WorldWideScience

Sample records for safety engineering research

  1. Systems Safety and Engineering Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Systems Safety and Engineering Division conducts engineering, research, and analysis to improve transportation safety, capacity, and resiliency. We provide...

  2. Reliability and safety engineering

    CERN Document Server

    Verma, Ajit Kumar; Karanki, Durga Rao

    2016-01-01

    Reliability and safety are core issues that must be addressed throughout the life cycle of engineering systems. Reliability and Safety Engineering presents an overview of the basic concepts, together with simple and practical illustrations. The authors present reliability terminology in various engineering fields, viz.,electronics engineering, software engineering, mechanical engineering, structural engineering and power systems engineering. The book describes the latest applications in the area of probabilistic safety assessment, such as technical specification optimization, risk monitoring and risk informed in-service inspection. Reliability and safety studies must, inevitably, deal with uncertainty, so the book includes uncertainty propagation methods: Monte Carlo simulation, fuzzy arithmetic, Dempster-Shafer theory and probability bounds. Reliability and Safety Engineering also highlights advances in system reliability and safety assessment including dynamic system modeling and uncertainty management. Cas...

  3. Environmental, safety, and health engineering

    International Nuclear Information System (INIS)

    Woodside, G.; Kocurek, D.

    1997-01-01

    A complete guide to environmental, safety, and health engineering, including an overview of EPA and OSHA regulations; principles of environmental engineering, including pollution prevention, waste and wastewater treatment and disposal, environmental statistics, air emissions and abatement engineering, and hazardous waste storage and containment; principles of safety engineering, including safety management, equipment safety, fire and life safety, process and system safety, confined space safety, and construction safety; and principles of industrial hygiene/occupational health engineering including chemical hazard assessment, personal protective equipment, industrial ventilation, ionizing and nonionizing radiation, noise, and ergonomics

  4. Design of the Control System for Engineered Safety Features of KIJANG Research Reactor

    International Nuclear Information System (INIS)

    Kim, Hagtae; Kim, Jun-Yeon; Chae, Hee-Taek

    2015-01-01

    The purpose of this paper is to design an effective control system for the Engineered Safety Features (ESF) of KJRR such as the Safety Residual Heat Removal System (SRHRS) pumps and Siphon Break Valve (SBV) without an Engineered Safety Features-Component Control System (ESF-CCS). This control system is called a 'local motor starter', because this system controls motors in the SRHRS pumps and SBVs by receiving the signal from Reactor Protection System (RPS) and Alternate Protection System (APS) when the differential pressure or pool level reach the set points. In this paper, the design concepts and requirements of the local motor starter based on the design features of KJRR is proposed. An ESF is a safety system that mitigates consequences of the Anticipated Operational Occurrence (AOO) and Design Basis Accident (DBA). The results of this paper are able to be used for the development of control systems for research reactors similar to KJRR. The precondition for such application is to have a few ESFs and conduct simple logic. The proposed control system called a local motor starter is being designed, and a manufacture of the actual systems is expected in the foreseeable future

  5. Safety Research Experiment Facilities, Idaho National Engineering Laboratory, Idaho. Draft environmental statement

    International Nuclear Information System (INIS)

    1977-01-01

    This environmental statement was prepared in accordance with the National Environmental Policy Act of 1969 (NEPA) in support of the Energy Research and Development Administration's (ERDA) proposal for legislative authorization and appropriations for the Safety Research Experiment Facilities (SAREF) Project. The purpose of the proposed project is to modify some existing facilities and provide a new test facility at the Idaho National Engineering Laboratory (INEL) for conducting fast breeder reactor (FBR) safety experiments. The SAREF Project proposal has been developed after an extensive study which identified the FBR safety research needs requiring in-reactor experiments and which evaluated the capability of various existing and new facilities to meet these needs. The proposed facilities provide for the in-reactor testing of large bundles of prototypical FBR fuel elements under a wide variety of conditions, ranging from those abnormal operating conditions which might be expected to occur during the life of an FBR power plant to the extremely low probability, hypothetical accidents used in the evalution of some design options and in the assessment of the long-term potential risk associated with wide-scale deployment of the FBR

  6. Progress of nuclear safety research. 2001

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Sasajima, Hideo; Nishiyama, Yutaka (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-10-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy or the Safety Research Annual Plan issued by the Japanese government. The safety research at JAERI concerns the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety. This report summarizes the nuclear safety research activities of JAERI from April 1999 through March 2001. (author)

  7. The engineering project and reliability research of the safety interlock slow control system in BESIII

    International Nuclear Information System (INIS)

    Zhang Yinhong; Zhao Jingwei; Li Xiaonan; Xie Xiaoxi; Gao Cuishan; Bai Jingzhi; Chen Xihui; Min Jian; Nie Zhendong

    2008-01-01

    The new safety interlock slow control system of BESIII is designed to ensure that the BESIII interior equipments and the accelerator control center to work in coordination, and to guarantee the safety of the operating staff and all the important equipments at the same time. This paper introduces the hardware and software design of safety interlock system from the engineering requirements angle, including a detailed research on the software implementation technique of the state machine on PLC and the reliability of the system. (authors)

  8. Engineered nanomaterials: toward effective safety management in research laboratories.

    Science.gov (United States)

    Groso, Amela; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Hofmann, Heinrich; Meyer, Thierry

    2016-03-15

    It is still unknown which types of nanomaterials and associated doses represent an actual danger to humans and environment. Meanwhile, there is consensus on applying the precautionary principle to these novel materials until more information is available. To deal with the rapid evolution of research, including the fast turnover of collaborators, a user-friendly and easy-to-apply risk assessment tool offering adequate preventive and protective measures has to be provided. Based on new information concerning the hazards of engineered nanomaterials, we improved a previously developed risk assessment tool by following a simple scheme to gain in efficiency. In the first step, using a logical decision tree, one of the three hazard levels, from H1 to H3, is assigned to the nanomaterial. Using a combination of decision trees and matrices, the second step links the hazard with the emission and exposure potential to assign one of the three nanorisk levels (Nano 3 highest risk; Nano 1 lowest risk) to the activity. These operations are repeated at each process step, leading to the laboratory classification. The third step provides detailed preventive and protective measures for the determined level of nanorisk. We developed an adapted simple and intuitive method for nanomaterial risk management in research laboratories. It allows classifying the nanoactivities into three levels, additionally proposing concrete preventive and protective measures and associated actions. This method is a valuable tool for all the participants in nanomaterial safety. The users experience an essential learning opportunity and increase their safety awareness. Laboratory managers have a reliable tool to obtain an overview of the operations involving nanomaterials in their laboratories; this is essential, as they are responsible for the employee safety, but are sometimes unaware of the works performed. Bringing this risk to a three-band scale (like other types of risks such as biological, radiation

  9. Report to NASA Committee on Aircraft Operating Problems Relative to Aviation Safety Engineering and Research Activities

    Science.gov (United States)

    1963-01-01

    The following report highlights some of the work accomplished by the Aviation Safety Engineering and Research Division of the Flight Safety Foundations since the last report to the NASA Committee on Aircraft Operating Problems on 22 May 1963. The information presented is in summary form. Additional details may be provided upon request of the reports themselves may be obtained from AvSER.

  10. Safety research experiment facilities, Idaho National Engineering Laboratory, Idaho. Final environmental impact statement

    International Nuclear Information System (INIS)

    Liverman, J.L.

    1977-09-01

    This environmental statement was prepared for the Safety Research Experiment Facilities (SAREF) Project. The purpose of the proposed project is to modify some existing facilities and provide a new test facility at the Idaho National Engineering Laboratory (INEL) for conducting fast breeder reactor (FBR) safety experiments. The SAREF Project proposal has been developed after an extensive study which identified the FBR safety research needs requiring in-reactor experiments and which evaluated the capability of various existing and new facilities to meet these needs. The proposed facilities provide for the in-reactor testing of large bundles of prototypical FBR fuel elements under a wide variety of conditions, ranging from those abnormal operating conditions which might be expected to occur during the life of an FBR power plant to the extremely low probability, hypothetical accidents used in the evaluation of some design options and in the assessment of the long-term potential risk associated with wide-acale deployment of the FBR

  11. Current status of nuclear safety research

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Efforts at nuclear safety research have expanded year by year in Japan, in term of money and technical achievement. The Atomic Energy Commission set last year the five year nuclear safety research program, a guideline by which various research institutes will be able to develop their own efforts in a concerted manner. From the results of the nuclear safety research which cover very wide areas ranging from reactor engineering safety, safety of nuclear fuel cycle facilities, prevention of radiation hazards to the adequate treatment and disposal of radioactive wastes, AIJ hereafter focuses of LWR engineering safety and prevents two articles, one introducing the current results of the NSSR program developed by JAERI and the other reporting the LWR reliability demonstration testing projects being promoted by MITI. The outline of these demonstration tests was reported in this report. The tests consist of earthquake resistance reliability test of nuclear power plants, steam generator reliability tests, valve integrity tests, fuel assembly reliability tests, reliability tests of heat affected zones and reliability tests of pumps. (Kobatake, H.)

  12. Compilation of contract research for the Materials Engineering Branch, Division of Engineering: Annual report for FY 1987

    International Nuclear Information System (INIS)

    1988-06-01

    This compilation of annual reports by contractors to the Materials Engineering Branch of the NRC Office of Research concentrates on achievements in safety research for the primary system of commercial light water power reactors, particularly with regard to reactor vessels, primary system piping, steam generators, nondestructive examination of primary components, and in safety research for decommissioning and decontamination, on-site storage, and engineered safety features. This report, covering research conducted during Fiscal Year 1987 is the sixth volume of the series of NUREG-0975, ''Compilation of Contractor Research for the Materials Engineering Branch, Division of Engineering.''

  13. Nuclear reactor safety research in Idaho

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1983-01-01

    Detailed information about the performance of nuclear reactor systems, and especially about the nuclear fuel, is vital in determining the consequences of a reactor accident. Fission products released from the fuel during accidents are the ultimate safety concern to the general public living in the vicinity of a nuclear reactor plant. Safety research conducted at the Idaho National Engineering Laboratory (INEL) in support of the U.S. Nuclear Regulatory Commission (NRC) has provided the NRC with detailed data relating to most of the postulated nuclear reactor accidents. Engineers and scientists at the INEL are now in the process of gathering data related to the most severe nuclear reactor accident - the core melt accident. This paper describes the focus of the nuclear reactor safety research at the INEL. The key results expected from the severe core damage safety research program are discussed

  14. Reactor safety research - results and perspectives

    International Nuclear Information System (INIS)

    Banaschik, M.

    1989-01-01

    The work performed so far is an essential contribution to the determination of the safety margins of nuclear facilities and their systems and to the further development of safety engineering. The further development of safety engineering involves a shift of emphasis in reactor safety research towards event sequences beyond the design basis. The aim of this shift in emphasis is the further development of the preventive level. This is based on the fact that the conservative design of the operating and safety systems involves and essential safety potential. The R and D work is intended to help develop accident management measures and to take the plant back into the safe state even after severe accidents. In this context, it is necessary to make full use of the safety margins of the plant and to include the operating systems for coping with accidents. As a result of the aims, the research work approaches operating and plant-specific processes. (orig./DG) [de

  15. Progress of nuclear safety research, (1)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successively in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also, the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts, and in this Part 1, the reactor safety research is described. The safety of nuclear fuel, the integrity and safety of pressure boundary components, the engineered safety in LOCA, fuel behavior in accident and others are reported. (Kako, I.)

  16. Safety engineering with COTS components

    International Nuclear Information System (INIS)

    O'Halloran, Mark; Hall, Jon G.; Rapanotti, Lucia

    2017-01-01

    Safety-critical systems are becoming more widespread, complex and reliant on software. Increasingly they are engineered through (COTS) (Commercial Off The Shelf) components to alleviate the spiralling costs and development time, often in the context of complex supply chains. A parallel increased concern for safety has resulted in a variety of safety standards, with a growing consensus that a safety life cycle is needed which is fully integrated with the design and development life cycle, to ensure that safety has appropriate influence on the design decisions as system development progresses. In this article we explore the application of an integrated approach to safety engineering in which assurance drives the engineering process. The paper reports on the outcome of a case study on a live industrial project with a view to evaluate: its suitability for application in a real-world safety engineering setting; its benefits and limitations in counteracting some of the difficulties of safety engineering with (COTS) components across supply chains; and, its effectiveness in generating evidence which can contribute directly to the construction of safety cases. - Highlights: • Assurance as effective driver for COTS-based safety-critical system development. • Engages stakeholders, captures requirements and provides rich traceability. • Shares appropriate safety requirements across the supply chain.

  17. Progress of nuclear safety research-2004

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Ebine, Noriya; Chuto, Toshinori; Sato, Satoshi; Ishikawa, Jun; Yamamoto, Toshihiro; Munakata, Masahiro; Asakura, Toshihide; Yamaguchi, Tetsuji; Kida, Takashi; Matsui, Hiroki; Haneishi, Akihiro; Araya, Fumimasa

    2005-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2002 through March 2004 and utilized facilities. (author)

  18. Compilation of contract research for the Materials Engineering Branch, Division of Engineering: Annual report for FY 1988

    International Nuclear Information System (INIS)

    1989-05-01

    This compilation of annual reports by contractors to the Materials Engineering Branch of the NRC Office of Research concentrates on achievements in safety research for the primary system of commercial light water power reactors, particularly with regard to reactor vessels, primary system piping, steam generators, nondestructive examination of primary components, and in safety research for decommissioning and decontamination, on-site storage and engineered safety features. The Materials Engineering Branch assembles abbreviated reports from all the branch contractors and publishes them in a single annual report as soon after the end of the year as possible so that the information developed throughout the year can be promptly used in the safety-regulatory process. This report, covering research conducted during Fiscal Year 1988 is the seventh volume of the series of NUREG-0975, ''Compilation of Contractor Research for the Materials Engineering Branch, Division of Engineering.'' Individual projects are processed separately for the data bases

  19. Reactor safety research. The CEC contribution

    International Nuclear Information System (INIS)

    Krischer, W.

    1990-01-01

    The involvement of the EC Commission in the reactor safety research dates back almost to the implementation of the EURATOM Treaty and has thus lasted for thirty years. The need for close collaboration and for general consensus on some crucial problems of concern to the public, has made the role of international organizations and, as far as Europe is concerned, the role of the European Community particularly important. The areas in which the CEC has been active during the last five years are widespread. This is partly due to the fact that, after TMI and Chernobyl, the effort and the interest of the different countries in reactor safety was considerable. Reactor Safety Research represents the proceedings of a seminar held by the Commission at the end of its research programme 1984-88 on reactor safety. As such it gives a comprehensive overview of the recent activities and main results achieved in the CEC Joint Research Centre and in national laboratories throughout Europe on the basis of shared cost actions. In a concluding chapter the book reports on the opinions, expressed during a panel by a group of major exponents, on the needs for future research. The main topics addressed are, with particular reference to Light Water Reactors (LWRS): reliability and risk evaluation, inspection of steel components, primary circuit components end-of-life prediction, and abnormal behaviour of reactor cooling systems. As far as LMFBRs are concerned, the topics covered are: severe accident modelling, material properties and structural behaviour studies. There are 67 pages, all of which are indexed separately. Reactor Safety Research will be of particular interest to reliability and safety engineers, nuclear engineers and technicians, and mechanical and structural engineers. (author)

  20. Determination of engineering safety factor -routine in Hungary (a methodology for the normal operation local power engineering safety factors)

    International Nuclear Information System (INIS)

    Szecsenyi, Z.; Korpas, L.; Bona, G.; Kereszturi, A.

    2010-01-01

    From the late nineties Paks Nuclear Power Plant-in collaboration with KFKI Atomic Energy Research Institute (KFKI AEKI)- is developing a system for determining the normal operation local power engineering safety factors. The system is based on a Monte Carlo sampling of the uncertain model input parameters. Additionally, the comparison of the calculation to the in-core measurements plays essential role for determining some important input parameters. By using new fuel types and the corresponding more recent detailed technological data, the applied method is being improved from time to time. Presently, the actually used and authorized engineering safety factors at Paks NPP are determined by using this method. In the paper, the system.s main properties are described (not going beyond the possible extent). The main points are as follows:-Mathematical definition of the engineering safety factor;-Sources of the uncertainties;-Input error propagation method constituting the basis of the system;-Flow-chart of the subsequent steps of the determination Finally, in the paper the engineering safety factors values of some selected parameters are presented as examples for demonstration of the capability of the method. (Authors)

  1. System safety engineering in the development of advanced surface transportation vehicles

    Science.gov (United States)

    Arnzen, H. E.

    1971-01-01

    Applications of system safety engineering to the development of advanced surface transportation vehicles are described. As a pertinent example, the paper describes a safety engineering efforts tailored to the particular design and test requirements of the Tracked Air Cushion Research Vehicle (TACRV). The test results obtained from this unique research vehicle provide significant design data directly applicable to the development of future tracked air cushion vehicles that will carry passengers in comfort and safety at speeds up to 300 miles per hour.

  2. Research for enhancing reactor safety

    International Nuclear Information System (INIS)

    1989-05-01

    Recent research for enhanced reactor safety covers extensive and numerous experiments and computed modelling activities designed to verify and to improve existing design requirements. The lectures presented at the meeting report GRS research results and the current status of reactor safety research in France. The GRS experts present results concerning expert systems and their perspectives in safety engineering, large-scale experiments and their significance in the development and verification of computer codes for thermohydraulic modelling of safety-related incidents, the advanced system code ATHLET for analysis of thermohydraulic processes of incidents, the analysis simulator which is a tool for fast evaluation of accident management measures, and investigations into event sequences and the required preventive emergency measures within the German Risk Study. (DG) [de

  3. Nuclear safety research collaborations between the US and Russian Federation international nuclear safety centers

    International Nuclear Information System (INIS)

    Hill, D.J; Braun, J.C; Klickman, A.E.; Bugaenko, S.E; Kabanov, L.P; Kraev, A.G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the U.S. Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the U. S. Center at Argonne National Laboratory in October 1995. MINATOM established the Russian Center at the Research and Development Institute of Power Engineering in Moscow in July 1996. In April 1998 the Russian center became an independent, autonomous organization under MINATOM. The goals of the centers are to: cooperate in the development of technologies associated with nuclear safety in nuclear power engineering. be international centers for the collection of information important for safety and technical improvements in nuclear power engineering. maintain a base for fundamental knowledge needed to design nuclear reactors.The strategic approach that is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors

  4. Progress of nuclear safety research - 2005

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amaya, Masaki; Saito, Junichi; Sato, Atsushi; Sono, Hiroki; Tamaki, Hitoshi; Tonoike, Kotaro; Nemoto, Yoshiyuki; Motoki, Yasuo; Moriyama, Kiyofumi; Yamaguchi, Tetsuji; Araya, Fumimasa

    2006-03-01

    The Japan Atomic Energy Research Institute (JAERI), one of the predecessors of the Japan Atomic Energy Agency (JAEA), had conducted nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Five-Years Program for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI were the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI had conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI had taken a responsible role by providing experts in assistance to conducting accident investigations or emergency responses by the government or local government. These nuclear safety research and technical assistance to the government have been taken over as an important role by JAEA. This report summarizes the nuclear safety research activities of JAERI from April 2003 through September 2005 and utilized facilities. (author)

  5. Status of nuclear safety research - 2000

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Sasajima, Hideo; Umemoto, Michitaka; Yamamoto, Toshihiro; Tanaka, Tadao; Togashi, Yoshihiro; Nakata, Masahito

    2000-11-01

    The nuclear safety research at JAERI is performed in accordance with the long term plan on nuclear research, development and use and the safety research yearly plan determined by the government and under close relationship to the related departments in and around the Nuclear Safety Research Center. The criticality accident having occurred in Tokai-mura in 1999 has been the highest level nuclear accident in Japan and ensuring safety in whole nuclear cycle is severely questioned. The causes of such an accident have to be clarified not only technical points but also organizational points, and it is extremely important to make efforts in preventing recurrence, to fulfill emergency plan and to improve the safety of whole nuclear fuel cycle for restoring the reliability by the people to nuclear energy system. The fields of conducting safety research are engineering safety research on reactor facilities and nuclear fuel cycle facilities including research on radioactive waste processing and disposal and research and development on future technology for safety improvement. Also, multinational cooperation and bilateral cooperation are promoted in international research organizations in the center to internationally share the recognition of world-common issues of nuclear safety and to attain efficient promotion of research and effective utilization of research resources. (author)

  6. Progress of nuclear safety research. 2002

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Kudo, Tamotsu; Tobita, Tohru (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2002-11-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2000 through April 2002 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001. (author)

  7. System safety engineering analysis handbook

    Science.gov (United States)

    Ijams, T. E.

    1972-01-01

    The basic requirements and guidelines for the preparation of System Safety Engineering Analysis are presented. The philosophy of System Safety and the various analytic methods available to the engineering profession are discussed. A text-book description of each of the methods is included.

  8. Safety research program of NUCEF

    International Nuclear Information System (INIS)

    Naito, Y.

    1996-01-01

    To contribute the safety and establishment of advanced technologies in the area of nuclear fuel cycle, Japan Atomic Energy Research Institute (JAERI) has constructed a new research facility NUCEF (Nuclear Fuel Cycle Safety Engineering Research Facility) as the center for the research and development, particularly on the reprocessing technology and transuranium (TRU) waste management. NUCEF consist of three buildings, administration building, experiment building A and B. Building A has two experiment facilities STACY (Static Experiment Critical Facility) and TRACY (Transient Experiment Critical Facility). The experiment building B is referred to as BECKY (Back-end Fuel Cycle Key Elements Research Facility). Researches on the reprocessing and the waste management are carried out with spent fuels, high-level liquid waste, TRU etc. in the α γ cell and glove boxes. NUCEF was constructed with the following aims. Using STACY and TRACY, are aimed, (1) research on advanced technology for criticality safety control, (2) reconfirmation of criticality safety margin of the Rokkasho reprocessing plant. Using BECKY, are aimed, (1) research on advanced technology of reprocessing process, (2) contribution to develop the scenario for TRU waste disposal, (3) development of new technology for TRU partitioning and volume reduction of radioactive waste. To realize the above aims, following 5 research subjects are settled in NUCEF, (1) Criticality safety research, (2) Research on safety and advanced technology of fuel reprocessing, (3) Research on TRU waste management, (4) Fundamental research on TRU chemistry, (5) Key technology development for TRU processing. (author)

  9. Progress of nuclear safety research. 2003

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amagai, Masaki; Tobita, Tohru

    2004-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2001 through March 2003 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001, and the integrity evaluation of cracked core shroud of BWRs of the Tokyo Electric Power Company performed for assistance to the Nuclear Safety Commission in reviewing the evaluation reports by the licensees. (author)

  10. Outline of criticality safety research project

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Suzaki, Takenori; Takeshita, Isao; Miyoshi, Yoshinori; Nakajima, Ken; Sakurai, Satoshi; Yanagisawa, Hiroshi

    1987-01-01

    As the power generation capacity of LWRs in Japan increased, the establishment and development of nuclear fuel cycle have become the important subject. Conforming to the safety research project of the nation, the Japan Atomic Energy Research Institute has advanced the project of constructing a new research facility, that is, Nuclear Fuel Cycle Engineering Research Facility (NUCEF). In this facility, it is planned to carry out the research on criticality safety, upgraded reprocessing techniques, and the treatment and disposal of transuranium element wastes. In this paper, the subjects of criticality safety research and the research carried out with a criticality safety experiment facility which is expected to be installed in the NUCEF are briefly reported. The experimental data obtained from the criticality safety handbooks and published literatures in foreign countries are short of the data on the mixture of low enriched uranium and plutonium which is treated in the reprocessing of spent fuel from LWRs. The acquisition of the criticality data for various forms of fuel, the elucidation of the scenario of criticality accidents, and the soundness of the confinement system for gaseous fission products and plutonium are the main subjects. The Static Criticality Safety Facility, Transient Criticality Safety Facility and pulse column system are the main facilities. (Kako, I.)

  11. Criticality safety engineering at the Savannah River Site - the 1990s

    International Nuclear Information System (INIS)

    Chandler, J.R.; Apperson, C.E. Jr.

    1996-01-01

    The privatization and downsizing effort that is ongoing within the U.S. Department of Energy (DOE) is requiring a change in the management of criticality safety engineering resources at the Savannah River Site (SRS). Downsizing affects the number of criticality engineers employed by the prime contractor, Westinghouse Savannah River Company (WSRC), and privatization affects the manner in which business is conducted. In the past, criticality engineers at the SRS have been part of the engineering organizations that support each facility handling fissile material. This practice led to different criticality safety engineering organizations dedicated to fuel fabrication activities, reactor loading and unloading activities, separation and waste management operations, and research and development

  12. Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these

  13. Human subject research for engineers a practical guide

    CERN Document Server

    de Winter, Joost C F

    2017-01-01

    This Brief introduces engineers to the main principles in ethics, research design, statistics, and publishing of human subject research. In recent years, engineering has become strongly connected to disciplines such as biology, medicine, and psychology. Often, engineers (and engineering students) are expected to perform human subject research. Typical human subject research topics conducted by engineers include human-computer interaction (e.g., evaluating the usability of software), exoskeletons, virtual reality, teleoperation, modelling of human behaviour and decision making (often within the framework of ‘big data’ research), product evaluation, biometrics, behavioural tracking (e.g., of work and travel patterns, or mobile phone use), transport and planning (e.g., an analysis of flows or safety issues), etc. Thus, it can be said that knowledge on how to do human subject research is indispensable for a substantial portion of engineers. Engineers are generally well trained in calculus and mechanics, but m...

  14. Engineering Solutions to Enhance Traffic Safety Performance on Two-Lane Highways

    Directory of Open Access Journals (Sweden)

    Lina Wu

    2015-01-01

    Full Text Available Improving two-lane highway traffic safety conditions is of practical importance to the traffic system, which has attracted significant research attention within the last decade. Many cost-effective and proactive solutions such as low-cost treatments and roadway safety monitoring programs have been developed to enhance traffic safety performance under prevailing conditions. This study presents research perspectives achieved from the Highway Safety Enhancement Project (HSEP that assessed safety performance on two-lane highways in Beijing, China. Potential causal factors are identified based on proposed evaluation criteria, and primary countermeasures are developed against inferior driving conditions such as sharp curves, heavy gradients, continuous downgrades, poor sight distance, and poor clear zones. Six cost-effective engineering solutions were specifically implemented to improve two-lane highway safety conditions, including (1 traffic sign replacement, (2 repainting pavement markings, (3 roadside barrier installation, (4 intersection channelization, (5 drainage optimization, and (6 sight distance improvement. The effectiveness of these solutions was examined and evaluated based on Empirical Bayes (EB models. The results indicate that the proposed engineering solutions effectively improved traffic safety performance by significantly reducing crash occurrence risks and crash severities.

  15. Status of criticality safety research at NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Ken [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Two critical facilities, named STACY (Static Experiment Critical Facility) and TRACY (Transient Experiment Critical Facility), at the Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) started their hot operations in 1995. Since then, basic experimental data for criticality safety research have been accumulated using STACY, and supercritical experiments for the study of criticality accident in a reprocessing plant have been performed using TRACY. In this paper, the outline of those critical facilities and the main results of TRACY experiments are presented. (author)

  16. 46. The goals of safety engineering department of the plant

    International Nuclear Information System (INIS)

    Ivanov, A.V.

    1993-01-01

    The goals of safety engineering department of the plant, including elaboration of instructions on safety engineering on all specialities, safety engineering training of all labours working on the plant and control for abidance by the instructions on safety engineering were discussed.

  17. A Comparison of the mechanical engineering and safety engineering student’s ICT attitudes at the Obuda University

    Directory of Open Access Journals (Sweden)

    Kiss Gabor

    2016-01-01

    Full Text Available Communication and technology are critical to education. However, using technology in education is not an easy task as communication barriers emerge. The aim of this research is to analyze the ICT attitudes from different faculties at the Obuda University that is between the mechanical engineering students and safety engineering students from the Donát Bánki Mechanical Safety Engineer Faculty. The students from these two groups will use different ICT tool at work after their graduation; the mechanical engineering students will work mostly with designer ICT tools, the safety engineering students will use security systems. It would be important to know whether instructors, when using ICT, have to follow different teaching methods and approaches in these two different groups or not. We measured the ICT attitude with a tool consisting of 23 items (Likert scaled. We worked with 361 students. The data analysis was performed with SPSS software using descriptive statistics and Mann-Whitney test. The results show both groups having the same positive ICT attitude however with one difference.

  18. IRSN safety research carried out for reviewing safety cases

    International Nuclear Information System (INIS)

    Serres, Ch.

    2010-01-01

    issues are being defined. Ch. Serres explained as well organisational aspects related to research stressing the need of synergy between research engineers, universities and experts in safety assessment. He described the international cooperative research programmes in which IRSN is involved

  19. Space transportation main engine reliability and safety

    Science.gov (United States)

    Monk, Jan C.

    1991-01-01

    Viewgraphs are used to illustrate the reliability engineering and aerospace safety of the Space Transportation Main Engine (STME). A technology developed is called Total Quality Management (TQM). The goal is to develop a robust design. Reducing process variability produces a product with improved reliability and safety. Some engine system design characteristics are identified which improves reliability.

  20. Reference to the Safety Engineering Undergraduate Courses to Improve the Subjects and Contents of the Certified Safety Engineer Qualification and Examination System of China

    OpenAIRE

    Haibin Qiu; Shanghong Shi; Tingdi Zhao; Yiwei Qiao; Jiangshi Zhang

    2013-01-01

    The aim of this paper is to recommend that the subjects and contents of certified safety engineers use safety engineering undergraduate curriculum system for reference. Human resources play an important role in accident prevention and loss control. Education on safety engineering develops quickly in China. Moreover, the State Administration of Work Safety and the National Human Resources and Social Security Ministry have implemented a certified safety engineer qualification and examination sy...

  1. Summary of LWR safety research in the USA

    International Nuclear Information System (INIS)

    Murley, T.E.; Tong, L.S.; Bennett, G.L.

    1977-01-01

    The U.S. Nuclear Regulatory Commission's water reactor safety research program is described and the basic results are presented. The USNRC water reactor safety research program consists of five basic research areas: integrity of vessel and piping, thermal-hydraulic test, fuel rod behaviour, code development and verification, and reactor operational safety. Results from the vessel and piping integrity research have demonstrated the high safety margins in scaled vessels and the analytical procedures for calculating vessel behaviour under pressure. Non-destructive examination techniques are being improved. Work is also proceeding to define the material constituents to reduce the susceptibility of irradiation embrittlement and stress corrosion cracking. The thermal-hydraulic tests have covered the various phases of a hypothetical loss of coolant accident (LOCA) and activation of the emergency core cooling system (ECCS). These tests have led to the development of engineering correlations to describe the phenomena to further quantify the safety margins in commercial nuclear power plants. Specifically, this paper presents selected experimental data and analytical predictions from the initial tests in LOFT and SEMISCALE. Comparisons and evaluations are made between the data and analytical predictions. Significant results and conclusions are presented regarding the behaviour of emergency core cooling systems in a LOCA environment: the ability to predict LOCA-type experiments over a scaling range of thirty and the thermal-hydraulic behaviour of components such as pumps in an integral system LOCA environment. The fuel behaviour research has provided valuable information on decay heat, cladding oxidation, fuel rod behaviour and fuel metling. Both the decay heat and the cladding oxidation have been shown to be lower than assumed in the licensing evaluations. The fuel behaviour and thermo-hydraulic research is being integrated into computer codes to be used to provide additional

  2. Safety research programs sponsored by Office of Nuclear Regulatory Research

    International Nuclear Information System (INIS)

    Weiss, A.J.; Azarm, A.; Baum, J.W.

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988

  3. Safety research colloquium 2013-2014. Vol. 10

    International Nuclear Information System (INIS)

    Pieper, Ralf

    2015-01-01

    Volume 10 of the safety research colloquium 2013-2014 covers the following issues: Design, ergonomics and safety in product development; Germany is searching a final repository site: concepts and status of the final disposal of nuclear waste; collaborating robots - status of research, standardization and validation; psychological workloads - empirical indications; psychological workloads - actual challenges; expert security by occupational health management - challenges to operational practice; expert security by occupational health management - example of a demographic program in the practical realization; challenges in employment legislation - reduction of the key staff; consideration of human factors in hazard assessment a a challenge for every safety engineer, innovative technologies for work equipment and working systems in the context of ambient intelligence and industry 4.0; challenges of functional safety in the automotive sector; nanotechnology - an example for successful technology assessment.

  4. Curriculum: Integrating Health and Safety Into Engineering Curricula.

    Science.gov (United States)

    Talty, John T.

    1985-01-01

    National Institute for Occupational Safety and Health instituted a project in 1980 to encourage engineering educators to focus on occupational safety and health issues in engineering curricula. Progress to date is outlined, considering specific results in curriculum development, engineering society interaction, and formation of a teaching…

  5. Researches in radiation protection and safety at Moscow engineering physics institute

    International Nuclear Information System (INIS)

    Kramer-Ageev, E.A.; Lebedev, L.A.

    1994-01-01

    Department of Radiation Physics of Moscow Engineering Physics Institute is a research and teaching institution in the field of radiation protection, dosimetry, shielding and in radioecology. The scientific activity which has been doing at the department for many years includes the following directions: 1. Development of mathematical models and computational methods for an evaluation of external and internal exposure of people living on contaminated areas. Recently the computational model for forecast of internal irradiation via food chains was linked with computer geographical information systems. 2. Development of techniques and instruments for the measurements of radioactive contamination of soil, air, water and agricultural products. Department has special laboratory for this. 3. Application of computational methods to the problem of nuclear medicine. The whole body spectrometry and radiation 'coding' are used as an efficient methods of obtaining information on the radionuclides location in the human body. 4. Application of computational methods to the problem of radiation safety at nuclear power plants. It allows one to calculate radiation fields in shielding and the characteristics of nuclear wastes. (author)

  6. Fire safety engineering

    International Nuclear Information System (INIS)

    Smith, D.N.

    1989-01-01

    The periodic occurrence of large-scale, potentially disastrous industrial accidents involving fire in hazardous environments such as oilwell blowouts, petrochemical explosions and nuclear installations highlights the need for an integrated approach to fire safety engineering. Risk reduction 'by design' and rapid response are of equal importance in the saving of life and property in such situations. This volume of papers covers the subject thoroughly, touching on such topics as hazard analysis, safety design and testing, fire detection and control, and includes studies of fire hazard in the context of environment protection. (author)

  7. Compilation of contract research for the Chemical Engineering Branch, Division of Engineering Technology. Annual report for FY 1985

    International Nuclear Information System (INIS)

    1986-07-01

    This compilation of annual research reports by the contractors to the Chemical Engineering Branch, DET, is published to disseminate information from ongoing programs and covers research conducted during fiscal year 1985. The programs covered in this document include research on: (1) engineered safety feature (ESF) system effectiveness in terms of fission product retention under severe accident conditions; (2) effectiveness and safety aspects of selected decontamination methods; (3) decontamination impacts on solidification and waste disposal; (4) evaluation of nuclear facility decommissioning projects and concepts, and (5) operational schemes to prevent or mitigate the effects of hydrogen combustion during LWR accidents

  8. Factors Affecting the Behavior of Engineering Students toward Safety Practices in the Machine Shop

    Directory of Open Access Journals (Sweden)

    Jessie Kristian M. Neria

    2015-08-01

    Full Text Available This study aimed to determine the factors that affect the behavior of engineering student toward safety practices in the machine shop. Descriptive type of research was utilized in the study. Results showed that most of the engineering students clearly understand the signage shown in the machine shop. Students are aware that they should not leave the machines unattended. Most of the engineering students handle and use the machine properly. The respondents have an average extent of safety practices in the machine shop which means that they are applying safety practices in their every activity in machine shop. There is strong relationship between the safety practices and the factors affecting behavior in terms of signage, reminder of teacher and rules and regulation.

  9. Reactor engineering and engineered reactor safety in France

    International Nuclear Information System (INIS)

    1987-01-01

    The proceedings give the full text of the lectures held by acknowledged French experts at the KTG Seminar in Mainz on March 10, 1987, all dealing with the leading topic of the current status of reactor engineering and development in France. Although the basic engineering principles and construction lines as well as the safety philosophy are the same in France as in West Germany, there have been distinctive developments over many years in the two countries that by now are not well known even among experts in this field, and hence cannot be properly assessed. Non-availability of relevant surveys or other type of literature in the German language reviewing the French developments is another factor that hitherto was a handicap to mutual exchange of information. The seminar was intended to close this gap. The proceedings should be read by all those in West Germany who wish to be informed about the developments in reactor engineering and reactor safety in France. (orig./DG) [de

  10. Reactor safety research - visible demonstrations and credible computations

    Energy Technology Data Exchange (ETDEWEB)

    Loewenstein, W B; Divakaruni, S M

    1985-11-01

    EPRI has been conducting nuclear safety research for a number of years with the primary goal of assuring the safety and reliability of the nuclear plants. The visibility is emphasized by sponsoring or participating in large scale test demonstrations to credibly support the complex computations that are the basis for quantification of safety margins. Recognizing the success of the airline industry in receiving favorable public perception, the authors compare the design and operation practices of the airline industry with those of the nuclear industry practices to identify the elements contributing to public concerns and unfavorable perceptions. In this paper, authors emphasize the importance of proper communications of research results to the public in a manner that non-specialists understand. Further, EPRI supported research and results in the areas of source term, seismic and structural engineering research, analysis using probabilistic risk assessment (PRA), quantification of safety margins, digital technology development and implementation, and plant transient and performance evaluations are discussed in the paper. (orig./HP).

  11. Reactor safety research - visible demonstrations and credible computations

    International Nuclear Information System (INIS)

    Loewenstein, W.B.; Divakaruni, S.M.

    1985-01-01

    EPRI has been conducting nuclear safety research for a number of years with the primary goal of assuring the safety and reliability of the nuclear plants. The visibility is emphasized by sponsoring or participating in large scale test demonstrations to credibly support the complex computations that are the basis for quantification of safety margins. Recognizing the success of the airline industry in receiving favorable public perception, the authors compare the design and operation practices of the airline industry with those of the nuclear industry practices to identify the elements contributing to public concerns and unfavorable perceptions. In this paper, authors emphasize the importance of proper communications of research results to the public in a manner that non-specialists understand. Further, EPRI supported research and results in the areas of source term, seismic and structural engineering research, analysis using probabilistic risk assessment (PRA), quantification of safety margins, digital technology development and implementation, and plant transient and performance evaluations are discussed in the paper. (orig./HP)

  12. Integrating system safety into the basic systems engineering process

    Science.gov (United States)

    Griswold, J. W.

    1971-01-01

    The basic elements of a systems engineering process are given along with a detailed description of what the safety system requires from the systems engineering process. Also discussed is the safety that the system provides to other subfunctions of systems engineering.

  13. Environmental, Health, and Safety Research Needs for Engineered Nanoscale Materials

    National Research Council Canada - National Science Library

    Alderson, Norris; Alexander, Catherine; Merzbacher, Celia; Chernicoff, William; Middendorf, Paul; Beck, Nancy; Chow, Flora; Poster, Dianne; Danello, Mary Ann; Barrera, Enriqueta

    2006-01-01

    ...) research and information needs related to understanding and management of potential risks of engineered nanoscale materials that may be used, for example, in commercial or consumer products, medical...

  14. Present status of high temperature engineering test and research, 1994

    International Nuclear Information System (INIS)

    1994-10-01

    High temperature gas-cooled reactors have excellent features such as the generation of high temperature close to 1000degC, very high inherent safety and high fuel burnup. By the advanced basic research under high temperature irradiation condition, the creation of various new technologies which become the momentum of future technical innovation can be expected. The construction of the high temperature engineering test reactor (HTTR) was decided in 1987, which aims at the thermal output of 30 MW and the coolant temperature at reactor exit of 950degC. The initial criticality is scheduled in 1998. Japan Atomic Energy Research Institute has advanced the high temperature engineering test and research, and plans the safety verifying test of the HTTR, the test of connecting heat utilization plants and so on. In this report, mainly the results obtained for one year from May, 1993 are summarized. The outline of the high temperature engineering test and development of the HTTR technologies are reported. (K.I.)

  15. Systems engineering applied to integrated safety management for high consequence facilities

    International Nuclear Information System (INIS)

    Barter, R; Morais, B.

    1998-01-01

    Integrated Safety Management is a concept that is being actively promoted by the U.S. Department of Energy as a means of assuring safe operation of its facilities. The concept involves the integration of safety precepts into work planning rather than adjusting for safe operations after defining the work activity. The system engineering techniques used to design an integrated safety management system for a high consequence research facility are described. An example is given to show how the concepts evolved with the system design

  16. Health and safety implications of occupational exposure to engineered nanomaterials.

    Science.gov (United States)

    Stebounova, Larissa V; Morgan, Hallie; Grassian, Vicki H; Brenner, Sara

    2012-01-01

    The rapid growth and commercialization of nanotechnology are currently outpacing health and safety recommendations for engineered nanomaterials. As the production and use of nanomaterials increase, so does the possibility that there will be exposure of workers and the public to these materials. This review provides a summary of current research and regulatory efforts related to occupational exposure and medical surveillance for the nanotechnology workforce, focusing on the most prevalent industrial nanomaterials currently moving through the research, development, and manufacturing pipelines. Their applications and usage precedes a discussion of occupational health and safety efforts, including exposure assessment, occupational health surveillance, and regulatory considerations for these nanomaterials. Copyright © 2011 Wiley Periodicals, Inc.

  17. Safety engineering experiments of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Noboru

    1987-07-24

    The outline of large scale experiments carried out every year since 1969 to obtain fundamental data and then establish the safety engineering standards concerning the manufacturing, storage and transportation, etc. of all explosives was described. Because it becomes recently difficult to ensure the safety distance in powder magazines and powder plants, the sandwich structure with sand is thought to be suitable as the neighboring barrier walls. The special vertical structure for embankments to provide against a emergency explosion is effective to absorb the blast. Explosion behaviors such as initiating sensitivity, detonation, sympathetic detonation, and shock occurence of the ANFO explosives in place of dynamite and the slurry explosives were studied. The safety engineering standards for the manufacturing and application of explosives were studied to establish because accidents by tabacco fire are not still distinguished. Much data concerning early stage fire fighting, a large quantity of flooding and shock occurence from a assumption of ignition during machining in the propellants manufacturing plant, could be obtained. Basic studies were made to prevent pollution in blasting sites. Collected data are utilized for the safety administration after sufficient discussion. (4 figs, 2 tabs, 3 photos, 17 refs)

  18. Patient safety trilogy: perspectives from clinical engineering.

    Science.gov (United States)

    Gieras, Izabella; Sherman, Paul; Minsent, Dennis

    2013-01-01

    This article examines the role a clinical engineering or healthcare technology management (HTM) department can play in promoting patient safety from three different perspectives: a community hospital, a national government health system, and an academic medical center. After a general overview, Izabella Gieras from Huntington Hospital in Pasadena, CA, leads off by examining the growing role of human factors in healthcare technology, and describing how her facility uses clinical simulations in medical equipment evaluations. A section by Paul Sherman follows, examining patient safety initiatives from the perspective of the Veterans Health Administration with a focus on hazard alerts and recalls. Dennis Minsent from Oregon Health & Science University writes about patient safety from an academic healthcare perspective, and details how clinical engineers can engage in multidisciplinary safety opportunities.

  19. Engineering design guidelines for nuclear criticality safety

    International Nuclear Information System (INIS)

    Waltz, W.R.

    1988-08-01

    This document provides general engineering design guidelines specific to nuclear criticality safety for a facility where the potential for a criticality accident exists. The guide is applicable to the design of new SRP/SRL facilities and to major modifications Of existing facilities. The document is intended an: A guide for persons actively engaged in the design process. A resource document for persons charged with design review for adequacy relative to criticality safety. A resource document for facility operating personnel. The guide defines six basic criticality safety design objectives and provides information to assist in accomplishing each objective. The guide in intended to supplement the design requirements relating to criticality safety contained in applicable Department of Energy (DOE) documents. The scope of the guide is limited to engineering design guidelines associated with criticality safety and does not include other areas of the design process, such as: criticality safety analytical methods and modeling, nor requirements for control of the design process

  20. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    For non-reactor nuclear facilities, the U.S. Department of Energy (DOE) does not require that nuclear criticality safety engineers demonstrate qualification for their job. It is likely, however, that more formalism will be required in the future. Current DOE requirements for those positions which do have to demonstrate qualification indicate that qualification should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis is incompletely developed in some areas

  1. Compilation of contract research for the Materials Engineering Branch, Division of Engineering Technology. Annual report for FY 1985. Volume 4

    International Nuclear Information System (INIS)

    1986-03-01

    The compilation of annual reports by contractors to the Materials Engineering Branch of the NRC Office of Research, concentrates on achievements in safety research for the primary system of commercial light water power reactors, particularly with regard to reactor vessels, primary system piping, steam generators and for non-destructive examination of primary system components. This report, covering research conducted during Fiscal Year 1985, is the fourth volume of the series of NUREG-0975, Compilation of Contractor Research for the Materials Engineering Branch, Division of Engineering Technology

  2. Compilation of contract research for the Materials Engineering Branch, Division of Engineering Technology. Annual report for FY 1984. Volume 3

    International Nuclear Information System (INIS)

    1985-04-01

    This compilation of annual reports by contractors to the Materials Engineering Branch of the NRC Office of Research, concentrates on achievments in safety research for the primary system of commercial light water power reactors, particularly with regard to reactor vessels, primary system piping, steam generators and for non-destructive examination of primary system components. This report, covering research conducted during Fiscal Year 1984, is the third volume of the series of NUREG-0975, compilation of Contractor Research for the Materials Engineering Branch, Division of Engineering Technology

  3. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Science.gov (United States)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  4. Environmental, health, and safety effects of engineered nanomaterials: challenges and research needs

    Science.gov (United States)

    Fairbrother, Howard

    2010-04-01

    The number of technologies and consumer products that incorporate engineered nanomaterials (ENMs) has grown rapidly. Indeed, ENMs such as carbon nanotubes and nano-silver, are revolutionizing many commercial technologies and have already been incorporated into more than 800 commercial products, including polymer composites, cell phone batteries, sporting equipment and cosmetics. The global market for ENMs has grown steadily from 7.5 billion in 2003 to 12.7 billion in 2008. Over the next five years, their market value is expected to exceed $27 billion. This surge in demand has been responsible for a corresponding increase in the annual production rates of ENMs. For example, Bayer anticipates that single and multi-walled carbon nanotubes (SWNT and MWNT) production rates will reach 3,000 tons/yr by 2012. Inevitably, some of these synthetic materials will enter the environment either from incidental release during manufacture and transport, or following use and disposal. Consequently, intense scientific research is now being directed towards understanding the environmental, health and safety (EHS) risks posed by ENMs. I will highlight some of the key research challenges and needs in this area, include (i) developing structure-property relationships that will enable physicochemical properties of ENMs to be correlated with environmentally relevant behavior (e.g. colloidal properties, toxicity), (ii) determining the behavior of nanoproducts, and (iii) developing analytical techniques capable of detecting and quantifying the concentration of ENMs in the environment.

  5. Ageing Management for Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    This Safety Guide was developed under the IAEA programme for safety standards for research reactors, which covers all the important areas of research reactor safety. It supplements and elaborates upon the safety requirements for ageing management of research reactors that are established in paras 6.68-6.70 and 7.109 of the IAEA Safety Requirements publication, Safety of Research Reactors. The safety of a research reactor requires that provisions be made in its design to facilitate ageing management. Throughout the lifetime of a research reactor, including its decommissioning, ageing management of its structures, systems and components (SSCs) important to safety is required, to ensure continued adequacy of the safety level, reliable operation of the reactor, and compliance with the operational limits and conditions. Managing the safety aspects of research reactor ageing requires implementation of an effective programme for the monitoring, prediction, and timely detection and mitigation of degradation of SSCs important to safety, and for maintaining their integrity and functional capability throughout their service lives. Ageing management is defined as engineering, operation, and maintenance strategy and actions to control within acceptable limits the ageing degradation of SSCs. Ageing management includes activities such as repair, refurbishment and replacement of SSCs, which are similar to other activities carried out at a research reactor in maintenance and testing or when a modification project takes place. However, it is important to recognize that effective management of ageing requires the use of a methodology that will detect and evaluate ageing degradation as a consequence of the service conditions, and involves the application of countermeasures for prevention and mitigation of ageing degradation. The objective of this Safety Guide is to provide recommendations on managing ageing of SSCs important to safety at research reactors on the basis of international

  6. Ageing Management for Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide was developed under the IAEA programme for safety standards for research reactors, which covers all the important areas of research reactor safety. It supplements and elaborates upon the safety requirements for ageing management of research reactors that are established in paras 6.68-6.70 and 7.109 of the IAEA Safety Requirements publication, Safety of Research Reactors. The safety of a research reactor requires that provisions be made in its design to facilitate ageing management. Throughout the lifetime of a research reactor, including its decommissioning, ageing management of its structures, systems and components (SSCs) important to safety is required, to ensure continued adequacy of the safety level, reliable operation of the reactor, and compliance with the operational limits and conditions. Managing the safety aspects of research reactor ageing requires implementation of an effective programme for the monitoring, prediction, and timely detection and mitigation of degradation of SSCs important to safety, and for maintaining their integrity and functional capability throughout their service lives. Ageing management is defined as engineering, operation, and maintenance strategy and actions to control within acceptable limits the ageing degradation of SSCs. Ageing management includes activities such as repair, refurbishment and replacement of SSCs, which are similar to other activities carried out at a research reactor in maintenance and testing or when a modification project takes place. However, it is important to recognize that effective management of ageing requires the use of a methodology that will detect and evaluate ageing degradation as a consequence of the service conditions, and involves the application of countermeasures for prevention and mitigation of ageing degradation. The objective of this Safety Guide is to provide recommendations on managing ageing of SSCs important to safety at research reactors on the basis of international

  7. Karlsruhe Nuclear Research Center, Institute of Neutron Physics and Reactor Engineering. Progress report on research and development work in 1993

    International Nuclear Information System (INIS)

    1994-03-01

    The Institute of Neutron Physics and Reactor Engineering is concerned with research work in the field of nuclear engineering related to the safety of thermal reactors as well as with specific problems of fusion reactor technology. Under the project of nuclear safety research, the Institute works on concepts designed to drastically improve reactor safety. Apart from that, methods to estimate and minimize the radiological consequences of reactor accidents are developed. Under the fusion technology project, the Institute deals with neutron physics and technological questions of the breeding blanket. Basic research covers technico-physical questions of the interaction between light ion radiation of a high energy density and matter. In addition and to a small extent, questions of employing hydrogen in the transport area are studied. (orig.) [de

  8. Safety of Research Reactors. Safety Requirements

    International Nuclear Information System (INIS)

    2010-01-01

    The main objective of this Safety Requirements publication is to provide a basis for safety and a basis for safety assessment for all stages in the lifetime of a research reactor. Another objective is to establish requirements on aspects relating to regulatory control, the management of safety, site evaluation, design, operation and decommissioning. Technical and administrative requirements for the safety of research reactors are established in accordance with these objectives. This Safety Requirements publication is intended for use by organizations engaged in the site evaluation, design, manufacturing, construction, operation and decommissioning of research reactors as well as by regulatory bodies

  9. Safety-related LWR research. Annual report 1989

    International Nuclear Information System (INIS)

    1990-11-01

    The main topics in this annual report 1989 are phenomena of heavy fuel damage and single aspects of a core meltdown accident. The examined single aspects refer to aerosol behavior and filter engineering and to methods for assessment and minimization of the radiological consequences of reactor accidents. Different contributions to selected, safety-related problems of an advanced pressurized-water reactor complete the topic spectrum. The annual report 1989 describes the progress of the research work wich was carried out in the area of safety research by institutes and departments of the KfK, and on behalf of the KfK by external institutions. The individual contributions represent the status of work at the end of the year under review, 1989. (orig./HP) [de

  10. Developing safety culture in nuclear power engineering

    International Nuclear Information System (INIS)

    Tevlin, S.A.

    2000-01-01

    The new issue (no. 11) of the IAEA publications series Safety Reports, devoted to the safety culture in nuclear engineering Safety culture development in the nuclear activities. Practical recommendations to achieve success, is analyzed. A number of recommendations of international experts is presented and basic general indicators of satisfactory and insufficient safety culture in the nuclear engineering are indicated. It is shown that the safety culture has two foundations: human behavior and high quality of the control system. The necessity of creating the confidence by the management at all levels of the enterprise, development of individual initiative and responsibility of the workers, which make it possible to realize the structural hierarchic system, including technical, human and organizational constituents, is noted. Three stages are traced in the process of introducing the safety culture. At the first stage the require,emts of scientific-technical documentation and provisions of the governmental, regional and control organs are fulfilled. At the second stage the management of the organization accepts the safety as an important direction in its activities. At the third stage the organization accomplishes its work, proceeding from the position of constant safety improvement. The general model of the safety culture development is considered [ru

  11. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    Historically, new entrants to the practice of nuclear criticality safety have learned their job primarily by on-the-job training (OJT) often by association with an experienced nuclear criticality safety engineer who probably also learned their job by OJT. Typically, the new entrant learned what he/she needed to know to solve a particular problem and accumulated experience as more problems were solved. It is likely that more formalism will be required in the future. Current US Department of Energy requirements for those positions which have to demonstrate qualification indicate that it should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis i's incompletely developed in some areas. Details of this analysis are provided in this report

  12. Fire-safety engineering and performance-based codes

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    project administrators, etc. The book deals with the following topics: • Historical presentation on the subject of fire • Legislation and building project administration • European fire standardization • Passive and active fire protection • Performance-based Codes • Fire-safety Engineering • Fundamental......Fire-safety Engineering is written as a textbook for Engineering students at universities and other institutions of higher education that teach in the area of fire. The book can also be used as a work of reference for consulting engineers, Building product manufacturers, contractors, building...... thermodynamics • Heat exchange during the fire process • Skin burns • Burning rate, energy release rate and design fires • Proposal to Risk-based design fires • Proposal to a Fire scale • Material ignition and flame spread • Fire dynamics in buildings • Combustion products and toxic gases • Smoke inhalation...

  13. OASIS: An automotive analysis and safety engineering instrument

    International Nuclear Information System (INIS)

    Mader, Roland; Armengaud, Eric; Grießnig, Gerhard; Kreiner, Christian; Steger, Christian; Weiß, Reinhold

    2013-01-01

    In this paper, we describe a novel software tool named OASIS (AutOmotive Analysis and Safety EngIneering InStrument). OASIS supports automotive safety engineering with features allowing the creation of consistent and complete work products and to simplify and automate workflow steps from early analysis through system development to software development. More precisely, it provides support for (a) model creation and reuse, (b) analysis and documentation and (c) configuration and code generation. We present OASIS as a part of a tool chain supporting the application of a safety engineering workflow aligned with the automotive safety standard ISO 26262. In particular, we focus on OASIS' (1) support for property checking and model correction as well as its (2) support for fault tree generation and FMEA (Failure Modes and Effects Analysis) table generation. Finally, based on the case study of hybrid electric vehicle development, we demonstrate that (1) and (2) are able to strongly support FTA (Fault Tree Analysis) and FMEA

  14. Engineering systems reliability, safety, and maintenance an integrated approach

    CERN Document Server

    Dhillon, B S

    2017-01-01

    Today, engineering systems are an important element of the world economy and each year billions of dollars are spent to develop, manufacture, operate, and maintain various types of engineering systems around the globe. Many of these systems are highly sophisticated and contain millions of parts. For example, a Boeing jumbo 747 is made up of approximately 4.5 million parts including fasteners. Needless to say, reliability, safety, and maintenance of systems such as this have become more important than ever before.  Global competition and other factors are forcing manufacturers to produce highly reliable, safe, and maintainable engineering products. Therefore, there is a definite need for the reliability, safety, and maintenance professionals to work closely during design and other phases. Engineering Systems Reliability, Safety, and Maintenance: An Integrated Approach eliminates the need to consult many different and diverse sources in the hunt for the information required to design better engineering syste...

  15. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  16. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Bess, J.D.; Briggs, J.B.; Garcia, A.S.

    2011-01-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  17. Safety upgrades to the NRU research reactor

    International Nuclear Information System (INIS)

    DeAbreu, B.; Mark, J.M.; Mutterback, E.J.

    1998-01-01

    The NRU (National Research Universal) Reactor is a 135 MW thermal research facility located at Chalk River Laboratories, and is owned and operated by Atomic Energy of Canada Limited. One of the largest and most versatile research reactors in the world, it serves as the R and D workhorse for Canada's CANDU business while at the same time filling the role as one of the world's major producers of medical radioisotopes. AECL plans to extend operation of the NRU reactor to approximately the year 2005 when a new replacement, the Irradiation Research Facility (IRF) will be available. To achieve this, AECL has undertaken a program of safety reassessment and upgrades to enhance the level of safety consistent with modem requirements. An engineering assessment/inspection of critical systems, equipment and components was completed and seven major safety upgrades are being designed and installed. These upgrades will significantly reduce the reactor's vulnerability to common mode failures and external hazards, with particular emphasis on seismic protection. The scheduled completion date for the project is 1999 December at a cost approximately twice the annual operating cost. All work on the NRU upgrade project is planned and integrated into the regular operating cycles of the reactor; no major outages are anticipated. This paper describes the safety upgrades and discusses the technical and managerial challenges involved in extending the operating life of the NRU reactor. (author)

  18. 2012 national state safety engineers and traffic engineers peer-to-peer workshop.

    Science.gov (United States)

    2013-11-01

    The Illinois Department of Transportation (IDOT) and the Illinois Center for Transportation (ICT) sponsored and hosted the : 2012 National State Safety Engineers and Traffic Engineers Peer-to-Peer Workshop on November 14 and 15, 2012, at the : Hyatt ...

  19. Criticality safety engineer training at WSRC

    International Nuclear Information System (INIS)

    Williamson, T.G.; Mincey, J.F.

    1993-01-01

    Two programs designed to prepare engineers for certification as criticality safety engineers are offered at Westinghouse Savannah River Company (WSRC). One program, Student On Loan Criticality Engineer Training (SOLCET), is an intensive 2-yr course involving lectures, rigorous problem assignments, and mentoring. The other program, In-Field Criticality Engineer Training (IN-FIELD), is a less intensive series of lectures and problem assignments. Both courses are conducted by members of the Applied Physics Group (APG) of the Savannah River Technical Center, the organization at WSRC responsible for the operation and maintenance of criticality codes and for training of code users

  20. Research oil guidelines for safety review of category 2 waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Safety confirmation items and monitoring items for engineered barriers were compiled, considering the current technical status and monitoring plan for the simulated subsurface disposal and its test facilities. In order to develop the guidelines of the safety review for the disposal of LLW generated from RI facilities and research facilities, technical issues relating toxic substances were surveyed. (author)

  1. Safety in offshore engineering an academic course covering safety in offshore wind

    NARCIS (Netherlands)

    Cerda Salzmann, D.J.

    2011-01-01

    Offshore projects are known for their challenging conditions, generally leading to high risks. Therefore no offshore project can go without a continuous and extensive assessment on safety issues. The Delft University of Technology is currently developing a course "Safety in Offshore Engineering"

  2. New engineering safety factors for Loviisa NPP core calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kuopanportti, Jaakko; Saarinen, Simo; Lahtinen, Tuukka; Ekstroem, Karoliina [Fortum Power and Heat Ltd., Fortum (Finland)

    2017-09-15

    In Loviisa NPP, there are two limiting thermal margins called the enthalpy rise margin and the linear heat rate margin that are monitored during normal operation. Engineering safety factors are applied in determination of both of these factors. The factors take into account the effect of various manufacturing tolerances, impact of the irradiation and simulation uncertainties on the local heat rate and on the enthalpy of the coolant. The engineering factors were re-evaluated during 2015 and the factors were approved by the Finnish radiation and nuclear safety authority in 2016. The re-evaluation was performed by considering all of the identified phenomena that affect the local heat rate or the enthalpy of the coolant. This paper summarizes the work that was performed during the re-evaluation of the engineering safety factors and presents the results for each uncertainty component. The new engineering safety factors are 1.115 for the linear heat rate and 1.100 for the enthalpy rise margin when the old factors were 1.12 and 1.16, respectively. The new factors improve the fuel economy by about 1%.

  3. Definitions of engineered safety features and related features for nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    In light water moderated, light water cooled nuclear power plants, definitions are given of engineered safety features which are designed to suppress or prevent dispersion of radioactive materials due to damage etc. of fuel at the times of power plant failures, and of related features which are designed to actuate or operate the engineered safety features. Contents are the following: scope of engineered safety features and of related features; classification of engineered safety features (direct systems and indirect systems) and of related features (auxiliaries, emergency power supply, and protective means). (Mori, K.)

  4. Systems engineered health and safety criteria for safety analysis reports

    International Nuclear Information System (INIS)

    Beitel, G.A.; Morcos, N.

    1993-01-01

    The world of safety analysis is filled with ambiguous words: codes and standards, consequences and risks, hazard and accident, and health and safety. These words have been subject to disparate interpretations by safety analysis report (SAR) writers, readers, and users. open-quotes Principal health and safety criteriaclose quotes has been one of the most frequently misused phrases; rarely is it used consistently or effectively. This paper offers an easily understood definition for open-quotes principal health and safety criteriaclose quotes and uses systems engineering to convert an otherwise mysterious topic into the primary means of producing an integrated SAR. This paper is based on SARs being written for environmental restoration and waste management activities for the U.S. Department of Energy (DOE). Requirements for these SARs are prescribed in DOE Order 5480-23, open-quotes Nuclear Safety Analysis Reports.close quotes

  5. On the development of an International Curriculum on Hydrogen Safety Engineering and its Implementation into Educational Programmes

    International Nuclear Information System (INIS)

    Dahoe, A.E.; Molkov, V.V.

    2006-01-01

    The present paper provides an overview of the development of an International Curriculum on Hydrogen Safety Engineering and its implementation into new educational programmes. The curriculum has a modular structure, and consists of five basic, six fundamental and four applied modules. The reasons for this particular structure are explained. To accelerate the development of teaching materials and their implementation in training/educational programmes, an annual European Summer School on Hydrogen Safety will be held (the first Summer School is from 15-24 Aug 2006, Belfast, UK), where leading experts deliver keynote lectures to an audience of researchers on topics covering the state-of-the-art in Hydrogen Safety Science and Engineering. The establishment of a Postgraduate Certificate course in Hydrogen Safety Engineering at the University of Ulster (starting in September 2006) as a first step in the development of a worldwide system of Hydrogen Safety education and training is described. (authors)

  6. The Need for Cyber-Informed Engineering Expertise for Nuclear Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert Stephen [Idaho National Laboratory

    2015-12-01

    Engineering disciplines may not currently understand or fully embrace cyber security aspects as they apply towards analysis, design, operation, and maintenance of nuclear research reactors. Research reactors include a wide range of diverse co-located facilities and designs necessary to meet specific operational research objectives. Because of the nature of research reactors (reduced thermal energy and fission product inventory), hazards and risks may not have received the same scrutiny as normally associated with power reactors. Similarly, security may not have been emphasized either. However, the lack of sound cybersecurity defenses may lead to both safety and security impacts. Risk management methodologies may not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Although most research reactors are old and may not have the same digital footprint as newer facilities, any digital instrument and control function must be considered as a potential attack platform that can lead to sabotage or theft of nuclear material, especially for some research reactors that store highly enriched uranium. This paper will provide a discussion about the need for cyber-informed engineering practices that include the entire engineering lifecycle. Cyber-informed engineering as referenced in this paper is the inclusion of cybersecurity aspects into the engineering process. A discussion will consider several attributes of this process evaluating the long-term goal of developing additional cyber safety basis analysis and trust principles. With a culture of free information sharing exchanges, and potentially a lack of security expertise, new risk analysis and design methodologies need to be developed to address this rapidly evolving (cyber) threatscape.

  7. Activities on safety for the cross-cutting issue of research reactors in the IAEA

    International Nuclear Information System (INIS)

    Perrotta, J.A.; Boado Magan, H.J.

    2003-01-01

    IAEA activities in the field of research reactor safety are included in the programme of the Division of Nuclear Installations Safety and implemented by the Engineering Safety Section through its Research Reactor Safety Unit. Following the objectives of the Division, the results of the IAEA missions and the recommendations from International Advisory Groups, the IAEA has conducted in recent years a certain number of activities aiming to enhance the safety of research reactors. The following activities are discussed in this paper: (a) the new Requirements for the Safety of Research Reactors, main features and differences with previous standards (SS-35-S1 and SS-35-S2) and the grading approach for implementation; (b) new documents being developed (safety guides, safety reports and TECDOCs); (c) activities related to the Incident Reporting System for Research Reactor (IRSRR); (d) the new features implemented for the (Integrated Safety Assessment of Research Reactors) INSARR missions; (e) the Code of Conduct on the Safety of Research Reactors developed, following the General Conference Resolution GC(45)/RES/10; and (f) the survey on the safety of research reactors conducted in the year 2002 and the results obtained. (author)

  8. Safety philosophy and research program of the LWR development in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Nickel, H.

    1978-11-01

    In this paper the framework of the reactor safety concept in the Federal Republic of Germany will be described. It is grounded on several cornerstones the most important of which are a closed fuel cycle concept, a statutory licensing and supervision procedure, a set of compulsory safety-engineering requirements and comprehensive research in the field of reactor-safety. The main part of this last area is the Reactor Safety Research Program sponsored by the Federal Minister for Research and Technology. Furthermore, in this paper emphasis is laid on safety requirements particularly with regard to the quality of the reactor pressure vessel. (orig.) [de

  9. Twenty-third water reactor safety information meeting. Volume 3, structural and seismic engineering, primary systems integrity, equipment operability and aging, ECCS strainer blockage research and regulatory issues

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 3, presents topics in Structural & Seismic Engineering, Primary Systems Integrity, Equipment Operability and Aging, and ECCS Strainer Blockage Research & Regulatory Issues. Individual papers have been cataloged separately.

  10. Twenty-third water reactor safety information meeting. Volume 3, structural and seismic engineering, primary systems integrity, equipment operability and aging, ECCS strainer blockage research and regulatory issues

    International Nuclear Information System (INIS)

    Monteleone, S.

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 3, presents topics in Structural ampersand Seismic Engineering, Primary Systems Integrity, Equipment Operability and Aging, and ECCS Strainer Blockage Research ampersand Regulatory Issues. Individual papers have been cataloged separately

  11. Safety research activities on radioactive waste management in JNES

    International Nuclear Information System (INIS)

    Otsuka, Ichiro; Aoki, Hiroomi; Suko, Takeshi; Onishi, Yuko; Masuda, Yusuke; Kato, Masami

    2010-01-01

    Research activities in safety regulation of radioactive waste management are presented. Major activities are as follows. As for the geological disposal, major research areas are, developing 'safety indicators' to judge the adequacy of site investigation results presented by an implementer (NUMO), compiling basic requirements of safety design and safety assessment needed to make a safety review of the license application and developing an independent safety assessment methodology. In proceeding research, JNES, Japan Atomic Energy Agency (JAEA) and the National Institute of Advanced Industrial Science and Technology (AIST) signed an agreement of cooperative study on geological disposal in 2007. One of the ongoing joint studies under this agreement has been aimed at investigating regional-scale hydrogeological modeling using JAEA's Horonobe Underground Research Center. In the intermediate depth disposal, JNES conducted example analysis of reference facility and submitted the result to Nuclear Safety Commission of Japan (NSC). JNES is also listing issues to be addressed in the safety review of the license application and tries to make criteria of the review. Furthermore, JNES is developing analysis tool to evaluate long term safety of the facility and conducting an experiment to investigate long term behavior of engineered barrier system. In the near surface disposal of waste package, it must be confirmed by a regulatory inspector whether each package meets safety requirements. JNES continuously updates the confirmation methodology depending on new processing technologies. The clearance system was established in 2005. Two stages of regulatory involvement were adapted, 1) approval for measurement and judgment methods developed by the nuclear operator and 2) confirmation of measurement and judgment results based on approved methods. JNES is developing verification methodology for each stage. As for decommissioning, based on the regulatory needs and a research program

  12. Do Undergraduate Engineering Faculty Include Occupational and Public Health and Safety in the Engineering Curriculum?

    Science.gov (United States)

    Farwell, Dianna; And Others

    1995-01-01

    The purpose of this study was to determine whether and, if so, why engineering faculty include occupational and public health and safety in their undergraduate engineering courses. Data were collected from 157 undergraduate engineering faculty from 65 colleges of engineering in the United States. (LZ)

  13. Fuel safety research 1999

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-07-01

    In April 1999, the Fuel Safety Research Laboratory was newly established as a result of reorganization of the Nuclear Safety Research Center, JAERI. The laboratory was organized by combining three laboratories, the Reactivity Accident Laboratory, the Fuel Reliability Laboratory, and a part of the Sever Accident Research Laboratory. Consequently, the Fuel Safety Research Laboratory is now in charge of all the fuel safety research in JAERI. Various types of experimental and analytical researches are conducted in the laboratory by using the unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and hot cells in JAERI. The laboratory consists of five research groups corresponding to each research fields. They are; (a) Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). (b) Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). (c) Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). (d) Research group of fuel behavior analysis (FEMAXI group). (e) Research group of FP release/transport behavior from irradiated fuel (VEGA group). This report summarizes the outline of research activities and major outcomes of the research executed in 1999 in the Fuel Safety Research Laboratory. (author)

  14. Expertise preservation in nuclear technology - the new master course ''nuclear safety engineering'' at the RWTH Aachen

    International Nuclear Information System (INIS)

    Backus, Sabine; Heuters, Michael

    2011-01-01

    The energy concept of the German federal Government in 2010 emphasizes the importance of nuclear energy within the energy policy. The lifetime extension of German nuclear power plants and the long-term safety of radioactive waste storage is the new challenge with respect to the expertise preservation in Germany. The owners of nuclear utilities have started to assist new research programs in the field of nuclear engineering at the German universities. RWE Power and ThyssenKrupp have signed a cooperation contract in 2007 with the RWTH Aachen. The companies bear the expenses for professorships ''nuclear fuel cycle'', ''simulation in nuclear engineering'' and ''reactor safety and engineering''. An elongation of the contract is planned. A master course ''nuclear safety engineering'' over 4 semesters covers the complete fuel cycle. The authors discuss issues concerning the information of students, experiences with the expectations of students concerning their future employment, acceptance of nuclear energy and related topics.

  15. Some considerations for assurance of reactor safety from experiences in research reactors

    International Nuclear Information System (INIS)

    Okamoto, Sunao; Nishihara, Hideaki; Shibata, Toshikazu

    1981-01-01

    For the purpose of assuring reactor safety and strengthening research in the related fields, a multi-disciplinary group was formed among university researchers, including social scientists, with a special allocation of the Grant-in-Aid from the Ministry of Education, Science and Culture. An excerpt from the first year's report (1979 -- 1980) is edited here, which contains an interpretation of Murphy's reliability engineering law, a scope of reactor diagnostic studies to be pursued at universities, and safety measures already implemented or suggested to be implemented in university research reactors. (author)

  16. UPS fellowships support creative engineering research

    OpenAIRE

    Crumbley, Liz

    2007-01-01

    A new $40,000 grant marks the 11th anniversary of support from the United Parcel Service (UPS) Foundation for doctoral fellowships in the Human Factors and Safety Engineering Graduate Program in the Grado Department of Industrial and Systems Engineering (ISE) in the College of Engineering.

  17. Safety risk management of underground engineering in China: Progress, challenges and strategies

    Directory of Open Access Journals (Sweden)

    Qihu Qian

    2016-08-01

    Full Text Available Underground construction in China is featured by large scale, high speed, long construction period, complex operation and frustrating situations regarding project safety. Various accidents have been reported from time to time, resulting in serious social impact and huge economic loss. This paper presents the main progress in the safety risk management of underground engineering in China over the last decade, i.e. (1 establishment of laws and regulations for safety risk management of underground engineering, (2 implementation of the safety risk management plan, (3 establishment of decision support system for risk management and early-warning based on information technology, and (4 strengthening the study on safety risk management, prediction and prevention. Based on the analysis of the typical accidents in China in the last decade, the new challenges in the safety risk management for underground engineering are identified as follows: (1 control of unsafe human behaviors; (2 technological innovation in safety risk management; and (3 design of safety risk management regulations. Finally, the strategies for safety risk management of underground engineering in China are proposed in six aspects, i.e. the safety risk management system and policy, law, administration, economy, education and technology.

  18. Proceedings of Twenty-Seventh Annual Institute on Mining Health, Safety and Research

    Energy Technology Data Exchange (ETDEWEB)

    Bockosh, G.R. [ed.] [Pittsburgh Research Center, US Dept. of Energy (United States); Langton, J. [ed.] [Mine Safety and Health Administration, US Dept. of Labor (United States); Karmis, M. [ed.] [Virginia Polytechnic Institute and State University. Dept. of Mining and Minerals Engineering, Blacksburg (United States)

    1996-12-31

    This Proceedings contains the presentations made during the program of the Twenty-Seventh Annual Institute on Mining Health, Safety and Research held at Virginia Polytechnic Institute and State University, Blacksburg, Virginia, on August 26-28, 1996. The Twenty-Seventh Annual Institute on Mining, Health, Safety and Research was the latest in a series of conferences held at Virginia Polytechnic Institute and State University, cosponsored by the Mine Safety and Health Administration, United States Department of Labor, and the Pittsburgh Research Center, United States Department of Energy (formerly part of the Bureau of Mines, U. S. Department of Interior). The Institute provides an information forum for mine operators, managers, superintendents, safety directors, engineers, inspectors, researchers, teachers, state agency officials, and others with a responsible interest in the important field of mining health, safety and research. In particular, the Institute is designed to help mine operating personnel gain a broader knowledge and understanding of the various aspects of mining health and safety, and to present them with methods of control and solutions developed through research. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  19. Concerns related to Safety Management of Engineered Nanomaterials in research environment

    International Nuclear Information System (INIS)

    Groso, A; Meyer, Th

    2013-01-01

    Since the rise of occupational safety and health research on nanomaterials a lot of progress has been made in generating health effects and exposure data. However, when detailed quantitative risk analysis is in question, more research is needed, especially quantitative measures of workers exposure and standards to categorize toxicity/hazardousness data. In the absence of dose-response relationships and quantitative exposure measurements, control banding (CB) has been widely adopted by OHS community as a pragmatic tool in implementing a risk management strategy based on a precautionary approach. Being in charge of health and safety in a Swiss university, where nanomaterials are largely used and produced, we are also faced with the challenge related to nanomaterials' occupational safety. In this work, we discuss the field application of an in-house risk management methodology similar to CB as well as some other methodologies. The challenges and issues related to the process will be discussed. Since exact data on nanomaterials hazardousness are missing for most of the situations, we deduce that the outcome of the analysis for a particular process is essentially the same with a simple methodology that determines only exposure potential and the one taking into account the hazardousness of ENPs. It is evident that when reliable data on hazardousness factors (as surface chemistry, solubility, carcinogenicity, toxicity etc.) will be available, more differentiation will be possible in determining the risk for different materials. On the protective measures side, all CB methodologies are inclined to overprotection side, only that some of them suggest comprehensive protective/preventive measures and others remain with basic advices. The implementation and control of protective measures in research environment will also be discussed.

  20. Concerns related to Safety Management of Engineered Nanomaterials in research environment

    Science.gov (United States)

    Groso, A.; Meyer, Th

    2013-04-01

    Since the rise of occupational safety and health research on nanomaterials a lot of progress has been made in generating health effects and exposure data. However, when detailed quantitative risk analysis is in question, more research is needed, especially quantitative measures of workers exposure and standards to categorize toxicity/hazardousness data. In the absence of dose-response relationships and quantitative exposure measurements, control banding (CB) has been widely adopted by OHS community as a pragmatic tool in implementing a risk management strategy based on a precautionary approach. Being in charge of health and safety in a Swiss university, where nanomaterials are largely used and produced, we are also faced with the challenge related to nanomaterials' occupational safety. In this work, we discuss the field application of an in-house risk management methodology similar to CB as well as some other methodologies. The challenges and issues related to the process will be discussed. Since exact data on nanomaterials hazardousness are missing for most of the situations, we deduce that the outcome of the analysis for a particular process is essentially the same with a simple methodology that determines only exposure potential and the one taking into account the hazardousness of ENPs. It is evident that when reliable data on hazardousness factors (as surface chemistry, solubility, carcinogenicity, toxicity etc.) will be available, more differentiation will be possible in determining the risk for different materials. On the protective measures side, all CB methodologies are inclined to overprotection side, only that some of them suggest comprehensive protective/preventive measures and others remain with basic advices. The implementation and control of protective measures in research environment will also be discussed.

  1. Systems engineering research

    OpenAIRE

    Sahraoui , Abd-El-Kader; Buede , Dennis ,; Sage , Andrew ,

    2008-01-01

    International audience; In this paper, we propose selected research topics that are believed central to progress and growth in the application of systems engineering (SE). As a professional activity, and as an intellectual activity, systems engineering has strong links to such associated disciplines as decision analysis, operation research, project management, quality management, and systems design. When focussing on systems engineering research, we should distinguish between subjects that ar...

  2. Compilation of contract research for the Materials Engineering Branch, Division of Engineering

    International Nuclear Information System (INIS)

    1991-03-01

    This compilation of annual reports for FY 1990 by contractors to the Materials Engineering Branch of the Nuclear Regulatory Commission Office of Research concentrates on achievements in safety research for the primary system of commercial light water power reactors, particularly with regard to reactor vessels, primary system piping, steam generators, and nondestructive examination of primary system components. Separate abstracts have been prepared for each of the reports which are divided into the following categories: (1) vessel and piping fracture mechanics (including irradiation embrittlement); (2) pressure vessel surveillance dosimetry; (3) steam generators, aging, and environmental cracking; and (4) nondestructive examination techniques

  3. Transport fire safety engineering in the European Union - project TRANSFEU

    Directory of Open Access Journals (Sweden)

    Jolanta Maria RADZISZEWSKA-WOLIŃSKA

    2011-01-01

    Full Text Available Article presents European Research project (of FP7-SST-2008-RTD-1 for Surface transportation TRANSFEU. Projects undertakes to deliver both a reliable toxicity measurement methodology and a holistic fire safety approach for all kind of surface transport. It bases on a harmonized Fire Safety Engineering methodology which link passive fire security with active fire security mode. This all embracing system is the key to attain optimum design solutions in respect to fire safety objectives as an alternative to the prescriptive approach. It will help in the development of innovative solutions (design and products used for the building of the surface transport which will better respect the environment.In order to reach these objectives new toxicity measurement methodology and related classification of materials, new numerical fire simulation tools, fire test methodology (laboratory and full scale and a decisive tool to optimize or explore new design in accordance to the fire safety requirements will be developed.

  4. Safety risk assessment for vertical concrete formwork activities in civil engineering construction.

    Science.gov (United States)

    López-Arquillos, Antonio; Rubio-Romero, Juan Carlos; Gibb, Alistair G F; Gambatese, John A

    2014-01-01

    The construction sector has one of the worst occupational health and safety records in Europe. Of all construction tasks, formwork activities are associated with a high frequency of accidents and injuries. This paper presents an investigation of the activities and related safety risks present in vertical formwork for in-situ concrete construction in the civil engineering sector. Using the methodology of staticized groups, twelve activities and ten safety risks were identified and validated by experts. Every safety risk identified in this manner was quantified for each activity using binary methodology according to the frequency and severity scales developed in prior research. A panel of experts was selected according to the relevant literature on staticized groups. The results obtained show that the activities with the highest risk in vertical formwork tasks are: Plumbing and leveling of forms, cutting of material, handling materials with cranes, and climbing or descending ladders. The most dangerous health and safety risks detected were falls from height, cutting and overexertion. The research findings provide construction practitioners with further evidence of the hazardous activities associated with concrete formwork construction and a starting point for targeting worker health and safety programmes.

  5. Psychological Safety and Norm Clarity in Software Engineering Teams

    OpenAIRE

    Lenberg, Per; Feldt, Robert

    2018-01-01

    In the software engineering industry today, companies primarily conduct their work in teams. To increase organizational productivity, it is thus crucial to know the factors that affect team effectiveness. Two team-related concepts that have gained prominence lately are psychological safety and team norms. Still, few studies exist that explore these in a software engineering context. Therefore, with the aim of extending the knowledge of these concepts, we examined if psychological safety and t...

  6. Safety outcomes for engineering asset management organizations: Old problem with new solutions?

    International Nuclear Information System (INIS)

    Novak, Jeremy; Farr-Wharton, Ben; Brunetto, Yvonne; Shacklock, Kate; Brown, Kerry

    2017-01-01

    The issue of safety and longevity of engineering assets is of increasing importance because of their impact when disasters happen. This paper addresses a literature gap by examining the role of workplace relationships in employees' safety behaviour, and builds on the Resilience Engineering (RE) framework by examining some organisational culture factors affecting how employees behave. A Social Exchange framework is used to examine the impact of supervisor-employee relationships, employee commitment to safety practices, and the type of maintenance culture upon employees’ commitment to safety and safety outcomes. Survey data from 284 technical and engineering employees in engineering asset management organisations within Australia were analyzed using Structural Equation Modelling (SEM). Effective employee relationships with management and a proactive maintenance culture were associated with employee commitment to safety culture and safety outcomes. The findings provide empirical support for embedding an effective organisational culture focused on a proactive maintenance approach, along with ensuring employees are committed to safety processes, to ensure safety outcomes and also asset longevity. One study contribution is that good safety outcomes do not develop in a vacuum; instead they are built on effective workplace relationships. Therefore, SET helps to explain the forming of effective safety culture. - Highlights: • Effective workplace relationships with management positively affect organisational safety outcomes. • Supported maintenance cultures positively affect organisational safety outcomes. • Asset longevity requires strong focus on maintenance and safety embedded in the work cultures and everyday practices of employees.

  7. Use of university research reactors to teach control engineering

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1991-01-01

    University research reactors (URRs) have provided generations of students with the opportunity to receive instruction and do hands-on work in reactor dynamics, neutron scattering, health physics, and neutron activation analysis. Given that many URRs are currently converting to programmable control systems, the opportunity now exists to provide a similar learning experience to those studying systems control engineering. That possibility is examined here with emphasis on the need for the inclusion of experiment in control engineering curricula, the type of activities that could be performed, and safety considerations

  8. Barrier performance researches for the safety evaluation

    International Nuclear Information System (INIS)

    Niibori, Yuichi

    2004-01-01

    So far, many researches were conducted to propose a scientific evidence (a safety case) for the realization of geological disposal in Japan. In order to regulate the geological disposal system of radioactive wastes, on the other hand, we need also a holistic approach to integrate various data related for the performance evaluations of the engineered barrier system and the natural barrier system. However, the scientific bases are not sufficient to establish the safety regulation for such a natural system. For example, we often apply the specific probability density function (PDF) to the uncertainty of barrier system due to the essential heterogeneity. However, the applicability is not clear in the regulation point of view. A viewpoint to understand such an applicability of PDFs has been presented. (author)

  9. Safety I-II, resilience and antifragility engineering: a debate explained through an accident occurring on a mobile elevating work platform.

    Science.gov (United States)

    Martinetti, Alberto; Chatzimichailidou, Maria Mikela; Maida, Luisa; van Dongen, Leo

    2018-04-24

    Occupational health and safety (OHS) represents an important field of exploration for the research community: in spite of the growth of technological innovations, the increasing complexity of systems involves critical issues in terms of degradation of the safety levels. In such a situation, new safety management approaches are now mandatory in order to face the safety implications of the current technological evolutions. Along these lines, performing risk-based analysis alone seems not to be enough anymore. The evaluation of robustness, antifragility and resilience of a socio-technical system is now indispensable in order to face unforeseen events. This article will briefly introduce the topics of Safety I and Safety II, resilience engineering and antifragility engineering, explaining correlations, overlapping aspects and synergies. Secondly, the article will discuss the applications of those paradigms to a real accident, highlighting how they can challenge, stimulate and inspire research for improving OHS conditions.

  10. Modeling for safety in a synthesis-centric systems engineering framework

    NARCIS (Netherlands)

    Markovski, J.; Mortel - Fronczak, van de J.M.; Ortmeier, F.; Daniel, P.

    2012-01-01

    The ever-increasing complexity of safety-critical systems puts high demands on safety assurance and certification. We focus on the development of control software, where safety) requirements engineering plays a crucial and delicate role. Nowadays, most of the safety features are ensured by the

  11. Fuel safety research 2000

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    In April 1999, the Fuel Safety Research Laboratory was newly established as a part of reorganization of the Nuclear Safety Research Center, JAERI. The new laboratory was organized by combining three pre-existing laboratories, Reactivity Accident Laboratory, Fuel Reliability Laboratory, and a part of Severe Accident Research Laboratory. The Fuel Safety Research Laboratory becomes to be in charge of all fuel safety research in JAERI. Various experimental and analytical researches are conducted in the laboratory by using the unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and hot cells in JAERI. The laboratory consists of following five research groups corresponding to each research fields; (a) Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). (b) Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). (c) Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). (d) Research group of fuel behavior analysis (FEMAXI group). (e) Research group of FP release/transport behavior from irradiated fuel (VEGA group). The research activities in year 2000 produced many important data and information. They are, for example, failure of high burnup BWR fuel rod under RIA conditions, data on the behavior of hydrided Zircaloy cladding under LOCA conditions and FP release data from VEGA experiments at very high temperature/pressure condition. This report summarizes the outline of research activities and major outcomes of the research executed in 2000 in the Fuel Safety Research Laboratory. (author)

  12. Designing requirements engineering research

    NARCIS (Netherlands)

    Wieringa, Roelf J.; Heerkens, Johannes M.G.

    2007-01-01

    Engineering sciences study different topics than natural sciences, and utility is an essential factor in choosing engineering research problems. But despite these differences, research methods for the engineering sciences are no different than research methods for any other kind of science. At most

  13. Human and organization factors: engineering operating safety into offshore structures

    International Nuclear Information System (INIS)

    Bea, Robert G.

    1998-01-01

    History indicates clearly that the safety of offshore structures is determined primarily by the humans and organizations responsible for these structures during their design, construction, operation, maintenance, and decommissioning. If the safety of offshore structures is to be preserved and improved, then attention of engineers should focus on to how to improve the reliability of the offshore structure 'system,' including the people that come into contact with the structure during its life-cycle. This article reviews and discusss concepts and engineering approaches that can be used in such efforts. Two specific human factor issues are addressed: (1) real-time management of safety during operations, and (2) development of a Safety Management Assessment System to help improve the safety of offshore structures

  14. Payload Safety: Risk and Characteristic-Based Control of Engineered Nanomaterials

    Science.gov (United States)

    Abou, Seraphin Chally; Saad, Maarouf

    2013-09-01

    In the last decade progress has been made to assist organizations that are developing payloads intended for flight on the International Space Station (ISS) and/or Space Shuttle. Collaboration programs for comprehensive risk assessment have been initiated between the U.S. and the European Union to generate requirements and data needed to comply with payloads safety and to perform risk assessment and controls guidance. Yet, substantial research gaps remain, as do challenges in the translation of these research findings to control for exposure to nanoscale material payloads, and the health effects. Since nanomaterial structures are different from traditional molecules, some standard material properties can change at size of 50nm or less. Changes in material properties at this scale challenge our understanding of hazards posed by nanomaterial payloads in the ISS realistic exposure conditions, and our ability to anticipate, evaluate, and control potential health issues, and safety. The research question addressed in this framework is: what kind of descriptors can be developed for nanomaterial payloads risks assessment? Methods proposed incorporate elements of characteristic- based risk an alysis: (1) to enable characterization of anthropogenic nanomaterials which can result in incidental from natural nanoparticles; and (2) to better understand safety attributes in terms of human health impacts from exposure to varying types of engineered nanomaterials.

  15. Safety of Research Reactors. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Requirements publication establishes requirements for all main areas of safety for research reactors, with particular emphasis on requirements for design and operation. It explains the safety objectives and concepts that form the basis for safety and safety assessment for all stages in the lifetime of a research reactor. Technical and administrative requirements for the safety of new research reactors are established in accordance with these objectives and concepts, and they are to be applied to the extent practicable for existing research reactors. The safety requirements established in this publication for the management of safety and regulatory supervision apply to site evaluation, design, manufacturing, construction, commissioning, operation (including utilization and modification), and planning for decommissioning of research reactors (including critical assemblies and subcritical assemblies). The publication is intended for use by regulatory bodies and other organizations with responsibilities in these areas and in safety analysis, verification and review, and the provision of technical support.

  16. Patient safety - the role of human factors and systems engineering.

    Science.gov (United States)

    Carayon, Pascale; Wood, Kenneth E

    2010-01-01

    Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety.

  17. Patient Safety: The Role of Human Factors and Systems Engineering

    Science.gov (United States)

    Carayon, Pascale; Wood, Kenneth E.

    2011-01-01

    Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety. PMID:20543237

  18. Understanding safety and production risks in rail engineering planning and protection.

    Science.gov (United States)

    Wilson, John R; Ryan, Brendan; Schock, Alex; Ferreira, Pedro; Smith, Stuart; Pitsopoulos, Julia

    2009-07-01

    Much of the published human factors work on risk is to do with safety and within this is concerned with prediction and analysis of human error and with human reliability assessment. Less has been published on human factors contributions to understanding and managing project, business, engineering and other forms of risk and still less jointly assessing risk to do with broad issues of 'safety' and broad issues of 'production' or 'performance'. This paper contains a general commentary on human factors and assessment of risk of various kinds, in the context of the aims of ergonomics and concerns about being too risk averse. The paper then describes a specific project, in rail engineering, where the notion of a human factors case has been employed to analyse engineering functions and related human factors issues. A human factors issues register for potential system disturbances has been developed, prior to a human factors risk assessment, which jointly covers safety and production (engineering delivery) concerns. The paper concludes with a commentary on the potential relevance of a resilience engineering perspective to understanding rail engineering systems risk. Design, planning and management of complex systems will increasingly have to address the issue of making trade-offs between safety and production, and ergonomics should be central to this. The paper addresses the relevant issues and does so in an under-published domain - rail systems engineering work.

