WorldWideScience

Sample records for safety emergency response

  1. Radiological Emergency Response Health and Safety Manual

    Energy Technology Data Exchange (ETDEWEB)

    D. R. Bowman

    2001-05-01

    This manual was created to provide health and safety (H&S) guidance for emergency response operations. The manual is organized in sections that define each aspect of H and S Management for emergency responses. The sections are as follows: Responsibilities; Health Physics; Industrial Hygiene; Safety; Environmental Compliance; Medical; and Record Maintenance. Each section gives guidance on the types of training expected for managers and responders, safety processes and procedures to be followed when performing work, and what is expected of managers and participants. Also included are generic forms that will be used to facilitate or document activities during an emergency response. These ensure consistency in creating useful real-time and archival records and help to prevent the loss or omission of information.

  2. Planning and Preparing for Emergency Response to Transport Accidents Involving Radioactive Material. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide provides guidance on various aspects of emergency planning and preparedness for dealing effectively and safely with transport accidents involving radioactive material, including the assignment of responsibilities. It reflects the requirements specified in Safety Standards Series No. TS-R-1, Regulations for the Safe Transport of Radioactive Material, and those of Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Framework for planning and preparing for response to accidents in the transport of radioactive material; 3. Responsibilities for planning and preparing for response to accidents in the transport of radioactive material; 4. Planning for response to accidents in the transport of radioactive material; 5. Preparing for response to accidents in the transport of radioactive material; Appendix I: Features of the transport regulations influencing emergency response to transport accidents; Appendix II: Preliminary emergency response reference matrix; Appendix III: Guide to suitable instrumentation; Appendix IV: Overview of emergency management for a transport accident involving radioactive material; Appendix V: Examples of response to transport accidents; Appendix VI: Example equipment kit for a radiation protection team; Annex I: Example of guidance on emergency response to carriers; Annex II: Emergency response guide.

  3. Emergency Preparedness and Response: A Safety Net

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, H., E-mail: hannele.aaltonen@stuk.fi [Radiation and Nuclear Safety Authority (STUK), Helsinki (Finland)

    2014-10-15

    Full text: The objective of nuclear regulatory work is to prevent accidents. Nevertheless, possibility of a severe accident cannot be totally excluded, which makes a safety net, efficient emergency preparedness and response, necessary. Should the possibility of accidents be rejected, the result would be in the worst case inadequate protection of population, functions of society, and environment from harmful effects of radiation. Adequate resources for maintenance and development of emergency arrangement are crucial. However, they need to be balanced taking into account risks assessments, justified expectations of society, and international requirements. To successfully respond to an emergency, effective emergency preparedness, such as up-to-date plans and procedures, robust arrangements and knowledgeable and regularly trained staff are required. These, however, are not enough without willingness and proactive attitude to • communicate in a timely manner; • co-operate and coordinate actions; • provide and receive assistance; and • evaluate and improve emergency arrangements. In the establishment and development of emergency arrangements, redundant and diverse means or tools used are needed in, for example, communication and assessment of hazard. Any severe nuclear emergency would affect all countries either directly or indirectly. Thus, national emergency arrangements have to be compatible to the extent practicable with international emergency arrangements. It is important to all countries that the safety nets of emergency arrangements are reliable - and operate efficiently in a coordinated manner when needed - on national, regional and international level. (author)

  4. Occupational Safety and Health System for Workers Engaged in Emergency Response Operations in the USA.

    Science.gov (United States)

    Toyoda, Hiroyuki; Kubo, Tatsuhiko; Mori, Koji

    2016-12-03

    To study the occupational safety and health systems used for emergency response workers in the USA, we performed interviews with related federal agencies and conducted research on related studies. We visited the Federal Emergency Management Agency (FEMA) and National Institute for Occupational Safety and Health (NIOSH) in the USA and performed interviews with their managers on the agencies' roles in the national emergency response system. We also obtained information prepared for our visit from the USA's Occupational Safety and Health Administration (OSHA). In addition, we conducted research on related studies and information on the website of the agencies. We found that the USA had an established emergency response system based on their National Incident Management System (NIMS). This enabled several organizations to respond to emergencies cooperatively using a National Response Framework (NRF) that clarifies the roles and cooperative functions of each federal agency. The core system in NIMS was the Incident Command System (ICS), within which a Safety Officer was positioned as one of the command staff supporting the commander. All ICS staff were required to complete a training program specific to their position; in addition, the Safety Officer was required to have experience. The All-Hazards model was commonly used in the emergency response system. We found that FEMA coordinated support functions, and OSHA and NIOSH, which had specific functions to protect workers, worked cooperatively under NRF. These agencies employed certified industrial hygienists that play a professional role in safety and health. NIOSH recently executed support activities during disasters and other emergencies. The USA's emergency response system is characterized by functions that protect the lives and health of emergency response workers. Trained and experienced human resources support system effectiveness. The findings provided valuable information that could be used to improve the

  5. Preparedness and response for a nuclear or radiological emergency. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Requirements publication establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. Their implementation is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. The fulfilment of these requirements will also contribute to the harmonization of arrangements in the event of a transnational emergency. These requirements are intended to be applied by authorities at the national level by means of adopting legislation, establishing regulations and assigning responsibilities. The requirements apply to all those practices and sources that have the potential for causing radiation exposure or environmental radioactive contamination warranting an emergency intervention and that are: (a) Used in a State that chooses to adopt the requirements or that requests any of the sponsoring organizations to provide for the application of the requirements. (B) Used by States with the assistance of the FAO, IAEA, ILO, PAHO, OCHA or WHO in compliance with applicable national rules and regulations. (C) Used by the IAEA or which involve the use of materials, services, equipment, facilities and non-published information made available by the IAEA or at its request or under its control or supervision. Or (d) Used under any bilateral or multilateral arrangement whereby the parties request the IAEA to provide for the application of the requirements. The requirements also apply to the off-site jurisdictions that may need to make an emergency intervention in a State that adopts the requirements. The types of practices and sources covered by these requirements include: fixed and mobile nuclear reactors. Facilities for the mining and processing of radioactive ores. Facilities for fuel reprocessing and other fuel cycle facilities. Facilities for the management of radioactive waste. The transport of radioactive material. Sources of radiation used in

  6. Preparedness and Response for a Nuclear or Radiological Emergency. General Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication, jointly sponsored by the FAO, IAEA, ICAO, ILO, IMO, INTERPOL, OECD/NEA, PAHO, CTBTO, UNEP, OCHA, WHO and WMO, is the new edition establishing the requirements for preparedness and response for a nuclear or radiological emergency which takes into account the latest experience and developments in the area. It supersedes the previous edition of the Safety Requirements for emergency preparedness and response, Safety Standards Series No. GS-R-2, which was published in 2002. This publication establishes the requirements for ensuring an adequate level of preparedness and response for a nuclear or radiological emergency, irrespective of its cause. These Safety Requirements are intended to be used by governments, emergency response organizations, other authorities at the local, regional and national levels, operating organizations and the regulatory body as well as by relevant international organizations at the international level.

  7. Preparedness and Response for a Nuclear or Radiological Emergency. General Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication, jointly sponsored by the FAO, IAEA, ICAO, ILO, IMO, INTERPOL, OECD/NEA, PAHO, CTBTO, UNEP, OCHA, WHO and WMO, is the new edition establishing the requirements for preparedness and response for a nuclear or radiological emergency which takes into account the latest experience and developments in the area. It supersedes the previous edition of the Safety Requirements for emergency preparedness and response, Safety Standards Series No. GS-R-2, which was published in 2002. This publication establishes the requirements for ensuring an adequate level of preparedness and response for a nuclear or radiological emergency, irrespective of its cause. These Safety Requirements are intended to be used by governments, emergency response organizations, other authorities at the local, regional and national levels, operating organizations and the regulatory body as well as by relevant international organizations at the international level.

  8. Preparedness and Response for a Nuclear or Radiological Emergency. General Safety Requirements (Chinese Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication, jointly sponsored by the FAO, IAEA, ICAO, ILO, IMO, INTERPOL, OECD/NEA, PAHO, CTBTO, UNEP, OCHA, WHO and WMO, is the new edition establishing the requirements for preparedness and response for a nuclear or radiological emergency which takes into account the latest experience and developments in the area. It supersedes the previous edition of the Safety Requirements for emergency preparedness and response, Safety Standards Series No. GS-R-2, which was published in 2002. This publication establishes the requirements for ensuring an adequate level of preparedness and response for a nuclear or radiological emergency, irrespective of its cause. These Safety Requirements are intended to be used by governments, emergency response organizations, other authorities at the local, regional and national levels, operating organizations and the regulatory body as well as by relevant international organizations at the international level.

  9. Development of a health and safety manual for emergency response operations

    International Nuclear Information System (INIS)

    Riland, C.A.; Junio, S.S.

    2000-01-01

    The Federal Radiological Monitoring and Assessment Center (FRMAC) Health and Safety Manual, which has been under development by a multi-agency group, is nearing completion and publication. The manual applies to offsite monitoring during a radiological accident or incident. Though written for multi-agency offsite monitoring activities (FRMAC), the manual is generic in nature and should be readily adaptable for other emergency response operations. Health and safety issues for emergency response situations often differ from those of normal operations. Examples of these differences and methodologies to address these issues are discussed. Challenges in manual development, including lack of regulatory and guidance documentation, are also discussed. One overriding principle in the Health and Safety Manual development is the overall reduction of risk, not just dose. The manual is broken into several chapters, which include Overview of Responsibities, Health Physics, Industrial Hygiene and Safey, Medical, and Environmental Compliance and Records. Included is a series of appendices, which presents additional information on forms and plans for default scenarios

  10. Nuclear criticality safety aspects of emergency response at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Baker, J.S.

    2003-01-01

    Emergency response at Los Alamos National Laboratory (LANL) is handled through a graded approach depending on the specific emergency situation . LANL maintains a comprehensive capability to respond to events ranging from minor facility events (alerts) through major community events (general emergencies), including criticality accidents . Criticality safety and emergency response apply to all activities involving significant quantities of fissile material at LANL, primarily at Technical Area 18 (TA-18, the Los Alamos Critical Experiments Facility) and Technical Area 55 (TA-55, the Plutonium Facility). This discussion focuses on response to a criticality accident at TA-55; the approach at TA-18 is comparable .

  11. 76 FR 23810 - Public Safety and Homeland Security Bureau; Federal Advisory Committee Act; Emergency Response...

    Science.gov (United States)

    2011-04-28

    ... FEDERAL COMMUNICATIONS COMMISSION Public Safety and Homeland Security Bureau; Federal Advisory Committee Act; Emergency Response Interoperability Center Public Safety Advisory Committee Meeting AGENCY... Fullano, Associate Chief, Public Safety and Homeland Security Bureau, Federal Communications Commission...

  12. Behavioral Emergency Response Team: Implementation Improves Patient Safety, Staff Safety, and Staff Collaboration.

    Science.gov (United States)

    Zicko, Cdr Jennifer M; Schroeder, Lcdr Rebecca A; Byers, Cdr William S; Taylor, Lt Adam M; Spence, Cdr Dennis L

    2017-10-01

    Staff members working on our nonmental health (non-MH) units (i.e., medical-surgical [MS] units) were not educated in recognizing or deescalating behavioral emergencies. Published evidence suggests a behavioral emergency response team (BERT) composed of MH experts who assist with deescalating behavioral emergencies may be beneficial in these situations. Therefore, we sought to implement a BERT on the inpatient non-MH units at our military treatment facility. The objectives of this evidence-based practice process improvement project were to determine how implementation of a BERT affects staff and patient safety and to examine nursing staffs' level of knowledge, confidence, and support in caring for psychiatric patients and patients exhibiting behavioral emergencies. A BERT was piloted on one MS unit for 5 months and expanded to two additional units for 3 months. Pre- and postimplementation staff surveys were conducted, and the number of staff assaults and injuries, restraint usage, and security intervention were compared. The BERT responded to 17 behavioral emergencies. The number of assaults decreased from 10 (pre) to 1 (post); security intervention decreased from 14 to 1; and restraint use decreased from 8 to 1. MS staffs' level of BERT knowledge and rating of support between MH staff and their staff significantly increased. Both MS and MH nurses rated the BERT as supportive and effective. A BERT can assist with deescalating behavioral emergencies, and improve staff collaboration and patient and staff safety. © 2017 Sigma Theta Tau International.

  13. Emergency response and nuclear risk governance. Nuclear safety at nuclear power plant accidents

    International Nuclear Information System (INIS)

    Kuhlen, Johannes

    2014-01-01

    The present study entitled ''Emergency Response and Nuclear Risk Governance: nuclear safety at nuclear power plant accidents'' deals with issues of the protection of the population and the environment against hazardous radiation (the hazards of nuclear energy) and the harmful effects of radioactivity during nuclear power plant accidents. The aim of this study is to contribute to both the identification and remediation of shortcomings and deficits in the management of severe nuclear accidents like those that occurred at Chernobyl in 1986 and at Fukushima in 2011 as well as to the improvement and harmonization of plans and measures taken on an international level in nuclear emergency management. This thesis is divided into a theoretical part and an empirical part. The theoretical part focuses on embedding the subject in a specifically global governance concept, which includes, as far as Nuclear Risk Governance is concerned, the global governance of nuclear risks. Due to their characteristic features the following governance concepts can be assigned to these risks: Nuclear Safety Governance is related to safety, Nuclear Security Governance to security and NonProliferation Governance to safeguards. The subject of investigation of the present study is as a special case of the Nuclear Safety Governance, the Nuclear Emergency governance, which refers to off-site emergency response. The global impact of nuclear accidents and the concepts of security, safety culture and residual risk are contemplated in this context. The findings (accident sequences, their consequences and implications) from the analyses of two reactor accidents prior to Fukushima (Three Mile Iceland in 1979, Chernobyl in 1986) are examined from a historical analytical perspective and the state of the Nuclear Emergency governance and international cooperation aimed at improving nuclear safety after Chernobyl is portrayed by discussing, among other topics, examples of &apos

  14. Planning and preparing for emergency response to transport accidents involving radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of this Safety Guide is to provide guidance to the public authorities and others (including consignors, carriers and emergency response authorities) who are responsible for developing and establishing emergency arrangements for dealing effectively and safely with transport accidents involving radioactive material. It may assist those concerned with establishing the capability to respond to such transport emergencies. It provides guidance for those Member States whose involvement with radioactive material is just beginning. It also provides guidance for those Member States that have already developed their radioactive material industries and the attendant emergency plans but that may need to review and improve these plans

  15. Criteria for Use in Preparedness and Response for a Nuclear or Radiological Emergency. General Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    This Safety Guide presents a coherent set of generic criteria (expressed numerically in terms of radiation dose) that form a basis for developing the operational levels needed for decision making concerning protective and response actions. The set of generic criteria addresses the requirements established in IAEA Safety Standards Series No. GS-R-2 for emergency preparedness and response, including lessons learned from responses to past emergencies, and provides an internally consistent foundation for the application of radiation protection. The publication also proposes a basis for a plain language explanation of the criteria for the public and for public officials. Contents: 1. Introduction; 2. Basic considerations; 3. Framework for emergency response criteria; 4. Guidance values for emergency workers; 5. Operational criteria; Appendix I: Dose concepts and dosimetric quantities; Appendix II: Examples of default oils for deposition, individual monitoring and contamination of food, milk and water; Appendix III: Development of EALs and example EALs for light water reactors; Appendix IV: Observables at the scene of a nuclear or radiological emergency

  16. Criteria for Use in Preparedness and Response for a Nuclear or Radiological Emergency. General Safety Guide (Russian Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide presents a coherent set of generic criteria (expressed numerically in terms of radiation dose) that form a basis for developing the operational levels needed for decision making concerning protective and response actions. The set of generic criteria addresses the requirements established in IAEA Safety Standards Series No. GS-R-2 for emergency preparedness and response, including lessons learned from responses to past emergencies, and provides an internally consistent foundation for the application of radiation protection. The publication also proposes a basis for a plain language explanation of the criteria for the public and for public officials. Contents: 1. Introduction; 2. Basic considerations; 3. Framework for emergency response criteria; 4. Guidance values for emergency workers; 5. Operational criteria; Appendix I: Dose concepts and dosimetric quantities; Appendix II: Examples of default oils for deposition, individual monitoring and contamination of food, milk and water; Appendix III: Development of EALs and example EALs for light water reactors; Appendix IV: Observables at the scene of a nuclear or radiological emergency.

  17. Criteria for Use in Preparedness and Response for a Nuclear or Radiological Emergency. General Safety Guide (Arabic Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    This Safety Guide presents a coherent set of generic criteria (expressed numerically in terms of radiation dose) that form a basis for developing the operational levels needed for decision making concerning protective and response actions. The set of generic criteria addresses the requirements established in IAEA Safety Standards Series No. GS-R-2 for emergency preparedness and response, including lessons learned from responses to past emergencies, and provides an internally consistent foundation for the application of principles of radiation protection. The publication also provides a basis for a plain language explanation of the criteria for the public and for public officials. Contents: 1. Introduction; 2. Basic considerations; 3. Framework for emergency response criteria; 4. Guidance values for emergency workers; 5. Operational criteria; Appendix I: Dose concepts and dosimetric quantities; Appendix II: Examples of default OILs for deposition, individual contamination and contamination of food, milk and water; Appendix III: Development of EALs and example EALs for light water reactors; Appendix IV: Observables on the scene of a radiological emergency.

  18. Emergency Response to Radioactive Material Transport Accidents

    International Nuclear Information System (INIS)

    EL-shinawy, R.M.K.

    2009-01-01

    Although transport regulations issued by IAEA is providing a high degree of safety during transport opertions,transport accidents involving packages containing radioactive material have occurred and will occur at any time. Whenever a transport accident involving radioactive material accurs, and many will pose no radiation safety problems, emergency respnose actioms are meeded to ensure that radiation safety is maintained. In case of transport accident that result in a significant relesae of radioactive material , loss of shielding or loss of criticality control , that consequences should be controlled or mitigated by proper emergency response actions safety guide, Emergency Response Plamming and Prepardness for transport accidents involving radioactive material, was published by IAEA. This guide reflected all requirememts of IAEA, regulations for safe transport of radioactive material this guide provide guidance to the publicauthorites and other interested organziation who are responsible for establishing such emergency arrangements

  19. 'Present nuclear emergency responses in India: tracing requirements and guidelines suggested after Fukushima accident in regards to public and plant safety

    International Nuclear Information System (INIS)

    Jawale, Priyanka M.

    2014-01-01

    In this poster the primary initiative is to educate the public at large and instill confidence about the present Emergency Response Systems of DAE and the imminent agencies in India. Poster attempts to analyse present regulatory and safety systems, mechanisms like plant and site emergency response plans are in place to handle radiation emergencies and how public will not be affected in any manner. In India also we needed some supplementary provisions to cope up with major disasters in Nuclear Power Plants (NPP) apart from the existing one. Some of the NPPs are not under the UN safeguards, which can not import Uranium also need extra care and protection. Regulatory and safety functions of Atomic Energy in India are carried out by the Atomic Energy Regulatory Board (Atomic Energy Regulatory Board), the poster attempts to explain the present regulatory and safety mechanism under Atomic Energy Regulatory Board. We have the plant and site emergency response plans in place. The well planned functioning of these is demonstrated here. India is equipped with detail plans of emergency response system, to handle the radiation emergencies in public domain even at the locations where DAE facility is not available

  20. Hazardous Materials Management and Emergency Response (HAMMER)

    Data.gov (United States)

    Federal Laboratory Consortium — The Volpentest Hazardous Materials Management and Emergency Response (HAMMER) Federal Training Center is a safety and emergency response training center that offers...

  1. Transport accident emergency response plan

    International Nuclear Information System (INIS)

    Vallette-Fontaine, M.; Frantz, P.

    1998-01-01

    To comply with the IAEA recommendations for the implementation of an Emergency Response Plan as described in Safety Series 87, Transnucleaire, a company deeply involved in the road and rail transports of the fuel cycle, masters means of Emergency Response in the event of a transport accident. This paper aims at analyzing the solutions adopted for the implementation of an Emergency Response Plan and the development of a technical support and adapted means for the recovery of heavy packagings. (authors)

  2. Safety significance of ATR passive safety response attributes

    International Nuclear Information System (INIS)

    Atkinson, S.A.

    1990-01-01

    The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory was designed with some passive safety response attributes which contribute to the safety of the facility. The three passive safety attributes being evaluated in the paper are: 1) In-core and in-vessel natural convection cooling, 2) a passive heat sink capability of the ATR primary coolant system (PCS) for the transfer of decay power from the uninsulated piping to the confinement, and 3) gravity feed of emergency coolant makeup. The safety significance of the ATR passive safety response attributes is that the reactor can passively respond to most transients, given a reactor scram, to provide adequate decay power removal and a significant time for operator action should the normal active heat removal systems and their backup systems both fail. The ATR Interim Level 1 Probabilistic Risk Assessment (PRA) models and results were used to evaluate the significance to ATR fuel damage frequency (or probability) of the above three passive response attributes. The results of the evaluation indicate that the first attribute is a major safety characteristic of the ATR. The second attribute has a noticeable but only minor safety significance. The third attribute has no significant influence on the ATR firewater injection system (emergency coolant system)

  3. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response

    International Nuclear Information System (INIS)

    2012-05-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  4. Lessons Learned from the Response to Radiation Emergencies (1945-2010)

    International Nuclear Information System (INIS)

    2012-01-01

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  5. Lessons Learned from the Response to Radiation Emergencies (1945-2010)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  6. SICOEM: emergency response data system

    International Nuclear Information System (INIS)

    Martin, A.; Villota, C.; Francia, L.

    1993-01-01

    The main characteristics of the SICOEM emergency response system are: -direct electronic redundant transmission of certain operational parameters and plant status informations from the plant process computer to a computer at the Regulatory Body site, - the system will be used in emergency situations, -SICOEM is not considered as a safety class system. 1 fig

  7. SICOEM: emergency response data system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Villota, C.; Francia, L. (UNESA, Madrid (Spain))

    1993-01-01

    The main characteristics of the SICOEM emergency response system are: -direct electronic redundant transmission of certain operational parameters and plant status informations from the plant process computer to a computer at the Regulatory Body site, - the system will be used in emergency situations, -SICOEM is not considered as a safety class system. 1 fig.

  8. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Chinese Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  9. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  10. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Chinese Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  11. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Arabic Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  12. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  13. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  14. Emergency planning and response preparedness in Slovenia

    International Nuclear Information System (INIS)

    Martincic, R.; Frlin-Lubi, A.; Usenicnik, B.

    2000-01-01

    Disasters do occur and so do nuclear or radiological accidents. Experience has shown that advance emergency response preparedness is essential in order to mitigate the consequences of an accident. In Slovenia, the Civil Protection Organization is the responsible authority for emergency preparedness and response to any kind of disasters. The Krko Nuclear Power Plant is the only nuclear power plant in Slovenia. To date the plant has operated safely and no serious incidents have been recorded. Slovenia nevertheless, maintains a high level of emergency preparedness, which is reflected in the area of prevention and safety and in the area of emergency response preparedness. The emergency management system for nuclear emergencies is incorporated into an overall preparedness and response system. The paper presents an overview of nuclear or radiological emergency response preparedness in Slovenia and its harmonization with the international guidelines. (author)

  15. Method for developing arrangements for response to a nuclear or radiological emergency. Updating IAEA-TECDOC-953. Emergency preparedness and response. Publication date: October 2003

    International Nuclear Information System (INIS)

    2003-09-01

    In 1997 the IAEA compiled, consolidated and organized existing information, and published the TECDOC-953 'Method for Development of Emergency Response Preparedness for Nuclear or Radiological Accidents'. Subsequently this publication was used extensively by the IAEA for training and for evaluation of emergency response programmes. In November 1999 a technical committee meeting (TCM) with representatives of over 20 States reviewed and provided feedback on IAEA-TECDOC-953. In March 2002, the IAEA's Board of Governors approved a Safety Requirements publication, 'Preparedness and Response for a Nuclear or Radiological Emergency', jointly sponsored by seven international organizations, which establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. The IAEA General Conference in resolution GC(46)/RES/9 encouraged Member States to implement, if necessary, instruments for improving their own preparedness and response capabilities for nuclear and radiological incidents and accidents, including their arrangements for responding to acts involving the malicious use of nuclear or radioactive material and to threats of such acts, and has further encouraged them to implement the Safety Requirements for Preparedness and Response to a Nuclear or Radiological Emergency. The obligations, responsibilities and requirements for preparedness and response for radiation emergencies are set out in the safety standards, in particular the 1996 'International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources'. Consensus information on relevant radiation protection criteria was established in 1994 and published in 'Intervention Criteria in a Nuclear or Radiation Emergency'. Several other guides and publications in the area of emergency preparedness and response had previously been issued. The present publication now being issued in the Emergency Preparedness and

  16. Basic data of emergency response centre

    International Nuclear Information System (INIS)

    Jenieek, O.

    1995-01-01

    Emergency Response Centre (ERC) of Czech Republic is a highly specialized institution belonging to Nuclear Safety State Administration (SONS), which assures its activities both organizationally and technically. Main function of the ERC in the case of nuclear emergency is to fulfil the needs of SONS, Governmental Committee for Nuclear Emergencies in ER (GCNE ER) and the regional organs of State Authorities concerning the emergency planning and preparedness, evaluation of nuclear emergency consequences, including the emergency management and response. In the case of major failure or accident on NPP, the ERC carries out the performance analysis and review of a given NPP. It also monitors the dosimetric situation and transfers the recommendation to GCNE ER, Regional Emergency Management Committees and to NPP

  17. Barsebaeck power plant - safety and emergency measures

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A Swedish-Danish Committee on safety at the Swedish nuclear power plant Barsebaeck was established in 1979 in order to evaluate the nuclear safety at Barsebaeck with a view to the reactor accident at the Three-Mile-Island nuclear power plant March 28, 1979. According to the committees mandate the investigations of the Kemeny Commission, the Rogouin investigation, investigations of the American Nuclear Regulatory Commission, and the Swedish report ''Safe nuclear power'' have been taken into consideration by the Committee. Furthermore, it has formed the basis for the Committees work that the authority responsibility for the safety at Barsebaeck lies with the Swedish authorities, and that these authorities have evaluated the safety aspects before the permissions for operation of the Barsebaeck power plant were given and hereafter currently in connection with the inspection of the power plant. The report prepared by the Commission treats aspects as: a) Nuclear safety at the Barsebaeck power plant, b) reactor safety and emergency provisions, c) common elements in the emergency provision situation in Sweden and Denmark, d) ongoing investigations on course of events during accidents and release limiting safety systems. (BP)

  18. Safety significance of ATR [Advanced Test Reactor] passive safety response attributes

    International Nuclear Information System (INIS)

    Atkinson, S.A.

    1989-01-01

    The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory was designed with some passive safety response attributes which contribute to the safety posture of the facility. The three passive safety attributes being evaluated in the paper are: (1) In-core and in-vessel natural convection cooling, (2) a passive heat sink capability of the ATR primary coolant system (PCS) for the transfer of decay power from the uninsulated piping to the confinement, and (3) gravity feed of emergency coolant makeup. The safety significance of the ATR passive safety response attributes is that the reactor can passively respond for most transients, given a reactor scram, to provide adequate decay power removal and a significant time for operator action should the normal active heat removal systems and their backup systems both fail. The ATR Interim Level 1 Probabilistic Risk Assessment (PRA) model ands results were used to evaluate the significance to ATR fuel damage frequency (or probability) of the above three passive response attributes. The results of the evaluation indicate that the first attribute is a major safety characteristic of the ATR. The second attribute has a noticeable but only minor safety significance. The third attribute has no significant influence on the ATR Level 1 PRA because of the diversity and redundancy of the ATR firewater injection system (emergency coolant system). 8 refs., 4 figs., 1 tab

  19. Radiological emergency response planning in Pennsylvania

    International Nuclear Information System (INIS)

    Henderson, O.K.

    1981-01-01

    The most important aspect of emergency preparedness is to recognize and accept the fact that there exists a potential for a problem or a condition and that it requires some attention. Emergency plans should be sufficiently flexible so as to accommodate the emergency situation as it unfolds. Of the several emergency responses that may be taken following a nuclear power plant accident evacuation evokes the greatest attention and discussion as to whether it is truly a feasible option. Movements of people confined to mass care facilities or on life support systems involve special requirements. The Three Mile Island accident has been the most studied nuclear incident in the history of the nuclear power reactor industry. The findings of these reports will have a major influence on nuclear power issues as they are addressed in the future. The question remains as to whether the political leadership will be willing to provide the resources required by the emergency plan. Future safety and emergency response to nuclear accidents depend upon Government and industry acting responsibly and not merely responding to regulations. The Three Mile Island accident has had some beneficial side effects for the emergency management community. It has: increased the level of awareness and importance of emergency planning; served as a catalyst for the sharing of experiences and information; encouraged standardization of procedures; and emphasized the need for identifying and assigning responsibilities. The Emergency Management Organization in responding to a disaster situation does not enjoy the luxury of time. It needs to act decisively and correctly. It does not often get a second chance. Governments, at all levels, and the nuclear power industry have been put on notice as a result of Three Mile Island. The future of nuclear energy may well hang in the balance, based upon the public's perception of the adequacy of preparedness and safety measures being taken. (author)

  20. Lessons Learned from the Response to Radiation Emergencies (1945-2010) (French Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  1. Lessons Learned from the Response to Radiation Emergencies (1945-2010) (Spanish Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the … application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  2. Lessons Learned from the Response to Radiation Emergencies (1945-2010) (Arabic Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  3. Lessons Learned from the Response to Radiation Emergencies (1945-2010) (Russian Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  4. The Emergency Action Plan of the Spanish Nuclear Safety Council (CSN)

    International Nuclear Information System (INIS)

    Calvin Cuarteto, M.; Camarma, J. R.; Martin Calvarro, J. M

    2007-01-01

    The Spanish Nuclear safety Council (CSN) has assigned by law among others the function to coordinate the measures of support and answer to nuclear emergency situations for all the aspects related with nuclear safety and radiological protection. Integrating and coordinating the different organisations public and private companies whose aid is necessary for the fulfilment of the functions attributed to the Regulatory Body. In order to suitable perform this function, CSN has equipped itself with an Emergency Action Plan that structures the response organization, establishes responsibility levels, incorporates basic performance procedures and includes capabilities to face the nuclear and radiological emergencies considering the external supports, resulting from the collaboration agreements with public institutions and private companies. To accomplish the above mentioned Emergency Action Plan, CSN has established and implanted a formation and training and re-training program for the organization response for emergencies and has update an operative centre (Emergency Room called Salem), equipped with infrastructures, tools and communication and operative systems that incorporate the more advanced technologies available to date. (Author)

  5. Advanced simulation and management software for nuclear emergency training and response

    International Nuclear Information System (INIS)

    Rose, K.W.

    2011-01-01

    The importance of training of safety personnel to deal with real world scenarios is prevalent amongst nuclear emergency preparedness and response organizations. For the development of training tools we have committed to ensure that field procedures, data collection software and decision making tools be identical during training sessions as they would be during a real emergency. By identifying the importance of a fully integrated tool, we have developed a safety support system capable of both functioning in training mode and real mode, enabling emergency response organizations to train more efficiently and effectively. This new fully integrated emergency management tool is called S3-FAST also known as Safety Support Systems - Field Assessment Survey Tool. (orig.)

  6. Emergency response and nuclear risk governance. Nuclear safety at nuclear power plant accidents; Notfallschutz und Risk Governance. Zur nuklearen Sicherheit bei Kernkraftwerksunfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlen, Johannes

    2014-07-01

    The present study entitled ''Emergency Response and Nuclear Risk Governance: nuclear safety at nuclear power plant accidents'' deals with issues of the protection of the population and the environment against hazardous radiation (the hazards of nuclear energy) and the harmful effects of radioactivity during nuclear power plant accidents. The aim of this study is to contribute to both the identification and remediation of shortcomings and deficits in the management of severe nuclear accidents like those that occurred at Chernobyl in 1986 and at Fukushima in 2011 as well as to the improvement and harmonization of plans and measures taken on an international level in nuclear emergency management. This thesis is divided into a theoretical part and an empirical part. The theoretical part focuses on embedding the subject in a specifically global governance concept, which includes, as far as Nuclear Risk Governance is concerned, the global governance of nuclear risks. Due to their characteristic features the following governance concepts can be assigned to these risks: Nuclear Safety Governance is related to safety, Nuclear Security Governance to security and NonProliferation Governance to safeguards. The subject of investigation of the present study is as a special case of the Nuclear Safety Governance, the Nuclear Emergency governance, which refers to off-site emergency response. The global impact of nuclear accidents and the concepts of security, safety culture and residual risk are contemplated in this context. The findings (accident sequences, their consequences and implications) from the analyses of two reactor accidents prior to Fukushima (Three Mile Iceland in 1979, Chernobyl in 1986) are examined from a historical analytical perspective and the state of the Nuclear Emergency governance and international cooperation aimed at improving nuclear safety after Chernobyl is portrayed by discussing, among other topics, examples of &apos

  7. Investigation of nuclear safety regulation and emergency preparedness for other countries

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Hitoshi; Kakuta, Akio; Yasuda, Makoto [Japan Nuclear Energy Safety Organization, Policy Planning and Coordination Department, Tokyo (Japan); Funahashi, Toshihiro [Japan Nuclear Energy Safety Organization, Nuclear Emergency Response and Prepardness Department, Tokyo (Japan)

    2012-10-15

    This investigation was carried out on organization and a role of nuclear regulatory body in the U.S., France, Germany, the U.K., Korea and Canada. In addition, nuclear emergency preparedness in these countries was investigated. A summary of this investigation is shown below. The Nuclear Regulatory Commission in the U.S. and the Nuclear Safety Authority in France have respectively headquarters and regional offices. The Nuclear Regulatory Commission has 4 regional offices and the Nuclear Safety Authority has 11 regional office. These regional offices are responsible primarily for the inspection of nuclear facilities. In Germany, the Federal Ministry of the Environment has delegated its regulatory authority to state governments, and the relevant department of each state government is in charge of inspection, oversight and approval of nuclear installations. In addition, in Korea, the U.S., and the U.K., the resident inspectors placed in each nuclear facility have the directed nuclear facilities. Meanwhile, Korea had changed its nuclear regulatory regime during this study period. The Nuclear Safety and Security Commission was newly established and took over from the Nuclear Safety Division of the Ministry of Education, Science and Technology. Regarding nuclear emergency preparedness system, it is secured that the public will be protected at the national level. And also the responding scheme and roles of regulatory agencies, operators, and the relevant ministries and agencies are identified. In addition, the licensee's responsibilities are defined. In France, existing organizations such as government organizations, governor who is appointed by the government and licensees respond to nuclear emergency. In Korea and the U.K., an emergency organization which consists of existing organizations are established and coped with nuclear emergency. In the U.S., Germany and Canada that have a federal system, the roles of state governments and the federal government are identified

  8. Modifications of Probabilistic Safety Assessment-1 Nuclear Power Plant Dukovany based upon new version of Emergency Operating Procedures

    International Nuclear Information System (INIS)

    Aldorf, R.

    1997-01-01

    In the frame of 'living Probabilistic Safety Assessment-1 Nuclear Power Plant Dukovany Project' being performed by Nuclear Research Institute Rez during 1997 is planned to reflect on Probabilistic Safety Assessment-1 basis on impact of Emergency Response Guidelines (as one particular event from the list of other modifications) on Plant Safety. Following highlights help to orient the reader in main general aspects, findings and issues of the work that currently continues on. Older results of Probabilistic Safety Assessment-1 Nuclear Power Plant Dukovany have revealed that human behaviour during accident progression scenarios represent one of the most important aspects in plant safety. Current effort of Nuclear Power Plants Dukovany (Czech Republic) and Bohunice (Slovak Republic) is focussed on development of qualitatively new symptom-based Emergency Operating Procedures called Emergency Response Guidelines Supplier - Westinghouse Energy Systems Europe, Brussels works in cooperation with teams of specialist from both Nuclear Power Plants. In the frame of 'living Probabilistic Safety Assessment-1 Nuclear Power Plant Dukovany Project' being performed by Nuclear Research Institute Rez during 1997 is planned to prove on Probabilistic Safety Assessment -1 basis an expected - positive impact of Emergency Response Guidelines on Plant Safety, Since this contract is currently still in progress, it is possible to release only preliminary conclusions and observations. Emergency Response Guidelines compare to original Emergency Operating Procedures substantially reduce uncertainty of general human behaviour during plant response to an accident process. It is possible to conclude that from the current scope Probabilistic Safety Assessment Dukovany point of view (until core damage), Emergency Response Guidelines represent adequately wide basis for mitigating any initiating event

  9. Manual for first responders to a radiological emergency. Emergency preparedness and response

    International Nuclear Information System (INIS)

    2008-01-01

    Under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. As stated in IAEA Safety Standards Series No. GS-R-2 'Preparedness and Response for a Nuclear or Radiological Emergency', which establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, 'first responders shall take all practicable and appropriate actions to minimize the consequences of a nuclear or radiological emergency'. The IAEA General Conference, in resolution GC(49)/RES/9, continues to encourage Member States 'to adopt the relevant Agency standards, procedures and practical tools' and underlines 'the need for first responders to have appropriate training for dealing with ionizing radiation during nuclear and radiological emergencies'. This publication is intended to assist in meeting these requirements and to fulfil Article 5 of the Assistance Convention. Its aim is to provide practical guidance for those who will respond during the first few hours to a radiological emergency (referred to here as 'first responders') and for national officials who would support this early response. It provides guidance in the form of action guides, instructions, and supporting data that can be easily applied by a State to build a basic capability to respond to a radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This report, published as part of the IAEA Emergency Preparedness and Response Series, replaces and builds on IAEA-TECDOC-1162 in the area of early response and first responders' actions. It takes account of the

  10. Hanford Emergency Response Plan

    International Nuclear Information System (INIS)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures

  11. Hanford Emergency Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures.

  12. Rosatom's Crisis Response Centre within the national nuclear safety system

    International Nuclear Information System (INIS)

    Smirnov, S.N.; Komarovskij, A.V.; Moskalev, V.A.

    2011-01-01

    The Rosatom Corporation includes a number of subsidiaries associated with nuclear energy use as well as with the military, scientific, technological, nuclear and radiation safety management aspects. The Rosatom Corporation has a well-established and efficient industry-wide system of emergency prevention and response, whose purpose is to ensure safe functioning of the nuclear industry, protection of personnel, the public and nature from potential dangers; it is also a functional subsystem of the unified national system of emergency prevention and response. Overall management of the system is performed by Director General of the Rosatom Corporation, overall methodological management - by the Department of Licensing, Nuclear and Radiation Safety; everyday management of the emergency prevention and response system, round-the-clock monitoring and informational support - by the Rosatom Crisis and Response Centre (CRC). CRC acts as the national focal point for warning and communication in Russia, which provides continuous round-the-clock preparedness to cooperate with the IAEA's Incident and Emergency Centre using the formats of the ENATOM international emergency response system, similar national crisis response centres abroad [ru

  13. Functional criteria for emergency response facilities. Technical report (final)

    International Nuclear Information System (INIS)

    1981-02-01

    This report describes the facilities and systems to be used by nuclear power plant licensees to improve responses to emergency situations. The facilities include the Technical Support Center (TSC), Onsite Operational Support Center (OSC), and Nearsite Emergency Operations Facility (EOF), as well as a brief discussion of the emergency response function of the control room. The data systems described are the Safety Parameter Display System (SPDS) and Nuclear Data Link (NDL). Together, these facilities and systems make up the total Emergency Response Facilities (ERFs). Licensees should follow the guidance provided both in this report and in NUREG-0654 (FEMA-REP-1), Revision 1, for design and implementation of the ERFs

  14. Emergency response in the Newfoundland offshore industry

    Energy Technology Data Exchange (ETDEWEB)

    Dempsey, J. [Cormorant Ltd., St. John' s, NL (Canada)

    2006-07-01

    This presentation reviewed current offshore oil activities with respect to safety issues regarding year-round marine operations in a harsh environment. Considerable logistics support is required for all offshore activities, including seismic and geotechnical surveys; exploration and production drilling; well testing; subsea construction; on-site production; and, delivery to market. Response to an offshore emergency must address the urgency of the incident along with stakeholder concerns. This presentation described the different types of emergencies and addressed issues regarding contingency planning; preventative measures; response philosophy; response scope; response at site; emergency management; communications links; and, oil spill response. The following current operations were highlighted: ExxonMobil's production drilling from the gravity-based concrete platform at Hibernia; Petro-Canada's production drilling at the Terra Nova FPSO; Husky Energy's production drilling at White Rose; and Chevron Canada's exploration drilling at the Orphan Basin. It was noted that in an emergency situation, the focus is on the welfare of offshore personnel. On an average day, the total offshore population is in the order of 1000 workers, all registered in the Personnel Logistics System which is updated with the departure of every helicopter from St. John's, Newfoundland or from the offshore platform. It is possible to prepare for foreseeable emergency incidents such as fire, explosion or gas leaks; spills to the marine environment; structural damage or collisions; persons lost at sea; helicopter or support vessel accidents; vessel sinking; sabotage; serious injuries or loss of life; severe ice events; and, loss of well control. The establishment of permanent safety zones at the Hibernia, White Rose and Terra Nova production fields are among the preventative measures, along with standby vessels that provide a rescue service for offshore installations

  15. Emergency response in the Newfoundland offshore industry

    International Nuclear Information System (INIS)

    Dempsey, J.

    2006-01-01

    This presentation reviewed current offshore oil activities with respect to safety issues regarding year-round marine operations in a harsh environment. Considerable logistics support is required for all offshore activities, including seismic and geotechnical surveys; exploration and production drilling; well testing; subsea construction; on-site production; and, delivery to market. Response to an offshore emergency must address the urgency of the incident along with stakeholder concerns. This presentation described the different types of emergencies and addressed issues regarding contingency planning; preventative measures; response philosophy; response scope; response at site; emergency management; communications links; and, oil spill response. The following current operations were highlighted: ExxonMobil's production drilling from the gravity-based concrete platform at Hibernia; Petro-Canada's production drilling at the Terra Nova FPSO; Husky Energy's production drilling at White Rose; and Chevron Canada's exploration drilling at the Orphan Basin. It was noted that in an emergency situation, the focus is on the welfare of offshore personnel. On an average day, the total offshore population is in the order of 1000 workers, all registered in the Personnel Logistics System which is updated with the departure of every helicopter from St. John's, Newfoundland or from the offshore platform. It is possible to prepare for foreseeable emergency incidents such as fire, explosion or gas leaks; spills to the marine environment; structural damage or collisions; persons lost at sea; helicopter or support vessel accidents; vessel sinking; sabotage; serious injuries or loss of life; severe ice events; and, loss of well control. The establishment of permanent safety zones at the Hibernia, White Rose and Terra Nova production fields are among the preventative measures, along with standby vessels that provide a rescue service for offshore installations. Supply vessels are also

  16. Preparation, conduct and evaluation of exercises to test preparedness for a nuclear or radiological emergency. Emergency preparedness and response

    International Nuclear Information System (INIS)

    2005-04-01

    The aim of this publication is to serve as a practical tool for the preparation, conduct and evaluation of exercises to test preparedness for response to a nuclear or radiological emergency. It fulfils in part the functions assigned to the IAEA under Article 5.a(ii) of the Convention on Assistance in Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), namely, to collect and disseminate to States Parties and Member States information concerning the methodologies, techniques and available results of research on such emergencies. To ensure effective response to radiation emergencies when needed, provisions should be made for regular training of emergency response personnel. As stated in Preparedness and Response for a Nuclear or Radiological Emergency (Safety Requirements, Safety Standard Series No. GS-R-2), 'The operator and the response organizations shall make arrangements for the selection of personnel and training to ensure that the personnel have the requisite knowledge, skills, abilities, equipment, procedures and other arrangements to perform their assigned response functions'. A further requirement is that 'Exercise programmes shall be conducted to ensure that all specified functions required to be performed for emergency response and all organizational interfaces for facilities in threat category I, II or III and the national level programmes for threat category IV or V are tested at suitable intervals'. In 2004 the IAEA General Conference, in resolution GC(48)/RES/10 encouraged Member States to 'implement the Safety Requirements for Preparedness and Response to a Nuclear or Radiological Emergency'. This document is published as part of the IAEA Emergency Preparedness and Response Series to assist in meeting these requirements and to fulfil Article 5 of the Assistance Convention. It was developed based on a number of assumptions about national and local capabilities. Therefore, the exercise structure, terms and scenarios must be

  17. Safety and emergency preparedness considerations for geotechnical field operations

    Energy Technology Data Exchange (ETDEWEB)

    Wemple, R.P.

    1989-04-01

    The GEO Energy Technology Department at Sandia National Laboratories is involved in several remote-site drilling and/or experimental operations each year. In 1987, the Geothermal Research Division of the Department developed a general set of Safe Operating Procedures (SOPs) that could be applied to a variety of projects. This general set is supplemented by site-specific SOPs as needed. Effective field operations require: integration of safety and emergency preparedness planning with overall project planning, training of field personnel and inventorying of local emergency support resources, and, developing a clear line of responsibility and authority to enforce the safety requirements. Copies of SOPs used in recent operations are included as examples of working documents for the reader.

  18. First response to transportation emergencies involving radioactive materials

    International Nuclear Information System (INIS)

    1994-01-01

    This FEMA/DOE/DOT videocourse describes the basis for procedures to be used by emergency first responders for transportation accidents which involve radioactive materials. Various commercial and government sector radioactive materials shipment programs will be described and will include information about hazards and the elements of safety, proper first response actions, notification procedures, and state or federal assistance during emergencies. Primary audience: fire service and emergency management personnel

  19. Criticality Safety Basics for INL Emergency Responders

    Energy Technology Data Exchange (ETDEWEB)

    Valerie L. Putman

    2012-08-01

    This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency.

    This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel.

    For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know …).

    INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

  20. Radiological emergencies the first response

    International Nuclear Information System (INIS)

    2011-11-01

    This national training course about radiological emergencies first answer include: Targets and preparation for emergency response in case of a nuclear or radiological accident. Operations center, action guide for fire fighting, medical coverage, forensic test, first aid, basic instrumentation for radiation, safety equipment, monitoring radiation, gamma rays, personnel exposed protection , radiation exposure rate, injury and illness for radiation, cancer risk, contamination, decontamination and treatment, markers, personnel dosimetry, training, medical and equipment transportation, shielded and tools. Psychological, physical (health and illness), economical (agriculture and industry) and environment impacts. Terrorist attacks, security belts. Support and international agreements (IAEA)

  1. PETRO-SAFE '94 conference papers: Book 2. Volume 5: Emergency response ampersand spill control; Volume 6: Remediation; Volume 7: Health ampersand safety issues

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The Fifth Annual Environmental, Safety and Health Conference and Exhibition for the oil, gas and petrochemical industries was held January 25--27, 1994 in Houston, Texas. The objective of this conference was to provide a multidisciplinary forum dealing with state-of-the-art environmental and safety issues. This volume focuses on the following: emergency response and spill control; remediation; and health and safety issues. Individual papers have been processed separately for inclusion in the appropriate data bases

  2. Responses to emergencies in Mexico and Central America

    International Nuclear Information System (INIS)

    Diaz, E.F.

    1986-01-01

    Radiation emergencies have two main aspects: radiation safety, which concerns control of the radiation source, and, more importantly, health effects, which entail diagnoses, treatment, and rehabilitation. The physician participates directly in a radiation emergency because he or she is the professional who knows best the human body and the methodology to re-establish health. However, because these types of incidents are infrequent, many physicians are poorly prepared to deal with such emergencies. Two main aspects of emergency response plans are: (1) prevention, including public education for behavior and planning for appropriate response; and (2) application, including prophylactic measures, assessing the extent of exposure and contamination, controlling public anxiety, and managing and treating the victims

  3. Status and developing of nuclear emergency response techniques in China

    International Nuclear Information System (INIS)

    Jiangang, Zhang; Bing, Zhao; Rongyao, Tang; Xiaoxiao, Xu

    2008-01-01

    Full text: Nuclear Emergency preparedness and response in China is consistent with international basic principle of nuclear safety and emergency response. Nuclear emergency response techniques in China developed with nuclear power from 1980s. The status of nuclear emergency techniques in China are: 1) China have plentiful experiences and abilities in the fields of nuclear facility emergency planning and preparedness, nuclear accident consequence assessment, emergency monitoring, and emergency advisory; 2) Emergency assistance ability in China has a foundation, however it cannot satisfy national requirement; 3) Emergency planning and preparedness is not based on hazard assessment; 4) Remote monitoring and robot techniques in not adaptable to the requirements of nuclear emergency response; 5) A consistent emergency assessment system is lack in China. In this paper, it is analyzed what is the developing focal points of nuclear emergency response techniques in China, and it is proposed that the main points are: a) To develop the research of emergency preparedness on the base of hazard analysis; b) To improve remote monitoring and robot ability during nuclear emergency; c) To develop the response technique research with anti-terrorism. (author)

  4. Emergency preparedness and response in transport of radioactive material

    International Nuclear Information System (INIS)

    Takani, Michio

    2008-01-01

    Nuclear power has been providing clean, affordable electricity in many parts of the world for nearly half a century. The national and international transport of nuclear fuel cycle materials is essential to support this activity. To sustain the nuclear power industry, fuel cycle materials have to be transported safely and efficiently. The nature of the industry is such that most countries with large-scale nuclear power industries cannot provide all the necessary fuel services themselves and consequently nuclear fuel cycle transport activities are international. The radioactive material transport industry has an outstanding safety record spanning over 45 years; however the transport of radioactive materials cannot and most not be taken for granted. Efficient emergency preparedness and response in the transport of radioactive material is an important element to ensure the maximum safety in accident conditions. The World Nuclear Transport Institute (WNTI), founded by International Nuclear Services (INS) of the United Kingdom, AREVA of France an the Federation of Electric Power Companies (FEPC) of Japan, represents the collective interest of the radioactive material transport sector, and those who rely on safe, effective and reliable transport. As part of its activities, WNTI has conducted two surveys through its members on emergency preparedness and response in the transport of radioactive material and emergency exercises. After recalling the International Atomic Energy Agency approach on emergency response, this paper will be discussing the main conclusion of surveys, in particular the national variations in emergency response and preparedness on the national and local levels of regulations, the emergency preparedness in place, the emergency response organisation (who and how), communication and exercises. (author)

  5. Emerging trends in PHWR safety - post Fukushima measures

    International Nuclear Information System (INIS)

    Nitheanandan, T.

    2015-01-01

    Nuclear power continues to be the choice for many countries that are seeking to enhance their energy security and reduce their carbon emissions. Nuclear power plants are complex systems which require multiple layers of protection. The fundamental principle of nuclear power safety technology is ‘Defence-in-Depth’ that underlies all safety activities - organizational, behavioural and technical. This provides layers of overlapping barrier protections so that, in the unlikely event that failure occurs, it would be compensated or corrected without causing harm to individuals or the public at large. Defence-in-depth encompasses prevention, control, protection, severe accident management and consequence mitigation, and offsite emergency response measures. Reactor Safety Science and Technology (S and T) has evolved over more than four decades in a number of PHWR countries. The PHWR operators, regulators and national research laboratories have dedicated S and T programs to continuously improve plant safety, operations and margins. The S and T is focused on finding simpler, less costly and more reliable safety system designs. These improvements are continuously incorporated in current units, refurbished units and proposed new builds. The Fukushima accident forced most nuclear nations to reassess and implement reactor design upgrades. The lessons learned from Fukushima have generated some nuclear safety enhancements such as: Design considerations for natural hazards, Diversity of heat sinks, Consideration of extended duration station blackout, Improvements to Severe Accident Management and SAM Operational aids, Accident instrumentation, Offsite management such as the use of predictive exposure tools, and Design considerations for Spent Fuel Pools. The plenary presentation will provide some of the emerging trends following the Fukushima accident. Examples of these emerging trends in Canada and on the international scene, will be presented. (author)

  6. [Out of hospital emergencies towards a safety culture].

    Science.gov (United States)

    Cano-del Pozo, M I; Obón-Azuara, B; Valderrama-Rodríguez, M; Revilla-López, C; Brosed-Yuste, C; Fajardo-Trasobares, E; Garcés-Baquero, P; Mateo-Clavería, J; Molina-Estrada, I; Perona-Flores, N; Salcedo-de Dios, S; Tomé-Rey, A

    2014-01-01

    The aim of this study is to measure the degree of safety culture (CS) among healthcare professional workers of an out-of-hospital Emergency Medical Service. Most patient safety studies have been conducted in relation to the hospital rather than pre-hospital Emergency Medical Services. The objective is to analyze the dimensions with lower scores in order to plan futures strategies. A descriptive study using the AHRQ (Agency for Healthcare Research and Quality) questionnaire. The questionnaire was delivered to all healthcare professionals workers of 061 Advanced Life Support Units of Aragón, during the month of August 2013. The response rate was 55%. Main strengths detected: an adequate number of staff (96%), good working conditions (89%), tasks supported from immediate superior (77%), teamwork climate (74%), and non-punitive environment to report adverse events (68%). Areas for improvement: insufficient training in patient safety (53%) and lack of feedback of incidents reported (50%). The opportunities for improvement identified focus on the training of professionals in order to ensure safer care, while extending the safety culture. Also, the implementation of a system of notification and registration of adverse events in the service is deemed necessary. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.

  7. 76 FR 71345 - Patient Safety Organizations: Voluntary Relinquishment From Emergency Medicine Patient Safety...

    Science.gov (United States)

    2011-11-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety Organizations: Voluntary Relinquishment From Emergency Medicine Patient Safety Foundation AGENCY: Agency for... notification of voluntary relinquishment from Emergency Medicine Patient Safety Foundation of its status as a...

  8. Experiences of an Engineer working in Reactor Safety and Emergency Response

    Science.gov (United States)

    Osborn, Douglas

    2015-04-01

    The U.S. Department of Energy's Federal Radiological Monitoring and Assessment Center Consequence Management Home Team (FRMAC/CMHT) Assessment Scientist's roles, responsibilities incorporate the FRMAC with other federal, state, and local agencies during a nuclear/radiological emergency. Before the Consequence Management Response Team arrives on-site, the FRMAC/CMHT provides technical and logistical support to the FRMAC and to state, local, and tribal authorities following a nuclear/radiological event. The FRMAC/CMHT support includes analyzing event data, evaluating hazards that relate to protection of the public, and providing event information and data products to protective action decision makers. The Assessment Scientist is the primary scientist responsible for performing calculations and analyses and communicating results to the field during any activation of the FRMAC/CMHT assets. As such, the FRMAC/CMHT Assessment Scientist has a number of different roles and responsibilities to fill depending upon the type of response that is required. Additionally, the Sandia National Laboratories (SNL) Consequence Assessment Team (CAT) Consequence Assessor roles, responsibilities involve hazardous materials operational emergency at SNL New Mexico facilities (SNL/NM) which include loss of control over radioactive, chemical, or explosive hazardous materials. When a hazardous materials operational emergency occurs, key decisions must be made in order to regain control over the hazards, protect personnel from the effects of the hazards, and mitigate impacts on operations, facilities, property, and the environment. Many of these decisions depend in whole or in part on the evaluation of potential consequences from a loss of control over the hazards. As such, the CAT has a number of different roles and responsibilities to fill depending upon the type of response that is required. Primary consequence-based decisions supported by the CAT during a hazardous materials operational

  9. Nuclear accident/radiological emergency assistance plan. NAREAP - edition 2000. Emergency preparedness and response

    International Nuclear Information System (INIS)

    2000-01-01

    The purpose of the Nuclear Accident/Radiological Emergency Assistance Plan (NAREAP) is to describe the framework for systematic, integrated, co-ordinated, and effective preparedness and response for a nuclear accident or radiological emergency involving facilities or practices that may give rise to a threat to health, the environment or property. The purpose of the NAREAP is: to define the emergency response objectives of the Agency's staff in a nuclear accident or a radiological emergency; to assign responsibilities for performing the tasks and authorities for making the decisions that comprise the Agency staff's response to a nuclear accident or radiological emergency; to guide the Agency managers who must ensure that all necessary tasks are given the necessary support in discharging the Agency staff responsibilities and fulfilling its obligations in response to an emergency; to ensure that the development and maintenance of detailed and coherent response procedures are well founded; to act as a point of reference for individual Agency staff members on their responsibilities (as an individual or a team member) throughout a response; to identify interrelationships with other international intergovernmental Organizations; and to serve as a training aid to maintain readiness of personnel. The NAREAP refers to the arrangements of the International Atomic Energy Agency and of the United Nations Security and Safety Section at the Vienna International Centre (UNSSS-VIC) that may be necessary for the IAEA to respond to a nuclear accident or radiological emergency, as defined in the Early Notification and Assistance Conventions. It covers response arrangements for any situation that may have actual, potential or perceived radiological consequences and that could require a response from the IAEA, as well as the arrangements for developing, maintaining and exercising preparedness. The implementing procedures themselves are not included in the NAREAP, but they are required

  10. An overview of the Environmental Response Team's air surveillance procedures at emergency response activities

    Energy Technology Data Exchange (ETDEWEB)

    Turpin, R.D.; Campagna, P.R. (U.S. Environmental Protection Agency, Edison, NJ (USA))

    The Safety and Air Surveillance Section of the United States Environmental Protection Agency's Environmental Response Team responds to emergency air releases such as tire fires and explosions. The air surveillance equipment and procedures used by the organization are described, and case studies demonstrating the various emergency response activities are presented. Air response activities include emergency air responses, occupational and human health air responses and remedial air responses. Monitoring and sampling equipment includes photoionization detectors, combustible gas meters, real-time aerosol monitors, personal sampling pumps, and high flow pumps. Case histories presented include disposal of dioxane from a cotton plant, response to oil well fires in Kuwait, disposal of high pressure cylinders in American Samoa, and response to hurricane Hugo. 3 refs., 1 tab.

  11. Joint radiation emergency management plan of the international organizations. Emergency preparedness and response. Date effective: 1 December 2002

    International Nuclear Information System (INIS)

    2002-11-01

    directives and regulations that bear on emergency response arrangements among some States. There are also bilateral agreements between some international organizations that also have relevance to preparedness and response arrangements. In March 2002, the IAEA Board of Governors approved a Safety Requirements document to be issued according to the IAEA's statutory function 'to establish ... standards of safety for protection of health and minimization of danger to life and property'. These Safety Requirements, entitled 'Preparedness and Response for a Nuclear or Radiological Emergency' (GS-R-2), are being jointly sponsored by the FAO, IAEA, the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (NEA/OECD), the United Nations Office for the Co-ordination of Humanitarian Affairs (OCHA), the Pan American Health Organization (PAHO) and WHO. These safety standards imply additional expectations with regard to operational emergency response arrangements. It has been recognized by the organizations responsible for emergency response, and reflected in the above requirements, that good planning in advance of an emergency can substantially improve the response. Moreover, one of the most important features of emergency response plans is to have clear lines of responsibility and authority. With this in mind, the IAEA, the organizations party to the Conventions, and some other international organizations that participate in the activities of the IACRNA develop and maintain this 'Joint Radiation Emergency Management Plan of the International Organizations' (the Joint Plan), which describes: the objectives of response; the organizations involved in response, their roles and responsibilities, and the interfaces among them and between them and States; operational concepts; and preparedness arrangements. These practical arrangements are reflected in the various organizations own emergency plans. The IAEA is the main co-ordinating body for development and maintenance of the

  12. The culture of patient safety from the perspective of the pediatric emergency nursing team

    Directory of Open Access Journals (Sweden)

    Taise Rocha Macedo

    Full Text Available Abstract OBJECTIVE To identify the patient safety culture in pediatric emergencies from the perspective of the nursing team. METHOD A quantitative, cross-sectional survey research study with a sample composed of 75 professionals of the nursing team. Data was collected between September and November 2014 in three Pediatric Emergency units by applying the Hospital Survey on Patient Safety Culture instrument. Data were submitted to descriptive analysis. RESULTS Strong areas for patient safety were not found, with areas identified having potential being: Expectations and actions from supervisors/management to promote patient safety and teamwork. Areas identified as critical were: Non-punitive response to error and support from hospital management for patient safety. The study found a gap between the safety culture and pediatric emergencies, but it found possibilities of transformation that will contribute to the safety of pediatric patients. CONCLUSION Nursing professionals need to become protagonists in the process of replacing the current paradigm for a culture focused on safety. The replication of this study in other institutions is suggested in order to improve the current health care scenario.

  13. Generic procedures for assessment and response during a radiological emergency

    International Nuclear Information System (INIS)

    2000-08-01

    One of the most important aspects of managing a radiological emergency is the ability to promptly and adequately determine and take actions to protect members of the public and emergency workers. Radiological accident assessment must take account of all critical information available at any time and must be an iterative and dynamic process aimed at reviewing the response as more detailed and complete information becomes available. This manual provides the tools, generic procedures and data needed for an initial response to a non-reactor radiological accident. This manual is one out of a set of IAEA publications on emergency preparedness and response, including Method for the Development of Emergency Response Preparedness for Nuclear or Radiological Accidents (IAEA-TECDOC-953), Generic Assessment Procedures for Determining Protective Actions During a Reactor Accident (IAEA-TECDOC-955) and Intervention Criteria in a Nuclear or Radiation Emergency (Safety Series No. 109)

  14. Manual for first responders to a radiological emergency. Emergency preparedness and response. Publication date: June 2007

    International Nuclear Information System (INIS)

    2007-08-01

    Under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. As stated in IAEA Safety Standards Series No. GS-R-2 'Preparedness and Response for a Nuclear or Radiological Emergency', which establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, 'first responders shall take all practicable and appropriate actions to minimize the consequences of a nuclear or radiological emergency'. The IAEA General Conference, in resolution GC(49)/RES/9, continues to encourage Member States 'to adopt the relevant Agency standards, procedures and practical tools' and underlines 'the need for first responders to have appropriate training for dealing with ionizing radiation during nuclear and radiological emergencies'. This publication is intended to assist in meeting these requirements and to fulfil Article 5 of the Assistance Convention. Its aim is to provide practical guidance for those who will respond during the first few hours to a radiological emergency (referred to here as 'first responders') and for national officials who would support this early response. It provides guidance in the form of action guides, instructions, and supporting data that can be easily applied by a State to build a basic capability to respond to a radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This report, published as part of the IAEA Emergency Preparedness and Response Series, replaces and builds on IAEA-TECDOC-1162 in the area of early response and first responders' actions. It takes account of the

  15. Manual for first responders to a radiological emergency. Emergency preparedness and response. Publication date: October 2006

    International Nuclear Information System (INIS)

    2006-10-01

    Under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. As stated in IAEA Safety Standards Series No. GS-R-2 'Preparedness and Response for a Nuclear or Radiological Emergency', which establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, 'first responders shall take all practicable and appropriate actions to minimize the consequences of a nuclear or radiological emergency'. The IAEA General Conference, in resolution GC(49)/RES/9, continues to encourage Member States 'to adopt the relevant Agency standards, procedures and practical tools' and underlines 'the need for first responders to have appropriate training for dealing with ionizing radiation during nuclear and radiological emergencies'. This publication is intended to assist in meeting these requirements and to fulfil Article 5 of the Assistance Convention. Its aim is to provide practical guidance for those who will respond during the first few hours to a radiological emergency (referred to here as 'first responders') and for national officials who would support this early response. It provides guidance in the form of action guides, instructions, and supporting data that can be easily applied by a State to build a basic capability to respond to a radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This report, published as part of the IAEA Emergency Preparedness and Response Series, replaces and builds on IAEA-TECDOC-1162 in the area of early response and first responders' actions. It takes account of the

  16. Multi-objective evolutionary emergency response optimization for major accidents

    International Nuclear Information System (INIS)

    Georgiadou, Paraskevi S.; Papazoglou, Ioannis A.; Kiranoudis, Chris T.; Markatos, Nikolaos C.

    2010-01-01

    Emergency response planning in case of a major accident (hazardous material event, nuclear accident) is very important for the protection of the public and workers' safety and health. In this context, several protective actions can be performed, such as, evacuation of an area; protection of the population in buildings; and use of personal protective equipment. The best solution is not unique when multiple criteria are taken into consideration (e.g. health consequences, social disruption, economic cost). This paper presents a methodology for multi-objective optimization of emergency response planning in case of a major accident. The emergency policy with regards to protective actions to be implemented is optimized. An evolutionary algorithm has been used as the optimization tool. Case studies demonstrating the methodology and its application in emergency response decision-making in case of accidents related to hazardous materials installations are presented. However, the methodology with appropriate modification is suitable for supporting decisions in assessing emergency response procedures in other cases (nuclear accidents, transportation of hazardous materials) or for land-use planning issues.

  17. Ontario Hydro's transportation of radioactive material and emergency response plan

    International Nuclear Information System (INIS)

    Karmali, N.

    1993-01-01

    Ontario Hydro has been transporting radioactive material for almost 30 years without any exposure to the public or release to the environment. However, there have been three accidents involving Hydro's shipments of radioactive material. In addition to the quality packaging and shipping program, Ontario Hydro has an Emergency Response Plan and capability to deal with an accident involving a shipment of radioactive material. The Corporation's ability to respond, to effectively control and contain the situation, site remediation, and to provide emergency public information in the event of a road accident minimizes the risk to the public and the environment. This emphasizes their commitment to worker safety, public safety and impact to the environment. Response capability is mandated under various legislation and regulations in Canada

  18. An Ontology-Underpinned Emergency Response System for Water Pollution Accidents

    Directory of Open Access Journals (Sweden)

    Xiaoliang Meng

    2018-02-01

    Full Text Available With the unceasing development and maturation of environment geographic information system, the response to water pollution accidents has been digitalized through the combination of monitoring sensors, management servers, and application software. However, most of these systems only achieve the basic and general geospatial data management and functional process tasks by adopting mechanistic water-quality models. To satisfy the sustainable monitoring and real-time emergency response application demand of the government and public users, it is a hotspot to study how to make the water pollution information being semantic and make the referred applications intelligent. Thus, the architecture of the ontology-underpinned emergency response system for water pollution accidents is proposed in this paper. This paper also makes a case study for usability testing of the water ontology models, and emergency response rules through an online water pollution emergency response system. The system contributes scientifically to the safety and sustainability of drinking water by providing emergency response and decision-making to the government and public in a timely manner.

  19. Considerations in Emergency Preparedness and Response for a State Embarking on a Nuclear Power Programme (Arabic Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The aim of this publication is to provide a practical tool for emergency planning for States embarking on a nuclear power programme and to fulfil, in part, functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency ('Assistance Convention'). Under Article 5.a (ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to State Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. As established in the publication Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), the practical goal of emergency response is 'to ensure that arrangements are in place for a timely, managed, controlled, coordinated and effective response at the scene, and at the local, regional, national and international level, to any nuclear or radiological emergency'. In 2011 the IAEA General Conference, in resolution GC(55)/RES/9, encouraged States 'embarking on new nuclear power programmes to take timely and proactive steps, based upon gradual and systematic application of IAEA safety standards, to establish and sustain a strong safety culture'. It also 'emphasizes the importance for all Member States to implement emergency preparedness and response mechanisms and develop mitigation measures at a national level, consistent with the IAEA's Safety Standards, for improving emergency preparedness and response, facilitating communication in an emergency and contributing to harmonization of national criteria for protective and other actions'. This publication, issued in the IAEA Emergency Preparedness and Response Series, is intended to assist on steps to be taken by States embarking on a nuclear power programme to establish effective national capabilities and arrangements of preparedness for and response to a nuclear or radiological emergency (hereinafter referred to as

  20. Considerations in Emergency Preparedness and Response for a State Embarking on a Nuclear Power Programme (Russian Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of this publication is to provide a practical tool for emergency planning for States embarking on a nuclear power programme and to fulfil, in part, functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency ('Assistance Convention'). Under Article 5.a (ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to State Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. As established in the publication Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), the practical goal of emergency response is 'to ensure that arrangements are in place for a timely, managed, controlled, coordinated and effective response at the scene, and at the local, regional, national and international level, to any nuclear or radiological emergency'. In 2011 the IAEA General Conference, in resolution GC(55)/RES/9, encouraged States 'embarking on new nuclear power programmes to take timely and proactive steps, based upon gradual and systematic application of IAEA safety standards, to establish and sustain a strong safety culture'. It also 'emphasizes the importance for all Member States to implement emergency preparedness and response mechanisms and develop mitigation measures at a national level, consistent with the IAEA's Safety Standards, for improving emergency preparedness and response, facilitating communication in an emergency and contributing to harmonization of national criteria for protective and other actions'. This publication, issued in the IAEA Emergency Preparedness and Response Series, is intended to assist on steps to be taken by States embarking on a nuclear power programme to establish effective national capabilities and arrangements of preparedness for and response to a nuclear or radiological emergency (hereinafter referred to as

  1. Considerations in Emergency Preparedness and Response for a State Embarking on a Nuclear Power Programme (Spanish Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The aim of this publication is to provide a practical tool for emergency planning for States embarking on a nuclear power programme and to fulfil, in part, functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency ('Assistance Convention'). Under Article 5.a (ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to State Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. As established in the publication Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), the practical goal of emergency response is 'to ensure that arrangements are in place for a timely, managed, controlled, coordinated and effective response at the scene, and at the local, regional, national and international level, to any nuclear or radiological emergency'. In 2011 the IAEA General Conference, in resolution GC(55)/RES/9, encouraged States 'embarking on new nuclear power programmes to take timely and proactive steps, based upon gradual and systematic application of IAEA safety standards, to establish and sustain a strong safety culture'. It also 'emphasizes the importance for all Member States to implement emergency preparedness and response mechanisms and develop mitigation measures at a national level, consistent with the IAEA's Safety Standards, for improving emergency preparedness and response, facilitating communication in an emergency and contributing to harmonization of national criteria for protective and other actions'. This publication, issued in the IAEA Emergency Preparedness and Response Series, is intended to assist on steps to be taken by States embarking on a nuclear power programme to establish effective national capabilities and arrangements of preparedness for and response to a nuclear or radiological emergency (hereinafter referred to as

  2. The Influence Paths of Emotion on the Occupational Safety of Rescuers Involved in Environmental Emergencies- Systematic Review Article.

    Science.gov (United States)

    Lu, Jintao; Yang, Naiding; Ye, Jinfu; Wu, Haoran

    2014-11-01

    A detailed study and analysis of previous research has been carried out to illustrate the relationships between a range of environmental emergencies, and their effects on the emotional state of the rescuers involved in responding to them, by employing Pub Med, Science Direct, Web of Science, Google Scholar, CNKI and Scopus for required information with the several keywords "emergency rescue", "occupational safety", "natural disaster", "emotional management". The effect of the rescuers' emotion on their occupational safety and immediate and long-term emotional behavior is then considered. From these considerations, we suggested four research propositions related to the emotional effects at both individual and group levels, and to the responsibilities of emergency response agencies in respect of ensuring the psychological and physical occupational safety of rescuers during and after environmental emergencies. An analysis framework is proposed which could be used to study the influence paths of these different aspects of emotional impact on a range of occupational safety issues for rescue workers. The authors believe that the conclusions drawn in this paper can provide a useful theoretical reference for decision-making related to the management and protection of the occupational safety of rescuers responding to natural disasters and environmental emergencies.

  3. Emergency response planning and preparedness for transport accidents involving radioactive material

    International Nuclear Information System (INIS)

    1988-01-01

    The purpose of this Guide is to provide assistance to public authorities and others (including consignors and carriers of radioactive materials) who are responsible for ensuring safety in establishing and developing emergency response arrangements for responding effectively to transport accidents involving radioactive materials. This Guide is concerned mainly with the preparation of emergency response plans. It provides information which will assist those countries whose involvement with radioactive materials is just beginning and those which have already developed their industries involving radioactive materials and attendant emergency plans, but may need to review and improve these plans. The need for emergency response plans and the ways in which they are implemented vary from country to country. In each country, the responsible authorities must decide how best to apply this Guide, taking into account the actual shipments and associated hazards. In this Guide the emergency response planning and response philosophy are outlined, including identification of emergency response organizations and emergency services that would be required during a transport accident. General consequences which could prevail during an accident are described taking into account the IAEA Regulations for the Safe Transport of Radioactive Material. 43 refs, figs and tabs

  4. Clarification of TMI action plan requirements. Requirements for emergency response capability

    International Nuclear Information System (INIS)

    1983-01-01

    This document, Supplement 1 to NUREG-0737, is a letter from D. G. Eisenhut, Director of the Division of Licensing, NRR, to licensees of operating power reactors, applicants for operating licenses, and holders of construction permits forwarding post-TMI requirements for emergency response capability which have been approved for implementation. On October 30, 1980, the NRC staff issued NUREG-0737, which incorporated into one document all TMI-related items approved for implementation by the Commission at that time. In this NRC report, additional clarification is provided regarding Safety Parameter Display Systems, Detailed Control Room Design Reviews, Regulatory Guide 1.97 (Revision 2) - Application to Emergency Response Facilities, Upgrade of Emergency Operating Procedures, Emergency Response Facilities, and Meteorological Data

  5. Nigeria status on capabilities for response to nuclear or radiological emergency

    International Nuclear Information System (INIS)

    Sambo, I.; Elegba, S.B.; Ogharandukun, M.

    2007-01-01

    The use of nuclear technology has been widely employed and will continue to expand in use in Nigeria particularly in the health, industrial, mining, water resources, agriculture, manufacturing, education and research sectors. Incidents and emergencies cannot therefore be ruled out. Effective national response capabilities are essential to minimize the impacts from nuclear and radiological emergencies, and to build public trust in the safety and security of nuclear technology. The often discussed Nigeria's Nuclear Power Plant (NPP) project cannot occur without enhanced national capabilities to respond to an incidence or emergency. Moreover, increased concern over the use of nuclear or radioactive materials malevolent acts increases the need to broaden response capabilities. This paper examines Nigeria's status on capabilities for response to a nuclear and radiological emergency vis-a-vis international requirements for effective response capabilities

  6. Introduction of an Emergency Response Plan for flood loading of Sultan Abu Bakar Dam in Malaysia

    Science.gov (United States)

    Said, N. F. Md; Sidek, L. M.; Basri, H.; Muda, R. S.; Razad, A. Z. Abdul

    2016-03-01

    Sultan Abu Bakar Dam Emergency Response Plan (ERP) is designed to assist employees for identifying, monitoring, responding and mitigation dam safety emergencies. This paper is outlined to identification of an organization chart, responsibility for emergency management team and triggering level in Sultan Abu Bakar Dam ERP. ERP is a plan that guides responsibilities for proper operation of Sultan Abu Bakar Dam in respond to emergency incidents affecting the dam. Based on this study four major responsibilities are needed for Abu Bakar Dam owing to protect any probable risk for downstream which they can be Incident Commander, Deputy Incident Commander, On-Scene Commander, Civil Engineer. In conclusion, having organization charts based on ERP studies can be helpful for decreasing the probable risks in any projects such as Abu Bakar Dam and it is a way to identify and suspected and actual dam safety emergencies.

  7. Definition and means of maintaining the emergency notification and evacuation system portion of the Plutonium Finishing Plant safety envelope

    International Nuclear Information System (INIS)

    White, W.F.

    1997-01-01

    The Emergency Evacuation and Notification System provides information to the PFP Building Emergency Director to assist in determining appropriate emergency response, notifies personnel of the required response, and assists in their response. The report identifies the equipment in the Safety Envelope (SE) for this System and the Administrative, Maintenance, and Surveillance Procedures used to maintain the SE Equipment

  8. Operational safety - the IAEA response

    International Nuclear Information System (INIS)

    Rosen, M.

    1984-01-01

    Nuclear safety is an international issue. The role of the International Atomic Energy Agency is growing because it offers a centre for contact and exchange between East and West, North and South. New initiatives are under way to intensify international co-operative safety efforts through exchange of information on abnormal events at nuclear power plants, and through greater sharing of safety research results. Emergency preparedness also lends itself to international co-operation. A report has been prepared on the need for establishing mutual emergency assistance. By analysing possible constraints to bilateral or multinational efforts in advance, a basis for agreement at the time of an emergency is being worked out. Safety standards have been developed in several areas. The NUSS Codes and Guides, now almost complete, make available to countries starting a nuclear power programme a coherent set of nuclear safety standards. A revised set of Basic Safety Standards for Radiation Protection has been issued in 1982. (author)

  9. Study on IAEA international emergency response exercise convEx-3

    International Nuclear Information System (INIS)

    Yamamoto, Kazuya

    2007-05-01

    The International Atomic Energy Agency (IAEA) carried out a large-scale international emergency response exercise in 2005 under the designated name of ConvEx-3(2005), at Romania. This review report summarizes a study about ConvEx-3(2005) based on several related open literature. The ConvEx-3 was conducted in accordance with Agency's safety standard series and requirements in the field of Emergency Preparedness and Response. The study on the preparation, conduct and evaluation of ConvEx-3(2005) exercise is expected to provide very useful knowledge for development of drills and educational programs conducted by Nuclear Emergency Assistance and Training Center (NEAT). Especially, study on the exercise evaluations is instrumental in improving evaluations of drills planned by the national government and local governments. As international cooperation among Asian countries in the field of nuclear emergency preparedness and response is going to realize, it is very useful to survey and consider scheme and methodology about international emergency preparedness, response and exercise referring the knowledge of this ConvEx-3 study. The lessons learned from this study of ConvEx-3(2005) are summarized in four chapters; methodology of exercises and educational programs, exercise evaluation process, amendments/verification of the emergency response plan of NEAT, and technical issues of systems for emergency response and assistance of NEAT relevant to interface for international emergency communication. (author)

  10. The safety of available and emerging options for emergency contraception.

    Science.gov (United States)

    Lee, Jessica K; Schwarz, Eleanor Bimla

    2017-10-01

    Emergency contraception (EC) is a way to significantly reduce the chance of becoming pregnant after an episode of unprotected intercourse. Considerable data support the safety of all available and emerging options for EC. Areas covered: This review presents a comprehensive summary of the literature regarding the safety of EC as well as directions for further study. PubMed was searched for all relevant studies published prior to June 2017. Expertopinion: All available methods of EC (i.e., ulipristal acetate pills, levonorgestrel pills, and the copper-IUD), carry only mild side effects and serious adverse events are essentially unknown. The copper IUD has the highest efficacy of EC methods. Given the excellent safety profiles of mifepristone and the levonorgestrel IUD, research is ongoing related to use of these products for EC.

  11. Short radiological emergency response training program

    International Nuclear Information System (INIS)

    Williams, R.D.; Greenhouse, N.A.

    1977-01-01

    This paper presents an outline of a radiological emergency response training program conducted at Brookhaven National Laboratory by the health physics and safety training staff. This course is given to groups from local, county, state, and federal agencies and industrial organizations. It is normally three days in length, although the structure is flexible to accommodate individual needs and prior training. An important feature of the course is an emergency exercise utilizing a short lived radionuclide to better simulate real accident conditions. Groups are encouraged to use their own instruments to gain better familiarity with their operating characteristics under field conditions. Immediately following the exercise, a critical review of the students' performance is conducted

  12. Food safety ontology and text mining strategies as a tool in (re)emerging risk identification

    NARCIS (Netherlands)

    Brug, F. van de

    2009-01-01

    Industry and government are held responsible for the safety of food and feed products. Therefore actual and relevant information concerning emerging safety risks is crucial. But how is it possible to filter relevant information from the fast growing volumes of information produced by science and the

  13. Definition and means of maintaining the emergency notification and evacuation system portion of the plutonium finishing plant safety envelope

    International Nuclear Information System (INIS)

    WHITE, W.F.

    1999-01-01

    The Emergency Evacuation and Notification System provides information to the Plutonium Finishing Plant (PFP) Building Emergency Director to assist in determining appropriate emergency response, notifies personnel of the required response, and assists in their response. The report identifies the equipment in the Safety Envelope (SE) for this System and the Administrative, Maintenance, and Surveillance Procedures used to maintain the SE Equipment

  14. ANS-8.23: Criticality accident emergency planning and response

    International Nuclear Information System (INIS)

    Pruvost, N.L.

    1991-01-01

    A study group has been formed under the auspices of ANS-8 to examine the need for a standard on nuclear criticality accident emergency planning and response. This standard would be ANS-8.23. ANSI/ANS-8.19-1984, Administrative Practices for Nuclear Criticality Safety, provides some guidance on the subject in Section 10 titled -- Planned Response to Nuclear Criticality Accidents. However, the study group has formed a consensus that Section 10 is inadequate in that technical guidance in addition to administrative guidance is needed. The group believes that a new standard which specifically addresses emergency planning and response to a perceived criticality accident is needed. Plans for underway to request the study group be designated a writing group to create a draft of such a new standard. The proposed standard will divide responsibility between management and technical staff. Generally, management will be charged with providing the necessary elements of emergency planning such as a criticality detection and alarm system, training, safe evacuation routes and assembly areas, a system for timely accountability of personnel, and an effective emergency response organization. The technical staff, on the other hand, will be made responsible for establishing specific items such as safe and clearly posted evacuation evacuation routes and dose criteria for personnel assembly areas. The key to the question of responsibilities is that management must provide the resources for the technical staff to establish the elements of an emergency response effort

  15. Evaluating nuclear power plant crew performance during emergency response drills

    International Nuclear Information System (INIS)

    Rabin, D.

    1999-01-01

    The Atomic Energy Control Board (AECB) is responsible for the regulation of the health, safety and environmental consequences of nuclear activities in Canada. Recently, the Human Factors Specialists of the AECB have become involved in the assessment of emergency preparedness and emergency response at nuclear facilities. One key contribution to existing AECB methodology is the introduction of Behaviourally Anchored Rating Scales (BARS) to measure crew interaction skills during emergency response drills. This report presents results of an on-going pilot study to determine if the BARS provide a reliable and valid means of rating the key dimensions of communications, openness, task coordination and adaptability under simulated emergency circumstances. To date, the objectivity of the BARS is supported by good inter-rater reliability while the validity of the BARS is supported by the agreement between ratings of crew interaction and qualitative and quantitative observations of crew performance. (author)

  16. Considerations in Emergency Preparedness and Response for a State Embarking on a Nuclear Power Programme. Publication Date: August 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    The aim of this publication is to provide a practical tool for emergency planning for States embarking on a nuclear power programme and to fulfil, in part, functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency ('Assistance Convention'). Under Article 5.a (ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to State Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. As established in the publication Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), the practical goal of emergency response is 'to ensure that arrangements are in place for a timely, managed, controlled, coordinated and effective response at the scene, and at the local, regional, national and international level, to any nuclear or radiological emergency'. In 2011 the IAEA General Conference, in resolution GC(55)/RES/9, encouraged States 'embarking on new nuclear power programmes to take timely and proactive steps, based upon gradual and systematic application of IAEA safety standards, to establish and sustain a strong safety culture'. It also 'emphasizes the importance for all Member States to implement emergency preparedness and response mechanisms and develop mitigation measures at a national level, consistent with the IAEA's Safety Standards, for improving emergency preparedness and response, facilitating communication in an emergency and contributing to harmonization of national criteria for protective and other actions'. This publication, issued in the IAEA Emergency Preparedness and Response Series, is intended to assist on steps to be taken by States embarking on a nuclear power programme to establish effective national capabilities and arrangements of preparedness for and response to a nuclear or radiological emergency (hereinafter referred to as

  17. Considerations in Emergency Preparedness and Response for a State Embarking on a Nuclear Power Programme. Publication Date: August 2012

    International Nuclear Information System (INIS)

    2012-01-01

    The aim of this publication is to provide a practical tool for emergency planning for States embarking on a nuclear power programme and to fulfil, in part, functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency ('Assistance Convention'). Under Article 5.a (ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to State Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. As established in the publication Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), the practical goal of emergency response is 'to ensure that arrangements are in place for a timely, managed, controlled, coordinated and effective response at the scene, and at the local, regional, national and international level, to any nuclear or radiological emergency'. In 2011 the IAEA General Conference, in resolution GC(55)/RES/9, encouraged States 'embarking on new nuclear power programmes to take timely and proactive steps, based upon gradual and systematic application of IAEA safety standards, to establish and sustain a strong safety culture'. It also 'emphasizes the importance for all Member States to implement emergency preparedness and response mechanisms and develop mitigation measures at a national level, consistent with the IAEA's Safety Standards, for improving emergency preparedness and response, facilitating communication in an emergency and contributing to harmonization of national criteria for protective and other actions'. This publication, issued in the IAEA Emergency Preparedness and Response Series, is intended to assist on steps to be taken by States embarking on a nuclear power programme to establish effective national capabilities and arrangements of preparedness for and response to a nuclear or radiological emergency (hereinafter referred to as

  18. How the nuclear safety team conducts emergency exercises at the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Vaz, Antonio C.A.; Silva, Davilson G.; Toyoda, Eduardo Y.; Santia, Paulo S.; Conti, Thadeu N.; Semmler, Renato; Carvalho, Ricardo N.

    2015-01-01

    This work introduces the Diagram of Emergency Exercise Coordination designed by the Nuclear Safety Team for better Emergency Exercise coordination. The Nuclear Safety Team was created with the mission of avoiding, preventing and mitigating the causes and effects of accidents at the IEA-R1. The facility where we conduct our work is located in an area of a huge population, what increases the responsibility of our mission: conducting exercises and training are part of our daily activities. During the Emergency Exercise, accidents ranked 0-4 on INES (International Nuclear Events Scale) are simulated and involve: Police Department, Fire Department, workers, people from the community, and others. In the last exercise held in June 2014, the scenario contemplated a terrorist organization action that infiltrated in a group of students who were visiting the IEA-R1, tried to steal fresh fuel element to fabricate a dirty bomb. Emergency procedures and plans, timeline and metrics of the actions were applied to the Emergency Exercise evaluation. The next exercise will be held in November, with the simulation of the piping of the primary cooling circuit rupture, causing the emptying of the pool and the lack of cooling of the fuel elements in the reactor core: this will be the scenario. The skills acquired and the systems improvement have been very important tools for the reactor operation safety and the Nuclear Safety Team is making technical efforts so that these Emergency Exercises may be applied to other nuclear and radiological facilities. Equally important for the process of improving nuclear safety is the emphasis placed on implementing quality improvements to the human factor in the nuclear safety area, a crucial element that is often not considered by those outside the nuclear sector. Surely, the Diagram of Emergency Exercise Coordination application will improve and facilitate the organization, coordination and evaluation tasks. (author)

  19. How the nuclear safety team conducts emergency exercises at the IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Antonio C.A.; Silva, Davilson G.; Toyoda, Eduardo Y.; Santia, Paulo S.; Conti, Thadeu N.; Semmler, Renato; Carvalho, Ricardo N., E-mail: acavaz@ipen.br, E-mail: dgsilva@ipen.br, E-mail: eytoyoda@ipen.br, E-mail: psantia@ipen.br, E-mail: tnconti@ipen.br, E-mail: rsemmler@ipen.b, E-mail: rncarval@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This work introduces the Diagram of Emergency Exercise Coordination designed by the Nuclear Safety Team for better Emergency Exercise coordination. The Nuclear Safety Team was created with the mission of avoiding, preventing and mitigating the causes and effects of accidents at the IEA-R1. The facility where we conduct our work is located in an area of a huge population, what increases the responsibility of our mission: conducting exercises and training are part of our daily activities. During the Emergency Exercise, accidents ranked 0-4 on INES (International Nuclear Events Scale) are simulated and involve: Police Department, Fire Department, workers, people from the community, and others. In the last exercise held in June 2014, the scenario contemplated a terrorist organization action that infiltrated in a group of students who were visiting the IEA-R1, tried to steal fresh fuel element to fabricate a dirty bomb. Emergency procedures and plans, timeline and metrics of the actions were applied to the Emergency Exercise evaluation. The next exercise will be held in November, with the simulation of the piping of the primary cooling circuit rupture, causing the emptying of the pool and the lack of cooling of the fuel elements in the reactor core: this will be the scenario. The skills acquired and the systems improvement have been very important tools for the reactor operation safety and the Nuclear Safety Team is making technical efforts so that these Emergency Exercises may be applied to other nuclear and radiological facilities. Equally important for the process of improving nuclear safety is the emphasis placed on implementing quality improvements to the human factor in the nuclear safety area, a crucial element that is often not considered by those outside the nuclear sector. Surely, the Diagram of Emergency Exercise Coordination application will improve and facilitate the organization, coordination and evaluation tasks. (author)

  20. Emergency response packaging: A conceptual outline

    International Nuclear Information System (INIS)

    Luna, R.E.; McClure, J.D.; Bennett, P.C.; Wheeler, T.A.

    1992-01-01

    The Packaging and Transportation Needs in the 1990's (PATN) component of the Transportation Assessment and Integration (TRAIN) program (DOE Nov. 1991) was designed to survey United States Department of Energy programs, both ongoing and planned, to identify needs for packaging and transportation services over the next decade. PATN also identified transportation elements that should be developed by the DOE Office of Environmental Restoration and Waste Management (DOE EM) Transportation Management Program (TMP). As a result of the predominant involvement of the TMP in radioactive material shipment issues and DOE EM's involvement with waste management issues, the primary focus of PATN was on waste packaging issues. Pending DOE regulations will formalize federal guidelines and regulations for transportation of hazardous and radioactive materials within the boundaries of DOE reservations and facilities and reflect a growing awareness of concern regarding safety environmental responsibility activities on DOE reservations. Future practices involving the transportation of radioactive material within DOE reservations will closely parallel those used for commercial and governmental transportation across the United States. This has added to the perceived need for emergency recovery packaging and emergency response features on primary packaging, for both on-site shipments and shipments between DOE facilities (off-site). Historically, emergency response and recovery functions of packaging have not been adequately considered in packaging design and construction concepts. This paper develops the rationale for emergency response packaging, including both overpack concepts for repackaging compromised packaging and primary packaging redesign to facilitate the recovery of packages via mobile remote handling equipment. The rationale will examine concepts for determination of likely use patterns to identify types of shipments where recovery packaging may have the most favorable payoff

  1. Rainfall intensity-duration thresholds for postfire debris-flow emergency-response planning

    Science.gov (United States)

    Cannon, S.H.; Boldt, E.M.; Laber, J.L.; Kean, J.W.; Staley, D.M.

    2011-01-01

    Following wildfires, emergency-response and public-safety agencies can be faced with evacuation and resource-deployment decisions well in advance of coming winter storms and during storms themselves. Information critical to these decisions is provided for recently burned areas in the San Gabriel Mountains of southern California. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands is used to develop a system for classifying magnitudes of hydrologic response. The four-class system describes combinations of reported volumes of individual debris flows, consequences of debris flows and floods in an urban setting, and spatial extents of the hydrologic response. The range of rainfall conditions associated with different magnitude classes is defined by integrating local rainfall data with the response magnitude information. Magnitude I events can be expected when within-storm rainfall accumulations (A) of given durations (D) fall above the threshold A = 0.4D0.5 and below A = 0.5D0.6 for durations greater than 1 h. Magnitude II events will be generated in response to rainfall accumulations and durations between A = 0.4D0.5 and A = 0.9D0.5 for durations less than 1 h, and between A = 0.5D0.6 and A = 0.9D0.5 or durations greater than 1 h. Magnitude III events can be expected in response to rainfall conditions above the threshold A = 0.9D0.5. Rainfall threshold-magnitude relations are linked with potential emergency-response actions as an emergency-response decision chart, which leads a user through steps to determine potential event magnitudes and identify possible evacuation and resource-deployment levels. Use of this information in planning and response decision-making process could result in increased safety for both the public and emergency responders. ?? 2011 US Government.

  2. Definition and means of maintaining the emergency notification and evacuation system portion of the plutonium finishing plant safety envelope; TOPICAL

    International Nuclear Information System (INIS)

    WHITE, W.F.

    1999-01-01

    The Emergency Evacuation and Notification System provides information to the Plutonium Finishing Plant (PFP) Building Emergency Director to assist in determining appropriate emergency response, notifies personnel of the required response, and assists in their response. The report identifies the equipment in the Safety Envelope (SE) for this System and the Administrative, Maintenance, and Surveillance Procedures used to maintain the SE Equipment

  3. Innovations in emergency response plans : making the useful application of the 2007 CDA guidelines for emergency response plans

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, A.J. [Columbia Power Corp., Castlegar, BC (Canada)

    2008-07-01

    Columbia Power Corporation (CPC) changed its perspective and approach to emergency response plans (ERP) between 2002 and 2007 from one of administrative necessity to one of important functional reference. The new 2007 Canadian Dam Association Guidelines helped facilitate that transition for both CPC and all dam owners. As part of the licensing requirements for its new facility, CPC had an ERP commissioned and developed in 2002. A potential dam safety event occurred in 2004, which necessitated the need for the ERP to be put to use. However, at the time, it was found to be lacking in functionality for field personnel. As a result, CPC recognized the significance of having a functional ERP for field staff and undertook a substantial redraft between 2005 and 2007. This paper discussed the development of the ERP with particular reference to assessing the top potential emergency scenarios for the facility; development of response plans for the identified scenarios; a flow chart to guide personnel through the required actions; response checklist; detailed inspection checklists and any required forms, photos or specific information. It was concluded that the new ERP has been well received and has improved facility awareness and emergency preparedness. 1 ref., 2 figs.

  4. Emergency response arrangements for the transport of radioactive materials

    International Nuclear Information System (INIS)

    Morgan-Warren, E.

    2004-01-01

    Response arrangements are required for the transport of radioactive materials, under both transport and health and safety legislation, to safeguard persons, property and the environment in the event of incidents and emergencies. Responsibilities fall on both government and industry: government is responsible for ensuring public safety and providing information and reassurance. This responsibility is discharged for each type of incident by a nominated ''lead department'', supported as appropriate by other government departments and agencies; for their part, operators are obliged to have arrangements in place for dealing with the practicalities of any reasonably foreseeable incident, including recovery and onward transport of a package, and any required clean-up or restoration of the environment. This paper outlines both the government and industry arrangements in Great Britain. The principles of response and intervention are discussed, together with the lead department concept, regulatory requirements, and the plans developed by the transport industry to ensure a nation-wide response capability

  5. Emergency response arrangements for the transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Morgan-Warren, E. [Radioactive Materials Transport Div., Dept. for Transport, London (United Kingdom)

    2004-07-01

    Response arrangements are required for the transport of radioactive materials, under both transport and health and safety legislation, to safeguard persons, property and the environment in the event of incidents and emergencies. Responsibilities fall on both government and industry: government is responsible for ensuring public safety and providing information and reassurance. This responsibility is discharged for each type of incident by a nominated ''lead department'', supported as appropriate by other government departments and agencies; for their part, operators are obliged to have arrangements in place for dealing with the practicalities of any reasonably foreseeable incident, including recovery and onward transport of a package, and any required clean-up or restoration of the environment. This paper outlines both the government and industry arrangements in Great Britain. The principles of response and intervention are discussed, together with the lead department concept, regulatory requirements, and the plans developed by the transport industry to ensure a nation-wide response capability.

  6. Asymptotic safety, emergence and minimal length

    International Nuclear Information System (INIS)

    Percacci, Roberto; Vacca, Gian Paolo

    2010-01-01

    There seems to be a common prejudice that asymptotic safety is either incompatible with, or at best unrelated to, the other topics in the title. This is not the case. In fact, we show that (1) the existence of a fixed point with suitable properties is a promising way of deriving emergent properties of gravity, and (2) there is a sense in which asymptotic safety implies a minimal length. In doing so we also discuss possible signatures of asymptotic safety in scattering experiments.

  7. Improving Research Reactor Accident Response Capability at the Hungarian Nuclear Safety Authority

    International Nuclear Information System (INIS)

    Vegh, J.; Gajdos, F.; Horvath, Cs.; Matisz, A.; Nyisztor, D.

    2013-06-01

    The paper describes the design and implementation of an on-line operation monitoring and accident response support system to be used at the CERTA emergency response centre of Hungarian Atomic Energy Authority (HAEA). The monitored facility is the Budapest Research Reactor (BRR), which is a tank-type thermal reactor having 10 MW thermal power. The basic reason for the development of the on-line safety information system is to extend the emergency response capability of the CERTA crisis centre to include emergencies related to BRR, as well. CERTA is operated by HAEA at its Budapest headquarters and the centre already has an on-line system for monitoring the state of the four units of Paks NPP, Hungary. The system is called CERTA VITA and it is able to monitor the four VVER-440/V213 units during their normal operation, and during emergencies (including severe accidents). Ensuring appropriate emergency response capabilities, as well as improving the presently available systems and tools was one of the important recommendations resulting from the analyses following the severe accident at Fukushima. This task is valid not only for the operators of the nuclear facilities but also for the nuclear safety authorities, therefore HAEA decided to launch a project - together with the Centre for Energy Research, the operator of BRR - to establish an on-line information system similar to the CERTA VITA used for monitoring the four units of the Paks NPP. It is believed that by the introduction of this new on-line system the accident response capabilities of HAEA will be further enhanced and the BRR emergencies will be handled at the same professional level as potential emergencies at Paks NPP. (authors)

  8. How the Nuclear Applications Laboratories Help in Strengthening Emergency Response

    International Nuclear Information System (INIS)

    2014-01-01

    Safety is one of the most important considerations when engaging in highly advanced scientific and technological activities. In this respect, utilizing the potential of nuclear technology for peaceful purposes also involves risks, and nuclear techniques themselves can be useful in strengthening emergency response measures related to the use of nuclear technology. In the case of a nuclear incident, the rapid measurement and subsequent monitoring of radiation levels are top priorities as they help to determine the degree of risk faced by emergency responders and the general public. Instruments for the remote measurement of radioactivity are particularly important when there are potential health risks associated with entering areas with elevated radiation levels. The Nuclear Science and Instrumentation Laboratory (NSIL) — one of the eight laboratories of the Department of Nuclear Sciences and Applications (NA) in Seibersdorf, Austria — focuses on developing a variety of specialized analytical and diagnostic instruments and methods, and transferring knowledge to IAEA Member States. These include instruments capable of carrying out remote measurements. This emergency response work carried out by the NA laboratories supports health and safety in Member States and supports the IAEA’s mandate to promote the safe and peaceful use of nuclear energy

  9. Emergency Response of Iranian Hospitals Against Disasters: A Practical Framework for Improvement.

    Science.gov (United States)

    Janati, Ali; Sadeghi-Bazargani, Homayoun; Hasanpoor, Edris; Sokhanvar, Mobin; HaghGoshyie, Elaheh; Salehi, Abdollah

    2018-04-01

    Hospital emergency management is a continuous process that requires monolithic integration of planning and response attempts with local and national schemes. The aim of the current study is to evaluate emergency response by hospitals against potential disasters in Tabriz, north-west Iran. A cross-sectional study was conducted in the city of Tabriz, in Iran, in 2016. The study population included all hospitals in Tabriz. A total of 18 hospitals were assessed. The hospital emergency response checklist was used to collect data. Tool components included command and control, communication, safety and security, triage, surge capacity, continuity of essential services, human resources, logistics and supply management, and post-disaster recovery. Data entry and analysis were carried out using SPSS software (version 20). The results showed that the emergency response rate of hospitals was 54.26% in Tabriz. The lowest response rates were for Shafaa hospital (18.89%) and the highest response rates were for Razi Hospital (91.67%). The components of hospital emergency response were assessed to be between 48.07% (surge capacity) and 58.95% (communication). On the basis of the World Health Organization checklist, the emergency response rate for hospitals in Tabriz was only 54.26%. Therefore, hospital emergency responses against disasters have to be improved and must be made to reach 100%. It is essential to design a comprehensive framework for hospital emergency response. (Disaster Med Public Health Preparedness. 2018;12:166-171).

  10. Resolution no. 18/2012 Guide for the preparation and emergency response radiological

    International Nuclear Information System (INIS)

    2012-01-01

    This guide aims to establish requirements to ensure an adequate level of entities, for the preparation and response to radiological emergencies and to prepare the Radiation Emergency Plan (PER), asset out in the Basic Safety Standards radiological and authorizations Regulations in force. This guide applies to organizations providing employment practices associated with sources of ionizing radiation, hereinafter sources.

  11. Guidance Manual for preparing Nuclear and Radiological Emergency Preparedness and Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Muhammed, Kabiru [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Seung-Young [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    The Nuclear and Radiological Emergency Preparedness and Response Plan(NREPRP) describes the capabilities, responsibilities and authorities of government agencies and a conceptual basis for integrating the activities of these agencies to protect public health and safety. The NREPRP addresses issues related to actual or perceived radiation hazard requiring a national response in order to: i. Provide co-ordination of a response involving multi-jurisdictions or significant national responsibilities; or ii. Provide national support to state and local governments. The objective of this research is to establish Guidance Manual for preparing a timely, organized and coordinated emergency response plan for Authorities/agencies to promptly and adequately determine and take actions to protect members of the public and emergency workers. The manual will not provide sufficient details for an adequate response. This level of details is contained in standard operating procedures that are being developed based on the plan developed. Base on the data obtain from integrated planning levels and responsibility sharing, the legal document of major government agencies participating in NREPRP form the legal basis for the response plan. Also the following documents should be some international legal binding documents. Base on the international safety requirement and some countries well developed NREPRP, we have drafted a guidance manual for new comer countries for easy development of their countries NREPRP. Also we have taken in to consideration lessons learn from most accident especially Fukushima accident.

  12. Guidance Manual for preparing Nuclear and Radiological Emergency Preparedness and Response Plan

    International Nuclear Information System (INIS)

    Muhammed, Kabiru; Jeong, Seung-Young

    2014-01-01

    The Nuclear and Radiological Emergency Preparedness and Response Plan(NREPRP) describes the capabilities, responsibilities and authorities of government agencies and a conceptual basis for integrating the activities of these agencies to protect public health and safety. The NREPRP addresses issues related to actual or perceived radiation hazard requiring a national response in order to: i. Provide co-ordination of a response involving multi-jurisdictions or significant national responsibilities; or ii. Provide national support to state and local governments. The objective of this research is to establish Guidance Manual for preparing a timely, organized and coordinated emergency response plan for Authorities/agencies to promptly and adequately determine and take actions to protect members of the public and emergency workers. The manual will not provide sufficient details for an adequate response. This level of details is contained in standard operating procedures that are being developed based on the plan developed. Base on the data obtain from integrated planning levels and responsibility sharing, the legal document of major government agencies participating in NREPRP form the legal basis for the response plan. Also the following documents should be some international legal binding documents. Base on the international safety requirement and some countries well developed NREPRP, we have drafted a guidance manual for new comer countries for easy development of their countries NREPRP. Also we have taken in to consideration lessons learn from most accident especially Fukushima accident

  13. CLASSIFICATION OF THE MGR EMERGENCY RESPONSE SYSTEM

    International Nuclear Information System (INIS)

    Zeigler, J.A.

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) emergency response system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P7 ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  14. Conceptual design report, Hazardous Materials Management and Emergency Response (HAMMER) Training Center

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-11-09

    For the next 30 years, the main activities at the US Department of Energy (DOE) Hanford Site will involve the management, handling, and cleanup of toxic substances. If the DOE is to meet its high standards of safety, the thousands of workers involved in these activities will need systematic training appropriate to their tasks and the risks associated with these tasks. Furthermore, emergency response for DOE shipments is the primary responsibility of state, tribal, and local governments. A collaborative training initiative with the DOE will strengthen emergency response at the Hanford Site and within the regional communities. Local and international labor has joined the Hazardous Materials Management and Emergency Response (HAMMER) partnership, and will share in the HAMMER Training Center core programs and facilities using their own specialized trainers and training programs. The HAMMER Training Center will provide a centralized regional site dedicated to the training of hazardous material, emergency response, and fire fighting personnel.

  15. Conceptual design report, Hazardous Materials Management and Emergency Response (HAMMER) Training Center

    International Nuclear Information System (INIS)

    Kelly, K.E.

    1994-01-01

    For the next 30 years, the main activities at the US Department of Energy (DOE) Hanford Site will involve the management, handling, and cleanup of toxic substances. If the DOE is to meet its high standards of safety, the thousands of workers involved in these activities will need systematic training appropriate to their tasks and the risks associated with these tasks. Furthermore, emergency response for DOE shipments is the primary responsibility of state, tribal, and local governments. A collaborative training initiative with the DOE will strengthen emergency response at the Hanford Site and within the regional communities. Local and international labor has joined the Hazardous Materials Management and Emergency Response (HAMMER) partnership, and will share in the HAMMER Training Center core programs and facilities using their own specialized trainers and training programs. The HAMMER Training Center will provide a centralized regional site dedicated to the training of hazardous material, emergency response, and fire fighting personnel

  16. Radiation safety for the emergency situation of the power plant accident. Radiation safety in society and its education

    International Nuclear Information System (INIS)

    Kosako, Toshiso

    2012-01-01

    Great East Japan Earthquake and Tsunamis, and following Fukushima Daiichi Nuclear Power Accident brought about great impact on society in Japan. Accident analysis of inside reactor was studied by reactor physics or reactor engineering knowledge, while dissipation of a large amount of radioactive materials outside reactor facilities, and radiation and radioactivity effects on people by way of atmosphere, water and soil were dealt with radiation safety or radiation protection. Due to extremely low frequency and experience of an emergency, there occurred a great confusion in the response of electric power company concerned, relevant regulating competent authorities, local government and media, and related scholars and researchers, which caused great anxieties amount affected residents and people. This article described radiation safety in the society and its education. Referring to actual examples, how radiation safety or radiation protection knowledge should be dealt with emergency risk management in the society was discussed as well as problem of education related with nuclear power, radiation and prevention of disaster and fostering of personnel for relevant people. (T. Tanaka)

  17. Generic Procedures for Response to a Nuclear or Radiological Emergency at Research Reactors

    International Nuclear Information System (INIS)

    2011-01-01

    Under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. The IAEA publishes the Emergency Preparedness and Response Series to fulfil that function. This publication is part of that series. IAEA Safety Standards Series No. GS-R-2 Preparedness and Response for a Nuclear or Radiological Emergency, contains the following requirement: 'To ensure that arrangements are in place for a timely, managed, controlled, coordinated and effective response at the scene...'. The IAEA General Conference, in resolution GC(53)/RES/10, continues to encourage Member States '...to enhance, where necessary, their own preparedness and response capabilities for nuclear and radiological incidents and emergencies, by improving capabilities to prevent accidents, to respond to emergencies and to mitigate any harmful consequences...'. This publication is intended to assist Member States meet the requirements of GS-R-2 and enhance their preparedness by providing guidance on the response by facility personnel to emergencies at research reactor facilities.

  18. Considerations in Emergency Preparedness and Response for a State Embarking on a Nuclear Power Programme. Publication Date: June 2013 (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of this publication is to provide a practical tool for emergency planning for States embarking on a nuclear power programme and to fulfil, in part, functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency ('Assistance Convention'). Under Article 5.a (ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to State Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. As established in the publication Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), the practical goal of emergency response is 'to ensure that arrangements are in place for a timely, managed, controlled, coordinated and effective response at the scene, and at the local, regional, national and international level, to any nuclear or radiological emergency'. In 2011 the IAEA General Conference, in resolution GC(55)/RES/9, encouraged States 'embarking on new nuclear power programmes to take timely and proactive steps, based upon gradual and systematic application of IAEA safety standards, to establish and sustain a strong safety culture'. It also 'emphasizes the importance for all Member States to implement emergency preparedness and response mechanisms and develop mitigation measures at a national level, consistent with the IAEA's Safety Standards, for improving emergency preparedness and response, facilitating communication in an emergency and contributing to harmonization of national criteria for protective and other actions'. This publication, issued in the IAEA Emergency Preparedness and Response Series, is intended to assist on steps to be taken by States embarking on a nuclear power programme to establish effective national capabilities and arrangements of preparedness for and response to a nuclear or radiological emergency (hereinafter referred to as

  19. Modernisation of Radiation Monitoring Room as a Part of Slovenian Emergency Response Centre

    International Nuclear Information System (INIS)

    Sarvari, A.; Mitic, D.

    2003-01-01

    In the year 2002 the Slovenian Nuclear Safety Administration (SNSA) moved to the new premises therefore it had to rearrange some of its rooms for the emergency situation. SNSA does not operate with a dedicated Emergency Response Centre (ERC), instead of it the SNSA has to rearrange the existing rooms in case of an emergency. Modernisation of the equipment, with the help of government of the United Kingdom of Great Britain and Northern Ireland, for the emergency situation was carried out, especially in the monitoring room. The radiation monitoring system, which is placed in the monitoring room, continuously collects, processes and archives the incoming data of exposure to radiation and meteorological parameters on the Slovenian territory (A model national emergency response plan for radiological accidents, IAEA, Vienna, 1993. IAEA-TECDOC-718). In the emergency situation the monitoring room transforms into the room for the Dose Assessment Group (DAG), which is part of ERC (IAEA emergency response network, IAEA, Vienna, 2000, EPR-ERNET (2000)). The modernisation of monitoring room and within the DAG room with new equipment and its purpose is described in this article. Modernisation of the monitoring room and the room for DAG showed to be inevitably needed. Modernisation of the monitoring room has brought the SNSA a sophisticated and reliable system of controlling the external exposure to radiation on the Slovenian territory. The equipment, especially the equipment for the use in the emergency situation, brought novelties for the Dose Assessment Group. The group has now better and easier control of radiation situation in case of an accident. In overall this modernisation has put the Slovenian Nuclear Safety Administration a step forward in having a dedicated Emergency Response Centre, since it does not need to rearrange the room for the Dose Assessment Group. (author)

  20. Building Up an On-Line Plant Information System for the Emergency Response Center of the Hungarian Nuclear Safety Directorate

    International Nuclear Information System (INIS)

    Vegh, Janos; Major, Csaba; Horvath, Csaba; Hozer, Zoltan; Adorjan, Ferenc; Lux, Ivan; Horvath, Kristof

    2002-01-01

    The main design features, services, and human-machine interface characteristics are described of the CERTA VITA on-line plant information system developed and installed by KFKI AEKI at the Nuclear Safety Directorate (NSD) of the Hungarian Atomic Energy Authority (HAEA) in cooperation with experts from the NSD. The Center for Emergency Response, Training, and Analysis (CERTA) located at the headquarters of NSD, Budapest, Hungary, was established in 1997. The center supports the NSD installation, radiological monitoring, and advisory team in case of nuclear emergencies, with appropriate hardware and software for communication, diagnosis, prognosis, and prediction. The vital information transfer and analysis (VITA) system represents an important part of the CERTA, as it provides for the continuous remote inspection of the four VVER-440/V213 units of the Hungarian Paks nuclear power plant (NPP). The on-line information system maintains a continuous data link with the NPP through a managed leased line that connects CERTA to a gateway computer located at the Paks NPP. The present scope of the system is a result of a 4-yr development project: In addition to the basic safety parameter display functions, the VITA system now includes an on-line break parameter estimation module, an extensive training package based on simulated transients, and on-line data transfer capabilities to feed accident diagnosis/analysis codes

  1. Emergency Response Guideline Development

    International Nuclear Information System (INIS)

    Gary D Storrick

    2007-01-01

    Task 5 of the collaborative effort between ORNL, Brazil, and Westinghouse for the International Nuclear Energy Research Initiative entitled 'Development of Advanced Instrumentation and Control for an Integrated Primary System Reactor' focuses on operator control and protection system interaction, with particular emphasis on developing emergency response guidelines (ERGs). As in the earlier tasks, we will use the IRIS plant as a specific example of an integrated primary system reactor (IPSR) design. The present state of the IRIS plant design--specifically, the lack of a detailed secondary system design--precludes establishing detailed emergency procedures at this time. However, we can create a structure for their eventual development. This report summarizes our progress to date. Section 1.2 describes the scope of this effort. Section 2 compares IPSR ERG development to the recent AP1000 effort, and identifies three key plant differences that affect the ERGs and control room designs. The next three sections investigate these differences in more detail. Section 3 reviews the IRIS Safety-by-Design philosophy and its impact on the ERGs. Section 4 looks at differences between the IRIS and traditional loop PWR I and C Systems, and considers their implications for both control room design and ERG development. Section 5 examines the implications of having one operating staff control multiple reactor units. Section 6 provides sample IRIS emergency operating procedures (EOPs). Section 7 summarizes our conclusions

  2. Dangerous quantities of radioactive material (D-values). Emergency preparedness and response. Publication date: August 2006

    International Nuclear Information System (INIS)

    2006-08-01

    Radioactive material is widely used in industry, medicine, education and agriculture. In addition, it occurs naturally. The health risk posed by these materials vary widely depending on many factors, the most important of which are the amount of the material involved and its physical and chemical form. Therefore, there is a need to identify the quantity and type of radioactive material for which emergency preparedness and other arrangements (e.g. security) are warrant due to the health risk they pose. The aim of this publication is to provide practical guidance for Member States on that quantity of radioactive material that may be considered dangerous. A dangerous quantity is that, which if uncontrolled, could be involved in a reasonable scenario resulting in the death of an exposed individual or a permanent injury, which decreases that person's quality of life. This publication is published as part of the IAEA Emergency Preparedness and Response Series. It supports several publications including: the IAEA Safety Requirements 'Preparedness and Response for a Nuclear or Radiological Emergency', IAEA Safety Standards Series No. GS-R-2. IAEA, Vienna (2002); IAEA Safety Guide 'Categorization of Radioactive Sources', IAEA Safety Standards Series No RS-G-1.9, IAEA, Vienna (2005) and IAEA Safety Guide 'Arrangements for Preparedness for a Nuclear or Radiological Emergency' IAEA Safety Standards Series No. GS-G-2.1, IAEA, Vienna (2006). The procedures and data in this publication have been prepared with due attention to accuracy. However, as part of the review process, they undergo ongoing quality assurance checks. Comments are welcome and, following a period that will allow for a more extensive review, the IAEA may revise this publication as part of the process of continuous improvement. The publication uses a number of exposure scenarios, risk models and dosimetric data, which could be used during the response to nuclear or radiological emergency or other purposes

  3. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Spanish Edition); Comunicacion con el publico en caso de emergencia nuclear o radiologica. Preparacion y respuesta en caso de emergenicia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  4. Safety of emerging nuclear energy systems

    International Nuclear Information System (INIS)

    Novikov, V.M.; Slesarev, I.S.

    1989-01-01

    The first stage of world nuclear power development based on light water fission reactors has demonstrated not only rather high rate but at the same time too optimistic attitude to safety problems. Large accidents at Three Mile Island and Chernobyl essentially affects the concept of NP development. As a result the safety and social acceptance of NP became of absolute priority among other problems. That's why emerging nuclear power systems should be first of all estimated from this point of view. In the paper some quantitative criteria of safety derived from estimations of social risk and economic-ecological damage from hypothetical accidents are formulated. On the base of these criteria we define two stages of possible way to meet safety demands: first--development of high safety fission reactors and second--that of asymptotic high safety ENEs. The limits of tolorated expenses for safety are regarded. The basis physical factors determining hazards of NES accidents are considered. This permits to classify the ways of safety demands fulfillment due to physical principals used

  5. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China

    Directory of Open Access Journals (Sweden)

    Weili Duan

    2015-07-01

    Full Text Available In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs is a significant issue in China. An emergency response system (ERS was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency.

  6. Supporting system in emergency response plan for nuclear material transport accidents

    International Nuclear Information System (INIS)

    Nakagome, Y.; Aoki, S.

    1993-01-01

    As aiming to provide the detailed information concerning nuclear material transport accidents and to supply it to the concerned organizations by an online computer, the Emergency Response Supporting System has been constructed in the Nuclear Safety Technology Center, Japan. The system consists of four subsystems and four data bases. By inputting initial information such as name of package and date of accident, one can obtain the appropriate initial response procedures and related information for the accident immediately. The system must be useful for protecting the public safety from nuclear material transport accidents. But, it is not expected that the system shall be used in future. (J.P.N.)

  7. Response of human populations to large-scale emergencies

    Science.gov (United States)

    Bagrow, James; Wang, Dashun; Barabási, Albert-László

    2010-03-01

    Until recently, little quantitative data regarding collective human behavior during dangerous events such as bombings and riots have been available, despite its importance for emergency management, safety and urban planning. Understanding how populations react to danger is critical for prediction, detection and intervention strategies. Using a large telecommunications dataset, we study for the first time the spatiotemporal, social and demographic response properties of people during several disasters, including a bombing, a city-wide power outage, and an earthquake. Call activity rapidly increases after an event and we find that, when faced with a truly life-threatening emergency, information rapidly propagates through a population's social network. Other events, such as sports games, do not exhibit this propagation.

  8. Modeling operators' emergency response time for chemical processing operations.

    Science.gov (United States)

    Murray, Susan L; Harputlu, Emrah; Mentzer, Ray A; Mannan, M Sam

    2014-01-01

    Operators have a crucial role during emergencies at a variety of facilities such as chemical processing plants. When an abnormality occurs in the production process, the operator often has limited time to either take corrective actions or evacuate before the situation becomes deadly. It is crucial that system designers and safety professionals can estimate the time required for a response before procedures and facilities are designed and operations are initiated. There are existing industrial engineering techniques to establish time standards for tasks performed at a normal working pace. However, it is reasonable to expect the time required to take action in emergency situations will be different than working at a normal production pace. It is possible that in an emergency, operators will act faster compared to a normal pace. It would be useful for system designers to be able to establish a time range for operators' response times for emergency situations. This article develops a modeling approach to estimate the time standard range for operators taking corrective actions or following evacuation procedures in emergency situations. This will aid engineers and managers in establishing time requirements for operators in emergency situations. The methodology used for this study combines a well-established industrial engineering technique for determining time requirements (predetermined time standard system) and adjustment coefficients for emergency situations developed by the authors. Numerous videos of workers performing well-established tasks at a maximum pace were studied. As an example, one of the tasks analyzed was pit crew workers changing tires as quickly as they could during a race. The operations in these videos were decomposed into basic, fundamental motions (such as walking, reaching for a tool, and bending over) by studying the videos frame by frame. A comparison analysis was then performed between the emergency pace and the normal working pace operations

  9. Planning and implementing nuclear emergency response facilities

    International Nuclear Information System (INIS)

    Williams, D.H.

    1983-01-01

    After Three Mile Island, Arkansas Nuclear One produced a planning document called TMI-2 Response Program. Phase I of the program defined action plans in nine areas: safety assessment, training, organization, public information, communication, security, fiscal-governmental, technical and logistical support. Under safety assessment, the staff was made even better prepared to handle radioactive material. Under training, on site simulators for each unit at ANO were installed. The other seven topics interface closely with each other. An emergency control center is diagrammed. A habitable technical support system was created. A media center, with a large media area, and an auditorium, was built. Electric door strike systems increased security. Phone networks independently run via microwave were installed. Until Three Mile Island, logistical problems were guesswork. That incident afforded an opportunity to better identify and prepare for these problems

  10. Emergency Preparedness and Response. Working to Protect People, Society and the Environment

    International Nuclear Information System (INIS)

    2013-01-01

    The IEC develops safety standards and guidelines relating to preparedness for, and response to, nuclear or radiological incidents and emergencies, independently of the cause, and technical documents and training materials for the application of those standards. The IEC also provides training and services to assist Member States in strengthening and maintaining their regional, national, local and on-site response capabilities. An extra resource to the IAEA's response system is foreseen through the Response and Assistance Network (RANET), which represents a network of registered national capabilities in different EPR areas. Its objectives are the provision of requested international assistance, the harmonization of emergency assistance capabilities and the relevant exchange of information and feedback of experience. Important components of the global emergency response system are the notification and reporting arrangements and secure and reliable communication systems operated around the clock by the IEC. States and international organizations report events and submit requests for assistance to the IAEA through the Unified System for Information Exchange on Incidents and Emergencies (USIE) web site, by phone or by fax. Member States (and a few non-Member States) have nominated competent authorities and National Warning Points who are able to receive, convey and quickly provide authoritative information on incidents and emergencies

  11. The Student Volunteer Army: a 'repeat emergent' emergency response organisation.

    Science.gov (United States)

    Carlton, Sally; Mills, Colleen E

    2017-10-01

    This paper seeks to contribute to understanding of the factors associated with an effective emergent emergency response organisation and to provide new insights into this understudied area. It examines, through an analysis of a range of textual resources, the emergence and re-emergence of the Student Volunteer Army (SVA) during the devastating earthquakes in Canterbury, New Zealand, in 2010-11. This evaluation is conducted in relation to the four key features of an effective emergency response organisation: adaptability; direction; leadership; and communication. In addition, the paper aims to further understanding of 'emergency entrepreneurship' and thus of the values and strategies that underpin social entrepreneur organisations in times of normalcy. The paper concludes that the unique position of the SVA as a 'repeat emergent' emergency response organisation enabled it to innovate continually and to improve repeatedly its systems, relationships, and image, such that it exhibited features common to emergent and established emergency response organisations. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  12. Physicians' and nurses' perceptions of patient safety risks in the emergency department.

    Science.gov (United States)

    Källberg, Ann-Sofie; Ehrenberg, Anna; Florin, Jan; Östergren, Jan; Göransson, Katarina E

    2017-07-01

    The emergency department has been described as a high-risk area for errors. It is also known that working conditions such as a high workload and shortage off staff in the healthcare field are common factors that negatively affect patient safety. A limited amount of research has been conducted with regard to patient safety in Swedish emergency departments. Additionally, there is a lack of knowledge about clinicians' perceptions of patient safety risks. Therefore, the purpose of this study was to describe emergency department clinicians' experiences with regard to patient safety risks. Semi-structured interviews were conducted with 10 physicians and 10 registered nurses from two emergency departments. Interviews were analysed by inductive content analysis. The experiences reflect the complexities involved in the daily operation of a professional practice, and the perception of risks due to a high workload, lack of control, communication and organizational failures. The results reflect a complex system in which high workload was perceived as a risk for patient safety and that, in a combination with other risks, was thought to further jeopardize patient safety. Emergency department staff should be involved in the development of patient safety procedures in order to increase knowledge regarding risk factors as well as identify strategies which can facilitate the maintenance of patient safety during periods in which the workload is high. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Lessons Learned from the Response to Radiation Emergencies (1945-2010) (Spanish Edition); Enseñanzas extraídas de la respuesta a emergencias radiológicas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-15

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the … application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  14. Quality and safety implications of emergency department information systems.

    Science.gov (United States)

    Farley, Heather L; Baumlin, Kevin M; Hamedani, Azita G; Cheung, Dickson S; Edwards, Michael R; Fuller, Drew C; Genes, Nicholas; Griffey, Richard T; Kelly, John J; McClay, James C; Nielson, Jeff; Phelan, Michael P; Shapiro, Jason S; Stone-Griffith, Suzanne; Pines, Jesse M

    2013-10-01

    The Health Information Technology for Economic and Clinical Health Act of 2009 and the Centers for Medicare & Medicaid Services "meaningful use" incentive programs, in tandem with the boundless additional requirements for detailed reporting of quality metrics, have galvanized hospital efforts to implement hospital-based electronic health records. As such, emergency department information systems (EDISs) are an important and unique component of most hospitals' electronic health records. System functionality varies greatly and affects physician decisionmaking, clinician workflow, communication, and, ultimately, the overall quality of care and patient safety. This article is a joint effort by members of the Quality Improvement and Patient Safety Section and the Informatics Section of the American College of Emergency Physicians. The aim of this effort is to examine the benefits and potential threats to quality and patient safety that could result from the choice of a particular EDIS, its implementation and optimization, and the hospital's or physician group's approach to continuous improvement of the EDIS. Specifically, we explored the following areas of potential EDIS safety concerns: communication failure, wrong order-wrong patient errors, poor data display, and alert fatigue. Case studies are presented that illustrate the potential harm that could befall patients from an inferior EDIS product or suboptimal execution of such a product in the clinical environment. The authors have developed 7 recommendations to improve patient safety with respect to the deployment of EDISs. These include ensuring that emergency providers actively participate in selection of the EDIS product, in the design of processes related to EDIS implementation and optimization, and in the monitoring of the system's ongoing success or failure. Our recommendations apply to emergency departments using any type of EDIS: custom-developed systems, best-of-breed vendor systems, or enterprise systems

  15. The culture of patient safety from the perspective of the pediatric emergency nursing team.

    Science.gov (United States)

    Macedo, Taise Rocha; Rocha, Patricia Kuerten; Tomazoni, Andreia; Souza, Sabrina de; Anders, Jane Cristina; Davis, Karri

    2016-01-01

    To identify the patient safety culture in pediatric emergencies from the perspective of the nursing team. A quantitative, cross-sectional survey research study with a sample composed of 75 professionals of the nursing team. Data was collected between September and November 2014 in three Pediatric Emergency units by applying the Hospital Survey on Patient Safety Culture instrument. Data were submitted to descriptive analysis. Strong areas for patient safety were not found, with areas identified having potential being: Expectations and actions from supervisors/management to promote patient safety and teamwork. Areas identified as critical were: Non-punitive response to error and support from hospital management for patient safety. The study found a gap between the safety culture and pediatric emergencies, but it found possibilities of transformation that will contribute to the safety of pediatric patients. Nursing professionals need to become protagonists in the process of replacing the current paradigm for a culture focused on safety. The replication of this study in other institutions is suggested in order to improve the current health care scenario. Identificar a cultura de segurança do paciente em emergências pediátricas, na perspectiva da equipe de enfermagem. Pesquisa quantitativa, tipo survey transversal. Amostra composta por 75 profissionais da equipe de enfermagem. Dados coletados entre setembro e novembro de 2014, em três Emergências Pediátricas, aplicando o instrumento Hospital Survey on Patient Safety Culture. Dados submetidos à análise descritiva. Não foram encontradas áreas de força para a segurança do paciente, sendo identificadas áreas com potencial de assim se tornarem: Expectativas e ações do supervisor/chefia para promoção da segurança do paciente e Trabalho em equipe. Como área crítica identificaram-se: Resposta não punitiva ao erro e Apoio da gestão hospitalar para segurança do paciente. O estudo apontou distanciamento

  16. Guidelines on the Harmonization of Response and Assistance Capabilities for a Nuclear or Radiological Emergency. EPR-Harmonized Assistance Capabilities 2017

    International Nuclear Information System (INIS)

    2017-01-01

    The aim of this publication is to provide guidelines to Member States and relevant international organizations on processes and arrangements that may be implemented as part of emergency preparedness and response (EPR) arrangements to assist in harmonizing national EPR capabilities and international assistance, when requested so that the products of their response operations are comparable and compatible. This publication provides details on the types, contents and formats of data and mapping products that may be generated during a response to nuclear or radiological emergencies. The publication applies the safety principles stated in IAEA Safety Standards Series No. SF 1, Fundamental Safety Principles, primarily Principle 9 on EPR, and it will be of assistance to Member States in meeting the requirements established in IAEA Safety Standards Series No. GSR Part 7, Preparedness and Response for a Nuclear or Radiological Emergency. Requirement 17 of this publication establishes that the “government shall ensure that adequate arrangements are in place to benefit from, and to contribute to the provision of, international assistance for preparedness and response for a nuclear or radiological emergency.” As part of these arrangements, it is required that due account is taken of the “compatibility requirements for the capabilities to be obtained from and to be rendered to different States so as to ensure the usefulness of these capabilities.” These guidelines are intended to help Member States to ensure that compatible response and assistance capabilities are in place. This publication is intended to be used by national authorities involved in emergency preparedness and response, and national response teams in all States. The guidelines provided need to be adapted to fit a State’s particular organizational arrangements, language, terminology, concept of operation, and capabilities. However, the products generated need to be compatible with the types and formats

  17. Analysis of emergency response to fukushima nuclear accident in Japan and suggestions for China's nuclear emergency management

    International Nuclear Information System (INIS)

    Li Wei; Ding Qihua; Wu Haosong

    2014-01-01

    On March 11, 2011, the Fukushima Dai-ichi Nuclear Power Station of the Tokyo Electric Power Company ('TEPCO') was hit and damaged by a magnitude 9 earthquake and accompanying tsunami. The accident is determined to be of the highest rating on the International Nuclear Event Scale. The Government of Japan and TEPCO have taken emergency response actions on-site and off-site at the accident. It became clear through the investigation that the accident had been initiated on the occasion of a natural disaster of an earthquake and tsunami, but there have been various complex problems behind this very serious and large scale accident. For an example, the then-available accident preventive measures and disaster preparedness of TEPCO were insufficient against tsunami and severe accidents; inadequate TEPCO emergency responses to the accident at the site were also identified. The accident rang the alarm for the nuclear safety of nuclear power plants. It also taught us a great of lessons in nuclear emergency management. (authors)

  18. Safety assessment of emergency electric power systems for nuclear power plants

    International Nuclear Information System (INIS)

    1986-09-01

    This paper is intended to assist the safety assessor within a regulatory body, or one working as a consultant, in assessing a given design of the Emergency Electrical Power System. Those non-electric power systems which may be used in a plant design to serve as emergency energy sources are addressed only in their general safety aspects. The paper thus relates closely to Safety Series 50-SG-D7 ''Emergency Power Systems at Nuclear Power Plants'' (1982), as far as it addresses emergency electric power systems. Several aspects are dealt with: the information the assessor may expect from the applicant to fulfill his task of safety review; the main questions the reviewer has to answer in order to determine the compliance with requirements of the NUSS documents; the national or international standards which give further guidance on a certain system or piece of equipment; comments and suggestions which may help to judge a variety of possible solutions

  19. The Role of the International Atomic Energy Agency in a Response to Nuclear and Radiological Incidents and Emergencies

    Energy Technology Data Exchange (ETDEWEB)

    Buglova, E.; Baciu, F., E-mail: E.Buglova@iaea.org [International Atomic Energy Agency (IAEA), Department of Nuclear Safety and Security, Wagramer Strasse 5, P.O. Box 100, 1400 Vienna (Austria)

    2014-10-15

    Full text: The role of the International Atomic Energy Agency (IAEA) in a response to nuclear and radiological incidents and emergencies has been defined and further expanded through the IAEA Statute, the Convention on Early Notification of a Nuclear Accident, the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency, the Convention on Physical Protection of Nuclear Material, IAEA safety standards, relevant decisions by Policy Making Organs of the IAEA, inter-agency agreements and other documents such as the IAEA Action Plan on Nuclear Safety. The IAEA Secretariat fulfils its roles through the Agency's Incident and Emergency System (IES) and the Incident and Emergency Centre (IEC). The IEC is the global focal point for international preparedness and response to nuclear and radiological safety or security related incidents, emergencies, threats or events of media interest and for coordination of International assistance. During a response the IEC performs and facilitates for Member States many specific functions which include: prompt notification; official information exchange; assessment of potential consequences; prognosis of emergency progression; provision, facilitation and coordination of International assistance; provision of timely, accurate and easily understandable public information; coordination of inter-agency response at the International level. Through officially designated contact points of Member States the IEC is able to communicate at any time with national authorities to ensure the prompt and successful sharing of information and resources. The IEC routinely performs internal exercising of all aspects of the IAEA response and in cooperation with Member States, the IAEA organizes and facilitates the conduct of large scale international exercises to practice cooperation and coordination. This presentation outlines in detail the specific functions of the IAEA IEC during a response. (author)

  20. Establishing research priorities for patient safety in emergency medicine: a multidisciplinary consensus panel.

    Science.gov (United States)

    Plint, Amy C; Stang, Antonia S; Calder, Lisa A

    2015-01-01

    Patient safety in the context of emergency medicine is a relatively new field of study. To date, no broad research agenda for patient safety in emergency medicine has been established. The objective of this study was to establish patient safety-related research priorities for emergency medicine. These priorities would provide a foundation for high-quality research, important direction to both researchers and health-care funders, and an essential step in improving health-care safety and patient outcomes in the high-risk emergency department (ED) setting. A four-phase consensus procedure with a multidisciplinary expert panel was organized to identify, assess, and agree on research priorities for patient safety in emergency medicine. The 19-member panel consisted of clinicians, administrators, and researchers from adult and pediatric emergency medicine, patient safety, pharmacy, and mental health; as well as representatives from patient safety organizations. In phase 1, we developed an initial list of potential research priorities by electronically surveying a purposeful and convenience sample of patient safety experts, ED clinicians, administrators, and researchers from across North America using contact lists from multiple organizations. We used simple content analysis to remove duplication and categorize the research priorities identified by survey respondents. Our expert panel reached consensus on a final list of research priorities through an in-person meeting (phase 3) and two rounds of a modified Delphi process (phases 2 and 4). After phases 1 and 2, 66 unique research priorities were identified for expert panel review. At the end of phase 4, consensus was reached for 15 research priorities. These priorities represent four themes: (1) methods to identify patient safety issues (five priorities), (2) understanding human and environmental factors related to patient safety (four priorities), (3) the patient perspective (one priority), and (4) interventions for

  1. Emergency response guide for Point Lepreau area residents

    International Nuclear Information System (INIS)

    1982-01-01

    The design, construction and operating procedures of CANDU nuclear generating stations ensure that an accident causing a significant risk to people living near these stations is extremely unlikely. However, despite the excellent safety record of nuclear stations, it is common practice to prepare an emergency plan for such facilities. In this regard, The New Brunswick Emergency Measures Organization is responsible for developing and implementing the Off-Site Emergency Plan for the Point Lepreau Generating Station. Work for the Off-Site Emergency Plan began in 1976 and, under the leadership of N.B.E.M.O., a number of government agencies co-operated in this project. The completed plan thus represents agreement among a number of Province of New Brunswick departments, various community groups, NB Power, and representatives of the Government of Canada. Also, information gathered in the annual door-to-door survey of the Lepreau area enabled government planners to make specialized arrangements such as an extensive warden service, a siren system, and evacuation assistance for the disabled

  2. Chemical toxicity approach for emergency response

    International Nuclear Information System (INIS)

    Bauer, T.

    2009-01-01

    In the event of an airborne release of chemical agent or toxic industrial chemical by accidental or intentional means, emergency responders must have a reasonable estimate of the location and size of the resulting hazard area. Emergency responders are responsible for warning persons downwind of the hazard to evacuate or shelter-in-place and must know where to look for casualties after the hazard has passed or dissipated. Given the same source characterization, modern hazard assessment models provide comparable concentration versus location and time estimates. Even urban hazard assessment models often provide similar predictions. There is a major shortcoming, though, in applying model output to estimating human toxicity effects. There exist a variety of toxicity values for non-lethal effects ranging from short-term to occupational to lifetime exposures. For health and safety purposes, these estimates are all safe-sided in converting animal data to human effects and in addressing the most sensitive subset of the population. In addition, these values are usually based on an assumed 1 hour exposure duration at constant concentration and do not reflect either a passing clouds concentration profile or duration. Emergency responders need expected value toxicity parameters rather than the existing safe-sided ones. This presentation will specify the types of toxicity values needed to provide appropriate chemical hazard estimates to emergency responders and will demonstrate how dramatically their use changes the hazard area.(author)

  3. International IAEA Emergency Response Workshop in Fukushima Concludes

    International Nuclear Information System (INIS)

    2013-01-01

    , both in Japan and worldwide, in light of the March 2011 accident. The workshop and the Centre's activities are part of the IAEA's work to further strengthen international emergency preparedness and response, as guided by the IAEA Action Plan on Nuclear Safety that was unanimously endorsed by IAEA Member States in September 2011. (IAEA)

  4. Integrated Safety, Environmental and Emergency Management System (ISEEMS)

    International Nuclear Information System (INIS)

    Silver, R.; Langwell, G.; Thomas, C.; Coffing, S.

    1996-01-01

    The Risk Management and NEPA (National Environmental Policy Act) Department of Sandia National Laboratories/New Mexico (SNL/NM) recognized the need for hazard and environmental data analysis and management to support the line managers' need to know, understand, manage and document the hazards in their facilities and activities. The Integrated Safety, Environmental, and Emergency Management System (ISEEMS) was developed in response to this need. SNL needed a process that would quickly and easily determine if a facility or project activity contained only standard industrial hazards and therefore require minimal safety documentation, or if non-standard industrial hazards existed which would require more extensive analysis and documentation. Many facilities and project activities at SNL would benefit from the quick screening process used in ISEEMS. In addition, a process was needed that would expedite the NEPA process. ISEEMS takes advantage of the fact that there is some information needed for the NEPA process that is also needed for the safety documentation process. The ISEEMS process enables SNL line organizations to identify and manage hazards and environmental concerns at a level of effort commensurate with the hazards themselves by adopting a necessary and sufficient (graded) approach to compliance. All hazard-related information contained within ISEEMS is location based and can be displayed using on-line maps and building floor plans. This visual representation provides for quick assimilation and analysis

  5. Social Networking for Emergency Management and Public Safety

    Energy Technology Data Exchange (ETDEWEB)

    Lesperance, Ann M.; Olson, Jarrod; Godinez, Melanie A.

    2010-08-31

    On March 10, 2010 the workshop titled Social Networking for Emergency Management and Public Safety was held in Seattle, WA. The objective of this workshop was to showcase ways social media networking technologies can be used to support emergency management and public safety operations. The workshop highlighted the current state of social networking and where this dynamic engagement is heading, demonstrated some of the more commonly used technologies, highlighted case studies on how these tools have been used in a variety of jurisdictions and engaged the private sector on how these tools might serve as a conduit for two way communication between with the public sector to address regional recovery issues and decision making.

  6. Differences in emergency colorectal surgery in Medicaid and uninsured patients by hospital safety net status.

    Science.gov (United States)

    Bradley, Cathy J; Dahman, Bassam; Sabik, Lindsay M

    2015-02-01

    We examined whether safety net hospitals reduce the likelihood of emergency colorectal cancer (CRC) surgery in uninsured and Medicaid-insured patients. If these patients have better access to care through safety net providers, they should be less likely to undergo emergency resection relative to similar patients at non- safety net hospitals. Using population-based data, we estimated the relationship between safety net hospitals, patient insurance status, and emergency CRC surgery. We extracted inpatient admission data from the Virginia Health Information discharge database and matched them to the Virginia Cancer Registry for patients aged 21 to 64 years who underwent a CRC resection between January 1, 1999, and December 31, 2005 (n = 5488). We differentiated between medically defined emergencies and those that originated in the emergency department (ED). For each definition of emergency surgery, we estimated the linear probability models of the effects of being treated at a safety net hospital on the probability of having an emergency resection. Safety net hospitals reduce emergency surgeries among uninsured and Medicaid CRC patients. When defining an emergency resection as those that involved an ED visit, these patients were 15 to 20 percentage points less likely to have an emergency resection when treated in a safety net hospital. Our results suggest that these hospitals provide a benefit, most likely through the access they afford to timely and appropriate care, to uninsured and Medicaid-insured patients relative to hospitals without a safety net mission.

  7. Emergency response plan for accidents in Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Solaiman, K.M.; Al-Arfaj, A.M.; Farouk, M.A.

    2000-01-01

    This paper presents a brief description of the general emergency plan for accidents involving radioactive materials in the Kingdom of Saudi Arabia. Uses of radioactive materials and radiation sources and their associated potential accident are specified. Most general accident scenarios of various levels have been determined. Protective measures have been specified to reduce individual and collective doses arising during accident situations. Intervention levels for temporary exposure situations, as established in the IAEA's basic safety standards for protection against ionising radiation and for the safety of radiation sources, are adopted as national intervention levels. General procedures for implementation of the response plan, including notification and radiological monitoring instrumentation and equipment, are described and radiation monitoring teams are nominated. Training programs for the different parties which may be called upon to respond are studied and will be started. (author)

  8. Safety vs. reputation: risk controversies in emerging policy networks regarding school safety in the Netherlands

    NARCIS (Netherlands)

    Binkhorst, J.; Kingma, S.F.

    2012-01-01

    This article deals with risk controversies in emerging policy networks regarding school safety in the Netherlands. It offers a grounded account of the interpretations of school risks and safety measures by the various stakeholders of the policy network, in particular, schools, local government and

  9. Emergency response workers workshop

    International Nuclear Information System (INIS)

    Agapeev, S.A.; Glukhikh, E.N.; Tyurin, R.L.

    2012-01-01

    A training workshop entitled Current issues and potential improvements in Rosatom Corporation emergency prevention and response system was held in May-June, 2012. The workshop combined theoretical training with full-scale practical exercise that demonstrated the existing innovative capabilities for radiation reconnaissance, diving equipment and robotics, aircraft, emergency response and rescue hardware and machinery. This paper describes the activities carried out during the workshop [ru

  10. Generic procedures for medical response during a nuclear or radiological emergency. Emergency preparedness and response

    International Nuclear Information System (INIS)

    2005-04-01

    The aim of this publication is to serve as a practical resource for planning the medical response to a nuclear or radiological emergency. It fulfils in part functions assigned to the IAEA under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), namely, to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. Effective medical response is a necessary component of the overall response to nuclear or radiological (radiation) emergencies. In general, the medical response may represent a difficult challenge for the authorities due to the complexity of the situation, often requiring specialized expertise, and special organizational arrangements and materials. To be effective, adequate planning and preparedness are needed. This manual, if implemented, should help to contribute to coherent international response. The manual provides the practical tools and generic procedures for use by emergency medical personnel during an emergency situation. It also provides guidance to be used at the stage of preparedness for development of medical response capabilities. The manual also addresses mass casualty emergencies resulting from malicious acts involving radioactive material. This part was supported by the Nuclear Security Fund. The manual was developed based on a number of assumptions about national and local capabilities. Therefore, it must be reviewed and revised as part of the planning process to match the potential accidents, threats, local conditions and other unique characteristics of the facility where it may be used

  11. 21 CFR 25.16 - Public health and safety emergencies.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Public health and safety emergencies. 25.16... ENVIRONMENTAL IMPACT CONSIDERATIONS Agency Actions Requiring Environmental Consideration § 25.16 Public health... importance to the public health or safety, may make full adherence to the procedural provisions of NEPA and...

  12. Next Generation Public Safety and Emergency Technologies

    DEFF Research Database (Denmark)

    Bonde, Camilla; Tadayoni, Reza; Skouby, Knud Erik

    2014-01-01

    The paper researches the existing European standards for Public Safety and Emergency (PSE) services (also called Public Protection Disaster Relief “PPDR”), and identifies based on user studies in Denmark conflicts between the current deployments of the standards and the user requirements. The aim...

  13. Improving the safety of remote site emergency airway management.

    Science.gov (United States)

    Wijesuriya, Julian; Brand, Jonathan

    2014-01-01

    Airway management, particularly in non-theatre settings, is an area of anaesthesia and critical care associated with significant risk of morbidity & mortality, as highlighted during the 4th National Audit Project of the Royal College of Anaesthetists (NAP4). A survey of junior anaesthetists at our hospital highlighted a lack of confidence and perceived lack of safety in emergency airway management, especially in non-theatre settings. We developed and implemented a multifaceted airway package designed to improve the safety of remote site airway management. A Rapid Sequence Induction (RSI) checklist was developed; this was combined with new advanced airway equipment and drugs bags. Additionally, new carbon dioxide detector filters were procured in order to comply with NAP4 monitoring recommendations. The RSI checklists were placed in key locations throughout the hospital and the drugs and advanced airway equipment bags were centralised in the Intensive Care Unit (ICU). It was agreed with the senior nursing staff that an appropriately trained ICU nurse would attend all emergency situations with new airway resources upon request. Departmental guidelines were updated to include details of the new resources and the on-call anaesthetist's responsibilities regarding checks and maintenance. Following our intervention trainees reported higher confidence levels regarding remote site emergency airway management. Nine trusts within the Northern Region were surveyed and we found large variations in the provision of remote site airway management resources. Complications in remote site airway management due lack of available appropriate drugs, equipment or trained staff are potentially life threatening and completely avoidable. Utilising the intervention package an anaesthetist would be able to safely plan and prepare for airway management in any setting. They would subsequently have the drugs, equipment, and trained assistance required to manage any difficulties or complications

  14. National Energy Board Emergency Management Program : annex to Natural Resources Canada Civil Emergency Plan no. 004

    International Nuclear Information System (INIS)

    Lever, G.; LeMay, R.

    2006-01-01

    As a matter of primary public interest, safety is included in the National Energy Board's (NEB) mandate. The Board is responsible for ensuring companies involved with energy development and pipelines comply with regulations concerning the safety of employees, the public, and the environment. The purpose of the NEB's Emergency Management Program is to establish a prompt and coordinated response to an emergency which occurs at any facility or operation regulated by the NEB; promote safety and security and assure compliance with regulatory requirements in order to protect the public, workers, property and the environment during the life cycle of facilities and operations; and, have a documented set of procedures that accomplish these objectives. The Board ensures that companies identify and manage the potential hazards associated with their facilities; conduct a risk analysis of those hazards; and, manage the risks in order to protect the public and personnel, the security of the facilities and the environment. All companies under the Board's jurisdiction are responsible for developing and maintaining an Emergency Response and Preparedness Program for all aspects of their operations. In the event an emergency occurs, the regulated company is responsible for responding to the emergency and coordinating emergency response activities. Typically, the NEB responds on site to incidents that result in death or serious injury; involve a significant release of hydrocarbons; could result in potential or real impact due to loss of service; pose imminent threats identified by Public Safety and Emergency Preparedness Canada or other agencies; attract significant media attention, or on the advice of Natural Resources Canada or other federal Agencies. The first part of this document described the initial response check list while the second part outlined the Emergency response framework. 2 tabs., 3 figs., 15 appendices

  15. IAEA emergency response network ERNET. Emergency preparedness and response. Date effective: 1 December 2002

    International Nuclear Information System (INIS)

    2003-04-01

    The Parties to the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency have undertaken to co-operate among themselves and with the IAEA in facilitating the prompt provision of assistance in the event of a nuclear accident or radiological emergency, and in minimizing the consequences and in protecting life, property and the environment from the effects of any radioactive releases. As part of the IAEA strategy for supporting such co-operation, the Secretariat of the IAEA is establishing a global Emergency Response Network (ERNET) of teams suitably qualified to respond rapidly, on a regional basis, to nuclear accidents or radiological emergencies. This manual sets out the criteria and requirements to be met by ERNET teams. It is intended for use by institutions in Member States in developing, applying and maintaining their emergency response capabilities and in implementing quality assurance programmes within the context of ERNET. The manual is worded on the assumption that a State Competent Authority designated as the body responsible for reacting to nuclear accidents or radiological emergencies which occur outside the jurisdiction of that State will be the State Contact Point for receiving requests for assistance from the IAEA under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency

  16. IAEA emergency response network ERNET. Emergency preparedness and response. Date effective: 1 December 2000

    International Nuclear Information System (INIS)

    2000-12-01

    The Parties to the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency have undertaken to co-operate among themselves and with the IAEA in facilitating the prompt provision of assistance in the event of a nuclear accident or radiological emergency, and in minimizing the consequences and in protecting life, property and the environment from the effects of any radioactive releases. As part of the IAEA strategy for supporting such co-operation, the Secretariat of the IAEA is establishing a global Emergency Response Network (ERNET) of teams suitably qualified to respond rapidly, on a regional basis, to nuclear accidents or radiological emergencies. This manual sets out the criteria and requirements to be met by ERNET teams. It is intended for use by institutions in Member States in developing, applying and maintaining their emergency response capabilities and in implementing quality assurance programmes within the context of ERNET. The manual is worded on the assumption that a State Competent Authority designated as the body responsible for reacting to nuclear accidents or radiological emergencies which occur outside the jurisdiction of that State will be the State Contact Point for receiving requests for assistance from the IAEA under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency

  17. The safety implications of emerging software paradigms

    International Nuclear Information System (INIS)

    Suski, G.J.; Persons, W.L.; Johnson, G.L.

    1994-10-01

    This paper addresses some of the emerging software paradigms that may be used in developing safety-critical software applications. Paradigms considered in this paper include knowledge-based systems, neural networks, genetic algorithms, and fuzzy systems. It presents one view of the software verification and validation activities that should be associated with each paradigm. The paper begins with a discussion of the historical evolution of software verification and validation. Next, a comparison is made between the verification and validation processes used for conventional and emerging software systems. Several verification and validation issues for the emerging paradigms are discussed and some specific research topics are identified. This work is relevant for monitoring and control at nuclear power plants

  18. Timing criteria for supplemental BWR emergency response equipment

    International Nuclear Information System (INIS)

    Bickel, John H.

    2015-01-01

    The Great Tohuku Earthquake and subsequent Tsunami represented a double failure event which destroyed offsite power connections to Fukushima-Daiichi site and then destroyed on-site electrical systems needed to run decay heat removal systems. The accident could have been mitigated had there been supplemental portable battery chargers, supplemental pumps, and in-place piping connections to provide alternate decay heat removal. In response to this event in the USA, two national response centers, one in Memphis, Tennessee, and another in Phoenix, Arizona, will begin operation. They will be able to dispatch supplemental emergency response equipment to any nuclear plant in the U.S. within 24 hours. In order to define requirements for supplemental nuclear power plant emergency response equipment maintained onsite vs. in a regional support center it is necessary to confirm: (a) the earliest time such equipment might be needed depending on the specific scenario, (b) the nominal time to move the equipment from a storage location either on-site or within the region of a nuclear power plant, and (c) the time required to connect in the supplemental equipment to use it. This paper describes an evaluation process for a BWR-4 with a Mark I Containment starting with: (a) severe accident simulation to define best estimate times available for recovery based on the specific scenario, (b) identify the key supplemental response equipment needed at specific times to accomplish recovery of key safety functions, and (c) evaluate what types of equipment should be warehoused on-site vs. in regional response centers. (authors)

  19. Application of Robotic System for Emergency Response in NPP

    International Nuclear Information System (INIS)

    Jeong, Kyung Min; Seo, Yong Chil; Shin, Ho Chul; Lee, Sung Uk; Cho, Jae Wan; Choi, Young Soo; Kim, Chang Hoi; Kim, Seung Ho

    2010-01-01

    Increasing energy demand and concerns over climate change make increasing use of nuclear power plant in worldwide. Even though the probability of accident is greatly reduced, safety is the highest priority issue in the nuclear energy industry. Applying highly reliable and conservative 'defense in depth' concepts with the design and construction of NPP, there are very little possibilities with which accidents are occur and radioactive materials are released to environments in NPP. But NPP have prepared with the emergency response procedures and conduct exercises for post-accident circumstance according to the procedures. The application of robots for emergency response task for post-accident in nuclear facilities is not a new concept. Robots have been sent to recover the damaged reactor at Chernobyl where human workers could receive a lifetime dose of radiation in minutes. Based on NRC's TMI-2 Cleanup Program, several robots were built in the 1980s to help gather information and remove debris from a reactor at the Three Mile Island nuclear power plant that partially melted down in 1979. The first robot was lowered into the basement through a hatch and human operators monitoring in a control room drove it through mud, water and debris, capturing the initial post-accident images of the reactor's basement. It was used for several years equipped with various tools allowing it to scour surfaces, scoop samples and vacuum sludge. A second version carried a core sampler to determine the intensity and depth of the radiation that had permeated into the walls. To perform cleanup tasks, they built Workhorse that featured system redundancy and had a boom extendable to reach high places, but it was never used because it had too many complexities and to clean and fix. While remote robotics technology has proven to remove the human from the radioactive environment, it is also difficult to make it useful because it may requires skill about remote control and obtaining remote

  20. Application of Robotic System for Emergency Response in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyung Min; Seo, Yong Chil; Shin, Ho Chul; Lee, Sung Uk; Cho, Jae Wan; Choi, Young Soo; Kim, Chang Hoi; Kim, Seung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Increasing energy demand and concerns over climate change make increasing use of nuclear power plant in worldwide. Even though the probability of accident is greatly reduced, safety is the highest priority issue in the nuclear energy industry. Applying highly reliable and conservative 'defense in depth' concepts with the design and construction of NPP, there are very little possibilities with which accidents are occur and radioactive materials are released to environments in NPP. But NPP have prepared with the emergency response procedures and conduct exercises for post-accident circumstance according to the procedures. The application of robots for emergency response task for post-accident in nuclear facilities is not a new concept. Robots have been sent to recover the damaged reactor at Chernobyl where human workers could receive a lifetime dose of radiation in minutes. Based on NRC's TMI-2 Cleanup Program, several robots were built in the 1980s to help gather information and remove debris from a reactor at the Three Mile Island nuclear power plant that partially melted down in 1979. The first robot was lowered into the basement through a hatch and human operators monitoring in a control room drove it through mud, water and debris, capturing the initial post-accident images of the reactor's basement. It was used for several years equipped with various tools allowing it to scour surfaces, scoop samples and vacuum sludge. A second version carried a core sampler to determine the intensity and depth of the radiation that had permeated into the walls. To perform cleanup tasks, they built Workhorse that featured system redundancy and had a boom extendable to reach high places, but it was never used because it had too many complexities and to clean and fix. While remote robotics technology has proven to remove the human from the radioactive environment, it is also difficult to make it useful because it may requires skill about remote control and

  1. Radiological emergency: Malaysian preparedness and response

    International Nuclear Information System (INIS)

    Yusof, M. A. W.; Ali, H. M.

    2011-01-01

    Planning and preparation in advance for radiological emergencies can help to minimise potential public health and environmental threats if and when an actual emergency occurs. During the planning process, emergency response organisations think through how they would respond to each type of incident and the resources that will be needed. In Malaysia, planning, preparation for and response to radiological emergencies involve many parties. In the event of a radiological emergency and if it is considered a disaster, the National Security Council, the Atomic Energy Licensing Board and the Malaysian Nuclear Agency (Nuclear Malaysia) will work together with other federal agencies, state and local governments, first responders and international organisations to monitor the situation, contain the release, and clean up the contaminated site. Throughout the response, these agencies use their protective action guidelines. This paper discusses Malaysian preparedness for, and response to, any potential radiological emergency. (authors)

  2. Safety in times of crises - the importance of industrial emergency plans

    International Nuclear Information System (INIS)

    Rademacher, H.; Schulten, R.

    1989-01-01

    Technical and organizational precautions cannot always avoid everyday risks such as accidents, fire, explosions, and other critical situations which without appropriate countermeasures can easily develop into emergencies. While in recent years considerable efforts have been going into improving the technical safety of industrial plants particularly susceptible to accidents (e.g. the nuclear and chemical industry), organizational safety seems to have been neglected. An analysis of different accidents reveals human fallibility rather than technical failures to be causing damage in many cases. Industrial emergency plans are considered to be contributing to the improvement of organizational safety. (orig.) [de

  3. The Brazilian emergency response system

    International Nuclear Information System (INIS)

    Santos, Raul dos

    1997-01-01

    With the objective of improving the response actions to potential or real emergency situations generated by radiological or nuclear accidents, the Brazilian National Nuclear Energy Commission (CNEN) installed an integrated response system on a 24 hours basis. All the natiowide notifications on events that may start an emergency situation are converged to this system. Established since July 1990, this system has received around 300 notifications in which 5% were classified as potential emergency situation. (author)

  4. Joint radiation emergency management plan of the international organizations. Emergency preparedness and response. Date effective: 1 January 2007

    International Nuclear Information System (INIS)

    2007-01-01

    binding treaties and have directives and regulations that bear on emergency response arrangements among some States. There are also bilateral agreements between some international organizations that also have relevance to preparedness and response arrangements. In March 2002, the IAEA issued Safety Requirements, entitled 'Preparedness and Response for a Nuclear or Radiological Emergency' (GS-R-2), jointly sponsored by the FAO, IAEA, the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the United Nations Office for the Coordination of Humanitarian Affairs (OCHA), the Pan American Health Organization (PAHO) and WHO. These safety standards imply additional expectations with regard to operational emergency response arrangements. It is recognized by the participating organizations, and reflected in the above requirements, that good planning in advance of an emergency can substantially improve the response. With this in mind, the IAEA, the organizations party to the Conventions, and some other international organizations that participate in the activities of the IACRNA develop and maintain this 'Joint Radiation Emergency Management Plan of the International Organizations' (the Joint Plan), which describes: the objectives of response; the organizations involved in response, their roles and responsibilities, and the interfaces among them and between them and States; operational concepts; and preparedness arrangements. The various organizations reflect these arrangements in their own emergency plans. The IAEA is the main co-ordinating body for development and maintenance of the Joint Plan. All States irrespective whether they are party to one or other of the two Conventions are invited to adopt arrangements that are compatible with those described here when providing relevant information about nuclear or radiological emergencies to relevant international organizations, in order to minimize the radiological consequences and to facilitate the

  5. The perception of the patient safety climate by professionals of the emergency department.

    Science.gov (United States)

    Rigobello, Mayara Carvalho Godinho; Carvalho, Rhanna Emanuela Fontenele Lima de; Guerreiro, Juliana Magalhães; Motta, Ana Paula Gobbo; Atila, Elizabeth; Gimenes, Fernanda Raphael Escobar

    2017-07-01

    The aim of this study was to assess the patient safety climate from the perspective of healthcare professionals working in the emergency department of a hospital in Brazil. Emergency departments are complex and dynamic environments. They are prone to adverse events that compromise the quality of care provided and reveal the importance of patient safety culture and climate. This was a quantitative, descriptive, cross-sectional study. The Safety Attitudes Questionnaire (SAQ) - Short Form 2006 was used for data collection, validated and adapted into Portuguese. The study sample consisted of 125 participants. Most of the participants were female (57.6%) and had worked in emergency department for more than 10years (56.8%). Sixty-two participants (49.6%) were nursing professionals. The participants demonstrated satisfaction with their jobs and dissatisfaction with the actions of management with regard to safety issues. Participants' perceptions about the patient safety climate were found to be negative. Knowledge of professionals' perceptions of patient safety climate in the context of emergency care helps with assessments of the safety culture, contributes to improvement of health care, reduces adverse events, and can focus efforts to improve the quality of care provided to patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100

    International Nuclear Information System (INIS)

    Borgeson, M.E.

    1994-01-01

    The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations

  7. IAEA response assistance network. Incident and Emergency Centre. Emergency preparedness and response. Date effective: 1 May 2006

    International Nuclear Information System (INIS)

    2006-03-01

    This publication is intended to serve as a tool for supporting the provision of international assistance in the case of nuclear or radiological incident or emergency, cooperation between States, their Competent Authorities and the IAEA, and harmonization of response capabilities of States offering assistance. The publication is issued under the authority of the Director General of the IAEA: (1) under the auspices of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the Assistance Convention) [1], to promote, facilitate and support cooperation between States Parties to coordinate and/or provide assistance to a State Party and/or Member State; and (2) in the case of an incident or emergency, as statutory functions, to provide for the application of its safety standards, upon request by a Member State, and to act as an intermediary for the purposes of securing the performance of services or the supplying of materials, equipment or facilities by one Member State for another. The publication sets out the following: a) the RANET concept and the organizational structure for providing assistance; b) functions, responsibilities and activities within the RANET; c) the RANET response operations and arrangements needed for preparedness; and d) the prerequisites for RANET membership and conditions of registration. The RANET is divided into four sections. After the introduction in Section 1, the RANET concept, objectives and scope are described in Section 2. Section 3 presents the concept of operations of the RANET and Section 4 describes expected tasks, capabilities and resources. In addition, EPR-RANET (2006) has three supporting documents, which are issued separately, as follows: 1. Assistance Action Plans with samples of Assistance Action Plans for providing international assistance. 2. Registry with the details of the registry and instructions on how to register national assistance capabilities for the RANET. 3. Technical Guidelines

  8. An emergency response centre (ERC) for the preparedness and response to nuclear and radiological emergencies

    International Nuclear Information System (INIS)

    Pradeepkumar, K.S.; Sharma, D.N.; Abani, M.C.

    2001-01-01

    This paper discusses the requirement for a state of the art Emergency Response Centre (ERC) to be developed and kept in readiness for the quick response to any nuclear or radiological emergencies. For an effective response to any major nuclear emergency an ERC having the facilities of i) environmental dose rate monitoring network established using both mobile and fixed units ii) on-line meteorological data collection and information station iii) on-line computation and prediction of isodose curves in real time and iv) properly developed and tested monitoring methodologies are essential. Vehicles with on-line data transfer facility to the ERC and equipped with different type of monitoring systems can function as Mobile Monitoring Laboratories (MMLs) and can help in quick decision making even during a radiological emergency far away from the ERC. (author)

  9. ANSI/ANS-8.23-1997: nuclear criticality accident emergency planning and response

    International Nuclear Information System (INIS)

    Baker, J.S.

    2004-01-01

    American National Standard ANSUANS-8.23 was developed to expand upon the basic emergency response guidance given in American National Standard, 'Administrative Practices for Nuclear Criticality Safety' ANSI/ANS-8.19-1996 (Ref. 1). This standard provides guidance for minimizing risks to personnel during emergency response to a nuclear criticality accident outside reactors. This standard is intended to apply to those facilities for which a criticality accident alarm system, as specified in American National Standard, 'Criticality Accident Alarm System', ANSI/ANS-8.3-1997 (Ref. 2) is in use. The Working Group was established in 1990, with Norman L. Pruvost as chairman. The Working Group had up to twenty-three members representing a broad range of the nuclear industry, and has included members from Canada, Japan and the United Kingdom. The initial edition of ANSI/ANS-8.23 was approved by the American National Standards Institute on December 30, 1997. It provides guidance for the following topics: (1) Management and technical staff responsibilities; (2) Evaluation of a potential criticality accident; (3) Emergency plan provisions; (4) Evacuation; (5) Re-entry, rescue and stabilization; and (6) Classroom training, exercises and evacuation drills. This guidance is not for generic emergency planning issues, but is specific to nuclear criticality accidents. For example, it assumes that an Emergency Plan is already established at facilities that implement the standard. During the development of the initial edition of ANSI/ANS-8.23, each Working Group member evaluated potential use of the standard at a facility with which the member was familiar. This revealed areas where a facility could have difficulty complying with the standard. These reviews helped identify and eliminate many potential problems and ambiguities with the guidance. The Working Group has received very limited feedback from the user community since the first edition of the standard was published. Suggestions

  10. Radiological emergency response - a functional approach

    International Nuclear Information System (INIS)

    Chowdhury, P.

    1998-01-01

    The state of Louisiana's radiological emergency response programme is based on the federal guidance 'Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants' (NUREG-0654, FEMA-REP-1 Rev. 1). Over the past 14 years, the planning and implementation of response capabilities became more organized and efficient; the training programme has strengthened considerably; co-ordination with all participating agencies has assumed a more co-operative role, and as a result, a fairly well integrated response planning has evolved. Recently, a more 'functional' approach is being adopted to maximize the programme's efficiency not only for nuclear power plant emergency response, but radiological emergency response as a whole. First, several broad-based 'components' are identified; clusters of 'nodes' are generated for each component; these 'nodes' may be divided into 'sub-nodes' which will contain some 'attributes'; 'relational bonds' among the 'attributes' will exist. When executed, the process begins and continues with the 'nodes' assuming a functional and dynamic role based on the nature and characteristics of the 'attributes'. The typical response based on stand-alone elements is thus eliminated, the overlapping of functions is avoided, and a well structured and efficient organization is produced, that is essential for today's complex nature of emergency response. (author)

  11. 75 FR 67807 - Pipeline Safety: Emergency Preparedness Communications

    Science.gov (United States)

    2010-11-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... is issuing an Advisory Bulletin to remind operators of gas and hazardous liquid pipeline facilities... Gas Pipeline Systems. Subject: Emergency Preparedness Communications. Advisory: To further enhance the...

  12. Development of an extended framework for emergency response criteria. Interim report for comments

    International Nuclear Information System (INIS)

    2005-01-01

    Experience from response to recent nuclear and radiological emergencies has clearly demonstrated the importance of an efficient response system that includes, among other components, emergency plans, procedures, and internally consistent operational criteria. An analysis of lessons identified from recent responses has shown that a lack of crucial components in the emergency response system could result in major radiological and nonradiological consequences at the national level. One of the reasons for the overwhelming psychological consequences of the Chernobyl and Goiania emergencies was public mistrust of decision-makers, who lost their credibility by frequently changing the criteria for taking action. Moreover, national response arrangements that are incompatible among countries can result in major mistrust by the public. It is considered important to have internationally agreed criteria and guidance for emergency response established in advance of an emergency. Currently there are several IAEA safety standards that contain recommendations for response to radiation emergencies, addressing principles and response criteria. Mindful of the lessons identified from recent emergencies, the IAEA convened in November 2001 a technical committee meeting (TCM) to develop aspects of the technical basis for emergency response to radiation emergencies. At this meeting, the lessons from response to the Chernobyl, Goiania and other emergencies over the past years were examined to identify where revisions were needed to the existing international guidance for response. In particular, the existing international criteria and guidance for taking protective and other actions were examined in the light of these lessons. The objectives of this document are: (1) to propose an extension of existing criteria for undertaking protective and other actions during or following a nuclear or radiological emergency that: addresses the lessons from past emergencies, addresses the recently

  13. Personal Protective Equipment Supply Chain: Lessons Learned from Recent Public Health Emergency Responses.

    Science.gov (United States)

    Patel, Anita; D'Alessandro, Maryann M; Ireland, Karen J; Burel, W Greg; Wencil, Elaine B; Rasmussen, Sonja A

    Personal protective equipment (PPE) that protects healthcare workers from infection is a critical component of infection control strategies in healthcare settings. During a public health emergency response, protecting healthcare workers from infectious disease is essential, given that they provide clinical care to those who fall ill, have a high risk of exposure, and need to be assured of occupational safety. Like most goods in the United States, the PPE market supply is based on demand. The US PPE supply chain has minimal ability to rapidly surge production, resulting in challenges to meeting large unexpected increases in demand that might occur during a public health emergency. Additionally, a significant proportion of the supply chain is produced off-shore and might not be available to the US market during an emergency because of export restrictions or nationalization of manufacturing facilities. Efforts to increase supplies during previous public health emergencies have been challenging. During the 2009 H1N1 influenza pandemic and the 2014 Ebola virus epidemic, the commercial supply chain of pharmaceutical and healthcare products quickly became critical response components. This article reviews lessons learned from these responses from a PPE supply chain and systems perspective and examines ways to improve PPE readiness for future responses.

  14. Nuclear regulatory policy concept on safety, security, safeguards and emergency preparedness (3S+EP)

    International Nuclear Information System (INIS)

    Ilyas, Zurias

    2009-01-01

    Regulatory Policy is formulated in regulations that stipulate the assurance of workers and public safety and environmental protection. Legislation and regulations on nuclear energy should consider nuclear safety, security and safeguards, as well as nuclear emergency preparedness (3S+EP) and liability for nuclear damage. Specific requirements stipulated in international conventions and agreements should also be taken into account. Regulatory Policy is formulated in regulations that stipulate the assurance of workers and public safety and environmental protection. Legislation and regulations on nuclear energy should consider nuclear safety, security and safeguards, as well as nuclear emergency preparedness (3S+EP) and liability for nuclear damage. Specific requirements stipulated in international conventions and agreements should also be taken into account. By undertaking proper regulatory oversight on Safety, Security and Emergency Preparedness (3S+EP) as an integrated and comprehensive system, safe and secure use of nuclear energy can be assured. Licence requirements and conditions should fulfil regulatory requirements pertaining to 3S+EP for nuclear installation as an integrated system. An effective emergency capacity that can be immediately mobilized is important. The capacity in protecting the personnel before, during and after the disaster should also be planned. Thus, proper emergency preparedness should be supported by adequate resources. The interface between safety, security, safeguards and emergency preparedness has to be set forth in nuclear regulations, such as regulatory requirements; 3S+EP; components, systems and structures of nuclear installations and human resources. Licensing regulations should stipulate, among others, DIQ, installations security system, safety analysis report, emergency preparedness requirements and necessary human resources that meet the 3S+EP requirements.

  15. Method for Developing a Communication Strategy and Plan for a Nuclear or Radiological Emergency. Emergency Preparedness and Response. Publication Date: July 2015

    International Nuclear Information System (INIS)

    2015-08-01

    The aim of this publication is to provide a practical resource for emergency planning in the area of public communication in the development of a radiation emergency communication plan (RECP). The term 'public communication' is defined as any activity that communicates information to the public and the media during a nuclear or radiological emergency. To avoid confusion, the term public communication has been used in this publication rather than public information, which may be used in other IAEA publications and documents to ensure consistency with the terminology used in describing the command and control system. This publication also aims to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(11) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research with regard to the response to nuclear or radiological emergencies. This publication is intended to provide guidance to national and local authorities on developing an RECP which incorporates the specific functions, arrangements and capabilities that will be required for public communication during a nuclear or radiological emergency. The two main features of this publication are the template provided to develop an RECP and detailed guidance on developing a communication strategy for emergency preparedness and response to nuclear or radiological emergencies. The template is consistent with the outline of the national radiation emergency plan proposed in Method for Developing Arrangements for Response to a Nuclear or Radiological Emergency (EPR-Method 2003). This publication is part of the IAEA

  16. 48 CFR 452.236-77 - Emergency Response.

    Science.gov (United States)

    2010-10-01

    ... contracts: Emergency Response (NOV 1996) (a) Contractor's Responsibility for Fire Fighting. (1) The... emergency work (anticipated to be restricted to fire fighting). An equitable adjustment for the temporary... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Emergency Response. 452...

  17. AECB emergency response plan - in brief

    International Nuclear Information System (INIS)

    1995-10-01

    The AECB's mission is to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment. The mission applies before, during and after emergencies

  18. Land Transport Emergency Response Technology Report

    International Nuclear Information System (INIS)

    DOTSON, LORI J.; PIERCE, JIM D.

    2003-01-01

    Sandia National Laboratories was tasked by the Japan Nuclear Cycle Development Institute (JNC) to provide assistance in developing an emergency response plan for radioactive material transportation activities. Those tasks included compiling radioactive materials (RAM) transportation accident data FR-om the open literature and databases, investigating emergency response plans for radioactive materials transport in the United States, and developing specific recommendations for the JNC' nuclear material transport emergency response plan, based on information gathered during the first two tasks. These recommendations include developing a RAM database, a public transparency Internet website, an emergency response inFR-astructure designed specifically for transportation needs, and a clear set of directives to provide authority in the case of transportation accidents or incidents involving RAM

  19. The IAEAs incident and emergency centre: the global focal point for nuclear and radiological emergency preparedness and response

    Energy Technology Data Exchange (ETDEWEB)

    Buglova, E.

    2016-08-01

    The continuous use of nuclear power to generate electricity and the continued threat of radioactive materials being used for nefarious reasons reminds us of the importance to stay prepared to respond to nuclear or radiological emergencies. Stringent nuclear safety and nuclear security requirements, the training of personnel, operational checks and legal frameworks cannot always prevent radiation-related emergencies. Though these events can range in severity, each has the potential to cause harm to the public, employees, patients, property and the environment. Until the Chernobyl nuclear accident in 1986, there was no international information exchange system. Immediately following that accident, the international community negotiated the so-called Emergency Conventions to ensure that the country suffering an accident with an international transboundary release of radioactive material would issue timely, authenticated information, while the States that could field technical support, would do so in a coordinated fashion. The Conventions also place specific legal obligations on the International Atomic energy Agency (IAEA) with regard to emergency preparedness and response. (Author)

  20. Training for the medical response in radiological emergency experiences and results

    International Nuclear Information System (INIS)

    Cardenas Herrera, J.; Lopez Forteza, