performed by the Institute for Radioprotection and Nuclear Safety Institute (IRSN) the Technical Support Organisation of the French Safety Authority). It will focus on the methodological framework, the tools which are developed and used for assessing the integration of HOF in safety demonstration, and the main difficulties of this kind of assessment. Each situation will be illustrated by concrete examples coming from safety assessments concerning fuel cycle's plants: Areva's plants dedicated to uranium conversion, uranium enrichment, fuel manufacturing, spent fuel reprocessing, treatment facilities and CEA's laboratories dedicated to research and development and to interim spent fuel storage. The methodological framework for assessing HOF currently implements three main steps which will be precisely described: - checking that the nuclear plant has made an exhaustive analysis of the risks linked with HOF. Regarding to HOF, the Licensee safety demonstration is based on the description of the main human activities which are considered as hazardous regarding safety. These activities are accomplished with a human contribution and they require a safe realisation. - assessing the human, organisational and technical barriers that the nuclear plant have planed in order to make the operations safe, to avoid, prevent or detect an

  10. Calibration of partial safety factors for wind turbine rotor blades against fatigue; Kalibrering af partielle sikkerhedsfaktorer for udmattelse af vindmoellerotorer. Bilagsrapport

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, C.J.; Ronold, K.O.; Thoegersen, M.L.

    2000-08-01

    The report describes a calibration of partial safety factors for wind turbine rotor blades subjected to fatigue loading in flapwise and edgewise bending. While earlier models - developed by the authors - dealt with such calibrations for site-specific individual turbines only, the calibration model applied herein covers an integrated analysis with different turbines on different sites and with different blade materials. The result is an optimized set of partial safety factors, i.e. a set of safety factors that lead to minimum deviation from the target reliability of the achieved reliabilities over the selected scope of turbines, sites and materials. The turbines included in the study cover rated powers of 450-600 kW. (au)

  11. Effects of the safety factor on ion temperature gradient modes

    International Nuclear Information System (INIS)

    Wang, A.K.; Dong, J.Q.; Sanuki, H.; Itoh, K.

    2003-01-01

    A model for the ion temperature gradient (ITG) driven instability is derived from Braginskii magnetohydrodynamic equations of ions. The safety factor q in a toroidal plasma is introduced into the model through the current density J parallel . The effects of q or J parallel on both the ITG instability in k perpendicular and k parallel spectra and the critical stability thresholds are studied. It is shown that the current density // J or the safety factor q plays an important role in stabilizing the ITG instability. (author)

  12. Application of Software Safety Analysis Methods

    International Nuclear Information System (INIS)

    Park, G. Y.; Hur, S.; Cheon, S. W.; Kim, D. H.; Lee, D. Y.; Kwon, K. C.; Lee, S. J.; Koo, Y. H.

    2009-01-01

    A fully digitalized reactor protection system, which is called the IDiPS-RPS, was developed through the KNICS project. The IDiPS-RPS has four redundant and separated channels. Each channel is mainly composed of a group of bistable processors which redundantly compare process variables with their corresponding setpoints and a group of coincidence processors that generate a final trip signal when a trip condition is satisfied. Each channel also contains a test processor called the ATIP and a display and command processor called the COM. All the functions were implemented in software. During the development of the safety software, various software safety analysis methods were applied, in parallel to the verification and validation (V and V) activities, along the software development life cycle. The software safety analysis methods employed were the software hazard and operability (Software HAZOP) study, the software fault tree analysis (Software FTA), and the software failure modes and effects analysis (Software FMEA)

  13. Nuclear safety in Slovak Republic. Safety analysis reports for WWER 440 reactors

    International Nuclear Information System (INIS)

    Rohar, S.

    1999-01-01

    Implementation of nuclear power program is connected to establishment of regulatory body for safe regulation of siting, construction, operation and decommissioning of nuclear installations. Licensing being one of the most important regulatory surveillance activity is based on independent regulatory review and assessment of information on nuclear safety for particular nuclear facility. Documents required to be submitted to the regulatory body by the licensee in Slovakia for the review and assessment usually named Safety Analysis Report (SAR) are presented in detail in this paper. Current status of Safety Analysis Reports for Bohunice V-1, Bohunice V-2 and Mochovce NPP is shown

  14. From Safety Analysis to Formal Specification

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark; Ravn, Anders P.; Stavridou, Victoria

    1998-01-01

    Software for safety critical systems must deal with the hazards identified bysafety analysis. This paper investigates, how the results of onesafety analysis technique, fault trees, are interpreted as software safetyrequirements to be used in the program design process. We propose thatfault tree...... analysis and program development use the samesystem model. This model is formalized in areal-time, interval logic, based on a conventional dynamic systems modelwith state evolving over time. Fault trees are interpreted astemporal formulas, and it is shown how such formulas can be usedfor deriving safety...

  15. Dimensions of Safety Climate among Iranian Nurses

    Directory of Open Access Journals (Sweden)

    Z Naghavi Konjin

    2015-10-01

    Full Text Available Background: Workplace safety has been a concern of workers and managers for decades. Measuring safety climate is crucial in improving safety performance. It is also a method of benchmarking safety perception. Objective: To develop and validate a psychometrics scale for measuring nurses' safety climate. Methods: Literature review, subject matter experts and nurse's judgment were used in items developing. Content validity and reliability for new tool were tested by content validity index (CVI and test-retest analysis, respectively. Exploratory factor analysis (EFA with varimax rotation was used to improve the interpretation of latent factors. Results: A 40-item scale in 6 factors was developed, which could explain 55% of the observed variance. The 6 factors included employees' involvement in safety and management support, compliance with safety rules, safety training and accessibility to personal protective equipment, hindrance to safe work, safety communication and job pressure, and individual risk perception. Conclusion: The proposed scale can be used in identifying the needed areas to implement interventions in safety climate of nurses.

  16. [External therapy of plasma cell mastitis by jiuyi powder using partial least-squares discriminant analysis: a safety analysis].

    Science.gov (United States)

    Ye, Mei-na; Yang, Ming; Cheng, Yi-qin; Wang, Bing; Zhu, Ying; Xia, Ya-ru; Meng, Tian; Chen, Hao; Chen, Li-ying; Cheng, Hong-feng

    2015-04-01

    To evaluate the safety and the clinical value of external use of jiuyi Powder (JP) in treating plasma cell mastitis using partial least-squares discriminant analysis (PLSDA). Totally 50 patients with plasma cell mastitis treated by external use of JP were observed and biochemical examinations of blood and urine detected before application, at day 4 after application, at day 1 and 14 after discontinuation. Blood mercury and urinary mercury were detected before application, at day 1, 4, and 7 after application, at day 1 and 14 after discontinuation. Urinary mercury was also detected at 28 after discontinuation and 3 months after discontinuation. The information of wound, days of external application and the total dosage of external application were recorded before application, at day 1, 4, and 7 after application, as well as at day 1 after discontinuation. Then a discriminant model covering potential safety factors was set up by PLSDA after screening safety indices with important effects. The applicability of the model was assessed using area under ROC curve. Potential safety factors were assessed using variable importance in the projection (VIP). Urinary β2-microglobulin (β2-MG), urinary N-acetyl-β-D-glucosaminidase (NAG), 24 h urinary protein, and urinary α1-microglobulin (α1-MG) were greatly affected by external use of JP in treating plasma cell mastitis. The accuracy rate of PLSDA discriminate model was 74. 00%. The sensitivity, specificity, and the area under ROC curve was 0. 7826, 0. 7037, and 0. 8084, respectively. Three factors with greater effect on the potential safety were screened as follows: pre-application volume of the sore cavity, days of external application, and the total dosage of external application. PLSDA method could be used in analyzing bioinformation of clinical Chinese medicine. Urinary β2-MG and urinary NAG were two main safety monitoring indices. Days of external application and the total dosage of external application were main

  17. A report on human factors in nuclear safety

    International Nuclear Information System (INIS)

    1983-03-01

    Following the Three Mile Island incident of 1979, studies were undertaken by the Atomic Energy Control Board (AECB), in-house and through outside consultants, to address the role of human factors in the regulatory process. This report by the Advisory Committee on Nuclear Safety (ACNS) comments briefly on these studies and offers suggestions which would promote a more formal treatment of human factors by the AECB

  18. Risk analysis and safety rationale

    International Nuclear Information System (INIS)

    Bengtsson, G.

    1989-01-01

    Decision making with respect to safety is becoming more and more complex. The risk involved must be taken into account together with numerous other factors such as the benefits, the uncertainties and the public perception. Can the decision maker be aided by some kind of system, general rules of thumb, or broader perspective on similar decisions? This question has been addressed in a joint Nordic project relating to nuclear power. Modern techniques for risk assessment and management have been studied, and parallels drawn to such areas as offshore safety and management of toxic chemicals in the environment. The report summarises the finding of 5 major technical reports which have been published in the NORD-series. The topics includes developments, uncertainties and limitations in probabilistic safety assessments, negligible risks, risk-cost trade-offs, optimisation of nuclear safety and radiation protection, and the role of risks in the decision making process. (author) 84 refs

  19. Business of Nuclear Safety Analysis Office, Nuclear Technology Test Center

    International Nuclear Information System (INIS)

    Hayakawa, Masahiko

    1981-01-01

    The Nuclear Technology Test Center established the Nuclear Safety Analysis Office to execute newly the works concerning nuclear safety analysis in addition to the works related to the proving tests of nuclear machinery and equipments. The regulations for the Nuclear Safety Analysis Office concerning its organization, business and others were specially decided, and it started the business formally in August, 1980. It is a most important subject to secure the safety of nuclear facilities in nuclear fuel cycle as the premise of developing atomic energy. In Japan, the strict regulation of safety is executed by the government at each stage of the installation, construction, operation and maintenance of nuclear facilities, based on the responsibility for the security of installers themselves. The Nuclear Safety Analysis Office was established as the special organ to help the safety examination related to the installation of nuclear power stations and others by the government. It improves and puts in order the safety analysis codes required for the cross checking in the safety examination, and carries out safety analysis calculation. It is operated by the cooperation of the Science and Technology Agency and the Agency of Natural Resources and Energy. The purpose of establishment, the operation and the business of the Nuclear Safety Analysis Office, the plan of improving and putting in order of analysis codes, and the state of the similar organs in foreign countries are described. (Kako, I.)

  20. Technical difficulties and challenges for performing safety analysis on digital I and C systems

    International Nuclear Information System (INIS)

    Yih, Swu

    1996-01-01

    Performing safety analysis on digital I and C systems is an important task for nuclear safety analysts. The analysis results can not only confirm that the system is well-developed but also provide crucial evidence for licensing process. However, currently both I and C developers and regulators have difficulties in evaluating the safety of digital I and C systems. To investigate this problem, this paper propose a frame-based model to analyze the working and failure mechanisms of software and its interaction with the environment. Valid isomorphic relationship between the logical (software) and the physical (hardware environment) frame is identified as a major factor that determines the safe behavior of the software. The failures that may potentially cause the violation of isomorphic relations are also discussed. To perform safety analysis on digital I and C systems, analysts need to predict the effects incurred by such failures. However, due to lack of continuity, regularity, integrity, and high complexity of software structure, software does not have a stable and predictable pattern of behavior, which in turn makes the trustworthiness of results of software safety analysis susceptible. Our model can explain many troublesome events experienced by computer controlled systems. Implications and possible directions for improvement are also discussed. (author)

  1. A quantitative assessment of organizational factors affecting safety using a system dynamics model

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J. K. [Systemix Company, Seoul (Korea, Republic of); Yoon, T. S. [Korea Electric Power Research Institute (Korea, Republic of)

    2003-07-01

    The purpose of this study is to develop a system dynamics model for the assessment of organizational and human factors in the nuclear power plant safety. Previous studies are classified into two major approaches. One is the engineering approach such as ergonomics and Probabilistic Safety Assessment (PSA). The other is socio-psychology one. Both have contributed to find organizational and human factors and increased nuclear safety However, since these approaches assume that the relationship among factors is independent they do not explain the interactions between factors or variables in NPP's. To overcome these restrictions, a system dynamics model, which can show causal relations between factors and quantify organizational and human factors, has been developed. Operating variables such as degree of leadership, adjustment of number of employee, and workload in each department, users can simulate various situations in nuclear power plants in the organization side. Through simulation, user can get an insight to improve safety in plants and to find managerial tools in the organization and human side.

  2. Establishment of Safety Analysis System and Technology for CANDU Reactors

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Rhee, B. W.; Min, B. J.; Kim, H. T.; Kim, W. Y.; Yoon, C.; Chun, J. S.; Cho, M. S.; Jeong, J. Y.; Kang, H. S.

    2007-06-01

    The following 4 research items have been studied to establish a CANDU safety analysis system and to develop the relevant elementary technology for CANDU reactors. First, to improve and validate the CANDU design and operational safety analysis codes, the CANDU physics cell code WIMS-CANDU was improved, and validated, and an analysis of the moderator subcooling and pressure tube integrity has been performed for the large break LOCAs without ECCS. Also a CATHENA model and a CFD model for a post-blowdown fuel channel analysis have been developed and validated against two high temperature thermal-chemical experiments, CS28-1 and 2. Second, to improve the integrated operating system of the CANDU safety analysis codes, an extension has been made to them to include the core and fuel accident analyses, and a web-based CANDU database, CANTHIS version 2.0 was completed. Third, to assess the applicability of the ACR-7 safety analysis methodology to CANDU-6 the ACR-7 safety analysis methods were reviewed and the safety analysis methods of ACR-7 applicable to CANDU-6 were recommended. Last, to supplement and improve the existing CANDU safety analysis procedures, detailed analysis procedures have been prepared for individual accident scenarios. The results of this study can be used to resolve the CANDU safety issues, to improve the current design and operational safety analysis codes, and to technically support the Wolsong site to resolve their problems

  3. Establishment and prioritization of relevant factors to the safety of fuel cycle facilities non reactor through dynamics archetypes evaluation

    International Nuclear Information System (INIS)

    Sousa, Anna Leticia Barbosa de

    2012-01-01

    The present work aims to establish and prioritize factors that are important to the safety of nuclear fuel cycle facilities in order to model, analyze and design safety as a physical system, employing systemic models in an innovative way. This work takes into consideration the fact that models that use adaptations of methodologies for nuclear reactors will not properly work due to the specificities of fuel cycle facilities. Based on the fundamentals of the theory of systems, the four levels of system thinking, and the relationship of eight socio technical factors, a mental model has been developed for safety management in the nuclear fuel cycle context. From this conceptual model, safety archetypes were constructed in order to identify and highlight the processes of change and decision making that allow the system to migrate to a state of loss of safety. After that, stock and flow diagrams were created so that their behavior could be assessed by the system's dynamics. The results from the analysis using the model that simulates the dynamic behavior of the variables (socio technical factors) indicated, as expected, that the system's dynamics proved to be an appropriate and efficient tool for modeling fuel cycle safety as an emergent property. (author)

  4. Establishment of Safety Analysis System and Technology for CANDU Reactors

    International Nuclear Information System (INIS)

    Min, Byung Joo; Kim, W. Y.; Kim, H. T.; Rhee, B. W.; Yoon, C.; Kang, H. S.; Yoo, K. J.

    2005-03-01

    To improve the CANDU design/operation safety analysis codes and the CANDU safety analysis methodology, the following works have been done. From the development of the lattice codes (WIMS/CANDU), the lattice model simulates the real core lattice geometry and the effect of the pressure tube creep to the core lattice parameter has been evaluated. From the development of the 3-dimensional thermal-hydraulic analysis model of the moderator behavior (CFX4-CAMO), validation of the model against STERN Lab experiment has been executed. The butterfly-shaped grid structure and the 3-dimensional flow resistance model for porous media were developed and applied to the moderator analysis for Wolsong units 2/3/4. The single fuel channel analysis codes for blowdown and post-blowdown were unified by CATHENA. The 3-dimensional fuel channel analysis model (CFX-CACH) has been developed for validation of CATHENA fuel channel analysis model. The interlinking analysis system (CANVAS) of the thermal-hydraulic safety analysis codes for the primary heat transport system and containment system has been executed. The database system of core physics and thermal-hydraulics experimental data for safety analysis has been established on the URL: http://CANTHIS.kaeri.re.kr. For documentation and Standardization of the general safety analysis procedure, the general safety analysis procedure is developed and applied to a large break LOCA. The present research results can be utilized for establishment of the independent safety analysis technology and acquisition of the optimal safety analysis technology

  5. Ignalina NPP Safety Analysis: Models and Results

    International Nuclear Information System (INIS)

    Uspuras, E.

    1999-01-01

    Research directions, linked to safety assessment of the Ignalina NPP, of the scientific safety analysis group are presented: Thermal-hydraulic analysis of accidents and operational transients; Thermal-hydraulic assessment of Ignalina NPP Accident Localization System and other compartments; Structural analysis of plant components, piping and other parts of Main Circulation Circuit; Assessment of RBMK-1500 reactor core and other. Models and main works carried out last year are described. (author)

  6. Organizational factors and nuclear power plant safety

    International Nuclear Information System (INIS)

    Haber, S.B.

    1995-01-01

    There are many organizations in our society that depend on human performance to avoid incidents involving significant adverse consequences. As our culture and technology have become more sophisticated, the management of risk on a broad basis has become more and more critical. The safe operation of military facilities, chemical plants, airlines, and mass transit, to name a few, are substantially dependent on the performance of the organizations that operate those facilities. The nuclear power industry has, within the past 15 years, increased the attention given to the influence of human performance in the safe operation of nuclear power plants (NPP). While NPPs have been designed through engineering disciplines to intercept and mitigate events that could cause adverse consequences, it has been clear from various safety-related incidents that human performance also plays a dominant role in preventing accidents. Initial efforts following the 1979 Three Mile Island incident focused primarily on ergonomic factors (e.g., the best design of control rooms for maximum performance). Greater attention was subsequently directed towards cognitive processes involved in the use of NPP decision support systems and decision making in general, personnel functions such as selection systems, and the influence of work scheduling and planning on employees' performance. Although each of these approaches has contributed to increasing the safety of NPPS, during the last few years, there has been a growing awareness that particular attention must be paid to how organizational processes affect NPP personnel performance, and thus, plant safety. The direct importance of organizational factors on safety performance in the NPP has been well-documented in the reports on the Three Mile Island and Chernobyl accidents as well as numerous other events, especially as evaluated by the U.S. Nuclear Regulatory Commission (NRC)

  7. Safety review for human factors engineering and control rooms of nuclear power plants

    International Nuclear Information System (INIS)

    Yang Mengzhuo

    1998-01-01

    Safety review for human factors engineering and control rooms of nuclear power plants (NPP) is in a forward position of science and technology, which began at American TMI severe accident and had been implemented in China. The importance and the significance of the safety review are expounded, the requirements of its scope and profundity are explained in detail. In addition, the situation of the technical document system for nuclear safety regulation on human factors engineering and control rooms of NPP in China is introduced briefly, on which the safety review is based

  8. 75 FR 5536 - Pipeline Safety: Control Room Management/Human Factors, Correction

    Science.gov (United States)

    2010-02-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Parts...: Control Room Management/Human Factors, Correction AGENCY: Pipeline and Hazardous Materials Safety... following correcting amendments: PART 192--TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM...

  9. Measuring Safety Culture on Ships Using Safety Climate: A Study among Indian Officers

    Directory of Open Access Journals (Sweden)

    Yogendra Bhattacharya

    2015-12-01

    Full Text Available Workplace safety continues to be an area of concern in the maritime industry due to the international nature of the operations. The effectiveness of extensive legislation to manage shipboard safety remains in doubt. The focus must therefore shift towards the human element - seafarers and their perceptions of safety. The study aims to understand the alignment that exists between safety culture and safety climate on board ships as perceived by seafarers. The underlying factors of safety climate were identified using factor analysis which isolated seven factors - Support on Safety, Organizational Support, Resource Availability, Work Environment, Job Demands, ‘Just’ Culture, and Safety Compliance. The perception of safety level of seafarers was found to be low indicating the existence of misalignments between safety culture values and the actual safety climate. The study also reveals that the safety perceptions of officers employed directly by ship owners and those by managers do not differ significantly, nor do they differ between senior and junior officers. A shift in perspective towards how seafarers themselves feel towards safety might provide more effective solutions – instead of relying on regulations - and indeed aid in reducing incidents on board. This paper details practical suggestions on how to identify the factors that contribute towards a better safety climate on board ships.

  10. Development of safety factors to be used for evaluation of cracked nuclear components

    International Nuclear Information System (INIS)

    Brickstad, B.; Bergman, M.

    1996-10-01

    A modified concept for safety evaluation is introduced which separately accounts for the failure mechanisms fracture and plastic collapse. For application on nuclear components a set of safety factors are also proposed that retain the safety margins expressed in ASME, section III and XI. By performing comparative studies of the acceptance levels for surface cracks in pipes and a pressure vessel, it is shown that some of the anomalies connected with the old safety procedures are removed. It is the authors belief that the outlined safety evaluation procedure has the capability of treating cracks in a consistent way and that the procedure together with the proposed safety factors fulfill the basic safety requirements for nuclear components. Hopefully, it is possible in the near future to develop a probabilistic safety assessment procedure in Sweden, which enables a systematic treatment of uncertainties in the involved data. 14 refs

  11. Investigation and identification of factors affecting migrating peasant workers' usage of safety footwear in the Chinese construction industry.

    Science.gov (United States)

    Suo, Qinghui; Zhang, Daming

    2017-09-01

    A sample of 300 migrating peasant workers from 15 Chinese building construction sites completed a demographic questionnaire to investigate the usage of safety footwear. The survey form was constructed based on the theory of planned behaviour, and a total of 12 questions focusing on the workers' past experience, attitudes, subjective norms and perceived behavioural control were included in the survey. It was found that 92% of the participants did not wear safety footwear while working on construction sites, although more than 91% of them believed that safety footwear would protect the foot from injury; none of the participants had been provided free safety footwear by their employer. Regression analysis shows that employers' attitude is the most important factor affecting their usage of safety footwear, 'providing free safety footwear' and 'comfortability of the safety footwear' ranking second and third respectively.

  12. Reload safety analysis automation tools

    International Nuclear Information System (INIS)

    Havlůj, F.; Hejzlar, J.; Vočka, R.

    2013-01-01

    Performing core physics calculations for the sake of reload safety analysis is a very demanding and time consuming process. This process generally begins with the preparation of libraries for the core physics code using a lattice code. The next step involves creating a very large set of calculations with the core physics code. Lastly, the results of the calculations must be interpreted, correctly applying uncertainties and checking whether applicable limits are satisfied. Such a procedure requires three specialized experts. One must understand the lattice code in order to correctly calculate and interpret its results. The next expert must have a good understanding of the physics code in order to create libraries from the lattice code results and to correctly define all the calculations involved. The third expert must have a deep knowledge of the power plant and the reload safety analysis procedure in order to verify, that all the necessary calculations were performed. Such a procedure involves many steps and is very time consuming. At ÚJV Řež, a.s., we have developed a set of tools which can be used to automate and simplify the whole process of performing reload safety analysis. Our application QUADRIGA automates lattice code calculations for library preparation. It removes user interaction with the lattice code and reduces his task to defining fuel pin types, enrichments, assembly maps and operational parameters all through a very nice and user-friendly GUI. The second part in reload safety analysis calculations is done by CycleKit, a code which is linked with our core physics code ANDREA. Through CycleKit large sets of calculations with complicated interdependencies can be performed using simple and convenient notation. CycleKit automates the interaction with ANDREA, organizes all the calculations, collects the results, performs limit verification and displays the output in clickable html format. Using this set of tools for reload safety analysis simplifies

  13. Software safety analysis application in installation phase

    International Nuclear Information System (INIS)

    Huang, H. W.; Yih, S.; Wang, L. H.; Liao, B. C.; Lin, J. M.; Kao, T. M.

    2010-01-01

    This work performed a software safety analysis (SSA) in the installation phase of the Lungmen nuclear power plant (LMNPP) in Taiwan, under the cooperation of INER and TPC. The US Nuclear Regulatory Commission (USNRC) requests licensee to perform software safety analysis (SSA) and software verification and validation (SV and V) in each phase of software development life cycle with Branch Technical Position (BTP) 7-14. In this work, 37 safety grade digital instrumentation and control (I and C) systems were analyzed by Failure Mode and Effects Analysis (FMEA), which is suggested by IEEE Standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The FMEA showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (authors)

  14. Validation of the Continuous-Energy Monte Carlo Criticality-Safety Analysis System MVP and JENDL-3.2 Using the Internationally Evaluated Criticality Benchmarks

    International Nuclear Information System (INIS)

    Mitake, Susumu

    2003-01-01

    Validation of the continuous-energy Monte Carlo criticality-safety analysis system, comprising the MVP code and neutron cross sections based on JENDL-3.2, was examined using benchmarks evaluated in the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments'. Eight experiments (116 configurations) for the plutonium solution and plutonium-uranium mixture systems performed at Valduc, Battelle Pacific Northwest Laboratories, and other facilities were selected and used in the studies. The averaged multiplication factors calculated with MVP and MCNP-4B using the same neutron cross-section libraries based on JENDL-3.2 were in good agreement. Based on methods provided in the Japanese nuclear criticality-safety handbook, the estimated criticality lower-limit multiplication factors to be used as a subcriticality criterion for the criticality-safety evaluation of nuclear facilities were obtained. The analysis proved the applicability of the MVP code to the criticality-safety analysis of nuclear fuel facilities, particularly to the analysis of systems fueled with plutonium and in homogeneous and thermal-energy conditions

  15. Software safety analysis techniques for developing safety critical software in the digital protection system of the LMR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Soo; Cheon, Se Woo; Kim, Chang Hoi; Sim, Yun Sub

    2001-02-01

    This report has described the software safety analysis techniques and the engineering guidelines for developing safety critical software to identify the state of the art in this field and to give the software safety engineer a trail map between the code and standards layer and the design methodology and documents layer. We have surveyed the management aspects of software safety activities during the software lifecycle in order to improve the safety. After identifying the conventional safety analysis techniques for systems, we have surveyed in details the software safety analysis techniques, software FMEA(Failure Mode and Effects Analysis), software HAZOP(Hazard and Operability Analysis), and software FTA(Fault Tree Analysis). We have also surveyed the state of the art in the software reliability assessment techniques. The most important results from the reliability techniques are not the specific probability numbers generated, but the insights into the risk importance of software features. To defend against potential common-mode failures, high quality, defense-in-depth, and diversity are considered to be key elements in digital I and C system design. To minimize the possibility of CMFs and thus increase the plant reliability, we have provided D-in-D and D analysis guidelines.

  16. Software safety analysis techniques for developing safety critical software in the digital protection system of the LMR

    International Nuclear Information System (INIS)

    Lee, Jang Soo; Cheon, Se Woo; Kim, Chang Hoi; Sim, Yun Sub

    2001-02-01

    This report has described the software safety analysis techniques and the engineering guidelines for developing safety critical software to identify the state of the art in this field and to give the software safety engineer a trail map between the code and standards layer and the design methodology and documents layer. We have surveyed the management aspects of software safety activities during the software lifecycle in order to improve the safety. After identifying the conventional safety analysis techniques for systems, we have surveyed in details the software safety analysis techniques, software FMEA(Failure Mode and Effects Analysis), software HAZOP(Hazard and Operability Analysis), and software FTA(Fault Tree Analysis). We have also surveyed the state of the art in the software reliability assessment techniques. The most important results from the reliability techniques are not the specific probability numbers generated, but the insights into the risk importance of software features. To defend against potential common-mode failures, high quality, defense-in-depth, and diversity are considered to be key elements in digital I and C system design. To minimize the possibility of CMFs and thus increase the plant reliability, we have provided D-in-D and D analysis guidelines

  17. Organizational analysis and safety for utilities with nuclear power plants: perspectives for organizational assessment. Volume 2

    International Nuclear Information System (INIS)

    Osborn, R.N.; Olson, J.; Sommers, P.E.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. Volume 1 of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety. The six chapters of this volume discuss the major elements in our general approach to safety in the nuclear industry. The chapters include information on organizational design and safety; organizational governance; utility environment and safety related outcomes; assessments by selected federal agencies; review of data sources in the nuclear power industry; and existing safety indicators

  18. Status of SPACE Safety Analysis Code Development

    International Nuclear Information System (INIS)

    Lee, Dong Hyuk; Yang, Chang Keun; Kim, Se Yun; Ha, Sang Jun

    2009-01-01

    In 2006, the Korean the Korean nuclear industry started developing a thermal-hydraulic analysis code for safety analysis of PWR(Pressurized Water Reactor). The new code is named as SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). The SPACE code can solve two-fluid, three-field governing equations in one dimensional or three dimensional geometry. The SPACE code has many component models required for modeling a PWR, such as reactor coolant pump, safety injection tank, etc. The programming language used in the new code is C++, for new generation of engineers who are more comfortable with C/C++ than old FORTRAN language. This paper describes general characteristics of SPACE code and current status of SPACE code development

  19. Systems Analysis of NASA Aviation Safety Program: Final Report

    Science.gov (United States)

    Jones, Sharon M.; Reveley, Mary S.; Withrow, Colleen A.; Evans, Joni K.; Barr, Lawrence; Leone, Karen

    2013-01-01

    A three-month study (February to April 2010) of the NASA Aviation Safety (AvSafe) program was conducted. This study comprised three components: (1) a statistical analysis of currently available civilian subsonic aircraft data from the National Transportation Safety Board (NTSB), the Federal Aviation Administration (FAA), and the Aviation Safety Information Analysis and Sharing (ASIAS) system to identify any significant or overlooked aviation safety issues; (2) a high-level qualitative identification of future safety risks, with an assessment of the potential impact of the NASA AvSafe research on the National Airspace System (NAS) based on these risks; and (3) a detailed, top-down analysis of the NASA AvSafe program using an established and peer-reviewed systems analysis methodology. The statistical analysis identified the top aviation "tall poles" based on NTSB accident and FAA incident data from 1997 to 2006. A separate examination of medical helicopter accidents in the United States was also conducted. Multiple external sources were used to develop a compilation of ten "tall poles" in future safety issues/risks. The top-down analysis of the AvSafe was conducted by using a modification of the Gibson methodology. Of the 17 challenging safety issues that were identified, 11 were directly addressed by the AvSafe program research portfolio.

  20. Status of generic actions items and safety analysis system of PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Min, Byung Joo

    2001-05-01

    This report described the review results of a GAIs(Generic Action Item) currently issued on safety analysis of PHWR(Pressurized Heavy Water Reactor) and the research activities and positions to solve the GAIs in each country which possess PHWRs. eviewing the Final Safety Analysis Report for Wolsong-2/3/4 Units, the safety analysis methodology, classification for accident scenarios, safety analysis codes, their interface, etc.. were described. From the present review report, it is intended to establish the CANDU safety analysis system by providing the better understandings and development plans for the safety analysis of PHWR. esults.

  1. Modeling the factors affecting unsafe behavior in the construction industry from safety supervisors' perspective.

    Science.gov (United States)

    Khosravi, Yahya; Asilian-Mahabadi, Hassan; Hajizadeh, Ebrahim; Hassanzadeh-Rangi, Narmin; Bastani, Hamid; Khavanin, Ali; Mortazavi, Seyed Bagher

    2014-01-01

    There can be little doubt that the construction is the most hazardous industry in the worldwide. This study was designed to modeling the factors affecting unsafe behavior from the perspective of safety supervisors. The qualitative research was conducted to extract a conceptual model. A structural model was then developed based on a questionnaire survey (n=266) by two stage Structural Equation Model (SEM) approach. An excellent confirmed 12-factors structure explained about 62% of variances unsafe behavior in the construction industry. A good fit structural model indicated that safety climate factors were positively correlated with safety individual factors (Pconstruction workers' engagement in safe or unsafe behavior. In order to improve construction safety performance, more focus on the workplace condition is required.

  2. Human and organization factors: engineering operating safety into offshore structures

    International Nuclear Information System (INIS)

    Bea, Robert G.

    1998-01-01

    History indicates clearly that the safety of offshore structures is determined primarily by the humans and organizations responsible for these structures during their design, construction, operation, maintenance, and decommissioning. If the safety of offshore structures is to be preserved and improved, then attention of engineers should focus on to how to improve the reliability of the offshore structure 'system,' including the people that come into contact with the structure during its life-cycle. This article reviews and discusss concepts and engineering approaches that can be used in such efforts. Two specific human factor issues are addressed: (1) real-time management of safety during operations, and (2) development of a Safety Management Assessment System to help improve the safety of offshore structures

  3. A development of an evaluation flow chart for seismic stability of rock slopes based on relations between safety factor and sliding failure

    International Nuclear Information System (INIS)

    Kawai, Tadashi; Ishimaru, Makoto

    2010-01-01

    Recently, it is necessary to assess quantitatively seismic safety of critical facilities against the earthquake- induced rock slope failure from the viewpoint of seismic PSA. Under these circumstances, it is needed to evaluate the seismic stability of surrounding slopes against extremely strong ground motions. In order to evaluate the seismic stability of surrounding slopes, the most conventional method is to compare safety factors on an expected sliding surface, which is calculated from the stability analysis based on the limit equilibrium concept, to a critical value which judges stability or instability. The method is very effective to examine whether or not the sliding surface is safe. However, it does not mean that the sliding surface falls whenever the safety factor becomes smaller than the critical value during an earthquake. Therefore the authors develop a new evaluation flow chart for the seismic stability of rock slopes based on relations between safety factor and sliding failure. Furthermore, the developed flow chart was validated by comparing two kinds of safety factors calculated from a centrifuge test result concerned with a rock slope. (author)

  4. The Relationship Between Antecedent and Consequence Factors with Safety Behaviour in PT.X

    OpenAIRE

    Fitriani, Apris; Nawawiwetu, Erwin Dyah

    2017-01-01

    Background : Safety behaviour is an act worker to minimize the possibility of accidents in workplace. Based on the Antecedents-Behaviour-Consequence (ABC) theory, safety behaviour of worker related with the antecedent and consequence factors. Purpose : The purpose of this research was to study the association between antecedent and consequence factors with safety behaviour of workers in Ring Frame Unit Spinning II PT. X. Methods : This was an observational descriptive research with cross sect...

  5. A research framework of organizational factors on safety in the Republic of Korea

    International Nuclear Information System (INIS)

    Kwang Seok Lee

    1997-01-01

    Korean nuclear society is yet unfamiliar with the topic, 'organizational factors on safety', while having shown lots of accomplishments in the area of physical and human factors on safety. However, recent large-scale accidents in other technological areas illustrate the importance of managing organization factors on safety. Recently Korea Atomic Energy Research Institute (KAERI) started paying attention to this topic and is trying to establish a future research framework of organizational factors on safety. This paper tries to explain overall direction of the framework. Our framework, as managing organizational factors on safety, considers two kinds of areas: design of management systems, which implies a feed-forward system including organizational models; and operation of those systems, which implies a feedback system including management information and implementation systems. Our framework also considers the evolution stage of a management system. Management systems evolve from visibility stage to optimization stage. To optimize a management system, we should be able to control the system. To control the system, we should be able to see how the system is going. In addition, this paper tries to share some experience of KAERI on how organizational structure and culture affects organizational performance in R and D perspective. (author). 2 refs, 1 fig

  6. 2005 dossier: granite. Tome: safety analysis of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of the geologic disposal of high-level and long-lived (HLLL) radioactive wastes in granite formations. Content: 1 - safety approach: context and general goal, references, design approach by safety functions, safety approach during the construction-exploitation-observation-closure phase, safety analysis during the post-closure phase; 2 - general description: HLLL wastes, granitic environment, general structure of the architecture of a disposal facility; 3 - safety functions and disposal design: general context, safety functions of the long-term disposal, design dispositions retained to answer the functions; 4 - operational safety: people's protection, radiological risks during exploitation, risk analysis in accident situation; 5 - qualitative safety analysis: methodology, main results of the analysis of the features, events and processes (FEP) database; 6 - disposal efficiency evaluation during post-closure phase: calculation models, calculation tools used for the modeling of radionuclides transport, calculation results and main lessons. (J.S.)

  7. An Analysis of Laboratory Safety in Texas.

    Science.gov (United States)

    Fuller, Edward J.; Picucci, Ali Callicoatte; Collins, James W.; Swann, Philip

    This paper reports on a survey to discover the types of laboratory accidents that occur in Texas public schools, the factors associated with such accidents, and the practices of schools with regard to current laboratory safety requirements. The purpose of the survey is to better understand safety conditions in Texas public schools and to help…

  8. Human and organizational factors in nuclear safety

    International Nuclear Information System (INIS)

    Garcia, A.; Barrientos, M.; Gil, B.

    2015-01-01

    Nuclear installations are socio technical systems where human and organizational factors, in both utilities and regulators, have a significant impact on safety. Three Mile Island (TMI) accident, original of several initiatives in the human factors field, nevertheless became a lost opportunity to timely acquire lessons related to the upper tiers of the system. Nowadays, Spanish nuclear installations have integrated in their processes specialists and activities in human and organizational factors, promoted by the licensees After many years of hard work, Spanish installations have achieved a better position to face new challenges, such as those posed by Fukushima. With this experience, only technology-centered action plan would not be acceptable, turning this accident in yet another lost opportunity. (Author)

  9. Freight-train derailment rates for railroad safety and risk analysis.

    Science.gov (United States)

    Liu, Xiang; Rapik Saat, M; Barkan, Christopher P L

    2017-01-01

    Derailments are the most common type of train accident in the United States. They cause damage to infrastructure, rolling stock and lading, disrupt service, and have the potential to cause casualties, and harm the environment. Train safety and risk analysis relies on accurate assessment of derailment likelihood. Derailment rate - the number of derailments normalized by traffic exposure - is a useful statistic to estimate the likelihood of a derailment. Despite its importance, derailment rate analysis using multiple factors has not been previously developed. In this paper, we present an analysis of derailment rates on Class I railroad mainlines based on data from the U.S. Federal Railroad Administration and the major freight railroads. The point estimator and confidence interval of train and car derailment rates are developed by FRA track class, method of operation and annual traffic density. The analysis shows that signaled track with higher FRA track class and higher traffic density is associated with a lower derailment rate. The new accident rates have important implications for safety and risk management decisions, such as the routing of hazardous materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Organisational factors. Their definition and influence on nuclear safety. Final report

    International Nuclear Information System (INIS)

    Baumont, G.; Wahlstroem, B.; Sola, R.; Williams, J.; Frischknecht, A.; Wilpert, B.; Rollenhagen, C.

    2000-12-01

    The importance of organisational factors in the operational safety and efficiency of nuclear power plants (NPP) has been recognised by many organisations around the world. Despite this recognition, however, there are as yet very few methods by which organisational factors can be systematically assessed and improved. The majority of research efforts applied so far have tended to be modest and scattered. The ORFA project was created as a remedy to these problems. The objective of the project is to create a better understanding of how organisation and management factors influence nuclear safety. A key scientific objective of the project is to identify components of a theoretical framework, which would help in understanding the relationships between organisational factors and nuclear safety. Three work packages were planned. First, a review of literature listed out the identified factors and methods for assessing them. Then, a draft version of the present report was prepared to clarify the environment context and the main issues of the topics. This draft was discussed at the ORFA seminar in Madrid 21-22 October 1999. During the seminar views and comments were collected on preliminary results of the project. Finally, this information has been integrated in the present and other reports and will be used to give further guidance to the European Commission in the development of forthcoming research programmes in the field. The project has addressed nuclear safety taking a broad perspective, which reflected and took into account the views of senior NPP management and regulators. The questions discussed during the project have been: how can organisational factors be included in safety assessments, how can good and bad operational practices be identified, which methods can be used for detecting weak signals of deteriorating performance, how should incidents be analysed with respect to organisational factors to give the largest learning benefit, how can data on organisational

  11. Integrated framework for dynamic safety analysis

    International Nuclear Information System (INIS)

    Kim, Tae Wan; Karanki, Durga R.

    2012-01-01

    In the conventional PSA (Probabilistic Safety Assessment), detailed plant simulations by independent thermal hydraulic (TH) codes are used in the development of accident sequence models. Typical accidents in a NPP involve complex interactions among process, safety systems, and operator actions. As independent TH codes do not have the models of operator actions and full safety systems, they cannot literally simulate the integrated and dynamic interactions of process, safety systems, and operator responses. Offline simulation with pre decided states and time delays may not model the accident sequences properly. Moreover, when stochastic variability in responses of accident models is considered, defining all the combinations for simulations will be cumbersome task. To overcome some of these limitations of conventional safety analysis approach, TH models are coupled with the stochastic models in the dynamic event tree (DET) framework, which provides flexibility to model the integrated response due to better communication as all the accident elements are in the same model. The advantages of this framework also include: Realistic modeling in dynamic scenarios, comprehensive results, integrated approach (both deterministic and probabilistic models), and support for HRA (Human Reliability Analysis)

  12. Organizational factors influencing improvements in safety

    International Nuclear Information System (INIS)

    Marcus, A.; Nichols, M.L.; Olson, J.; Osborn, R.; Thurber, J.

    1991-01-01

    Results of conceptual and empirical research conducted by this research team, and published in NUREG-CR 5437, suggested that processes of organizational problem solving and learning provide a promising area for understanding improvement in safety-related performance in nuclear power plants. In this paper the authors describe the way in which they have built upon that work and gone much further in empirically examining a range of potentially important organizational factors related to safety. The paper describes (1) overall trends in plant performance over time on the Nuclear Regulatory Commission performance indicators, (2) the major elements in the conceptual framework guiding the current work, which seeks among other things to explain those trends, (3) the specific variables used as measures of the central concepts, (4) the results to date of the quantitative empirical work and qualitative work in progress, and (5) conclusions from the research

  13. OASIS: An automotive analysis and safety engineering instrument

    International Nuclear Information System (INIS)

    Mader, Roland; Armengaud, Eric; Grießnig, Gerhard; Kreiner, Christian; Steger, Christian; Weiß, Reinhold

    2013-01-01

    In this paper, we describe a novel software tool named OASIS (AutOmotive Analysis and Safety EngIneering InStrument). OASIS supports automotive safety engineering with features allowing the creation of consistent and complete work products and to simplify and automate workflow steps from early analysis through system development to software development. More precisely, it provides support for (a) model creation and reuse, (b) analysis and documentation and (c) configuration and code generation. We present OASIS as a part of a tool chain supporting the application of a safety engineering workflow aligned with the automotive safety standard ISO 26262. In particular, we focus on OASIS' (1) support for property checking and model correction as well as its (2) support for fault tree generation and FMEA (Failure Modes and Effects Analysis) table generation. Finally, based on the case study of hybrid electric vehicle development, we demonstrate that (1) and (2) are able to strongly support FTA (Fault Tree Analysis) and FMEA

  14. PWR core safety analysis with 3-dimensional methods

    International Nuclear Information System (INIS)

    Gensler, A.; Kühnel, K.; Kuch, S.

    2015-01-01

    Highlights: • An overview of AREVA’s safety analysis codes their coupling is provided. • The validation base and licensing applications of these codes are summarized. • Coupled codes and methods provide improved margins and non-conservative results. • Examples for REA and inadvertent opening of the pressurizer safety valve are given. - Abstract: The main focus of safety analysis is to demonstrate the required safety level of the reactor core. Because of the demanding requirements, the quality of the safety analysis strongly affects the confidence in the operational safety of a reactor. To ensure the highest quality, it is essential that the methodology consists of appropriate analysis tools, an extensive validation base, and last but not least highly educated engineers applying the methodology. The sophisticated 3-dimensional core models applied by AREVA ensure that all physical effects relevant for safety are treated and the results are reliable and conservative. Presently AREVA employs SCIENCE, CASMO/NEMO and CASCADE-3D for pressurized water reactors. These codes are currently being consolidated into the next generation 3D code system ARCADIA®. AREVA continuously extends the validation base, including measurement campaigns in test facilities and comparisons of the predictions of steady state and transient measured data gathered from plants during many years of operation. Thus, the core models provide reliable and comprehensive results for a wide range of applications. For the application of these powerful tools, AREVA is taking benefit of its interdisciplinary know-how and international teamwork. Experienced engineers of different technical backgrounds are working together to ensure an appropriate interpretation of the calculation results, uncertainty analysis, along with continuously maintaining and enhancing the quality of the analysis methodologies. In this paper, an overview of AREVA’s broad application experience as well as the broad validation

  15. Safety analysis of the UTSI-CFFF superconducting magnet

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Smith, R.P.; VanderArend, P.C.; Hsu, Y.H.

    1979-01-01

    In designing a large superconducting magnet such as the UTSI-CFFF dipole, great attention must be devoted to the safety of the magnet and personnel. The conductor for the UTSI-CFFF magnet incorporates much copper stabilizer, which both insures its cryostability, and contributes to the magnet safety. The quench analysis and the cryostat fault condition analysis are presented. Two analyses of exposed turns follow; the first shows that gas cooling protects uncovered turns; the second, that the cryostat pressure relief system protects them. Finally the failure mode and safety analysis is presented

  16. Discussion on the Safety Factors of Slopes Recommended for Small Dams

    Directory of Open Access Journals (Sweden)

    Jan Vrubel

    2017-01-01

    Full Text Available The design and assessment of the slope stability of small embankment dams is usually not carried out using slope stability calculations but rather by the comparison of proposed or existing dam slopes with those recommended by technical standards or guidelines. Practical experience shows that in many cases the slopes of small dams are steeper than those recommended. However, most of such steeper slopes at existing dams do not exhibit any visible signs of instability, defects or sliding. For the dam owner and also for dam stability engineers, the safety of the slope, expressed e.g. via a factor of safety, is crucial. The aim of this study is to evaluate the safety margin provided by recommended slopes. The factor of safety was evaluated for several dam shape and layout variants via the shear strength reduction method using PLAXIS software. The study covers various dam geometries, dam core and shoulder positions and parameter values of utilised soils. Three load cases were considered: one with a steady state seepage condition and two with different reservoir water level drawdown velocities – standard and critical. As numerous older small dams lack a drainage system, variants with and without a toe drain were assessed. Calculated factors of safety were compared with required values specified by national standards and guidelines.

  17. Modeling and Analysis on Radiological Safety Assessment of Low- and Intermediate Level Radioactive Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Jung, Jong Tae; Kang, Chul Hyung (and others)

    2008-04-15

    Modeling study and analysis for technical support for the safety and performance assessment of the low- and intermediate level (LILW) repository partially needed for radiological environmental impact reporting which is essential for the licenses for construction and operation of LILW has been fulfilled. Throughout this study such essential area for technical support for safety and performance assessment of the LILW repository and its licensing as gas generation and migration in and around the repository, risk analysis and environmental impact during transportation of LILW, biosphere modeling and assessment for the flux-to-dose conversion factors for human exposure as well as regional and global groundwater modeling and analysis has been carried out.

  18. Modeling and Analysis on Radiological Safety Assessment of Low- and Intermediate Level Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jung, Jong Tae; Kang, Chul Hyung

    2008-04-01

    Modeling study and analysis for technical support for the safety and performance assessment of the low- and intermediate level (LILW) repository partially needed for radiological environmental impact reporting which is essential for the licenses for construction and operation of LILW has been fulfilled. Throughout this study such essential area for technical support for safety and performance assessment of the LILW repository and its licensing as gas generation and migration in and around the repository, risk analysis and environmental impact during transportation of LILW, biosphere modeling and assessment for the flux-to-dose conversion factors for human exposure as well as regional and global groundwater modeling and analysis has been carried out

  19. Identifying the Critical Factors Affecting Safety Program Performance for Construction Projects within Pakistan Construction Industry

    Directory of Open Access Journals (Sweden)

    Zubair Ahmed Memon

    2013-04-01

    Full Text Available Many studies have shown that the construction industry one of the most hazardous industries with its high rates of fatalities and injuries and high financial losses incurred through work related accident. To reduce or overcome the safety issues on construction sites, different safety programs are introduced by construction firms. A questionnaire survey study was conducted to highlight the influence of the Construction Safety Factors on safety program implementation. The input from the questionnaire survey was analyzed by using AIM (Average Index Method and rank correlation test was conducted between different groups of respondents to measure the association between different groups of respondent. The finding of this study highlighted that management support is the critical factor for implementing the safety program on projects. From statistical test, it is concluded that all respondent groups were strongly in the favor of management support factor as CSF (Critical Success Factor. The findings of this study were validated on selected case studies. Results of the case studies will help to know the effect of the factors on implementing safety programs during the execution stage.

  20. A quantitative assessment of organizational factors affecting safety using system dynamics model

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jae Kook; Ahn, Nam Sung [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jae, Moo Sung [Hanyang Univ., Seoul (Korea, Republic of)

    2004-02-01

    The purpose of this study is to develop a system dynamics model for the assessment of the organizational and human factors in a nuclear power plant which contribute to nuclear safety. Previous studies can be classified into two major approaches. One is the engineering approach using tools such as ergonomics and Probability Safety Assessment (PSA). The other is the socio-psychology approach. Both have contributed to find organizational and human factors and to present guidelines to lessen human error in plants. However, since these approaches assume that the relationship among factors is independent they do not explain the interactions among the factors or variables in nuclear power plants. To overcome these restrictions, a system dynamics model, which can show cause and effect relationships among factors and quantify the organizational and human factors, has been developed. Handling variables such as the degree of leadership, the number of employees, and workload in each department, users can simulate various situations in nuclear power plant organization. Through simulation, users can get insights to improve safety in plants and to find managerial tools in both organizational and human factors.

  1. A quantitative assessment of organizational factors affecting safety using system dynamics model

    International Nuclear Information System (INIS)

    Yu, Jae Kook; Ahn, Nam Sung; Jae, Moo Sung

    2004-01-01

    The purpose of this study is to develop a system dynamics model for the assessment of the organizational and human factors in a nuclear power plant which contribute to nuclear safety. Previous studies can be classified into two major approaches. One is the engineering approach using tools such as ergonomics and Probability Safety Assessment (PSA). The other is the socio-psychology approach. Both have contributed to find organizational and human factors and to present guidelines to lessen human error in plants. However, since these approaches assume that the relationship among factors is independent they do not explain the interactions among the factors or variables in nuclear power plants. To overcome these restrictions, a system dynamics model, which can show cause and effect relationships among factors and quantify the organizational and human factors, has been developed. Handling variables such as the degree of leadership, the number of employees, and workload in each department, users can simulate various situations in nuclear power plant organization. Through simulation, users can get insights to improve safety in plants and to find managerial tools in both organizational and human factors

  2. ORGANIZATIONAL CULTURE AS ONE OF THE MAIN FACTORS FOR THE SUCCESSFUL SAFETY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Snežana Živković

    2016-05-01

    Full Text Available The goal of this research is to establish the influence of organizational culture on the system of safety and health at work. The research sample included 556 respondents of various activities in Russia. Based on the results, it can be concluded that there is a statistically significant connection of the Attitude towards occupational safety with 5 out of 7 aspects of organizational culture, as well as with the general factor of Usefulness of the manner of management. In addition, there is a statistically significant connection to age, total years of service and qualifications. Through a comparative analysis of results acquired in the Republic of Serbia and Russia, differences in attitudes towards safety and health activities at work were acquired i.e. there is a difference between the average answers of respondents from Serbia and Russia in the Attitude towards occupational safety which is on average slightly more prominent in respondents from Serbia. In relation to organizational culture aspects, there are differences in Vision, Credibility, Feedback and recognition as well as Responsibility. Respondents from Serbia have higher average values on all these measures, but all the differences are small (all effect sizes are below 0.2.

  3. Reliability Analysis for Safety Grade PLC(POSAFE-Q)

    International Nuclear Information System (INIS)

    Choi, Kyung Chul; Song, Seung Whan; Park, Gang Min; Hwang, Sung Jae

    2012-01-01

    Safety Grade PLC(Programmable Logic Controller), POSAFE-Q, was developed recently in accordance with nuclear regulatory and requirements. In this paper, describe reliability analysis for digital safety grade PLC (especially POSAFE-Q). Reliability analysis scope is Prediction, Calculation of MTBF (Mean Time Between Failure), FMEA (Failure Mode Effect Analysis), PFD (Probability of Failure on Demand). (author)

  4. Status of safety analysis reports

    Energy Technology Data Exchange (ETDEWEB)

    Cserhati, A

    1999-06-01

    The safety regulation connected to both of the Atomic Acts from 1980 and 1996 requires preparation of the Preliminary Safety Analysis Report (PSAR) as well as Final SAR (FSAR). In this respect the licensing procedure for the construction and commissioning of Paks NPP did not formally deviate from the standards applied in developed countries; this is particularly true if comparison is made with the standards applied for commissioning NPPs in the second half of the seventies. By the time the overall development of internationally accepted safety standards and some existing deficiencies of earlier SAR made necessary a general reassessment of the plant safety (AGNES project). The carried out PSR for Paks-1 and 2 also added a valuable contribution to the SAR content, however a formal update of SAR is not made yet. A Hungarian nuclear authority decree from 1997 obligates the licensee to prepare and submit a major upgrade of FSAR until the mid of 2000, after finishing the PSR for Paks-3 and 4. From this date a periodic update of FSAR is required every year. The operational license renewal affects only the PSR but not the FSAR updating. The new Nuclear Safety Code outlines the contents of PSAR and FSAR, based on US NRC Reg. Guide 1. 70. Rev. 3. Hungary by now can fulfill the upgrading of SAR without major external technical or financial help. The AGNES project covered the safety analysis chapters of SAR. It was financed mainly by the country. In the project there have been involved in limited cases as performers the VTT (Finland), Belgatom (Belgium), GRS (Germany), etc., the IVO (Finland) fulfilled tasks of an independent reviewer for safety analysis. The AGNES had certain interconnection with the similar IAEA RER safety reassessment project for WWER-440/213. The PSR for Paks-1 and 2 have been carried out by the Paks staff from the resources of the plant. During the evaluation of several parts of Paks-3 and 4 PSR documentation the authority intends to use certain

  5. Status of safety analysis reports

    International Nuclear Information System (INIS)

    Cserhati, A.

    1999-01-01

    The safety regulation connected to both of the Atomic Acts from 1980 and 1996 requires preparation of the Preliminary Safety Analysis Report (PSAR) as well as Final SAR (FSAR). In this respect the licensing procedure for the construction and commissioning of Paks NPP did not formally deviate from the standards applied in developed countries; this is particularly true if comparison is made with the standards applied for commissioning NPPs in the second half of the seventies. By the time the overall development of internationally accepted safety standards and some existing deficiencies of earlier SAR made necessary a general reassessment of the plant safety (AGNES project). The carried out PSR for Paks-1 and 2 also added a valuable contribution to the SAR content, however a formal update of SAR is not made yet. A Hungarian nuclear authority decree from 1997 obligates the licensee to prepare and submit a major upgrade of FSAR until the mid of 2000, after finishing the PSR for Paks-3 and 4. From this date a periodic update of FSAR is required every year. The operational license renewal affects only the PSR but not the FSAR updating. The new Nuclear Safety Code outlines the contents of PSAR and FSAR, based on US NRC Reg. Guide 1. 70. Rev. 3. Hungary by now can fulfill the upgrading of SAR without major external technical or financial help. The AGNES project covered the safety analysis chapters of SAR. It was financed mainly by the country. In the project there have been involved in limited cases as performers the VTT (Finland), Belgatom (Belgium), GRS (Germany), etc., the IVO (Finland) fulfilled tasks of an independent reviewer for safety analysis. The AGNES had certain interconnection with the similar IAEA RER safety reassessment project for WWER-440/213. The PSR for Paks-1 and 2 have been carried out by the Paks staff from the resources of the plant. During the evaluation of several parts of Paks-3 and 4 PSR documentation the authority intends to use certain

  6. Safety analysis of the nuclear chemistry Building 151

    International Nuclear Information System (INIS)

    Kvam, D.

    1984-01-01

    This report summarizes the results of a safety analysis that was done on Building 151. The report outlines the methodology, the analysis, and the findings that led to the low hazard classification. No further safety evaluation is indicated at this time. 5 tables

  7. Defining safety culture and the nexus between safety goals and safety culture. 3. A Methodology for Identifying Deficiencies in Safety Culture

    International Nuclear Information System (INIS)

    Apostolakis, George; Weil, Rick

    2001-01-01

    At present, the drivers of performance problems at nuclear power plants (NPPs) are organizational in nature. Organizational deficiencies and other 'latent' conditions cause human errors, resulting in incidents that impact the performance of NPPs. Therefore, the human reliability community, regulators, and others concerned with NPP safety express the view that safety culture and organizational factors play an important role in plant safety. However, we have yet to identify one complete set of organizational factors, establish links between deficient safety culture and performance, or develop adequate tools to measure safety culture. This paper will contribute to the resolution of these issues. Safety culture is not a single factor but rather is a collection of several distinct factors. This paper asserts that in order to pro-actively manage safety culture at NPPs, leading indicators and appropriate measurements must be identified and developed. Central to this effort are the identification of the distinct factors comprising safety culture and the relationships between those factors and performance. We have identified several factors important to safety culture. We have developed a methodology that is a combination of traditional root-cause analysis and theories of human error, most notably Reason's theory of accident causation. In addition to this methodology's usefulness in identifying deficiencies in safety culture, it could also be used as a starting point to identify leading indicators of deteriorating safety performance. We have identified six organizational factors as being important: communication, formalization, goal prioritization, problem identification, roles and responsibilities, and technical knowledge. In addition, we have found that certain organizational factors, although pervasive throughout the organization, have a much greater influence on the successful outcome of particular tasks of work processes, rather than being equally important to all

  8. Nuclear safety and human factors: the French factory of expertise

    International Nuclear Information System (INIS)

    Rolina, G.

    2009-01-01

    The French regulation of the nuclear safety is based on the maintaining of a deep technical dialogue between the nuclear safety authority, the I.R.S.N. (Institute of radiation protection and nuclear safety) and the nuclear operators. This type of risk management is called 'french coking' by the Anglo-Saxons, followers of stricter regulatory approach, more readable by the civil society. This technical dialogue is not without quality, especially in the field of human and organizational factors where it allows to improve the know how situation that stays incomplete. (N.C.)

  9. Safer electronic health records safety assurance factors for EHR resilience

    CERN Document Server

    Sittig, Dean F

    2015-01-01

    This important volume provide a one-stop resource on the SAFER Guides along with the guides themselves and information on their use, development, and evaluation. The Safety Assurance Factors for EHR Resilience (SAFER) guides, developed by the editors of this book, identify recommended practices to optimize the safety and safe use of electronic health records (EHRs). These guides are designed to help organizations self-assess the safety and effectiveness of their EHR implementations, identify specific areas of vulnerability, and change their cultures and practices to mitigate risks.This book pr

  10. DESIGN PACKAGE 1E SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    M. Salem

    1995-06-23

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1E, Surface Facilities, (for a list of design items included in the package 1E system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1E structures/systems/components(S/S/Cs) in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions.

  11. The influence of sodium fires on LMFBRs safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Justin, F [DSN/Centre de Fontenay-aux-Roses, Fontenay-aux-Roses (France)

    1979-03-01

    In a sodium cooled reactor, sodium fires are accidental conditions to be taken into account in safety analysis. For the various sodium categories, fire conditions, associated risks, safety analysis objectives and detailed corresponding issues are indicated, An experimental research program can be deduced from these considerations. This report covers the following: safety analysis methodology; primary sodium fires; secondary sodium fires; auxiliary sodium fires, and related experimental research programs.

  12. The influence of sodium fires on LMFBRs safety analysis

    International Nuclear Information System (INIS)

    Justin, F.

    1979-01-01

    In a sodium cooled reactor, sodium fires are accidental conditions to be taken into account in safety analysis. For the various sodium categories, fire conditions, associated risks, safety analysis objectives and detailed corresponding issues are indicated, An experimental research program can be deduced from these considerations. This report covers the following: safety analysis methodology; primary sodium fires; secondary sodium fires; auxiliary sodium fires, and related experimental research programs

  13. Human performance analysis in the frame of probabilistic safety assessment of research reactors

    International Nuclear Information System (INIS)

    Farcasiu, Mita; Nitoi, Mirela; Apostol, Minodora; Turcu, I.; Florescu, Gh.

    2005-01-01

    Full text: The analysis of operating experience has identified the importance of human performance in reliability and safety of research reactors. In Probabilistic Safety Assessment (PSA) of nuclear facilities, human performance analysis (HPA) is used in order to estimate human error contribution to the failure of system components or functions. HPA is a qualitative and quantitative analysis of human actions identified for error-likely situations or accident-prone situations. Qualitative analysis is used to identify all man-machine interfaces that can lead to an accident, types of human interactions which may mitigate or exacerbate the accident, types of human errors and performance shaping factors. Quantitative analysis is used to develop estimates of human error probability as effects of human performance in reliability and safety. The goal of this paper is to accomplish a HPA in the PSA frame for research reactors. Human error probabilities estimated as results of human actions analysis could be included in system event tree and/or system fault tree. The achieved sensitivity analyses determine human performance sensibility at systematically variations both for dependencies level between human actions and for operator stress level. The necessary information was obtained from operating experience of research reactor TRIGA from INR Pitesti. The required data were obtained from generic data bases. (authors)

  14. Meta-analysis of surgical safety checklist effects on teamwork, communication, morbidity, mortality, and safety.

    Science.gov (United States)

    Lyons, Vanessa E; Popejoy, Lori L

    2014-02-01

    The purpose of this study is to examine the effectiveness of surgical safety checklists on teamwork, communication, morbidity, mortality, and compliance with safety measures through meta-analysis. Four meta-analyses were conducted on 19 studies that met the inclusion criteria. The effect size of checklists on teamwork and communication was 1.180 (p = .003), on morbidity and mortality was 0.123 (p = .003) and 0.088 (p = .001), respectively, and on compliance with safety measures was 0.268 (p teamwork and communication, reduce morbidity and mortality, and improve compliance with safety measures. This meta-analysis is limited in its generalizability based on the limited number of studies and the inclusion of only published research. Future research is needed to examine possible moderating variables for the effects of surgical safety checklists.

  15. Reliability analysis of software based safety functions

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1993-05-01

    The methods applicable in the reliability analysis of software based safety functions are described in the report. Although the safety functions also include other components, the main emphasis in the report is on the reliability analysis of software. The check list type qualitative reliability analysis methods, such as failure mode and effects analysis (FMEA), are described, as well as the software fault tree analysis. The safety analysis based on the Petri nets is discussed. The most essential concepts and models of quantitative software reliability analysis are described. The most common software metrics and their combined use with software reliability models are discussed. The application of software reliability models in PSA is evaluated; it is observed that the recent software reliability models do not produce the estimates needed in PSA directly. As a result from the study some recommendations and conclusions are drawn. The need of formal methods in the analysis and development of software based systems, the applicability of qualitative reliability engineering methods in connection to PSA and the need to make more precise the requirements for software based systems and their analyses in the regulatory guides should be mentioned. (orig.). (46 refs., 13 figs., 1 tab.)

  16. Identification and comparative analysis of factors influencing road safety in US regions and in Polish voivodeships

    Directory of Open Access Journals (Sweden)

    Joanna WACHNICKA

    2013-01-01

    Full Text Available Analyses of road safety at national level have been run for many years and large number of publications concerning them appeared so far. How interdisciplinary the issue is, has been shown by literature studies done by the author of the paper. It appears that economists, mathematicians, doctors as well as engineers have studied the issue. It is not an easy one, as results of many analyses lead to conflicting conclusions and often fail to provide straightforward answers to questions asked. The administrative actions taken to improve road safety, uniform for the whole country, frequently fail to give expected results, including Poland’s case. Therefore there is a need to analyse what makes some provinces, and not the others, report improvement in road safety. This paper presents part of the work on author’s doctoral thesis, which analyses how regional characteristics may impact road safety in respective regions. However, during collection of data for the purpose of the doctoral thesis it turned out that many variables mentioned in literature as significant had not been collected on regional level in Europe, including Poland. There are, though, available data on respective American states, so the search for the best describing independent variables started from the analyses of US data. The analyses showed the impact of factors such as annual income per capita, transport activity, density of population, seatbelt rates, road and vehicle density, rate of doctors.

  17. Issues affecting advanced passive light-water reactor safety analysis

    International Nuclear Information System (INIS)

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented

  18. Workers’ Age and the Impact of Psychological Factors on the Perception of Safety at Construction Sites

    Directory of Open Access Journals (Sweden)

    Muhammad Dawood Idrees

    2017-05-01

    Full Text Available The safety of construction workers is always a major concern at construction sites as the construction industry is inherently dangerous with many factors influencing worker safety. Several studies concluded that psychological factors such as workload, organizational relationships, mental stress, job security, and job satisfaction have significant effects on workers’ safety. However, research on psychological factors that are characteristic of different age groups have been limited. The aim of this study was to examine the impact of psychological factors on the perception of worker safety for two different age groups. After an extensive literature review, different psychological factors were identified, and a hypothetical research model was developed based on psychological factors that could affect workers’ perception of safety. A survey instrument was developed, and data were collected from seven different construction sites in Pakistan. Structural equation modeling (SEM was employed to test the hypothetical model for both age groups. The results revealed that workload and job satisfaction are significantly dominant factors on workers’ perception of safety in older workers, whereas organizational relationships, mental stress, and job security are dominant factors for younger workers at construction sites.

  19. STARS software tool for analysis of reliability and safety

    International Nuclear Information System (INIS)

    Poucet, A.; Guagnini, E.

    1989-01-01

    This paper reports on the STARS (Software Tool for the Analysis of Reliability and Safety) project aims at developing an integrated set of Computer Aided Reliability Analysis tools for the various tasks involved in systems safety and reliability analysis including hazard identification, qualitative analysis, logic model construction and evaluation. The expert system technology offers the most promising perspective for developing a Computer Aided Reliability Analysis tool. Combined with graphics and analysis capabilities, it can provide a natural engineering oriented environment for computer assisted reliability and safety modelling and analysis. For hazard identification and fault tree construction, a frame/rule based expert system is used, in which the deductive (goal driven) reasoning and the heuristic, applied during manual fault tree construction, is modelled. Expert system can explain their reasoning so that the analyst can become aware of the why and the how results are being obtained. Hence, the learning aspect involved in manual reliability and safety analysis can be maintained and improved

  20. Latent segmentation based count models: Analysis of bicycle safety in Montreal and Toronto.

    Science.gov (United States)

    Yasmin, Shamsunnahar; Eluru, Naveen

    2016-10-01

    The study contributes to literature on bicycle safety by building on the traditional count regression models to investigate factors affecting bicycle crashes at the Traffic Analysis Zone (TAZ) level. TAZ is a traffic related geographic entity which is most frequently used as spatial unit for macroscopic crash risk analysis. In conventional count models, the impact of exogenous factors is restricted to be the same across the entire region. However, it is possible that the influence of exogenous factors might vary across different TAZs. To accommodate for the potential variation in the impact of exogenous factors we formulate latent segmentation based count models. Specifically, we formulate and estimate latent segmentation based Poisson (LP) and latent segmentation based Negative Binomial (LNB) models to study bicycle crash counts. In our latent segmentation approach, we allow for more than two segments and also consider a large set of variables in segmentation and segment specific models. The formulated models are estimated using bicycle-motor vehicle crash data from the Island of Montreal and City of Toronto for the years 2006 through 2010. The TAZ level variables considered in our analysis include accessibility measures, exposure measures, sociodemographic characteristics, socioeconomic characteristics, road network characteristics and built environment. A policy analysis is also conducted to illustrate the applicability of the proposed model for planning purposes. This macro-level research would assist decision makers, transportation officials and community planners to make informed decisions to proactively improve bicycle safety - a prerequisite to promoting a culture of active transportation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Human reliability analysis in probabilistic safety assessment for nuclear power plants. A Safety Practice. A publication within the NUSS programme

    International Nuclear Information System (INIS)

    1995-01-01

    Probabilistic safety assessment (PSA) is playing an increasingly important role in the safe operation of nuclear power plants throughout the world. In order to establish a consistent framework for conducting PSA studies, for promoting technology transfer of the state of the art, and for encouraging uniformity in the way PSA is carried out, the IAEA is preparing a set of publications which gives guidance on various aspects of PSA. This document presents a practical approach for incorporating human reliability analysis (HRA) into PSA. It describes the steps needed and the documentation that should be provided both to support the PSA itself and to ensure effective communication of important information arising from the studies. It also describes a framework for analysing those human actions which could affect safety and for relating such human influences to specific parts of a PSA. This Safety Practice also addresses the limitations of PSA in taking account of human factors in relation to safety and risk. Refs, figs and tabs

  2. Relationship between organizational justice and organizational safety climate: do fairness perceptions influence employee safety behaviour?

    Science.gov (United States)

    Gyekye, Seth Ayim; Haybatollahi, Mohammad

    2014-01-01

    This study investigated the relationships between organizational justice, organizational safety climate, job satisfaction, safety compliance and accident frequency. Ghanaian industrial workers participated in the study (N = 320). Safety climate and justice perceptions were assessed with Hayes, Parender, Smecko, et al.'s (1998) and Blader and Tyler's (2003) scales respectively. A median split was performed to dichotomize participants into 2 categories: workers with positive and workers with negative justice perceptions. Confirmatory factors analysis confirmed the 5-factor structure of the safety scale. Regression analyses and t tests indicated that workers with positive fairness perceptions had constructive perspectives regarding workplace safety, expressed greater job satisfaction, were more compliant with safety policies and registered lower accident rates. These findings provide evidence that the perceived level of fairness in an organization is closely associated with workplace safety perception and other organizational factors which are important for safety. The implications for safety research are discussed.

  3. Mathematical Safety Assessment Approaches for Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Zong-Xiao Yang

    2014-01-01

    Full Text Available How to use system analysis methods to identify the hazards in the industrialized process, working environment, and production management for complex industrial processes, such as thermal power plants, is one of the challenges in the systems engineering. A mathematical system safety assessment model is proposed for thermal power plants in this paper by integrating fuzzy analytical hierarchy process, set pair analysis, and system functionality analysis. In the basis of those, the key factors influencing the thermal power plant safety are analyzed. The influence factors are determined based on fuzzy analytical hierarchy process. The connection degree among the factors is obtained by set pair analysis. The system safety preponderant function is constructed through system functionality analysis for inherence properties and nonlinear influence. The decision analysis system is developed by using active server page technology, web resource integration, and cross-platform capabilities for applications to the industrialized process. The availability of proposed safety assessment approach is verified by using an actual thermal power plant, which has improved the enforceability and predictability in enterprise safety assessment.

  4. Sensitivity analysis of parameters important to nuclear criticality safety of Castor X/28F spent nuclear fuel cask

    Energy Technology Data Exchange (ETDEWEB)

    Leotlela, Mosebetsi J. [Witwatersrand Univ., Johannesburg (South Africa). School of Physics; Koeberg Operating Unit, Johannesburg (South Africa). Regulations and Licensing; Malgas, Isaac [Koeberg Nuclear Power Station, Duinefontein (South Africa). Nuclear Engineering Analysis; Taviv, Eugene [ASARA consultants (PTY) LTD, Johannesburg (South Africa)

    2015-11-15

    In nuclear criticality safety analysis it is essential to ascertain how various components of the nuclear system will perform under certain conditions they may be subjected to, particularly if the components of the system are likely to be affected by environmental factors such as temperature, radiation or material composition. It is therefore prudent that a sensitivity analysis is performed to determine and quantify the response of the output to variation in any of the input parameters. In a fissile system, the output parameter of importance is the k{sub eff}. Therefore, in attempting to prevent reactivity-induced accidents, it is important for the criticality safety analyst to have a quantified degree of response for the neutron multiplication factor to perturbation in a given input parameter. This article will present the results of the perturbation of the parameters that are important to nuclear criticality safety analysis and their respective correlation equations for deriving the sensitivity coefficients.

  5. The significance of the human factor in the safety of nuclear reactors: the French experience and the lessons of Three Mile Island

    International Nuclear Information System (INIS)

    Houze, C.; Oury, J.M.

    1982-05-01

    The importance of the human factor to French nuclear safety policy and the application of human fallibility as a parameter of safety analysis are described. The impact of reactor operating experience on future theoretical and practical application considerations is discussed. Particular reference is given to the lessons of Three Mile Island

  6. Safety analysis methodology for OPR 1000

    International Nuclear Information System (INIS)

    Hwang-Yong, Jun

    2005-01-01

    Full text: Korea Electric Power Research Institute (KEPRI) has been developing inhouse safety analysis methodology based on the delicate codes available to KEPRI to overcome the problems arising from currently used vendor oriented methodologies. For the Loss of Coolant Accident (LOCA) analysis, the KREM (KEPRI Realistic Evaluation Methodology) has been developed based on the RELAP-5 code. The methodology was approved for the Westinghouse 3-loop plants by the Korean regulatory organization and the project to extent the methodology to the Optimized Power Reactor 1000 (OPR1000) has been ongoing since 2001. Also, for the Non-LOCA analysis, the KNAP (Korea Non-LOCA Analysis Package) has been developed using the UNICORN-TM code system. To demonstrate the feasibility of these codes systems and methodologies, some typical cases of the design basis accidents mentioned in the final safety analysis report (FSAR) were analyzed. (author)

  7. The Analysis of the Contribution of Human Factors to the In-Flight Loss of Control Accidents

    Science.gov (United States)

    Ancel, Ersin; Shih, Ann T.

    2012-01-01

    In-flight loss of control (LOC) is currently the leading cause of fatal accidents based on various commercial aircraft accident statistics. As the Next Generation Air Transportation System (NextGen) emerges, new contributing factors leading to LOC are anticipated. The NASA Aviation Safety Program (AvSP), along with other aviation agencies and communities are actively developing safety products to mitigate the LOC risk. This paper discusses the approach used to construct a generic integrated LOC accident framework (LOCAF) model based on a detailed review of LOC accidents over the past two decades. The LOCAF model is comprised of causal factors from the domain of human factors, aircraft system component failures, and atmospheric environment. The multiple interdependent causal factors are expressed in an Object-Oriented Bayesian belief network. In addition to predicting the likelihood of LOC accident occurrence, the system-level integrated LOCAF model is able to evaluate the impact of new safety technology products developed in AvSP. This provides valuable information to decision makers in strategizing NASA's aviation safety technology portfolio. The focus of this paper is on the analysis of human causal factors in the model, including the contributions from flight crew and maintenance workers. The Human Factors Analysis and Classification System (HFACS) taxonomy was used to develop human related causal factors. The preliminary results from the baseline LOCAF model are also presented.

  8. Swimming pool reactor reliability and safety analysis

    International Nuclear Information System (INIS)

    Li Zhaohuan

    1997-01-01

    A reliability and safety analysis of Swimming Pool Reactor in China Institute of Atomic Energy is done by use of event/fault tree technique. The paper briefly describes the analysis model, analysis code and main results. Meanwhile it also describes the impact of unassigned operation status on safety, the estimation of effectiveness of defense tactics in maintenance against common cause failure, the effectiveness of recovering actions on the system reliability, the comparison of occurrence frequencies of the core damage by use of generic and specific data

  9. Enhancing Road Safety Behaviour Using a Psychological and Spiritual Approaches

    Directory of Open Access Journals (Sweden)

    Ghous Mohd Tarmizi

    2017-01-01

    Full Text Available Main causes of accident is due to driver itself that is influenced by their bad attitude while driving. Human attitude is closely related to the human psychology. Apart from that, spiritual aspect also influence human attitude. Hence, this study carried out to improve driver safety using a new approach through psychology and spiritual factors. Objectives of this study are to identify then analyze factors of psychological and spiritual that contribute towards safety driving. A self-administered questionnaire were distributed among 256 respondents from various type of background. An analysis descriptive statistics show demographic and experience of respondents. Chi-square analysis showed only education level and traffic summon are significant to safety driving. Furthermore, correlation analysis shows psychological factors has strong linear relationship on attitude of drivers towards safety driving while spiritual factor, the perception of the spiritual and practices, both have a strong relationship to safety driving. Regression analysis demonstrates boths psychological and spiritual factors have strong evidence and significant relationship with safety driving. Thus, it can be identified that spiritual psychological factors encourage drivers to drive more safely and reduce road accidents. Therefore, this study propose useful guidelines to related agencies in order to enhance safety among drivers to be able drive safely on the road.

  10. Research study about the establishment of safety culture. Effects of organizational factors in construction industry's safety indices

    International Nuclear Information System (INIS)

    Kojima, Mitsuhiro; Hirose, Humiko; Takano, Kenichi; Hasegawa, Naoko

    1999-01-01

    To find the relationships between safety related activities (such as safety patrol' or '4s/5s activities') and accidents rate in the workplace, questionnaires were sent to 965 construction companies and 120 answers were returned. In this questionnaire, safety activities, safety regulations and safety policies of the companies were asked and organizational climates, company policies, philosophies and the number of accidents in workplace were also asked. There seems some relationships between accidents rate and safety activities, safety regulations and safety policies in the companies, but the deviations between estimate values and observed values are so great that it seems impossible to estimate the accidents rate in the working place from the safety activities, safety regulations and safety policies of the companies. On the other hand, some characteristics of safety activities and organizational climates in the construction industry were identified using multi variants analysis. More detailed researches using sophisticated questionnaire will be conducted in the construction industry and petrochemical industry and relationships between the accidents rate and the safety activities will be compared between different industries. (author)

  11. Analysis on safety production in coal mines Henan Province

    Institute of Scientific and Technical Information of China (English)

    KONG Liu-an; ZHANG Wen-yong

    2006-01-01

    Based on the rigorous situation of safety production in coal mines, the paper analyzed the statistical data of recent accidents indexes in Henan's coal mines. Using investigation and comparison analysis methods, a specified analysis on mining conditions, technical facility level, safety input and vocational quality of workers in Henan's coal mines was conducted. The result indicates that there have been existing such main safety production problems as weak safety management, low-level facilities, inadequate safety input and poor vocational quality and so on. Finally it proposes such reference solutions as to establish and perfect coal mining supervision and management system, to increase safety investment into techniques and facilities and to strengthen workers' safety education and introduction of more high-level professional talents.

  12. Preliminary safety analysis of unscrammed events for KLFR

    International Nuclear Information System (INIS)

    Kim, S.J.; Ha, G.S.

    2005-01-01

    The report presents the design features of KLFR; Safety Analysis Code; steady-state calculation results and analysis results of unscrammed events. The calculations of the steady-state and unscrammed events have been performed for the conceptual design of KLFR using SSC-K code. UTOP event results in no fuel damage and no centre-line melting. The inherent safety features are demonstrated through the analysis of ULOHS event. Although the analysis of ULOF has much uncertainties in the pump design, the analysis results show the inherent safety characteristics. 6% flow of rated flow of natural circulation is formed in the case of ULOF. In the metallic fuel rod, the cladding temperature is somewhat high due to the low heat transfer coefficient of lead. ULOHS event should be considered in design of RVACS for long-term cooling

  13. SACS2: Dynamic and Formal Safety Analysis Method for Complex Safety Critical System

    International Nuclear Information System (INIS)

    Koh, Kwang Yong; Seong, Poong Hyun

    2009-01-01

    Fault tree analysis (FTA) is one of the most widely used safety analysis technique in the development of safety critical systems. However, over the years, several drawbacks of the conventional FTA have become apparent. One major drawback is that conventional FTA uses only static gates and hence can not capture dynamic behaviors of the complex system precisely. Although several attempts such as dynamic fault tree (DFT), PANDORA, formal fault tree (FFT) and so on, have been made to overcome this problem, they can not still do absolute or actual time modeling because they adapt relative time concept and can capture only sequential behaviors of the system. Second drawback of conventional FTA is its lack of rigorous semantics. Because it is informal in nature, safety analysis results heavily depend on an analyst's ability and are error-prone. Finally reasoning process which is to check whether basic events really cause top events is done manually and hence very labor-intensive and timeconsuming for the complex systems. In this paper, we propose a new safety analysis method for complex safety critical system in qualitative manner. We introduce several temporal gates based on timed computational tree logic (TCTL) which can represent quantitative notion of time. Then, we translate the information of the fault trees into UPPAAL query language and the reasoning process is automatically done by UPPAAL which is the model checker for time critical system

  14. MSSV Modeling for Wolsong-1 Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Bok Ja; Choi, Chul Jin; Kim, Seoung Rae [KEPCO EandC, Daejeon (Korea, Republic of)

    2010-10-15

    The main steam safety valves (MSSVs) are installed on the main steam line to prevent the overpressurization of the system. MSSVs are held in closed position by spring force and the valves pop open by internal force when the main steam pressure increases to open set pressure. If the overpressure condition is relieved, the valves begin to close. For the safety analysis of anticipated accident condition, the safety systems are modeled conservatively to simulate the accident condition more severe. MSSVs are also modeled conservatively for the analysis of over-pressurization accidents. In this paper, the pressure transient is analyzed at over-pressurization condition to evaluate the conservatism for MSSV models

  15. Qualitative analysis of factors leading to clinical incidents.

    Science.gov (United States)

    Smith, Matthew D; Birch, Julian D; Renshaw, Mark; Ottewill, Melanie

    2013-01-01

    The purpose of this paper is to evaluate the common themes leading or contributing to clinical incidents in a UK teaching hospital. A root-cause analysis was conducted on patient safety incidents. Commonly occurring root causes and contributing factors were collected and correlated with incident timing and severity. In total, 65 root-cause analyses were reviewed, highlighting 202 factors implicated in the clinical incidents and 69 categories were identified. The 14 most commonly occurring causes (encountered in four incidents or more) were examined as a key-root or contributory cause. Incident timing was also analysed; common factors were encountered more frequently during out-hours--occurring as contributory rather than a key-root cause. In total, 14 commonly occurring factors were identified to direct interventions that could prevent many clinical incidents. From these, an "Organisational Safety Checklist" was developed to involve departmental level clinicians to monitor practice. This study demonstrates that comprehensively investigating incidents highlights common factors that can be addressed at a local level. Resilience against clinical incidents is low during out-of-hours periods, where factors such as lower staffing levels and poor service provision allows problems to escalate and become clinical incidents, which adds to the literature regarding out-of-hours care provision and should prove useful to those organising hospital services at departmental and management levels.

  16. Thermal reactor safety

    International Nuclear Information System (INIS)

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport

  17. Thermal reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  18. Analysis respons to the implementation of nuclear installations safety culture using AHP-TOPSIS

    Science.gov (United States)

    Situmorang, J.; Kuntoro, I.; Santoso, S.; Subekti, M.; Sunaryo, G. R.

    2018-02-01

    An analysis of responses to the implementation of nuclear installations safety culture has been done using AHP (Analitic Hierarchy Process) - TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). Safety culture is considered as collective commitments of the decision-making level, management level, and individual level. Thus each level will provide a subjective perspective as an alternative approach to implementation. Furthermore safety culture is considered by the statement of five characteristics which in more detail form consist of 37 attributes, and therefore can be expressed as multi-attribute state. Those characteristics and or attributes will be a criterion and its value is difficult to determine. Those criteria of course, will determine and strongly influence the implementation of the corresponding safety culture. To determine the pattern and magnitude of the influence is done by using a TOPSIS that is based on decision matrix approach and is composed of alternatives and criteria. The weight of each criterion is determined by AHP technique. The data used are data collected through questionnaires at the workshop on safety and health in 2015. .Reliability test of data gives Cronbah Alpha value of 95.5% which according to the criteria is stated reliable. Validity test using bivariate correlation analysis technique between each attribute give Pearson correlation for all attribute is significant at level 0,01. Using confirmatory factor analysis gives Kaise-Meyer-Olkin of sampling Adequacy (KMO) is 0.719 and it is greater than the acceptance criterion 0.5 as well as the 0.000 significance level much smaller than 0.05 and stated that further analysis could be performed. As a result of the analysis it is found that responses from the level of decision maker (second echelon) dominate the best order preference rank to be the best solution in strengthening the nuclear installation safety culture, except for the first characteristics, safety is a

  19. Relationships between road safety, safety measures and external factors : a scan of the literature in view of model development and topics for further research.

    NARCIS (Netherlands)

    Churchill, T. & Norden, Y. van

    2010-01-01

    The purpose of this literature scan is to examine where literature on the effect of external factors and road safety measures on road safety exists and where it is lacking. This scan will help us to decide which factors to include in a comprehensive road safety model as SWOV is working on, and at

  20. Macro-level safety analysis of pedestrian crashes in Shanghai, China.

    Science.gov (United States)

    Wang, Xuesong; Yang, Junguang; Lee, Chris; Ji, Zhuoran; You, Shikai

    2016-11-01

    Pedestrian safety has become one of the most important issues in the field of traffic safety. This study aims at investigating the association between pedestrian crash frequency and various predictor variables including roadway, socio-economic, and land-use features. The relationships were modeled using the data from 263 Traffic Analysis Zones (TAZs) within the urban area of Shanghai - the largest city in China. Since spatial correlation exists among the zonal-level data, Bayesian Conditional Autoregressive (CAR) models with seven different spatial weight features (i.e. (a) 0-1 first order, adjacency-based, (b) common boundary-length-based, (c) geometric centroid-distance-based, (d) crash-weighted centroid-distance-based, (e) land use type, adjacency-based, (f) land use intensity, adjacency-based, and (g) geometric centroid-distance-order) were developed to characterize the spatial correlations among TAZs. Model results indicated that the geometric centroid-distance-order spatial weight feature, which was introduced in macro-level safety analysis for the first time, outperformed all the other spatial weight features. Population was used as the surrogate for pedestrian exposure, and had a positive effect on pedestrian crashes. Other significant factors included length of major arterials, length of minor arterials, road density, average intersection spacing, percentage of 3-legged intersections, and area of TAZ. Pedestrian crashes were higher in TAZs with medium land use intensity than in TAZs with low and high land use intensity. Thus, higher priority should be given to TAZs with medium land use intensity to improve pedestrian safety. Overall, these findings can help transportation planners and managers understand the characteristics of pedestrian crashes and improve pedestrian safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Probabilistic safety analysis applied to RBMK reactors

    International Nuclear Information System (INIS)

    Gerez Martin, L.; Fernandez Ramos, P.

    1995-01-01

    The project financed by the European Union ''Revision of RBMK Reactor Safety was divided into nine Topic Groups dealing with different aspects of safety. The area covered by Topic Group 9 was Probabilistic Safety Analysis. TG9 will have touched on some of the problems discussed by other groups, although in terms of the systematic quantification of the impact of design characteristics and RBMK reactor operating practices on the risk of core damage. On account of the reduced time scale and the resources available for the project, the analysis was made using a simplified method based on the results of PSAs conducted in Western countries and on the judgement of the group members. The simplifies method is based on the concepts of Qualification, Redundancy and Automatic Actuation of the systems considered. PSA experience shows that systems complying with the above-mentioned concepts have a failure probability of 1.0E-3 when redundancy is simple, ie two similar equipment items capable of carrying out the same function. In general terms, this value can be considered to be dominated by potential common cause failures. The value considered above changes according to factors that have a positive effect upon it, such as an additional redundancy with a different equipment item (eg a turbo pumps and a motor pump), individual trains with good separations, etc, or a negative effect, such as the absence of suitable periodical tests, the need for operators to perform manual operations, etc. Similarly, possible actions required by the operator during accident sequences are assigned failure probability values between 1 and 1.0E-4, according to the complexity of the action (including local actions to be performed outside the control room) and the time available

  2. Development of a draft of human factors safety review procedures for the Korean Next Generation Reactor

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Moon, B. S.; Park, J. C.; Lee, Y. H.; Oh, I. S.; Lee, H. C.

    2000-02-01

    In this study, a draft of Human Factors Engineering (HFE) Safety Review Procedures (SRP) was developed for the safety review of KNGR based on HFE Safety and Regulatory Requirements and Guidelines (SRRG). This draft includes acceptance criteria, review procedure, and evaluation findings for the areas of review including HFE program management, human factors analyses, human factors design, and HFE verification and validation, based on section 15.1 'human factors engineering design process' and 15.2 'control room human factors engineering' of KNGR specific safety requirements and chapter 15 'human factors engineering' of KNGR safety regulatory guides. For the effective review, human factors concerns or issues related to advanced HSI design that have been reported so far should be extensively examined. In this study, a total of 384 human factors issues related to the advanced HSI design were collected through our review of a total of 145 documents. A summary of each issue was described and the issues were identified by specific features of HSI design. These results were implemented into a database system

  3. Economic consideration of nuclear safety and cost benefit analysis in nuclear safety regulation

    International Nuclear Information System (INIS)

    Choi, Y. S.; Choi, K. S.; Choi, K. W.; Song, I. J.; Park, D. K.

    2001-01-01

    For the optimization of nuclear safety regulation, understanding of economic aspects of it becomes increasingly important together with the technical approach used so far to secure nuclear safety. Relevant economic theories on private and public goods were reviewed to re-illuminate nuclear safety from the economic perspective. The characteristics of nuclear safety as a public good was reviewed and discussed in comparison with the car safety as a private safety good. It was shown that the change of social welfare resulted from the policy change induced can be calculated by the summation of compensating variation(CV) of individuals. It was shown that the value of nuclear safety could be determined in monetary term by this approach. The theoretical background and history of cost benefit analysis of nuclear safety regulation were presented and topics for future study were suggested

  4. The PEC reactor. Safety analysis: Detailed reports

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In the safety-analysis of the PEC Brasimone reactor (Italy), attention was focused on the role of plant-incident analysis during the design stage and the conclusions reached. The analysis regarded the following: thermohydraulic incidents at full power; incidents with the reactor shut down; reactivity incidents; core local faults; analysis of fuel-handling incidents; engineered safeguards and passive safety features; coolant leakage and sodium fires; research and development studies on the seismic behaviour of the PEC fast reactor; generalized sodium fire; severe accidents, accident sequences with shudown; reference accident. Both the theoretical and experimental analyses demonstrated the adequacy of the design of the PEC fast reactor, aimed at minimizing the consequences of a hypothetical disruptive core accident with mechanical energy release. It was shown that the containment barriers were sized correctly and that the residual heat from a disassembled core would be removed. The re-evaluation of the source term emphasized the conservative nature of the hypotheses assumed in the preliminary safety analysis for calculating the risk to the public.

  5. Analysis of the impact of correlated benchmark experiments on the validation of codes for criticality safety analysis

    International Nuclear Information System (INIS)

    Bock, M.; Stuke, M.; Behler, M.

    2013-01-01

    The validation of a code for criticality safety analysis requires the recalculation of benchmark experiments. The selected benchmark experiments are chosen such that they have properties similar to the application case that has to be assessed. A common source of benchmark experiments is the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments' (ICSBEP Handbook) compiled by the 'International Criticality Safety Benchmark Evaluation Project' (ICSBEP). In order to take full advantage of the information provided by the individual benchmark descriptions for the application case, the recommended procedure is to perform an uncertainty analysis. The latter is based on the uncertainties of experimental results included in most of the benchmark descriptions. They can be performed by means of the Monte Carlo sampling technique. The consideration of uncertainties is also being introduced in the supplementary sheet of DIN 25478 'Application of computer codes in the assessment of criticality safety'. However, for a correct treatment of uncertainties taking into account the individual uncertainties of the benchmark experiments is insufficient. In addition, correlations between benchmark experiments have to be handled correctly. For example, these correlations can arise due to different cases of a benchmark experiment sharing the same components like fuel pins or fissile solutions. Thus, manufacturing tolerances of these components (e.g. diameter of the fuel pellets) have to be considered in a consistent manner in all cases of the benchmark experiment. At the 2012 meeting of the Expert Group on 'Uncertainty Analysis for Criticality Safety Assessment' (UACSA) of the OECD/NEA a benchmark proposal was outlined that aimed for the determination of the impact on benchmark correlations on the estimation of the computational bias of the neutron multiplication factor (k eff ). The analysis presented here is based on this proposal. (orig.)

  6. Measuring safety climate in elderly homes.

    Science.gov (United States)

    Yeung, Koon-Chuen; Chan, Charles C

    2012-02-01

    Provision of a valid and reliable safety climate dimension brings enormous benefits to the elderly home sector. The aim of the present study was to make use of the safety climate instrument developed by OSHC to measure the safety perceptions of employees in elderly homes such that the factor structure of the safety climate dimensions of elderly homes could be explored. In 2010, surveys by mustering on site method were administered in 27 elderly homes that had participated in the "Hong Kong Safe and Healthy Residential Care Home Accreditation Scheme" organized by the Occupational Safety and Health Council. Six hundred and fifty-one surveys were returned with a response rate of 54.3%. To examine the factor structure of safety climate dimensions in our study, an exploratory factor analysis (EFA) using principal components analysis method was conducted to identify the underlying factors. The results of the modified seven-factor's safety climate structure extracted from 35 items better reflected the safety climate dimensions of elderly homes. The Cronbach alpha range for this study (0.655 to 0.851) indicated good internal consistency among the seven-factor structure. Responses from managerial level, supervisory and professional level, and front-line staff were analyzed to come up with the suggestion on effective ways of improving the safety culture of elderly homes. The overall results showed that managers generally gave positive responses in the factors evaluated, such as "management commitment and concern to safety," "perception of work risks and some contributory influences," "safety communication and awareness," and "safe working attitude and participation." Supervisors / professionals, and frontline level staff on the other hand, have less positive responses. The result of the lowest score in the factors - "perception of safety rules and procedures" underlined the importance of the relevance and practicability of safety rules and procedures. The modified OSHC

  7. Rad waste disposal safety analysis / Integrated safety assessment of a waste repository

    International Nuclear Information System (INIS)

    Jeong, Jongtae; Choi, Jongwon; Kang, Chulhyung

    2012-04-01

    We developed CYPRUS+and adopted PID and RES method for the development of scenario. Safety performance assessment program was developed using GoldSim for the safety assessment of disposal system for the disposal of spnet fuels and wastes resulting from the pyrpoprocessing. Biosphere model was developed and verified in cooperation with JAEA. The capability to evaluate post-closure performance and safety was added to the previously developed program. And, nuclide migration and release to the biosphere considering site characteristics was evaluated by using deterministic and probabilistic approach. Operational safety assessment for drop, fire, and earthquake was also statistically evaluated considering well-established input parameter distribution. Conservative assessment showed that dose rate is below the limit value of low- and intermediate-level repository. Gas generation mechanism within engineered barrier was defined and its influence on safety was evaluated. We made probabilistic safety assessment by obtaining the probability distribution functions of important input variables and also made a sensitivity analysis. The maximum annual dose rate was shown to be below the safety limit value of 10 mSv/yr. The structure and element of safety case was developed to increase reliability of safety assessment methodology for a deep geological repository. Finally, milestone for safety case development and implementation strategy for each safety case element was also proposed

  8. The role of engineering judgement, safety culture, and organizational factors in risk assessment

    International Nuclear Information System (INIS)

    Muzumdar, Ajit; Professor, Visiting

    1996-01-01

    This paper reviews the role of engineering judgement, safety culture, and organizational factors in risk assessment by examining the reasons for human-based error. The need for more emphasis on producing engineers with good engineering judgement is described. The progress in quantifying the role of safety culture and organizational factors in risk assessment studies is summarized

  9. Multilevel Safety Climate and Safety Performance in the Construction Industry: Development and Validation of a Top-Down Mechanism

    Directory of Open Access Journals (Sweden)

    Ran Gao

    2016-11-01

    Full Text Available The character of construction projects exposes front-line workers to dangers and accidents. Safety climate has been confirmed to be a predictor of safety performance in the construction industry. This study aims to explore the underlying mechanisms of the relationship between multilevel safety climate and safety performance. An integrated model was developed to study how particular safety climate factors of one level affect those of other levels, and then affect safety performance from the top down. A questionnaire survey was administered on six construction sites in Vietnam. A total of 1030 valid questionnaires were collected from this survey. Approximately half of the data were used to conduct exploratory factor analysis (EFA and the remaining data were submitted to structural equation modeling (SEM. Top management commitment (TMC and supervisors’ expectation (SE were identified as factors to represent organizational safety climate (OSC and supervisor safety climate (SSC, respectively, and coworkers’ caring and communication (CCC and coworkers’ role models (CRM were identified as factors to denote coworker safety climate (CSC. SEM results show that OSC factor is positively related to SSC factor and CSC factors significantly. SSC factor could partially mediate the relationship between OSC factor and CSC factors, as well as the relationship between OSC factor and safety performance. CSC factors partially mediate the relationship between OSC factor and safety performance, and the relationship between SSC factor and safety performance. The findings imply that a positive safety culture should be established both at the organizational level and the group level. Efforts from all top management, supervisors, and coworkers should be provided to improve safety performance in the construction industry.

  10. Multilevel Safety Climate and Safety Performance in the Construction Industry: Development and Validation of a Top-Down Mechanism.

    Science.gov (United States)

    Gao, Ran; Chan, Albert P C; Utama, Wahyudi P; Zahoor, Hafiz

    2016-11-08

    The character of construction projects exposes front-line workers to dangers and accidents. Safety climate has been confirmed to be a predictor of safety performance in the construction industry. This study aims to explore the underlying mechanisms of the relationship between multilevel safety climate and safety performance. An integrated model was developed to study how particular safety climate factors of one level affect those of other levels, and then affect safety performance from the top down. A questionnaire survey was administered on six construction sites in Vietnam. A total of 1030 valid questionnaires were collected from this survey. Approximately half of the data were used to conduct exploratory factor analysis (EFA) and the remaining data were submitted to structural equation modeling (SEM). Top management commitment (TMC) and supervisors' expectation (SE) were identified as factors to represent organizational safety climate (OSC) and supervisor safety climate (SSC), respectively, and coworkers' caring and communication (CCC) and coworkers' role models (CRM) were identified as factors to denote coworker safety climate (CSC). SEM results show that OSC factor is positively related to SSC factor and CSC factors significantly. SSC factor could partially mediate the relationship between OSC factor and CSC factors, as well as the relationship between OSC factor and safety performance. CSC factors partially mediate the relationship between OSC factor and safety performance, and the relationship between SSC factor and safety performance. The findings imply that a positive safety culture should be established both at the organizational level and the group level. Efforts from all top management, supervisors, and coworkers should be provided to improve safety performance in the construction industry.

  11. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Laurids Boring

    2010-11-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  12. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    International Nuclear Information System (INIS)

    Boring, Ronald Laurids

    2010-01-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  13. Cost benefit analysis of reactor safety systems

    International Nuclear Information System (INIS)

    Maurer, H.A.

    1984-01-01

    Cost/benefit analysis of reactor safety systems is a possibility appropriate to deal with reactor safety. The Commission of the European Communities supported a study on the cost-benefit or cost effectiveness of safety systems installed in modern PWR nuclear power plants. The following systems and their cooperation in emergency cases were in particular investigated in this study: the containment system (double containment), the leakage exhaust and control system, the annulus release exhaust system and the containment spray system. The benefit of a safety system is defined according to its contribution to the reduction of the radiological consequences for the environment after a LOCA. The analysis is so far performed in two different steps: the emergency core cooling system is considered to function properly, failure of the emergency core cooling system is assumed (with the possible consequence of core melt-down) and the results may demonstrate the evidence that striving for cost-effectiveness can produce a safer end result than the philosophy of safety at any cost. (orig.)

  14. Statistical Hot Channel Factors and Safety Limit CHFR/OFIR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeonghee; Park, Suki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The fuel integrity of research reactors are usually judged by comparing the critical heat flux ratio (CHFR) and the maximum fuel temperature (MFT) with the safety limits. Onset of flow instability ratio (OFIR) can also be used for the examination with CHFR. Hot channel factors (HCFs) are incorporated when calculating the CHFR/OFIR and MFT, to consider the uncertainties of fuel properties and thermo-hydraulic variables affecting them. The HCFs and safety limit CHFR is sometimes estimated to include too much conservatism, deteriorating the design flexibilities and operating margins. In this paper, a statistical estimation of HCFs and the safety limit CHFR/OFIR is presented by a random sampling of uncertainty parameters. A 15MW pool type research reactor is selected as the sample reactor for the estimation. The HCFs and the safety limit CHFR/OFIR of a 15MW pool type research reactor are evaluated statistically. The parameters affecting the HCF and the safety limit CHFR/OFIR are listed and their uncertainties are estimated. The relevant parameter uncertainties are sampled randomly and the HCFs and the safety limits are evaluated from them. The HCFs and the safety limit CHFR/OFIR with 95% probability are smaller than those estimated deterministically because the statistical evaluation convolute the correlation uncertainties and the other uncertainties in probabilistic way, whereas the deterministic evaluation simply multiply them.

  15. Graphs of neutron cross sections in JSD1000 for radiation shielding safety analysis

    International Nuclear Information System (INIS)

    Yamano, Naoki

    1984-03-01

    Graphs of neutron cross sections and self-shielding factors in the JSD1000 library are presented for radiation shielding safety analysis. The compilation contains various reaction cross sections for 42 nuclides from 1 H to 241 Am in the energy range from 3.51 x 10 -4 eV to 16.5 MeV. The Bondarenko-type self-shielding factors of each reaction are given by the background cross sections from σ 0 = 0 to σ 0 = 10000. (author)

  16. Safety culture management: The importance of organizational factors

    International Nuclear Information System (INIS)

    Haber, S.B.; Shurberg, D.A.; Jacobs, R.; Hofmann, D.

    1995-01-01

    The concept of safety culture has been used extensively to explain the underlying causes of performance based events, both positive and negative, across the nuclear industry. The work described in this paper represents several years of effort to identify, define and assess the organizational factors important to safe performance in nuclear power plants (NPPs). The research discussed in this paper is primarily conducted in support of the US Nuclear Regulatory Commission's (NRC) efforts in understanding the impact of organizational performance on safety. As a result of a series of research activities undertaken by numerous NRC contractors, a collection of organizational dimensions has been identified and defined. These dimensions represent what is believed to be a comprehensive taxonomy of organizational elements that relate to the safe operation of nuclear power plants. Techniques were also developed by which to measure these organizational dimensions, and include structured interview protocols, behavioral checklists, and behavioral anchored rating scales (BARS). Recent efforts have focused on devising a methodology for the extraction of information related to the identified organizational dimensions from existing NRC documentation. This type of effort would assess the applicability of the organizational dimensions to existing NRC inspection and evaluation reports, refine the organizational dimensions previously developed so they are more relevant to the task of retrospective analysis, and attempt to rate plants based on the review of existing NRC documentation using the techniques previously developed for the assessment of organizational dimensions

  17. Using partial safety factors in wind turbine design and testing

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W.D. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    This paper describes the relationship between wind turbine design and testing in terms of the certification process. An overview of the current status of international certification is given along with a description of limit-state design basics. Wind turbine rotor blades are used to illustrate the principles discussed. These concepts are related to both International Electrotechnical Commission and Germanischer Lloyd design standards, and are covered using schematic representations of statistical load and material strength distributions. Wherever possible, interpretations of the partial safety factors are given with descriptions of their intended meaning. Under some circumstances, the authors` interpretations may be subjective. Next, the test-load factors are described in concept and then related to the design factors. Using technical arguments, it is shown that some of the design factors for both load and materials must be used in the test loading, but some should not be used. In addition, some test factors not used in the design may be necessary for an accurate test of the design. The results show that if the design assumptions do not clearly state the effects and uncertainties that are covered by the design`s partial safety factors, outside parties such as test labs or certification agencies could impose their own meaning on these factors.

  18. Safety of natural radiation exposure. A meta-analysis of epidemiological studies on natural radiation

    International Nuclear Information System (INIS)

    Osaki, S.

    2000-01-01

    . Furthermore, the combine of these studies, a meta-analysis, is expected to decrease the confidence limit and to countervail the confounding factors. This study reviewed the epidemiological studies on natural radiation exposure and tried to combine their results to prove the safety of natural radiation exposure. (author)

  19. Safety systems and safety analysis of the Qinshan phase III CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Cai Jianping; Shen Sen; Barkman, N.

    1999-01-01

    The author introduces the Canadian nuclear reactor safety philosophy and the Qinshan Phase III CANDU NPP safety systems and safety analysis, which are designed and performed according to this philosophy. The concept of 'defence-in-depth' is a key element of the Canadian nuclear reactor safety philosophy. The design concepts of redundancy, diversity, separation, equipment qualification, quality assurance, and use of appropriate design codes and standards are adopted in the design. Four special safety systems as well as a set of reliable safety support systems are incorporated in the design of Qinshan phase III CANDU for accident mitigation. The assessment results for safety systems performance show that the fundamental safety criteria for public dose, and integrity of fuel, channels and the reactor building, are satisfied

  20. Implication of human factors in terms of safety

    International Nuclear Information System (INIS)

    Furuta, Kazuo

    2001-01-01

    A critical accident of JCO occurred on September 30, 1999 gave a large impact not only to common society but also to nuclear energy field. This accident occurred by direct reason perfectly out of forecasting of the participants of nuclear energy, where a company made up a guideline violating from business allowance and safety rule and workmen also operated under a procedure out of the guideline. After the accident, a number of countermeasures on equipments, rules, and regulations were carried out, but discussion on software such as their operating methods, concrete regulation on business and authority of operators, and training of specialists seems to be much late. Safety is a problem on a complex system, containing not only hardware but also software such as human, organization, society, and so on. Then, here was discussed on a problem directly faced by conventional safety, engineering centering at hardware through thinking of a problem on human factors. (G.K.)

  1. Factors Influencing the Safety Behavior of German Equestrians: Attitudes towards Protective Equipment and Peer Behaviors

    Directory of Open Access Journals (Sweden)

    Christina-Maria Ikinger

    2016-02-01

    Full Text Available Human interactions with horses entail certain risks. Although the acceptance and use of protective gear is increasing, a high number of incidents and very low or inconsistent voluntary use of safety equipment are reported. While past studies have examined factors influencing the use of safety gear, they have explored neither their influence on the overall safety behavior, nor their relative influence in relation to each other. The aim of the present study is to fill this gap. We conducted an online survey with 2572 participants. By means of a subsequent multiple regression analysis, we explored 23 different variables in view of their influence on the protective behavior of equestrians. In total, we found 17 variables that exerted a significant influence. The results show that both having positive or negative attitudes towards safety products as well as the protective behavior of other horse owners or riding pupils from the stable have the strongest influence on the safety behavior of German equestrians. We consider such knowledge to be important for both scientists and practitioners, such as producers of protective gear or horse sport associations who might alter safety behavior in such a way that the number of horse-related injuries decreases in the long term.

  2. Challenges on innovations of newly-developed safety analysis codes

    International Nuclear Information System (INIS)

    Yang, Yanhua; Zhang, Hao

    2016-01-01

    With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.

  3. Challenges on innovations of newly-developed safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yanhua [Shanghai Jiao Tong Univ. (China). School of Nuclear Science and Engineering; Zhang, Hao [State Nuclear Power Software Development Center, Beijing (China). Beijing Future Science and Technology City

    2016-05-15

    With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.

  4. Method of calculating the safety factor profile on the HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhang Xianmei; Lu Yuancheng; Wan Baonian

    2001-01-01

    A method of calculating the safety factor profile on the HT-7 tokamak has been described. It is derived from Maxwell's equations, among which the authors mainly use two of them: one is the magnetic field diffusion equation, and the other is Ampere's Law. This method can be also used to evaluate the safety factor on other devices with a circular cross sections. It is helpful to the study of the plasma MHD behavior on the HT-7 tokamak

  5. Organizational safety factors research lessons learned

    International Nuclear Information System (INIS)

    Ryan, T.G.

    1995-01-01

    This Paper reports lessons learned and state of knowledge gained from an organizational factors research activity involving commercial nuclear power plants in the United States, through the end of 1991, as seen by the scientists immediately involved in the research. Lessons learned information was gathered from the research teams and individuals using a question and answer format. The following five questions were submitted to each team and individual: (1) What organizational factors appear to influence safety performance in some systematic way, (2) Should organizational factors research focus at the plant level, or should it extend beyond the plant level to the parent company, rate setting commissions, regulatory agencies, (3) How important is having direct access to plants for doing organizational factors research, (4) What lessons have been learned to date as the result of doing organizational factors research in a nuclear regulatory setting, and (5) What organizational research topics and issues should be pursued in the future? Conclusions based on the responses provided for this report are that organizational factors research can be conducted in a regulatory setting and produce useful results. Technologies pioneered in other academic, commercial, and military settings can be adopted for use in a nuclear regulatory setting. The future success of such research depends upon the cooperation of regulators, contractors, and the nuclear industry

  6. Construction safety and waste management an economic analysis

    CERN Document Server

    Li, Rita Yi Man

    2015-01-01

    This monograph presents an analysis of construction safety problems and on-site safety measures from an economist’s point of view. The book includes examples from both emerging countries, e.g. China and India, and developed countries, e.g. Australia and Hong Kong. Moreover, the author covers an analysis on construction safety knowledge sharing by means of updatable mobile technology such as apps in Androids and iOS platform mobile devices. The target audience comprises primarily researchers and experts in the field but the book may also be beneficial for graduate students.

  7. Using Addenda in Documented Safety Analysis Reports

    International Nuclear Information System (INIS)

    Swanson, D.S.; Thieme, M.A.

    2003-01-01

    This paper discusses the use of addenda to the Radioactive Waste Management Complex (RWMC) Documented Safety Analysis (DSA) located at the Idaho National Engineering and Environmental Laboratory (INEEL). Addenda were prepared for several systems and processes at the facility that lacked adequate descriptive information and hazard analysis in the DSA. They were also prepared for several new activities involving unreviewed safety questions (USQs). Ten addenda to the RWMC DSA have been prepared since the last annual update

  8. Development of a draft of human factors safety review procedures for the Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Moon, B. S.; Park, J. C.; Lee, Y. H.; Oh, I. S.; Lee, H. C. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    In this study, a draft of human factors engineering (HFE) safety review procedures (SRP) was developed for the safety review of KNGR based on HFE Safety and Regulatory Requirements and Guidelines (SRRG). This draft includes acceptance criteria, review procedure, and evaluation findings for the areas of review including HFE Program Management, Human Factors Analyses, Human Factors Design, and HFE Verification and Validation, based on Section 15.1 'Human Factors Engineering Design Process' and 15.2 'Control Room Human Factors Engineering' of KNGR Specific Safety Requirements and Chapter 15 'Human Factors Engineering' of KNGR Safety Regulatory Guides. For the effective review, human factors concerns or issues related to advanced HSI design that have been reported so far should be extensively examined. In this study, a total of 384 human factors issues related to the advanced HSI design were collected through our review of a total of 145 documents. A summary of each issue was described and the issues were identified by specific features of HSI design. These results were implemented into a database system. 8 refs., 2 figs. (Author)

  9. System safety analysis of an autonomous mobile robot

    International Nuclear Information System (INIS)

    Bartos, R.J.

    1994-01-01

    Analysis of the safety of operating and maintaining the Stored Waste Autonomous Mobile Inspector (SWAMI) II in a hazardous environment at the Fernald Environmental Management Project (FEMP) was completed. The SWAMI II is a version of a commercial robot, the HelpMate trademark robot produced by the Transitions Research Corporation, which is being updated to incorporate the systems required for inspecting mixed toxic chemical and radioactive waste drums at the FEMP. It also has modified obstacle detection and collision avoidance subsystems. The robot will autonomously travel down the aisles in storage warehouses to record images of containers and collect other data which are transmitted to an inspector at a remote computer terminal. A previous study showed the SWAMI II has economic feasibility. The SWAMI II will more accurately locate radioactive contamination than human inspectors. This thesis includes a System Safety Hazard Analysis and a quantitative Fault Tree Analysis (FTA). The objectives of the analyses are to prevent potentially serious events and to derive a comprehensive set of safety requirements from which the safety of the SWAMI II and other autonomous mobile robots can be evaluated. The Computer-Aided Fault Tree Analysis (CAFTA copyright) software is utilized for the FTA. The FTA shows that more than 99% of the safety risk occurs during maintenance, and that when the derived safety requirements are implemented the rate of serious events is reduced to below one event per million operating hours. Training and procedures in SWAMI II operation and maintenance provide an added safety margin. This study will promote the safe use of the SWAMI II and other autonomous mobile robots in the emerging technology of mobile robotic inspection

  10. Safety update on the use of recombinant activated factor VII in approved indications.

    Science.gov (United States)

    Neufeld, Ellis J; Négrier, Claude; Arkhammar, Per; Benchikh el Fegoun, Soraya; Simonsen, Mette Duelund; Rosholm, Anders; Seremetis, Stephanie

    2015-06-01

    This updated safety review summarises the large body of safety data available on the use of recombinant activated factor VII (rFVIIa) in approved indications: haemophilia with inhibitors, congenital factor VII (FVII) deficiency, acquired haemophilia and Glanzmann's thrombasthenia. Accumulated data up to 31 December 2013 from clinical trials as well as post-marketing data (registries, literature reports and spontaneous reports) were included. Overall, rFVIIa has shown a consistently favourable safety profile, with no unexpected safety concerns, in all approved indications. No confirmed cases of neutralising antibodies against rFVIIa have been reported in patients with congenital haemophilia, acquired haemophilia or Glanzmann's thrombasthenia. The favourable safety profile of rFVIIa can be attributed to the recombinant nature of rFVIIa and its localised mechanism of action at the site of vascular injury. Recombinant FVIIa activates factor X directly on the surface of activated platelets, which are present only at the site of injury, meaning that systemic activation of coagulation is avoided and the risk of thrombotic events (TEs) thus reduced. Nonetheless, close monitoring for signs and symptoms of TE is warranted in all patients treated with any pro-haemostatic agent, including rFVIIa, especially the elderly and any other patients with concomitant conditions and/or predisposing risk factors to thrombosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Preliminary Safety Analysis Report for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Motloch, C.G.; Bonney, R.F.; Levine, J.D.; Masson, L.S.; Commander, J.C.

    1995-04-01

    This Preliminary Safety Analysis Report (PSAR), includes an indication of the magnitude of facility hazards, complexity of facility operations, and the stage of the facility life-cycle. It presents the results of safety analyses, safety assurance programs, identified vulnerabilities, compensatory measures, and, in general, the rationale describing why the Tokamak Physics Experiment (TPX) can be safely operated. It discusses application of the graded approach to the TPX safety analysis, including the basis for using Department of Energy (DOE) Order 5480.23 and DOE-STD-3009-94 in the development of the PSAR

  12. Developing Measures for Assessing the Causality of Safety Culture in a Petrochemical Industry

    Energy Technology Data Exchange (ETDEWEB)

    Wu, T.-C., E-mail: tcwu@sunrise.hk.edu.t [HungKuang University, Department of Safety, Health and Environmental Engineering (China); Lin, C.-H.; Shiau, S.-Y. [HungKuang University, Institute of Occupational Safety and Hazard Prevention (China)

    2009-12-15

    This paper discusses safety culture in the petrochemical sector and the causes and consequences of safety culture. A sample of 520 responses selected by simple random sampling completed questionnaires for this survey, the return rate was 86.75%. The research instrument comprises four sections: basic information, the safety leadership scale (SLS), the safety climate scale (SCS), and the safety performance scale (SPS). SPSS 12.0, a statistical software package, was used for item analysis, validity analysis, and reliability analysis. Exploratory factor analysis indicated that (1) SLS abstracted three factors such as safety caring, safety controlling, and safety coaching; (2) SCS comprised three factors such as emergency response, safety commitment, and risk perception; and (3) SPS was composed of accident investigation, safety training, safety inspections, and safety motivation. We conclude that the SLS, SCS, and SPS developed in this paper have good construct validity and internal consistency and can serve as the basis for future research.

  13. Developing Measures for Assessing the Causality of Safety Culture in a Petrochemical Industry

    International Nuclear Information System (INIS)

    Wu, T.-C.; Lin, C.-H.; Shiau, S.-Y.

    2009-01-01

    This paper discusses safety culture in the petrochemical sector and the causes and consequences of safety culture. A sample of 520 responses selected by simple random sampling completed questionnaires for this survey, the return rate was 86.75%. The research instrument comprises four sections: basic information, the safety leadership scale (SLS), the safety climate scale (SCS), and the safety performance scale (SPS). SPSS 12.0, a statistical software package, was used for item analysis, validity analysis, and reliability analysis. Exploratory factor analysis indicated that (1) SLS abstracted three factors such as safety caring, safety controlling, and safety coaching; (2) SCS comprised three factors such as emergency response, safety commitment, and risk perception; and (3) SPS was composed of accident investigation, safety training, safety inspections, and safety motivation. We conclude that the SLS, SCS, and SPS developed in this paper have good construct validity and internal consistency and can serve as the basis for future research.

  14. Problems of making decisions with account of risk and safety factors

    Energy Technology Data Exchange (ETDEWEB)

    Larichev, O I

    1987-01-01

    New trends in making decisions on accidents when using large-scale technologies-NPPs, chemical plants etc., are considered. Three main directions in the investigations in this field are distinguished. One of them consists in risk measuring (its perception by people, ways of its quantitative determination). The second direction consists in increasing the safety of large-scale production systems. Here the following questions are considered: risk assessment (the safety standard statement), site selection for new systems, man-machine interaction problems, development of safer technologies, cost benefit safety analysis. The third direction is connected with the problem of accidents and their analysis. This direction includes considering the reasons and process of the accident development, preparing for the possible accidents, monitoring under extreme conditions, accident effect analysis.

  15. Problems of making decisions with account of risk and safety factors

    International Nuclear Information System (INIS)

    Larichev, O.I.

    1987-01-01

    New trends in making decisions on accidents when using large-scale technologies-NPPs, chemical plants etc., are considered. Three main directions in the investigations in this field are distinguished. One of them consists in risk measuring (its perception by people, ways of its quantitative determination). The second direction consists in increasing the safety of large-scale production systems. Here the following questions are considered: risk assessment (the safety standard statement), site selection for new systems, man-machine interaction problems, development of safer technologies, cost benefit safety analysis. The third direction is connected with the problem of accidents and their analysis. This direction includes considering the reasons and process of the accident development, preparing for the possible accidents, monitoring under extreme conditions, accident effect analysis

  16. Reliability analysis of diverse safety logic systems of fast breeder reactor

    International Nuclear Information System (INIS)

    Ravi Kumar, Bh.; Apte, P.R.; Srivani, L.; Ilango Sambasivan, S.; Swaminathan, P.

    2006-01-01

    Safety Logic for Fast Breeder Reactor (FBR) is designed to initiate safety action against Design Basis Events. Based on the outputs of various processing circuits, Safety logic system drives the control rods of the shutdown system. So, Safety Logic system is classified as safety critical system. Therefore, reliability analysis has to be performed. This paper discusses the Reliability analysis of Diverse Safety logic systems of FBRs. For this literature survey on safety critical systems, system reliability approach and standards to be followed like IEC-61508 are discussed in detail. For Programmable Logic device based systems, Hardware Description Languages (HDL) are used. So this paper also discusses the Verification and Validation for HDLs. Finally a case study for the Reliability analysis of Safety logic is discussed. (author)

  17. Organizational analysis and safety for utilities with nuclear power plants: perspectives for organizational assessment. Volume 2. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Nadel, M.V.; Scott, W.G.; Connor, P.E.; Kerwin, N.; Kennedy, J.K. Jr.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. Volume 1 of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety. The six chapters of this volume discuss the major elements in our general approach to safety in the nuclear industry. The chapters include information on organizational design and safety; organizational governance; utility environment and safety related outcomes; assessments by selected federal agencies; review of data sources in the nuclear power industry; and existing safety indicators.

  18. Development and initial validation of an Aviation Safety Climate Scale.

    Science.gov (United States)

    Evans, Bronwyn; Glendon, A Ian; Creed, Peter A

    2007-01-01

    A need was identified for a consistent set of safety climate factors to provide a basis for aviation industry benchmarking. Six broad safety climate themes were identified from the literature and consultations with industry safety experts. Items representing each of the themes were prepared and administered to 940 Australian commercial pilots. Data from half of the sample (N=468) were used in an exploratory factor analysis that produced a 3-factor model of Management commitment and communication, Safety training and equipment, and Maintenance. A confirmatory factor analysis on the remaining half of the sample showed the 3-factor model to be an adequate fit to the data. The results of this study have produced a scale of safety climate for aviation that is both reliable and valid. This study developed a tool to assess the level of perceived safety climate, specifically of pilots, but may also, with minor modifications, be used to assess other groups' perceptions of safety climate.

  19. Modeling the Relationship between Safety Climate and Safety Performance in a Developing Construction Industry: A Cross-Cultural Validation Study.

    Science.gov (United States)

    Zahoor, Hafiz; Chan, Albert P C; Utama, Wahyudi P; Gao, Ran; Zafar, Irfan

    2017-03-28

    This study attempts to validate a safety performance (SP) measurement model in the cross-cultural setting of a developing country. In addition, it highlights the variations in investigating the relationship between safety climate (SC) factors and SP indicators. The data were collected from forty under-construction multi-storey building projects in Pakistan. Based on the results of exploratory factor analysis, a SP measurement model was hypothesized. It was tested and validated by conducting confirmatory factor analysis on calibration and validation sub-samples respectively. The study confirmed the significant positive impact of SC on safety compliance and safety participation , and negative impact on number of self-reported accidents/injuries . However, number of near-misses could not be retained in the final SP model because it attained a lower standardized path coefficient value. Moreover, instead of safety participation , safety compliance established a stronger impact on SP. The study uncovered safety enforcement and promotion as a novel SC factor, whereas safety rules and work practices was identified as the most neglected factor. The study contributed to the body of knowledge by unveiling the deviations in existing dimensions of SC and SP. The refined model is expected to concisely measure the SP in the Pakistani construction industry, however, caution must be exercised while generalizing the study results to other developing countries.

  20. Uncertainty analysis for Ulysses safety evaluation report

    International Nuclear Information System (INIS)

    Frank, M.V.

    1991-01-01

    As part of the effort to review the Ulysses Final Safety Analysis Report and to understand the risk of plutonium release from the Ulysses spacecraft General Purpose Heat Source---Radioisotope Thermal Generator (GPHS-RTG), the Interagency Nuclear Safety Review Panel (INSRP) and the author performed an integrated, quantitative analysis of the uncertainties of the calculated risk of plutonium release from Ulysses. Using state-of-art probabilistic risk assessment technology, the uncertainty analysis accounted for both variability and uncertainty of the key parameters of the risk analysis. The results show that INSRP had high confidence that risk of fatal cancers from potential plutonium release associated with calculated launch and deployment accident scenarios is low

  1. COLD-SAT feasibility study safety analysis

    Science.gov (United States)

    Mchenry, Steven T.; Yost, James M.

    1991-01-01

    The Cryogenic On-orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite presents some unique safety issues. The feasibility study conducted at NASA-Lewis desired a systems safety program that would be involved from the initial design in order to eliminate and/or control the inherent hazards. Because of this, a hazards analysis method was needed that: (1) identified issues that needed to be addressed for a feasibility assessment; and (2) identified all potential hazards that would need to be controlled and/or eliminated during the detailed design phases. The developed analysis method is presented as well as the results generated for the COLD-SAT system.

  2. The balance between safety and productivity and its relationship with human factors and safety awareness and communication in aircraft manufacturing

    NARCIS (Netherlands)

    Karanikas, N.; Melis, Damien Jose; Kourousis, Kyriakos

    2017-01-01

    Background: This paper presents the findings of a pilot research survey which assessed the degree of balance between safety and productivity, and its relationship with awareness and communication of human factors and safety rules in the aircraft manufacturing environment. Methods: The study was

  3. Guidance for preparation of safety analysis reports for nonreactor facilities and operations

    International Nuclear Information System (INIS)

    1992-01-01

    Department of Energy (DOE) Orders 5480.23, ''Nuclear Safety Analysis Reports,'' and 5481.1B, ''Safety Analysis and Review System'' require the preparation of appropriate safety analyses for each DOE operation and subsequent significant modifications including decommissioning, and independent review of each safety analysis. The purpose of this guide is to assist in the preparation and review of safety documentation for Oak Ridge Field Office (OR) nonreactor facilities and operation. Appendix A lists DOE Orders, NRC Regulatory Guides and other documents applicable to the preparation of safety analysis reports

  4. Identification of road user related risk factors, Deliverable 5.1 of the H2020 project SafetyCube (Safety CaUsation, Benefits and Efficiency).

    NARCIS (Netherlands)

    Filtness, A. & Papadimitriou, E. (Eds.) Leskovšek, B. Focant, N. Martensen, H. Sgarra, V. Usami, D.S. Soteropoulos, A. Stadlbauer, S. Theofilatos, A. Yannis, G. Ziakopoulos, A. Diamandouros, K. Durso, C. Goldenbeld, C. Loenis, B. Schermers, G. Petegem, J.-H. van Elvik, R. Hesjevoll, I.S. Quigley, C. & Papazikou, E.

    2017-01-01

    The present Deliverable (D5.1) describes the identification and evaluation of infrastructure related risk factors. It outlines the results of Task 5.1 of WP5 of SafetyCube, which aimed to identify and evaluate infrastructure related risk factors and related road safety problems by (i) presenting a

  5. The use of human factors methods to identify and mitigate safety issues in radiation therapy

    International Nuclear Information System (INIS)

    Chan, Alvita J.; Islam, Mohammad K.; Rosewall, Tara; Jaffray, David A.; Easty, Anthony C.; Cafazzo, Joseph A.

    2010-01-01

    Background and purpose: New radiation therapy technologies can enhance the quality of treatment and reduce error. However, the treatment process has become more complex, and radiation dose is not always delivered as intended. Using human factors methods, a radiotherapy treatment delivery process was evaluated, and a redesign was undertaken to determine the effect on system safety. Material and methods: An ethnographic field study and workflow analysis was conducted to identify human factors issues of the treatment delivery process. To address specific issues, components of the user interface were redesigned through a user-centered approach. Sixteen radiation therapy students were then used to experimentally evaluate the redesigned system through a usability test to determine the effectiveness in mitigating use errors. Results: According to findings from the usability test, the redesigned system successfully reduced the error rates of two common errors (p < .04 and p < .01). It also improved the mean task completion time by 5.5% (p < .02) and achieved a higher level of user satisfaction. Conclusions: These findings demonstrated the importance and benefits of applying human factors methods in the design of radiation therapy systems. Many other opportunities still exist to improve patient safety in this area using human factors methods.

  6. Partial safety factors for berthing velocity and loads on marine structures

    NARCIS (Netherlands)

    Roubos, A.A.; Peters, D.J.; Groenewegen, Leon; Steenbergen, R.

    2018-01-01

    Design methods for marine structures have evolved into load and resistance factor design, however existing partial safety factors related to berthing velocity and loads have not been verified and validated by measurement campaigns. In this study, field observations of modern seagoing vessels

  7. Multivariate time series analysis of SafetyNet data. SafetyNet, Building the European Road Safety Observatory, Workpackage 7, Deliverable 7.7.

    NARCIS (Netherlands)

    Commandeur, J.J.F. Bijleveld, F.D. & Bergel, R.

    2009-01-01

    This deliverable provides an application of theories and methods documented in Deliverables 7.4 and 7.5 of work package 7 of the SafetyNet project. In this deliverable, use of select analysis techniques is demonstrated through real world road safety analysis problems, using aggregate data which may

  8. Engineered safeguards and passive safety features (safety analysis detailed report no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-15

    The Safety-Analysis Summary lists the reactor's safety aspects for passive and active prevention of severe accidents and mitigation of accident consequences, i.e., intrinsic and passive protections of the plant; intrinsic and passive protections of the core; inherent decay-heat removal systems; rapid-shutdown systems; four physical containment barriers. This report goes into further details regarding some of this aspects.

  9. Computer aided safety analysis

    International Nuclear Information System (INIS)

    1988-05-01

    The document reproduces 20 selected papers from the 38 papers presented at the Technical Committee/Workshop on Computer Aided Safety Analysis organized by the IAEA in co-operation with the Institute of Atomic Energy in Otwock-Swierk, Poland on 25-29 May 1987. A separate abstract was prepared for each of these 20 technical papers. Refs, figs and tabs

  10. Holistic safety analysis for advanced nuclear power plants

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.; Guimaraes, A.C.F.

    1992-01-01

    This paper reviews the basic methodology of safety analysis used in the ANGRA-I and ANGRA-II nuclear power plants, its weaknesses, the problems with public acceptance of the risks, the future of the nuclear energy in Brazil, as well as recommends a new methodology, HOLISTIC SAFETY ANALYSIS, to be used both in the design and licensing phases, for advanced reactors. (author)

  11. Technical Issues and Proposes on the Legislation of Probabilistic Safety Assessment in Periodic Safety Review

    International Nuclear Information System (INIS)

    Hwang, Seok-Won; Jeon, Ho-Jun; Na, Jang-Hwan

    2015-01-01

    Korean Nuclear Power Plants have performed a comprehensive safety assessment reflecting design and procedure changes and using the latest technology every 10 years. In Korea, safety factors of PSR are revised to 14 by revision of IAEA Safety Guidelines in 2003. In the revised safety guidelines, safety analysis field was subdivided into deterministic safety analysis, PSA (Probabilistic safety analysis), and hazard analysis. The purpose to examine PSA as a safety factor on PSR is to make sure that PSA results and assumptions reflect the latest state of NPPs, validate the level of computer codes and analytical models, and evaluate the adequacy of PSA instructions. In addition, its purpose is to derive the plant design change, operating experience of other plants and safety enhancement items as well. In Korea, PSA is introduced as a new factor. Thus, the overall guideline development and long-term implementation strategy are needed. Today in Korea, full-power PSA model revision and low-power and shutdown (LPSD) PSA model development is being performed as a part of the post Fukushima action items for operating plants. The scope of the full-power PSA is internal/external level 1, 2 PSA. But in case of fire PSA, the scope is level 1 PSA using new method, NUREG/CR-6850. In case of LPSD PSA, level 1 PSA for all operating plants, and level 2 PSA for 2 demonstration plants are under development. The result of the LPSD PSA will be used as major input data for plant specific SAMG (Severe Accident Management Guideline). The scope of PSA currently being developed in Korea cannot fulfill 'All Mode, All Scope' requirements recommended in the IAEA Safety Guidelines. Besides the legislation of PSA, step-by-step development strategy for non-performed scopes such as level 3 PSA and new fire PSA is one of the urgent issues in Korea. This paper suggests technical issues and development strategies for each PSA technical elements.

  12. Analysis of the factors affecting the safety of robotic stereotactic body radiation therapy for hepatocellular carcinoma patients

    Directory of Open Access Journals (Sweden)

    Liu XJ

    2017-11-01

    Full Text Available Xiaojie Liu,1,* Yongchun Song,1,* Ping Liang,2 Tingshi Su,2 Huojun Zhang,3 Xianzhi Zhao,3 Zhiyong Yuan,1 Ping Wang1 1Department of Radiotherapy,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 2Cyberknife Center, Ruikang Hospital, Guangxi Traditional Chinese Medical University, Nanning, 3Department of Radiotherapy, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this work Objective: The objective of this study was to investigate the safety of robotic stereotactic body radiation therapy (SBRT for hepatocellular carcinoma (HCC patients and its related factors.Methods: A total of 74 HCC patients with Child–Turcotte–Pugh (CTP Class A were included in a multi-institutional, single-arm Phase II trial (NCT 02363218 between February 2013 and August 2016. All patients received SBRT treatment at a dose of 45 Gy/3f. The liver function was compared before and after SBRT treatment by the analysis of adverse hepatic reactions and changes in CTP classification.Results: After SBRT treatment, eight patients presented with decreases in CTP classification and 13 patients presented with ≥ grade 2 hepatic adverse reactions. For patients presenting with ≥ grade 2 hepatic adverse reactions, the total liver volume of ≤1,162 mL and a normal liver volume (total liver volume – gross tumor volume [GTV] of ≤1,148 mL were found to be independent risk factors and statistically significant (P<0.05.Conclusion: The total liver volume and normal liver volume are associated with the occurrence of ≥ grade 2 hepatic adverse reactions after SBRT treatment on HCC patients. Therefore, if the fractionated scheme of 45 Gy/3f is applied in SBRT for HCC patients, a total liver volume >1,162 mL and a normal liver

  13. Special characteristics of the safety analysis of HWRs

    International Nuclear Information System (INIS)

    Kugler, G.

    1980-01-01

    Two lectures are presented in this report. The CANDU-PHW reactor is used as a model for discussion. The first lecture describes the distinctive features of the CANDU reactor, and how they impact on reactor safety. In the second lecture the Canadian safety philosophy, the safety design objective, and other selected topics on reactor safety analysis are discussed. The material in this report was selected with a view to assisting those not familiar with the CANDU heavy water reactor design in evaluating the distinctive safety aspects of these reactors. (orig./RW)

  14. Nuclear-power-safety reporting system: feasibility analysis

    International Nuclear Information System (INIS)

    Finlayson, F.C.; Ims, J.

    1983-04-01

    The US Nuclear Regulatory Commission (NRC) is evaluating the possibility of instituting a data gathering system for identifying and quantifying the factors that contribute to the occurrence of significant safety problems involving humans in nuclear power plants. This report presents the results of a brief (6 months) study of the feasibility of developing a voluntary, nonpunitive Nuclear Power Safety Reporting System (NPSRS). Reports collected by the system would be used to create a data base for documenting, analyzing and assessing the significance of the incidents. Results of The Aerospace Corporation study are presented in two volumes. This document, Volume I, contains a summary of an assessment of the Aviation Safety Reporting System (ASRS). The FAA-sponsored, NASA-managed ASRS was found to be successful, relatively low in cost, generally acceptable to all facets of the aviation community, and the source of much useful data and valuable reports on human factor problems in the nation's airways. Several significant ASRS features were found to be pertinent and applicable for adoption into a NPSRS

  15. SCALE 5: Powerful new criticality safety analysis tools

    International Nuclear Information System (INIS)

    Bowman, Stephen M.; Hollenbach, Daniel F.; Dehart, Mark D.; Rearden, Bradley T.; Gauld, Ian C.; Goluoglu, Sedat

    2003-01-01

    Version 5 of the SCALE computer software system developed at Oak Ridge National Laboratory, scheduled for release in December 2003, contains several significant new modules and sequences for criticality safety analysis and marks the most important update to SCALE in more than a decade. This paper highlights the capabilities of these new modules and sequences, including continuous energy flux spectra for processing multigroup problem-dependent cross sections; one- and three-dimensional sensitivity and uncertainty analyses for criticality safety evaluations; two-dimensional flexible mesh discrete ordinates code; automated burnup-credit analysis sequence; and one-dimensional material distribution optimization for criticality safety. (author)

  16. Food Safety Programs Based on HACCP Principles in School Nutrition Programs: Implementation Status and Factors Related to Implementation

    Science.gov (United States)

    Stinson, Wendy Bounds; Carr, Deborah; Nettles, Mary Frances; Johnson, James T.

    2011-01-01

    Purpose/Objectives: The objectives of this study were to assess the extent to which school nutrition (SN) programs have implemented food safety programs based on Hazard Analysis and Critical Control Point (HACCP) principles, as well as factors, barriers, and practices related to implementation of these programs. Methods: An online survey was…

  17. Road Safety Risk Assessment: An Analysis of Transport Policy and Management for Low-, Middle-, and High-Income Asian Countries

    Directory of Open Access Journals (Sweden)

    Syyed Adnan Raheel Shah

    2018-02-01

    Full Text Available Road safety assessment has played a crucial role in the theory and practice of transport management systems. This paper focuses on risk evaluation in the Asian region by exploring the interaction between road safety risk and influencing factors. In the first stage, a data envelopment analysis (DEA method is applied to calculate and rank the road safety risk levels of Asian countries. In the second stage, a structural equation model (SEM with latent variables is applied to analyze the interaction between the road safety risk level and the latent variables, measured by six observed performance indicators, i.e., financial impact, institutional framework, infrastructure and mobility, legislation and policy, vehicular road users, and trauma management. Finally, this paper illustrates the applicability of this DEA-SEM approach for road safety performance analysis.

  18. Support analysis for safety analysis development for CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Bedreaga, L.; Florescu, Gh.; Apostol, M.; Nitoi, M.

    2004-01-01

    Probabilistic Safety Assessment analysis (PSA) is a technique used to assess the safety of a nuclear power plant. Assessments of the nuclear plant systems/components from safety point of view consist in accomplishment of a lot of support analyses that are the base for the main analysis, in order to evaluate the impact of occurrences of abnormal states for these systems. Evaluation of initiating events frequency and components failure rate is based on underlying probabilistic theory and mathematic statistics. Some of these analyses are detailed analyses and are known very well in PSA. There are also some analyses, named support analyses for PSA, which are very important but less applicable because they involve a huge human effort and hardware facilities to accomplish. The usual methods applicable in PSA such as input data extracted from the specific documentation (operation procedures, testing procedures, maintenance procedures and so on) or conservative evaluation provide a high level of uncertainty for both input and output data. The paper describes support analysis required to improve the certainty level in evaluation of reliability parameters and also in the final results (either risk, reliability or safety assessment). (author)

  19. Preparing a Safety Analysis Report using the building block approach

    International Nuclear Information System (INIS)

    Herrington, C.C.

    1990-01-01

    The credibility of the applicant in a licensing proceeding is severely impacted by the quality of the license application, particularly the Safety Analysis Report. To ensure the highest possible credibility, the building block approach was devised to support the development of a quality Safety Analysis Report. The approach incorporates a comprehensive planning scheme that logically ties together all levels of the investigation and provides the direction necessary to prepare a superior Safety Analysis Report

  20. Utilization of the MCNP-3A code for criticality safety analysis

    International Nuclear Information System (INIS)

    Maragni, M.G.; Moreira, J.M.L.

    1996-01-01

    In the last decade, Brazil started to operate facilities for processing and storing uranium in different forms. The necessity of criticality safety analysis appeared in the design phase of the uranium pilot process plants and also in the licensing of transportation and storage of fissile materials. The 2-MW research reactor and the Angra I power plant also required criticality safety assessments because their spent-fuel storage was approaching full-capacity utilization. The criticality safety analysis in Brazil has been based on KENO IV code calculations, which present some difficulties for correct geometry representation. The MCNP-3A code is not reported to be used frequently for criticality safety analysis in Brazil, but its good geometry representation makes it a possible tool for treating problems of complex geometry. A set of benchmark tests was performed to verify its applicability for criticality safety analysis in Brazil. This paper presents several benchmark tests aimed at selecting a set of options available in the MCNP-3A code that would be adequate for criticality safety analysis. The MCNP-3A code is also compared with the KENO-IV code regarding its performance for criticality safety analysis

  1. Human Factors in Fire Safety Management and Prevention

    Directory of Open Access Journals (Sweden)

    M.A. Othuman Mydin

    2014-07-01

    Full Text Available Fire protection is the study and practice of mitigating the unwanted effects of potentially destructive fires. It involves the study of the behavior, compartmentalization, and investigation of fire and its related emergencies, as well as the research and development, production, testing and application of mitigating systems. Problems still occurred despite of the adequate fire safety systems installed. For most people in high-risk buildings, not all accidents were caused by them. They were more likely to be the victims of a fire that occurred. Besides damaging their properties and belongings, some people were burned to death for not knowing what to do if fire happens in their place. This paper will present the human factors in fire safety management and prevention system.

  2. A Study of Time Response for Safety-Related Operator Actions in Non-LOCA Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Seok; Lee, Sang Seob; Park, Min Soo; Lee, Gyu Cheon; Kim, Shin Whan [KEPCO E and C Company, Daejeon (Korea, Republic of)

    2014-10-15

    The classification of initiating events for safety analysis report (SAR) chapter 15 is categorized into moderate frequency events (MF), infrequent events (IF), and limiting faults (LF) depending on the frequency of its occurrence. For the non-LOCA safety analysis with the purpose to get construction or operation license, however, it is assumed that the operator response action to mitigate the events starts at 30 minutes after the initiation of the transient regardless of the event categorization. Such an assumption of corresponding operator response time may have over conservatism with the MF and IF events and results in a decrease in the safety margin compared to its acceptance criteria. In this paper, the plant conditions (PC) are categorized with the definitions in SAR 15 and ANS 51.1. Then, the consequence of response for safety-related operator action time is determined based on the PC in ANSI 58.8. The operator response time for safety analysis regarding PC are reviewed and suggested. The clarifying alarm response procedure would be required for the guideline to reduce the operator response time when the alarms indicate the occurrence of the transient.

  3. Evaluation of response factors for seismic probabilistic safety assessment of nuclear power plants

    International Nuclear Information System (INIS)

    Ebisawa, K.; Abe, K.; Muramatsu, K.; Itoh, M.; Kohno, K.; Tanaka, T.

    1994-01-01

    This paper presents a method for evaluating 'response factors' of components in nuclear power plants for use in a seismic probabilistic safety assessment (PSA). The response factor here is a measure of conservatism included in response calculations in seismic design analysis of components and is defined as a ratio of conservative design resonse to actual response. This method has the following characteristic features: (1) The components are classified into several groups based on the differences in their location and in the vibration models used in design response analyses; (2) the response factors are decomposed into subfactors corresponding to the stages of the seismic response analyses in the design practices; (3) the response factors for components are calculated as products of subfactors; (4) the subfactors are expressed either as a single value or as a function of parameters that influence the response of components. This paper describes the outline of this method and results from an application to a sample problem in which response factors were quantified for examples of components selected from the groups. (orig.)

  4. Agent-based organizational modelling for analysis of safety culture at an air navigation service provider

    International Nuclear Information System (INIS)

    Stroeve, Sybert H.; Sharpanskykh, Alexei; Kirwan, Barry

    2011-01-01

    Assessment of safety culture is done predominantly by questionnaire-based studies, which tend to reveal attitudes on immaterial characteristics (values, beliefs, norms). There is a need for a better understanding of the implications of the material aspects of an organization (structures, processes, etc.) for safety culture and their interactions with the immaterial characteristics. This paper presents a new agent-based organizational modelling approach for integrated and systematic evaluation of material and immaterial characteristics of socio-technical organizations in safety culture analysis. It uniquely considers both the formal organization and the value- and belief-driven behaviour of individuals in the organization. Results are presented of a model for safety occurrence reporting at an air navigation service provider. Model predictions consistent with questionnaire-based results are achieved. A sensitivity analysis provides insight in organizational factors that strongly influence safety culture indicators. The modelling approach can be used in combination with attitude-focused safety culture research, towards an integrated evaluation of material and immaterial characteristics of socio-technical organizations. By using this approach an organization is able to gain a deeper understanding of causes of diverse problems and inefficiencies both in the formal organization and in the behaviour of organizational agents, and to systematically identify and evaluate improvement options.

  5. Safety through organizational learning

    International Nuclear Information System (INIS)

    Fahlbruch, B.; Miller, R.; Wilpert, B.

    1998-01-01

    Systems safety is a characteristic of a system enabling it to function under the required operating conditions with a minimum of losses and unforeseen damage to the system and its environment and without any systems breakdowns. The system is influenced by human factors as those factors which, in a general way, influence people in working with a technical system, i.e., people, technology, and organization. Different approaches to learning from events, and processes of event analysis in nuclear technology are presented. The theoretical basis of the 'Safety through Organizational Learning' event analysis technique is the sociotechnical event creation model, which postulates that events can be described as a chain of individual events arising from the joint action of factors contributing directly and indirectly. (orig.) [de

  6. Development of safety analysis technology for LMR

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kwon, Y. M.; Suk, S. D.

    2002-05-01

    In the present study, the KALIMER safety analysis has been made for the transients considered in the design concept, hypothetical core disruptive accident (HCDA), and containment performance with the establishment of the design basis. Such analyses have not been possible without the computer code improvement, and the experience attained during this research period must have greatly contributed to the achievement of the self reliance in the domestic technology establishment on the safety analysis areas of the conceptual design. The safety analysis codes have been improved to extend their applicable ranges for detailed conceptual design, and a basic computer code system has been established for HCDA analysis. A code-to-code comparison analysis has been performed as a part of code verification attempt, and the leading edge technology of JNC also has been brought for the technology upgrade. In addition, the research and development on the area of the database establishment has been made for the efficient and systematic project implementation of the conceptual design, through performances on the development of a project scheduling management, integration of the individually developed technology, establishment of the product database, and so on, taking into account coupling of the activities conducted in each specific area

  7. Preclosure Safety Analysis Guide

    International Nuclear Information System (INIS)

    D.D. Orvis

    2003-01-01

    A preclosure safety analysis (PSA) is a required element of the License Application (LA) for the high- level radioactive waste repository at Yucca Mountain. This guide provides analysts and other Yucca Mountain Repository Project (the Project) personnel with standardized methods for developing and documenting the PSA. The definition of the PSA is provided in 10 CFR 63.2, while more specific requirements for the PSA are provided in 10 CFR 63.112, as described in Sections 1.2 and 2. The PSA requirements described in 10 CFR Part 63 were developed as risk-informed performance-based regulations. These requirements must be met for the LA. The PSA addresses the safety of the Geologic Repository Operations Area (GROA) for the preclosure period (the time up to permanent closure) in accordance with the radiological performance objectives of 10 CFR 63.111. Performance objectives for the repository after permanent closure (described in 10 CFR 63.113) are not mentioned in the requirements for the PSA and they are not considered in this guide. The LA will be comprised of two phases: the LA for construction authorization (CA) and the LA amendment to receive and possess (R and P) high-level radioactive waste (HLW). PSA methods must support the safety analyses that will be based on the differing degrees of design detail in the two phases. The methods described herein combine elements of probabilistic risk assessment (PRA) and deterministic analyses that comprise a risk-informed performance-based safety analysis. This revision to the PSA guide was prepared for the following objectives: (1) To correct factual and typographical errors. (2) To provide additional material suggested from reviews by the Project, the U.S. Department of Energy (DOE), and U.S. Nuclear Regulatory Commission (NRC) Staffs. (3) To update material in accordance with approaches and/or strategies adopted by the Project. In addition, a principal objective for the planned revision was to ensure that the methods and

  8. Partial Safety Factors for Fatigue Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2010-01-01

    In the present paper calibration of partial safety factors for fatigue design of wind turbine blades is considered. The stochastic models for the physical uncertainties on the material properties are based on constant amplitude fatigue tests and the uncertainty on Miners rule for linear damage...... accumulation is determined from variable amplitude fatigue tests with the Wisper and Wisperx spectra. The statistical uncertainty for the assessment of the fatigue loads is also investigated. The partial safety factors are calibrated for design load case 1.2 in IEC 61400-1. The fatigue loads are determined...... from rainflow-counting of simulated time series for a 5MW reference wind turbine [1]. A possible influence of a complex stress state in the blade is not taken into account and only longitudinal stresses are considered....

  9. National Nuclear Safety Department Experience of Supervision over Safety Culture of BNPP-1

    International Nuclear Information System (INIS)

    Sepanloo, K.; Ardeshir, A.T.

    2016-01-01

    The analysis of the past major NPPs accidents, TMI, Chernobyl and Fukushima Daiichi shows that causes of these accidents can be explained by a complex combination of human, technological and organizational factors. One of the findings of accident investigations and risk assessments is the growing recognition of the impact of cultural context of work practices on safety. The assumed link between culture and safety, epitomized through the concept of safety culture, has been the subject of extensive research in recent years. The term “safety culture” was first introduced into the nuclear industry by the IAEA in INSAG-1 to underline the role and importance of the organizational factors. The objective of this paper is to conduct an assessment of some safety culture indicators of Bushehr Nuclear Power Plant (BNPP-1).

  10. Study on safety educations against individual causal factors of unsafe acts and specification of target trainees

    International Nuclear Information System (INIS)

    Hirose, Ayako; Takeda, Daisuke

    2016-01-01

    Many accidents and incidents are caused by unsafe acts. It is important to reduce these unsafe acts for preventing the accidents. The countermeasures for each causal factor behind unsafe acts are needed, however, comparing with improvement of facilities, workers-oriented measures such as safety educations are not sufficient. Then the purposes of this study are as follows: 1) to investigate the individual factors which have great impact of unsafe acts and the existing safety educations which aim to mitigate the impact of these factors, 2) to specify the target trainees to perform these safety educations. To identify common factors that affect unsafe act significantly, a web survey was conducted to 500 workers who have regularly carried out accident prediction training (i.e. Kiken-Yochi training). They were asked the situation which they were apt to act unsafely by free description. As the result, the following three main factors were extracted: impatience, overconfidence, and bothersome. Also, it was found that there were few existing safety educations which aim to mitigate the impact of these factors except for overconfidence. To specify the target trainees to perform safety educations which aim to mitigate the impact of these three factors, another web survey was conducted to 200 personnel in charge of safety at the workplace. They were asked the features of workers who tended to act unsafely by age group. The relationship between the factor that need to mitigate and the trainee who need to receive the education were clarified from the survey. (author)

  11. Archetypes for Organisational Safety

    Science.gov (United States)

    Marais, Karen; Leveson, Nancy G.

    2003-01-01

    We propose a framework using system dynamics to model the dynamic behavior of organizations in accident analysis. Most current accident analysis techniques are event-based and do not adequately capture the dynamic complexity and non-linear interactions that characterize accidents in complex systems. In this paper we propose a set of system safety archetypes that model common safety culture flaws in organizations, i.e., the dynamic behaviour of organizations that often leads to accidents. As accident analysis and investigation tools, the archetypes can be used to develop dynamic models that describe the systemic and organizational factors contributing to the accident. The archetypes help clarify why safety-related decisions do not always result in the desired behavior, and how independent decisions in different parts of the organization can combine to impact safety.

  12. Analysis of high burnup fuel safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development.

  13. Analysis of high burnup fuel safety issues

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development

  14. A dispersion safety factor for LNG vapor clouds

    Energy Technology Data Exchange (ETDEWEB)

    Vílchez, Juan A. [TIPs – Trámites, Informes y Proyectos, SL, Llenguadoc 10, 08030 Barcelona (Spain); Villafañe, Diana [Centre d’Estudis del Risc Tecnològic (CERTEC), Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Catalonia (Spain); Casal, Joaquim, E-mail: joaquim.casal@upc.edu [Centre d’Estudis del Risc Tecnològic (CERTEC), Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Catalonia (Spain)

    2013-02-15

    Highlights: ► We proposed a new parameter: the dispersion safety factor (DSF). ► DSF is the ratio between the distance reached by the LFL and that reached by the visible cloud. ► The results for the DSF agree well with the evidence from large scale experiments. ► Two expressions have been proposed to calculate DSF as a function of H{sub R}. ► The DSF may help in indicating the danger of ignition of a LNG vapor cloud. -- Abstract: The growing importance of liquefied natural gas (LNG) to global energy demand has increased interest in the possible hazards associated with its storage and transportation. Concerning the event of an LNG spill, a study was performed on the relationship between the distance at which the lower flammability limit (LFL) concentration occurs and that corresponding to the visible contour of LNG vapor clouds. A parameter called the dispersion safety factor (DSF) has been defined as the ratio between these two lengths, and two expressions are proposed to estimate it. During an emergency, the DSF can be a helpful parameter to indicate the danger of cloud ignition and flash fire.

  15. A dispersion safety factor for LNG vapor clouds

    International Nuclear Information System (INIS)

    Vílchez, Juan A.; Villafañe, Diana; Casal, Joaquim

    2013-01-01

    Highlights: ► We proposed a new parameter: the dispersion safety factor (DSF). ► DSF is the ratio between the distance reached by the LFL and that reached by the visible cloud. ► The results for the DSF agree well with the evidence from large scale experiments. ► Two expressions have been proposed to calculate DSF as a function of H R . ► The DSF may help in indicating the danger of ignition of a LNG vapor cloud. -- Abstract: The growing importance of liquefied natural gas (LNG) to global energy demand has increased interest in the possible hazards associated with its storage and transportation. Concerning the event of an LNG spill, a study was performed on the relationship between the distance at which the lower flammability limit (LFL) concentration occurs and that corresponding to the visible contour of LNG vapor clouds. A parameter called the dispersion safety factor (DSF) has been defined as the ratio between these two lengths, and two expressions are proposed to estimate it. During an emergency, the DSF can be a helpful parameter to indicate the danger of cloud ignition and flash fire

  16. Factors affecting the utilization of safety devices by commercial ...

    African Journals Online (AJOL)

    Background: Motorcycle crashes are common causes of morbidity and mortality for both riders and passengers. To prevent and reduce the severity of injuries sustained through road traffic accidents (RTA) many countries enforce the use of safety devices while riding. Certain factors including non-enforcement of the existing ...

  17. Statistics of past errors as a source of safety factors for current models

    International Nuclear Information System (INIS)

    Shlyakhter, A.I.

    1994-01-01

    Results of a comparative analysis of actual vs. estimated uncertainty in several data sets derived from natural and social sciences are presented. Data sets include: (i) time trends in the sequential measurements of the same physical quantity; (ii) environmental measurements of uranium in soil, (iii) national population projections; (iv) projections for the United States' energy sector. Probabilities of large deviations from the true values are parametrized by an exponential distribution with the slope determined by the data. One can hedge against unsuspected uncertainties by inflating reported uncertainty range by a default safety factor determined from the relevant historical data sets. This emperical approach can be used in the uncertainty analysis of the low probability/high consequence events, such as risk of global warming

  18. Strengths, weaknesses, opportunities and threats – swot analysis regarding the romanian participation in euratom programmes on nuclear safety topic

    International Nuclear Information System (INIS)

    Apostol, M.; Constantin, M.; Diaconu, D.

    2013-01-01

    In the frame of FP7 - NEWLANCER project, SWOT analysis (Strengths, Weaknesses, Opportunities and Threats) was performed by each partner from New Member States (NMS) in order to provide valuable input for the development of policies aimed to increase the participation of the NMS in Euratom programmes on the following topics: Generation III and IV systems and materials, Nuclear safety, Radioprotection, Radioactive waste management, and Education and training. The final objective of SWOT analysis performed by National Expert Groups on Nuclear Safety (NS) topic was to propose strategies, in order to reduce the influence of identified negative factors and to enhance influence of identified positive factors, regarding Romanian participation in Euratom programmes. (authors)

  19. LOCA analysis of SCWR-M with passive safety system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.J., E-mail: xiaojingliu@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China); Fu, S.W. [Navy University of Engineering, Wuhan, Hubei (China); Xu, Z.H. [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China); Yang, Y.H. [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China); Cheng, X. [Institute of Fusion and Nuclear Technology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe (Germany)

    2013-06-15

    Highlights: • Application of the ATHLET-SC code to the trans-critical analysis for SCWR. • Development of a passive safety system for SCWR-M. • Analysis of hot/cold leg LOCA behaviour with different break size. • Introduction of some mitigation measures for SCWR-M -- Abstract: A new SCWR conceptual design (mixed spectrum supercritical water cooled reactor: SCWR-M) is proposed by Shanghai Jiao Tong University (SJTU). R and D activities covering core design, safety system design and code development of SCWR-M are launched at SJTU. Safety system design and analysis is one of the key tasks during the development of SCWR-M. Considering the current advanced reactor design, a new passive safety system for SCWR-M including isolation cooling system (ICS), accumulator injection system (ACC), gravity driven cooling system (GDCS) and automatic depressurization system (ADS) is proposed. Based on the modified and preliminarily assessed system code ATHLET-SC, loss of coolant accident (LOCA) analysis for hot and cold leg is performed in this paper. Three different break sizes are analyzed to clarify the hot and cold LOCA characteristics of the SCWR-M. The influence of the break location and break size on the safety performance of SCWR-M is also concluded. Several measures to induce the core coolant flow and to mitigate core heating up are also discussed. The results achieved so far demonstrate the feasibility of the proposed passive safety system to keep the SCWR-M core at safety condition during loss of coolant accident.

  20. Financial Risk Factor Analysis for Facility Gas Leakages of H2 and NG

    Directory of Open Access Journals (Sweden)

    In-Bok Lee

    2016-09-01

    Full Text Available Fuel cells may be the key to a more environmentally-friendly future because they emit low carbon dioxide per unit of energy supplied. However, little work has investigated the potential financial risks pertaining to fuel cell systems. Often used in the analysis of the safety of systems involving flammable or hazardous materials, risk factor analysis has recently been used to analyze the potential financial losses that may occur from industrial hazards. Therefore, this work undertakes a financial risk factor analysis to determine the costs of leakages of hydrogen and natural gas, which are used in fuel cell systems. Total leakage was calculated from an analysis of several leakage rates and modes. The impact of applying appropriate detection and prevention systems was also investigated. The findings were then used to analyze the consequences for various sections of the system and to calculate the overall cost based on facility outage or damage, and the cost of taking safety precautions. This provides a basis for comparison among proposed potential reactionary measures.

  1. PA activity by using nuclear power plant safety demonstration and analysis

    International Nuclear Information System (INIS)

    Tsuchiya, Mitsuo; Kamimae, Rie

    1999-01-01

    INS/NUPEC presents one of Public acceptance (PA) methods for nuclear power in Japan, 'PA activity by using Nuclear Power Plant Safety Demonstration and Analysis', by using one of videos which is explained and analyzed accident events (Loss of Coolant Accident). Safety regulations of The National Government are strictly implemented in licensing at each of basic design and detailed design. To support safety regulation activities conducted by the National Government, INS/NLTPEC continuously implement Safety demonstration and analysis. With safety demonstration and analysis, made by assuming some abnormal conditions, what impacts could be produced by the assumed conditions are forecast based on specific design data on a given nuclear power plants. When analysis results compared with relevant decision criteria, the safety of nuclear power plants is confirmed. The decision criteria are designed to help judge if or not safety design of nuclear power plants is properly made. The decision criteria are set in the safety examination guidelines by taking sufficient safety allowance based on the latest technical knowledge obtained from a wide range of tests and safety studies. Safety demonstration and analysis is made by taking the procedure which are summarized in this presentation. In Japan, various PA (Public Acceptance) pamphlets and videos on nuclear energy have been published. But many of them focused on such topics as necessity or importance of nuclear energy, basic principles of nuclear power generation, etc., and a few described safety evaluation particularly of abnormal and accident events in accordance with the regulatory requirements. In this background, INS/NUPEC has been making efforts to prepare PA pamphlets and videos to explain the safety of nuclear power plants, to be simple and concrete enough, using various analytical computations for abnormal and accident events. In results, PA activity of INS/NUPEC is evaluated highly by the people

  2. Risk analysis-based food safety policy: scientific factors versus socio-cultural factors

    NARCIS (Netherlands)

    Rosa, P.; Knapen, van F.; Brom, F.W.A.

    2008-01-01

    The purpose of this article is to illustrate the importance of socio-cultural factors in risk management and the need to incorporate these factors in a standard, internationally recognized (wto) framework. This was achieved by analysing the relevance of these factors in 3 cases
    The purpose of

  3. A pragmatic approach to estimate alpha factors for common cause failure analysis

    International Nuclear Information System (INIS)

    Hassija, Varun; Senthil Kumar, C.; Velusamy, K.

    2014-01-01

    Highlights: • Estimation of coefficients in alpha factor model for common cause analysis. • A derivation of plant specific alpha factors is demonstrated. • We examine sensitivity of common cause contribution to total system failure. • We compare beta factor and alpha factor models for various redundant configurations. • The use of alpha factors is preferable, especially for large redundant systems. - Abstract: Most of the modern technological systems are deployed with high redundancy but still they fail mainly on account of common cause failures (CCF). Various models such as Beta Factor, Multiple Greek Letter, Binomial Failure Rate and Alpha Factor exists for estimation of risk from common cause failures. Amongst all, alpha factor model is considered most suitable for high redundant systems as it arrives at common cause failure probabilities from a set of ratios of failures and the total component failure probability Q T . In the present study, alpha factor model is applied for the assessment of CCF of safety systems deployed at two nuclear power plants. A method to overcome the difficulties in estimation of the coefficients viz., alpha factors in the model, importance of deriving plant specific alpha factors and sensitivity of common cause contribution to the total system failure probability with respect to hazard imposed by various CCF events is highlighted. An approach described in NUREG/CR-5500 is extended in this study to provide more explicit guidance for a statistical approach to derive plant specific coefficients for CCF analysis especially for high redundant systems. The procedure is expected to aid regulators for independent safety assessment

  4. Waste Isolation Pilot Plant Safety Analysis Report

    International Nuclear Information System (INIS)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions'' (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.'' This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment

  5. Waste Isolation Pilot Plant Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  6. Posttest analysis of the FFTF inherent safety tests

    International Nuclear Information System (INIS)

    Padilla, A. Jr.; Claybrook, S.W.

    1987-01-01

    Inherent safety tests were performed during 1986 in the 400-MW (thermal) Fast Flux Test Facility (FFTF) reactor to demonstrate the effectiveness of an inherent shutdown device called the gas expansion module (GEM). The GEM device provided a strong negative reactivity feedback during loss-of-flow conditions by increasing the neutron leakage as a result of an expanding gas bubble. The best-estimate pretest calculations for these tests were performed using the IANUS plant analysis code (Westinghouse Electric Corporation proprietary code) and the MELT/SIEX3 core analysis code. These two codes were also used to perform the required operational safety analyses for the FFTF reactor and plant. Although it was intended to also use the SASSYS systems (core and plant) analysis code, the calibration of the SASSYS code for FFTF core and plant analysis was not completed in time to perform pretest analyses. The purpose of this paper is to present the results of the posttest analysis of the 1986 FFTF inherent safety tests using the SASSYS code

  7. SNF fuel retrieval sub project safety analysis document

    International Nuclear Information System (INIS)

    BERGMANN, D.W.

    1999-01-01

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed

  8. SNF fuel retrieval sub project safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    BERGMANN, D.W.

    1999-02-24

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

  9. Measurement of Safety Factor Using Hall Probes on CASTOR Tokamak

    Czech Academy of Sciences Publication Activity Database

    Kovařík, Karel; Ďuran, Ivan; Bolshakova, I.; Holyaka, R.; Erashok, V.

    2006-01-01

    Roč. 56, suppl.B (2006), s. 104-110 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/22nd./. Praha, 26.6.2006-29.6.2006] R&D Projects: GA AV ČR(CZ) KJB100430504 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma * tokamak * safety factor * hall probe Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  10. Development and improvement of safety analysis code for geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In order to confirm the long-term safety concerning geological disposal, probabilistic safety assessment code and other analysis codes, which can evaluate possibility of each event and influence on engineered barrier and natural barrier by the event, were introduced. We confirmed basic functions of those codes and studied the relation between those functions and FEP/PID which should be taken into consideration in safety assessment. We are planning to develop 'Nuclide Migration Assessment System' for the purpose of realizing improvement in efficiency of assessment work, human error prevention for analysis, and quality assurance of the analysis environment and analysis work for safety assessment by using it. As the first step, we defined the system requirements and decided the system composition and functions which should be mounted in them based on those requirements. (author)

  11. Safety analysis of control rod drive computers

    International Nuclear Information System (INIS)

    Ehrenberger, W.; Rauch, G.; Schmeil, U.; Maertz, J.; Mainka, E.U.; Nordland, O.; Gloee, G.

    1985-01-01

    The analysis of the most significant user programmes revealed no errors in these programmes. The evaluation of approximately 82 cumulated years of operation demonstrated that the operating system of the control rod positioning processor has a reliability that is sufficiently good for the tasks this computer has to fulfil. Computers can be used for safety relevant tasks. The experience gained with the control rod positioning processor confirms that computers are not less reliable than conventional instrumentation and control system for comparable tasks. The examination and evaluation of computers for safety relevant tasks can be done with programme analysis or statistical evaluation of the operating experience. Programme analysis is recommended for seldom used and well structured programmes. For programmes with a long, cumulated operating time a statistical evaluation is more advisable. The effort for examination and evaluation is not greater than the corresponding effort for conventional instrumentation and control systems. This project has also revealed that, where it is technologically sensible, process controlling computers or microprocessors can be qualified for safety relevant tasks without undue effort. (orig./HP) [de

  12. Safety evaluation report of the Waste Isolation Pilot Plant safety analysis report: Contact-handled transuranic waste disposal operations

    International Nuclear Information System (INIS)

    1997-02-01

    DOE 5480.23, Nuclear Safety Analysis Reports, requires that the US Department of Energy conduct an independent, defensible, review in order to approve a Safety Analysis Report (SAR). That review and the SAR approval basis is documented in this formal Safety Evaluation Report (SER). This SER documents the DOE's review of the Waste Isolation Pilot Plant SAR and provides the Carlsbad Area Office Manager, the WIPP SAR approval authority, with the basis for approving the safety document. It concludes that the safety basis documented in the WIPP SAR is comprehensive, correct, and commensurate with hazards associated with planned waste disposal operations

  13. On applying safety archetypes to the Fukushima accident to identify nonlinear influencing factors

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, A.L., E-mail: alsousa@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Ribeiro, A.C.O., E-mail: antonio.ribeiro@bayer.com [Bayer Crop Science Brasil S.A., Belford Roxo, RJ (Brazil); Duarte, J.P., E-mail: julianapduarte@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola Politecnica. Departamento de Engenharia Nuclear; Frutuoso e Melo, P.F., E-mail: frutuoso@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COOPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear

    2013-07-01

    Nuclear power plants are typically characterized as high reliable organizations. In other words, they are organizations defined as relatively error free over a long period of time. Another relevant characteristic of the nuclear industry is that safety efforts are credited to design. However, major accidents, like the Fukushima accident, have shown that new tools are needed to identify latent deficiencies and help improve their safety level. Safety archetypes proposed elsewhere (e. g., safety issues stalled in the face of technological advances and eroding safety) consonant with International Atomic Energy Agency (IAEA) efforts are used to examine different aspects of accidents in a systemic perspective of the interaction between individuals, technology and organizational factors. Safety archetypes can help consider nonlinear interactions. Effects are rarely proportional to causes and what happens locally in a system (near the current operating point) often does not apply to distant regions (other system states), so that one has to consider the so-called nonlinear interactions. This is the case, for instance, with human probability failure estimates and safety level identification. In this paper, we discuss the Fukushima accident in order to show how archetypes can highlight nonlinear interactions of factors that influenced it and how to maintain safety levels in order to prevent other accidents. The initial evaluation of the set of archetypes suggested in the literature showed that at least four of them are applicable to the Fukushima accident, as is inferred from official reports on the accident. These are: complacency (that is, the effects of complacency on safety), decreased safety awareness, fixing on symptoms and not the real causes and eroding safety. (author)

  14. On applying safety archetypes to the Fukushima accident to identify nonlinear influencing factors

    International Nuclear Information System (INIS)

    Sousa, A.L.; Ribeiro, A.C.O.; Duarte, J.P.; Frutuoso e Melo, P.F.

    2013-01-01

    Nuclear power plants are typically characterized as high reliable organizations. In other words, they are organizations defined as relatively error free over a long period of time. Another relevant characteristic of the nuclear industry is that safety efforts are credited to design. However, major accidents, like the Fukushima accident, have shown that new tools are needed to identify latent deficiencies and help improve their safety level. Safety archetypes proposed elsewhere (e. g., safety issues stalled in the face of technological advances and eroding safety) consonant with International Atomic Energy Agency (IAEA) efforts are used to examine different aspects of accidents in a systemic perspective of the interaction between individuals, technology and organizational factors. Safety archetypes can help consider nonlinear interactions. Effects are rarely proportional to causes and what happens locally in a system (near the current operating point) often does not apply to distant regions (other system states), so that one has to consider the so-called nonlinear interactions. This is the case, for instance, with human probability failure estimates and safety level identification. In this paper, we discuss the Fukushima accident in order to show how archetypes can highlight nonlinear interactions of factors that influenced it and how to maintain safety levels in order to prevent other accidents. The initial evaluation of the set of archetypes suggested in the literature showed that at least four of them are applicable to the Fukushima accident, as is inferred from official reports on the accident. These are: complacency (that is, the effects of complacency on safety), decreased safety awareness, fixing on symptoms and not the real causes and eroding safety. (author)

  15. Safety analysis of the existing 850 Firing Facility

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 850 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but one of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exception was explosives, which was classified as a moderate hazard per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public

  16. Safety analysis of the existing 851 Firing Facility

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 851 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but two of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exceptions were the linear accelerator and explosives, which were classified as moderate hazards per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public

  17. Safety factor profile dependence of turbulent structure formation in relevant to internal transport barrier relaxation

    International Nuclear Information System (INIS)

    Tokunaga, S.; Yagi, M.; Itoh, S.-I.; Itoh, K.

    2009-01-01

    Full text: It is widely understood that the improved confinement mode with transport barrier is necessary to achieve the self-ignition condition in ITER. The negative magnetic shear, mean ExB flow shear, and zonal flow are considered to play important roles for ITB formation. In our previous study, it is found that the non-linear interaction between the meso-scale modes produces non-local energy transfer to the off-resonant mode in the vicinity of q min surface and brings global relaxation of the temperature profile involving ITB collapse. Experimental studies indicate that a relationship exists between the ITB formation and safety factor q-profile, with a reversed magnetic shear (RS) configuration. Transitional ITB events occur on the low-order rational resonant surface. The ITB shape and location depend on the q-profile and q min position. These observations indicate that the q-profile might play an essential role in determining the turbulent structure. In this study, the effect of safety factor profile on the ion temperature gradient driven drift wave (ITG) turbulence is investigated using a global non-linear simulation code based on the gyro-fluid model. A heat source and toroidal momentum source are introduced. Dependence of safety factor profiles on ITB formation and its stability is examined to clarify the influence of the radial distribution of the rational surfaces and the q min value. It is found that the nonlinearly excited meso-scale mode in the vicinity of q min depends on the value of q min . A detailed analysis of the structure selection rule is in progress. (author)

  18. Factors Affecting the Behavior of Engineering Students toward Safety Practices in the Machine Shop

    Directory of Open Access Journals (Sweden)

    Jessie Kristian M. Neria

    2015-08-01

    Full Text Available This study aimed to determine the factors that affect the behavior of engineering student toward safety practices in the machine shop. Descriptive type of research was utilized in the study. Results showed that most of the engineering students clearly understand the signage shown in the machine shop. Students are aware that they should not leave the machines unattended. Most of the engineering students handle and use the machine properly. The respondents have an average extent of safety practices in the machine shop which means that they are applying safety practices in their every activity in machine shop. There is strong relationship between the safety practices and the factors affecting behavior in terms of signage, reminder of teacher and rules and regulation.

  19. Statistical margin to DNB safety analysis approach for LOFT

    International Nuclear Information System (INIS)

    Atkinson, S.A.

    1982-01-01

    A method was developed and used for LOFT thermal safety analysis to estimate the statistical margin to DNB for the hot rod, and to base safety analysis on desired DNB probability limits. This method is an advanced approach using response surface analysis methods, a very efficient experimental design, and a 2nd-order response surface equation with a 2nd-order error propagation analysis to define the MDNBR probability density function. Calculations for limiting transients were used in the response surface analysis thereby including transient interactions and trip uncertainties in the MDNBR probability density

  20. Tolerability of risk, safety assessment principles and their implications for probabilistic safety analysis

    International Nuclear Information System (INIS)

    Ewing, D.J.F.; Campbell, J.F.

    1994-01-01

    This paper gives a regulatory view of probabilistic safety assessment as seen by the Nuclear Installations Inspectorate (NII) and in the light of the general regulatory risk aims set out in the Health and Safety Executive's (HSE) The tolerability of risk from nuclear power stations (TOR) and in Safety assessment principles for nuclear plants (SAPs), prepared by NII on behalf of the HSE. Both of these publications were revised and republished in 1992. This paper describes the SAPs, together with the historical background, the motivation for review, the effects of the Sizewell and Hinkley Point C public inquiries, changes since the original versions, comparison with international standards and use in assessment. For new plant, probabilistic safety analysis (PSA) is seen as an essential tool in balancing the safety of the design and in demonstrating compliance with TOR and the SAPs. (Author)

  1. Seismic analysis response factors and design margins of piping systems

    International Nuclear Information System (INIS)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The objective of the simplified methods project of the Seismic Safety Margins Research Program is to develop a simplified seismic risk methodology for general use. The goal is to reduce seismic PRA costs to roughly 60 man-months over a 6 to 8 month period, without compromising the quality of the product. To achieve the goal, it is necessary to simplify the calculational procedure of the seismic response. The response factor approach serves this purpose. The response factor relates the median level response to the design data. Through a literature survey, we identified the various seismic analysis methods adopted in the U.S. nuclear industry for the piping system. A series of seismic response calculations was performed. The response factors and their variabilities for each method of analysis were computed. A sensitivity study of the effect of piping damping, in-structure response spectra envelop method, and analysis method was conducted. In addition, design margins, which relate the best-estimate response to the design data, are also presented

  2. Development of regulatory technology for thermal-hydraulic safety analysis

    International Nuclear Information System (INIS)

    Bang, Young Seok; Lee, S. H.; Ryu, Y. H.

    2001-02-01

    The present study aims to develop the regulation capability in thermal-hydraulic safety analysis which was required for the reasonable safety regulation in the current NPP, the next generation reactors, and the future-type reactors. The fourth fiscal year of the first phase of the research was focused on the following research topics: Investigation on the current status of the thermal-hydraulic safety analysis technology outside and inside of the country; Review on the improved features of the thermal-hydraulic safety analysis regulatory audit code, RELAP5/MOD3; Assessments of code with LOFT L9-3 ATWS experiment and LSTF SB-SG-10 multiple SGTR experiment; Application of the RELAP5/CANDU code to analyses of SLB and LBLOCA and evaluation of its effect on safety; Application of the code to IAEA PHWR ISP analysis; Assessments of RELAP5 and TRAC with UPTF downcomer injection test and Analysis of LBLOCA with RELAP5 for the performance evaluation of KNGR DVI; Setup of a coupled 3-D kinetics and thermal-hydraulics and application it to a reactivity accident analysis; and Extension of database and improvement of plant input decks. For supporting the resolution of safety issues, loss of RHR event during midloop operation was analyzed for Kori Unit 3, issues on high burnup fuel were reviewed and performance of FRAPCON-3 assessed. Also MSLB was analyzed to figure out the sensitivity of downcomer temperature supporting the PTS risk evaluation of Kori Unit 1. Thermal stratification in pipe was analyzed using the method proposed. And a method predicting the thermal-hydraulic performance of IRWST of KNGR was explored. The PWR ECCS performance criteria was issued as a MOST Article 200-19.and a regulatory guide on evaluation methodology was improved to cover concerns raised from the related licensing review process

  3. Safety analysis in support of regulatory decision marking

    International Nuclear Information System (INIS)

    Pomier Baez, L.; Troncoso Fleitas, M.; Valhuerdi Debesa, C.; Valle Cepero, R.; Hernandez, J.L.

    1996-01-01

    Features of different safety analysis techniques by means of calculation thermohydraulic a probabilistic and severe accidents used in the safety assessment, as well as the development of these techniques in Cuba and their use in support of regulatory decision making are presented

  4. Operational safety analysis status of Novi Han repository

    International Nuclear Information System (INIS)

    Boiadjiev, A.

    2000-01-01

    This article presents the status of the safety studies and activities related to Novi Han repository. The case of this facility is such that no clear boundary exists between post-closure safety assessment and operational safety assessment. The major findings of these activities are given. The Safety Analysis Report (SAR) for Novi Han repository is developed by Risk Engineering Ltd. under a contract with the Committee on the Use of Atomic Energy for Peaceful Purposes. The general structure and main conclusions and recommendations of the SAR are presented. (author)

  5. Safety analysis and evaluation methodology for fusion systems

    International Nuclear Information System (INIS)

    Fujii-e, Y.; Kozawa, Y.; Namba, C.

    1987-03-01

    Fusion systems which are under development as future energy systems have reached a stage that the break even is expected to be realized in the near future. It is desirable to demonstrate that fusion systems are well acceptable to the societal environment. There are three crucial viewpoints to measure the acceptability, that is, technological feasibility, economy and safety. These three points have close interrelation. The safety problem is more important since three large scale tokamaks, JET, TFTR and JT-60, start experiment, and tritium will be introduced into some of them as the fusion fuel. It is desirable to establish a methodology to resolve the safety-related issues in harmony with the technological evolution. The promising fusion system toward reactors is not yet settled. This study has the objective to develop and adequate methodology which promotes the safety design of general fusion systems and to present a basis for proposing the R and D themes and establishing the data base. A framework of the methodology, the understanding and modeling of fusion systems, the principle of ensuring safety, the safety analysis based on the function and the application of the methodology are discussed. As the result of this study, the methodology for the safety analysis and evaluation of fusion systems was developed. New idea and approach were presented in the course of the methodology development. (Kako, I.)

  6. Human resource factors associated with workplace safety and health education of small manufacturing businesses in Korea.

    Science.gov (United States)

    Park, Kyoung-Ok

    2018-01-25

    Human resources (HR) are essential indicators of safety and health (SH) status, and HR can be key sources of workplace safety management such as safety and health education at work (SHEW). This study analyzed significant HR factors associated with SHEW of small manufacturing businesses in Korea. The secondary data of the 2012 Korea Occupational Safety and Health Trend Survey were used to achieve this research purpose. A total of 2,089 supervisors or managers employed in the small manufacturing businesses completed the interview survey. Survey businesses were selected by multiple stratified sampling method based on industry code, business size, and region in Korea. The survey included workplace characteristics of HR and SHEW. SHEW was significantly related to business size, occupational injury incidence in the previous year, foreign and elderly worker employment, presence of site supervisors, and presence of SH committees (p <.05). SHEW for office workers, non-office workers, and newcomers was associated with business size, presence of site supervisors, and presence of SH committees in logistic regression analysis (p <.001). Businesses with 30-49 workers conducted SHEW 3.64 times more than did businesses with 5 to fewer than 10 workers. The companies that had occupational injuries in the previous year conducted SHEW 1.68 times more than the others. The businesses that had site supervisors and committees conducted SHEW 2.30 and 2.18 times more, respectively, than others. Site supervisors and SH committees were significant HR factors that improved SHEW in small manufacturing businesses.

  7. Safety of modifications at nuclear power plants - the role of minor modifications and human and organisational factors

    International Nuclear Information System (INIS)

    2005-01-01

    in the present report. The ultimate responsibility for plant safety lies with the licensee. Consequently, modification processes at the utilities are controlled by written procedures. The modification processes vary depending on the type and scope of the modification. Large modifications generally lead to fewer problems, because these projects are given a great deal of attention and resources together with flexibility in milestones and timing of activities. In contrast, minor modifications seem to, according to recent experience, represent a generic challenge because they are less likely to be recognised as safety significant. Similar kinds of challenges may arise during plant maintenance, when changes in the design or materials may be made without anyone recognising that the maintenance work has actually led to functional modification of plant equipment. A modification process, in which possible safety influences are assessed early, may improve nuclear safety to a significant extent and, at the same time, reduce overall modification cost. Screening of intended changes can be used to estimate design and analysis effort required in the modification process. In the screening, it should be observed that system complexity sometimes may have unexpected impacts. Screening criteria should address the safety significance of the systems and components modified. Also, the impact of the changes on tasks performed by operators and maintainers should be assessed. Major modification projects should always include an analysis of both technical and human contributions to plant operability and maintainability as a part of their comprehensive review process. It is important to create awareness and understanding of the potential safety impacts of modifications at NPPs. This awareness may be improved by collecting and disseminating information about modification-related events. Good results may only be achieved by integrating technical and human factors considerations in the safety

  8. [Human factors and crisis resource management: improving patient safety].

    Science.gov (United States)

    Rall, M; Oberfrank, S

    2013-10-01

    A continuing high number of patients suffer harm from medical treatment. In 60-70% of the cases the sources of harm can be attributed to the field of human factors (HFs) and teamwork; nevertheless, those topics are still neither part of medical education nor of basic and advanced training even though it has been known for many years and it has meanwhile also been demonstrated for surgical specialties that training in human factors and teamwork considerably reduces surgical mortality.Besides the medical field, the concept of crisis resource management (CRM) has already proven its worth in many other industries by improving teamwork and reducing errors in the domain of human factors. One of the best ways to learn about CRM and HFs is realistic simulation team training with well-trained instructors in CRM and HF. The educational concept of the HOTT (hand over team training) courses for trauma room training offered by the DGU integrates these elements based on the current state of science. It is time to establish such training for all medical teams in emergency medicine and operative care. Accompanying safety measures, such as the development of a positive culture of safety in every department and the use of effective critical incident reporting systems (CIRs) should be pursued.

  9. The predictive validity of safety climate.

    Science.gov (United States)

    Johnson, Stephen E

    2007-01-01

    Safety professionals have increasingly turned their attention to social science for insight into the causation of industrial accidents. One social construct, safety climate, has been examined by several researchers [Cooper, M. D., & Phillips, R. A. (2004). Exploratory analysis of the safety climate and safety behavior relationship. Journal of Safety Research, 35(5), 497-512; Gillen, M., Baltz, D., Gassel, M., Kirsch, L., & Vacarro, D. (2002). Perceived safety climate, job Demands, and coworker support among union and nonunion injured construction workers. Journal of Safety Research, 33(1), 33-51; Neal, A., & Griffin, M. A. (2002). Safety climate and safety behaviour. Australian Journal of Management, 27, 66-76; Zohar, D. (2000). A group-level model of safety climate: Testing the effect of group climate on microaccidents in manufacturing jobs. Journal of Applied Psychology, 85(4), 587-596; Zohar, D., & Luria, G. (2005). A multilevel model of safety climate: Cross-level relationships between organization and group-level climates. Journal of Applied Psychology, 90(4), 616-628] who have documented its importance as a factor explaining the variation of safety-related outcomes (e.g., behavior, accidents). Researchers have developed instruments for measuring safety climate and have established some degree of psychometric reliability and validity. The problem, however, is that predictive validity has not been firmly established, which reduces the credibility of safety climate as a meaningful social construct. The research described in this article addresses this problem and provides additional support for safety climate as a viable construct and as a predictive indicator of safety-related outcomes. This study used 292 employees at three locations of a heavy manufacturing organization to complete the 16 item Zohar Safety Climate Questionnaire (ZSCQ) [Zohar, D., & Luria, G. (2005). A multilevel model of safety climate: Cross-level relationships between organization and group

  10. A study on safety climate at nuclear power plants

    International Nuclear Information System (INIS)

    Fukui, Hirokazu; Yoshida, Michio; Yoshiyama, Naohiro

    2001-01-01

    In the current study, we define safety climate as an organizational environment that induces members of the organization to give consideration to safety or take safety actions. It is of utmost importance that people holding managerial positions in an organization have a good understanding of the characteristics of the safety climate of the organization and implement safety promotion activities effectively. In the current research, we studied the rating scales and the characteristics of a safety climate. A survey was conducted, targeting technical engineers who belong to the three power stations of Kansai Electric Power Co., Inc. The questionnaire mainly consisted of questions concerning safety measures taken by individuals and questions concerning safety measures taken by the organization, to which the individuals belong. As a result of a factor analysis of the responses, we extracted five factors, namely, 'confidence in knowledge and skill', attitude of supervisors,' 'safety education in workplace', 'clarity of tasks' and 'safety confirmation/report'. In studying the rating scales of the safety climate, we selected five items from each of the above five factors, and used the total scores of the ratings of the five items as scores of each factor. Then, we examined the correlation between scores of personal factors and scores of organizational environment factors. We treated the scores of safety confirmation/report' and 'confidence in knowledge and skill', which are personal factors, as criterion variables, and the scores of 'attitude of supervisors', 'safety education in workplace' and 'clarity of tasks', which are organizational environment factors, as predictor variables. As a result, we found that levels of 'safety confirmation/report' and 'confidence in knowledge and skill' can be deduced from the scores of 'attitude of supervisors', 'safety education in workplace' and 'clarity of tasks.' Hence, we have decided to use these three organizational environment

  11. Characteristics of self-rating and rating by others of safety behavior

    International Nuclear Information System (INIS)

    Fukui, Hirokazu; Yoshida, Michio; Sugiman, Toshio; Watanabe, Toshie

    2002-01-01

    It is known that in questionnaire surveys in general, behavior that are recognized as socially desirable are more highly rated by the actors themselves than by others. Safety behavior can be viewed as behavior closely related to social desirability. Therefore, in the present study, multiple regression analysis was conducted to examine how the self-rating and rating by others of 'safety confirmation/report', which serves as one of the rating scales of safety climate and criterion for safety behavior rating, are related to other factors of safety climate. The analysis results reveal that the self-rating of 'safety confirmation/report' tends to give better scores than rating by others and is more strongly related to individual factors than organizational environmental factors. Meanwhile, the rating by others of safety confirmation/report' is strongly related to organizational environmental factors and demonstrates little or no link with individual factors. It can be said, therefore, that the rating by others of 'safety confirmation/report' reflects more accurately the influence of the organizational environment concerned than self-rating, and hence is more appropriate as a rating scale for safety climate. (author)

  12. Characteristics of self-rating and rating by others of safety behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Hirokazu [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan); Yoshida, Michio; Sugiman, Toshio; Watanabe, Toshie [Japan Institute for Group Dynamics, Fukuoka (Japan)

    2002-09-01

    It is known that in questionnaire surveys in general, behavior that are recognized as socially desirable are more highly rated by the actors themselves than by others. Safety behavior can be viewed as behavior closely related to social desirability. Therefore, in the present study, multiple regression analysis was conducted to examine how the self-rating and rating by others of 'safety confirmation/report', which serves as one of the rating scales of safety climate and criterion for safety behavior rating, are related to other factors of safety climate. The analysis results reveal that the self-rating of 'safety confirmation/report' tends to give better scores than rating by others and is more strongly related to individual factors than organizational environmental factors. Meanwhile, the rating by others of safety confirmation/report' is strongly related to organizational environmental factors and demonstrates little or no link with individual factors. It can be said, therefore, that the rating by others of 'safety confirmation/report' reflects more accurately the influence of the organizational environment concerned than self-rating, and hence is more appropriate as a rating scale for safety climate. (author)

  13. School climate factors contributing to student and faculty perceptions of safety in select Arizona schools.

    Science.gov (United States)

    Bosworth, Kris; Ford, Lysbeth; Hernandaz, Diley

    2011-04-01

    To ensure that schools are safe places where students can learn, researchers and educators must understand student and faculty safety concerns. This study examines student and teacher perceptions of school safety. Twenty-two focus groups with students and faculty were conducted in 11 secondary schools. Schools were selected from a stratified sample to vary in location, proximity to Indian reservations, size, and type. The data analysis was based on grounded theory. In 9 of 11 schools, neither faculty nor students voiced overwhelming concerns about safety. When asked what makes school safe, students tended to report physical security features. School climate and staff actions also increased feelings of safety. Faculty reported that relationships and climate are key factors in making schools safe. High student performance on standardized tests does not buffer students from unsafe behavior, nor does living in a dangerous neighborhood necessarily lead to more drug use or violence within school walls. School climate seemed to explain the difference between schools in which students and faculty reported higher versus lower levels of violence and alcohol and other drug use. The findings raise provocative questions about school safety and provide insight into elements that lead to perceptions of safety. Some schools have transcended issues of location and neighborhood to provide an environment perceived as safe. Further study of those schools could provide insights for policy makers, program planners, and educational leaders. © 2011, American School Health Association.

  14. Nuclear safety in perspective

    DEFF Research Database (Denmark)

    Andersson, K.; Sjöberg, B.M.D.; Lauridsen, Kurt

    2003-01-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicat-ing on the subject in society. The project, which has been built around a number of seminars, wassupported by limited research in three sub......-projects: Risk assessment Safety analysis Strategies for safety management The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems forregulatory oversight are de-scribed in the nuclear area and also, to widen the perspective, for other...

  15. Quantitative Safety and Security Analysis from a Communication Perspective

    Directory of Open Access Journals (Sweden)

    Boris Malinowsky

    2015-12-01

    Full Text Available This paper introduces and exemplifies a trade-off analysis of safety and security properties in distributed systems. The aim is to support analysis for real-time communication and authentication building blocks in a wireless communication scenario. By embedding an authentication scheme into a real-time communication protocol for safety-critical scenarios, we can rely on the protocol’s individual safety and security properties. The resulting communication protocol satisfies selected safety and security properties for deployment in safety-critical use-case scenarios with security requirements. We look at handover situations in a IEEE 802.11 wireless setup between mobile nodes and access points. The trade-offs involve application-layer data goodput, probability of completed handovers, and effect on usable protocol slots, to quantify the impact of security from a lower-layer communication perspective on the communication protocols. The results are obtained using the network simulator ns-3.

  16. How to evaluate the effectiveness of safety assessment in the area of human factors?

    International Nuclear Information System (INIS)

    Rolina, G.; Moisdon, J.C.; Jeffroy, F.

    2007-01-01

    The Three Mile Island nuclear reactor accident in 1979 led to a new approach regarding safety that includes a better consideration of man and his activities. A few years later, with the set up of a group of specialists at Electricite de France and at the Institute for Radiological Protection and Nuclear Safety, a new player appeared at France's nuclear safety organisation: the assessment expert specialising in human factors (HF). The improvement of man-machine interfaces was one of the first projects undertaken by the HF experts, the majority of whom specialise in ergonomics. A review of the literature and analysis of the archives, revealed that the specialists' scope of investigation has since increased; so that organisation is also the subject of HF assessment. However, this area is not one of consensual or established knowledge; neither researchers nor specialists can agree on a model of safe organisation. What then can we say about effectiveness of HF assessment? How can we define the criteria of effectiveness of a safety assessment production system in this area? The question is the subject of original research based on collaboration between the scientific management centre (CGS) of the Ecole des Mines in Paris and the section for the study of human factors (SEFH) at IRSN. To address this question, the CGS team monitors some assessments to which SEFH contributes. In other words, it attends different meetings on framing, technical instruction, reporting, taking notes and collecting related documents (minutes of meetings,...). It carries out additional interviews with different parties involved in assessment in order to ascertain their point of view. A sample of five assessments was defined to cover a varied number of situations encountered by the team of HF experts. The type of facility, the operator and the subject concerned are some of the variables integrated for this choice

  17. The influence of organisational and management factors on safety performance in NNPPS. Rand D project

    International Nuclear Information System (INIS)

    Cal, C. de la; Gil, B.; Sola, R.; Vaquero, C.; Garces, M. I.

    2002-01-01

    The direct influence of organisational and managerial factors on safety performance in nuclear power plants has been widely proved by two findings, the analysis of their operating experience and the differences in safety levels reached by similar installations. Specially, the study of majors accidents such as TMI-2 and Chernobyl have demonstrated that the technical deficiencies are not the only root causes, but there are a whole set of human, organisational, managerial and social factors which are the origin from most of these deficiencies. In recent years, this fact is emphasised with the nuclear industry involved a process of change. The deregulation of the electricity market, which has increased the economic pressures to the companies and has driven in many cases to restructures in ownership (mergers, acquisitions), downsizing processes and outsourcing parts of the work, jointly with the development of information technologies and computer networks and with a change in the regulatory and social climates are some of the nre factors affecting the performance of nuclear power plants that have addressed, even more, to the need of re-viewing and assessing the impact of organisational aspects on their safe performance. There have been international efforts to analyse the influence of organisational factors in the safety of nuclear power plants following different approaches. Research institutions, utilities and regulatory bodies. individually or in co-operation, have tried to develop practical tools for taking into account the organisation. According to these international efforts the Association of Spanish Utilities, UNESA, and the Spanish Nuclear Regulatory Body, CSN, have included in 1998, for the first time in their Co-ordinated Plan for Research, an innovative five years R and D project entitled Development of methods to evaluate and model the impact of organisation on nuclear poer plants safety whose main objectives are to analyse the impact of organisation and

  18. Safety culture assessment in petrochemical industry: a comparative study of two algerian plants.

    Science.gov (United States)

    Boughaba, Assia; Hassane, Chabane; Roukia, Ouddai

    2014-06-01

    To elucidate the relationship between safety culture maturity and safety performance of a particular company. To identify the factors that contribute to a safety culture, a survey questionnaire was created based mainly on the studies of Fernández-Muñiz et al. The survey was randomly distributed to 1000 employees of two oil companies and realized a rate of valid answer of 51%. Minitab 16 software was used and diverse tests, including the descriptive statistical analysis, factor analysis, reliability analysis, mean analysis, and correlation, were used for the analysis of data. Ten factors were extracted using the analysis of factor to represent safety culture and safety performance. The results of this study showed that the managers' commitment, training, incentives, communication, and employee involvement are the priority domains on which it is necessary to stress the effort of improvement, where they had all the descriptive average values lower than 3.0 at the level of Company B. Furthermore, the results also showed that the safety culture influences the safety performance of the company. Therefore, Company A with a good safety culture (the descriptive average values more than 4.0), is more successful than Company B in terms of accident rates. The comparison between the two petrochemical plants of the group Sonatrach confirms these results in which Company A, the managers of which are English and Norwegian, distinguishes itself by the maturity of their safety culture has significantly higher evaluations than the company B, who is constituted of Algerian staff, in terms of safety management practices and safety performance.

  19. Safety analysis and review system: a Department of Energy safety assurance tool

    International Nuclear Information System (INIS)

    Rosenthal, H.B.

    1981-01-01

    The concept of the Safety Analysis and Review System is not new. It has been used within the Department and its predecessor agencies, Atomic Energy Commission (AEC) and Energy Research and Development Administration (ERDA), for over 20 years. To minimize the risks from nuclear reactor and power plants, the AEC developed a process to support management authorization of each operation through identification and analysis of potential hazards and the measures taken to control them. As the agency evolved from AEC through ERDA to the Department of Energy, its responsibilities were broadened to cover a diversity of technologies, including those associated with the development of fossil, solar, and geothermal energy. Because the safety analysis process had proved effective in a technology of high potential hazard, the Department investigated the applicability of the process to the other technologies. This paper describes the system and discusses how it is implemented within the Department

  20. Workforce perceptions of hospital safety culture: development and validation of the patient safety climate in healthcare organizations survey.

    Science.gov (United States)

    Singer, Sara; Meterko, Mark; Baker, Laurence; Gaba, David; Falwell, Alyson; Rosen, Amy

    2007-10-01

    To describe the development of an instrument for assessing workforce perceptions of hospital safety culture and to assess its reliability and validity. Primary data collected between March 2004 and May 2005. Personnel from 105 U.S. hospitals completed a 38-item paper and pencil survey. We received 21,496 completed questionnaires, representing a 51 percent response rate. Based on review of existing safety climate surveys, we developed a list of key topics pertinent to maintaining a culture of safety in high-reliability organizations. We developed a draft questionnaire to address these topics and pilot tested it in four preliminary studies of hospital personnel. We modified the questionnaire based on experience and respondent feedback, and distributed the revised version to 42,249 hospital workers. We randomly divided respondents into derivation and validation samples. We applied exploratory factor analysis to responses in the derivation sample. We used those results to create scales in the validation sample, which we subjected to multitrait analysis (MTA). We identified nine constructs, three organizational factors, two unit factors, three individual factors, and one additional factor. Constructs demonstrated substantial convergent and discriminant validity in the MTA. Cronbach's alpha coefficients ranged from 0.50 to 0.89. It is possible to measure key salient features of hospital safety climate using a valid and reliable 38-item survey and appropriate hospital sample sizes. This instrument may be used in further studies to better understand the impact of safety climate on patient safety outcomes.

  1. Upgrading the safety toolkit: Initiatives of the accident analysis subgroup

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Chung, D.Y.

    1999-01-01

    Since its inception, the Accident Analysis Subgroup (AAS) of the Energy Facility Contractors Group (EFCOG) has been a leading organization promoting development and application of appropriate methodologies for safety analysis of US Department of Energy (DOE) installations. The AAS, one of seven chartered by the EFCOG Safety Analysis Working Group, has performed an oversight function and provided direction to several technical groups. These efforts have been instrumental toward formal evaluation of computer models, improving the pedigree on high-use computer models, and development of the user-friendly Accident Analysis Guidebook (AAG). All of these improvements have improved the analytical toolkit for best complying with DOE orders and standards shaping safety analysis reports (SARs) and related documentation. Major support for these objectives has been through DOE/DP-45

  2. Research on Safety Factor of Dam Slope of High Embankment Dam under Seismic Condition

    Directory of Open Access Journals (Sweden)

    Li Bin

    2015-01-01

    Full Text Available With the constant development of construction technology of embankment dam, the constructed embankment dam becomes higher and higher, and the embankment dam with its height over 200m will always adopt the current design criteria of embankment dam only suitable for the construction of embankment dam lower than 200m in height. So the design criteria of high embankment dam shall be improved. We shall calculate the stability and safety factors of dam slope of high embankment dam under different dam height, slope ratio and different seismic intensity based on ratio of safety margin, and clarify the change rules of stability and safety factors of dam slope of high embankment dam with its height over 200m. We calculate the ratio of safety margin of traditional and reliable method by taking the stable, allowable and reliability index 4.2 of dam slope of high embankment dam with its height over 200m as the standard value, and conduct linear regression for both. As a result, the conditions, where 1.3 is considered as the stability and safety factors of dam slope of high embankment dam with its height over 200m under seismic condition and 4.2 as the allowable and reliability index, are under the same risk control level.

  3. 3D analysis methods - Study and seminar[BWR safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Daaviittila, A [Valtion Teknillinen Tutkimuskeskus (Finland)

    2003-10-01

    The first part of the report results from a study that was performed as a Nordic co-operation activity with active participation from Studsvik Scandpower and Westinghouse Atom in Sweden, and VTT in Finland. The purpose of the study was to identify and investigate the effects rising from using the 3D transient com-puter codes in BWR safety analysis, and their influence on the transient analysis methodology. One of the main questions involves the critical power ratio (CPR) calculation methodology. The present way, where the CPR calculation is per-formed with a separate hot channel calculation, can be artificially conservative. In the investigated cases, no dramatic minimum CPR effect coming from the 3D calculation is apparent. Some cases show some decrease in the transient change of minimum CPR with the 3D calculation, which confirms the general thinking that the 1D calculation is conservative. On the other hand, the observed effect on neutron flux behaviour is quite large. In a slower transient the 3D effect might be stronger. The second part of the report is a summary of a related seminar that was held on the 3D analysis methods. The seminar was sponsored by the Reactor Safety part (NKS-R) of the Nordic Nuclear Safety Research Programme (NKS). (au)

  4. Nature of Blame in Patient Safety Incident Reports: Mixed Methods Analysis of a National Database.

    Science.gov (United States)

    Cooper, Jennifer; Edwards, Adrian; Williams, Huw; Sheikh, Aziz; Parry, Gareth; Hibbert, Peter; Butlin, Amy; Donaldson, Liam; Carson-Stevens, Andrew

    2017-09-01

    A culture of blame and fear of retribution are recognized barriers to reporting patient safety incidents. The extent of blame attribution in safety incident reports, which may reflect the underlying safety culture of health care systems, is unknown. This study set out to explore the nature of blame in family practice safety incident reports. We characterized a random sample of family practice patient safety incident reports from the England and Wales National Reporting and Learning System. Reports were analyzed according to prespecified classification systems to describe the incident type, contributory factors, outcomes, and severity of harm. We developed a taxonomy of blame attribution, and we then used descriptive statistical analyses to identify the proportions of blame types and to explore associations between incident characteristics and one type of blame. Health care professionals making family practice incident reports attributed blame to a person in 45% of cases (n = 975 of 2,148; 95% CI, 43%-47%). In 36% of cases, those who reported the incidents attributed fault to another person, whereas 2% of those reporting acknowledged personal responsibility. Blame was commonly associated with incidents where a complaint was anticipated. The high frequency of blame in these safety, incident reports may reflect a health care culture that leads to blame and retribution, rather than to identifying areas for learning and improvement, and a failure to appreciate the contribution of system factors in others' behavior. Successful improvement in patient safety through the analysis of incident reports is unlikely without achieving a blame-free culture. © 2017 Annals of Family Medicine, Inc.

  5. Analysis approach for common cause failure on non-safety digital control system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eungse [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    The effects of common cause failure (CCF) on safety digital instrumentation and control (I and C) system had been considered in defense in depth and diversity coping analysis with safety analysis method. For the non-safety system, single failure had been considered for safety analysis. IEEE Std. 603-1991, Clause 5.6.3.1(2), 'Isolation' states that no credible failure on the non-safety side of an isolation device shall prevent any portion of a safety system from meeting its minimum performance requirements during and following any design basis event requiring that safety function. The software CCF is one of the credible failure on the non-safety side. In advanced digital I and C system, same hardware component is used for different control system and the defect in manufacture or common external event can generate CCF. Moreover, the non-safety I and C system uses complex software for its various function and software quality assurance for the development process is less severe than safety software for the cost effective design. Therefore the potential defects in software cannot be ignored and the effect of software CCF on non-safety I and C system is needed to be evaluated. This paper proposes the general process and considerations for the analysis of CCF on non-safety I and C system.

  6. Spent nuclear fuel project, Cold Vacuum Drying Facility human factors engineering (HFE) analysis: Results and findings

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1998-01-01

    This report presents the background, methodology, and findings of a human factors engineering (HFE) analysis performed in May, 1998, of the Spent Nuclear Fuels (SNF) Project Cold Vacuum Drying Facility (CVDF), to support its Preliminary Safety Analysis Report (PSAR), in responding to the requirements of Department of Energy (DOE) Order 5480.23 (DOE 1992a) and drafted to DOE-STD-3009-94 format. This HFE analysis focused on general environment, physical and computer workstations, and handling devices involved in or directly supporting the technical operations of the facility. This report makes no attempt to interpret or evaluate the safety significance of the HFE analysis findings. The HFE findings presented in this report, along with the results of the CVDF PSAR Chapter 3, Hazards and Accident Analyses, provide the technical basis for preparing the CVDF PSAR Chapter 13, Human Factors Engineering, including interpretation and disposition of findings. The findings presented in this report allow the PSAR Chapter 13 to fully respond to HFE requirements established in DOE Order 5480.23. DOE 5480.23, Nuclear Safety Analysis Reports, Section 8b(3)(n) and Attachment 1, Section-M, require that HFE be analyzed in the PSAR for the adequacy of the current design and planned construction for internal and external communications, operational aids, instrumentation and controls, environmental factors such as heat, light, and noise and that an assessment of human performance under abnormal and emergency conditions be performed (DOE 1992a)

  7. Identification of quality improvement areas in pediatric MRI from analysis of patient safety reports

    International Nuclear Information System (INIS)

    Jaimes, Camilo; Murcia, Diana J.; Miguel, Karen; DeFuria, Cathryn; Sagar, Pallavi; Gee, Michael S.

    2018-01-01

    Analysis of safety reports has been utilized to guide practice improvement efforts in adult magnetic resonance imaging (MRI). Data specific to pediatric MRI could help target areas of improvement in this population. To estimate the incidence of safety reports in pediatric MRI and to determine associated risk factors. In a retrospective HIPAA-compliant, institutional review board-approved study, a single-institution Radiology Information System was queried to identify MRI studies performed in pediatric patients (0-18 years old) from 1/1/2010 to 12/31/2015. The safety report database was queried for events matching the same demographic and dates. Data on patient age, gender, location (inpatient, outpatient, emergency room [ER]), and the use of sedation/general anesthesia were recorded. Safety reports were grouped into categories based on the cause and their severity. Descriptive statistics were used to summarize continuous variables. Chi-square analyses were performed for univariate determination of statistical significance of variables associated with safety report rates. A multivariate logistic regression was used to control for possible confounding effects. A total of 16,749 pediatric MRI studies and 88 safety reports were analyzed, yielding a rate of 0.52%. There were significant differences in the rate of safety reports between patients younger than 6 years (0.89%) and those older (0.41%) (P<0.01), sedated (0.8%) and awake children (0.45%) (P<0.01), and inpatients (1.1%) and outpatients (0.4%) (P<0.01). The use of sedation/general anesthesia is an independent risk factor for a safety report (P=0.02). The most common causes for safety reports were service coordination (34%), drug reactions (19%), and diagnostic test and ordering errors (11%). The overall rate of safety reports in pediatric MRI is 0.52%. Interventions should focus on vulnerable populations, such as younger patients, those requiring sedation, and those in need of acute medical attention. (orig.)

  8. Identification of quality improvement areas in pediatric MRI from analysis of patient safety reports

    Energy Technology Data Exchange (ETDEWEB)

    Jaimes, Camilo [Massachusetts General Hospital, Harvard Medical School, Division of Neuroradiology, Department of Radiology, Boston, MA (United States); Murcia, Diana J. [Massachusetts General Hospital, Harvard Medical School, Division of Abdominal Imaging, Department of Radiology, Boston, MA (United States); Miguel, Karen; DeFuria, Cathryn [Massachusetts General Hospital, Harvard Medical School, Quality and Safety Office, Department of Radiology, Boston, MA (United States); Sagar, Pallavi; Gee, Michael S. [Massachusetts General Hospital for Children, Harvard Medical School, Division of Pediatric Imaging, Department of Radiology, Boston, MA (United States)

    2018-01-15

    Analysis of safety reports has been utilized to guide practice improvement efforts in adult magnetic resonance imaging (MRI). Data specific to pediatric MRI could help target areas of improvement in this population. To estimate the incidence of safety reports in pediatric MRI and to determine associated risk factors. In a retrospective HIPAA-compliant, institutional review board-approved study, a single-institution Radiology Information System was queried to identify MRI studies performed in pediatric patients (0-18 years old) from 1/1/2010 to 12/31/2015. The safety report database was queried for events matching the same demographic and dates. Data on patient age, gender, location (inpatient, outpatient, emergency room [ER]), and the use of sedation/general anesthesia were recorded. Safety reports were grouped into categories based on the cause and their severity. Descriptive statistics were used to summarize continuous variables. Chi-square analyses were performed for univariate determination of statistical significance of variables associated with safety report rates. A multivariate logistic regression was used to control for possible confounding effects. A total of 16,749 pediatric MRI studies and 88 safety reports were analyzed, yielding a rate of 0.52%. There were significant differences in the rate of safety reports between patients younger than 6 years (0.89%) and those older (0.41%) (P<0.01), sedated (0.8%) and awake children (0.45%) (P<0.01), and inpatients (1.1%) and outpatients (0.4%) (P<0.01). The use of sedation/general anesthesia is an independent risk factor for a safety report (P=0.02). The most common causes for safety reports were service coordination (34%), drug reactions (19%), and diagnostic test and ordering errors (11%). The overall rate of safety reports in pediatric MRI is 0.52%. Interventions should focus on vulnerable populations, such as younger patients, those requiring sedation, and those in need of acute medical attention. (orig.)

  9. Safety analysis and synthesis using fuzzy sets and evidential reasoning

    International Nuclear Information System (INIS)

    Wang, J.; Yang, J.B.; Sen, P.

    1995-01-01

    This paper presents a new methodology for safety analysis and synthesis of a complex engineering system with a structure that is capable of being decomposed into a hierarchy of levels. In this methodology, fuzzy set theory is used to describe each failure event and an evidential reasoning approach is then employed to synthesise the information thus produced to assess the safety of the whole system. Three basic parameters--failure likelihood, consequence severity and failure consequence probability, are used to analyse a failure event. These three parameters are described by linguistic variables which are characterised by a membership function to the defined categories. As safety can also be clearly described by linguistic variables referred to as the safety expressions, the obtained fuzzy safety score can be mapped back to the safety expressions which are characterised by membership functions over the same categories. This mapping results in the identification of the safety of each failure event in terms of the degree to which the fuzzy safety score belongs to each of the safety expressions. Such degrees represent the uncertainty in safety evaluations and can be synthesised using an evidential reasoning approach so that the safety of the whole system can be evaluated in terms of these safety expressions. Finally, a practical engineering example is presented to demonstrate the proposed safety analysis and synthesis methodology

  10. Establishing a culture for patient safety - the role of education.

    Science.gov (United States)

    Milligan, Frank J

    2007-02-01

    This paper argues that the process of making significant moves towards a patient safety culture requires changes in healthcare education. Improvements in patient safety are a shared international priority as too many errors and other forms of unnecessary harm are currently occurring in the process of caring for and treating patients. A description of the patient safety agenda is given followed by a brief analysis of human factors theory and its use in other safety critical industries, most notably aviation. The all too common problem of drug administration errors is used to illustrate the relevance of human factors theory to healthcare education with specific mention made of the Human Factors Analysis and Classification System (HFACS).

  11. Analysis of 'human element related trip case book in Korean NPPs' using organizational factors

    International Nuclear Information System (INIS)

    Kim, S. Y.; Kim, Y. I.; Lee, Y. S.; Kim, C. S.; Jung, C. H.; Jung, W. D.

    2002-01-01

    There have been no studies appling organizational factors to data analysis in Korean NPPs. In this paper, data in 'human element related trip case book in Korean NPPs' are analyzed and categorized by the 20 organizational factors of NRC-BNL according to the cause of reactor trip. These inform us how organizational factors affected on the safety of Korean NPPs. Consequently important organizational factor are identified through which it is known that NPP organization would have a tendency

  12. Galileo and Ulysses missions safety analysis and launch readiness status

    International Nuclear Information System (INIS)

    Cork, M.J.; Turi, J.A.

    1989-01-01

    The Galileo spacecraft will explore the Jupiter system and Ulysses will fly by Jupiter en route to a polar orbit of the sun. Both spacecraft are powered by general purpose heat source radioisotope thermoelectric generators (RTGs). As a result of the Challenger accident and subsequent mission reprogramming, the Galileo and Ulysses missions' safety analysis had to be repeated. In addition to presenting an overview of the safety analysis status for the missions, this paper presents a brief review of the missions' objectives and design approaches, RTG design characteristics and development history, and a description of the safety analysis process. (author)

  13. Human factors evaluation of man-machine interface for periodic safety review of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Lee, Jung Woon; Park, Jae Chang; Hwang, In Koo; Lee, Hyun Cheol; Jang, Tong Il; Ku, Jin Young; Kim, Soo Jin

    2004-12-01

    This report describes the research results of human factors assessment on the MMI(Man Machine Interface) equipment as part of Periodic Safety Review(PSR) of Nuclear Power Plants(NPPs). As MMI is a key factor among human factors to be reviewed in PSR, we reviewed the MMI components of nuclear power plants in aspect of human factors engineering. The availability, suitability, and effectiveness of the MMI devices were chosen to be reviewed. The MMI devices were investigated through the review of design documents related to the MMI, survey of control panels, evaluation of experts, and experimental assessment. Checklists were used to perform this assessment and record the review results. The items mentioned by the expert comments to review in detail in relation with task procedures were tested by experiments with operators' participation. For some questionable issues arisen during this MMI review, operator workload and possibility of errors in operator actions were analysed. The reviewed MMI devices contain MCR(Main Control Room), SPDS(Safety Parameter Display System), RSP(Remote Shutdown Panel), and the selected LCBs(Local Control Boards) importantly related to safety. As results of the assessments, any significant problem challenging the safety was not found on human factors in the MMI devices. However, several small items to be changed and improved in suitability of MMI devices were discovered. An action plan is recommended to accommodate the suggestions and review comments. It will enhance the plant safety on MMI area

  14. A root cause analysis project in a medication safety course.

    Science.gov (United States)

    Schafer, Jason J

    2012-08-10

    To develop, implement, and evaluate team-based root cause analysis projects as part of a required medication safety course for second-year pharmacy students. Lectures, in-class activities, and out-of-class reading assignments were used to develop students' medication safety skills and introduce them to the culture of medication safety. Students applied these skills within teams by evaluating cases of medication errors using root cause analyses. Teams also developed error prevention strategies and formally presented their findings. Student performance was assessed using a medication errors evaluation rubric. Of the 211 students who completed the course, the majority performed well on root cause analysis assignments and rated them favorably on course evaluations. Medication error evaluation and prevention was successfully introduced in a medication safety course using team-based root cause analysis projects.

  15. Simplified probabilistic approach to determine safety factors in deterministic flaw acceptance criteria

    International Nuclear Information System (INIS)

    Barthelet, B.; Ardillon, E.

    1997-01-01

    The flaw acceptance rules in nuclear components rely on deterministic criteria supposed to ensure the safe operating of plants. The interest of having a reliable method of evaluating the safety margins and the integrity of components led Electricite de France to launch a study to link safety factors with requested reliability. A simplified analytical probabilistic approach is developed to analyse the failure risk in Fracture Mechanics. Assuming lognormal distributions of the main random variables, it is possible considering a simple Linear Elastic Fracture Mechanics model, to determine the failure probability as a function of mean values and logarithmic standard deviations. The 'design' failure point can be analytically calculated. Partial safety factors on the main variables (stress, crack size, material toughness) are obtained in relation with reliability target values. The approach is generalized to elastic plastic Fracture Mechanics (piping) by fitting J as a power law function of stress, crack size and yield strength. The simplified approach is validated by detailed probabilistic computations with PROBAN computer program. Assuming reasonable coefficients of variations (logarithmic standard deviations), the method helps to calibrate safety factors for different components taking into account reliability target values in normal, emergency and faulted conditions. Statistical data for the mechanical properties of the main basic materials complement the study. The work involves laboratory results and manufacture data. The results of this study are discussed within a working group of the French in service inspection code RSE-M. (authors)

  16. Study on real working performance and overload safety factor of high arch dam

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Considering the fact that high arch dams have problems such as complicated stress,high cost,and hazards after being damaged,this paper intends to study the effects of load,material strength,and safety analysis method on dam safety and working performance of arch dams.In this article,the effects of temperature,self weight exaction way and water loading on structure response are first discussed,and a more reasonable way of considering is then put forward.By taking into consideration the mechanical property of materials and comparing the effects of different yield criteria on overloading safety of high arch dams,this paper concludes that brittle characteristics of concrete should be fully considered when conducting safety assessment for high arch dams to avoid overestimating the bearing capacity of the dams.By comparing several typical projects,this paper works out a safety assessment system of multiple safety and relevant engineering analogical analysis methods,which is closer to the actual situation,and thus is able to assess the response of high arch dam structure in a more comprehensive way,elicit the safety coefficients in different situations,and provide a new way of considering the safety assessment of high arch dams.

  17. Establishment of joint application system of safety analysis codes between Korea and Vietnam

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Kim, Kyung Doo; Park, Cheol; Bae, Sung Won; Baek, Won Pil; Song, Cheol hwa; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu; Lee, Chang Sup

    2011-04-01

    The following KAERI-VAEI collaboration works have been performed during the 2 year project ('09.4∼'11.4). 1) On the job training of Vietnam code users(1st training for 4 VAEI staff-3 months. 2nd training for 3 VAEI staff- 3 month), 2) Lecture of nuclear safety analysis (30 hrs basic course and 30 hrs advanced course), 3) Review of safety analysis method (IAEA safety concept and requirements), 4) Collaborative assessment of safety analysis code MARS (13 conceptual problem, 2 separate effect test problem, 1 integral effect test problem), 5) Input deck preparation of standard PWR (Preparation of APR1400 input deck and safety analysis of DBA). VAEI staffs have been familiarized to Korean PWR safety assessment technology through the collaboration assessment work using a computer code developed in Korea. The lectures for Vietnamese research will be contributed to the utilization and cultivation of Korean safety technology. The collaborated assessment works will be used for the establishment of MARS based safety analysis system which is independent from US safety assessment system

  18. Establishment of joint application system of safety analysis codes between Korea and Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bub Dong; Kim, Kyung Doo; Park, Cheol; Bae, Sung Won; Baek, Won Pil; Song, Cheol hwa; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu; Lee, Chang Sup [KAERI, Daejeon (Korea, Republic of)

    2011-04-15

    The following KAERI-VAEI collaboration works have been performed during the 2 year project ('09.4{approx}'11.4). 1) On the job training of Vietnam code users(1st training for 4 VAEI staff-3 months. 2nd training for 3 VAEI staff- 3 month), 2) Lecture of nuclear safety analysis (30 hrs basic course and 30 hrs advanced course), 3) Review of safety analysis method (IAEA safety concept and requirements), 4) Collaborative assessment of safety analysis code MARS (13 conceptual problem, 2 separate effect test problem, 1 integral effect test problem), 5) Input deck preparation of standard PWR (Preparation of APR1400 input deck and safety analysis of DBA). VAEI staffs have been familiarized to Korean PWR safety assessment technology through the collaboration assessment work using a computer code developed in Korea. The lectures for Vietnamese research will be contributed to the utilization and cultivation of Korean safety technology. The collaborated assessment works will be used for the establishment of MARS based safety analysis system which is independent from US safety assessment system

  19. Safety Effect Analysis of the Large-Scale Design Changes in a Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Chan; Lee, Hyun-Gyo [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-05-15

    These activities were predominantly focused on replacing obsolete systems with new systems, and these efforts were not only to prolong the plant life, but also to guarantee the safe operation of the units. This review demonstrates the safety effect evaluation using the probabilistic safety assessment (PSA) of the design changes, system improvements, and Fukushima accident action items for Kori unit 1 (K1). For the large scale of system design changes for K1, the safety effects from the PSA perspective were reviewed using the risk quantification results before and after the system improvements. This evaluation considered the seven significant design changes including the replacement of the control building air conditioning system and the performance improvement of the containment sump using a new filtering system as well as above five system design changes. The analysis results demonstrated that the CDF was reduced by 12% overall from 1.62E-5/y to 1.43E-5/y. The CDF reduction was larger in the transient group than in the loss of coolant accident (LOCA) group. In conclusion, the analysis using the K1 PSA model supports that the plant safety has been appropriately maintained after the large-scale design changes in consideration of the changed operation factors and failure modes due to the system improvements.

  20. Reliability analysis of Angra I safety systems

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Soto, J.B.; Maciel, C.C.; Gibelli, S.M.O.; Fleming, P.V.; Arrieta, L.A.

    1980-07-01

    An extensive reliability analysis of some safety systems of Angra I, are presented. The fault tree technique, which has been successfully used in most reliability studies of nuclear safety systems performed to date is employed. Results of a quantitative determination of the unvailability of the accumulator and the containment spray injection systems are presented. These results are also compared to those reported in WASH-1400. (E.G.) [pt

  1. Cookstove options for safety and health: Comparative analysis of technological and usability attributes

    International Nuclear Information System (INIS)

    Kimemia, David; Van Niekerk, Ashley

    2017-01-01

    Energy use in low-income households in South Africa is considerably more hazardous than in middle to high-income households. Poverty is a key underlying factor. However, poor quality domestic energy technologies, including stoves, heaters and light sources contribute to this vulnerability. The problem is compounded by behavioural and environmental factors. Since cooking is a key energy-using chore, access to efficient, safe and versatile stoves portend safety improvements. This paper reports on a comparative analysis of eleven technological and usability attributes (CO emissions, firepower, efficiency, fuel toxicity, fuel cost, stove price, controllability, durability, availability, temperature of touchable-parts, and mechanical stability) of commercially available stoves that utilise four energy sources (kerosene, methanol, ethanol gel, and LPG). The ensuing discussion serves as a guide to enable the selection of the best-fit stove-fuel combination for low-income households. The findings indicate that LPG stoves have comparatively better overall rankings for cleanliness, firepower, safety, and durability. This analysis highlights that no combustion technology is risk-proof and there remains a burden on users to exercise diligence. We recommend that South Africa adopts an affirmative policy and strategic actions that discourage the use of kerosene as a household combustion fuel, and promotes the adoption of LPG as a safer and practical alternative. - Highlights: • Inefficient fuel combustion stoves raise risk profile in energy-poor households. • This study uses quantitative methods to compare the attributes of four stove types. • LPG stoves have comparatively better ranking for emissions, safety, and durability. • Transformative policies and strategies are required to promote safe, clean stoves.

  2. Comparative Study of some Parameters reported in the Safety Analysis Report of TRIGA MARK II Research reactor with Calculations

    International Nuclear Information System (INIS)

    Chakrobortty, T.K.; Huda, M.Q.; Bhuiyan, S.I.; Mondal, M.A.W.

    1997-06-01

    An attempt has been made to investigate some of the parametric results reported in the safety Analysis Report (SAR) with the theoretical analysis carried out by different computer codes and data bases. Different neutronics, thermal hydraulics and safety parameters such as core criticality and burnup lifetime, power peaking factor, prompt negative temperature coefficient, neutron flux, pulse characteristics, steady state and transient behaviors of the TRIGA reactor were analyzed. The investigated results were found to be in fairly good agreement with the values reported in the SAR. 12 refs., 14 figs., 1 table (Author)

  3. Safety analysis methodologies for radioactive waste repositories in shallow ground

    International Nuclear Information System (INIS)

    1984-01-01

    The report is part of the IAEA Safety Series and is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of shallow ground radioactive waste repositories. It discusses approaches that are applicable for safety analysis of a shallow ground repository. The methodologies, analysis techniques and models described are pertinent to the task of predicting the long-term performance of a shallow ground disposal system. They may be used during the processes of selection, confirmation and licensing of new sites and disposal systems or to evaluate the long-term consequences in the post-sealing phase of existing operating or inactive sites. The analysis may point out need for remedial action, or provide information to be used in deciding on the duration of surveillance. Safety analysis both general in nature and specific to a certain repository, site or design concept, are discussed, with emphasis on deterministic and probabilistic studies

  4. A study on safety climate at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Hirokazu [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan); Yoshida, Michio; Yoshiyama, Naohiro [Japan Institute for Group Dynamics, Fukuoka (Japan)

    2001-09-01

    In the current study, we define safety climate as an organizational environment that induces members of the organization to give consideration to safety or take safety actions. It is of utmost importance that people holding managerial positions in an organization have a good understanding of the characteristics of the safety climate of the organization and implement safety promotion activities effectively. In the current research, we studied the rating scales and the characteristics of a safety climate. A survey was conducted, targeting technical engineers who belong to the three power stations of Kansai Electric Power Co., Inc. The questionnaire mainly consisted of questions concerning safety measures taken by individuals and questions concerning safety measures taken by the organization, to which the individuals belong. As a result of a factor analysis of the responses, we extracted five factors, namely, 'confidence in knowledge and skill', attitude of supervisors,' 'safety education in workplace', 'clarity of tasks' and 'safety confirmation/report'. In studying the rating scales of the safety climate, we selected five items from each of the above five factors, and used the total scores of the ratings of the five items as scores of each factor. Then, we examined the correlation between scores of personal factors and scores of organizational environment factors. We treated the scores of safety confirmation/report' and 'confidence in knowledge and skill', which are personal factors, as criterion variables, and the scores of 'attitude of supervisors', 'safety education in workplace' and 'clarity of tasks', which are organizational environment factors, as predictor variables. As a result, we found that levels of 'safety confirmation/report' and 'confidence in knowledge and skill' can be deduced from the scores of 'attitude of supervisors', 'safety

  5. A risk-informed perspective on deterministic safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Wan, P.T.

    2009-01-01

    In this work, the deterministic safety analysis (DSA) approach to nuclear safety is examined from a risk-informed perspective. One objective of safety analysis of a nuclear power plant is to demonstrate via analysis that the risks to the public from events or accidents that are within the design basis of the power plant are within acceptable levels with a high degree of assurance. This nuclear safety analysis objective can be translated into two requirements on the risk estimates of design basis events or accidents: the nominal risk estimate to the public must be shown to be within acceptable levels, and the uncertainty in the risk estimates must be shown to be small on an absolute or relative basis. The DSA approach combined with the defense-in-depth (DID) principle is a simplified safety analysis approach that attempts to achieve the above safety analysis objective in the face of potentially large uncertainties in the risk estimates of a nuclear power plant by treating the various uncertainty contributors using a stylized conservative binary (yes-no) approach, and applying multiple overlapping physical barriers and defense levels to protect against the release of radioactivity from the reactor. It is shown that by focusing on the consequence aspect of risk, the previous two nuclear safety analysis requirements on risk can be satisfied with the DSA-DID approach to nuclear safety. It is also shown the use of multiple overlapping physical barriers and defense levels in the traditional DSA-DID approach to nuclear safety is risk-informed in the sense that it provides a consistently high level of confidence in the validity of the safety analysis results for various design basis events or accidents with a wide range of frequency of occurrence. It is hoped that by providing a linkage between the consequence analysis approach in DSA with a risk-informed perspective, greater understanding of the limitation and capability of the DSA approach is obtained. (author)

  6. Investigating ethnic minorities' perceptions of safety climate in the construction industry.

    Science.gov (United States)

    Chan, Albert P C; Wong, Francis K W; Hon, Carol K H; Lyu, Sainan; Javed, Arshad Ali

    2017-12-01

    An increasing number of ethnic minorities (EMs) have been employed in the construction industry to alleviate severe labor shortages in many countries. Unfortunately, statistics show that EMs have higher fatal and non-fatal occupational injury rates than their local counterparts. However, EMs are often underrepresented in safety climate (SC) research as they are difficult to reach and gauge their perception. A positive relationship has been widely found between SC and safety performance. Understanding the safety perceptions of EMs helps to reduce injuries and improve their safety performance. Based on a sample of 320 EMs from 20 companies in the construction industry, exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) were used to identify the SC factors of EMs, and validate the extracted factors, respectively. Multivariate analysis of variance was undertaken to examine mean differences in perceptions of SC by personal characteristics. Three SC factors for EMs encapsulating 16 variables were identified through EFA. The hypothesized CFA model for a three-factor structure derived from EFA showed a satisfactory goodness-of-fit, composite reliability, and construct validity. Three SC factors were identified, namely: (a) safety management commitment, safety resources, and safety communication; (b) employee's involvement and workmate's influence; and (c) perception of safety rules, procedures and risks. The perceptions of SC differed significantly by nationality, marital status, the number of family members supported, and drinking habit. This study reveals the perception of EMs toward SC. The findings highlight the areas for safety improvement and provide leading indicators for safety performance of EMs. The findings are also enlightening for countries with a number of EMs, such as the United Sates, the United Kingdom, Australia, Singapore, and the Middle East. Copyright © 2017. Published by Elsevier Ltd.

  7. The human factor in the organisation and regulation of nuclear safety

    International Nuclear Information System (INIS)

    Bordes, F.; Savagner, J.-M.; Snanoudj, G.

    1981-10-01

    The TMI accident has brought to light the importance of the human factor in the safe operation of complex installations such as nuclear power plants. On this basis, the paper outlines the institutional framework for nuclear safety in France and reports on EDF practices in human resources management as well as in the improvement of working premises (control rooms) to optimize human behaviour in accident conditions. Finally, the interaction of labour laws on nuclear law in connection with safety is described. (NEA) [fr

  8. Management commitment to safety vs. employee perceived safety training and association with future injury.

    Science.gov (United States)

    Huang, Yueng-Hsiang; Verma, Santosh K; Chang, Wen-Ruey; Courtney, Theodore K; Lombardi, David A; Brennan, Melanye J; Perry, Melissa J

    2012-07-01

    The purpose of this study is to explore and examine, specific to the restaurant industry, two important constructs emerging from the safety climate literature: employee perceptions of safety training and management commitment to safety. Are these two separate constructs? Are there both individual- and shared group-level safety perceptions for these two constructs? What are the relationships between these two constructs and future injury outcomes? A total of 419 employees from 34 limited-service restaurants participated in a prospective cohort study. Employees' perceptions of management commitment to safety and safety training and demographic variables were collected at the baseline. The survey questions were made available in three languages: English, Spanish, and Portuguese. For the following 12 weeks, participants reported their injury experience and weekly work hours. A multivariate negative binomial generalized estimating equation model with compound symmetry covariance structure was used to assess the association between the rate of self-reported injuries and measures of safety perceptions. Even though results showed that the correlation between employees'perceived safety training and management commitment to safety was high, confirmatory factor analysis of measurement models showed that two separate factors fit the model better than as two dimensions of a single factor. Homogeneity tests showed that there was a shared perception of the factor of management commitment to safety for the restaurant workers but there was no consistent perception among them for the factor of perceived safety training. Both individual employees'perceived management commitment to safety and perceptions of safety training can predict employees' subsequent injuries above and beyond demographic variables. However, there was no significant relationship between future injury and employees' shared perception of management commitment to safety. Further, our results suggest that the

  9. Nuclear power safety reporting system feasibility analysis and concept description

    International Nuclear Information System (INIS)

    Finlayson, F.C.; Ims, J.R.; Hussman, T.A.

    1984-01-01

    The Aerospace Corporation is assisting the US Nuclear Regulatory Commission (NRC) in the evaluation of the potential attributes of a voluntary, nonpunitive data gathering system for identifying and quantifying the factors that contribute to the occurrence of significant safety problems involving humans in nuclear power plants. The objectives of the Aerospace Administration (FAA)/National Aeronautics and Space Administration (NASA) Aviation Safety Reporting System (ASRS) in order to determine whether it would be feasible to apply part (or all) of the ASRS concepts for collecting data on human factor related incidents to the nuclear industry; and (2) to identify and define the basic elements and requirements of a Nuclear Power Safety Reporting System (NPSRS), assuming the feasibility of implementing such a system was established

  10. Multi-dimensional Code Development for Safety Analysis of LMR

    International Nuclear Information System (INIS)

    Ha, K. S.; Jeong, H. Y.; Kwon, Y. M.; Lee, Y. B.

    2006-08-01

    A liquid metal reactor loaded a metallic fuel has the inherent safety mechanism due to the several negative reactivity feedback. Although this feature demonstrated through experiments in the EBR-II, any of the computer programs until now did not exactly analyze it because of the complexity of the reactivity feedback mechanism. A multi-dimensional detail program was developed through the International Nuclear Energy Research Initiative(INERI) from 2003 to 2005. This report includes the numerical coupling the multi-dimensional program and SSC-K code which is used to the safety analysis of liquid metal reactors in KAERI. The coupled code has been proved by comparing the analysis results using the code with the results using SAS-SASSYS code of ANL for the UTOP, ULOF, and ULOHS applied to the safety analysis for KALIMER-150

  11. Job safety and awareness analysis of safety implementation among electrical workers in airport service company

    Directory of Open Access Journals (Sweden)

    Putra Perdana Suteja

    2018-01-01

    Full Text Available Electrical is a fundamental process in the company that has high risk and responsibility especially in public service company such as an airport. Hence, the company that operates activities in the airport has to identify and control the safety activities of workers. On the safety implementation, the lack of workers’ awareness is fundamental aspects to the safety failure. Therefore, this study aimed to analyse the safety awareness and identify risk in the electrical workplace. Safety awareness questionnaires are distributed to ten workers in order to analyse their awareness. Job safety analysis method used to identify the risk in the electrical workplace. The preliminary study stated that workers were not aware of personal protective equipment usage so that the awareness and behavioural need to be analysed. The result is the hazard was found such as electrical shock and noise for various intensity in the workplace. While electrical workers were aware of safety implementation but less of safety behaviour. Furthermore, the recommendation can be implemented are the implementation of behaviour-based safety (BBS, 5S implementation and accident report list.

  12. Analysis Method of Common Cause Failure on Non-safety Digital Control System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eun Gse [KHNP, Daejeon (Korea, Republic of)

    2014-08-15

    The effects of common cause failure on safety digital instrumentation and control system had been considered in defense in depth analysis with safety analysis method. However, the effects of common cause failure on non-safety digital instrumentation and control system also should be evaluated. The common cause failure can be included in credible failure on the non-safety system. In the I and C architecture of nuclear power plant, many design feature has been applied for the functional integrity of control system. One of that is segmentation. Segmentation defenses the propagation of faults in the I and C architecture. Some of effects from common cause failure also can be limited by segmentation. Therefore, in this paper there are two type of failure mode, one is failures in one control group which is segmented, and the other is failures in multiple control group because that the segmentation cannot defense all effects from common cause failure. For each type, the worst failure scenario is needed to be determined, so the analysis method has been proposed in this paper. The evaluation can be qualitative when there is sufficient justification that the effects are bounded in previous safety analysis. When it is not bounded in previous safety analysis, additional analysis should be done with conservative assumptions method of previous safety analysis or best estimation method with realistic assumptions.

  13. Demonstration of Emulator-Based Bayesian Calibration of Safety Analysis Codes: Theory and Formulation

    Directory of Open Access Journals (Sweden)

    Joseph P. Yurko

    2015-01-01

    Full Text Available System codes for simulation of safety performance of nuclear plants may contain parameters whose values are not known very accurately. New information from tests or operating experience is incorporated into safety codes by a process known as calibration, which reduces uncertainty in the output of the code and thereby improves its support for decision-making. The work reported here implements several improvements on classic calibration techniques afforded by modern analysis techniques. The key innovation has come from development of code surrogate model (or code emulator construction and prediction algorithms. Use of a fast emulator makes the calibration processes used here with Markov Chain Monte Carlo (MCMC sampling feasible. This work uses Gaussian Process (GP based emulators, which have been used previously to emulate computer codes in the nuclear field. The present work describes the formulation of an emulator that incorporates GPs into a factor analysis-type or pattern recognition-type model. This “function factorization” Gaussian Process (FFGP model allows overcoming limitations present in standard GP emulators, thereby improving both accuracy and speed of the emulator-based calibration process. Calibration of a friction-factor example using a Method of Manufactured Solution is performed to illustrate key properties of the FFGP based process.

  14. Applicability of trends in nuclear safety analysis to space nuclear power systems

    International Nuclear Information System (INIS)

    Bari, R.A.

    1992-01-01

    A survey is presented of some current trends in nuclear safety analysis that may be relevant to space nuclear power systems. This includes: lessons learned from operating power reactor safety and licensing; approaches to the safety design of advanced and novel reactors and facilities; the roles of risk assessment, extremely unlikely accidents, safety goals/targets; and risk-benefit analysis and communication

  15. Human reliability analysis methods for probabilistic safety assessment

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-11-01

    Human reliability analysis (HRA) of a probabilistic safety assessment (PSA) includes identifying human actions from safety point of view, modelling the most important of them in PSA models, and assessing their probabilities. As manifested by many incidents and studies, human actions may have both positive and negative effect on safety and economy. Human reliability analysis is one of the areas of probabilistic safety assessment (PSA) that has direct applications outside the nuclear industry. The thesis focuses upon developments in human reliability analysis methods and data. The aim is to support PSA by extending the applicability of HRA. The thesis consists of six publications and a summary. The summary includes general considerations and a discussion about human actions in the nuclear power plant (NPP) environment. A condensed discussion about the results of the attached publications is then given, including new development in methods and data. At the end of the summary part, the contribution of the publications to good practice in HRA is presented. In the publications, studies based on the collection of data on maintenance-related failures, simulator runs and expert judgement are presented in order to extend the human reliability analysis database. Furthermore, methodological frameworks are presented to perform a comprehensive HRA, including shutdown conditions, to study reliability of decision making, and to study the effects of wrong human actions. In the last publication, an interdisciplinary approach to analysing human decision making is presented. The publications also include practical applications of the presented methodological frameworks. (orig.)

  16. Analysis of tank safety with propane-butane on LPG distribution station

    Directory of Open Access Journals (Sweden)

    Krzysiak Zbigniew

    2017-12-01

    Full Text Available An analysis of the risk of failure in the safety valve – tank with propane-butane (LPG system has been conducted. An uncontrolled outflow of liquid LPG, caused by a failure of the above mentioned system has been considered as a threat. The main research goal of the study is the hazardous analysis of propane-butane gas outflow for the safety valve – LPG tank system. The additional goal is the development of an useful method to fast identify the hazard of a mismatched safety valve. The results of the research analysis have confirmed that safety valves are basic protection of the installation (tank against failures that can lead to loss of life, material damage and further undesired costs of their unreliability. That is why a new, professional computer program has been created that allows for the selection of safety valves or for the verification of a safety valve selection in installations where any technical or technological changes have been made.

  17. Westinghouse Hanford Company safety analysis reports and technical safety requirements upgrade program

    International Nuclear Information System (INIS)

    Busche, D.M.

    1995-09-01

    During Fiscal Year 1992, the US Department of Energy, Richland Operations Office (RL) separately transmitted the following US Department of Energy (DOE) Orders to Westinghouse Hanford Company (WHC) for compliance: DOE 5480.21, ''Unreviewed Safety Questions,'' DOE 5480.22, ''Technical Safety Requirements,'' and DOE 5480.23, ''Nuclear Safety Analysis Reports.'' WHC has proceeded with its impact assessment and implementation process for the Orders. The Orders are closely-related and contain some requirements that are either identical, similar, or logically-related. Consequently, WHC has developed a strategy calling for an integrated implementation of the three Orders. The strategy is comprised of three primary objectives, namely: Obtain DOE approval of a single list of DOE-owned and WHC-managed Nuclear Facilities, Establish and/or upgrade the ''Safety Basis'' for each Nuclear Facility, and Establish a functional Unreviewed Safety Question (USQ) process to govern the management and preservation of the Safety Basis for each Nuclear Facility. WHC has developed policy-revision and facility-specific implementation plans to accomplish near-term tasks associated with the above strategic objectives. This plan, which as originally submitted in August 1993 and approved, provided an interpretation of the new DOE Nuclear Facility definition and an initial list of WHC-managed Nuclear Facilities. For each current existing Nuclear Facility, existing Safety Basis documents are identified and the plan/status is provided for the ISB. Plans for upgrading SARs and developing TSRs will be provided after issuance of the corresponding Rules

  18. Operator Actions Within a Safety Instrumented Function

    International Nuclear Information System (INIS)

    Suttinger, L.T.

    2002-01-01

    This paper presents an overview of the factors that should be considered when crediting operator action for performing a safety function or being a part of the process of enabling a safety function. Criteria for evaluating operator action, such as required time response and operator training among others, are discussed. The paper will address these and other factors that should be considered when determining the reliability of the operator to respond and perform his/her part of the safety function. The entire safety function includes the operator and the reliability of the instrumented system that provides the alarm or indication, the final control element, and support systems. The integration of the operator performance with the hardware safety availability, including the effects of the supporting systems is discussed. The analysis of these factors will provide the justification for the amount of risk reduction or safety integrity level that can be credited for the Safety Instrumented Function (SIF), including operator action

  19. Hazard Analysis and Safety Requirements for Small Drone Operations: To What Extent Do Popular Drones Embed Safety?

    Science.gov (United States)

    Plioutsias, Anastasios; Karanikas, Nektarios; Chatzimihailidou, Maria Mikela

    2018-03-01

    Currently, published risk analyses for drones refer mainly to commercial systems, use data from civil aviation, and are based on probabilistic approaches without suggesting an inclusive list of hazards and respective requirements. Within this context, this article presents: (1) a set of safety requirements generated from the application of the systems theoretic process analysis (STPA) technique on a generic small drone system; (2) a gap analysis between the set of safety requirements and the ones met by 19 popular drone models; (3) the extent of the differences between those models, their manufacturers, and the countries of origin; and (4) the association of drone prices with the extent they meet the requirements derived by STPA. The application of STPA resulted in 70 safety requirements distributed across the authority, manufacturer, end user, or drone automation levels. A gap analysis showed high dissimilarities regarding the extent to which the 19 drones meet the same safety requirements. Statistical results suggested a positive correlation between drone prices and the extent that the 19 drones studied herein met the safety requirements generated by STPA, and significant differences were identified among the manufacturers. This work complements the existing risk assessment frameworks for small drones, and contributes to the establishment of a commonly endorsed international risk analysis framework. Such a framework will support the development of a holistic and methodologically justified standardization scheme for small drone flights. © 2017 Society for Risk Analysis.

  20. Evaluation of design safety factors for time-dependent buckling

    International Nuclear Information System (INIS)

    Stone, C.M.; Nickell, R.E.

    1977-02-01

    The ASME Boiler and Pressure Vessel Code rules concerning time-dependent (creep) buckling for Class 1 nuclear components have recently been changed. Previous requirements for a factor of ten on service life have been replaced with a factor of safety of 1.5 on loading for load-controlled buckling. This report examines the supposed equivalence of the two rules from the standpoint of materials behavior--specifically, the secondary creep strain rate exponent. The comparison is made using results obtained numerically for an axially-loaded, cylindrical shell with varying secondary creep exponents. A computationally efficient scheme for analyzing creep buckling problems is also presented