  19. Research on advanced system safety assessment procedures (4)

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko; Shimada, Yukiyasu

    2001-03-01

    The past research reports in the area of safety engineering proposed the Computer-aided HAZOP system to be applied to Nuclear Reprocessing Facilities. Automated HAZOP system has great advantage compared with human analysts in terms of accuracy of the results, and time required to conduct HAZOP studies. This report surveys the literature on risk assessment and safety design based on the concept of independent protection layers (IPLs). Furthermore, to improve HAZOP System, tool is proposed to construct the basic model and the internal state model. Such HAZOP system is applied to analyze two kinds of processes, where the ability of the proposed system is verified. In addition, risk assessment support system is proposed to integrate safety design environment and assessment result to be used by other plants as well as to enable the underline plant to use other plants' information. This technique can be implemented using web-based safety information systems. (author)

  20. Maintenance of civil engineering structures important to safety of Nuclear Power Plants

    International Nuclear Information System (INIS)

    2002-03-01

    Civil engineering structures in nuclear installations form an important feature having implications to safety performance of these installations. This safety standard is written to specify the objectives and minimum requirements for the design of civil engineering buildings/structures that are to be fulfilled to provide adequate assurance for safety of nuclear installations in India

  1. Proceedings of the seminar on nuclear safety research and the workshop on reactor safety research

    International Nuclear Information System (INIS)

    2001-07-01

    The seminar on the nuclear safety research was held on November 20, 2000 according to the start of new five year safety research plan (FY2001-2005: established by Nuclear Safety Commission) with 79 participants. In the seminar, Commissioner Dr. Kanagawa gave the outline of the next five year safety research plan. Following this presentation, progresses and future scopes of safety researches in the fields of reactor facility, fuel cycle facility, radioactive waste and environmental impact on radiation at Japan Atomic Energy Research Institute (JAERI) were reported. After the seminar, the workshop on reactor safety research was held on November 21-22, 2000 with 141 participants. In the workshop, four sessions titled safety of efficient and economic utilization of nuclear fuel, safety related to long-term utilization of power reactors, research on common safety-related issues and toward further improvement of nuclear safety were organized and, outcomes and future perspectives in these wide research R and D in the related area at other organizations including NUPEC, JAPEIC and Kansai Electric Power Co. was presented in each session. This report compiles outlines of the presentations and used materials in the seminar and the workshop to form the proceedings for the both meetings. (author)

  2. Progress report on research and development in 1991, Institute of Neutron Physics and Reactor Engineering, KfK

    International Nuclear Information System (INIS)

    1992-03-01

    Progress report on research and development in 1991 Institute of Neutron Physics and Reactor Engineering. The Institute of Neutron Physics and Reactor Engineering is concerned with research work in the field of nuclear engineering related to the safety of fast and thermal reactors as well as with specific problems of fusion reactor technology. Under the project of nuclear safety research, the Institute works on concepts designed to drastically improve reactor safety. Apart from that, methods to estimate and minimize the radiological consequences of reactor accidents are developed. Under the fusion technology project, the Institute deals with neutron physics and technological questions of the breeding blanket. Basic research covers technico-physical questions of the interaction between light ion radiation of a high energy density and matter. In addition and to a small extent, questions of employing hydrogen in the transport area are studied. For all these tasks it is indispensable to use up-to-date data processing methods and equipment, from the highest capacity computer to the integrated minicomputer system. (orig./DG) [de

  3. Recommended research program for improving seismic safety of light-water nuclear power plants

    International Nuclear Information System (INIS)

    1979-04-01

    Recommendations are presented for research areas concerned with seismic safety. These recommendations are based on an analysis of the answers to a questionnaire which was sent to over 80 persons working in the area of seismic safety of nuclear power plants. In addition to the answers of the 55 questionnaires which were received, the recommendations are based on ideas expressed at a meeting of an ad hoc group of professionals formed by Sandia, review of literature, current research programs, and engineering judgement

  4. Engineering and Safety Partnership Enhances Safety of the Space Shuttle Program (SSP)

    Science.gov (United States)

    Duarte, Alberto

    2007-01-01

    Project Management must use the risk assessment documents (RADs) as tools to support their decision making process. Therefore, these documents have to be initiated, developed, and evolved parallel to the life of the project. Technical preparation and safety compliance of these documents require a great deal of resources. Updating these documents after-the-fact not only requires substantial increase in resources - Project Cost -, but this task is also not useful and perhaps an unnecessary expense. Hazard Reports (HRs), Failure Modes and Effects Analysis (FMEAs), Critical Item Lists (CILs), Risk Management process are, among others, within this category. A positive action resulting from a strong partnership between interested parties is one way to get these documents and related processes and requirements, released and updated in useful time. The Space Shuttle Program (SSP) at the Marshall Space Flight Center has implemented a process which is having positive results and gaining acceptance within the Agency. A hybrid Panel, with equal interest and responsibilities for the two larger organizations, Safety and Engineering, is the focal point of this process. Called the Marshall Safety and Engineering Review Panel (MSERP), its charter (Space Shuttle Program Directive 110 F, April 15, 2005), and its Operating Control Plan emphasizes the technical and safety responsibilities over the program risk documents: HRs; FMEA/CILs; Engineering Changes; anomalies/problem resolutions and corrective action implementations, and trend analysis. The MSERP has undertaken its responsibilities with objectivity, assertiveness, dedication, has operated with focus, and has shown significant results and promising perspectives. The MSERP has been deeply involved in propulsion systems and integration, real time technical issues and other relevant reviews, since its conception. These activities have transformed the propulsion MSERP in a truly participative and value added panel, making a

  5. Management of nanomaterials safety in research environment

    Directory of Open Access Journals (Sweden)

    Riediker Michael

    2010-12-01

    Full Text Available Abstract Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health. The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3 - highest hazard to Nano1 - lowest hazard. Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal. The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and

  6. Management of nanomaterials safety in research environment.

    Science.gov (United States)

    Groso, Amela; Petri-Fink, Alke; Magrez, Arnaud; Riediker, Michael; Meyer, Thierry

    2010-12-10

    Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health). The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3--highest hazard to Nano1--lowest hazard). Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material) are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal). The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and management are promoting

  7. The Nirex safety assessment research programme for 1987/88

    International Nuclear Information System (INIS)

    Cooper, M.J.; Tasker, P.W.

    1987-10-01

    This report outlines the work of the Nirex Safety Assessment Research Programme during the period 1st April 1987 to 31st March 1988. The research programme has the specific objective of providing the information requirements of the post-emplacement radiological safety case for the disposal of low-level and intermediate-level radioactive waste in underground repositories. For convenience the programme has been divided into seven areas: physical containment, near-field radionuclide chemistry, evolution of the near-field aqueous environment, mass transfer in the geosphere, the biosphere, gas evolution and migration, and integrated studies. The near-field includes the waste, its immobilising medium, its container, the engineered structure in which the container is emplaced and the immediately adjacent geological formation disturbed by the construction of the repository. (author)

  8. HSE Nuclear Safety Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Bagley, M.J. [Health and Safety Executive, Sheffield (United Kingdom)

    1995-12-31

    HSE funds two programmes of nuclear safety research: a programme of {approx} 2.2M of extramural research to support the Nuclear Safety Division`s regulatory activities and a programme of {approx} 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author).

  9. HSE Nuclear Safety Research Program

    International Nuclear Information System (INIS)

    Bagley, M.J.

    1995-01-01

    HSE funds two programmes of nuclear safety research: a programme of ∼ 2.2M of extramural research to support the Nuclear Safety Division's regulatory activities and a programme of ∼ 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author)

  10. Nordic nuclear safety research 1994-1997. Project on disposal of radioactive waste

    International Nuclear Information System (INIS)

    Broden, Karin

    1999-01-01

    This presentation describes the Nordic Nuclear Safety Research (NKS) programme, which is a scientific co-operation programme in nuclear safety, radiation protection and emergence preparedness. The purpose of the programme is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, manuals, recommendations, and other types of background material. This material is to serve decision-makers and other concerned staff members at authorities, research establishments and enterprises in the nuclear field. Three waste disposal projects under NKS are briefly described: (1) Waste characterisation, (2) Performance analysis of the engineered barrier system of the repositories for low- and intermediate-level waste, (3) Environmental impact assessment

  11. Annual safety research report, JFY 2010

    International Nuclear Information System (INIS)

    2011-09-01

    In the safety infrastructure research working group report, 'the effective conducting of nuclear safety infrastructure research', published by METI in March 2010, the roles of regulatory agencies and JNES and their cooperation, and the research road map for nuclear safety regulation researches were summarized. As for the regulatory issues the governments or JNES considered necessary, JNES had compiled' safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. Safety research areas, subjects and research projects were as follows: design review of nuclear power plant (4 subjects and each subject having several research projects totaled 19), control management of nuclear power plant (3 subjects and each subject having several research projects totaled 11), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 5), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 6), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 5) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 7). In JFY 2010, JNES worked on the 53 research projects of 17 subjects in 6 areas as safety researches. This annual safety research report summarized respective achievements and stage of regulatory tools necessary for solving regulatory issues according to the safety research plan, JFY 2010 Edition as well as the situation of the reflection for the safety regulations. (T. Tanaka)

  12. Supervisor's experiments on radiation safety trainings in school of engineering

    International Nuclear Information System (INIS)

    Nomura, Kiyoshi

    2005-01-01

    Radiation safety training courses in School of Engineering, The University of Tokyo, were introduced. The number of radiation workers and the usage of radiation and radioisotopes have been surveyed for past 14 years. The number of radiation workers in School of Engineering has increased due to the treatment of X-ray analysis of materials, recently. It is important for workers to understand the present situation of School of Engineering before the treatment of radiation and radioisotopes. What the supervisor should tell to radiation workers were presented herewith. The basic questionnaires after the lecture are effective for radiation safety trainings. (author)

  13. Fuel safety research 2001

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    The Fuel Safety Research Laboratory is in charge of research activity which covers almost research items related to fuel safety of water reactor in JAERI. Various types of experimental and analytical researches are being conducted by using some unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and the Reactor Fuel Examination Facility (RFEF) of JAERI. The research to confirm the safety of high burn-up fuel and MOX fuel under accident conditions is the most important item among them. The laboratory consists of following five research groups corresponding to each research fields; Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). Research group of fuel behavior analysis (FEMAXI group). Research group of radionuclides release and transport behavior from irradiated fuel under severe accident conditions (VEGA group). The research conducted in the year 2001 produced many important data and information. They are, for example, the fuel behavior data under BWR power oscillation conditions in the NSRR, the data on failure-bearing capability of hydrided cladding under LOCA conditions and the FP release data at very high temperature in steam which simulate the reactor core condition during severe accidents. This report summarizes the outline of research activities and major outcomes of the research executed in 2001 in the Fuel Safety Research Laboratory. (author)

  14. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--June 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J W; Boccio, J L; Diamond, D; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Hall, R E; Higgins, J C; Weiss, A J [comp.

    1988-12-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1987.

  15. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, October 1--December 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A J; Azarm, A; Baum, J W; Boccio, J L; Carew, J; Diamond, D J; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Haber, S B

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988.

  16. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--June 30, 1988

    International Nuclear Information System (INIS)

    Baum, J.W.; Boccio, J.L.; Diamond, D.

    1988-12-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1987

  17. Research on the actual condition on the licensed chief engineers of radiation

    International Nuclear Information System (INIS)

    1976-01-01

    A research on the actual condition on the licensed chief engineers of radiation was performed on October, 1975. Question cards were sent to 2915 facilities in Japan, and answers came back from 2850 facilities. Answers report the size of each facility, number of employee, number of chief engineers in charge, age of chief engineers, appointment authority, responsibility, improvement of working condition of chief engineer, and assistant officer for chief engineer. The number of worker is 62,456 in 2,769 facilities. The number of chief engineer in charge is 3,286 containing 579 doctor and/or dentist. The age of chief in 80 percent facilities is above 31. System of management of radiation safety was also investigated. (Kato, T.)

  18. IAEA safety standards for research reactors

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    The general structure of the IAEA Safety Standards and the process for their development and revision are briefly presented and discussed together with the progress achieved in the development of Safety Standards for research reactor. These documents provide the safety requirements and the key technical recommendations to achieve enhanced safety. They are intended for use by all organizations involved in safety of research reactors and developed in a way that allows them to be incorporated into national laws and regulations. The author reviews the safety standards for research reactors and details their specificities. There are 4 published safety standards: 1) Safety assessment of research reactors and preparation of the safety analysis report (35-G1), 2) Safety in the utilization and modification of research reactors (35-G2), 3) Commissioning of research reactors (NS-G-4.1), and 4) Maintenance, periodic testing and inspection of research reactors (NS-G-4.2). There 5 draft safety standards: 1) Operational limits and conditions and operating procedures for research reactors (DS261), 2) The operating organization and the recruitment, training and qualification of personnel for research reactors (DS325), 3) Radiation protection and radioactive waste management in the design and operation of research reactors (DS340), 4) Core management and fuel handling at research reactors (DS350), and 5) Grading the application of safety requirements for research reactors (DS351). There are 2 planned safety standards, one concerning the ageing management for research reactor and the second deals with the control and instrumentation of research reactors

  19. Empirical Research In Engineering Design

    DEFF Research Database (Denmark)

    Ahmed, Saeema

    2007-01-01

    Increasingly engineering design research involves the use of empirical studies that are conducted within an industrial environment [Ahmed, 2001; Court 1995; Hales 1987]. Research into the use of information by designers or understanding how engineers build up experience are examples of research...... of research issues. This paper describes case studies of empirical research carried out within industry in engineering design focusing upon information, knowledge and experience in engineering design. The paper describes the research methods employed, their suitability for the particular research aims...

  20. Research program on regulatory safety research

    International Nuclear Information System (INIS)

    Mailaender, R.

    2010-02-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning regulatory nuclear safety research, as co-ordinated by the Swiss Nuclear Safety Inspectorate ENSI. Work carried out in various areas is reviewed, including that done on reactor safety, radiation protection and waste disposal as well as human aspects, organisation and safety culture. Work done concerning materials, pressure vessel integrity, transient analysis, the analysis of serious accidents in light-water reactors, fuel and material behaviour, melt cooling and concrete interaction is presented. OECD data bank topics are discussed. Transport and waste disposal research at the Mont Terri rock laboratory is looked at. Requirements placed on the personnel employed in nuclear power stations are examined and national and international co-operation is reviewed

  1. Teaching engineering design research

    DEFF Research Database (Denmark)

    Blessing, Lucienne; Andreasen, Mogens Myrup

    2005-01-01

    The importance og engineering design as an industrial activity, and the increasingly complex and dynamic context in which it takes place, has led to the wish to improve the effectiveness and efficiency of engineering design in practice as well as in education. Although attempts have been made...... to improve design for centuries, it was not until well in the second half of the 20th century that engineering design became a research topic (see pahl and Beitz (1996), Heymann (2004) for historical overviews). Engineering research, such as research into thermodynamics, mechanics and materials, has a much...... by PhD students. This has created the demand for a clear, efficient way of learning the crafmanship of doing design research, a demand which is in strong contrast to the state of design research in general. This article reflects the authors' efforts in running a summer school om engineering design...

  2. Safety analysis for research reactors

    International Nuclear Information System (INIS)

    2008-01-01

    The aim of safety analysis for research reactors is to establish and confirm the design basis for items important to safety using appropriate analytical tools. The design, manufacture, construction and commissioning should be integrated with the safety analysis to ensure that the design intent has been incorporated into the as-built reactor. Safety analysis assesses the performance of the reactor against a broad range of operating conditions, postulated initiating events and other circumstances, in order to obtain a complete understanding of how the reactor is expected to perform in these situations. Safety analysis demonstrates that the reactor can be kept within the safety operating regimes established by the designer and approved by the regulatory body. This analysis can also be used as appropriate in the development of operating procedures, periodic testing and inspection programmes, proposals for modifications and experiments and emergency planning. The IAEA Safety Requirements publication on the Safety of Research Reactors states that the scope of safety analysis is required to include analysis of event sequences and evaluation of the consequences of the postulated initiating events and comparison of the results of the analysis with radiological acceptance criteria and design limits. This Safety Report elaborates on the requirements established in IAEA Safety Standards Series No. NS-R-4 on the Safety of Research Reactors, and the guidance given in IAEA Safety Series No. 35-G1, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, providing detailed discussion and examples of related topics. Guidance is given in this report for carrying out safety analyses of research reactors, based on current international good practices. The report covers all the various steps required for a safety analysis; that is, selection of initiating events and acceptance criteria, rules and conventions, types of safety analysis, selection of

  3. The Safety and Tritium Applied Research (STAR) Facility: Status-2004

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Pawelko, R.J.; Sharpe, J.P.; Schuetz, S.T.; Petti, D.A.

    2005-01-01

    The Safety and Tritium Applied Research (STAR) Facility, a US DOE National User Facility at the Idaho National Engineering and Environmental Laboratory (INEEL), comprises capabilities and infrastructure to support both tritium and non-tritium research activities important to the development of safe and environmentally friendly fusion energy. Research thrusts include (1) interactions of tritium and deuterium with plasma-facing-component (PFC) materials, (2) fusion safety issues [PFC material chemical reactivity and dust/debris generation, activation product mobilization, tritium behavior in fusion systems], and (3) molten salts and fusion liquids for tritium breeder and coolant applications. This paper updates the status of STAR and the capabilities for ongoing research activities, with an emphasis on the development, testing and integration of the infrastructure to support tritium research activities. Key elements of this infrastructure include a tritium storage and assay system, a tritium cleanup system to process glovebox and experiment tritiated effluent gases, and facility tritium monitoring systems

  4. Points of emphasis and objectives of reactor safety research

    International Nuclear Information System (INIS)

    Krewer, K.H.

    1982-01-01

    Reactor safety research is part of the presently running second programme on energy research and energy-engineering with which the Federal Government is connecting a whole bundle of economic and ecological aims: medium- and long-term assurance of energy supply, provision and efficient utilization of energy at favourable economic total costs, improvement of the technological performance, consideration of the requirements of the environmental protection, of the careful treatment of the resources, as well as of the protection of the population and personnel from the risks of conversion and use of energy. (orig.) [de

  5. Progress of nuclear safety research, (2)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successevely in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts and in this Part 2, the environmental safety research is described. The evaluation and analysis of environmental radioactivity, the study on radioactive waste management and the studies on various subjects related to environmental safety are reported. (Kako, I.)

  6. Radiological protection. Responsibility of the Safety Engineering Company

    International Nuclear Information System (INIS)

    Netto, A.L.

    1987-01-01

    This subject takes care of the Safety Engineering at the Radiologic Protection area on the X and Gama Rays Services. It mainly emphasis the case of that companies that, due do not have proper X and Gama Rays Services utilize partime task force on this area, but answer themselves for the safety of their employees in case of any accident occurence. (author) [pt

  7. Human factors and systems engineering approach to patient safety for radiotherapy.

    Science.gov (United States)

    Rivera, A Joy; Karsh, Ben-Tzion

    2008-01-01

    The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety.

  8. Human Factors and Systems Engineering Approach to Patient Safety for Radiotherapy

    International Nuclear Information System (INIS)

    Rivera, A. Joy; Karsh, Ben-Tzion

    2008-01-01

    The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety

  9. Proceedings of the SRESA national conference on reliability and safety engineering

    International Nuclear Information System (INIS)

    Varde, P.V.; Vaishnavi, P.; Sujatha, S.; Valarmathi, A.

    2014-01-01

    The objective of this conference was to provide a forum for technical discussions on recent developments in the area of risk based approach and Prognostic Health Management of critical systems in decision making. The reliability and safety engineering methods are concerned with the way which the product fails, and the effects of failure is to understand how a product works and assures acceptable levels of safety. The reliability engineering addresses all the anticipated and possibly unanticipated causes of failure to ensure the occurrence of failure is prevented or minimized. The topics discussed in the conference were: Reliability in Engineering Design, Safety Assessment and Management, Reliability analysis and Assessment , Stochastic Petri nets for reliability Modeling, Dynamic Reliability, Reliability Prediction, Hardware Reliability, Software Reliability in Safety Critical Issues, Probabilistic Safety Assessment, Risk Informed Approach, Dynamic Models for Reliability Analysis, Reliability based Design and Analysis, Prognostics and Health Management, Remaining Useful Life (RUL), Human Reliability Modeling, Risk Based Applications, Hazard and Operability Study (HAZOP), Reliability in Network Security and Quality Assurance and Management etc. The papers relevant to INIS are indexed separately

  10. The RA nuclear research reactor at VINCA Institute as an engineering and scientific challenge

    International Nuclear Information System (INIS)

    Mesarovic, M.

    1997-01-01

    The RA nuclear research at the Vinca Institute of Nuclear Sciences is the largest nuclear research facility in Yugoslavia and belongs to that generation of research reactors which have had an important contribution to nuclear technology development. As these older reactors were generally not built to specific nuclear standards, new safety systems had to be installed at the RA reactor for a renewal of its operating licence in 1984 and it was shut down, after 25 years of operation. Although all the required and several additional systems were built for the restart of the RA reactor, a disruption of foreign delivery of new control equipment caused its conversion to a 'dormant' facility, and it is still out of operation. Therefore, the future status of the RA reactor presents an engineering and scientific challenge to the engineers and scientists from Yugoslavia and other countries that may be interested to participate. To attract their attention on the subject, principal features of the RA reactor and its present status are described in detail, based on a recent engineering economic and safety evaluation. A comparative review of the world research reactors is also presented.(author)

  11. FBR Plant Engineering Center annual report 2012

    International Nuclear Information System (INIS)

    2013-12-01

    This annual report shows the last year's R and D activities of currently-reorganized FBR Plant Engineering Center, which was established on April 1, 2009. FBR Safety Technology Center was founded on April 1, 2013 by the consolidation of both the activities of 'former FBR Plant Engineering Center' and a portion of 'FBR Safety Evaluation Unit, Advanced Nuclear System Research and Development Directorate', especially concentrating on safety evaluations and analyses for severe accidents. As for FBR safety technology, it is necessary to continuously make an effort for compliance with new safety regulations in preparation for 'Monju' to restart, for safety enhancement evaluation and for safety technology upgrading. In this context, the new organization was founded in order to reinforce the safety evaluation capability, which will surely and steadily promote FBR safety-technology related activities. As a result, FBR Plant Engineering Center was abolished. This report summarizes the R and D activities at the former FBR Plant Engineering Center, aiming at contributing to the commercialization by using operation experiences and technology development results derived from the actual reactor 'Monju'. The activities are divided into five areas of operation-and-maintenance engineering, sodium engineering, reactor-core-and-fuel engineering, plant engineering, and safety engineering. This annual report is intended for a report of the activities of individual researcher in the center rather than that of the progress of the center as a whole. This will clarify the individual themes, progresses and problems of each researcher, which will, hopefully, facilitate communication with the outside researchers. (author)

  12. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  13. Ice Engineering Research Area

    Data.gov (United States)

    Federal Laboratory Consortium — Refrigerated Physical Modeling of Waterways in a Controlled EnvironmentThe Research Area in the Ice Engineering Facility at the Cold Regions Research and Engineering...

  14. Safety research plan, JFY 2013 edition

    International Nuclear Information System (INIS)

    2013-09-01

    As for the regulatory issues the governments or JNES considered necessary, JNES had updated every year 'safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. 'Safety research plan, JFY 2013 Edition' was compiled aiming at promotion of appropriate reflection and flexible application of research achievements for tacking the regulatory issues taking account of importance and urgency dependent on trend of nuclear safety regulations as well as collective management of safety research and safety survey. 5 new research projects were established with 4 unified research projects and 6 terminated research projects. Finally modified safety research areas, subjects and research projects, JFY 2013 Edition were as follows: design review of nuclear power plant (7 subjects and each subject having several research projects totaled 19), control management of nuclear power plant (one subject having 4 research projects), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 4), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 5), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 7) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 6). Safety reviews consisted of 6 projects in 3 areas extracting the regulatory issues. As for urgent research projects on the basis of the disaster at Fukushima Daiichi NPP accident, 7 research projects in 4 urgent subjects were as follows: examination for new safety regulation (4 research projects generalized in the above research projects), development of newly necessary evaluation methods (one research project generalized in the above research project), evaluation of the validity for the work for convergence at Fukushima

  15. The role of engineering judgement, safety culture, and organizational factors in risk assessment

    International Nuclear Information System (INIS)

    Muzumdar, Ajit; Professor, Visiting

    1996-01-01

    This paper reviews the role of engineering judgement, safety culture, and organizational factors in risk assessment by examining the reasons for human-based error. The need for more emphasis on producing engineers with good engineering judgement is described. The progress in quantifying the role of safety culture and organizational factors in risk assessment studies is summarized

  16. Status of research reactors in China. Their utilization and safety upgrading

    International Nuclear Information System (INIS)

    Xu Hanming; Jin Huajin

    2000-01-01

    The main research reactors in China basically consist of several old reactors including HWRR, HFETR, SPR, MJTR and MNSR. Except the last one, all the other reactors operate at a high power density and represent themselves as main tools in China for engineering testing, radioactive isotope production, and neutron scattering research. The research and production activities by these reactors are briefed. Main equipment and research topics for neutron scattering are described. The production of radioisotope is summarized. Safety upgrading activities in recent years taken by these old reactors are described, which make the safety feature of each reactor significantly improved and on the whole more close to (even not completely consistent) with the targets set by the modern safety regulation. Since a new multi-purpose research reactor CARR is expected available around the year of 2005, a schedule about the construction of new reactor, reforming or decommissioning of old reactors and smoothly transition of research and production activities from old to new reactor during the coming years has been under careful planning. A suggestion of potential international cooperation items has been preliminarily given. (author)

  17. Passive and engineered safety features of the prototype fast reactor (PFR), Dounreay

    International Nuclear Information System (INIS)

    Gregory, C.V.

    1991-01-01

    Prototype fast reactor (PFR) combines passive and engineered safety features. Natural convection, a strong negative power coefficient, the decay heat removal system, and a fuel design able to operate beyond failure are all inherent and passive safety features of the PFR. The reliable shutdown system and the protection provided against SGU leaks are example of engineered protection. Experience at PFR demonstrates the worth and potential of a range of passive and engineered safeguards

  18. Reactor safety research program. A description of current and planned reactor safety research sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research

    International Nuclear Information System (INIS)

    1975-06-01

    The reactor safety research program, sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, is described in terms of its program objectives, current status, and future plans. Elements of safety research work applicable to water reactors, fast reactors, and gas cooled reactors are presented together with brief descriptions of current and planned test facilities. (U.S.)

  19. Application and problems of probability methods in technical safety assessment in the field of nuclear engineering and other technologies

    International Nuclear Information System (INIS)

    Heuser, F.W.

    1980-01-01

    On the basis of a deterministic safety concept that has been developed in nuclear engineering, approaches for a probabilistic interpretation of existing safety requirements and for a further risk assessment are described. The procedures in technical reliability analysis and its application in nuclear engineering are discussed. By the example of a reliability analysis for a reactor protection system the author discusses the question as to what extent methods of reliability analysis can be used to interpret deterministically derived safety requirements. The the author gives a survey of the current value and application of probabilistic reliability assessments in non-nuclear technology. The last part of this report deals with methods of risk analysis and its use for safety assessment in nuclear engineering. On the basis of WASH 1,400 the most important phases and tasks of research work in risk assessment are explained, showing the basic criteria and the methods to be applied in risk analysis. (orig./HSCH) [de

  20. Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program

    International Nuclear Information System (INIS)

    1987-05-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions

  1. Nuclear safety research

    International Nuclear Information System (INIS)

    1996-01-01

    The topics 'Large-sized PWR-NPP Safety Techniques Research',and 'The Key Techniques Research on the Safety Supervision and Control for Operation of Nuclear Installations' have been adopted as an apart of 'the National 9th five Year Programs for Tacking the Key Scientific and Technical Topics' which are organized by the State Planning Commission (SPC) and State Science and Technology Commission (SSTC) respectively, and have obtained a financial support from them. To play a better role with the limited fund, the NNSA laid special stress on selecting key sub-topics on nuclear safety, and carefully choosing units which would undertake sub-topics and signing technical contracts with them

  2. Progress of experimental research on nuclear safety in NPIC

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Houjun; Zan, Yuanfeng; Peng, Chuanxin; Xi, Zhao; Zhang, Zhen; Wang, Ying; He, Yanqiu; Huang, Yanping [Nuclear Power Institute of China, Chengdu (China)

    2016-05-15

    Two kinds of Generation III commercial nuclear power plants have been developed in CNNC (China National Nuclear Corporation), one is a small modular reactor ACP100 having an equivalent electric power 100 MW, and the other is HPR1000 (once named ACP1000) having an equivalent electric power 1 000 MW. Both NPPs widely adopted the design philosophy of advanced passive safety systems and considered the lessons from Fukushima Daichi nuclear accident. As the backbone of the R and D of ACP100 and HPR1000, NPIC (Nuclear power Institute of China) has finished the engineering verification test of main safety systems, including passive residual heat removal experiments, reactor cavity injection experiments, hydrogen combustion experiments, and passive autocatalytic recombiner experiments. Above experimental work conducted in NPIC and further research plan of nuclear safety are introduced in this paper.

  3. JRC-IE's research of safety of Gen IV systems

    International Nuclear Information System (INIS)

    Tsige-Tamirat, H.; Ranguelova, V.; Feutterer, M.; Ammirabile, L.; Carlsson, J.; D'Agata, E.; Laurie, M.; Magallon, D.

    2010-01-01

    The Institute for Energy (IE), one of the seven scientific Institutes of the Joint Research Centre (JRC) of the European Commission, has the mission to provide scientific and technical support for the conception, development, implementation and monitoring of community policies related to energy. To accomplish its mission, IE performs research in the areas of renewable energies, safety and sustainability of nuclear energy for current and future reactor systems, energy technic/economic assessment, and security of energy supply. The Generation IV International Forum (GIF) is a cooperative international endeavour organized to carry out R and D needed to establish the feasibility and performance capabilities of the next generation nuclear energy systems and support the progress towards their realization. The EU, represented by EURATOM and with the JRC as implementing agent, is working together with other GIF partners to perform pre-competitive R and D on key technologies to be implemented in future nuclear systems. IE is engaged in experimental research, simulation and modeling, scientific, feasibility and engineering studies on innovative nuclear reactor systems needed to support the EURATOM contribution to GEN IV initiative, in particular in assessment of innovative fuels and materials, development of new reactor core concepts and safety solutions and knowledge management and preservation. IE's research activities on Generation IV reactor systems are focused on the assessment of the potential of such systems to meet long term EU energy needs with respect to economical advantages, enhanced safety, sustainability, and proliferation resistance. IE participates in international collaborations and has bilateral research cooperation both with European and non-European partners. This paper gives an overview of IE's current research activities on the Gen IV reactor systems related to safety. (authors)

  4. Commissioning of research reactors. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    The objective of this Safety Guide is to provide recommendations on meeting the requirements for the commissioning of research reactors on the basis of international best practices. Specifically, it provides recommendations on fulfilling the requirements established in paras 6.44 and 7.42-7.50 of International Atomic Energy Agency, Safety of Research Reactors, IAEA Safety Standards Series No. NS-R-4, IAEA, Vienna (2005) and guidance and specific and consequential recommendations relating to the recommendations presented in paras 615-621 of International Atomic Energy Agency, Safety in the Utilization and Modification of Research Reactors, Safety Series No. 35-G2, IAEA, Vienna (1994) and paras 228-229 of International Atomic Energy Agency, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, Safety Series No. 35-G1, IAEA, Vienna (1994). This Safety Guide is intended for use by all organizations involved in commissioning for a research reactor, including the operating organization, the regulatory body and other organizations involved in the research reactor project

  5. Safety assessment of complex engineered and natural systems: radioactive waste disposal

    International Nuclear Information System (INIS)

    McNeish, J.A.; Vallikat, V.; Atkins, J.; Balady, M.A.

    1997-01-01

    Evaluation of deep, geologic disposal of nuclear waste requires the probabilistic safety assessment of a complex system from the coupling of various processes and sub-systems, parameter and model uncertainties, spatial and temporal variabilities, and the multiplicity of designs and scenarios. Both the engineered and natural system are included in the evaluation. Each system has aspects with considerable uncertainty both in important parameters and in overall conceptual models. The study represented herein provides a probabilistic safety assessment of a potential respository system for multiple engineered barrier system (EBS) design and conceptual model configurations (CRWMS M and O, 1996a) and considers the effects of uncertainty on the overall results. The assessment is based on data and process models available at the time of the study and doesnt necessarily represent the current safety evaluation. In fact, the percolation flux through the repository system is now expected to be higher than the estimate used for this study. The potential effects of higher percolation fluxes are currently under study. The safety of the system was assessed for both 10,000 and 1,000,000 years. Use of alternative conceptual models also produced major improvement in safety. For example, use of a more realistic engineered system release model produced improvement of over an order of magnitude in safety. Alternative measurement locations for the safety assessment produced substantial increases in safety, through the results are based on uncertain dilution factors in the transporting groundwater. (Author)

  6. Improving Safety through Human Factors Engineering.

    Science.gov (United States)

    Siewert, Bettina; Hochman, Mary G

    2015-10-01

    Human factors engineering (HFE) focuses on the design and analysis of interactive systems that involve people, technical equipment, and work environment. HFE is informed by knowledge of human characteristics. It complements existing patient safety efforts by specifically taking into consideration that, as humans, frontline staff will inevitably make mistakes. Therefore, the systems with which they interact should be designed for the anticipation and mitigation of human errors. The goal of HFE is to optimize the interaction of humans with their work environment and technical equipment to maximize safety and efficiency. Special safeguards include usability testing, standardization of processes, and use of checklists and forcing functions. However, the effectiveness of the safety program and resiliency of the organization depend on timely reporting of all safety events independent of patient harm, including perceived potential risks, bad outcomes that occur even when proper protocols have been followed, and episodes of "improvisation" when formal guidelines are found not to exist. Therefore, an institution must adopt a robust culture of safety, where the focus is shifted from blaming individuals for errors to preventing future errors, and where barriers to speaking up-including barriers introduced by steep authority gradients-are minimized. This requires creation of formal guidelines to address safety concerns, establishment of unified teams with open communication and shared responsibility for patient safety, and education of managers and senior physicians to perceive the reporting of safety concerns as a benefit rather than a threat. © RSNA, 2015.

  7. Annual safety research report, JFY 2012

    International Nuclear Information System (INIS)

    2013-08-01

    As for the regulatory issues the governments or JNES considered necessary, JNES had compiled 'safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. Safety research areas, subjects and research projects were as follows: design review of nuclear power plant (5 subjects and each subject having several research projects totaled 20), control management of nuclear power plant (3 subjects and each subject having several research projects totaled 6), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 4), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 6), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 7) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 6). In addition to these 49 research projects of 18 subjects in 6 areas, JNES worked on 19 research projects of 7 subjects in added areas (specific research projects on of the disaster at Fukushima Daiichi NPP accident and other challenges JNES considered necessary) in JFY 2012. This annual safety research report summarized respective achievements and state of regulatory tools necessary for solving regulatory issues according to the safety research plan, JFY 2012 Edition as well as the situation of the reflection for the safety regulations, and also described 16 research projects of 4 subjects: examination for new safety regulation (8 research projects), development of newly necessary evaluation methods (one research project), evaluation of the validity for the work for convergence at Fukushima Daiichi NPP accident (4 research project) and horizontal development to other nuclear power plants (3 research projects), and 3 research projects of 3 subjects as other challenges. A list of JNES

  8. Progress report on safety research on radioactive waste management for the period April 1995 to March 1996

    International Nuclear Information System (INIS)

    Sekine, Keiichi; Muraoka, Susumu; Banba, Tsunetaka

    1997-03-01

    This report summarizes the research and development activities on radioactive waste management at the Engineered Barrier Materials Laboratory, Natural Barrier Laboratory and Environmental Geochemistry Laboratory of the Department of Environmental Safety Research during the fiscal year of 1995 (April 1, 1995 - March 31, 1996). The topics are as follows: 1) As for waste forms and engineered barrier material, performance assessment studies were carried out on various waste forms. 2) In the safety evaluation study for shallow land disposal, migration behavior of radionuclides in a soil layer was studied. 3) In the safety evaluation study for geological disposal, chemical behavior of radionuclides in water, nuclide migration in geosphere and groundwater flow system were studied. Migration of uranium series nuclides in uranium ore deposit was studied as a part of natural analog study. (author)

  9. Prevent recurrence of nuclear disaster (3). Agenda on nuclear safety from earthquake engineering

    International Nuclear Information System (INIS)

    Kameda, Hiroyuki; Takada, Tsuyoshi; Ebisawa, Katsumi; Nakamura, Susumu

    2012-01-01

    Based on results of activities of committee on seismic safety of nuclear power plants (NPPs) of Japan Association for Earthquake Engineering, which started activities after Chuetsu-oki earthquake and then experienced Great East Japan Earthquake, (under close collaboration with the committee of Atomic Energy Society of Japan started activities simultaneously), and taking account of further development of concept, agenda on nuclear safety were proposed from earthquake engineering. In order to prevent recurrence of nuclear disaster, individual technical issues of earthquake engineering and comprehensive issues of integration technology, multidisciplinary collaboration and establishment of technology governance based on them were of prime importance. This article described important problems to be solved; (1) technical issues and mission of seismic safety of NPPs, (2) decision making based on risk assessment - basis of technical governance, (3) framework of risk, design and regulation - framework of required technology governance, (4) technical issues of earthquake engineering for nuclear safety, (5) role of earthquake engineering in nuclear power risk communication and (6) importance of multidisciplinary collaboration. Responsibility of engineering would be attributed to establishment of technology governance, cultivation of individual technology and integration technology, and social communications. (T. Tanaka)

  10. A systematic literature review of resilience engineering: Research areas and a research agenda proposal

    International Nuclear Information System (INIS)

    Righi, Angela Weber; Saurin, Tarcisio Abreu; Wachs, Priscila

    2015-01-01

    Resilience engineering (RE) has been advocated as a new safety management paradigm, compatible with the nature of complex socio-technical systems. This study aims to identify the research areas and to propose a research agenda for RE, based on a systematic literature review that encompasses 237 studies from 2006 to 2014. Six research areas are identified: theory of RE; identification and classification of resilience; safety management tools; analysis of accidents; risk assessment; and training. The area “theory of RE” accounted for 52% of the studies, and it indicates that research has emphasized the description of how resilient performance occurs. The proposal for a research agenda is focused on: refining key constructs; positioning RE in relation to other theories; exploring other research strategies in addition to case-based studies; investigating barriers for implementing RE; and balancing the importance on describing and understanding resilience with the emphasis on the design of resilient systems, and the evaluation of these designs. - Highlights: • Six research areas on RE are identified. • A research agenda for RE is proposed. • RE research is mostly descriptive and based on case studies. • Design science is suggested as a research strategy for RE. • Five domains account for 75% of the reviewed studies

  11. Trends in fuel reprocessing safety research

    International Nuclear Information System (INIS)

    Tsujino, Takeshi

    1981-01-01

    With the operation of a fuel reprocessing plant in the Power Reactor and Nuclear Fuel Development Corporation (PNC) and the plan for a second fuel reprocessing plant, the research on fuel reprocessing safety, along with the reprocessing technology itself, has become increasingly important. As compared with the case of LWR power plants, the safety research in this field still lags behind. In the safety of fuel reprocessing, there are the aspects of keeping radiation exposure as low as possible in both personnel and local people, the high reliability of the plant operation and the securing of public safety in accidents. Safety research is then required to establish the safety standards and to raise the rate of plant operation associated with safety. The following matters are described: basic ideas for the safety design, safety features in fuel reprocessing, safety guideline and standards, and safety research for fuel reprocessing. (J.P.N.)

  12. Safety culture of complex risky systems: the Nuclear Engineering Institute case study

    International Nuclear Information System (INIS)

    Obadia, Isaac Jose; Vidal, Mario Cesar Rodriguez; Melo, Paulo Fernando F. Frutuoso e

    2002-01-01

    Analysis of industrial accidents have demonstrated that safe and reliable operation of complex industrial processes that use risky technology and/or hazard material depends not only on technical factors but on human and organizational factors as well. After the Chernobyl nuclear accident in 1986, the International Atomic Energy Agency established the safety culture concept and started a safety culture enhancement program within nuclear organizations worldwide. The Nuclear Engineering Institute, IEN, is a research and technological development unit of the Brazilian Nuclear Energy Commission, CNEN, characterized as a nuclear and radioactive installation where processes presenting risks to operators and to the environment are executed. In 1999, IEN started a management change program, aiming to achieve excellence of performance, based on the Model of Excellence of the National Quality Award. IEN's safety culture project is based on IAEA methodology and has been incorporated to the organizational management process. This work presents IEN's safety culture project; the results obtained on the initial safety culture assessment and the following project actions. (author)

  13. [Examination of safety improvement by failure record analysis that uses reliability engineering].

    Science.gov (United States)

    Kato, Kyoichi; Sato, Hisaya; Abe, Yoshihisa; Ishimori, Yoshiyuki; Hirano, Hiroshi; Higashimura, Kyoji; Amauchi, Hiroshi; Yanakita, Takashi; Kikuchi, Kei; Nakazawa, Yasuo

    2010-08-20

    How the maintenance checks of the medical treatment system, including start of work check and the ending check, was effective for preventive maintenance and the safety improvement was verified. In this research, date on the failure of devices in multiple facilities was collected, and the data of the trouble repair record was analyzed by the technique of reliability engineering. An analysis of data on the system (8 general systems, 6 Angio systems, 11 CT systems, 8 MRI systems, 8 RI systems, and the radiation therapy system 9) used in eight hospitals was performed. The data collection period assumed nine months from April to December 2008. Seven items were analyzed. (1) Mean time between failures (MTBF) (2) Mean time to repair (MTTR) (3) Mean down time (MDT) (4) Number found by check in morning (5) Failure generation time according to modality. The classification of the breakdowns per device, the incidence, and the tendency could be understood by introducing reliability engineering. Analysis, evaluation, and feedback on the failure generation history are useful to keep downtime to a minimum and to ensure safety.

  14. I and C safety research at the OECD Halden reactor project

    International Nuclear Information System (INIS)

    Gran, B.A.

    2007-01-01

    The overall objective of the Halden Reactor Project research on software systems dependability is to contribute to the successful introduction of digital I and C systems into NPPs. When celebrating the 50 years of the Halden Project in 2008, about 100 written reports have been delivered within this research. This research covers a number of topics covering safety, reliability, validation and verification, quality assurance, risk assessment, requirement engineering, error propagation, qualitative and quantitative assessment. In the paper some activities are described, pinpointing the importance of good joint projects with organisations in the member countries

  15. Prospects for nuclear safety research

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  16. Researchers' Roles in Patient Safety Improvement.

    Science.gov (United States)

    Pietikäinen, Elina; Reiman, Teemu; Heikkilä, Jouko; Macchi, Luigi

    2016-03-01

    In this article, we explore how researchers can contribute to patient safety improvement. We aim to expand the instrumental role researchers have often occupied in relation to patient safety improvement. We reflect on our own improvement model and experiences as patient safety researchers in an ongoing Finnish multi-actor innovation project through self-reflective narration. Our own patient safety improvement model can be described as systemic. Based on the purpose of the innovation project, our improvement model, and the improvement models of the other actors in the project, we have carried out a wide range of activities. Our activities can be summarized in 8 overlapping patient safety improvement roles: modeler, influencer, supplier, producer, ideator, reflector, facilitator, and negotiator. When working side by side with "practice," researchers are offered and engage in several different activities. The way researchers contribute to patient safety improvement and balance between different roles depends on the purpose of the study, as well as on the underlying patient safety improvement models. Different patient safety research paradigms seem to emphasize different improvement roles, and thus, they also face different challenges. Open reflection on the underlying improvement models and roles can help researchers with different backgrounds-as well as other actors involved in patient safety improvement-in structuring their work and collaborating productively.

  17. The function of specialized organization in work safety engineering for nuclear installations

    International Nuclear Information System (INIS)

    Salvatore, J.E.L.

    1989-01-01

    The attributions of Brazilian CNEN in the licensing procedures of any nuclear installation are discussed. It is shown that the work safety engineering and industrial safety constitute important functions for nuclear safety. (M.C.K.) [pt

  18. Development of an Owner Engineer's independent capability in NPP safety and licensing

    International Nuclear Information System (INIS)

    Auglaire, M.; Bayart, D.; D'Eer, A.; Polet, F.; Vanhoenacker, L.; Zhang, J.

    2002-01-01

    As Owner's Engineer to Electrabel, the Belgian utility which owns and operates the 7 NPPs in Belgium, Tractebel Energy Engineering has gained considerable experience in the field of ten-yearly safety overhauls of NPPs since 1983. It has developed a methodology leading to proposing corrective actions by means of a global and integrated approach in which safety improvement costs are optimized. Safety issues addressed during those projects encompass the writing of Probabilistic Safety Assessment studies, post-TMI recommendations implementation, the installation of autocatalytic recombiners, accident studies, protection against pressurized thermal shock, impact of flooding of internal or external origin, implementation of severe accident management guidelines, re-evaluation of the environment, verification of extreme climate conditions, updating of the Safety Analysis Reports, operation review. (author)

  19. Progress report on safety research on radioactive waste management for the period April 1993 to March 1995

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Keiichi; Muraoka, Susumu; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [eds.

    1996-03-01

    This report summarizes the research and development activities on radioactive waste management at the Engineered Barrier Materials Laboratory, Natural Barrier Laboratory and Environmental Geochemistry Laboratory of the Department of Environmental Safety Research during the fiscal years of 1993 and 1994 (April 1, 1993 - March 31, 1995). The topics are as follows: (1) As for waste forms and engineered barrier material, performance assessment studies were carried out on various waste forms, buffer materials and mortar. (2) In the safety evaluation study for shallow land disposal, migration behaviour of nuclides in the soil layer was studied. (3) In the safety evaluation study for geological disposal, chemical behaviour of radionuclides in water, nuclide migration in geosphere and groundwater flow system were studied. Migration of uranium series nuclides in uranium ore deposit was studied as a part of natural analogue study. (author).

  20. Progress report on safety research on radioactive waste management for the period April 1993 to March 1995

    International Nuclear Information System (INIS)

    Sekine, Keiichi; Muraoka, Susumu; Banba, Tsunetaka

    1996-03-01

    This report summarizes the research and development activities on radioactive waste management at the Engineered Barrier Materials Laboratory, Natural Barrier Laboratory and Environmental Geochemistry Laboratory of the Department of Environmental Safety Research during the fiscal years of 1993 and 1994 (April 1, 1993 - March 31, 1995). The topics are as follows: 1) As for waste forms and engineered barrier material, performance assessment studies were carried out on various waste forms, buffer materials and mortar. 2) In the safety evaluation study for shallow land disposal, migration behaviour of nuclides in the soil layer was studied. 3) In the safety evaluation study for geological disposal, chemical behaviour of radionuclides in water, nuclide migration in geosphere and groundwater flow system were studied. Migration of uranium series nuclides in uranium ore deposit was studied as a part of natural analogue study. (author)

  1. Progress report on safety research on radioactive waste management for the period April 1992 to March 1993

    International Nuclear Information System (INIS)

    Muraoka, Susumu; Senoo, Muneaki; Sekine, Keiichi

    1994-03-01

    This report summarizes the research and development activities on radioactive waste management at the Engineered Barrier Materials Laboratory, Shallow Land Migration Laboratory, Environmental Geochemistry Laboratory and Environmental Radiochemistry Laboratory of the Department of Environmental Safety Research during the fiscal year of 1992 (April 1, 1992-March 31, 1993). The topics are as follows: 1) As for waste forms and engineered barrier material, performance assessment studies were carried out on various waste forms, buffer materials and mortar. 2) In the safety evaluation study for shallow land disposal, migration behavior in the soil layer were studied. 3) In the safety evaluation study for geological disposal, chemical behavior of nuclide in water, nuclide migration and fixation in geosphere were studied. 4) Distribution of uranium and migration of uranium series nuclide in uranium ore were examined as a natural analogue study. (author)

  2. Guidelines for the review research reactor safety. Reference document for IAEA Integrated Safety Assessment of Research Reactors (INSARR)

    International Nuclear Information System (INIS)

    1997-01-01

    In 1992, the IAEA published new safety standards for research reactors as part of the set of publications considered by its Research Reactor Safety Programme (RRSP). This set also includes publications giving guidance for all safety aspects related to the lifetime of a research reactor. In addition, the IAEA has also revised the Safety Standards for radiation protection. Consequently, it was considered advisable to revise the Integrated Safety Assessment of Research Reactors (INSARR) procedures to incorporate the new requirements and guidance as well as to extend the scope of the safety reviews to currently operating research reactors. The present report is the result of this revision. The purpose of this report is to give guidance on the preparation, execution, reporting and follow-up of safety review mission to research reactors as conducted by the IAEA under its INSARR missions safety service. However, it will also be of assistance to operators and regulators in conducting: (a) ad hoc safety assessments of research reactors to address individual issues such as ageing or safety culture; and (b) other types of safety reviews such as internal and peer reviews and regulatory inspections

  3. Assessment of safety engineering of circuits with dc micromotors

    Energy Technology Data Exchange (ETDEWEB)

    Pavlyuchenko, L.A.; Starchuk, S.E.

    1986-01-01

    Presents an assessment of safety engineering in d.c. micromotors operating as part of actuating devices in mining equipment. These micromotors should have RO (especially explosion proof) protection. The safety engineering should be assessed with an intermittent fault in the power line. Equations are given for calculation of the equivalent inductance of the micromotor circuit with an intermittent power line fault. If the circuit is not intrinsically safe, a diode in the forward direction is recommended for connection in series with the micromotor. If the power line is not intrinsically safe, a diode shunt is recommended. Comparative data for power sources (IBP) and micromotors (DPM, DPR, with permanent magnets) are given in tables. 4 refs.

  4. IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Alcala, F.; Di Meglio, A.F.

    1995-01-01

    This paper describes the IAEA programme on research reactor safety and includes the safety related areas of conversions to the use of low enriched uranium (LEU) fuel. The program is based on the IAEA statutory responsibilities as they apply to the requirements of over 320 research reactors operating around the world. The programme covers four major areas: (a) the development of safety documents; (b) safety missions to research reactor facilities; (c) support of research programmes on research reactor safety; (d) support of Technical Cooperation projects on research reactor safety issues. The demand for these activities by the IAEA member states has increased substantially in recent years especially in developing countries with increasing emphasis being placed on LEU conversion matters. In response to this demand, the IAEA has undertaken an extensive programme for each of the four areas above. (author)

  5. Engineering Hematopoietic Cells for Cancer Immunotherapy: Strategies to Address Safety and Toxicity Concerns.

    Science.gov (United States)

    Resetca, Diana; Neschadim, Anton; Medin, Jeffrey A

    2016-09-01

    Advances in cancer immunotherapies utilizing engineered hematopoietic cells have recently generated significant clinical successes. Of great promise are immunotherapies based on chimeric antigen receptor-engineered T (CAR-T) cells that are targeted toward malignant cells expressing defined tumor-associated antigens. CAR-T cells harness the effector function of the adaptive arm of the immune system and redirect it against cancer cells, overcoming the major challenges of immunotherapy, such as breaking tolerance to self-antigens and beating cancer immune system-evasion mechanisms. In early clinical trials, CAR-T cell-based therapies achieved complete and durable responses in a significant proportion of patients. Despite clinical successes and given the side effect profiles of immunotherapies based on engineered cells, potential concerns with the safety and toxicity of various therapeutic modalities remain. We discuss the concerns associated with the safety and stability of the gene delivery vehicles for cell engineering and with toxicities due to off-target and on-target, off-tumor effector functions of the engineered cells. We then overview the various strategies aimed at improving the safety of and resolving toxicities associated with cell-based immunotherapies. Integrating failsafe switches based on different suicide gene therapy systems into engineered cells engenders promising strategies toward ensuring the safety of cancer immunotherapies in the clinic.

  6. Safety review for human factors engineering and control rooms of nuclear power plants

    International Nuclear Information System (INIS)

    Yang Mengzhuo

    1998-01-01

    Safety review for human factors engineering and control rooms of nuclear power plants (NPP) is in a forward position of science and technology, which began at American TMI severe accident and had been implemented in China. The importance and the significance of the safety review are expounded, the requirements of its scope and profundity are explained in detail. In addition, the situation of the technical document system for nuclear safety regulation on human factors engineering and control rooms of NPP in China is introduced briefly, on which the safety review is based

  7. Assessment of NPP safety taking into account seismic and engineering-geological factors

    International Nuclear Information System (INIS)

    Yakovlev, E.A.

    1990-01-01

    Consideration is given to the problem of probabilistic analysis of NPP safety with account of risk of destructive effect of earthquakes and the danger of accidental geological processes (diapirism, karst etc.) under NPP operation. It is shown that account of seismic and engineering-geological (engineering-seismological) risk factors in probabilistic analysis of safety enables to perform anticipatory analysis of behaviour of principle plant objects and to improve safety of their operation by revealing the most unstable elements of geotechnical system forming the main contribution to the total NPP risk

  8. Nuclear safety research in HGF 2011

    International Nuclear Information System (INIS)

    Tromm, Walter

    2012-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out as safe as possible is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the

  9. Research reactor utilization, safety, decommissioning, fuel and waste management. Posters of an international conference

    International Nuclear Information System (INIS)

    2005-01-01

    For more than 50 years research reactors have played an important role in the development of nuclear science and technology. They have made significant contributions to a large number of disciplines as well as to the educational and research programmes of about 70 countries world wide. About 675 research reactors have been built to date, of which some 278 are now operating in 59 countries (86 of them in 38 developing Member States). Altogether over 13,000 reactor-years of cumulative operational experience has been gained during this remarkable period. The objective of this conference was to foster the exchange of information on current research reactor concerns related to safety, operation, utilization, decommissioning and to provide a forum for reactor operators, designers, managers, users and regulators to share experience, exchange opinions and to discuss options and priorities. The topical areas covered were: a) Utilization, including new trends and directions for utilization of research reactors. Effective management of research reactors and associated facilities. Engineering considerations and experience related to refurbishment and modifications. Strategic planning and marketing. Classical applications (nuclear activation analysis, isotope production, neutron beam applications, industrial irradiations, medical applications). Training for operators. Educational programmes using a reactor. Current developments in design and fabrication of experimental facilities. Irradiation facilities. Projects for regional uses of facilities. Core management and calculation tools. Future trends for reactors. Use of simulators for training and educational programmes. b) Safety, including experience with the preparation and review of safety analysis reports. Human factors in safety analysis. Management of extended shutdown periods. Modifications: safety analysis, regulatory aspects, commissioning programmes. Engineering safety features. Safety culture. Safety peer reviews and

  10. New source terms: what do they tell us about engineered safety feature performance

    International Nuclear Information System (INIS)

    Bernero, R.M.

    1985-01-01

    The accident behavior models which are the basis of engineered safety feature design are generally simple, non-mechanistic and concentrated on volatile radioiodine. Now data from source term studies show that models should be more mechanistic and look at other species than volatile iodine. A complete reevaluation of engineered safety features is needed

  11. Systems Engineering and Safety Issues in Scientific Facilities Subject to Ionizing Radiations

    Directory of Open Access Journals (Sweden)

    Pierre Bonnal

    2013-10-01

    Full Text Available The conception and development of large-scale scientific facilities emitting ionizing radiations rely more on project management practices in use in the process industry than on systems engineering practices. This paper aims to highlight possible reasons for this present situation and to propose some ways to enhance systems engineering so that the specific radiation safety requirements are considered and integrated in the approach. To do so, we have reviewed lessons learned from the management of large-scale scientific projects and more specifically that of the Large Hadron Collider project at CERN. It is shown that project management and systems engineering practices are complementary and can beneficially be assembled in an integrated and lean managerial framework that grants the appropriate amount of focus to safety and radiation safety aspects.

  12. Global Journal of Engineering Research

    African Journals Online (AJOL)

    The Global Journal of Engineering Research is aimed at promoting research in all areas of Engineering Research including Mechanical, Civil, Electrical, Chemical, Electronics, Geological etc. Visit the Global Journal Series website here: http://www.globaljournalseries.com/ ...

  13. Automated Flight Safety Inference Engine (AFSIE) System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an innovative Autonomous Flight Safety Inference Engine (AFSIE) system to autonomously and reliably terminate the flight of an errant launch...

  14. Environment and safety research status report: 1993

    International Nuclear Information System (INIS)

    1993-03-01

    The 1993 status report discusses ongoing and planned research activities in the GRI Environment and Safety Program. The objectives and goals, accomplishments, and strategy along with the basis for each project area are presented for the supply, end use, and gas operations subprograms. Within the context of these subprograms, contract status summaries under their conceptual titles are given for the following project areas: Gas Supply Environmental and Safety Research, Air Quality Research, End Use Equipment Safety Research, Gas Operations Safety Research, Liquefied Natural Gas, Safety Research, and Gas Operations Environmental Research

  15. Reactor safety research and safety technology. Pt. 2

    International Nuclear Information System (INIS)

    Theenhaus, R.; Wolters, J.

    1987-01-01

    The state of HTR safety research work reached permits a comprehensive and reliable answer to be given to questions which have been raised by the reactor accident at Chernobyl, regarding HTR safety. Together with the probability safety analyses, the way to a safety concept suitable for an HTR is cleared; instructions are given for design optimisation with regard to safety technique and economy. The consequences of a graphite fire, the neutron physics design and the consequenes of the lack of a safety containment are briefly described. (DG) [de

  16. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  17. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  18. Framework for systems engineering research

    CSIR Research Space (South Africa)

    Erasmus, L

    2013-08-01

    Full Text Available In this paper a framework is proposed to perform systems engineering research within South Africa. It is proposed that within the reference of the National Research Foundation (NRF) classification of research, systems engineering is a Field...

  19. Research on review technology for three key safety factors of periodic safety review (PSR) and its application to Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Xu Shoulv; Yao Weida; Dou Yikang; Lin Shaoxuan; Cao Yenan; Zhou Quanfu; Zheng Jiong; Zhang Ming

    2009-04-01

    In 2001, after 10 years' operation, Qinshan Nuclear Power Plant (Q1) started to carry out periodic safety review (PSR) based on a nuclear safety guideline, Periodic Safety Review for Operational Nuclear Power Plants (HAF0312), issued by National Nuclear Safety Administration of China (NNSA). Entrusted by the owner of Q1, Shanghai Nuclear Engineering Research and Design Institute (SNERDI) implemented reviews of three key safety factors including safety analysis, equipment qualification and ageing. PSR was a challenging work in China at that time and through three years' research and practice, SNERDI summarized a systematic achievement for the review including review methodology, scoping, review contents and implementation steps, etc.. During the process of review for the three safety factors, totally 148 review reports and 341 recommendations for corrections were submitted to Q1. These reports and recommendations have provided guidance for correction actions as follow-up of PSR. This paper focuses on technical aspects to carry out PSR for the above-mentioned three safety factors, including review scoping, contents, methodology and main steps. The review technology and relevant experience can be taken for reference for other NPPs to carry out PSR. (authors)

  20. Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems

    Science.gov (United States)

    Hill, Janice; Victor, Daniel

    2008-01-01

    When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard

  1. TU-EF-BRD-01: Topics in Quality and Safety Research and Level of Evidence

    Energy Technology Data Exchange (ETDEWEB)

    Pawlicki, T. [UCSD Medical Center (United States)

    2015-06-15

    peer-reviewed research will be used to highlight the main points. Historical, medical physicists have leveraged many areas of applied physics, engineering and biology to improve radiotherapy. Research on quality and safety is another area where physicists can have an impact. The key to further progress is to clearly define what constitutes quality and safety research for those interested in doing such research and the reviewers of that research. Learning Objectives: List several tools of quality and safety with references to peer-reviewed literature. Describe effects of mental workload on performance. Outline research in quality and safety indicators and technique analysis. Understand what quality and safety research needs to be going forward. Understand the links between cooperative group trials and quality and safety research.

  2. TU-EF-BRD-04: Summing It Up: The Future of Quality and Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Ford, E. [University of Washington (United States)

    2015-06-15

    peer-reviewed research will be used to highlight the main points. Historical, medical physicists have leveraged many areas of applied physics, engineering and biology to improve radiotherapy. Research on quality and safety is another area where physicists can have an impact. The key to further progress is to clearly define what constitutes quality and safety research for those interested in doing such research and the reviewers of that research. Learning Objectives: List several tools of quality and safety with references to peer-reviewed literature. Describe effects of mental workload on performance. Outline research in quality and safety indicators and technique analysis. Understand what quality and safety research needs to be going forward. Understand the links between cooperative group trials and quality and safety research.

  3. TU-EF-BRD-04: Summing It Up: The Future of Quality and Safety Research

    International Nuclear Information System (INIS)

    Ford, E.

    2015-01-01

    peer-reviewed research will be used to highlight the main points. Historical, medical physicists have leveraged many areas of applied physics, engineering and biology to improve radiotherapy. Research on quality and safety is another area where physicists can have an impact. The key to further progress is to clearly define what constitutes quality and safety research for those interested in doing such research and the reviewers of that research. Learning Objectives: List several tools of quality and safety with references to peer-reviewed literature. Describe effects of mental workload on performance. Outline research in quality and safety indicators and technique analysis. Understand what quality and safety research needs to be going forward. Understand the links between cooperative group trials and quality and safety research

  4. Research | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering & Applied Science. Please explore this webpage to learn about research activities and Associate Dean for Research College of Engineering and Applied Sciences Director, Center for Sustainable magazine. College ofEngineering & Applied Science Academics About People Students Research Business

  5. Application of software engineering to development of reactor-safety codes

    International Nuclear Information System (INIS)

    Wilburn, N.P.; Niccoli, L.G.

    1980-11-01

    As a result of the drastically increasing cost of software and the lack of an engineering approach, the technology of Software Engineering is being developed. Software Engineering provides an answer to the increasing cost of developing and maintaining software. It has been applied extensively in the business and aerospace communities and is just now being applied to the development of scientific software and, in particular, to the development of reactor safety codes at HEDL

  6. Safety re-assessment of AECL test and research reactors

    International Nuclear Information System (INIS)

    Winfield, D.J.

    1990-01-01

    Atomic Energy of Canada Limited currently has four operating engineering test/research reactors of various sizes and ages; a new isotope-production reactor Maple-X10, under construction at Chalk River Nuclear Laboratories (CRNL), and a heating demonstration reactor, SDR, undergoing high-power commissioning at Whiteshell Nuclear Research Establishment (WNRE). The company is also performing design studies of small reactors for hot water and electricity production. The older reactors are ZED-2, PTR, NRX, and NRU; these range in age from 42 years (NRX) to 29 years (ZED-2). Since 1984, limited-scope safety re-assessments have been underway on three of these reactors (ZED-2, NRX AND NRU). ZED-2 and PTR are operated by the Reactor Physics Branch; all other reactors are operated by the respective site Reactor Operations Branches. For the older reactors the original safety reports produced were entirely deterministic in nature and based on the design-basis accident concept. The limited scope safety re-assessments for these older reactors, carried out over the past 5 years, have comprised both quantitative probabilistic safety-assessment techniques, such as event tree and fault analysis, and/or qualitative techniques, such as failure mode and effect analysis. The technique used for an individual assessment was dependent upon the specific scope required. This paper discusses the types of analyses carried out, specific insights/recommendations resulting from the analysis, and the plan for future analysis. In addition, during the last four years safety assessments have been carried out on the new isotope-, heat-, and electricity-producing reactors, as part of the safety design review, commissioning and licensing activities

  7. The structure and emerging trends of construction safety management research: a bibliometric review.

    Science.gov (United States)

    Liang, Huakang; Zhang, Shoujian; Su, Yikun

    2018-03-29

    Recently, construction safety management (CSM) practices and systems have become important topics for stakeholders to take care of human resources. However, few studies have attempted to map the global research on CSM. A comprehensive bibliometric review was conducted in this study based on multiple methods. In total, 1172 CSM-related papers from the Web of Science Core Collection database were examined. The analyses focused on publication year, country-institute, publication source, author and research topics. The results indicated that the USA, China, Australia and the UK took leading positions in CSM research. Two branches of journals were identified, namely the branch of engineering science and that of safety science and social science. Additionally, seven themes together with 28 specific topics were detected to allow researchers to track the main structure and temporal evolution of CSM research. Finally, the main research trends and potential research directions were discussed to guide the future research.

  8. Engineering thinking in emergency situations: A new nuclear safety concept.

    Science.gov (United States)

    Guarnieri, Franck; Travadel, Sébastien

    2014-11-01

    The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for "engineering thinking in emergency situations." This is a new concept that emphasizes adaptability and resilience within organizations-such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident.

  9. Progress of nuclear safety research, 1990

    International Nuclear Information System (INIS)

    1990-07-01

    Since the Japan Atomic Energy Research Institute (JAERI) was founded as a nonprofit, general research and development organization for the peaceful use of nuclear energy, it has actively pursued the research and development of nuclear energy. Nuclear energy is the primary source of energy in Japan where energy resources are scarce. The safety research is recognized at JAERI as one of the important issues to be clarified, and the safety research on nuclear power generation, nuclear fuel cycle, waste management and environmental safety has been conducted systematically since 1973. As of the end of 1989, 38 reactors were in operation in Japan, and the nuclear electric power generated in 1988 reached 29 % of the total electric power generated. 50 years have passed since nuclear fission was discovered in 1939. The objective of the safety research at JAERI is to earn public support and trust for the use of nuclear energy. The overview of the safety research at JAERI, fuel behavior, reliability of reactor structures and components, reactor thermal-hydraulics during LOCA, safety assessment of nuclear power plants and nuclear fuel cycle facilities, radioactive waste management and environmental radioactivity are reported. (K.I.)

  10. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  11. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  12. The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project

    International Nuclear Information System (INIS)

    Hopper, Calvin Mitchell

    2011-01-01

    Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.

  13. Progress report on safety research on high-level waste management for the period April 1989 to March 1990

    International Nuclear Information System (INIS)

    Muraoka, Susumu; Senoo, Muneaki; Kobayashi, Yoshii

    1991-02-01

    Research on high-level waste management at the Engineered Barrier Materials Laboratory, Environmental Geochemistry Laboratory and Environmental Radiochemistry Laboratory of the Department of Environmental Safety Research, JAERI in the fiscal year of 1989 are described. The topics are as follows: 1) As for waste forms and engineered barrier material, performance assessment studies on glass and ceramic forms, and corrosion test of carbon steel were continued. 2) In the safety evaluation study for geological disposal, chemical behavior of nuclide in water, nuclide migration and retardation in geosphere were studied. New microspectrometers was developed to analyze the chemical form in rocks. 3) Distribution and migration of uranium in uranium ore were examined as a natural analogue study. (author)

  14. Progress report on safety research on high-level waste management for the period April 1991 to March 1992

    International Nuclear Information System (INIS)

    Muraoka, Susumu; Senoo, Muneaki; Kobayashi, Yoshii

    1993-03-01

    Research on high-level waste management at the Engineered Barrier Materials Laboratory, Environmental Geochemistry Laboratory and Environmental Radiochemistry Laboratory of the Department of Environmental Safety Research, JAERI in the fiscal year of 1991 are described. The topics are as follows: 1) As for waste forms and engineered barrier material, performance assessment studies on glass, ceramic and buffer materials were carried out. 2) In the safety evaluation study for geological disposal, behavior of radionuclide in deep underground water, nuclide migration in-situ and natural groundwater flow system were studied. 3) Changes in layer charge of smectite, alteration of uranium mineral and uranium fixation in uranium ore were examined as a natural analogue study. (author)

  15. Researches in nuclear safety

    International Nuclear Information System (INIS)

    Souchet, Y.

    2009-01-01

    This article comprises three parts: 1 - some general considerations aiming at explaining the main motivations of safety researches, and at briefly presenting the important role of some organisations in the international conciliation, and the most common approach used in safety researches (analytical experiments, calculation codes, global experiments); 2 - an overview of some of the main safety problems that are the object of worldwide research programs (natural disasters, industrial disasters, criticality, human and organisational factors, fuel behaviour in accidental situation, serious accidents: core meltdown, corium spreading, failure of the confinement building, radioactive releases). Considering the huge number of research topics, this part cannot be exhaustive and many topics are not approached; 3 - the presentation of two research programs addressing very different problems: the evaluation of accidental releases in the case of a serious accident (behaviour of iodine and B 4 C, air infiltration, fission products release) and the propagation of a fire in a facility (PRISME program). These two programs belong to an international framework involving several partners from countries involved in nuclear energy usage. (J.S.)

  16. Interaction between systems and software engineering in safety-critical systems

    International Nuclear Information System (INIS)

    Knight, J.

    1994-01-01

    There are three areas of concern: when is software to be considered safe; what, exactly, is the role of the software engineer; and how do systems, or sometimes applications, engineers and software engineers interact with each other. The author presents his perspective on these questions which he feels differ from those of many in the field. He argues for a clear definition of safety in the software arena, so the engineer knows what he is engineering toward. Software must be viewed as part of the entire system, since it does not function on its own, or isolation. He argues for the establishment of clear specifications in this area

  17. Atomic power engineering under falsified safety standards

    International Nuclear Information System (INIS)

    Ackerman, A.J.

    1974-01-01

    In July 1970 the United States Department of Justice accused the American Society of Mechanical Engineers (ASME) of violating the Sherman Antitrust Act and of acting in restraint of trade by restricting the ASME Certificate of Authorization and the use of the Code Symbol Stamps to boilers and pressure vessels manufactured in the United States and Canada. During the succeeding two years attorneys for the parties in the case formulated a Consent Decree without a public confrontation in the Court. Furthermore, the membership of ASME was kept uninformed until October of 1972, after the Consent and Final Judgment had become effective and new procedures had been developed for allowing foreign manufacturers to apply the ASME Code Symbol Stamps to their products. As a consequence, a breakdown in engineered safety standards has been sanctioned and this is undermining the engineering profession's overriding reponsibility to protect the public health and safety. This breakdown of professional responsibility is especially serious in the new technology of atomic power. American insurance companies, which have traditionally written 100% insurance coverage for property damage and third party liability against explosions of high pressure steam boilers bearing the ASME Code Stamp, have refused to write such insurance coverage on nuclear reactors. In the author's opinion there is evidence that the Consent was formulated under collusive proceedings and he calls on the members and the Council of ASME to appeal for dismissal of the Consent Decree. 24 refs

  18. Pedagogical Training and Research in Engineering Education

    Science.gov (United States)

    Wankat, Phillip C.

    2008-01-01

    Ferment in engineering has focused increased attention on undergraduate engineering education, and has clarified the need for rigorous research in engineering education. This need has spawned the new research field of Engineering Education and greatly increased interest in earning Ph.D. degrees based on rigorous engineering education research.…

  19. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, July 1--September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A J [comp.

    1989-02-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through June 30, 1988. 71 figs., 24 tabs.

  20. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, July 1--September 30, 1988

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1989-02-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through June 30, 1988. 71 figs., 24 tabs

  1. Engineering safety features for high power experimental reactors

    International Nuclear Information System (INIS)

    Doval, A.; Villarino, E.; Vertullo, A.

    2000-01-01

    In the present analysis we will focus our attention in the way engineering safety features are designed in order to prevent fuel damage in case of abnormal or accidental situations. To prevent fuel damage two main facts must be considered, the shutdown of the reactor and the adequate core cooling capacity, it means that both, neutronic and thermohydraulic aspects must be analysed. Some neutronic safety features are common to all power ranges like negative feedback reactivity coefficients and the required number of control rods containing the proper absorber material to shutdown the reactor. From the thermohydraulic point of view common features are siphon-breaker devices and flap valves for those powers requiring cooling in the forced convection regime. For the high power reactor group, the engineering safety features specially designed for a generic reactor of 20 MW, will be presented here. From the neutronic point of view besides the common features, and to comply with our National Regulatory Authority, a Second Shutdown System was designed as a redundant shutdown system in case the control plates fail. Concerning thermohydraulic aspects besides the pump flywheels and the flap valves providing the natural convection loop, a metallic Chimney and a Chimney Water Injection System were supplied. (author)

  2. Enabling Arctic Research Through Science and Engineering Partnerships

    Science.gov (United States)

    Kendall, E. A.; Valentic, T. A.; Stehle, R. H.

    2014-12-01

    Under an Arctic Research Support and Logistics contract from NSF (GEO/PLR), SRI International, as part of the CH2M HILL Polar Services (CPS) program, forms partnerships with Arctic research teams to provide data transfer, remote operations, and safety/operations communications. This teamwork is integral to the success of real-time science results and often allows for unmanned operations which are both cost-effective and safer. The CPS program utilizes a variety of communications networks, services and technologies to support researchers and instruments throughout the Arctic, including Iridium, VSAT, Inmarsat BGAN, HughesNet, TeleGreenland, radios, and personal locator beacons. Program-wide IT and communications limitations are due to the broad categories of bandwidth, availability, and power. At these sites it is essential to conserve bandwidth and power through using efficient software, coding and scheduling techniques. There are interesting new products and services on the horizon that the program may be able to take advantage of in the future such as Iridium NEXT, Inmarsat Xpress, and Omnispace mobile satellite services. Additionally, there are engineering and computer software opportunities to develop more efficient products. We will present an overview of science/engineering partnerships formed by the CPS program, discuss current limitations and identify future technological possibilities that could further advance Arctic science goals.

  3. Status and prospects of safety research about fuel cycle facilities in France

    International Nuclear Information System (INIS)

    Auchere, H.; Mercier, J.P.

    1996-01-01

    Although there is a good knowledge of the risks and no major accident occurred in France, as in other OECD countries, it remains useful to complete basic knowledge and to allow the quality of fuel cycle plants safety assessments to be improved further, particularly in countries equipped with a 'complete' nuclear fuel cycle (France, Japan and U.K.). The scope of the current and future IPSN ('Institut de Protection et de Surete Nucleaire': institute for protection and nuclear safety) research deals with the whole fuel cycle. The overview presented here in NUCEF'95 symposium contains a number of specific themes, some of which have already been started. Successful conclusion of the safety researches will allow the IPSN to have a more precise understanding about specific phenomena and notably to replace 'engineer judgements', though they may be based on a lot of experience and competence, by more scientifically established basic data. (J.P.N.)

  4. Guidelines for the Review of Research Reactor Safety: Revised Edition. Reference Document for IAEA Integrated Safety Assessment of Research Reactors (INSARR)

    International Nuclear Information System (INIS)

    2013-01-01

    The Integrated Safety Assessment of Research Reactors (INSARR) is an IAEA safety review service available to Member States with the objective of supporting them in ensuring and enhancing the safety of their research reactors. This service consists of performing a comprehensive peer review and an assessment of the safety of the respective research reactor. The reviews are based on IAEA safety standards and on the provisions of the Code of Conduct on the Safety of Research Reactors. The INSARR can benefit both the operating organizations and the regulatory bodies of the requesting Member States, and can include new research reactors under design or operating research reactors, including those which are under a Project and Supply Agreement with the IAEA. The first IAEA safety evaluation of a research reactor operated by a Member State was completed in October 1959 and involved the Swiss 20 MW DIORIT research reactor. Since then, and in accordance with its programme on research reactor safety, the IAEA has conducted safety review missions in its Member States to enhance the safety of their research reactor facilities through the application of the Code of Conduct on the Safety of Research Reactors and the relevant IAEA safety standards. About 320 missions in 51 Member States were undertaken between 1972 and 2012. The INSARR missions and other limited scope safety review missions are conducted following the guidelines presented in this publication, which is a revision of Guidelines for the Review of Research Reactor Safety (IAEA Services Series No. 1), published in December 1997. This publication details those IAEA safety standards and guidance publications relevant to the safety of research reactors that have been revised or published since 1997. The purpose of this publication is to give guidance on the preparation, implementation, reporting and follow-up of safety review missions. It is also intended to be of assistance to operators and regulators in conducting

  5. Progress report on safety research of high-level waste management for the period April 1986 to March 1987

    International Nuclear Information System (INIS)

    Nakamura, Haruto; Tashiro, Shingo

    1987-08-01

    Researches on high-level waste management at the High Level Waste Management Laboratory and the Waste Safety Testing Facility Operation Division of the Japan Atomic Energy Research Institute in the fiscal year of 1986 are reviewed in the report. Topics in the three sections are as follows: 1) Non-radioactive research has been continued on Synroc irradiation and modellings of waste form leaching. 2) Research results are described in the section of Safety Evaluation for Geological Disposal on engineered barriers, field tests, safety assessment models, migration, natural analogue, seabed disposal and conceptual design of a repository. 3) Adsorption behaviour of plutonium on leach-containers and migration of leached cesium in a rock column are described in the section of Safety Examination of Vitrified Forms in the Hot Cells of WASTEF. (author)

  6. Nuclear safety research

    International Nuclear Information System (INIS)

    1999-01-01

    The NNSA checked and coordinated in 1999 the research project of the Surveillance Technology on Nuclear Installations under the National 9th-Five-Year Program to promote the organizations that undertake the research work on schedule and lay a foundation of obtaining achievements and effectiveness for the 9th-five-year plan on nuclear safety research

  7. Program nuclear safety research: report 2000

    International Nuclear Information System (INIS)

    Muehl, B.

    2001-09-01

    The reactor safety R and D work of forschungszentrum karlsruhe (FZK) had been part of the nuclear safety research project (PSF) since 1990. In 2000, a new organisational structure was introduced and the Nuclear Safety Research Project was transferred into the nuclear safety research programme (NUKLEAR). In addition to the three traditional main topics - Light Water Reactor safety, Innovative systems, Studies related to the transmutation of actinides -, the new Programme NUKLEAR also covers Safety research related to final waste storage and Immobilisation of HAW. These new topics, however, will only be dealt with in the next annual report. Some tasks related to the traditional topics have been concluded and do no longer appear in the annual report; other tasks are new and are described for the first time. Numerous institutes of the research centre contribute to the work programme, as well as several external partners. The tasks are coordinated in agreement with internal and external working groups. The contributions to this report, which are either written in German or in English, correspond to the status of early/mid 2001. (orig.)

  8. Investigation of the impact of low cost traffic engineering measures on road safety in urban areas.

    Science.gov (United States)

    Yannis, George; Kondyli, Alexandra; Georgopoulou, Xenia

    2014-01-01

    This paper investigates the impact of low cost traffic engineering measures (LCTEMs) on the improvement of road safety in urban areas. A number of such measures were considered, such as speed humps, woonerfs, raised intersections and other traffic calming measures, which have been implemented on one-way, one-lane roads in the Municipality of Neo Psychiko in the Greater Athens Area. Data were analysed using the before-and-after safety analysis methodology with large control group. The selected control group comprised of two Municipalities in the Athens Greater Area, which present similar road network and land use characteristics with the area considered. The application of the methodology showed that the total number of crashes presented a statistically significant reduction, which can be possibly attributed to the introduction of LCTEMs. This reduction concerns passenger cars and single-vehicle crashes and is possibly due to the behavioural improvement of drivers of 25 years old or more. The results of this research are very useful for the identification of the appropriate low cost traffic engineering countermeasures for road safety problems in urban areas.

  9. Risk as a target of safety research

    International Nuclear Information System (INIS)

    Krueger, W.

    1986-01-01

    Job creation is not the idea behind the demand for risk studies to be intensified in safety research. Risks are not only a target safety research should investigate, they are a subject that actually can be most adequately investigated by safety research. Assuming a neutral position between irrational fears and interest-minded problem minimization, that is the central approach and the ethics of a safety scientist. The Babylonian confusion of terminology experienced after the Chernobyl accident is a good example proving the necessity of fostering the neutral professionalism in safety research. (orig./DG) [de

  10. Knowledge, attitude and practices for design for safety: A study on civil & structural engineers.

    Science.gov (United States)

    Goh, Yang Miang; Chua, Sijie

    2016-08-01

    Design for safety (DfS) (also known as prevention through design, safe design and Construction (Design and Management)) promotes early consideration of safety and health hazards during the design phase of a construction project. With early intervention, hazards can be more effectively eliminated or controlled leading to safer worksites and construction processes. DfS is practiced in many countries, including Australia, the UK, and Singapore. In Singapore, the Manpower Ministry enacted the DfS Regulations in July 2015, which will be enforced from August 2016 onwards. Due to the critical role of civil and structural (C&S) engineers during design and construction, the DfS knowledge, attitude and practices (KAP) of C&S engineers have significant impact on the successful implementation of DfS. Thus, this study aims to explore the DfS KAP of C&S engineers so as to guide further research in measuring and improving DfS KAP of designers. During the study, it was found that there is a lack of KAP studies in construction management. Therefore, this study also aims to provide useful lessons for future applications of the KAP framework in construction management research. A questionnaire was developed to assess the DfS KAP of C&S engineers. The responses provided by 43 C&S engineers were analyzed. In addition, interviews with experienced construction professionals were carried out to further understand perceptions of DfS and related issues. The results suggest that C&S engineers are supportive of DfS, but the level of DfS knowledge and practices need to be improved. More DfS guidelines and training should be made available to the engineers. To ensure that DfS can be implemented successfully, there is a need to study the contractual arrangements between clients and designers and the effectiveness of different implementation approaches for the DfS process. The questionnaire and findings in this study provided the foundation for a baseline survey with larger sample size, which is

  11. Monitor for safety engineering facility

    International Nuclear Information System (INIS)

    Sato, Akira; Kaneda, Mitsunori.

    1982-01-01

    Purpose: To improve the reactor safety and decrease misoperation upon periodical inspection by instantly obtaining the judgement for the stand-by states in engineering safety facilities of a nuclear power plant. Constitution: Process inputs representing the states of valves, pumps, flowrates or the likes of the facility are gathered into an input device and inputted to a status monitor. The status of the facility inputted to the input device are judged for each of the inputs in a judging section and recognized as a present system stand-by pattern of the system (Valve) to be inspected. While on the other hand, a normal system stand-by pattern previously stored in a memory unit is read out by an instruction from an operator console and judged by comparison with the system stand-by pattern in a comparison section. The results are displayed on a display device. Upon periodical inspection, inspection procedures stored in the memory unit are displayed on the display device by the instruction from the operator console. (Seki, T.)

  12. Reliability and Maintainability Engineering - A Major Driver for Safety and Affordability

    Science.gov (United States)

    Safie, Fayssal M.

    2011-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of an effort to design and build a safe and affordable heavy lift vehicle to go to the moon and beyond. To achieve that, NASA is seeking more innovative and efficient approaches to reduce cost while maintaining an acceptable level of safety and mission success. One area that has the potential to contribute significantly to achieving NASA safety and affordability goals is Reliability and Maintainability (R&M) engineering. Inadequate reliability or failure of critical safety items may directly jeopardize the safety of the user(s) and result in a loss of life. Inadequate reliability of equipment may directly jeopardize mission success. Systems designed to be more reliable (fewer failures) and maintainable (fewer resources needed) can lower the total life cycle cost. The Department of Defense (DOD) and industry experience has shown that optimized and adequate levels of R&M are critical for achieving a high level of safety and mission success, and low sustainment cost. Also, lessons learned from the Space Shuttle program clearly demonstrated the importance of R&M engineering in designing and operating safe and affordable launch systems. The Challenger and Columbia accidents are examples of the severe impact of design unreliability and process induced failures on system safety and mission success. These accidents demonstrated the criticality of reliability engineering in understanding component failure mechanisms and integrated system failures across the system elements interfaces. Experience from the shuttle program also shows that insufficient Reliability, Maintainability, and Supportability (RMS) engineering analyses upfront in the design phase can significantly increase the sustainment cost and, thereby, the total life cycle cost. Emphasis on RMS during the design phase is critical for identifying the design features and characteristics needed for time efficient processing

  13. Safety Research and Experimental Coal Mines

    Data.gov (United States)

    Federal Laboratory Consortium — Safety Research and Experimental Coal MinesLocation: Pittsburgh SiteThe Safety Research Coal Mine and Experimental Mine complex is a multi-purpose underground mine...

  14. Accomplishments and needs in safety research

    International Nuclear Information System (INIS)

    Beckjord, E.S.

    1988-01-01

    My purpose today is to review recent accomplishments in water reactor safety research and to point out important tasks that remain to be done. I will also comment on the changes of focus that I see ahead in reactor safety research. I speak from a U.S. perspective on the subject, but note that the program of the U.S. Nuclear Regulatory Commission and also that of the U.S. industry's Electric Power Research Institute include many international collaborative research efforts. Without any doubt, nuclear safety research today is international in scope, and the collaborative movement is gaining in strength

  15. Meeting on reactor safety research

    International Nuclear Information System (INIS)

    1982-09-01

    The meeting 'Reactor Safety Research' organized for the second time by the GRS by order of the BMFT gave a review of research activities on the safety of light water reactors in the Federal Repulbic of Germany, international co-operation in this field and latest results of this research institution. The central fields of interest were subjects of man/machine-interaction, operational reliability accident sequences, and risk. (orig.) [de

  16. An engineer-constructor's view of nuclear power plant safety

    International Nuclear Information System (INIS)

    Landis, J.W.; Jacobs, S.B.

    1984-01-01

    At SWEC we have been involved in the development of safety features of nuclear power plants ever since we served as the engineer-constructur for the first commerical nuclear power station at Shippingport, Pennsylvania, in the 1950s. Our personnel have pioneered a number of safety innovations and improvements. Among these innovations is the subatmospheric containment for pressurized water reactor (PWR) power plants. This type of containment is designed so that leakage will terminate within 1 to 2 hours of the worst postulated loss of coolant accident. Other notable contributions include first use of reinforced-concrete atmospheric containments for PWR power plants and of reinforced-concrete, vapor-suppression containments for boiling water reactor (BWR) power plants. Both concepts meet rigorous U.S. safety requirements. SWEC has performed a substantial amount of work on developing standardized plant designs and has developed standardized engineering and construction techniques and procedures. Standardization concepts are being developed in Canada, France, USSR, and Germany, as well as in the United States. The West German convoy concept, which involves developing a number of standardized plants in a common effort, has been quite successful. We believe standardization contributes to safety in a number of ways. Use of standardized designs, procedures, techniques, equipment, and methods increases efficiency and results in higher quality. Standardization also reduces the design variations with which plant operators, emergency teams, and regulatory personnel must be familiar, thus increasing operator capability, and permits specialized talents to be focused on important safety considerations. (orig./RW)

  17. Feminist Methodologies and Engineering Education Research

    Science.gov (United States)

    Beddoes, Kacey

    2013-01-01

    This paper introduces feminist methodologies in the context of engineering education research. It builds upon other recent methodology articles in engineering education journals and presents feminist research methodologies as a concrete engineering education setting in which to explore the connections between epistemology, methodology and theory.…

  18. The Increase of Operational Safety of Ships by Improving Diagnostic Methods for Marine Diesel Engine

    Directory of Open Access Journals (Sweden)

    Kazimierz Witkowski

    2017-06-01

    Full Text Available This article shows the importance of the diagnostic improvement methods of marine engines to boost the economy and safety of operation of marine cargo ships. The need to implement effective diagnostic methods is justified by presenting statistical data of marine diesel engines failure and the cost of their operation. Based on the own research has been proven, for the chosen example, that indicator diagrams and analysis of indicated parameters have limited utility in the diagnosis of damages of marine engine, although this is a method commonly used in operational practice. To achieve greater diagnostic effectiveness, when, based on indicator diagrams, are calculated and then the characteristics of heat release is analyzed - net of heat release characteristics and the intensity of the heat release, it was demonstrated. This procedure is particularly effective in the diagnosis of damage of injection system components marine diesel engine.

  19. Nuclear safety research in HGF 2012

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German Federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out safe is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the partners in the

  20. [Research progress of genetic engineering on medicinal plants].

    Science.gov (United States)

    Teng, Zhong-qiu; Shen, Ye

    2015-02-01

    The application of genetic engineering technology in modern agriculture shows its outstanding role in dealing with food shortage. Traditional medicinal plant cultivation and collection have also faced with challenges, such as lack of resources, deterioration of environment, germplasm of recession and a series of problems. Genetic engineering can be used to improve the disease resistance, insect resistance, herbicides resistant ability of medicinal plant, also can improve the medicinal plant yield and increase the content of active substances in medicinal plants. Thus, the potent biotechnology can play an important role in protection and large area planting of medicinal plants. In the development of medicinal plant genetic engineering, the safety of transgenic medicinal plants should also be paid attention to. A set of scientific safety evaluation and judgment standard which is suitable for transgenic medicinal plants should be established based on the recognition of the particularity of medicinal plants.

  1. International symposium on research reactor utilization, safety and management. Book of extended synopses

    International Nuclear Information System (INIS)

    1999-01-01

    The Symposium, considered as an important meeting of the owners and operators of research reactors as well as scientists concerned with problems of research reactors operation, management and safety covered the following topics: global and regional overview of research reactors, research reactors utilisation, research reactors safety, research reactors management, research reactors engineering. IAEA Research Reactors Database (RRDB) contains data concerning 291 operational research reactors, 247 shutdown reactors, 106 decommissioned reactors, 15 under construction and 15 new reactors planned. There is quite an even distribution of operational research reactors among 58 countries. Although about 66% of operational research reactors described in the RRDB are over 30 years old, the number of research reactors under construction or planned appears to have increased in recent years. According to the RRDB, the major applications of research reactors are in the field of neutron activation analysis, isotope production and neutron scattering work. Great concern was shown for several aspects of research reactors safety, especially since the average age of the operating research reactors is almost 30 years. Ageing problems involve more than the degradation of properties of the materials. Issues such as outdated equipment, lack of spare parts, outdating of the control and documentation systems related to the reactor, as well as budgetary limitations, affect the safety of some reactors. There are serious problems related to the spent fuel condition and the ageing of fuel storage facilities, in particular corrosion and leakage. The outstanding issues of concern are life extension of the spent fuel storage facilities and the future of take-back programmes of foreign research reactor fuels that will not be continued. A number of discussions related to safety requirements were focused on licensing and regulatory issues, especially in the case of older research reactors and those

  2. International symposium on research reactor utilization, safety and management. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The Symposium, considered as an important meeting of the owners and operators of research reactors as well as scientists concerned with problems of research reactors operation, management and safety covered the following topics: global and regional overview of research reactors, research reactors utilisation, research reactors safety, research reactors management, research reactors engineering. IAEA Research Reactors Database (RRDB) contains data concerning 291 operational research reactors, 247 shutdown reactors, 106 decommissioned reactors, 15 under construction and 15 new reactors planned. There is quite an even distribution of operational research reactors among 58 countries. Although about 66% of operational research reactors described in the RRDB are over 30 years old, the number of research reactors under construction or planned appears to have increased in recent years. According to the RRDB, the major applications of research reactors are in the field of neutron activation analysis, isotope production and neutron scattering work. Great concern was shown for several aspects of research reactors safety, especially since the average age of the operating research reactors is almost 30 years. Ageing problems involve more than the degradation of properties of the materials. Issues such as outdated equipment, lack of spare parts, outdating of the control and documentation systems related to the reactor, as well as budgetary limitations, affect the safety of some reactors. There are serious problems related to the spent fuel condition and the ageing of fuel storage facilities, in particular corrosion and leakage. The outstanding issues of concern are life extension of the spent fuel storage facilities and the future of take-back programmes of foreign research reactor fuels that will not be continued. A number of discussions related to safety requirements were focused on licensing and regulatory issues, especially in the case of older research reactors and those

  3. Safety culture for engineering companies. Licensing and design bases for Cofrentes NPP

    International Nuclear Information System (INIS)

    Nhorte Gomez, M.D.

    1994-01-01

    Safety culture must be given higher priority by all organisations. It must not be considered a separate concept, attributable to just one particular organisation, or a single responsible party. It is important to apply this criterion throughout the different phases of a nuclear power plant project (design, construction, commissioning and operation) without becoming isolated or dissociated. Nevertheless, it is absolutely essential to apply and consider it during operation, so to ensure highest possible safety standards. Consideration must also be given to the interfaces and interconnections between the different parties involved in the project (Owner of the NPP, Main Engineering Company, Main Supplier, Regulatory Body, etc) to build a SAFETY CULTURE in a collective and effective way. In applying the safety culture, an engineering company emphasises the following concepts: - Personal dedication and sense of responsibility in all those involved in any activity related to the safety of Nuclear Power Plants. - Clearly defined and readily accessible areas of responsibility and channels of communication - Strict adherence to procedures - Internal review of activities (Design review) (Author)

  4. Role of nuclear safety research and future plan

    International Nuclear Information System (INIS)

    Kim, W. S.; Lee, J. I.; Kang, S. C.; Park, Y. W.; Lee, J. H.; Kim, M. W.; Lee, C. J.; Park, Y. I.

    2000-01-01

    For promoting and improving nuclear safety research activities, this report gives an insight on the scope of safety research and its role in the safety management of nuclear installations, and suggests measures to adequately utilize the research results through taking an optimized role share among research organizations. Several measures such as cooperative planning of common research areas and proper role assignment, improvement of the interfaces among researchers, and reflection of end-users' opinion in the course of planning and conducting research to promote application of research results are identified. It is expected that the identified measures will contribute to enhancing the efficiency and effectiveness of nuclear safety research, if they are implemented after deliberating with the government and safety research organizations

  5. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  6. Image processing for safety assessment in civil engineering.

    Science.gov (United States)

    Ferrer, Belen; Pomares, Juan C; Irles, Ramon; Espinosa, Julian; Mas, David

    2013-06-20

    Behavior analysis of construction safety systems is of fundamental importance to avoid accidental injuries. Traditionally, measurements of dynamic actions in civil engineering have been done through accelerometers, but high-speed cameras and image processing techniques can play an important role in this area. Here, we propose using morphological image filtering and Hough transform on high-speed video sequence as tools for dynamic measurements on that field. The presented method is applied to obtain the trajectory and acceleration of a cylindrical ballast falling from a building and trapped by a thread net. Results show that safety recommendations given in construction codes can be potentially dangerous for workers.

  7. A framework for systems engineering research

    CSIR Research Space (South Africa)

    Erasmus, L

    2013-08-01

    Full Text Available This presentation discusses a framework which is proposed to perform systems engineering research within South Africa and the necessity for hybrid research methods in systems engineering....

  8. Research on the development of advanced system safety assessment procedures (1)

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko

    2002-02-01

    The past research reports in the area of safety engineering proposed the Computer-aided HAZOP system to be applied to Nuclear Reprocessing Facilities. Automated HAZOP system has great advantage compared with human analysts in terms of accuracy of the results, and time required to conduct HAZOP studies. This report surveys the literature on risk assessment and safety design based on the concept of independent protection layers (IPLs). Furthermore, to improve HAZOP System, counter measures information related to abnormal situation in plants are added to knowledge base in the system. As the result the HAZOP system can give appropriate measures information to protect accidents to uses. Such HAZOP system is applied to analyze the processes, where the ability of the proposed system is verified. (author)

  9. Integrated Safety in Design

    DEFF Research Database (Denmark)

    Schultz, Casper Siebken; Jørgensen, Kirsten

    2014-01-01

    An on-going research project investigates the inclusion of health and safety considerations in the design phase as a means to achieve a higher level of health and safety in the construction industry. Moreover, the approach is coupled to the overall quality efforts. Two architectural firms and two...... consulting engineering firms are project participants. The hypothesis is that health and safety problems in execution can be prevented through better planning in the early stages of the construction processes and that accidents are prevented by providing safety. In the first stage of the research project...... a theoretical framework is developed from a combination of existing literature on health and safety and a mapping of existing practices based on interviews in all four companies. The interviews revealed that the basic knowledge on OHS among architects and engineers is limited. Also currently designers typically...

  10. Rasmussen's legacy: A paradigm change in engineering for safety.

    Science.gov (United States)

    Leveson, Nancy G

    2017-03-01

    This paper describes three applications of Rasmussen's idea to systems engineering practice. The first is the application of the abstraction hierarchy to engineering specifications, particularly requirements specification. The second is the use of Rasmussen's ideas in safety modeling and analysis to create a new, more powerful type of accident causation model that extends traditional models to better handle human-operated, software-intensive, sociotechnical systems. Because this new model has a formal, mathematical foundation built on systems theory (as was Rasmussen's original model), new modeling and analysis tools become possible. The third application is to engineering hazard analysis. Engineers have traditionally either omitted human from consideration in system hazard analysis or have treated them rather superficially, for example, that they behave randomly. Applying Rasmussen's model of human error to a powerful new hazard analysis technique allows human behavior to be included in engineering hazard analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Seismic safety margins research program. Project I SONGS 1 AFWS Project

    International Nuclear Information System (INIS)

    Chuang, T.Y.; Smith, P.D.; Dong, R.G.; Bernreuter, D.L.; Bohn, M.P.; Cummings, G.E.; Wells, J.E.

    1981-01-01

    The seismic qualification requirements of auxiliary feedwater systems (AFWS) of Pressurized Water Reactors (PWR) were developed over a number of years. These are formalized in the publication General Design Criteria (Appendix A to 10CFR50). The full recognition of the system as an engineered safety feature did not occur until publication of the Standard Review Plan (1975). Efforts to determine how to backfit seismic requirements to earlier plants has been undertaken primarily in the Systematic Evaluation Program (SEP) for a limited number of operating reactors. Nuclear Reactor Research (RES) and NRR have requested LLNL to perform a probabilistic study on the AFWS of San Onofre Nuclear Generating Station (SONGS) Unit 1 utilizing the tools developed by the Seismic Safety Margins Research Program (SSMRP). The main objectives of this project are to: identify the weak links of AFWS; compare the failure probabilities of SONGS 1 and Zion 1 AFWS: and compare the seismic responses due to different input spectra and design values

  12. Design of plant safety model in plant enterprise engineering environment

    International Nuclear Information System (INIS)

    Gabbar, Hossam A.; Suzuki, Kazuhiko; Shimada, Yukiyasu

    2001-01-01

    Plant enterprise engineering environment (PEEE) is an approach aiming to manage the plant through its lifecycle. In such environment, safety is considered as the common objective for all activities throughout the plant lifecycle. One approach to achieve plant safety is to embed safety aspects within each function and activity within such environment. One ideal way to enable safety aspects within each automated function is through modeling. This paper proposes a theoretical approach to design plant safety model as integrated with the plant lifecycle model within such environment. Object-oriented modeling approach is used to construct the plant safety model using OO CASE tool on the basis of unified modeling language (UML). Multiple views are defined for plant objects to express static, dynamic, and functional semantics of these objects. Process safety aspects are mapped to each model element and inherited from design to operation stage, as it is naturally embedded within plant's objects. By developing and realizing the plant safety model, safer plant operation can be achieved and plant safety can be assured

  13. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos

    2009-01-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  14. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: vasconv@cdtn.br, e-mail: silvaem@cdtn.br, e-mail: aclc@cdtn.br, e-mail: reissc@cdtn.br

    2009-07-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  15. Research program on regulatory safety research - Synthesis report 2008

    International Nuclear Information System (INIS)

    Mailaender, R

    2009-06-01

    This report for the Swiss Federal Office of Energy (SFOE) summarises the program's main points of interest, work done in the year 2008 and the results obtained. The main points of the research program, which is co-ordinated by the Swiss Federal Nuclear Safety Inspectorate ENSI, are discussed. Topics covered concern reactor safety as well as human, organisational and safety aspects. Work done in several areas concerning reactor safety and materials as well as interactions in severe accidents in light-water reactors is described. Radiation protection, the transport and disposal of radioactive wastes and safety culture are also looked at. Finally, national and international co-operation is briefly looked at and work to be done in 2009 is reviewed. The report is completed with a list of research and development projects co-ordinated by ENSI

  16. Nirex Safety Assessment Research Programme bibliography, 1987

    International Nuclear Information System (INIS)

    Cooper, M.J.; Hodgkinson, D.P.

    1987-06-01

    This bibliography lists reports and papers written as part of the Nirex Safety Assessment Research programme, which is concerned with disposal of low-level and intermediate-level waste (LLW and ILW). All work referred to has been funded, or partly funded, by UK Nirex Limited, previously known as the Nuclear Industry Radioactive Waste Executive (NIREX). The bibliography has been divided into two sections, a List of Publications in roughly chronological order and an Author Index. The topics involved include near-field and far-field studies. The near-field includes the waste, its immobilising medium, its container, the engineered structure in which the containers are emplaced, and the immediately adjacent geological formation disturbed by the construction of the repository. The far-field is the undisturbed geological formation between the near-field and the biosphere. (author)

  17. Anomaly Analysis: NASA's Engineering and Safety Center Checks Recurring Shuttle Glitches

    Science.gov (United States)

    Morring, Frank, Jr.

    2004-01-01

    The NASA Engineering and Safety Center (NESC), set up in the wake of the Columbia accident to backstop engineers in the space shuttle program, is reviewing hundreds of recurring anomalies that the program had determined don't affect flight safety to see if in fact they might. The NESC is expanding its support to other programs across the agency, as well. The effort, which will later extend to the International Space Station (ISS), is a principal part of the attempt to overcome the normalization of deviance--a situation in which organizations proceeded as if nothing was wrong in the face of evidence that something was wrong--cited by sociologist Diane Vaughn as contributing to both space shuttle disasters.

  18. Engine Environment Research Facility (EERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility supports research and development testing of the behavior of turbine engine lubricants, fuels and sensors in an actual engine environment....

  19. Legal bases of safety regulations in electrical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jeiter, W

    1981-12-01

    Apart from the governmental regulations the rule for the prevention of accidents 'Electric plants and equipment' must be observed in order to protect the insurants. Actually, all these regulations do not contain any independent instructions. They rather utilize the VDE regulations and refer to them. The laws of electrical safety engineering are strongly influenced by harmonization efforts particularly within the European Communitties.

  20. IRSN safety research carried out for reviewing geological disposal safety case

    International Nuclear Information System (INIS)

    Serres, Christophe; Besnus, Francois; Gay, Didier

    2010-01-01

    The Radiation Protection and Nuclear Safety Institute develops a research programme on scientific issues related to geological disposal safety in order to supporting the technical assessment carried out in the framework of the regulatory review process. This research programme is organised along key safety questions that deal with various scientific disciplines as geology, hydrogeology, mechanics, geochemistry or physics and is implemented in national and international partnerships. It aims at providing IRSN with sufficient independent knowledge and scientific skills in order to be able to assess whether the scientific results gained by the waste management organisation and their integration for demonstrating the safety of the geological disposal are acceptable with regard to the safety issues to be dealt with in the Safety Case. (author)

  1. Effects of organizational safety practices and perceived safety climate on PPE usage, engineering controls, and adverse events involving liquid antineoplastic drugs among nurses.

    Science.gov (United States)

    DeJoy, David M; Smith, Todd D; Woldu, Henok; Dyal, Mari-Amanda; Steege, Andrea L; Boiano, James M

    2017-07-01

    Antineoplastic drugs pose risks to the healthcare workers who handle them. This fact notwithstanding, adherence to safe handling guidelines remains inconsistent and often poor. This study examined the effects of pertinent organizational safety practices and perceived safety climate on the use of personal protective equipment, engineering controls, and adverse events (spill/leak or skin contact) involving liquid antineoplastic drugs. Data for this study came from the 2011 National Institute for Occupational Safety and Health (NIOSH) Health and Safety Practices Survey of Healthcare Workers which included a sample of approximately 1,800 nurses who had administered liquid antineoplastic drugs during the past seven days. Regression modeling was used to examine predictors of personal protective equipment use, engineering controls, and adverse events involving antineoplastic drugs. Approximately 14% of nurses reported experiencing an adverse event while administering antineoplastic drugs during the previous week. Usage of recommended engineering controls and personal protective equipment was quite variable. Usage of both was better in non-profit and government settings, when workers were more familiar with safe handling guidelines, and when perceived management commitment to safety was higher. Usage was poorer in the absence of specific safety handling procedures. The odds of adverse events increased with number of antineoplastic drugs treatments and when antineoplastic drugs were administered more days of the week. The odds of such events were significantly lower when the use of engineering controls and personal protective equipment was greater and when more precautionary measures were in place. Greater levels of management commitment to safety and perceived risk were also related to lower odds of adverse events. These results point to the value of implementing a comprehensive health and safety program that utilizes available hazard controls and effectively communicates

  2. Turboprop Engine Nacelle Optimization for Flight Increased Safety and Pollution Reduction

    Directory of Open Access Journals (Sweden)

    Cristian DOROBAT

    2018-03-01

    Full Text Available Commuter airplanes defined in CS-23 as being propeller driven, twin-engine, nineteen seats and maximum certified take-off weight of 8618 Kg had lately a special development due to advantages of turboprop engine compared with piston or jet engines. Nacelle optimization implies a sound and vibrations proof engine frame, engine fuel consumption reduction (through smaller nacelle drag and weight, better lift, better pressure recovery in air induction system, smaller drag of exhaust nozzles, engine cooling and nacelle ventilation more efficient, composite nacelle fairings with noise reduction properties, etc.. Nacelle aerodynamic experimental model, air induction experimental model and other nacelle experimental systems tested independently allow construction efficiency due to minimizing modifications on nacelle assembly and more safety in operation [1].

  3. IAEA activities on research reactor safety

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.

    1995-01-01

    Since its inception in 1957, the International Atomic Energy Agency (IAEA) has included activities in its programme to address aspects of research reactors such as safety, utilization and fuel cycle considerations. These activities were based on statutory functions and responsibilities, and on the current situation of research reactors in operation around the world; they responded to IAEA Member States' general or specific demands. At present, the IAEA activities on research reactors cover the above aspects and respond to specific and current issues, amongst which safety-related are of major concern to Member States. The present IAEA Research Reactor Safety Programme (RRSP) is a response to the current situation of about 300 research reactors in operation in 59 countries around the world. (orig.)

  4. Online probabilistic operational safety assessment of multi-mode engineering systems using Bayesian methods

    International Nuclear Information System (INIS)

    Lin, Yufei; Chen, Maoyin; Zhou, Donghua

    2013-01-01

    In the past decades, engineering systems become more and more complex, and generally work at different operational modes. Since incipient fault can lead to dangerous accidents, it is crucial to develop strategies for online operational safety assessment. However, the existing online assessment methods for multi-mode engineering systems commonly assume that samples are independent, which do not hold for practical cases. This paper proposes a probabilistic framework of online operational safety assessment of multi-mode engineering systems with sample dependency. To begin with, a Gaussian mixture model (GMM) is used to characterize multiple operating modes. Then, based on the definition of safety index (SI), the SI for one single mode is calculated. At last, the Bayesian method is presented to calculate the posterior probabilities belonging to each operating mode with sample dependency. The proposed assessment strategy is applied in two examples: one is the aircraft gas turbine, another is an industrial dryer. Both examples illustrate the efficiency of the proposed method

  5. Safety status of Russian research reactors

    International Nuclear Information System (INIS)

    Morozov, S.I.

    2001-01-01

    Gosatomnadzor of Russia is conducting the safety regulation and inspection activity related to nuclear and radiation safety at nuclear research facilities, including research reactors, critical assemblies and sub-critical assemblies. It implies implementing three major activities: 1) establishing the laws and safety standards in the field of research reactors nuclear and radiation safety; 2) research reactors licensing; and 3) inspections (or license conditions tracking and inspection). The database on nuclear research facilities has recently been updated based on the actual status of all facilities. It turned out that many facilities have been shutdown, whether temporary or permanently, waiting for the final decision on their decommissioning. Compared to previous years the situation has been inevitably changing. Now we have 99 nuclear research facilities in total under Gosatomnadzor of Russia supervision (compared to 113 in previous years). Their distribution by types and operating organizations is presented. The licensing and conduct of inspection processes are briefly outlined with emphasis being made on specific issues related to major incidents that happened in 2000, spent fuel management, occupational exposure, effluents and emissions, emergency preparedness and physical protection. Finally, a summary of problems at current Russian research facilities is outlined. (author)

  6. Fuel Combustion and Engine Performance | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion and Engine Performance Fuel Combustion and Engine Performance Photo of a gasoline emissions in advanced engine technologies. Photo by Dennis Schroeder, NREL NREL's combustion research and combustion and engine research activities include: Developing experimental and simulation research platforms

  7. Annual report of the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1993-01-01

    JAERI has conducted nuclear safety research in conformity with the national five year plan for safety research on nuclear installations, radioactive waste management and environmental radiation, and the research on engineering safety and environmental safety is described. In the research on high temperature engineering, the construction of the high temperature test reactor, the research on its fuel and materials, the reactor engineering, high temperature structures, safety and heat transfer, and nuclear heat application are reported. On the research and development of nuclear fusion, core plasma, core engineering technology and so on have been studied, and the engineering design activities for the international thermonuclear experimental reactor are in progress. On the research and development of radiation application, radiation processing, advanced radiation application and radioisotope production have been researched. The experiment on the nuclear ship 'Mutsu' was completed, and the research on the design of improved marine reactors has been advanced. Fundamental and related researches on various subjects are also reported. (K.I.)

  8. The IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    According to the research reactor database of IAEA (RRDB), 250 reactors are operating worldwide, 248 have been shut down and 170 have been decommissioned. Among the 248 reactors that do not run, some will resume their activities, others will be dismantled and the rest do not face a clear future. The analysis of reported incidents shows that the ageing process is a major cause of failures, more than two thirds of operating reactors are over 30 years old. It also appears that the lack of adequate regulations or safety standards for research reactors is an important issue concerning reactor safety particularly when reactors are facing re-starting or upgrading or modifications. The IAEA has launched a 4-axis program: 1) to set basic safety regulations and standards for research reactors, 2) to provide IAEA members with an efficient help for the application of these safety regulations to their reactors, 3) to foster international exchange of information on research reactor safety, and 4) to provide IAEA members with a help concerning safety issues linked to malicious acts or sabotage on research reactors

  9. AEC sets five year nuclear safety research program

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The research by the government for the establishment of means of judging the adequacy of safety measures incorporated in nuclear facilities, including setting safety standards and collecting documents of general criteria, and the research by the industry on safety measures and the promotion of safety-related technique are stated in the five year program for 1976-80 reported by subcommittees, Atomic Energy Commission (AEC). Four considerations on the research items incorporated in the program are 1) technical programs relating to the safety of nuclear facilities and the necessary criteria, 2) priority of the relevant items decided according to their impact on circumstances, urgency, the defence-indepth concept and so on, 3) consideration of all relevant data and documents collected, and research subjects necessary to quantify safety measurement, and 4) consideration of technological actualization, the capability of each research body, the budget and the time schedule. In addition, seven major themes decided on the basis of these points are 1) reactivity-initiated accident, 2) LOCA, 3) fuel behavior, 4) structural safety, 5) radioactive release, 6) statistical method of safety evaluation, and 7) seismic characteristics. The committee has deliberated the appropriate division of researches between the government and the industry. A set of tables showing the nuclear safety research plan for 1976-80 are attached. (Iwakiri, K.)

  10. IRSN research programs concerning reactor safety

    International Nuclear Information System (INIS)

    Bardelay, J.

    2005-01-01

    This paper is made up of 3 parts. The first part briefly presents the missions of IRSN (French research institute on nuclear safety), the second part reviews the research works currently led by IRSN in the following fields : -) the assessment of safety computer codes, -) thermohydraulics, -) reactor ageing, -) reactivity accidents, -) loss of coolant, -) reactor pool dewatering, -) core meltdown, -) vapor explosion, and -) fission product release. In the third part, IRSN is shown to give a major importance to experimental programs led on research or test reactors for collecting valid data because of the complexity of the physical processes that are involved. IRSN plans to develop a research program concerning the safety of high or very high temperature reactors. (A.C.)

  11. USNRC HTGR safety research program overview

    International Nuclear Information System (INIS)

    Foulds, R.B.

    1982-01-01

    An overview is given of current activities and planned research efforts of the US Nuclear Regulatory Commission (NRC) HTGR Safety Program. On-going research at Brookhaven National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, and Pacific Northwest Laboratory are outlined. Tables include: HTGR Safety Issues, Program Tasks, HTGR Computer Code Library, and Milestones for Long Range Research Plan

  12. Purpose, Principles, and Challenges of the NASA Engineering and Safety Center

    Science.gov (United States)

    Gilbert, Michael G.

    2016-01-01

    NASA formed the NASA Engineering and Safety Center in 2003 following the Space Shuttle Columbia accident. It is an Agency level, program-independent engineering resource supporting NASA's missions, programs, and projects. It functions to identify, resolve, and communicate engineering issues, risks, and, particularly, alternative technical opinions, to NASA senior management. The goal is to help ensure fully informed, risk-based programmatic and operational decision-making processes. To date, the NASA Engineering and Safety Center (NESC) has conducted or is actively working over 600 technical studies and projects, spread across all NASA Mission Directorates, and for various other U.S. Government and non-governmental agencies and organizations. Since inception, NESC human spaceflight related activities, in particular, have transitioned from Shuttle Return-to-Flight and completion of the International Space Station (ISS) to ISS operations and Orion Multi-purpose Crew Vehicle (MPCV), Space Launch System (SLS), and Commercial Crew Program (CCP) vehicle design, integration, test, and certification. This transition has changed the character of NESC studies. For these development programs, the NESC must operate in a broader, system-level design and certification context as compared to the reactive, time-critical, hardware specific nature of flight operations support.

  13. Safety of research reactors - A regulator's perspective

    International Nuclear Information System (INIS)

    Rahman, M.S.

    2001-01-01

    Due to historical reasons research reactors have received less regulatory attention in the world than nuclear power plants. This has given rise to several safety issues which, if not addressed immediately, may result in an undesirable situation. However, in Pakistan, research reactors and power reactors have received due attention from the regulatory authority. The Pakistan Research Reactor-1 has been under regulatory surveillance since 1965, the year of its commissioning. The second reactor has also undergone all the safety reviews and checks mandated by the licensing procedures. A brief description of the regulatory framework, the several safety reviews carried out have been briefly described in this paper. Significant activities of the regulatory authority have also been described in verifying the safety of research reactors in Pakistan along with the future activities. The views of the Pakistani regulatory authority on the specific issues identified by the IAEA have been presented along with specific recommendations to the IAEA. We are of the opinion that there are more Member States operating nuclear research reactors than nuclear power plants. Therefore, there should be more emphasis on the research reactor safety, which somehow has not been the case. In several recommendations made to the IAEA on the specific safety issues the emphasis has been, in general, to have a similar documentation and approach for maintaining and verifying operational safety at research reactors as is currently available for nuclear power reactors and may be planned for nuclear fuel cycle facilities. (author)

  14. A plan for safety and integrity of research reactor components

    International Nuclear Information System (INIS)

    Moatty, Mona S. Abdel; Khattab, M.S.

    2013-01-01

    Highlights: ► A plan for in-service inspection of research reactor components is put. ► Section XI of the ASME Code requirements is applied. ► Components subjected to inspection and their classes are defined. ► Flaw evaluation and its acceptance–rejection criteria are reviewed. ► A plan of repair or replacement is prepared. -- Abstract: Safety and integrity of a research reactor that has been operated over 40 years requires frequent and thorough inspection of all the safety-related components of the facility. The need of increasing the safety is the need of improving the reliability of its systems. Diligent and extensive planning of in-service inspection (ISI) of all reactor components has been imposed for satisfying the most stringent safety requirements. The Safeguards Officer's responsibilities of Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code ASME Code have been applied. These represent the most extensive and time-consuming part of ISI program, and identify the components subjected to inspection and testing, methods of component classification, inspection and testing techniques, acceptance/rejection criteria, and the responsibilities. The paper focuses on ISI planning requirements for welded systems such as vessels, piping, valve bodies, pump casings, and control rod-housing parts. The weld in integral attachments for piping, pumps, and valves are considered too. These are taken in consideration of safety class (1, 2, 3, etc.), reactor age, and weld type. The parts involve in the frequency of inspection, the examination requirements for each inspection, the examination method are included. Moreover the flaw evaluation, the plan of repair or replacement, and the qualification of nondestructive examination personnel are considered

  15. Safety research for evolutionary light water reactors

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1996-01-01

    The development of nuclear energy has been characterized by a continuous evolution of the technological and philosophical underpinnings of reactor safety to enable operation of the plant without causing harm to either the plant operators or the public. Currently, the safety of a nuclear plant is assured through the combined use of procedures and engineered safety features together with a system of multiple protective barriers against the release of radioactivity. This approach is embodied in the concept of Design-Basis Accidents (DBA), which requires the designers to demonstrate that all credible accidents have been identified and that all safety equipment and procedures perform their functions extremely reliably. Particularly important functions are the automatic protection to shut the reactor down and to remove the decay heat while ensuring the integrity of the containment structure. Within the DBA concept, the so-called severe accidents were conveniently defined to be those accidents that lie beyond the DBA envelope; hence, they did not form part of the safety case. (author)

  16. Safety research for evolutionary light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D G [Karlsruhe Univ. (T.H.) (Germany). Universitaetsbibliothek

    1996-12-01

    The development of nuclear energy has been characterized by a continuous evolution of the technological and philosophical underpinnings of reactor safety to enable operation of the plant without causing harm to either the plant operators or the public. Currently, the safety of a nuclear plant is assured through the combined use of procedures and engineered safety features together with a system of multiple protective barriers against the release of radioactivity. This approach is embodied in the concept of Design-Basis Accidents (DBA), which requires the designers to demonstrate that all credible accidents have been identified and that all safety equipment and procedures perform their functions extremely reliably. Particularly important functions are the automatic protection to shut the reactor down and to remove the decay heat while ensuring the integrity of the containment structure. Within the DBA concept, the so-called severe accidents were conveniently defined to be those accidents that lie beyond the DBA envelope; hence, they did not form part of the safety case. (author).

  17. Safety assessment of research reactors and preparation of the safety analysis report

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide presents guidelines, approved by international consensus, for the preparation, review and assessment of safety documentation for research reactors such as the Safety Analysis Report. While the Guide is most applicable to research reactors in the design and construction stage, it is also recommended for use during relicensing or reassessment of existing reactors

  18. A software engineering process for safety-critical software application

    International Nuclear Information System (INIS)

    Kang, Byung Heon; Kim, Hang Bae; Chang, Hoon Seon; Jeon, Jong Sun

    1995-01-01

    Application of computer software to safety-critical systems in on the increase. To be successful, the software must be designed and constructed to meet the functional and performance requirements of the system. For safety reason, the software must be demonstrated not only to meet these requirements, but also to operate safely as a component within the system. For longer-term cost consideration, the software must be designed and structured to ease future maintenance and modifications. This paper presents a software engineering process for the production of safety-critical software for a nuclear power plant. The presentation is expository in nature of a viable high quality safety-critical software development. It is based on the ideas of a rational design process and on the experience of the adaptation of such process in the production of the safety-critical software for the shutdown system number two of Wolsung 2, 3 and 4 nuclear power generation plants. This process is significantly different from a conventional process in terms of rigorous software development phases and software design techniques, The process covers documentation, design, verification and testing using mathematically precise notations and highly reviewable tabular format to specify software requirements and software requirements and software requirements and code against software design using static analysis. The software engineering process described in this paper applies the principle of information-hiding decomposition in software design using a modular design technique so that when a change is required or an error is detected, the affected scope can be readily and confidently located. it also facilitates a sense of high degree of confidence in the 'correctness' of the software production, and provides a relatively simple and straightforward code implementation effort. 1 figs., 10 refs. (Author)

  19. Evaluation of Research in Engineering Science in Norway

    DEFF Research Database (Denmark)

    Van Brussel, Hendrik Van Brussel; Lindberg, Bengt; Cederwall, Klas

    This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway .......This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway ....

  20. Safety-related LWR research. Annual report 1993

    International Nuclear Information System (INIS)

    Hueper, R.

    1994-06-01

    The reactor safety R and D work of the Karlsruhe Nuclear Research Centre (KfK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report 1993 summarizes the results on LWR safety. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status at the end of 1993. (orig./HP) [de

  1. An Update to Space Biomedical Research: Tissue Engineering in Microgravity Bioreactors

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegari

    2012-03-01

    Full Text Available Introduction: The severe need for constructing replacement tissues in organ transplantation has necessitated the development of tissue engineering approaches and bioreactors that can bring these approaches to reality. The inherent limitations of conventional bioreactors in generating realistic tissue constructs led to the devise of the microgravity tissue engineering that uses Rotating Wall Vessel (RWV bioreactors initially developed by NASA. Methods: In this review article, we intend to highlight some major advances and accomplishments in the rapidly-growing field of tissue engineering that could not be achieved without using microgravity. Results: Research is now focused on assembly of 3 dimensional (3D tissue fragments from various cell types in human body such as chondrocytes, osteoblasts, embryonic and mesenchymal stem cells, hepatocytes and pancreas islet cells. Hepatocytes cultured under microgravity are now being used in extracorporeal bioartificial liver devices. Tissue constructs can be used not only in organ replacement therapy, but also in pharmaco-toxicology and food safety assessment. 3D models of various cancers may be used in studying cancer development and biology or in high-throughput screening of anticancer drug candidates. Finally, 3D heterogeneous assemblies from cancer/immune cells provide models for immunotherapy of cancer. Conclusion: Tissue engineering in (simulated microgravity has been one of the stunning impacts of space research on biomedical sciences and their applications on earth.

  2. FY2012 Engineering Research & Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Monya

    2014-07-22

    This report documents engineering research, development, and technology advancements performed by LLNL during fiscal year 2012 in the following areas: computational engineering, engineering information systems, micro/nano-devices and structures, and measurement technologies.

  3. Nirex Safety Assessment Research Programme bibliography, 1988

    International Nuclear Information System (INIS)

    Cooper, M.J.

    1988-05-01

    This bibliography lists reports and papers written as part of the Nirex Safety Assessment Research Programme, which is concerned with disposal of low-level and intermediate-level waste (LLW and ILW) and associated radiological assessments. All work referred to has been funded, or partly funded, by UK Nirex Limited, previously known as the Nuclear Industry Radioactive Waste Executive (NIREX). The bibliography has been divided into two sections, a List of Publications in roughly chronological order and an Author Index. The topics involved include near-field and far-field studies. The near-field includes the waste, its immobilising medium, its container, the engineered structure in which the containers are emplaced, and the immediately adjacent geological formation disturbed by the construction of the repository. The far-field is the undisturbed geological formation between the near-field and the biosphere. (author)

  4. Nuclear Safety Research Department annual report 2000

    DEFF Research Database (Denmark)

    Majborn, B.; Nielsen, Sven Poul; Damkjær, A.

    2001-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addtion the department...

  5. Nuclear Safety Research Department annual report 2001

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Nielsen, Sven Poul

    2002-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2001. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addition the department...

  6. Proceedings of fuel safety research specialists' meeting

    International Nuclear Information System (INIS)

    Suzuki, Motoe

    2002-08-01

    Fuel Safety Research Specialists' Meeting, which was organized by Japan Atomic Energy Research Institute, was held on March 4-5, 2002 at JAERI in Tokai Establishment. Purposes of the Meeting are to exchange information and views on LWR fuel safety topics among the specialist participants from domestic and foreign organizations, and to discuss the recent and future fuel research activities in JAERI. In the Meeting, presentations were given and discussions were made on general report of fuel safety research activities, fuel behaviors in normal operation and accident conditions, FP release behaviors in severe accident conditions, and JAERI's ''Advanced LWR Fuel Performance and Safety Research Program''. A poster exhibition was also carried out. The Meeting significantly contributed to planning future program and cooperation in fuel research. This proceeding integrates all the pictures and papers presented in the Meeting. The 10 of the presented papers are indexed individually. (J.P.N.)

  7. Research for the safety of existing nuclear facilities

    International Nuclear Information System (INIS)

    Teschendorff, Victor; Bruna, Giovanni B.; Gelder, Pieter de

    2007-01-01

    The essential role of research for maintaining the high safety standard for the existing nuclear installations is outlined in the context of internationally agreed needs. The three co-authoring Technical Safety Organisations are committed to continued safety research, recognising operational experience and new technologies as the main driving forces. The safety margin concept is introduced and new trends in traditional and new areas of safety research are identified. The importance of a sufficient experimental infrastructure and international co-operation in sustainable networks is highlighted. (orig.)

  8. A Bibliometric Analysis of Climate Engineering Research

    Science.gov (United States)

    Belter, C. W.; Seidel, D. J.

    2013-12-01

    The past five years have seen a dramatic increase in the number of media and scientific publications on the topic of climate engineering, or geoengineering, and some scientists are increasingly calling for more research on climate engineering as a possible supplement to climate change mitigation and adaptation strategies. In this context, understanding the current state of climate engineering research can help inform policy discussions and guide future research directions. Bibliometric analysis - the quantitative analysis of publications - is particularly applicable to fields with large bodies of literature that are difficult to summarize by traditional review methods. The multidisciplinary nature of the published literature on climate engineering makes it an ideal candidate for bibliometric analysis. Publications on climate engineering are found to be relatively recent (more than half of all articles during 1988-2011 were published since 2008), include a higher than average percentage of non-research articles (30% compared with 8-15% in related scientific disciplines), and be predominately produced by countries located in the Northern Hemisphere and speaking English. The majority of this literature focuses on land-based methods of carbon sequestration, ocean iron fertilization, and solar radiation management and is produced with little collaboration among research groups. This study provides a summary of existing publications on climate engineering, a perspective on the scientific underpinnings of the global dialogue on climate engineering, and a baseline for quantitatively monitoring the development of climate engineering research in the future.

  9. Inherent Safety Feature of Hybrid Low Power Research Reactor during Reactivity Induced Accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, DongHyun; Yum, Soo Been; Hong, Sung Teak; Lim, In-Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hybrid low power research reactor(H-LPRR) is the new design concept of low power research reactor for critical facility as well as education and training. In the case of typical low power research reactor, the purposes of utilization are the experiments for education of nuclear engineering students, Neutron Activation Analysis(NAA) and radio-isotope production for research purpose. H-LPRR is a light-water cooled and moderated research reactor that uses rod-type LEU UO{sub 2} fuels same as those for commercial power plants. The maximum core thermal power is 70kW and, the core is placed in the bottom of open pool. There are 1 control rod and 2 shutdown rods in the core. It is designed to cool the core by natural convection, retain negative feedback coefficient for entire fuel periods and operate for 20 years without refueling. Inherent safety in H-LPRR is achieved by passive design features such as negative temperature feedback coefficient and core cooling by natural convection during normal and emergency conditions. The purpose of this study is to find out that the inherent safety characteristics of H-LPRR is able to control the power and protect the reactor from the RIA(Reactivity induced accident). RIA analysis was performed to investigate the inherent safety feature of H-LPRR. As a result, it was found that the reactor controls its power without fuel damage in the event and that the reactor remains safe states inherently. Therefore, it is believed that high degree of safety inheres in H-LPRR.

  10. The Atlantic rift in Engineering Education Research Methodology

    DEFF Research Database (Denmark)

    de Graaff, Erik

    2015-01-01

    engineering. A revival of engineering education research started in the USA around the turn of the century. Building on the concept of ‘scholarship of teaching’, engineers were challenged to investigate their own role as educators. Since these researchers have their academic background mostly in engineering......In Europe educational research branched off from social sciences during the sixties of the last century. Combining theories and methods from pedagogy, sociology and psychology researchers explored the different fields of education, ranging from kindergarten till higher education including...... and science, they tend to aim for ‘rigorous research’ according to the natural sciences. Worldwide the engineering education community has recognized the need to blend both the social sciences research approach and rigorous research. This paper explores the variation in research methods used by researchers...

  11. Most common road safety engineering deficiencies in South Eastern Europe as a part of safe system approach

    Science.gov (United States)

    Jovanov, D.; Vollpracht, H. J.; Beles, H.; Popa, V.; Tolea, B. A.

    2017-10-01

    Most common road safety engineering deficiencies identified by the authors in South Eastern Europe, including Romania, have been collected together and presented in this paper as a part of road safety unbreakably connected to the safe system approach (driver-vehicle-road). In different South Eastern Europe countries Road Safety Audit (RSA), Road Safety Inspection (RSI), as well as Black Spot Management (BSM) was introduced and practical implementation experience enabled the authors to analyze the road safety problems. Typical road safety engineering deficiencies have been presented in 8 different subsections, based on PIARC (World Road Association) RSA approach. This paper presents collected common road safety problems with relevant illustrations (real pictures) with associated accident risks.

  12. Chinese Road Safety and Driver Behavior Research

    OpenAIRE

    Wang, Junhua

    2015-01-01

    The seminar will begin with a brief overview of the Chinese road safety situation, including current safety problems, and then move on to discuss safety research including driver behavior, freeway operational safety, and infrastructure development.

  13. Safety research in nuclear fuel cycle at PNC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF{sub 6}, uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  14. Safety research in nuclear fuel cycle at PNC

    International Nuclear Information System (INIS)

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF 6 , uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  15. Probabilistic safety assessment for research reactors

    International Nuclear Information System (INIS)

    1986-12-01

    Increasing interest in using Probabilistic Safety Assessment (PSA) methods for research reactor safety is being observed in many countries throughout the world. This is mainly because of the great ability of this approach in achieving safe and reliable operation of research reactors. There is also a need to assist developing countries to apply Probabilistic Safety Assessment to existing nuclear facilities which are simpler and therefore less complicated to analyse than a large Nuclear Power Plant. It may be important, therefore, to develop PSA for research reactors. This might also help to better understand the safety characteristics of the reactor and to base any backfitting on a cost-benefit analysis which would ensure that only necessary changes are made. This document touches on all the key aspects of PSA but placed greater emphasis on so-called systems analysis aspects rather than the in-plant or ex-plant consequences

  16. Fuel elements and safety engineering goals

    International Nuclear Information System (INIS)

    Schulten, R.; Bonnenberg, H.

    1990-01-01

    There are good prospects for silicon carbide anti-corrosion coatings on fuel elements to be realised, which opens up the chance to reduce the safety engineering requirements to the suitable design and safe performance of the ceramic fuel element. Another possibility offered is combined-cycle operation with high efficiencies, and thus good economic prospects, as with this design concept combining gas and steam turbines, air ingress due to turbine malfunction is an incident that can be managed by the system. This development will allow economically efficient operation also of nuclear power reactors with relatively small output, and hence contribute to reducing CO 2 emissions. (orig./DG) [de

  17. Light water reactor safety research project

    International Nuclear Information System (INIS)

    Markoczy, G.; Aksan, S.N.; Behringer, K.; Prodan, M.; Stierli, F.; Ullrich, G.

    1980-07-01

    The research and development activities for the safety of Light Water Power Reactors carried out 1979 at the Swiss Federal Institute for Reactor Research are described. Considerations concerning the necessity, objectives and size of the Safety Research Project are presented, followed by a detailed discussion of the activities in the five tasks of the program, covering fracture mechanics and nondestructive testing, thermal-hydraulics, reactor noise analysis and pressure vessel steel surveillance. (Auth.)

  18. Reactor safety research in times of change

    International Nuclear Information System (INIS)

    Zipper, Reinhard

    2013-01-01

    Since the early 1970ies reactor safety research sponsored by the German Ministry of Economics an Technology and its predecessors and pursued independently from interests of industry or industrial associations as well as from current licensing issues significantly contributed to the extension of knowledge regarding risks and possible threats associated with the operation of nuclear power plants. The results of these research activities triggered several measures taken by industry and utilities to further enhance the internationally recognized high safety standards of nuclear power plants in Germany. Furthermore, by including especially universities in the distinguished research activities a large number of young scientists were given the opportunity to qualify in the field of nuclear reactor technology and safety thus contributing to the preservation of competence during the demographic change. The nuclear phase out in Germany affects also issues of reactor safety research in Germany. While Germany will progressively decrease and terminate the use of nuclear energy for public power supply other countries in Europe and in other parts of the world are continuing, expanding and even starting the use of nuclear power. As generally recognized, nuclear safety is an international issue and in the wake of the Fukushima disaster there are several initiatives to launch a system of internationally binding safety rules and guide lines. The German Competence Alliance therefore has elaborated a framework of areas were future reactor safety research will still be needed to support German efforts based on own and independent expertise to continuously develop and establish highest safety standards for the use of nuclear power supply domestic and abroad.

  19. Design of 3D simulation engine for oilfield safety training

    Science.gov (United States)

    Li, Hua-Ming; Kang, Bao-Sheng

    2015-03-01

    Aiming at the demand for rapid custom development of 3D simulation system for oilfield safety training, this paper designs and implements a 3D simulation engine based on script-driven method, multi-layer structure, pre-defined entity objects and high-level tools such as scene editor, script editor, program loader. A scripting language been defined to control the system's progress, events and operating results. Training teacher can use this engine to edit 3D virtual scenes, set the properties of entity objects, define the logic script of task, and produce a 3D simulation training system without any skills of programming. Through expanding entity class, this engine can be quickly applied to other virtual training areas.

  20. Water reactor safety research program. A description of current and planned research

    International Nuclear Information System (INIS)

    1978-07-01

    The U.S. Nuclear Regulatory Commission (NRC) sponsors confirmatory safety research on lightwater reactors in support of the NRC regulatory program. The principal responsibility of the NRC, as implemented through its regulatory program is to ensure that public health, public safety, and the environment are adequately protected. The NRC performs this function by defining conditions for the use of nuclear power and by ensuring through technical review, audit, and follow-up that these conditions are met. The NRC research program provides technical information, independent of the nuclear industry, to aid in discharging these regulatory responsibilities. The objectives of NRC's research program are the following: (1) to maintain a confirmatory research program that supports assurance of public health and safety, and public confidence in the regulatory program, (2) to provide objectively evaluated safety data and analytical methods that meet the needs of regulatory activities, (3) to provide better quantified estimates of the margins of safety for reactor systems, fuel cycle facilities, and transportation systems, (4) to establish a broad and coherent exchange of safety research information with other Federal agencies, industry, and foreign organization. Current and planned research toward these goals is described

  1. Research on PWR safety in France

    International Nuclear Information System (INIS)

    Zammite, R.

    1988-07-01

    The French nuclear safety arrangements form a centralized system characterized by cooperation between the government authorities, their technical advisers and the operators of the installations, especially between the Commissariat a l'Energie Atomique (CEA) and Electricite de France (EDF). This cooperation in no way contradicts the respective responsibilities of the different parties, in particular those of EDF regarding the safety of its installations and those of CEA as the government's technical adviser and safety analyst. However, it considerably affects the research on reactor safety, which is mainly performed by the CEA Institute for Nuclear Safety and Protection (IPSN), in collaboration with EDF. For PWRs, the safety preoccupations concerning their development, commissioning and operation can be divided into the following three categories: A. Safety in design and construction, B. Safety in operation and the control of potential accidents, C. Maintaining safety - aging problems. The effort consecrated to each category has varied in the past and will continue to do so in the future. At the present stage, emphasis is being given to categories B and C. The appendix includes tables which indicate, for categories A, B and C, the relationship between the existing research programmes and the questions remaining open that they are intended to solve

  2. Experimental Research of Engine Foundations

    Directory of Open Access Journals (Sweden)

    Violeta-Elena Chiţan

    2004-01-01

    Full Text Available This paper tries a compact presentation of experimental research of engine-foundations. The dynamic phenomena are so complex, that the vibrations cannot be estimated in the design stage. The design engineer of an engine foundation must foresee through a dynamic analysis of the vibrations, those measures that lead to the avoidance or limiting of the bad effects caused by the vibrations.

  3. Graduate nuclear engineering programmes motivate educational and research activities

    International Nuclear Information System (INIS)

    Mavko, B.

    2000-01-01

    Some fifteen years ago the University of Ljubljana, Faculty for Mathematics and Physics together with the national research organisation the J. Stefan jointly established a Graduate programme of Nuclear Engineering. From the onset, the programme focused on nuclear technology, nuclear safety, and reactor physics and environment protection. Over the years this graduate programme has became the focal point of nuclear related, research and educational activities in Slovenia. It has grown into a meeting ground for recognised national and distinguished foreign educators and experienced professionals from the industry. In conjunction with an important national project, supported by the Slovenian government, entitled 'Jung Researcher' it also enhances the knowledge transfer to the next generation. Since the programme was introduced, the interest for this programme has been steadily growing. Accordingly, a number of PhD and MS degrees in NE have been awarded. The graduates of this programme have encountered very good job opportunities in nuclear as well as in non-nuclear sector. (author)

  4. Reliability study: digital engineered safety feature actuation system of Korean Standard Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sudarno; Kang, H. G.; Jang, S. C.; Eom, H. S.; Ha, J. J.

    2003-04-01

    The usage of digital Instrumentation and Control (I and C) in a nuclear power plant becomes more extensive, including safety related systems. The PSA application of these new designs are very important in order to evaluate their reliability. In particular, Korean Standard Nuclear Power Plants (KSNPPs), typically Ulchin 5 and 6 (UCN 5 and 6) reactor units, adopted the digital safety-critical systems such as Digital Plant Protection System (DPPS) and Digital Engineered Safety Feature Actuation System (DESFAS). In this research, we developed fault tree models for assessing the unavailability of the DESFAS functions. We also performed an analysis of the quantification results. The unavailability results of different DESFAS functions showed that their values are comprised from 5.461E-5 to 3.14E-4. The system unavailability of DESFAS AFAS-1 is estimated as 5.461E-5, which is about 27% less than that of analog system if we consider the difference of human failure probability estimation between both analyses. The results of this study could be utilized in risk-effect analysis of KSNPP. We expect that the safety analysis result will contribute to design feedback

  5. Keeping nurse researchers safe: workplace health and safety issues.

    Science.gov (United States)

    Barr, Jennieffer; Welch, Anthony

    2012-07-01

    This article is a report of a qualitative study of workplace health and safety issues in nursing research. Researcher health and safety have become increasing concerns as there is an increased amount of research undertaken in the community and yet there is a lack of appropriate guidelines on how to keep researchers safe when undertaking fieldwork. This study employed a descriptive qualitative approach, using different sources of data to find any references to researcher health and safety issues. A simple descriptive approach to inquiry was used for this study. Three approaches to data collection were used: interviews with 15 researchers, audits of 18 ethics applications, and exploration of the literature between 1992 and 2010 for examples of researcher safety issues. Data analysis from the three approaches identified participant comments, narrative descriptions or statements focused on researcher health and safety. Nurse researchers' health and safety may be at risk when conducting research in the community. Particular concern involves conducting sensitive research where researchers are physically at risk of being harmed, or being exposed to the development of somatic symptoms. Nurse researchers may perceive the level of risk of harm as lower than the actual or potential harm present in research. Nurse researchers do not consistently implement risk assessment before and during research. Researcher health and safety should be carefully considered at all stages of the research process. Research focusing on sensitive data and vulnerable populations need to consider risk minimization through strategies such as appropriate researcher preparation, safety during data collection, and debriefing if required. © 2012 Blackwell Publishing Ltd.

  6. Safety of research reactors (Design and Operation)

    International Nuclear Information System (INIS)

    Dirar, H. M.

    2012-06-01

    The primary objective of this thesis is to conduct a comprehensive up-to-date literature review on the current status of safety of research reactor both in design and operation providing the future trends in safety of research reactors. Data and technical information of variety selected historical research reactors were thoroughly reviewed and evaluated, furthermore illustrations of the material of fuel, control rods, shielding, moderators and coolants used were discussed. Insight study of some historical research reactors was carried with considering sample cases such as Chicago Pile-1, F-1 reactor, Chalk River Laboratories,. The National Research Experimental Reactor and others. The current status of research reactors and their geographical distribution, reactor category and utilization is also covered. Examples of some recent advanced reactors were studied like safety barriers of HANARO of Korea including safety doors of the hall and building entrance and finger print identification which prevent the reactor from sabotage. On the basis of the results of this research, it is apparent that a high quality of safety of nuclear reactors can be attained by achieving enough robust construction, designing components of high levels of efficiency, replacing the compounds of the reactor in order to avoid corrosion and degradation with age, coupled with experienced scientists and technical staffs to operate nuclear research facilities.(Author)

  7. Global Journal of Engineering Research: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. The Global Journal of Engineering Research is aimed at promoting research in all areas of Engineering Research including Mechanical, Civil, Electrical, Chemical, Electronics, Geological etc. Section Policies. Articles. Checked Open Submissions, Checked Indexed, Checked Peer Reviewed. Publication ...

  8. Proposal of criteria for evaluation of engineering safety factors of VVER core parameters

    International Nuclear Information System (INIS)

    Shishkov, L.; Tsyganov, S.; Dementiev, V.

    2009-01-01

    The paper states that the regulatory documentation, as a rule, do not give explicit recommendations on formation techniques of engineering safety factors for design limited parameters of normal operation (K eng ). The AER countries use different approaches to K eng evaluation (sometimes even one country in relation of various power units). The paper suggests the development of uniform rules to be used in calculation of engineering safety factor for all VVER reactors. The paper presents principal problems that must be solved in the course of the discussion, and in the form of an exercise suggests the way of their solution. (authors)

  9. Proposal of criteria for evaluation of engineering safety factors of WWER core parameters

    International Nuclear Information System (INIS)

    Shishkov, L.; Tsyganov, S.; Dementiev, V.

    2009-01-01

    The paper states that the regulatory documentation, as a rule, do not give explicit recommendations on formation techniques of engineering safety factors for design limited parameters of normal operation. The AER countries use different approaches to evaluation (sometimes even one country in relation of various power units). The paper suggests the development of uniform rules to be used in calculation of engineering safety factor for all WWER reactors. The paper presents principal problems that must be solved in the course of the discussion, and in the form of an exercise suggests the way of their solution. (Authors)

  10. Research on the improvement of nuclear safety

    International Nuclear Information System (INIS)

    Yoo, Keon Joong; Kim, Dong Soo; Kim, Hui Dong; Park, Chang Kyu

    1993-06-01

    To improve the nuclear safety, this project is divided into three areas which are the development of safety analysis technology, the development of severe accident analysis technology and the development of integrated safety assessment technology. 1. The development of safety analysis technology. The present research aims at the development of necessary technologies for nuclear safety analysis in Korea. Establishment of the safety analysis technologies enables to reduce the expenditure both by eliminating excessive conservatisms incorporated in nuclear reactor design and by increasing safety margins in operation. It also contributes to improving plant safety through realistic analyses of the Emergency Operating Procedures (EOP). 2. The development of severe accident analysis technology. By the computer codes (MELCOR and CONTAIN), the in-vessel and the ex-vessel severe accident phenomena are simulated. 3. The development of integrated safety assessment technology. In the development of integrated safety assessment techniques, the included research areas are the improvement of PSA computer codes, the basic study on the methodology for human reliability analysis (HRA) and common cause failure (CCF). For the development of the level 2 PSA computer code, the basic research for the interface between level 1 and 2 PSA, the methodology for the treatment of containment event tree are performed. Also the new technologies such as artificial intelligence, object-oriented programming techniques are used for the improvement of computer code and the assessment techniques

  11. Research reactor safety - an overview of crucial aspects

    International Nuclear Information System (INIS)

    Laverie, M.

    1998-01-01

    Chronology of the commissioning orders of the French research reactors illustrates the importance of the time factor. When looking at older reactors, one must, on one hand, demonstrate, not only the absence of risks tied to the reactor's ageing, but, on the other hand, adapt the reactor's original technical designs to today's safety practices and standards. The evolution of reactor safety requirements over the last twenty years sometimes makes this adaptation difficult. The design of the next research reactors, after a one to two decades pause in construction, will require to set up new safety assessment bases that will have to take into account the nuclear power plant safety evolution. As a general statement, research reactor safety approaches will require the incorporation of specific design rules for research reactors: experience feedback for one of a kind design, frequent modifications required by research programmes, special operational requirements with operators/researchers interfaces. (author)

  12. Recent innovations in IFR safety research

    International Nuclear Information System (INIS)

    Wade, D.C.

    1994-01-01

    Recent progress in IFR safety research suggests potential for two extensions of passive features to improve the robustness of safety response. This report provides a discussion of these recent innovations

  13. Safety evaluation of the Dalat research reactor operation

    International Nuclear Information System (INIS)

    Long, V.H.; Lam, P.V.; An, T.K.

    1989-01-01

    After an introduction presenting the essential characteristics of the Dalat Nuclear Research Reactor, the document presents i) The safety assurance condition of the reactor, ii) Its safety behaviour after 5 years of operation, iii) Safety research being realized on the reactor. Following is questionnaire of safety evaluation and a list of attachments, which concern the reactor

  14. Small-Engine Research Laboratory (SERL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Small-Engine Research Laboratory (SERL) is a facility designed to conduct experimental small-scale propulsion and power generation systems research....

  15. Seismic safety research program plan

    International Nuclear Information System (INIS)

    1985-06-01

    This plan describes the safety issues, regulatory needs, and the research necessary to address these needs. The plan also discusses the relationship between current and proposed research within the NRC and research sponsored by other government agencies, universities, industry groups, professional societies, and foreign sources

  16. Research reactor safety - an overview of crucial aspects

    Energy Technology Data Exchange (ETDEWEB)

    Laverie, M. [Atomic Energy Commission, Saclay, F-91191 Gif sur Yvette (France)

    1998-07-01

    Chronology of the commissioning orders of the French research reactors illustrates the importance of the time factor. When looking at older reactors, one must, on one hand, demonstrate, not only the absence of risks tied to the reactor's ageing, but, on the other hand, adapt the reactor's original technical designs to today's safety practices and standards. The evolution of reactor safety requirements over the last twenty years sometimes makes this adaptation difficult. The design of the next research reactors, after a one to two decades pause in construction, will require to set up new safety assessment bases that will have to take into account the nuclear power plant safety evolution. As a general statement, research reactor safety approaches will require the incorporation of specific design rules for research reactors: experience feedback for one of a kind design, frequent modifications required by research programmes, special operational requirements with operators/researchers interfaces. (author)

  17. Summaries of FY 1996 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This report documents the Basic Energy Sciences (BES) Engineering Research Program for fiscal year 1996; it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. Each BES Division administers basic, mission oriented research programs in the area indicated by its title. The BES Engineering Research Program is one such program; it is administered by the Engineering and Geosciences Division of BES. In preparing this report the principal investigators were asked to submit summaries for their projects that were specifically applicable to fiscal year 1996. The summaries received have been edited if necessary, but the press for timely publication made it impractical to have the investigators review and approve the revised summaries prior to publication. For more information about a given project, it is suggested that the investigators be contacted directly.

  18. IAEA activities in the field of research reactors safety

    International Nuclear Information System (INIS)

    Ciuculescu, C.; Boado Magan, H.J.

    2004-01-01

    IAEA activities in the field of research reactor safety are included in the programme of the Division of Nuclear Installations Safety. Following the objectives of the Division, the results of the IAEA missions and the recommendations from International Advisory Groups, the IAEA has conducted in recent years a certain number of activities aiming to enhance the safety of research reactors. The following activities will be presented: (a) the new Requirements for the Safety of Research Reactors, main features and differences with previous standards (SS-35-S1 and SS-35-S2) and the grading approach for implementation; (b) new documents being developed (safety guides, safety reports and TECDOC's); (c) activities related to the Incident Reporting System for Research Reactor (IRSRR); (d) the new features implemented for the INSARR missions; (e) the Code of Conduct on the Safety of Research Reactors adopted by the Board of Governors on 8 March 2004, following the General Conference Resolution GC(45)/RES/10; and (f) the survey on the safety of research reactors published on the IAEA website on February 2003 and the results obtained. (author)

  19. Research advances in industrial engineering

    CERN Document Server

    2015-01-01

    This book provides discussions and the exchange of information on principles, strategies, models, techniques, methodologies and applications of industrial engineering. It communicates the latest developments and research activity on industrial engineering and is useful for all those interested in the technological challenges in the field.

  20. Safety research needs for Russian-designed reactors

    International Nuclear Information System (INIS)

    1998-01-01

    In June 1995, an OECD Support Group was set up to perform a broad study of the safety research needs of Russian-designed reactors. This Support Group was endorsed by the CSNI. The Support Group, which is composed of senior experts on safety research from several OECD countries and from Russia, prepared this Report. The Group reviewed the safety research performed to support Russian-designed reactors and set down its views on future needs. The review concentrates on the following main topics: Thermal-Hydraulics/Plant Transients for VVERs; Integrity of Equipment and Structures for VVERs; Severe Accidents for VVERs; Operational Safety Issues; Thermal-Hydraulics/Plant Transients for RBMKs; Integrity of Equipment and Structures for RBMKs; Severe Accidents for RBMKs. (K.A.)

  1. The organization of research reactor safety in the UKAEA

    International Nuclear Information System (INIS)

    Redpath, W.

    1983-01-01

    The present state of organization and development of research reactor safety in the UKAEA are outlined by addressing the fundamental safety principles which have been adopted in keeping with national health and safety requirement. The organisation, assessment and monitoring of research reactor safety on complex multi-discipline and multi-activity nuclear research and development site are discussed. Methods of safety assessment, such as probabilistic risk assessment and risk acceptance criteria, which have been developed and applied in practice are explained, and some indication of the directions in which some of the current developments in the safety of UKAEA research reactors is also included. (A.J.)

  2. FY08 Engineering Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C; McNichols, D

    2009-02-24

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  3. Criticality safety research on nuclear fuel cycle facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2004-07-01

    This paper present d s current status and future program of the criticality safety research on nuclear fuel cycle made by Japan Atomic Energy Research Institute. Experimental research on solution fuel treated in reprocessing plant has been performed using two critical facilities, STACY and TRACY. Fundamental data of static and transient characteristics are accumulated for validation of criticality safety codes. Subcritical measurements are also made for developing a monitoring system for criticality safety. Criticality safety codes system for solution and power system, and evaluation method related to burnup credit are developed. (author)

  4. SAFETY ENGINEERING FOR THE RELATIVISTIC HEAVY ION COLLIDER AT THE BROOKHAVEN NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Musolino, S.V.; Kane, S.F.; Levesque, J.W.

    1999-01-01

    THERE ARE ONLY A FEW OTHER HIGH ENERGY PARTICLE ACCELERATORS LIKE RHIC IN THE WORLD. THEREFORE, THE DESIGNERS OF THE MACHINE DO NOT ALWAYS HAVE CONSENSUS DESIGN STANDARDS AND REGULATORY GUIDANCE AVAILABLE TO ESTABLISH THE ENGINEERING PARAMETERS FOR SAFETY. SOME OF THE AREAS WHERE STANDARDS ARE NOT AVAILABLE RELATE TO THE CRYOGENIC SYSTEM, CONTAINMENT OF LARGE VOLUMES OF FLAMMABLE GAS IN FRAGILE VESSELS IN THE EXPERIMENTAL APPARATUS AND MITIGATION OF A DESIGN BASIS ACCIDENT WITH A STORED PARTICLE BEAM. UNIQUE BUT EQUIVALENT SAFETY ENGINEERING MUST BE DETERMINED. SPECIAL DESIGN CRITERIA FOR PROMPT RADIATION WERE DEVELOPED TO PROVIDE GUIDANCE FOR THE DESIGN OF RADIATION SHIELDING

  5. Summary of fuel safety research meeting 2004

    International Nuclear Information System (INIS)

    Fuketa, Toyoshi; Hidaka, Akihide; Nakamura, Jinichi; Suzuki, Motoe; Nagase, Fumihisa; Sasajima, Hideo; Fujita, Misao; Otomo, Takashi; Kudo, Tamotsu; Amaya, Masaki; Sugiyama, Tomoyuki; Ikehata, Hisashi; Iwasaki, Ryo; Ozawa, Masaaki; Kida, Mitsuko

    2004-10-01

    Fuel Safety Research Meeting 2004, which was organized by the Japan Atomic Energy Research Institute, was held on March 1-2, 2004 at Toranomon Pastoral, Tokyo. The purposes of the meeting are to present and discuss the results of experiments and analyses on reactor fuel safety and to exchange views and experiences among the participants. The technical topics of the meeting covered the status of fuel safety research activities, fuel behavior under RIA and LOCA conditions, high burnup fuel behavior, and radionuclides release under severe accident conditions. This summary contains all the abstracts and OHP sheets presented in the meeting. (author)

  6. 75 FR 12554 - Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety...

    Science.gov (United States)

    2010-03-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety and Health (MSHRAC, NIOSH... priorities in mine safety and health research, including grants and contracts for such research, 30 U.S.C...

  7. Development of Safety Review Guidance for Research and Training Reactors

    International Nuclear Information System (INIS)

    Oh, Kju-Myeng; Shin, Dae-Soo; Ahn, Sang-Kyu; Lee, Hoon-Joo

    2007-01-01

    The KINS already issued the safety review guidance for pressurized LWRs. But the safety review guidance for research and training reactors were not developed. So, the technical standard including safety review guidance for domestic research and training reactors has been applied mutates mutandis to those of nuclear power plants. It is often difficult for the staff to effectively perform the safety review of applications for the permit by the licensee, based on peculiar safety review guidance. The NRC and NSC provide the safety review guidance for test and research reactors and European countries refer to IAEA safety requirements and guides. The safety review guide (SRG) of research and training reactors was developed considering descriptions of the NUREG- 1537 Part 2, previous experiences of safety review and domestic regulations for related facilities. This study provided the safety review guidance for research and training reactors and surveyed the difference of major acceptance criteria or characteristics between the SRG of pressurized light water reactor and research and training reactors

  8. Spanish Nuclear Safety Research under International Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Reventos, F.; Ahnert, C.; Jimenez, G.; Queral, C.; Verdu, G.; Miro, R.; Gallardo, S.

    2013-10-01

    The Nuclear Safety research requires a wide international collaboration of several involved groups. In this sense this paper pretends to show several examples of the Nuclear Safety research under international frameworks that is being performed in different Universities and Research Institutions like CIEMAT, Universitat Politecnica de Catalunya (UPC), Universidad Politecnica de Madrid (UPM) and Universitat Politenica de Valencia (UPV). (Author)

  9. Principles of electrical safety

    CERN Document Server

    Sutherland, Peter E

    2015-01-01

    Principles of Electrical Safety discusses current issues in electrical safety, which are accompanied by series' of practical applications that can be used by practicing professionals, graduate students, and researchers. .  Provides extensive introductions to important topics in electrical safety Comprehensive overview of inductance, resistance, and capacitance as applied to the human body Serves as a preparatory guide for today's practicing engineers

  10. An Axiomatic Design Approach of Nanofluid-Engineered Nuclear Safety Features for Generation III+ React

    International Nuclear Information System (INIS)

    Bang, In Cheol; Heo, Gyun Young; Jeong, Yong Hoon; Heo, Sun

    2009-01-01

    A variety of Generation III/III+ reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world to solve the future energy supply shortfall. Nanofluid coolants showing an improved thermal performance are being considered as a new key technology to secure nuclear safety and economics. However, it should be noted that there is a lack of comprehensible design works to apply nanofluids to Generation III+ reactor designs. In this work, the review of accident scenarios that consider expected nanofluid mechanisms is carried out to seek detailed application spots. The Axiomatic Design (AD) theory is then applied to systemize the design of nanofluid-engineered nuclear safety systems such as Emergency Core Cooling System (ECCS) and External Reactor Vessel Cooling System (ERVCS). The various couplings between Gen-III/III+ nuclear safety features and nanofluids are investigated and they try to be reduced from the perspective of the AD in terms of prevention/mitigation of severe accidents. This study contributes to the establishment of a standard communication protocol in the design of nanofluid-engineered nuclear safety systems

  11. Engineering Research in Irish Economic Development

    Science.gov (United States)

    Kelly, John

    2011-01-01

    This article summarizes the main findings and recommendations of a report published in December 2010 by the Irish Academy of Engineering (IAE). The report, representing the views of a committee of distinguished Irish engineers from a wide range of disciplines, addresses the role of engineering research in Ireland's economic development and the…

  12. Anthropology in Agricultural Health and Safety Research and Intervention.

    Science.gov (United States)

    Arcury, Thomas

    2017-01-01

    Agriculture remains a dangerous industry, even as agricultural science and technology continue to advance. Research that goes beyond technological changes to address safety culture and policy are needed to improve health and safety in agriculture. In this commentary, I consider the potential for anthropology to contribute to agricultural health and safety research by addressing three aims: (1) I briefly consider what the articles in this issue of the Journal of Agromedicine say about anthropologists in agricultural health and safety; (2) I discuss what anthropologists can add to agricultural health and safety research; and (3) I examine ways in which anthropologists can participate in agricultural health and safety research. In using their traditions of rigorous field research to understand how those working in agriculture perceive and interpret factors affecting occupational health and safety (their "emic" perspective), and translating this perspective to improve the understanding of occupational health professionals and policy makers (an "etic" perspective), anthropologists can expose myths that limit improvements in agricultural health and safety. Addressing significant questions, working with the most vulnerable agricultural communities, and being outside establishment agriculture provide anthropologists with the opportunity to improve health and safety policy and regulation in agriculture.

  13. An overview-probabilistic safety analysis for research reactors

    International Nuclear Information System (INIS)

    Liu Jinlin; Peng Changhong

    2015-01-01

    For long-term application, Probabilistic Safety Analysis (PSA) has proved to be a valuable tool for improving the safety and reliability of power reactors. In China, 'Nuclear safety and radioactive pollution prevention 'Twelfth Five Year Plan' and the 2020 vision' raises clearly that: to develop probabilistic safety analysis and aging evaluation for research reactors. Comparing with the power reactors, it reveals some specific features in research reactors: lower operating power, lower coolant temperature and pressure, etc. However, the core configurations may be changed very often and human actions play an important safety role in research reactors due to its specific experimental requirement. As a result, there is a necessary to conduct the PSA analysis of research reactors. This paper discusses the special characteristics related to the structure and operation and the methods to develop the PSA of research reactors, including initiating event analysis, event tree analysis, fault tree analysis, dependent failure analysis, human reliability analysis and quantification as well as the experimental and external event evaluation through the investigation of various research reactors and their PSAs home and abroad, to provide the current situation and features of research reactors PSAs. (author)

  14. Experts' discussion on reactor safety research

    International Nuclear Information System (INIS)

    1980-01-01

    The experts' discussion on reactor safety research deals with risk analysis, political realization, man and technics, as well as with the international state of affairs. Inspite of a controversy on individual issues and on the proportion of governmental and industrial involvment in reactor safety research, the continuation and intensification of corresponding research work is said to be necessary. Several participants demanded to consider possible 'conventional accidents' as well as a stronger financial commitment by the industry in this sector. The ratio 'man and technics' being an interface decisive for the proper functioning or failure of complex technical systems requires even more research work to be done. (GL) [de

  15. Summaries of FY 1994 engineering research

    International Nuclear Information System (INIS)

    1994-12-01

    This report documents the Basic Energy Sciences Engineering Research Program for fiscal year 1994; it provides a summary of each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists

  16. Summaries of FY 1994 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This report documents the Basic Energy Sciences Engineering Research Program for fiscal year 1994; it provides a summary of each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists.

  17. Fission product source terms and engineered safety features

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1984-01-01

    The author states that new, technically defensible, methodologies to establish realistic source term values for nuclear reactor accidents will soon be available. Although these methodologies will undoubtedly find widespread use in the development of accident response procedures, the author states that it is less clear that the industry is preparing to employ the newer results to develop a more rational approach to strategies for the mitigation of fission product releases. Questions concerning the performance of existing engineered safety systems are reviewed

  18. Journal of Civil Engineering Research and Practice

    African Journals Online (AJOL)

    The Journal of Civil Engineering Research and Practice aims to publish original research papers of high standard, containing material of significant contribution to civil engineering, with emphasis being placed on material that is applicable to the solution of practical problems.

  19. NRC/DAE reactor safety research Data Bank

    International Nuclear Information System (INIS)

    Laats, E.T.

    1982-01-01

    In 1976, the United States Nuclear Regulatory Commission (NRC) established the NRC/Division of Accident Evaluation (DAE) Data Bank to collect, store, and make available data from the many domestic and foreign water reactor safety research programs. This program has since grown from the conceptual stage to a useful, usable service for computer code development, code assessment, and experimentation groups in meeting the needs of the nuclear industry. Data from 20 facilities are now processed and permanently stored in the Data Bank, which utilizes the Control Data Corporation (CDC) CYBER 176 computer system located at the Idaho National Engineering Laboratory (INEL). New data and data sources are continually being added to the Data Bank. In addition to providing data storage and access software, the Data Bank program supplies data entry, documentation, and training and advisory services to users and the NRC. Management of the NRC/DAE Data Bank is provided by EG and G Idaho, Inc

  20. Innovation and Research on Engineering Education

    DEFF Research Database (Denmark)

    de Graaff, Erik; Kolmos, Anette

    2014-01-01

    Our Western society depends strongly on continuous technological innovation. Engineers, the designers of the future technology need extensive competencies to face the challenge of dealing with ever increasing complexity. In some areas more than half the knowledge they learn in University is obsol......Our Western society depends strongly on continuous technological innovation. Engineers, the designers of the future technology need extensive competencies to face the challenge of dealing with ever increasing complexity. In some areas more than half the knowledge they learn in University...... is obsolete by the time the enter practice. Recognition of these issues has recently resulted in worldwide increase of attention for innovation of engineering education. This chapter presents a brief outline of the traditions in higher engineering education culminating in the stage of research and development...... in the last century. Next, the recent revival of engineering education research is described, contrasting the developments in the USA with Europe and the rest of the world. The efforts in the USA appear to follow Boyer’s concept scholarship of teaching, and aim for the establishment of engineering education...

  1. Reengineering Biomedical Translational Research with Engineering Ethics.

    Science.gov (United States)

    Sunderland, Mary E; Nayak, Rahul Uday

    2015-08-01

    It is widely accepted that translational research practitioners need to acquire special skills and knowledge that will enable them to anticipate, analyze, and manage a range of ethical issues. While there is a small but growing literature that addresses the ethics of translational research, there is a dearth of scholarship regarding how this might apply to engineers. In this paper we examine engineers as key translators and argue that they are well positioned to ask transformative ethical questions. Asking engineers to both broaden and deepen their consideration of ethics in their work, however, requires a shift in the way ethics is often portrayed and perceived in science and engineering communities. Rather than interpreting ethics as a roadblock to the success of translational research, we suggest that engineers should be encouraged to ask questions about the socio-ethical dimensions of their work. This requires expanding the conceptual framework of engineering beyond its traditional focus on "how" and "what" questions to also include "why" and "who" questions to facilitate the gathering of normative, socially-situated information. Empowering engineers to ask "why" and "who" questions should spur the development of technologies and practices that contribute to improving health outcomes.

  2. Operational safety reliability research

    International Nuclear Information System (INIS)

    Hall, R.E.; Boccio, J.L.

    1986-01-01

    Operating reactor events such as the TMI accident and the Salem automatic-trip failures raised the concern that during a plant's operating lifetime the reliability of systems could degrade from the design level that was considered in the licensing process. To address this concern, NRC is sponsoring the Operational Safety Reliability Research project. The objectives of this project are to identify the essential tasks of a reliability program and to evaluate the effectiveness and attributes of such a reliability program applicable to maintaining an acceptable level of safety during the operating lifetime at the plant

  3. Safety research needs for Russian-designed reactors. Requirements situation

    International Nuclear Information System (INIS)

    Brown, R. Allan; Holmstrom, Heikki; Reocreux, Michel; Schulz, Helmut; Liesch, Klaus; Santarossa, Giampiero; Hayamizu, Yoshitaka; Asmolov, Vladimir; Bolshov, Leonid; Strizhov, Valerii; Bougaenko, Sergei; Nikitin, Yuri N.; Proklov, Vladimir; Potapov, Alexandre; Kinnersly, Stephen R.; Voronin, Leonid M.; Honekamp, John R.; Frescura, Gianni M.; Maki, Nobuo; Reig, Javier; ); Bekjord, Eric S.; Rosinger, Herbert E.

    1998-01-01

    In June 1995, an OECD Support Group was set up to perform a broad study of the safety research needs of Russian-designed reactors. The emphasis of the study is on the VVER-type reactors in part because of the larger base of knowledge within the NEA Member countries related to LWRs. For the RBMKs, the study does not make the judgement that such reactors can be brought to acceptable levels of safety but focuses on near term efforts that can contribute to reducing the risk to the public. The need for the safety research must be evaluated in context of the lifetime of the reactors. The principal outcome of the work of the Support Group is the identification of a number of research topics which the members believe should receive priority attention over the next several years if risk levels are to be reduced and public safety enhanced. These appear in the Conclusions and Recommendations section of the report, and are the following: - The most important near-term need for VVER and RBMK safety research is to establish a sound technical basis for the emergency operating procedures used by the plant staff to prevent or halt the progression of accidents (i.e., Accident Management) and for plant safety improvements. - Co-operation of Western and Eastern experts should help to avoid East-West know-how gaps in the future, as safety technology continues to improve. - Safety research in Eastern countries will make an important contribution to public safety as it has in OECD countries. - RBMK safety research, including verification of codes, starts from a smaller base of experience than VVER, and is at an earlier stage of development. Technical Conclusions: - Research to improve human performance and operational safety of VVER and RBMK plants is extremely important. - VVER thermal-hydraulic and reactor physics research should focus on full validation of codes to VVER-specific features, and on extension of experimental data base. - Methods of assessing VVER pressure boundary

  4. ESRS guidelines for software safety reviews. Reference document for the organization and conduct of Engineering Safety Review Services (ESRS) on software important to safety in nuclear power plants

    International Nuclear Information System (INIS)

    2000-01-01

    The IAEA provides safety review services to assist Member States in the application of safety standards and, in particular, to evaluate and facilitate improvements in nuclear power plant safety performance. Complementary to the Operational Safety Review Team (OSART) and the International Regulatory Review Team (IRRT) services are the Engineering Safety Review Services (ESRS), which include reviews of siting, external events and structural safety, design safety, fire safety, ageing management and software safety. Software is of increasing importance to safety in nuclear power plants as the use of computer based equipment and systems, controlled by software, is increasing in new and older plants. Computer based devices are used in both safety related applications (such as process control and monitoring) and safety critical applications (such as reactor protection). Their dependability can only be ensured if a systematic, fully documented and reviewable engineering process is used. The ESRS on software safety are designed to assist a nuclear power plant or a regulatory body of a Member State in the review of documentation relating to the development, application and safety assessment of software embedded in computer based systems important to safety in nuclear power plants. The software safety reviews can be tailored to the specific needs of the requesting organization. Examples of such reviews are: project planning reviews, reviews of specific issues and reviews prior final acceptance. This report gives information on the possible scope of ESRS software safety reviews and guidance on the organization and conduct of the reviews. It is aimed at Member States considering these reviews and IAEA staff and external experts performing the reviews. The ESRS software safety reviews evaluate the degree to which software documents show that the development process and the final product conform to international standards, guidelines and current practices. Recommendations are

  5. Nuclear power reactor safety research activities in CIAE

    International Nuclear Information System (INIS)

    Pu Shendi; Huang Yucai; Xu Hanming; Zhang Zhongyue

    1994-01-01

    The power reactor safety research activities in CIAE are briefly reviewed. The research work performed in 1980's and 1990's is mainly emphasised, which is closely related to the design, construction and licensing review of Qinshan Nuclear Power Plant and the safety review of Guangdong Nuclear Power Station. Major achievements in the area of thermohydraulics, nuclear fuel, probabilistic safety assessment and severe accident researches are summarized. The foreseeable research plan for the near future, relating to the design and construction of 600 MWe PWR NPP at Qinshan Site (phase II development) is outlined

  6. NASA's aviation safety research and technology program

    Science.gov (United States)

    Fichtl, G. H.

    1977-01-01

    Aviation safety is challenged by the practical necessity of compromising inherent factors of design, environment, and operation. If accidents are to be avoided these factors must be controlled to a degree not often required by other transport modes. The operational problems which challenge safety seem to occur most often in the interfaces within and between the design, the environment, and operations where mismatches occur due to ignorance or lack of sufficient understanding of these interactions. Under this report the following topics are summarized: (1) The nature of operating problems, (2) NASA aviation safety research, (3) clear air turbulence characterization and prediction, (4) CAT detection, (5) Measurement of Atmospheric Turbulence (MAT) Program, (6) Lightning, (7) Thunderstorm gust fronts, (8) Aircraft ground operating problems, (9) Aircraft fire technology, (10) Crashworthiness research, (11) Aircraft wake vortex hazard research, and (12) Aviation safety reporting system.

  7. System Coordination of Survivability and Safety of Complex Engineering Objects Operation

    Directory of Open Access Journals (Sweden)

    Nataliya Pankratova

    2014-11-01

    Full Text Available A system strategy to estimation the guaranteed survivability and safety of complex engineering objects (CEO operation is proposed. The principles that underlie the strategy of the guaranteed safety of CEO operation provide a flexible approach to timely detection, recognition, forecast, and system diagnostics of risk factors and situations, to formulation and implementation of a rational decision in a practicable time within an unremovable time constraint. Implementation of the proposed strategy is shown on example of diagnostics of electromobile-refrigerator functioning in real mode.

  8. Human factors engineering design review acceptance criteria for the safety parameter display

    International Nuclear Information System (INIS)

    McGevna, V.; Peterson, L.R.

    1981-01-01

    This report contains human factors engineering design review acceptance criteria developed by the Human Factors Engineering Branch (HFEB) of the Nuclear Regulatory Commission (NRC) to use in evaluating designs of the Safety Parameter Display System (SPDS). These criteria were developed in response to the functional design criteria for the SPDS defined in NUREG-0696, Functional Criteria for Emergency Response Facilities. The purpose of this report is to identify design review acceptance criteria for the SPDS installed in the control room of a nuclear power plant. Use of computer driven cathode ray tube (CRT) displays is anticipated. General acceptance criteria for displays of plant safety status information by the SPDS are developed. In addition, specific SPDS review criteria corresponding to the SPDS functional criteria specified in NUREG-0696 are established

  9. NRC safety research in support of regulation, 1988

    International Nuclear Information System (INIS)

    1989-05-01

    This report, the fourth in a series of annual reports, was prepared in response to Congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during 1988. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  10. Comparing non-safety with safety device sharps injury incidence data from two different occupational surveillance systems.

    Science.gov (United States)

    Mitchell, A H; Parker, G B; Kanamori, H; Rutala, W A; Weber, D J

    2017-06-01

    The United States Occupational Safety and Health Administration (OSHA) Bloodborne Pathogens Standard as amended by the Needlestick Safety and Prevention Act requiring the use of safety-engineered medical devices to prevent needlesticks and sharps injuries has been in place since 2001. Injury changes over time include differences between those from non-safety compared with safety-engineered medical devices. This research compares two US occupational incident surveillance systems to determine whether these data can be generalized to other facilities and other countries either with legislation in place or considering developing national policies for the prevention of sharps injuries among healthcare personnel. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  11. 76 FR 78 - Federal Motor Vehicle Safety Standard; Engine Control Module Speed Limiter Device

    Science.gov (United States)

    2011-01-03

    ... [Docket No. NHTSA-2007-26851] Federal Motor Vehicle Safety Standard; Engine Control Module Speed Limiter... occupants. IIHS stated that on-board electronic engine control modules (ECM) will maintain the desired speed... be equipped with an electronic control module (ECM) that is capable of limiting the maximum speed of...

  12. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    International Nuclear Information System (INIS)

    1996-08-01

    This is an annual report prepared on research education action, operation state of research instruments and others in FY 1995 at Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The laboratory has four large instruments such as high speed neutron source reactor, 'Yayoi', electron linac, fundamentally experimental equipment for blanket design of nuclear fusion reactor, and heavy radiation research equipment (HIT), of which former two are used for cooperative research with universities in Japan, and the next blanket and the last HIT are also presented for cooperative researches in Faculty of Engineering and in University of Tokyo, respectively. FY 1995 was the beginning year of earnest discussion on future planning of this facility with concentrated effort. These four large research instruments are all in their active use. And, their further improvement is under preparation. In this report, the progress in FY 1995 on operation and management of the four large instruments are described at first, and on next, research actions, contents of theses for degree and graduation of students as well as research results of laboratory stuffs are summarized. These researches are constituted mainly using these large instruments in the facility, aiming at development of advanced and new field of atomic energy engineering and relates to nuclear reactor first wall engineering, nuclear reactor fuel cycle engineering, electromagnetic structure engineering, thermal-liquid engineering, mathematical information engineering, quantum beam engineering, new type reactor design and so on. (G.K.)

  13. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This is an annual report prepared on research education action, operation state of research instruments and others in FY 1995 at Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The laboratory has four large instruments such as high speed neutron source reactor, `Yayoi`, electron linac, fundamentally experimental equipment for blanket design of nuclear fusion reactor, and heavy radiation research equipment (HIT), of which former two are used for cooperative research with universities in Japan, and the next blanket and the last HIT are also presented for cooperative researches in Faculty of Engineering and in University of Tokyo, respectively. FY 1995 was the beginning year of earnest discussion on future planning of this facility with concentrated effort. These four large research instruments are all in their active use. And, their further improvement is under preparation. In this report, the progress in FY 1995 on operation and management of the four large instruments are described at first, and on next, research actions, contents of theses for degree and graduation of students as well as research results of laboratory stuffs are summarized. These researches are constituted mainly using these large instruments in the facility, aiming at development of advanced and new field of atomic energy engineering and relates to nuclear reactor first wall engineering, nuclear reactor fuel cycle engineering, electromagnetic structure engineering, thermal-liquid engineering, mathematical information engineering, quantum beam engineering, new type reactor design and so on. (G.K.)

  14. Status and some safety philosophies of the China advanced research reactor CARR

    International Nuclear Information System (INIS)

    Luzheng Yuan

    2001-01-01

    The existing two research reactors, HWRR (heavy water research reactor) and SPR (swimming pool reactor), have been operated by China Institute of Atomic Energy (CIAE) since, respectively, 1958 and 1964, and are both in extending service and facing the aging problem. It is expected that they will be out of service successively in the beginning decade of the 21 st century. A new, high performance and multipurpose research reactor called China advanced research reactor (CARR) will replace these two reactors. This new reactor adopts the concept of inverse neutron trap compact core structure with light water as coolant and heavy water as the outer reflector. Its design goal is as follows: under the nuclear power of 60MW, the maximum unperturbed thermal neutron flux in peripheral D 2 O reflector not less than 8 x 10 14 n/cm 2 . s while in central experimental channel, if the central cell to be replaced by an experimental channel, the corresponding value not less than 1 x 10 15 n/cm 2 . s. The main applications for this research reactor will cover RI production, neutron scattering experiments, NAA and its applications, neutron photography, NTD for monocrystaline silicon and applications on reactor engineering technology. By the end of 1999, the preliminary design of CARR was completed, then the draft of preliminary safety analysis report (PSAR) was submitted to the relevant authority at the end of 2000 for being reviewed. Now, the CARR project has entered the detail design phase and safety reviewing procedure for obtaining the construction permit from the relevant licensing authority. This paper will only briefly introduce some aspects of safety philosophy of CARR design and PSAR. (orig.)

  15. Nuclear safety research in France

    International Nuclear Information System (INIS)

    Tanguy, P.

    1976-01-01

    As a consequence of the decision of choosing light water reactors (PWR) for the French nuclear plants of the next ten years, a large safety program has been launched referring to three physical barriers against fission product release: the fuel element cladding, main primary system boundary and the containment. The parallel development of French-designed fast breeder reactors involved safety studies on: sodium boiling, accidental fuel behavior, molten fuel-sodium interaction, core accident and protection, and external containment. The rapid development of nuclear energy resulted in a corresponding development of safety studies relating to nuclear fuel facilities. French regulations also required a special program to be developed for the realistic evaluation of the consequences of external agressions, the French cooperation to multinational safety research being also intensive

  16. Engineering research, development and technology

    International Nuclear Information System (INIS)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report

  17. HTGR safety research program

    International Nuclear Information System (INIS)

    Barsell, A.W.; Olsen, B.E.; Silady, F.A.

    1981-01-01

    An HTGR safety research program is being performed supporting and guided in priorities by the AIPA Probabilistic Risk Study. Analytical and experimental studies have been conducted in four general areas where modeling or data assumptions contribute to large uncertainties in the consequence assessments and thus, in the risk assessment for key core heat-up accident scenarios. Experimental data have been obtained on time-dependent release of fission products from the fuel particles, and plateout characteristics of condensible fission products in the primary circuit. Potential failure modes of primarily top head PCRV components as well as concrete degradation processes have been analyzed using a series of newly developed models and interlinked computer programs. Containment phenomena, including fission product deposition and potential flammability of liberated combustible gases have been studied analytically. Lastly, the behaviour of boron control material in the core and reactor subcriticality during core heatup have been examined analytically. Research in these areas has formed the basis for consequence updates in GA-A15000. Systematic derivation of future safety research priorities is also discussed. (author)

  18. FY10 Engineering Innovations, Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

    2011-01-11

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but

  19. Engineering education research in European Journal of Engineering Education and Journal of Engineering Education: citation and reference discipline analysis

    Science.gov (United States)

    Wankat, Phillip C.; Williams, Bill; Neto, Pedro

    2014-01-01

    The authors, citations and content of European Journal of Engineering Education (EJEE) and Journal of Engineering Education (JEE) in 1973 (JEE, 1975 EJEE), 1983, 1993, 2003, and available 2013 issues were analysed. Both journals transitioned from house organs to become engineering education research (EER) journals, although JEE transitioned first. In this process the number of citations rose, particularly of education and psychology sources; the percentage of research articles increased markedly as did the number of reference disciplines. The number of papers per issue, the number of single author papers, and the citations of science and engineering sources decreased. EJEE has a very broad geographic spread of authors while JEE authors are mainly US based. A 'silo' mentality where general engineering education researchers do not communicate with EER researchers in different engineering disciplines is evident. There is some danger that EER may develop into a silo that does not communicate with technically oriented engineering professors.

  20. 76 FR 44648 - Research, Engineering and Development Advisory Committee

    Science.gov (United States)

    2011-07-26

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development....S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development.... Name: Research, Engineering & Development Advisory Committee. Time and Date: September 21, 2011--9 a.m...

  1. Major structural response methods used in the seismic safety margins research program

    International Nuclear Information System (INIS)

    Chou, C.K.; Lo, T.; Vagliente, V.

    1979-01-01

    In order to evaluate the conservatisms in present nuclear power plant seismic safety requirements, a probabilistic based systems model is being developed. This model will also be used to develop improved requirements. In Phase I of the Seismic Safety Margins Research Program (SSMRP), this methodology will be developed for a specific nuclear power plant and used to perform probabilistic sensitivity studies to gain engineering insights into seismic safety requirements. Random variables in the structural response analysis area, or parameters which cause uncertainty in the response, are discussed and classified into three categories; i.e., material properties, structural dynamic characteristics and related modeling techniques, and analytical methods. The sensitivity studies are grouped into two categories; deterministic and probabilistic. In a system analysis, transfer functions in simple form are needed since there are too many responses which have to be calculated in a Monte Carlo simulation to use the usual straightforward calculation approach. Therefore, the development of these simple transfer functions is one of the important tasks in SSMRP. Simplified as well as classical transfer functions are discussed

  2. Research and Exploration for Operational Research Education in Industry and Engineering Subject

    Science.gov (United States)

    Wu, Yu-hua; Wang, Feng-ming; Du, Gang

    2007-01-01

    On the basic of exploring the relationship of industry engineering and operational research technique, the thesis analyzes the location and utility of the operational research education in the whole industry engineering subject education. It brings forward the system design about operational research and relative class among industry engineering…

  3. Understanding Engineering Ethics

    Directory of Open Access Journals (Sweden)

    Abdi O. Shuriye

    2012-01-01

    Full Text Available Engineering ethics aims to enhance engineer’s ability to confront moral issues raised by engineering activities. It covers engineering as social experimentation, the engineer’s responsibility for safety, and the rights of engineers. What constitutes engineering ethics is the underlining question of this research. Hence, the objective of the research is to systematically provide answers to the aforementioned question. The research also studies the scope and the origin of the subject matter. At the same time, the research highlights the significance of the subject from diverse perspectives; including Western and Islamic perspectives. ABSTRAK: Etika kejuruteraan bertujuan meningkatkan keupayaan juruera menghadapi isu-isu moralyang timbul dari aktiviti-aktiviti kejuruteraan. Ia merangkumi kejuruteraan sebagai eksperimentasi sosial, tanggungjawab jurutera terhadap keselamatan dan hak-hak jurutera. Persoalan utama penyelidikan ini adalah apa yang merangkumi etika kejuruteraan. Penyelidikan ini juga mengkaji skop dan asal usul etika kejuruteraan. Kajian ini turut membincangkan subjek kajian dari pelbagai perspektif, Barat dan Islam.KEYWORDS: engineering ethics; engineer; akhlaq; values; confidentiality; corruption; conflict of interest; whistle-blowing

  4. Safety management in research and development organisation

    International Nuclear Information System (INIS)

    Nivedha, T.

    2016-01-01

    Health and safety is one of the most important aspects of an organizations smooth and effective functioning. It depends on the safety management, health management, motivation, leadership and training, welfare facilities, accident statistics, policy, organization and administration, hazard control and risk analysis, monitoring, statistics and reporting. Workplace accidents are increasingly common, main causes are untidiness, noise, too hot or cold environments, old or poorly maintained machines, and lack of training or carelessness of employees. One of the biggest issues facing employers today is the safety of their employees. This study aims at analyzing the occupational health and safety of Research organization in Indira Gandhi Centre for Atomic Research by gathering information on health management, safety management, motivation, leadership and training, welfare facilities, accident statistics, organization and administration, hazard control and risk analysis, monitoring, statistics and reporting. Data were collected by using questionnaires which were developed on health and safety management system. (author)

  5. Summary of NRC LWR safety research programs on fuel behavior, metallurgy/materials and operational safety

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1979-09-01

    The NRC light-water reactor safety-research program is part of the NRC regulatory program for ensuring the safety of nuclear power plants. This paper summarizes the results of NRC-sponsored research into fuel behavior, metallurgy and materials, and operational safety. The fuel behavior research program provides a detailed understanding of the response of nuclear fuel assemblies to postulated off-normal or accident conditions. Fuel behavior research includes studies of basic fuel rod properties, in-reactor tests, computer code development, fission product release and fuel meltdown. The metallurgy and materials research program provides independent confirmation of the safe design of reactor vessels and piping. This program includes studies on fracture mechanics, irradiation embrittlement, stress corrosion, crack growth, and nondestructive examination. The operational safety research provides direct assistance to NRC officials concerned with the operational and operational-safety aspects of nuclear power plants. The topics currently being addressed include qualification testing evaluation, fire protection, human factors, and noise diagnostics

  6. 77 FR 14462 - Research, Engineering and Development Advisory Committee

    Science.gov (United States)

    2012-03-09

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development....S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development.... Name: Research, Engineering & Development Advisory Committee. Time and Date: April 18, 2012--9:30 a.m...

  7. 78 FR 47049 - Research, Engineering and Development Advisory Committee

    Science.gov (United States)

    2013-08-02

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development...; 5 U.S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and.... Name: Research, Engineering & Development Advisory Committee. Time and Date: September 18--8:30 a.m. to...

  8. 78 FR 16357 - Research, Engineering and Development Advisory Committee

    Science.gov (United States)

    2013-03-14

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development... hereby given of a meeting of the FAA Research, Engineering and Development (R,E&D) Advisory Committee. Name: Research, Engineering & Development Advisory Committee. Time and Date: April 24--8:30 a.m. to 4...

  9. Nuclear safety research project (PSF). 1999 annual report

    International Nuclear Information System (INIS)

    Muehl, B.

    2000-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report summarizes the R and D results of PSF during 1999. The research tasks cover three main topics: Light Water Reactor safety, innovative systems, and studies related to the transmutation of actinides. The importance of the Light Water Reactor safety, however, has decreased during the last year in favour of the transmutation of actinides. Numerous institutes of the research centre contribute to the PSF programme, as well as several external partners. The tasks are coordinated in agreement with internal and external working groups. The contributions to this report, which are either written in German or in English, correspond to the status of early/mid 2000. (orig.) [de

  10. Nuclear Safety Research Department annual report 2000

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E.

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  11. Research on the development of advanced system safety assessment procedures. 2

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko

    2004-02-01

    The past research reports in the area of safety engineering proposed the Computer-aided HAZOP system to be applied to Nuclear Reprocessing Facilities. Automated HAZOP system has great advantage compared with human analysts in terms of accuracy of the results, and time required to conduct HAZOP studies. However, it also became clear that the disadvantages are difficulty in analyzing the detailed information about a substance and a reaction peculiar to each plant or a process. And the outputted results may contain excess and deficiency compared with the HAZOP results performed by specialists. To improve HAZOP System, function of interventions by human is added to the system. Database-Bridge, which applies information management technology such as SQL operation, Query, is developed to perform intervention function. As the result the HAZOP system can give appropriate measures information to protect accidents to uses. Such HAZOP data is applied to safety management of Nuclear Reprocessing Facilities. (author)

  12. Mechanical Engineering Department engineering research: Annual report, FY 1986

    International Nuclear Information System (INIS)

    Denney, R.M.; Essary, K.L.; Genin, M.S.; Highstone, H.H.; Hymer, J.D.; Taft, S.O.

    1986-12-01

    This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstracts were prepared for each of the 13 reports in this publication

  13. Karlsruhe Research Center, Nuclear Safety Research Project (PSF). Annual report 1994

    International Nuclear Information System (INIS)

    Hueper, R.

    1995-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZKA) has been part of the Nuclear Safety Research Projet (PSF) since 1990. The present annual report 1994 summarizes the R and D results. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status of early 1995. An abstract in English precedes each of them, whenever the respective article is written in German. (orig.) [de

  14. 77 FR 54648 - Research, Engineering and Development Advisory Committee

    Science.gov (United States)

    2012-09-05

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development....S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development...: Research, Engineering & Development Advisory Committee. TIME AND DATE: September 26, 2012--9 a.m. to 4 p.m...

  15. 76 FR 12404 - Research, Engineering and Development Advisory Committee

    Science.gov (United States)

    2011-03-07

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development....S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development...: Research, Engineering & Development Advisory Committee. Time and Date: April 20, 2011--9:30 a.m. to 4 p.m...

  16. 75 FR 14243 - Research, Engineering And Development Advisory Committee

    Science.gov (United States)

    2010-03-24

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering And Development....S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development...: Research, Engineering & Development Advisory Committee. Time and Date: April 21, 2010--9 a.m. to 5 p.m...

  17. Technical specification optimization program - engineered safety features

    International Nuclear Information System (INIS)

    Andre, G.R.; Jansen, R.L.

    1986-01-01

    The Westinghouse Technical Specification Program (TOP) was designed to evaluate on a quantitative basis revisions to Nuclear Power Plant Technical Specifications. The revisions are directed at simplifying plant operation, and reducing unnecessary transients, shutdowns, and manpower requirements. In conjunction with the Westinghouse Owners Group, Westinghouse initiated a program to develop a methodology to justify Technical Specification revisions; particularly revisions related to testing and maintenance requirements on plant operation for instrumentation systems. The methodology was originally developed and applied to the reactor trip features of the reactor protection system (RPS). The current study further refined the methodology and applied it to the engineered safety features of the RPS

  18. 78 FR 40743 - Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety...

    Science.gov (United States)

    2013-07-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety and Health (MSHRAC, NIOSH... Director, NIOSH, on priorities in mine safety and health research, including grants and contracts for such...

  19. Biomedical engineering for health research and development.

    Science.gov (United States)

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  20. Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education

    Science.gov (United States)

    Klein, James A.; Davis, Richard A.

    2011-01-01

    This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…

  1. An outcome of nuclear safety research in JAERI. Predominance of research

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Kawashima, Kei; Ito, Keishiro; Katsuki, Chisato

    2010-02-01

    Bibliometric study by means of research papers revealed the followings; (1) Nuclear Safety Research (NSR) performed in Japan is the 2nd highest in the world followed by USA. The share of JAERI for safety paper publication is about 25% in Japan (2) During past 25 years, JAERI is predominant at 39 safety fields out of 97, that is, 40% to the total. This is the fact revealed from comparison of published number of research papers with those of other organizations. (3) JAERI is recently changing its stress point from reactor-oriented accidents to the down stream of nuclear fuel cycling. There existed impact of TMI-2 accident on NSR-JAERI, especially in the field of thermal hydraulics, LOCA, severe accident and risk analysis. (author)

  2. Seismic safety margins research program overview

    International Nuclear Information System (INIS)

    Tokarz, F.J.; Smith, P.D.

    1978-01-01

    A multiyear seismic research program has been initiated at the Lawrence Livermore Laboratory. This program, the Seismic Safety Margins Research Program (SSMRP) is funded by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The program is designed to develop a probabilistic systems methodology for determining the seismic safety margins of nuclear power plants. Phase I, extending some 22 months, began in July 1978 at a funding level of approximately $4.3 million. Here we present an overview of the SSMRP. Included are discussions on the program objective, the approach to meet the program goal and objectives, end products, the probabilistic systems methodology, and planned activities for Phase I

  3. Domain Engineering, A Software Engineering Discipline in Need of Research

    DEFF Research Database (Denmark)

    Bjørner, Dines

    2000-01-01

    . The aim of this paper is to advocate: that researchers study these development method components, and that universities focus their education on basing well-nigh any course on the use of formal techniques: Specification and verification, and that software engineers take heed: Start applying formal......, and these again seem more stable than software designs. Thus, almost like the universal laws of physics, it pays off to first develop theories of domains. But domain engineering, as in fact also requirements engineering, really is in need of thoroughly researched development principles, techniques and tools...... techniques. A brief example of describing stake-holder perspectives will be given - on the background of which we then proceed to survey the notions of domain intrinsics, domain support technologies, domain management & organisation, domain rules & regulations, domain human behaviour, etc. We show elsewhere...

  4. Nuclear safety research project. Annual report 1995

    International Nuclear Information System (INIS)

    Hueper, R.

    1996-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report 1995 summarizes the R and D results. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status of early 1996. An abstract in English precedes each of them, whenever the respective article is written in German. (orig.) [de

  5. An overview of the NASA rotary engine research program

    Science.gov (United States)

    Meng, P. R.; Hady, W. F.

    1984-01-01

    A brief overview and technical highlights of the research efforts and studies on rotary engines over the last several years at the NASA Lewis Research Center are presented. The test results obtained from turbocharged rotary engines and preliminary results from a high performance single rotor engine were discussed. Combustion modeling studies of the rotary engine and the use of a Laser Doppler Velocimeter to confirm the studies were examined. An in-house program in which a turbocharged rotary engine was installed in a Cessna Skymaster for ground test studies was reviewed. Details are presented on single rotor stratified charge rotary engine research efforts, both in-house and on contract.

  6. Safety of research reactors. Topical issues paper no. 4

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.; Ferraz-Bastos, J.L.; Kim, S.C.; Voth, M.; Boeck, H.; Dimeglio, F.; Litai, D.

    2001-01-01

    Assessment of Research Reactors (INSARR) missions. The prime objective of these missions has been to conduct a comprehensive operational safety review of the research reactor facility and to verify compliance with the IAEA Safety Standards. The methods used during an INSARR mission have been collected and analysed. Some of the important issues identified are the following: general ageing of the facility; uncertain status of many research reactors (in extended shutdown); indefinite deferral of return to operation or decommissioning; inadequate regulatory supervision; insufficient systematic (periodic) reassessment of safety; lack of quality assurance (QA) programmes; lack of an international safety convention or arrangement; lack of financial support for safety measures (e.g. safety reassessment, safety upgrading, decommissioning) and utilization; lack of clear utilization programmes; inadequate emergency preparedness; inadequate safety documentation (e.g. safety analysis report, operating rules and procedures, emergency plan); inadequate funding of shutdown reactors; weak safety culture; loss of expertise and corporate memory; loss of information concerning radioactive materials contained in retired experimental devices stored in the facility indefinitely; obsolescence of equipment and lack of spare parts; inadequate training and qualifications of regulators and operators; safety implications of new fuel types. These issues have been addressed by the IAEA Secretariat and the chairman of the International Nuclear Safety Advisory Group (INSAG). INSAG has identified three major safety issues that are: the increasing age of research reactors, the number of research reactors that are not operating anymore but have not been decommissioned, and the number of research reactors in countries that do not have appropriate regulatory authorities. This issue paper discusses the concerns generated by an analysis of the results of INSARR missions and those expressed by INSAG. The

  7. The progress of Requirements Engineering research

    Directory of Open Access Journals (Sweden)

    Michael Terstine

    2015-06-01

    Full Text Available This article is describes the path through the process of Requirements Engineering research and some lines are identified that can meet the needs of the emerging software and the complexity of today's problems. First is done a reviews to the state of the art of research in this area, with regard to technologies developed to address requirements specific tasks, such as elicitation, modeling and analysis. This review identified areas for further research. Subsequently, several strategies are described to implement and extend the results, in order to help shape the scope of future research. Finally, some topics for future research are proposed in order to address the Requirements Engineering needed to respond to emerging systems and the complexity of the same.

  8. The emphasis is on reactor safety research

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    For the second time the Association for Reactor Safety mbH (GRS), Koeln, organised on behalf of the BMFT the conference 'Reactor safety research'. About 400 visitors took part. The public who were interested were given a review of the activities which are being undertaken by the BMFT in the programme 'Research and safety of light-water reactors'. The series of conference papers initiated by the BMFT is to be developed into a permanent information source which will be of interest to those working on nuclear questions such as official quarters, industry and high schools, and experts who have to give judgements. The most important statements by various research groups in industry, high schools and also associations of experts, are summarised. (orig.) [de

  9. Guidelines for Self-assessment of Research Reactor Safety

    International Nuclear Information System (INIS)

    2018-01-01

    Self-assessment is an organization’s internal process to review its current status, processes and performance against predefined criteria and thereby to provide key elements for the organization’s continual development and improvement. Self-assessment helps the organization to think through what it is expected to do, how it is performing in relation to these expectations, and what it needs to do to improve performance, fulfil the expectations and achieve better compliance with the predefined criteria. This publication provides guidelines for a research reactor operating organization to perform a self-assessment of the safety management and the safety of the facility and to identify gaps between the current situation and the IAEA safety requirements for research reactors. These guidelines also provide a methodology for Member States, regulatory bodies and operating organizations to perform a self-assessment of their application of the provisions of the Code of Conduct on the Safety of Research Reactors. This publication also addresses planning, implementation and follow-up of actions to enhance safety and strengthen application of the Code. The guidelines are applicable to all types of research reactor and critical and subcritical assemblies, at all stages in their lifetimes, and to States, regulatory bodies and operating organizations throughout all phases of research reactor programmes. Research reactor operating organizations can use these guidelines at any time to support self-assessments conducted in accordance with the organization’s integrated management system. These guidelines also serve as a tool for an organization to prepare to receive an IAEA Integrated Safety Assessment of Research Reactors (INSARR) mission. An important result of this is the opportunity for an operating organization to identify focus areas and make safety improvements in advance of an INSARR mission, thereby increasing the effectiveness of the mission and efficiency of the

  10. Fifty years of driving safety research.

    Science.gov (United States)

    Lee, John D

    2008-06-01

    This brief review covers the 50 years of driving-related research published in Human Factors, its contribution to driving safety, and emerging challenges. Many factors affect driving safety, making it difficult to assess the impact of specific factors such as driver age, cell phone distractions, or collision warnings. The author considers the research themes associated with the approximately 270 articles on driving published in Human Factors in the past 50 years. To a large extent, current and past research has explored similar themes and concepts. Many articles published in the first 25 years focused on issues such as driver impairment, individual differences, and perceptual limits. Articles published in the past 25 years address similar issues but also point toward vehicle technology that can exacerbate or mitigate the negative effect of these issues. Conceptual and computational models have played an important role in this research. Improved crash-worthiness has contributed to substantial improvements in driving safety over the past 50 years, but future improvements will depend on enhancing driver performance and perhaps, more important, improving driver behavior. Developing models to guide this research will become more challenging as new technology enters the vehicle and shifts the focus from driver performance to driver behavior. Over the past 50 years, Human Factors has accumulated a large base of driving-related research that remains relevant for many of today's design and policy concerns.

  11. Interdisciplinary Research for Engineering Skills Development Interdisciplinary Research for Engineering Skills Development

    Directory of Open Access Journals (Sweden)

    Angel E. González-Lizardo

    2012-02-01

    Full Text Available Este trabajo reporta los resultados de una experiencia interdisciplinaria de investigaciónpara estudiantes de ingeniería, en el Laboratorio de Ingeniería de Plasma (PEL por sussiglas en inglés de la Universidad Politécnica de Puerto Rico (UPPR. Los rasgos fuertes de esta experiencia y su relación con los resultados esperados por la Junta de Acreditación para Ingeniería y Tecnología (ABET por sus siglas en inglés son destacados, y una descripción cualitativa de los resultados en términos de la ejecución de los estudiantes durante la experiencia y después de ella. Se presenta un ejemplo de las diferentes actividades realizadas por un equipo de estudiantes subgraduados y su relación con los resultados esperados por ABET. La experiencia de investigación en el PEL provee a los estudiantes con una oportunidad única para practicar la ingeniería antes de su graduación, a través de problemas reales, innovación, colaboración con otras instituciones, y presentación de su trabajo a audiencias de científicos e ingenieros. This work reports the results of an ad hoc interdisciplinary research experience for undergraduate engineering students at the Plasma Engineering Laboratory (PEL of the Polytechnic University of Puerto Rico (PUPR. The strong features of this experience and their relationship with Accreditation Board for Engineering and Technology (ABET outcomes are pointed out, and a qualitative description of the results is discussed, in terms of the performance of the students during the experience and after it. An example of the different activities performed by a team of undergraduate students, and their relationship with the ABET outcomes is presented. The undergraduate research at the PEL provides the students with a unique opportunity to practice engineering before graduation through real life problems, innovation, collaboration with other institutions, and presentation of their work for engineering and scientific audiences.

  12. Mechanical Engineering Department engineering research: Annual report, FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Denney, R.M.; Essary, K.L.; Genin, M.S.; Highstone, H.H.; Hymer, J.D.; Taft, S.O. (eds.)

    1986-12-01

    This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstracts were prepared for each of the 13 reports in this publication. (JDH)

  13. Institute of Industrial Engineers Asian Conference 2013

    CERN Document Server

    Tsao, Yu-Chung; Lin, Shi-Woei

    2013-01-01

    This book is based on the research papers presented during The Institute of Industrial Engineers Asian Conference 2013 held at Taipei in July 2013. It presents information on the most recent and relevant research, theories and practices in industrial and systems engineering. Key topics include: Engineering and Technology Management Engineering Economy and Cost Analysis Engineering Education and Training Facilities Planning and Management Global Manufacturing and Management Human Factors Industrial & Systems Engineering Education Information Processing and Engineering Intelligent Systems Manufacturing Systems Operations Research Production Planning and Control Project Management Quality Control and Management Reliability and Maintenance Engineering Safety, Security and Risk Management Supply Chain Management Systems Modeling and Simulation Large scale complex systems.

  14. Electronics engineering research proposals for FY78

    International Nuclear Information System (INIS)

    Cleland, L.L.; Ekstrom, M.P.; Miller, E.K.

    1977-01-01

    Since most of the Electronics Engineering Research expenditures are in the Engineering Research Division (ERD), the two are inseparable when discussing plans. A reorganization of ERD aimed at further expanding LLL capabilities and being more responsive to LLL needs is now complete. Six discipline related groups constitute the research elements in ERD. Three groups remained unchanged, one group was modified slightly, two groups were added, and one group was dissolved. The technical activities of each of the six research-oriented groups within ERD are reported

  15. More safety for emergency diesel engines for the Belgium nuclear power plants

    International Nuclear Information System (INIS)

    Laire, Ch.; Scauflaire, O.; D'ans, G.; Moland, G. de; Bresseleers, J.

    2002-01-01

    Each nuclear plant in Belgium is equipped with a series of ultimate power supply (UPS) units, also called emergency power units. These consist of generators driven by multi-cylinder (typically 18) diesel engines, which are marine derivatives. Unlike marine applications, the steady-state load does not produce pulsating torques. However, these diesel engines are designed to start upon short notice following a blackout and reach full power within a few seconds to guarantee the availability or all safety valves and ventilators. Such sharp and quasi-cold starts, periodically performed to guarantee the UPS availability, may spell utter failures of the crank shaft, as demonstrated by a fatigue failure observed on the fillets connecting the crank pin to the web faces. The fillet cracks initiate in bending mode and then progress in torsion mode to excessive transient torques arising in the power train during successive starts. Aware of the potential risk and conforming to the Belgian nuclear safety rules, the plant operator of Doel sponsored the development of a nondestructive technique enabling the inspection of each fillet for cracks without first removing each piston rod from its crank pin. As a result, Laborelec developed a specific eddy-current probe which avoids fully dismantling the engine, as is done during ten-yearly overhauls with dye-checks for cracks. Inspecting crank shaft fillet integrity with this least obtrusive technique requires 24 hours per engine. It can thus be performed more frequently to prevent total crank shaft failures in time and monitor the engine fatigue caused following the mandatory monthly start-up tests. This promising technique may also find marine applications. Measuring the transient torque arising between the engine and the generator showed that this reached very high values shortly after starting the engine and injecting fuel at full throttle to reach full power within seconds. The pulsating torque of the 18-cylinders engine occurring 9

  16. Maintaining knowledge, training and infrastructure for research and development in nuclear safety - INSAG-16. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    2003-01-01

    . Education in nuclear science and technology needs to be stabilized in order to maintain sufficient human resources in sciences and engineering relating to nuclear safety. Part of the research infrastructure should be maintained at universities. There is a concern that deterioration of the research infrastructure may lead over time to a deterioration in safety which the public will not tolerate. National and international bodies have a key role to play in ensuring that the skills and capabilities required by the nuclear industry and its regulators are available and that the infrastructure required for this is provided for. Maintaining the safety of nuclear facilities, a pool of expertise and the level of safety research is a common concern of IAEA Member States and therefore, to the extent practicable, research facilities and research data should be shared in joint research programmes by IAEA Member States. The OECD Nuclear Energy Agency (OECD/NEA) is actively engaged in this effort. It has recently published two important reports dealing with research capabilities and facilities and with major research programmes at risk. Following up on the conclusions of these reports, the OECD/NEA continues to review safety research needs and organizes and sponsors internationally funded projects which contribute to maintaining key research facilities and teams. However, it is important that such efforts encompass all countries having nuclear power programmes. The IAEA and OECD/NEA could explore this possibility further. More frequent interactions among research managers in Member States should be considered to ensure that full advantage is being taken of the joint expertise and equipment available around the world. Results of national research programmes should be made public and broadly shared. This will increase public confidence and help to ensure that regulatory processes reflect the state of knowledge

  17. Thrust Area Report, Engineering Research, Development and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  18. Modern mechanical engineering research, development and education

    CERN Document Server

    2014-01-01

    This book covers modern subjects of mechanical engineering such as nanomechanics and nanotechnology, mechatronics and robotics, computational mechanics, biomechanics, alternative energies, sustainability as well as all aspects related with mechanical engineering education. The chapters help enhance the understanding of both the fundamentals of mechanical engineering and its application to the solution of problems in modern industry. This book is suitable for students, both in final undergraduate mechanical engineering courses or at the graduate level. It also serves as a useful reference for academics, mechanical engineering researchers, mechanical, materials and manufacturing engineers, professionals in related with mechanical engineering.

  19. Nuclear Safety Research Department annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  20. Engineering nanomaterials-based biosensors for food safety detection.

    Science.gov (United States)

    Lv, Man; Liu, Yang; Geng, Jinhui; Kou, Xiaohong; Xin, Zhihong; Yang, Dayong

    2018-05-30

    Food safety always remains a grand global challenge to human health, especially in developing countries. To solve food safety pertained problems, numerous strategies have been developed to detect biological and chemical contaminants in food. Among these approaches, nanomaterials-based biosensors provide opportunity to realize rapid, sensitive, efficient and portable detection, overcoming the restrictions and limitations of traditional methods such as complicated sample pretreatment, long detection time, and relying on expensive instruments and well-trained personnel. In this review article, we provide a cross-disciplinary perspective to review the progress of nanomaterials-based biosensors for the detection of food contaminants. The review article is organized by the category of food contaminants including pathogens/toxins, heavy metals, pesticides, veterinary drugs and illegal additives. In each category of food contaminant, the biosensing strategies are summarized including optical, colorimetric, fluorescent, electrochemical, and immune- biosensors; the relevant analytes, nanomaterials and biosensors are analyzed comprehensively. Future perspectives and challenges are also discussed briefly. We envision that our review could bridge the gap between the fields of food science and nanotechnology, providing implications for the scientists or engineers in both areas to collaborate and promote the development of nanomaterials-based biosensors for food safety detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Fundamentals of automotive and engine technology standard drives, hybrid drives, brakes, safety systems

    CERN Document Server

    2014-01-01

    Hybrid drives and the operation of hybrid vehicles are characteristic of contemporary automotive technology. Together with the electronic driver assistant systems, hybrid technology is of the greatest importance and both cannot be ignored by today’s car drivers. This technical reference book provides the reader with a firsthand comprehensive description of significant components of automotive technology. All texts are complemented by numerous detailed illustrations. Contents History of the automobile.- History of the Diesel engine.- Areas of use for Diesel engines.- Basic principles of the Diesel engine.- Basic principles of Diesel fuel-injection.- Basic principles of the gasoline engine.- Inductive ignition system.- Transmissions for motor vehicles.- Motor vehicle safety.- Basic principles of vehicle dynamics.- Car braking systems.- Vehicle electrical systems.- Overview of electrical and electronic systems in the vehicle.- Control of gasoline engines.- Control of Diesel engines.- Lighting technology.- Elec...

  2. A Research Agenda for Security Engineering

    Directory of Open Access Journals (Sweden)

    Rich Goyette

    2013-08-01

    Full Text Available Despite nearly 30 years of research and application, the practice of information system security engineering has not yet begun to exhibit the traits of a rigorous scientific discipline. As cyberadversaries have become more mature, sophisticated, and disciplined in their tradecraft, the science of security engineering has not kept pace. The evidence of the erosion of our digital security – upon which society is increasingly dependent – appears in the news almost daily. In this article, we outline a research agenda designed to begin addressing this deficit and to move information system security engineering toward a mature engineering discipline. Our experience suggests that there are two key areas in which this movement should begin. First, a threat model that is actionable from the perspectives of risk management and security engineering should be developed. Second, a practical and relevant security-measurement framework should be developed to adequately inform security-engineering and risk-management processes. Advances in these areas will particularly benefit business/government risk assessors as well as security engineers performing security design work, leading to more accurate, meaningful, and quantitative risk analyses and more consistent and coherent security design decisions. Threat modelling and security measurement are challenging activities to get right – especially when they need to be applied in a general context. However, these are decisive starting points because they constitute the foundation of a scientific security-engineering practice. Addressing these challenges will require stronger and more coherent integration between the sub-disciplines of risk assessment and security engineering, including new tools to facilitate that integration. More generally, changes will be required in the way security engineering is both taught and practiced to take into account the holistic approach necessary from a mature, scientific

  3. Cognitive engineering in aerospace applications

    Science.gov (United States)

    Woods, David D.

    1993-01-01

    The progress that was made with respect to the objectives and goals of the research that is being carried out in the Cognitive Systems Engineering Laboratory (CSEL) under a Cooperative Agreement with NASA Ames Research Center is described. The major objective of this project is to expand the research base in Cognitive Engineering to be able to support the development and human-centered design of automated systems for aerospace applications. This research project is in support of the Aviation Safety/Automation Research plan and related NASA research goals in space applications.

  4. Review of safety related control room function research based on experience from nuclear power plants in Finland

    International Nuclear Information System (INIS)

    Juslin, K.; Wahlstroem, B.; Rinttilae, E.

    1985-01-01

    A comprehensive human engineering research programme was established in the second half of the 1970's at the Technical Research Centre of Finland (VTT). The research is performed in cooperation with the utility companies Imatran Voima Oy (IVO) and Teollisuuden Voima Oy (TVO) and includes topics such as Handling of alarm information, Disturbance analysis systems, Assessment of control rooms and Validation of safety parameter display systems. Reference is also made to the Finnish contribution to the OECD Halden Reactor Project (Halden) and the Nordic Liaison Committee for Atomic Energy (NKA) research projects. In this paper feasible realization alternatives of safety related control room functions are discussed on the basis of experience from the nuclear power plants in Finland, which at present are equipped with extensive process computer systems. A proposal for future power plant information systems is described. It is intended that this proposal will serve as the basis for future computer systems at nuclear power plants in Finland. (author)

  5. Transport safety research abstracts. No. 1

    International Nuclear Information System (INIS)

    1991-07-01

    The Transport Safety Research Abstracts is a collection of reports from Member States of the International Atomic Energy Agency, and other international organizations on research in progress or just completed in the area of safe transport of radioactive material. The main aim of TSRA is to draw attention to work that is about to be published, thus enabling interested parties to obtain further information through direct correspondence with the investigators. Information contained in this issue covers work being undertaken in 6 Member States and contracted by 1 international organization; it is hoped with succeeding issues that TSRA will be able to widen this base. TSRA is modelled after other IAEA publications describing work in progress in other programme areas, namely Health Physics Research Abstracts (No. 14 was published in 1989), Waste Management Research Abstracts (No. 20 was published in 1990), and Nuclear Safety Research Abstracts (No. 2 was published in 1990)

  6. Nuclear safety research at the European Commission's Joint Research Centre

    International Nuclear Information System (INIS)

    Toerroenen, K.

    2003-01-01

    Nuclear power plants currently generate some 35 % of electricity used in the European Union and applicant countries. Nuclear safety will therefore remain a priority for the EU, particularly in view of enlargement, the need to monitor ageing nuclear installations and the licencing of advanced new reactor systems. The European Commission's Joint Research Centre (JRC), with its long involvement and recognised competence in nuclear safety related activities, provides direct support to the European Commission services responsible for nuclear safety and civil protection. (author)

  7. The Health and Safety Executive's strategy for nuclear safety research 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This brochure illustrates HSE's nuclear safety research strategy for 1996. It is divided into two parts. The first part presents HSE's overall strategy. The second contains short strategy statements for the individual areas detailed above, providing a rationale and objectives for the particular safety issues in the NRI, where greater detail can be found. (author)

  8. Update on Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Jay Keller; Gurpreet Singh

    2001-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work

  9. Progress report concerning safety research for nuclear reactor facilities

    International Nuclear Information System (INIS)

    1978-01-01

    Examination and evaluation of safety research results for nuclear reactor facilities have been performed, as more than a year has elapsed since the plan had been initiated in April, 1976, by the special sub-committee for the safety of nuclear reactor facilities. The research is carried out by being divided roughly into 7 items, and seems to be steadily proceeding, though it does not yet reach the target. The above 7 items include researches for (1) criticality accident, (2) loss of coolant accident, (3) safety for light water reactor fuel, (4) construction safety for reactor facilities, (5) reduction of release of radioactive material, (6) safety evaluation based on the probability theory for reactor facilities, and (7) aseismatic measures for reactor facilities. With discussions on the progress and the results of the research this time, research on the behaviour on fuel in abnormal transients including in-core and out-core experiments has been added to the third item, deleting the power-cooling mismatch experiment in Nuclear Safety Research Reactor of JAERI. Also it has been decided to add two research to the seventh item, namely measured data collection, classification and analysis, and probability assessment of failures due to an earthquake. For these 7 items, the report describes the concrete contents of research to be performed in fiscal years of 1977 and 1978, by discussing on most rational and suitable contents conceivable at present. (Wakatsuki, Y.)

  10. Integrating RAMS engineering and management with the safety life cycle of IEC 61508

    International Nuclear Information System (INIS)

    Lundteigen, Mary Ann; Rausand, Marvin; Utne, Ingrid Bouwer

    2009-01-01

    This article outlines a new approach to reliability, availability, maintainability, and safety (RAMS) engineering and management. The new approach covers all phases of the new product development process and is aimed at producers of complex products like safety instrumented systems (SIS). The article discusses main RAMS requirements to a SIS and presents these requirements in a holistic perspective. The approach is based on a new life cycle model for product development and integrates this model into the safety life cycle of IEC 61508. A high integrity pressure protection system (HIPPS) for an offshore oil and gas application is used to illustrate the approach.

  11. Safety Design Approach for the Development of Safety Requirements for Design of Commercial HTGR

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Nishihara, Tetsuo; Yan, Xing; Sakaba, Nariaki; Kunitomi, Kazuhiko

    2014-01-01

    The research committee on “Safety requirements for HTGR design” was established in 2013 under the Atomic Energy Society of Japan to develop the draft safety requirements for the design of commercial High Temperature Gas-cooled Reactors (HTGRs), which incorporate the HTGR safety features demonstrated using the High Temperature Engineering Test Reactor (HTTR), lessons learned from the accident of Fukushima Daiichi Nuclear Power Station and requirements for the integration of the hydrogen production plants. The safety design approach for the commercial HTGRs which is a basement of the safety requirements is determined prior to the development of the safety requirements. The safety design approaches for the commercial HTGRs are to confine the radioactive materials within the coated fuel particles not only during normal operation but also during accident conditions, and the integrity of the coated fuel particles and other requiring physical barriers are protected by the inherent and passive safety features. This paper describes the main topics of the research committee, the safety design approaches and the safety functions of the commercial HTGRs determined in the research committee. (author)

  12. Safety of mechanical devices. Safety of automation systems

    International Nuclear Information System (INIS)

    Pahl, G.; Schweizer, G.; Kapp, K.

    1985-01-01

    The paper deals with the classic procedures of safety engineering in the sectors mechanical engineering, electrical and energy engineering, construction and transport, medicine technology and process technology. Particular stress is laid on the safety of automation systems, control technology, protection of mechanical devices, reactor safety, mechanical constructions, transport systems, railway signalling devices, road traffic and protection at work in chemical plans. (DG) [de

  13. Research directions in computer engineering. Report of a workshop

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H

    1982-09-01

    The results of a workshop held in November 1981 in Washington, DC, to outline research directions for computer engineering are reported upon. The purpose of the workshop was to provide guidance to government research funding agencies, as well as to universities and industry, as to the directions which computer engineering research should take for the next five to ten years. A select group of computer engineers was assembled, drawn from all over the United States and with expertise in virtually every aspect of today's computer technology. Industrial organisations and universities were represented in roughly equal numbers. The panel proceeded to provide a sharper definition of computer engineering than had been in popular use previously, to identify the social and national needs which provide the basis for encouraging research, to probe for obstacles to research and seek means of overcoming them and to delineate high-priority areas in which computer engineering research should be fostered. These included experimental software engineering, architectures in support of programming style, computer graphics, pattern recognition. VLSI design tools, machine intelligence, programmable automation, architectures for speech and signal processing, computer architecture and robotics. 13 references.

  14. Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Bougaenko, S.E.; Kraev, A.E.; Hill, D.L.; Braun, J.C.; Klickman, A.E.

    1998-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project

  15. Data-driven engineering design research: Opportunities using open data

    DEFF Research Database (Denmark)

    Parraguez Ruiz, Pedro; Maier, Anja

    2017-01-01

    the already available and continuously growing body of open data sources to create opportunities for research in Engineering Design. Insights are illustrated by an examination of two examples: a study of open source software repositories and an analysis of open business registries in the cleantech industry....... We conclude with a discussion about the limitations, challenges and risks of using open data in Engineering Design research and practice.......Engineering Design research relies on quantitative and qualitative data to describe design-related phenomena and prescribe improvements for design practice. Given data availability, privacy requirements and other constraints, most empirical data used in Engineering Design research can be described...

  16. NRC safety research in support of regulation--FY 1989

    International Nuclear Information System (INIS)

    1990-04-01

    This report, the fifth in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1989. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  17. NRC safety research in support of regulation, FY 1991

    International Nuclear Information System (INIS)

    1992-04-01

    This report, the seventh in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1991. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  18. NRC safety research in support of regulation, FY 1990

    International Nuclear Information System (INIS)

    1991-04-01

    This report, the sixth in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1990. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  19. Progress report on safety research on radioactive waste management for the period April 1996 to March 1998

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Muraoka, Susumu; Banba, Tsunetaka

    1998-10-01

    This report summarizes the research and development activities on radioactive waste management at the Engineered Barrier Materials Laboratory, Natural Barrier Laboratory and Environmental Geochemistry Laboratory of the Department of Environmental Safety Research, JAERI during the fiscal year of 1996 and 1997 (April 1, 1996 - March 31, 1998). The topics are as follows: (1) In the research and development of waste forms and engineered barrier, studies on development of ceramic waste forms, the leaching behaviors from glass waste at reduced condition and sorption behaviors on backfill materials have been carried out. (2) In studies on shallow land disposal, studies on the migration behaviors of radionuclides in the presence of humic acid have been carried out. (3) In the studies on geological disposal, the studies on diffusivity in rock formation, in-situ migration and diffusion experiments, sorption mechanism, fixation mechanism, natural analogue study and geochronology have been carried out. (author)

  20. Seismic safety research program plan

    International Nuclear Information System (INIS)

    1987-05-01

    This document presents a plan for seismic research to be performed by the Structural and Seismic Engineering Branch in the Office of Nuclear Regulatory Research. The plan describes the regulatory needs and related research necessary to address the following issues: uncertainties in seismic hazard, earthquakes larger than the design basis, seismic vulnerabilities, shifts in building frequency, piping design, and the adequacy of current criteria and methods. In addition to presenting current and proposed research within the NRC, the plan discusses research sponsored by other domestic and foreign sources

  1. Reactor Safety Research: Semiannual report, July-December 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-11-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions.

  2. Reactor Safety Research: Semiannual report, July-December 1986

    International Nuclear Information System (INIS)

    1987-11-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions

  3. Tools to prevent process safety events at university research facility - chemical risk assessment and experimental set-up risk assessment

    DEFF Research Database (Denmark)

    Jensen, Niels; Jørgensen, Sten Bay

    2014-01-01

    The article discusses the two forms developed to examine the hazards of the chemicals to be used in the experiments in the experimental setup in the Department of Chemical and Biochemical Engineering of the Technical University of Denmark. A system for the safety assessment of new experimental se...... setups in university research and teaching laboratories is presented. The significance of the forms for the effort of researchers in improving work with significant hazards is described....

  4. Ethical issues in engineering design processes ; regulative frameworks for safety and sustainability

    NARCIS (Netherlands)

    Gorp, A. van

    2007-01-01

    The ways designers deal with ethical issues that arise in their consideration of safety and sustainability in engineering design processes are described. In the case studies, upon which this article is based, a difference can be seen between normal and radical design. Designers refer to regulative

  5. 77 FR 40622 - Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety...

    Science.gov (United States)

    2012-07-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety and Health (MSHRAC, NIOSH..., oxygen supply partnership, safety culture, occupational health and safety management systems, preventing...

  6. Industrial safety management with emphasis on construction safety

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2016-01-01

    Safety professionals, line managers, team leaders and concerned workers today eagerly discuss to find out the best safety approach for their workplace. Some research suggested that behaviour based and comprehensive ergonomics approaches lead in average reduction of injuries. This article discusses 'the science and engineering' behind improvement in industrial safety aspects particularly at construction sites through various safety approaches. A high degree of commitment to safety by the project management and rigorous and proactive measures are essential to prevent accidents at construction sites particularly in DAE units because of its sensitivity. Persistent efforts by the project management are needed for sustainable and committed safety at work place. The number of fatalities occurring from construction work in DAE units is sometimes disturbing and fall of person from height and through openings are the major causes for serious accidents

  7. Quantifying the Metrics That Characterize Safety Culture of Three Engineered Systems

    International Nuclear Information System (INIS)

    Tucker, Julie; Ernesti, Mary; Tokuhiro, Akira

    2002-01-01

    With potential energy shortages and increasing electricity demand, the nuclear energy option is being reconsidered in the United States. Public opinion will have a considerable voice in policy decisions that will 'road-map' the future of nuclear energy in this country. This report is an extension of the last author's work on the 'safety culture' associated with three engineered systems (automobiles, commercial airplanes, and nuclear power plants) in Japan and the United States. Safety culture, in brief is defined as a specifically developed culture based on societal and individual interpretations of the balance of real, perceived, and imagined risks versus the benefits drawn from utilizing a given engineered systems. The method of analysis is a modified scale analysis, with two fundamental Eigen-metrics, time- (t) and number-scales (N) that describe both engineered systems and human factors. The scale analysis approach is appropriate because human perception of risk, perception of benefit and level of (technological) acceptance are inherently subjective, therefore 'fuzzy' and rarely quantifiable in exact magnitude. Perception of risk, expressed in terms of the psychometric factors 'dread risk' and 'unknown risk', contains both time- and number-scale elements. Various engineering system accidents with fatalities, reported by mass media are characterized by t and N, and are presented in this work using the scale analysis method. We contend that level of acceptance infers a perception of benefit at least two orders larger magnitude than perception of risk. The 'amplification' influence of mass media is also deduced as being 100- to 1000-fold the actual number of fatalities/serious injuries in a nuclear-related accident. (authors)

  8. Application of system safety engineering techniques for hazard prevention at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Hendrix, B.L.

    1991-01-01

    A primary goal of the Superconducting Super Collider Laboratory (SSCL) is to establish an exemplary safety program. Achieving this goal requires leadership, planning, coordination, and technical know-how. To ensure that safety is an inherent part of the design, the Environment, Safety and Health Office employs a systems engineering discipline and process known as System Safety. The goal of System Safety - hazard prevention - is accomplished by analyzing systems to identify hazards and to evaluate design and procedural options and countermeasures to prevent, eliminate, mitigate, or control hazards and risks. Establishment of safety and human factors design criteria at the outset of the project prevents unsafe designs and safety violations, reduces risks, and helps in avoiding costly design changes later. This process requires a considerable amount of coordination with a variety of technical disciplines and safety professionals to integrate methods of hazard prevention, mitigation, and risk reduction throughout the system life-cycle

  9. Engineered barrier systems (EBS) in the context of the entire safety case

    International Nuclear Information System (INIS)

    2003-01-01

    A joint NEA-EC workshop entitled 'Engineered Barrier Systems (EBS) in the Context of the Entire Safety Case' was organised in Oxford on 25-27 September 2002 and hosted by United Kingdom Nirex Limited. The main objectives of the workshop were to provide a status report on engineered barrier systems in various national radioactive waste management programmes considering deep geological disposal; to establish the value to member countries of a project on EBS; and to define such a project's scope, timetable and modus operandi. This report presents the outcomes of this workshop. (author)

  10. Engineered Barrier Systems (EBS) in the Context of the Entire Safety Case

    International Nuclear Information System (INIS)

    2005-01-01

    A joint NEA-EC workshop entitled ''Engineered Barrier Systems (EBS) in the Context of the Entire Safety Case'' was organised in Oxford on 25-27 September 2002 and hosted by United Kingdom Nirex Limited. The main objectives of the workshop were to provide a status report on engineered barrier systems in various national radioactive waste management programmes considering deep geological disposal; to establish the value to member countries of a project on EBS; and to define such a project scope, timetable and modus operandi. This report presents the outcomes of this workshop. (author)

  11. Application of software engineering to development of reactor safety codes

    International Nuclear Information System (INIS)

    Wilburn, N.P.; Niccoli, L.G.

    1981-01-01

    Software Engineering, which is a systematic methodology by which a large scale software development project is partitioned into manageable pieces, has been applied to the development of LMFBR safety codes. The techniques have been applied extensively in the business and aerospace communities and have provided an answer to the drastically increasing cost of developing and maintaining software. The five phases of software engineering (Survey, Analysis, Design, Implementation, and Testing) were applied in turn to development of these codes, along with Walkthroughs (peer review) at each stage. The application of these techniques has resulted in SUPERIOR SOFTWARE which is well documented, thoroughly tested, easy to modify, easier to use and maintain. The development projects have resulted in lower overall cost. (orig.) [de

  12. Federal Funding of Engineering Research and Development, 1980-1984.

    Science.gov (United States)

    American Society of Mechanical Engineers, Washington, DC.

    Data on the sources, amounts, and trends of federal funding for engineering research and development (R&D) are presented for 1980-1984. Narrative highlights are provided for: the total federal funding obligations for engineering R&D, mechanical engineering, astronautical engineering, aeronautical engineering, chemical engineering, civil…

  13. Engineering judgement and bridging the fire safety gap in existing nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Qamheiah, G.; Wu, Y., E-mail: gqamheiah@plcfire.com, E-mail: dwu@plcfire.com [PLC Fire Safety Solutions, Mississauga, ON (Canada)

    2014-07-01

    Canadian nuclear power plants were constructed in the 1960's through the 1980's. Fire safety considerations were largely based on guidance from general building and fire codes in effect at the time. Since then, nuclear specific fire safety standards have been developed and adopted by the Regulator, increasing the expected level of fire safety in the process. Application of the standards to existing plants was largely limited to operational requirements viewed as retroactive. However, as existing facilities undergo modifications or refurbishment for the purpose of life extension, the expectation is that the design requirements of these fire safety standards also be satisfied. This creates considerable challenges for existing nuclear power plants as fire safety requirements such as those intended to assure means for safe egress, prevention of fire spread and protection of redundancy rely upon fire protection features that are inherent in the physical infrastructural design. This paper focuses on the methodology for conducting fire safety gap analyses on existing plants, and the integral role that engineering judgement plays in the development of viable and cost effective solutions to achieve the objectives of the current fire safety standards. (author)

  14. The arrangement of deformation monitoring project and analysis of monitoring data of a hydropower engineering safety monitoring system

    Science.gov (United States)

    Wang, Wanshun; Chen, Zhuo; Li, Xiuwen

    2018-03-01

    The safety monitoring is very important in the operation and management of water resources and hydropower projects. It is the important means to understand the dam running status, to ensure the dam safety, to safeguard people’s life and property security, and to make full use of engineering benefits. This paper introduces the arrangement of engineering safety monitoring system based on the example of a water resource control project. The monitoring results of each monitoring project are analyzed intensively to show the operating status of the monitoring system and to provide useful reference for similar projects.

  15. Use of a Graded Approach in the Application of the Safety Requirements for Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt? standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  16. Assessment of shaft safety and management system of controlling engineering information

    Energy Technology Data Exchange (ETDEWEB)

    Liu Rui-xin; Xu Yan-chun [Yanzhou Mining Group Ltd., Zoucheng (China)

    2008-02-15

    Evaluating shaft safety and establishing a system for controlling engineering information is very important because more than 90 shafts in thick alluvial areas suddenly have shaft wall fracturing or breaking problems and there are more than a few hundred shafts of similar geologic conditions. Taking shaft control in the Yangzhou Coal Mining Group as an example, an assessment and management system and related software were established. This system includes basic information of the mine, measurement results and analysis, and functions of empirical and theoretical forecasting and finite element analysis, which are confirmed to be very effective for guiding shaft well control engineering in practice. 8 refs., 3 figs., 2 tabs.

  17. Safety considerations in the design of the fusion engineering device

    International Nuclear Information System (INIS)

    Barrett, R.J.

    1983-01-01

    Safety considerations play a significant role in the design of a near-term Fusion Engineering Device (FED). For the safety of the general public and the plant workers, the radiation environment caused by the reacting plasma and the potential release of tritium fuel are the dominant considerations. The U.S. Department of Energy (DOE) regulations and guidelines for radiation protection have been reviewed and are being applied to the device design. Direct radiation protection is provided by the device shield and the reactor building walls. Radiation from the activated device components and the tritium fuel is to be controlled with shielding, contamination control, and ventilation. The potential release of tritium from the plant has influenced the selection of reactor building and plant designs and specifications. The safety of the plant workers is affected primarily by the radiation from the activated device components and from plasma chamber debris. The highly activated device components make it necessary to design many of the maintenance activities in the reactor building for totally remote operation. The hot cell facility has evolved as a totally remote maintenance facility due to the high radiation levels of the device components. Safety considerations have had substantial impacts on the design of FED. Several examples of safety-related design impacts are discussed in the paper. Feasible solutions have been identified for all outstanding safety-related items, and additional optimization of these solutions is anticipated in future design studies

  18. Refurbishment and safety upgradation of research reactor Cirus

    International Nuclear Information System (INIS)

    Marik, S.K.; Rao, D.V.H.; Bhatnagar, A.; Pant, R.C.; Tikku, A.C.; Sankar, S.

    2006-01-01

    Cirus, a 40 MW t, vertical tank type research reactor, having wide range of research facilities, was commissioned in the year 1960. This research reactor, situated at Mumbai, India has been operated and utilized extensively for isotope production, material testing and neutron beam research for nearly four decades. With a view to assess the residual life of the reactor, detailed ageing studies were carried out during the early 1990s. Based on these studies, refurbishment of Cirus for its life extension was taken up. During refurbishment, additional safety features were incorporated in various systems to qualify them for the current safety standards. This paper gives the details of the operating experiences, utilization of the reactor along with methodologies followed for carrying out detailed ageing studies, refurbishment and safety upgradation for its life extension

  19. Current safety issues related to research reactor operation

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.

    2000-01-01

    The Agency has included activities on research reactor safety in its Programme and Budget (P and B) since its inception in 1957. Since then, these activities have traditionally been oriented to fulfil the Agency's functions and obligations. At the end of the decade of the eighties, the Agency's Research Reactor Safety Programme (RRSP) consisted of a limited number of tasks related to the preparation of safety related publications and the conduct of safety missions to research reactor facilities. It was at the beginning of the nineties when the RRSP was upgraded and expanded as a subprogramme of the Agency's P and B. This subprogramme continued including activities related to the above subjects and started addressing an increasing number of issues related to the current situation of research reactors (in operation and shut down) around the world such as reactor ageing, modifications and decommissioning. The present paper discusses some of the above issues as recognised by various external review or advisory groups (e.g., Peer Review Groups under the Agency's Performance Programme Appraisal System (PPAS) or the standing International Nuclear Safety Advisory Group (INSAG)) and the impact of their recommendations on the preparation and implementation of the part of the Agency's P and B relating to the above subject. (author)

  20. Code of Conduct on the Safety of Research Reactors

    International Nuclear Information System (INIS)

    2006-09-01

    The Board of Governors of the International Atomic Energy Agency (IAEA) adopted the Code of Conduct on the Safety of Research Reactors on 8 March 2004. The Board's action was the culmination of several years of work to develop the Code and obtain a consensus on its provisions. The process leading to the Code began in 1998, when the International Nuclear Safety Advisory Group (INSAG) informed the Director General of concerns about the safety of research reactors. In 2000, INSAG recommended that the Secretariat begin developing an international protocol or a similar legal instrument to address those concerns. In September 2000, in resolution GC(44)/RES/14, the General Conference requested the Secretariat ''within its available resources, to continue work on exploring options to strengthen the international nuclear safety arrangements for civil research reactors, taking due account of input from INSAG and the views of other relevant bodies''. A working group convened by the Secretariat pursuant to that request recommended that ''the Agency consider establishing an international action plan for research reactors'' and that the action plan include preparation of a Code of Conduct ''that would clearly establish the desirable attributes for management of research reactor safety''. In September 2001, the Board requested that the Secretariat develop and implement, in conjunction with Member States, an international research reactor safety enhancement plan which included preparation of a Code of Conduct on the Safety of Research Reactors. Subsequently, in resolution GC(45)/RES/10.A, the General Conference endorsed the Board's request. Pursuant to that request, a Code of Conduct on the Safety of Research Reactors was drafted at two meetings of an Open-ended Working Group of Legal and Technical Experts. This draft Code of Conduct was circulated to all Member States for comment. On the basis of the responses received, a revised draft of the Code was prepared by the Secretariat

  1. Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research: scientific and cultural exchange in undergraduate engineering.

    Science.gov (United States)

    Wisneski, Andrew D; Huang, Lixia; Hong, Bo; Wang, Xiaoqin

    2011-01-01

    A model for an international undergraduate biomedical engineering research exchange program is outlined. In 2008, the Johns Hopkins University in collaboration with Tsinghua University in Beijing, China established the Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research. Undergraduate biomedical engineering students from both universities are offered the opportunity to participate in research at the overseas institution. Programs such as these will not only provide research experiences for undergraduates but valuable cultural exchange and enrichment as well. Currently, strict course scheduling and rigorous curricula in most biomedical engineering programs may present obstacles for students to partake in study abroad opportunities. Universities are encouraged to harbor abroad opportunities for undergraduate engineering students, for which this particular program can serve as a model.

  2. Nirex safety assessment research programme: 1987/88

    International Nuclear Information System (INIS)

    George, D.; Hodgkinson, D.P.

    1987-01-01

    The Nirex Safety Assessment Research programme's objective is to provide information for the radiological safety case for disposing low-level and intermediate-level radioactive wastes in underground repositories. The programme covers a wide range of experimental studies and mathematical modelling for the near and far field. It attempts to develop a quantitative understanding of events and processes which have an impact on the safety of radioactive waste disposal. (U.K.)

  3. Bulletin of the Research Laboratory for Nuclear Reactors

    International Nuclear Information System (INIS)

    Aritomi, Masanori

    2008-01-01

    The bulletin consists of two parts. The first part includes General Research Report. The Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology has three engineering divisions such as Energy Engineering, Mass Transmutation Engineering, and System and Safety Engineering. In this part, 17 reports of Energy Engineering division, 8 reports of Mass transmutation Engineering division, 11 reports of System and Safety Engineering division are described as their activities. In addition, 3 reports of Cooperative Researches are also summarized. The second part is Special Issue about COE-INES RESEARCH REPORT 2007. In this part, 3 reports of Innovative Reactor Group, 2 reports of Innovative Nuclear Energy Utilization System Group, 3 reports of Innovative Transmutation/Separation Group, 2 reports of Relationship between Nuclear and Society Group, 1 report of RA Students in the COE-INES Captainship Educational Program are described as results to their researches. (J.P.N.)

  4. Emerging research methods and their application to road safety.

    Science.gov (United States)

    Tarko, Andrew; Boyle, Linda Ng; Montella, Alfonso

    2013-12-01

    The study of road safety has seen great strides over the past few decades with advances in analytical methods and research tools that allow researchers to provide insights into the complex interactions of the driver, vehicle, and roadway. Data collection methods range from traditional traffic and roadway sensors to instrumented vehicles and driving simulators, capable of providing detailed data on both the normal driving conditions and the circumstances surrounding a safety critical event. In September 2011, the Third International Conference on Road Safety and Simulation was held in Indianapolis, Indiana, USA, which was hosted by the Purdue University Center for Road Safety and sponsored by the Transportation Research Board and its three committees: ANB20 Safety Data, Analysis and Evaluation, AND30 Simulation and Measurement of Vehicle and Operator Performance, and ABJ95 Visualization in Transportation. The conference brought together two hundred researchers from all over the world demonstrating some of the latest research methods to quantify crash causality and associations, and model road safety. This special issue is a collection of 14 papers that were presented at the conference and then peer-reviewed through this journal. These papers showcase the types of analytical tools needed to examine various crash types, the use of naturalistic and on-road data to validate the use of surrogate measures of safety, and the value of driving simulators to examine high-risk situations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Resilience Engineering in Critical Long Term Aerospace Software Systems: A New Approach to Spacecraft Software Safety

    Science.gov (United States)

    Dulo, D. A.

    Safety critical software systems permeate spacecraft, and in a long term venture like a starship would be pervasive in every system of the spacecraft. Yet software failure today continues to plague both the systems and the organizations that develop them resulting in the loss of life, time, money, and valuable system platforms. A starship cannot afford this type of software failure in long journeys away from home. A single software failure could have catastrophic results for the spaceship and the crew onboard. This paper will offer a new approach to developing safe reliable software systems through focusing not on the traditional safety/reliability engineering paradigms but rather by focusing on a new paradigm: Resilience and Failure Obviation Engineering. The foremost objective of this approach is the obviation of failure, coupled with the ability of a software system to prevent or adapt to complex changing conditions in real time as a safety valve should failure occur to ensure safe system continuity. Through this approach, safety is ensured through foresight to anticipate failure and to adapt to risk in real time before failure occurs. In a starship, this type of software engineering is vital. Through software developed in a resilient manner, a starship would have reduced or eliminated software failure, and would have the ability to rapidly adapt should a software system become unstable or unsafe. As a result, long term software safety, reliability, and resilience would be present for a successful long term starship mission.

  6. Recent Experiences of the NASA Engineering and Safety Center (NESC) GN and C Technical Discipline Team (TDT)

    Science.gov (United States)

    Dennehy, Cornelius J.

    2010-01-01

    The NASA Engineering and Safety Center (NESC), initially formed in 2003, is an independently funded NASA Program whose dedicated team of technical experts provides objective engineering and safety assessments of critical, high risk projects. The GN&C Technical Discipline Team (TDT) is one of fifteen such discipline-focused teams within the NESC organization. The TDT membership is composed of GN&C specialists from across NASA and its partner organizations in other government agencies, industry, national laboratories, and universities. This paper will briefly define the vision, mission, and purpose of the NESC organization. The role of the GN&C TDT will then be described in detail along with an overview of how this team operates and engages in its objective engineering and safety assessments of critical NASA projects. This paper will then describe selected recent experiences, over the period 2007 to present, of the GN&C TDT in which they directly performed or supported a wide variety of NESC assessments and consultations.

  7. Necessity for ethics in social engineering research

    CSIR Research Space (South Africa)

    Mouton, F

    2015-11-01

    Full Text Available Social engineering is deeply entrenched in the fields of both computer science and social psychology. Knowledge is required in both these disciplines to perform social engineering based research. Several ethical concerns and requirements need...

  8. Fusion-Reactor-Safety Research Program. Annual report, Fiscal Year 1981

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1982-07-01

    The report contains four sections: Outside Contracts includes the continuation of the General Atomic Co. low-activation materials safety study, water-cooled transport activation products study by Pacific Northwest Laboratory (PNL), studies of superconducting magnet safety conducted by Argonne National Laboratory (ANL) coupled with a new experimental superconducting magnet study program by Massachusetts Institute of Technology (MIT) to verify analytical work, a continuation of safety methodology work by MIT, portions of papers on lithium safety studies conducted at Hanford Engineering Development Laboratory (HEDL), and a new program to study tritium gas conversion to tritiated water at Oak Ridge National Laboratory (ORNL). The section EG and G idaho, Inc., Activities at INEL includes adaptations of papers of ongoing work in transient code development, tritium systems risk assessment, heat transfer activities, and a summary of a workshop on safety in design. A List of Publications and Proposed FY-82 Activities are also presented

  9. Russian Minatom nuclear safety research strategic plan. An international review

    International Nuclear Information System (INIS)

    Royen, J.

    1999-01-01

    An NEA study on safety research needs of Russian-designed reactors, carried out in 1996, strongly recommended that a strategic plan for safety research be developed with respect to Russian nuclear power plants. Such a plan was developed at the Russian International Nuclear Safety Centre (RINSC) of the Russian Ministry of Atomic Energy (Minatom). The Strategic Plan is designed to address high-priority safety-research needs, through a combination of domestic research, the application of appropriate foreign knowledge, and collaboration. It represents major progress toward developing a comprehensive and coherent safety-research programme for Russian nuclear power plants (NPPs). The NEA undertook its review of the Strategic Plan with the objective of providing independent verification on the scope, priority, and content of the research described in the Plan based upon the experience of the international group of experts. The principal conclusions of the review and the general comments of the NEA group are presented. (K.A.)

  10. Review of current status of LWR safety research in Japan

    International Nuclear Information System (INIS)

    Yamada, Tasaburo; Mishima, Yoshitsugu; Ando, Yoshio; Miyazono, Shohachiro; Takashima, Yoichi.

    1977-01-01

    The Japan Atomic Energy Commission has exerted efforts on the research of the safety of nuclear plants in Japan, and ''Nuclear plant safety research committees'' was established in August 1974, which is composed of the government and the people. The philosophy of safety research, research and development plan, the forwarding procedure of the plan, international cooperation, for example LOFT program, and the effective feed back of the experimental results concerning nuclear safety are reviewed in this paper at first. As for the safety of nuclear reactors the basic philosophy that radio active fission products are contained in fuel or reactors with multiple barriers, (defence in depth) and almost no fission product is released outside reactor plants even at the time of hypothetical accident, is kept, and the research and development history and the future plan are described in this paper with the related technical problems. The structural safety is also explained, for example, on the philosophy ''leak before break'', pipe rupture, pipe restraint and stress analysis. The release of radioactive gas and liquid is decreased as the philosophy ''ALAP''. And probability safety evaluation method, LOCA, reactivity, accident and aseismatic design in nuclear plants in Japan are described. (Nakai, Y.)

  11. Safety Management and Safety Culture Self Assessment of Kartini Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarip, S., E-mail: syarip@batan.go.id [Centre for Accelerator and Material Process Technology, National Nuclear Energy Agency (BATAN), Yogyakarta (Indonesia)

    2014-10-15

    The self-assessment of safety culture and safety management status of Kartini research reactor is a step to foster safety culture and management by identifying good practices and areas for improvement, and also to improve reactor safety in a whole. The method used in this assessment is based on questionnaires provided by the Forum for Nuclear Cooperation in Asia (FNCA), then reviewed by experts. Based on the assessment and evaluation results, it can be concluded that there were several good practices in maintaining the safety status of Kartini reactor such as: reactor operators and radiation protection workers were aware and knowledgeable of the safety standards and policies that apply to their operation, readily accept constructive criticism from their management and from the inspectors of regulatory body that address safety performance. As a proof, for the last four years the number of inspection/audit findings from Regulatory Body (BAPETEN) tended to decrease while the reactor utilization and its operating hour increased. On the other hands there were also some comments and recommendations for improvement of reactor safety culture, such as that there should be more frequent open dialogues between employees and managers, to grow and attain a mutual support to achieve safety goals. (author)

  12. Journal of Civil Engineering Research and Practice: Submissions

    African Journals Online (AJOL)

    Author Guidelines. AIMS AND SCOPE The Journal of Civil Engineering Research and Practice aims to publish original research papers of high standard, containing material of broad interest and of significant contribution to civil engineering, with emphasis being placed on material that is applicable to the solution of ...

  13. Inherent/passive safety for fusion

    International Nuclear Information System (INIS)

    Piet, S.J.

    1986-06-01

    The concept of inherent or passive passive safety for fusion energy is explored, defined, and partially quantified. Four levels of safety assurance are defined, which range from true inherent safety to passive safety to protection via active engineered safeguard systems. Fusion has the clear potential for achieving inherent or passive safety, which should be an objective of fusion research and design. Proper material choice might lead to both inherent safety and high mass power density, improving both safety and economics. When inherent safety is accomplished, fusion will be well on the way to achieving its ultimate potential and to be truly different and superior

  14. Safety in home care: A research protocol for studying medication management

    Directory of Open Access Journals (Sweden)

    Easty Anthony

    2010-06-01

    Full Text Available Abstract Background Patient safety is an ongoing global priority, with medication safety considered a prevalent, high-risk area of concern. Yet, we have little understanding of the supports and barriers to safe medication management in the Canadian home care environment. There is a clear need to engage the providers and recipients of care in studying and improving medication safety with collaborative approaches to exploring the nature and safety of medication management in home care. Methods A socio-ecological perspective on health and health systems drives our iterative qualitative study on medication safety with elderly home care clients, family members and other informal caregivers, and home care providers. As we purposively sample across four Canadian provinces: Alberta (AB, Ontario (ON, Quebec (QC and Nova Scotia (NS, we will collect textual and visual data through home-based interviews, participant-led photo walkabouts of the home, and photo elicitation sessions at clients' kitchen tables. Using successive rounds of interpretive description and human factors engineering analyses, we will generate robust descriptions of managing medication at home within each provincial sample and across the four-province group. We will validate our initial interpretations through photo elicitation focus groups with home care providers in each province to develop a refined description of the phenomenon that can inform future decision-making, quality improvement efforts, and research. Discussion The application of interpretive and human factors lenses to the visual and textual data is expected to yield findings that advance our understanding of the issues, challenges, and risk-mitigating strategies related to medication safety in home care. The images are powerful knowledge translation tools for sharing what we learn with participants, decision makers, other healthcare audiences, and the public. In addition, participants engage in knowledge exchange

  15. Current safety practices in nano-research laboratories in China.

    Science.gov (United States)

    Zhang, Can; Zhang, Jing; Wang, Guoyu

    2014-06-01

    China has become a key player in the global nanotechnology field, however, no surveys have specifically examined safety practices in the Chinese nano-laboratories in depth. This study reports results of a survey of 300 professionals who work in research laboratories that handle nanomaterials in China. We recruited participants at three major nano-research laboratories (which carry out research in diverse fields such as chemistry, material science, and biology) and the nano-chemistry session of the national meeting of the Chinese Chemical Society. Results show that almost all nano-research laboratories surveyed had general safety regulations, whereas less than one third of respondents reported having nanospecific safety rules. General safety measures were in place in most surveyed nano-research laboratories, while nanospecific protective measures existed or were implemented less frequently. Several factors reported from the scientific literature including nanotoxicology knowledge gaps, technical limitations on estimating nano-exposure, and the lack of nano-occupational safety legislation may contribute to the current state of affairs. With these factors in mind and embracing the precautionary principle, we suggest strengthening or providing nanosafety training (including raising risk awareness) and establishing nanosafety guidelines in China, to better protect personnel in the nano-workplace.

  16. Optimization of In-Cylinder Pressure Filter for Engine Research

    Science.gov (United States)

    2017-06-01

    ARL-TR-8034 ● JUN 2017 US Army Research Laboratory Optimization of In-Cylinder Pressure Filter for Engine Research by Kenneth...Laboratory Optimization of In-Cylinder Pressure Filter for Engine Research by Kenneth S Kim, Michael T Szedlmayer, Kurt M Kruger, and Chol-Bum M...

  17. Translating Health Services Research into Practice in the Safety Net.

    Science.gov (United States)

    Moore, Susan L; Fischer, Ilana; Havranek, Edward P

    2016-02-01

    To summarize research relating to health services research translation in the safety net through analysis of the literature and case study of a safety net system. Literature review and key informant interviews at an integrated safety net hospital. This paper describes the results of a comprehensive literature review of translational science literature as applied to health care paired with qualitative analysis of five key informant interviews conducted with senior-level management at Denver Health and Hospital Authority. Results from the literature suggest that implementing innovation may be more difficult in the safety net due to multiple factors, including financial and organizational constraints. Results from key informant interviews confirmed the reality of financial barriers to innovation implementation but also implied that factors, including institutional respect for data, organizational attitudes, and leadership support, could compensate for disadvantages. Translating research into practice is of critical importance to safety net providers, which are under increased pressure to improve patient care and satisfaction. Results suggest that translational research done in the safety net can better illuminate the special challenges of this setting; more such research is needed. © Health Research and Educational Trust.

  18. Summary of fuel safety research meeting 2005

    International Nuclear Information System (INIS)

    Fuketa, Toyoshi; Nakamura, Takehiko; Nagase, Fumihisa; Nakamura, Jinichi; Suzuki, Motoe; Sasajima, Hideo; Sugiyama, Tomoyuki; Amaya, Masaki; Kudo, Tamotsu; Chuto, Toshinori; Tomiyasu, Kunihiko; Udagawa, Yutaka; Ikehata, Hisashi; Kida, Mitsuko; Ikatsu, Nobuhiko; Hosoyamada, Ryuji; Hamanishi, Eizou; Iwasaki, Ryo; Ozawa, Masaaki

    2006-03-01

    Fuel Safety Research Meeting 2005, which was organized by the Japan Atomic Energy Agency (Establishment of the new organization in Oct. 1, 2005 integrated of JAERI and JNC) was held on March 2-3, 2005 at Toshi Center Hotel, Tokyo. The purposes of the meeting are to present and discuss the results of experiments and analyses on reactor fuel safety and to exchange views and experiences among the participants. The technical topics of the meting covered the status of fuel safety research activities, fuel behavior under Reactivity Initiated Accident (RIA) and Loss of coolant accident (LOCA) conditions, high fuel behavior, and radionuclide release under severe accident conditions. This summary contains all the abstracts and sheets of viewgraph presented in the meeting. (author)

  19. Helmholtz-Zentrum Dresden-Rossendorf, Institute of Safety Research. Annual report 2010

    International Nuclear Information System (INIS)

    Gerbeth, Gunter; Schaefer, Frank

    2011-01-01

    The Institute of Safety Research (ISR) was over the past 20 years one of the six Research Institutes of Forschungszentrum Dresden-Rossendorf e.V. (FZD), which in 2010 belonged to the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz. Together with the Institutes of Radiochemistry and Radiation Physics, ISR implements the research programme ''Nuclear Safety Research'' (NSR), which was during last years one of the three scientific programmes of FZD. NSR involves two main topics, i.e. ''Safety Research for Radioactive Waste Disposal'' and ''Safety Research for Nuclear Reactors''. The research of ISR aims at assessing and enhancing the safety of current and future reactors, the development of advanced simulation tools including their validation against experimental data, and the development of the appropriate measuring techniques for multi-phase flows and liquid metals.

  20. Research on a Scania 11 liter ethanol fueled bus engine

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, K E; Pettersson, E

    1996-05-01

    This report presents research carried out on an alcohol fueled bus engine. The engine used was a six cylinder 11 liter compression ignition turbo-charged engine with an inter cooler. The research program included studies of the impact on the emissions when changing different engine components and different settings of the engine. A study of the impact on the engine performance and emissions when using different fuel compositions was also carried out. During the course of the work, the engine was equipped with oxidation catalysts of two different types, one of which was more efficient than the other concerning the oxidation of unburnt fuel related components. One of the main purposes of the research was to improve the emission characteristics of the engine by an optimization of the engine and its setting. The exhaust emissions were thoroughly characterized with respect to both regulated and unregulated emissions. 13 refs, figs, tabs

  1. Failure rate data for fusion safety and risk assessment

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1993-01-01

    The Fusion Safety Program (FSP) at the Idaho National Engineering Laboratory (INEL) conducts safety research in materials, chemical reactions, safety analysis, risk assessment, and in component research and development to support existing magnetic fusion experiments and also to promote safety in the design of future experiments. One of the areas of safety research is applying probabilistic risk assessment (PRA) methods to fusion experiments. To apply PRA, we need a fusion-relevant radiological dose code and a component failure rate data base. This paper describes the FSP effort to develop a failure rate data base for fusion-specific components

  2. Operational safety related human engineering research in Finland

    International Nuclear Information System (INIS)

    Haapanen, P.; Wahlstroem, B.

    1984-01-01

    Human errors contribute considerably to the total risk of the nuclear power plants as was clearly demonstrated at the TMI-accident in 1979. This fact was recognized early in Finland and a comprehensive research program was established in the second half of the 1970s. This paper gives a short description of some research projects in this program. (author)

  3. Progress report on safety research of high-level waste management for the period April 1987 to March 1988

    International Nuclear Information System (INIS)

    Nakamura, Haruto; Tashiro, Shingo

    1988-10-01

    Researches on high-level waste management at the High Level Waste Management Laboratory and the Waste Safety Testing Facility Operation Division of the Japan Atomic Energy Research Institute in the fiscal year of 1987 are reviewed in the three sections of the report. The topics are as follows: 1) On performance and durability of waste forms and engineered barrier materials, accelerated alpha radiation stability of glass form and Synroc has been investigated and stress corrosion cracking of canister materials was examined under simulated conditions. 2) Sorption of 237 Np on granite samples and behavior of iron during weathering of granites were studied with respect to safety evaluation for geological disposal. 3) Actual waste was transported from the Tokai Reprocessing Plant and hot operation using the actual waste was initiated at WASTEF. (author)

  4. Time series modeling in traffic safety research.

    Science.gov (United States)

    Lavrenz, Steven M; Vlahogianni, Eleni I; Gkritza, Konstantina; Ke, Yue

    2018-08-01

    The use of statistical models for analyzing traffic safety (crash) data has been well-established. However, time series techniques have traditionally been underrepresented in the corresponding literature, due to challenges in data collection, along with a limited knowledge of proper methodology. In recent years, new types of high-resolution traffic safety data, especially in measuring driver behavior, have made time series modeling techniques an increasingly salient topic of study. Yet there remains a dearth of information to guide analysts in their use. This paper provides an overview of the state of the art in using time series models in traffic safety research, and discusses some of the fundamental techniques and considerations in classic time series modeling. It also presents ongoing and future opportunities for expanding the use of time series models, and explores newer modeling techniques, including computational intelligence models, which hold promise in effectively handling ever-larger data sets. The information contained herein is meant to guide safety researchers in understanding this broad area of transportation data analysis, and provide a framework for understanding safety trends that can influence policy-making. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. An initial bibliometric analysis and mapping of systems engineering research

    CSIR Research Space (South Africa)

    Oosthuizen, Rudolph

    2016-07-01

    Full Text Available Systems engineering is still a growing field that depends on continuous research to develop and mature. Research in systems engineering is difficult and the classic approaches for other engineering disciplines may not be sufficient. Additional...

  6. Maintaining knowledge, training and infrastructure for research and development in nuclear safety. INSAG-16. A report by the International Nuclear Safety Advisory Group (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    . Education in nuclear science and technology needs to be stabilized in order to maintain sufficient human resources in sciences and engineering relating to nuclear safety. Part of the research infrastructure should be maintained at universities. There is a concern that deterioration of the research infrastructure may lead over time to a deterioration in safety which the public will not tolerate. National and international bodies have a key role to play in ensuring that the skills and capabilities required by the nuclear industry and its regulators are available and that the infrastructure required for this is provided for. Maintaining the safety of nuclear facilities, a pool of expertise and the level of safety research is a common concern of IAEA Member States and therefore, to the extent practicable, research facilities and research data should be shared in joint research programmes by IAEA Member States. The OECD Nuclear Energy Agency (OECD/NEA) is actively engaged in this effort. It has recently published two important reports dealing with research capabilities and facilities and with major research programmes at risk. Following up on the conclusions of these reports, the OECD/NEA continues to review safety research needs and organizes and sponsors internationally funded projects which contribute to maintaining key research facilities and teams. However, it is important that such efforts encompass all countries having nuclear power programmes. The IAEA and OECD/NEA could explore this possibility further. More frequent interactions among research managers in Member States should be considered to ensure that full advantage is being taken of the joint expertise and equipment available around the world. Results of national research programmes should be made public and broadly shared. This will increase public confidence and help to ensure that regulatory processes reflect the state of knowledge

  7. Biomedical engineering frontier research and converging technologies

    CERN Document Server

    Jun, Ho-Wook; Shin, Jennifer; Lee, SangHoon

    2016-01-01

    This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions f...

  8. Safety research for LWR type reactors

    International Nuclear Information System (INIS)

    1989-07-01

    The current R and D activities are to be seen in connection with the LWR risk assessment studies. Two trends are emerging, of which the one concentrates more on BWR-specific problems, and the other on the efficiency or safety-related assessment of accident management activities. This annual report of 1988 reviews the progress of work done by the institutes and departments of the Karlsruhe Nuclear Research Center, (KfK), or on behalf of KfK by external institutions, in the field of safety research. The papers of this report present the state of work at the end of the year 1988. They are written in German, with an abstract in English. (orig./HP) [de

  9. Helmholtz-Zentrum Dresden-Rossendorf, Institute of Safety Research. Annual report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, Gunter; Schaefer, Frank (eds.)

    2011-07-01

    The Institute of Safety Research (ISR) was over the past 20 years one of the six Research Institutes of Forschungszentrum Dresden-Rossendorf e.V. (FZD), which in 2010 belonged to the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz. Together with the Institutes of Radiochemistry and Radiation Physics, ISR implements the research programme ''Nuclear Safety Research'' (NSR), which was during last years one of the three scientific programmes of FZD. NSR involves two main topics, i.e. ''Safety Research for Radioactive Waste Disposal'' and ''Safety Research for Nuclear Reactors''. The research of ISR aims at assessing and enhancing the safety of current and future reactors, the development of advanced simulation tools including their validation against experimental data, and the development of the appropriate measuring techniques for multi-phase flows and liquid metals.

  10. Yearly plan of safety research on environmental radioactivity for 1996 - 2000

    International Nuclear Information System (INIS)

    1996-01-01

    'Yearly Plan of Safety Research on Environmental Radioactivity' proposed from the special meeting for safety research of environmental radioactivity on December 14, 1995 was investigated by Nuclear Safety Commission. And the safety research of environmental radioactivity in Japan was decided to be pursued according to the plan. The contents of this plan consisted of the purpose and the contents of research as well as the research period and the facilities to be done for each theme. The following themes were included; 1) study on environment·radiation dose and study on radiation exposure reduction. 2) study on biological effects of radiation. 3) study on internal exposure by specified nuclides. 4) study on medical measures for acute radiation exposure. 5) study on assessment of nuclear safety. 6) investigation on radioactivities released from various nuclear facilities in Japan to demonstrate their safety. (M.N.)

  11. Operation, test, research and development of the high temperature engineering test reactor (HTTR). (FY2005)

    International Nuclear Information System (INIS)

    2007-03-01

    The High Temperature Engineering Test Reactor (HTTR) constructed at the Oarai Research and Development Center of the Japan Atomic Energy Agency (JAEA) is the first high-temperature gas-cooled reactor (HTGR) in Japan, which is a graphite-moderated and helium gas-cooled reactor with 30 MW of thermal power. The full power operation of 30 MW was attained in December, 2001, and then JAERI (JAEA) received the commissioning license for the HTTR in March, 2002. Since 2002, we have been carrying out rated power operation, safety demonstration tests and several R and Ds, etc., and conducted the high-temperature test operation of 950degC in April, 2004. In fiscal 2005 year, periodical inspection and overhaul of reactivity control system were conducted, and safety demonstration tests were promoted. This report summarizes activities and test results on HTTR operation and maintenance as well as safety demonstration tests and several R and Ds, which were carried out in the fiscal year of 2005. (author)

  12. Finnish research programmes on nuclear power plant safety

    International Nuclear Information System (INIS)

    Puska, E. K.

    2010-01-01

    The current Finnish national research programme on nuclear power plant safety SAFIR2010 for the years 2007-2010 as well as the coming SAFIR2014 programme for the years 2011-2014 are based on the chapter 7a, 'Ensuring expertise', of the Finnish Nuclear Energy Act. The objective of this chapter is realised in the research work and education of experts in the projects of these research programmes. SAFIR2010 research programme is divided in eight research areas that are Organisation and human, Automation and control room, Fuel and reactor physics, Thermal hydraulics, Severe accidents, Structural safety of reactor circuit, Construction safety, and Probabilistic Safety Analysis (PSA). All the research areas include both projects in their own area and interdisciplinary co-operational projects. Research projects of the programme are chosen on the basis of annual call for proposals. In 2010 research is carried out in 33 projects in SAFIR2010. VTT is the responsible research organisation in 26 of these projects and VTT is also the coordination unit of SAFIR2010 and SAFIR2014. In 2007-2009 SAFIR2010 produced 497 Specified research results (Deliverables), 618 Publications, and 33 Academic degrees. SAFIR2010 programme covers approximately half of the reactor safety research volume in Finland currently. In 2010 the programme volume is EUR 7.1 million and 47 person years. The major funding partners are VYR with EUR 2.96 million, VTT with EUR 2.66 million, Fortum with EUR 0.28 million, TVO with EUR 0.19 million, NKS with EUR 0.15 million, EU with only EUR 0.03 million and other partners with EUR 0.85 million. The new decisions-in-principle on Olkiluoto unit 4 for Teollisuuden Voima and new nuclear power plant for Fennovoima ratified by the Finnish Parliament on 1 July 2010 increase the annual funding collected according to the Finnish Nuclear Energy Act from Fennovoima, Fortum and Teollisuuden Voima for the SAFIR2014 programme to EUR 5.2 million from the current level of EUR 3

  13. History of nuclear power plants safety in France (1945-2000) - Engineer techniques, expert evaluation, topical issue

    International Nuclear Information System (INIS)

    Foasso, Cyrille

    2003-01-01

    This doctoral dissertation relates the history of the mastery of risks in civil nuclear plants in France. Since 1960, it's known as the 'surete nucleaire'. Over a fifty-year period separating the discovery or the atomic fission and its industrial application on a large scale this PhD shows which technical means were used over the years by engineers to handle this risk which is said to be huge. It also studies the various processes in expert evaluation and in decision making elaborated to evaluate if the risk was acceptable or not. Beyond the conflicts between nuclear advocates and opponents, this thesis shows how ever among nuclear engineer the growing distinction between roles (promoters, experts and controlling authorities) and the various jobs (designers, builders and plant operators) triggered different estimations as far as the methods to obtain a satisfactory safety. Thanks to the progress of knowledge through research programs, thanks to the lessons drawn from the functioning or dysfunction of nuclear plants, thanks to the reinforcement of regulations (which more or less reflects the public's opinion concerning this industry) the safety has progressively improved. Thus, this historical study is multiple: a technical history of technology, a history of scientific, industrial and administrative organization, a social history and finally an international and comparative history since the nuclear energy history quickly developed beyond national boundaries. (author) [fr

  14. Code on the safety of nuclear research reactors: Design

    International Nuclear Information System (INIS)

    1992-01-01

    The main objective of this publication is to provide a safety basis for the design of a research reactor and for the assessment of the design. Another objective is to cover certain aspects related to regulatory supervision, siting and quality assurance, as far as these are related to activities for the design of a research reactor. These objectives are expressed in terms of requirements and recommendations for the design of research reactors. Emphasis is placed on the safety requirements that shall be met rather than on ways in which they can be met. The requirements and recommendations may form the foundation necessary for a Member State to develop specific regulations and safety criteria for its research reactor programme.

  15. Buff book 1: status summary report, water reactor safety research

    International Nuclear Information System (INIS)

    1980-01-01

    This Management Report, to provide information for monitoring and controlling the progress of LWR Safety Research Projects Associated with the Office of Nuclear Regulatory Research and other agencies and organizations engaged in nuclear safety research. It utilizes data pertaining to project schedules, cost, and status which have been integrated into a network-based management information system, The purpose of this publication is to provide a vehicle for review of the current status and overall progress of the safety Research Program from a managerial point of view

  16. Sociotechnical approaches to workplace safety: Research needs and opportunities

    Science.gov (United States)

    Robertson, Michelle M.; Hettinger, Lawrence J.; Waterson, Patrick E.; Ian Noy, Y.; Dainoff, Marvin J.; Leveson, Nancy G.; Carayon, Pascale; Courtney, Theodore K.

    2015-01-01

    The sociotechnical systems perspective offers intriguing and potentially valuable insights into problems associated with workplace safety. While formal sociotechnical systems thinking originated in the 1950s, its application to the analysis and design of sustainable, safe working environments has not been fully developed. To that end, a Hopkinton Conference was organised to review and summarise the state of knowledge in the area and to identify research priorities. A group of 26 international experts produced collaborative articles for this special issue of Ergonomics, and each focused on examining a key conceptual, methodological and/or theoretical issue associated with sociotechnical systems and safety. In this concluding paper, we describe the major conference themes and recommendations. These are organised into six topic areas: (1) Concepts, definitions and frameworks, (2) defining research methodologies, (3) modelling and simulation, (4) communications and decision-making, (5) sociotechnical attributes of safe and unsafe systems and (6) potential future research directions for sociotechnical systems research. Practitioner Summary: Sociotechnical complexity, a characteristic of many contemporary work environments, presents potential safety risks that traditional approaches to workplace safety may not adequately address. In this paper, we summarise the investigations of a group of international researchers into questions associated with the application of sociotechnical systems thinking to improve worker safety. PMID:25728246

  17. Engineering sciences research highlights. Fiscal year 1983

    International Nuclear Information System (INIS)

    Tucker, E.F.; Dobratz, B.

    1984-05-01

    The Laboratory's overall mission is sixfold. We are charged with developing nuclear warheads for defense, technology for arms control, and new concepts for defense against nuclear attack; with supporting programs for both nonnuclear defense and energy research and development; and with advancing our knowledge of science and technology so that we can respond to other national needs. Major programs in support of this mission involve nuclear weapons, energy, environmental science, and basic research. Specific areas of investigation include the design, development, and testing of nuclear weapons; nuclear safeguards and security; inertial and magnetic fusion and nuclear, solar, fossil, and geothermal energy; and basic research in physics, chemistry, mathematics, engineering, and the computer and life sciences. With the staff and facilities maintained for these and other programs, the Laboratory can respond to specific national needs in virtually all areas of the physical and life sciences. Within the Laboratory's organization, most technical research activities are carried out in three directorates: Engineering Sciences; Physics and Mathematics; and Chemistry, Earth and Life Sciences. The activities highlighted here are examples of unclassified work carried out in the seven divisions that made up the Engineering Sciences Directorate at the end of fiscal year 1983. Brief descriptions of these divisions' goals and capabilities and summaries of selected projects illustrate the diversity of talent, expertise, and facilities maintained within the Engineering Sciences Directorate

  18. Review of research on simulation engineering in FY2009

    International Nuclear Information System (INIS)

    2011-03-01

    Research on simulation engineering for nuclear applications, based on 'the plan for meeting the mid-term goal of the Japan Atomic Energy Agency', has been performed at Center for Computational Science and e-Systems, Japan Atomic Energy Agency (CCSE/JAEA). CCSE established the committee consisting outside experts and authorities which does research evaluation and advices for the assistance of the research and development. This report summarizes results of the evaluation by the committee on the followings. (1) Research and development on simulation engineering performed at CCSE/JAEA in FY2009. (2) Research and development on simulation engineering performed at CCSE/JAEA in the period of the midterm plan (October 1st, 2005 - March 31st, 2010). (author)

  19. Licensing procedures and safety criteria for research reactors in France

    International Nuclear Information System (INIS)

    Berry, J.L.; Lerouge, B.

    1983-01-01

    From the very beginning of the CEA up to now, a great deal of work has been devoted to the development and utilization of research reactors in France for the needs of fundamental and applied research, production of radioisotopes, and training. In recent years, new reactors were commissioned while others were decommissioned. Moreover some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors (Osiris and Isis). This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. At the end, a few considerations are given to the consequences of the Osiris core conversion. Safety of research reactors has been studied in detail and many improvements have been brought due to: implementation of a specific experimental program, and adaptation of safety principles and rules elaborated for power reactors. Research reactors in operation in France have been built within a 22 year period. Meanwhile, safety rules have been improved. Old reactors do not comply with all the new rules but modifications are continuously made: after analysis of incidents, when replacement of equipment has to be carried out, when an important modification (fuel conversion for example) is decided upon

  20. Licensing procedures and safety criteria for research reactors in France

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J L; Lerouge, B [Centre d' Etudes Nucleaires de Saclay (France)

    1983-08-01

    From the very beginning of the CEA up to now, a great deal of work has been devoted to the development and utilization of research reactors in France for the needs of fundamental and applied research, production of radioisotopes, and training. In recent years, new reactors were commissioned while others were decommissioned. Moreover some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors (Osiris and Isis). This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. At the end, a few considerations are given to the consequences of the Osiris core conversion. Safety of research reactors has been studied in detail and many improvements have been brought due to: implementation of a specific experimental program, and adaptation of safety principles and rules elaborated for power reactors. Research reactors in operation in France have been built within a 22 year period. Meanwhile, safety rules have been improved. Old reactors do not comply with all the new rules but modifications are continuously made: after analysis of incidents, when replacement of equipment has to be carried out, when an important modification (fuel conversion for example) is decided upon.

  1. Research and exploration on nuclear safety culture construction

    International Nuclear Information System (INIS)

    Zhang Lifang; Zhao Hongtao; Wang Hongwei

    2012-01-01

    This thesis mainly researched the definition, characteristics, development stage and setup procedure concerning nuclear safety culture, based on practice and experiences in Technical Physics Institute of Heilongjian. Academy of Science. The author discussed the importance of nuclear safety culture construction for an enterprise of nuclear technology utilization, and emphasized all the enterprise and individual who engaged in nuclear and radiation safety should acquire good nuclear safety culture quality, and ensure the application and development of the nuclear safety cult.ure construction in the enterprises of nu- clear technological utilization. (authors)

  2. Proceedings of third JAERI-JNC joint conference on nuclear safety research

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Oikawa, Tetsukuni; Araya, Fumimasa; Suzuki, Tsugio

    2006-03-01

    The present report is the proceedings of the third JAERI-JNC joint conference on nuclear safety research held on July 29, 2005 in Tokyo before integration of JAERI and JNC to JAEA. The conference was held for those who are relevant to nuclear industries and regulatory organizations, and general public. The nuclear safety research has been conducted in both institutes according to the Five-Year Program for Nuclear Safety Research established periodically by the Nuclear Safety Commission (NSC) and needs from the regulatory organizations. The objectives of the conference are to present its recent results and to collect views and opinions from the participants for its future program through the discussion after each presentation and panel discussion on how to conduct efficiently the nuclear safety research in the new organization. A total of 234 people participated in the conference mainly from the nuclear industries and regulatory organizations. The conference consisted of presentations on the safety research results, a special lecture and a panel discussion. First, the overview of safety research results was presented from each institute. Then, the results in the field of nuclear installations, environmental radioactivity and radioactive waste were presented from each institute. Then, Dr. Suzuki, deputy chairperson of NSC, made a special lecture on recent trends in nuclear safety regulation and expectation for the new organization. Finally, a panel discussion was conducted with the title of 'how to conduct efficiently the nuclear safety research in the new organization' chaired by Prof. Kimura, the chairperson of Standing Committee on Nuclear Safety Research under the NSC. The panelists from JAERI and JNC presented and discussed the subject together with the participants on the floor. Through vigorous exchange of views in the panel discussion and descriptions on the questionnaires, it was obviously expressed that expectation to the safety research of the new

  3. Professional ethics in biomedical engineering practice and research.

    Science.gov (United States)

    Monzon, Jorge E; Monzon-Wyngaard, Alvaro

    2008-01-01

    This paper discusses some guidelines for use with the accepted fundamental canons of ethics for engineers. We present some rules of practice and professional obligations emerging from these canons. Basic recommendations for engineers dissenting on ethical grounds are also presented. Ethical issues relating to Biomedical Engineering research are illustrated. We mention some cases that could be used to further understanding the ethical implications of biomedical engineering practice.

  4. Licensing procedures and safety criteria for research reactors in France

    International Nuclear Information System (INIS)

    Berry, J.L.; Lerouge, B.

    1980-11-01

    This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. Some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors. At the end, a few considerations are given to the consequences of the Osiris core conversion

  5. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1996

    International Nuclear Information System (INIS)

    1997-08-01

    This report summarizes research and educational activities, operation status of the research facilities of the Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo on fiscal year 1996. This facility has four major research facilities such as fast neutron source reactor 'Yayoi', electron Linac, fundamental experiment facility for nuclear fusion reactor blanket design and high fluence irradiation facility(HIT). Education and research activities are conducted in a wide fields of nuclear engineering using these facilities. The former two facilities are available for various studies by universities all over Japan, facility for nuclear fusion reactor blanket design is utilized for research within the Faculty of Engineering and HIT is used for the research within the University of Tokyo. The facility established a plan to reorganized into a nation wide research collaboration center in fiscal year 1995 and after further discussion of a future program it is decided to hold 'Nuclear energy symposium' periodically after fiscal year 1997 as a part of the activity for appealing the research results to the public. (G.K.)

  6. Comparison of the Safety Critical Software V and V Requirements for the Research Reactor Instrumentation and Control System

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Sungmoon; Suh, Yong-Suk; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    This study was motivated by a research reactor project where the owner of the project and the equipment vendors are from two different standards frameworks. This paper reviews two major standards frameworks - NRC-IEEE and IAEA-IEC - and the software classification schemes as a background, then discuss the V and V issue. The purpose of this paper is by no means to solve the cross-standards-framework qualification issue, but, rather, is to remind the stakeholders of research reactor projects. V and V are also essential for the approval from regulatory bodies. As standards define or recommend consolidated engineering practices, methods, or criteria, V and V activities for software qualification are not exceptional. Within a standards framework, usually, the processes for the qualification of safety-critical software are well-established such that the safety is maximized while minimizing the compromises in software quality, safety, and reliability. When, however, multiple standards frameworks are involved in a research reactor project, it is difficult for equipment vendors to implement appropriate V and V activities as there is no unified view on this cross-standards-framework qualification issue yet. There are two major standards frameworks for safety-critical software development in nuclear industry. Unfortunately different safety classifications for software and thus different requirements for qualification are in place. What makes things worse is that (i) there are ambiguities in the standards and rooms for each stakeholders’ interpretation, and (ii) there is no one-to-one mapping between the associated V and V methods and activities. These may put the stakeholders of research reactor projects in trouble.

  7. Comparison of the Safety Critical Software V and V Requirements for the Research Reactor Instrumentation and Control System

    International Nuclear Information System (INIS)

    Joo, Sungmoon; Suh, Yong-Suk; Park, Cheol

    2016-01-01

    This study was motivated by a research reactor project where the owner of the project and the equipment vendors are from two different standards frameworks. This paper reviews two major standards frameworks - NRC-IEEE and IAEA-IEC - and the software classification schemes as a background, then discuss the V and V issue. The purpose of this paper is by no means to solve the cross-standards-framework qualification issue, but, rather, is to remind the stakeholders of research reactor projects. V and V are also essential for the approval from regulatory bodies. As standards define or recommend consolidated engineering practices, methods, or criteria, V and V activities for software qualification are not exceptional. Within a standards framework, usually, the processes for the qualification of safety-critical software are well-established such that the safety is maximized while minimizing the compromises in software quality, safety, and reliability. When, however, multiple standards frameworks are involved in a research reactor project, it is difficult for equipment vendors to implement appropriate V and V activities as there is no unified view on this cross-standards-framework qualification issue yet. There are two major standards frameworks for safety-critical software development in nuclear industry. Unfortunately different safety classifications for software and thus different requirements for qualification are in place. What makes things worse is that (i) there are ambiguities in the standards and rooms for each stakeholders’ interpretation, and (ii) there is no one-to-one mapping between the associated V and V methods and activities. These may put the stakeholders of research reactor projects in trouble

  8. International Conference on Research and Innovations in Mechanical Engineering

    CERN Document Server

    Singh, Paramjit; Singh, Harwinder; Brar, Gurinder

    2014-01-01

    This book comprises the proceedings of International Conference on Research and Innovations in Mechanical Engineering (ICRIME 2013) organized by Guru Nanak Dev Engineering College, Ludhiana with support from AICTE, TEQIP, DST and PTU, Jalandhar. This international conference served as a premier forum for communication of new advances and research results in the fields of mechanical engineering. The proceedings reflect the conference’s emphasis on strong methodological approaches and focus on applications within the domain of mechanical engineering. The contents of this volume aim to highlight new theoretical and experimental findings in the fields of mechanical engineering and closely related fields, including interdisciplinary fields such as robotics and mechatronics.

  9. Nanotechnology Safety Self-Study

    Energy Technology Data Exchange (ETDEWEB)

    Grogin, Phillip W. [Los Alamos National Laboratory

    2016-03-29

    Nanoparticles are near-atomic scale structures between 1 and 100 nanometers (one billionth of a meter). Engineered nanoparticles are intentionally created and are used in research and development at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL). This course, Nanotechnology Safety Self-Study, presents an overview of the hazards, controls, and uncertainties associated with the use of unbound engineered nanoscale particles (UNP) in a laboratory environment.

  10. Psychometric model for safety culture assessment in nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, C.S. do, E-mail: claudio.souza@ctmsp.mar.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), Av. Professor Lineu Prestes 2468, 05508-000 São Paulo, SP (Brazil); Andrade, D.A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil)

    2017-04-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  11. Psychometric model for safety culture assessment in nuclear research facilities

    International Nuclear Information System (INIS)

    Nascimento, C.S. do; Andrade, D.A.; Mesquita, R.N. de

    2017-01-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  12. Design and construction of safety devices utilizing methods of measurement and control engineering

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, B; Weidlich, S

    1982-08-01

    This article considers a proposed concept for the design and construction of measurement and control devices for the safety of chemical plants with the aim of preventing danger to persons and the environment and damage. Such measurement and control devices are generally employed when primary measures adopted for plant safety, such as safety valves, collection vessels, etc. are not applicable or insufficient by themselves. The concept regards the new sheet no. 3 of the VDI/VDE code draft 2180 ''Safety of chemical engineering plant'' and proposes a further subdivision of class A into safety classes A0, A1, and A2. Overall, it is possible, on the basis of the measures for raising the availability of measurement and control equipment which are presented in this article, to make selection appropriate to the potential danger involved. The proposed procedure should not, however, be regarded as a rigid scheme but rather as leading to a systematic view and supporting decisions resting on sound operating experience.

  13. Proceedings of second JAERI-JNC joint conference on nuclear safety research

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Anoda, Yoshinari; Araya, Fumimasa; Yamaguchi, Toshio

    2004-08-01

    The second JAERI-JNC Joint Conference on Nuclear Safety Research was held on February 6, 2004 in Tokyo for those who are relevant to nuclear industries and regulatory organizations, and general public. The nuclear safety research has been conducted in both institutes according to the Five-Year Program for Nuclear Safety Research established periodically by the Nuclear Safety Commission (NSC) and needs from the regulatory organizations. The objectives of the conference are to present its recent results and to collect views and opinions from the participants for its future program through the discussion after each presentation and panel discussion on how to conduct efficiently the nuclear safety in the New Organization. A total of 259 people participated in the conference mainly from the nuclear industries and regulatory organizations and the number was much larger than that in the last conference of 188. The conference consisted of presentations on the safety research results, a special lecture and a panel discussion. First, the overview of safety research results was presented from each institute. Then, the results in the field of nuclear installations, environmental radioactivity and radioactive waste were presented from each institute. Then, Dr. Higashi, the Nuclear Safety Commissioner, made a special lecture on the radiation protection from the high-level radioactive waste disposal. Finally, a panel discussion was conducted with the title of ''how to conduct efficiently the nuclear safety research in the New Organization'' chaired by Prof. Kimura, the chairperson of Standing Committee on Nuclear Safety Research under the NSC. The panelists from the regulatory organizations, nuclear industry, JAERI and JNC discussed the subject together with the participants on the floor. The panelists not from JAERI and JNC expressed their views and opinions on how to conduct efficiently the nuclear safety research in the New Organization that were valuable inputs for developing

  14. Main research results in the field of nuclear power engineering of the Nuclear Reactors and Thermal Physics Institute in 2014

    International Nuclear Information System (INIS)

    Trufanov, A.A.; Orlov, Yu.I.; Sorokin, A.P.; Chernonog, V.L.

    2015-01-01

    The main results of scientific and technological activities for last years of the Nuclear Reactors and Thermal Physics Institute FSUE SSC RF - IPPE in solving problems of nuclear power engineering are presented. The work have been carried out on the following problems: justification of research and development solutions and safety of NPPs with fast reactors of new generation with sodium (BN-1200, MBIR) and lead (BREST-OD-300) coolants, justification of safety of operating and advanced NPPs with WWER reactor facilities (WWER-1000, AEhS 2006, WWER-TOI), development and benchmarking of computational codes, research and development support of Beloyarsk-3 (BN-600) and Bilibino (BN-800) NPPs operation, decommissioning of AM and BR-10 research reactors, pilot scientific studies (WWER-SKD, ITER), international scientific and technical cooperation. Problems for further investigations are charted [ru

  15. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    1990-01-01

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  16. Research Trends with Cross Tabulation Search Engine

    Science.gov (United States)

    Yin, Chengjiu; Hirokawa, Sachio; Yau, Jane Yin-Kim; Hashimoto, Kiyota; Tabata, Yoshiyuki; Nakatoh, Tetsuya

    2013-01-01

    To help researchers in building a knowledge foundation of their research fields which could be a time-consuming process, the authors have developed a Cross Tabulation Search Engine (CTSE). Its purpose is to assist researchers in 1) conducting research surveys, 2) efficiently and effectively retrieving information (such as important researchers,…

  17. Safety culture and quality management of Kartini research reactor

    International Nuclear Information System (INIS)

    Syarip; Hauptmanns, Ulrich

    1999-01-01

    The evaluation for assessing the safety culture and quality of safety management of Kartini research reactor is presented. The method is based on the concept of management control of safety (audit) as well as by using the developed method i.e. the questionnaires concerning areas of relevance which have to be answered with value statements. There are seven statements or qualifiers in answering the questions. Since such statements are vague, they are represented by fuzzy numbers. The weaknesses can be identified from the different areas contemplated. The evaluation result show that the quality of safety management of Kartini research reactor is globally rated as 'Average'. The operator behavior in the implementation of 'safety culture' concept is found as a weakness, therefore this area should be improved. (author)

  18. Development of Risk Assessment Matrix for NASA Engineering and Safety Center

    Science.gov (United States)

    Malone, Roy W., Jr.; Moses, Kelly

    2004-01-01

    This paper describes a study, which had as its principal goal the development of a sufficiently detailed 5 x 5 Risk Matrix Scorecard. The purpose of this scorecard is to outline the criteria by which technical issues can be qualitatively and initially prioritized. The tool using this score card has been proposed to be one of the information resources the NASA Engineering and Safety Center (NESC) takes into consideration when making decisions with respect to incoming information on safety concerns across the entire NASA agency. The contents of this paper discuss in detail each element of the risk matrix scorecard, definitions for those elements and the rationale behind the development of those definitions. This scorecard development was performed in parallel with the tailoring of the existing Futron Corporation Integrated Risk Management Application (IRMA) software tool. IRMA was tailored to fit NESC needs for evaluating incoming safety concerns and was renamed NESC Assessment Risk Management Application (NAFMA) which is still in developmental phase.

  19. SFPE handbook of fire protection engineering

    CERN Document Server

    Gottuk, Daniel; Jr, John; Harada, Kazunori; Kuligowski, Erica; Puchovsky, Milosh; Torero, Jose´; Jr, John; WIECZOREK, CHRISTOPHER

    2016-01-01

    Revised and significantly expanded, the fifth edition of this classic work offers both new and substantially updated information. As the definitive reference on fire protection engineering, this book provides thorough treatment of the current best practices in fire protection engineering and performance-based fire safety. Over 130 eminent fire engineers and researchers contributed chapters to the book, representing universities and professional organizations around the world. It remains the indispensible source for reliable coverage of fire safety engineering fundamentals, fire dynamics, hazard calculations, fire risk analysis, modeling and more. With seventeen new chapters and over 1,800 figures, the this new edition contains: • Step-by-step equations that explain engineering calculations • Comprehensive revision of the coverage of human behavior in fire, including several new chapters on egress system design, occupant evacuation scenarios, combustion toxicity and data for human behavior analysis • Rev...

  20. Overview of the Nuclear Regulatory Commission's safety research program

    International Nuclear Information System (INIS)

    Beckjord, E.S.

    1989-01-01

    Accomplishments during 1988 of the Office of Nuclear Regulatory Research and the program of safety research are highlighted, and plans, expections, and needs of the next year and beyond are discussed. Topics discussed include: ECCS Appendix K Revision; pressurized thermal shock; NUREG-1150, or the PRA method performance document; resolution of station blackout; severe accident integration plan; nuclear safety research review committee; and program management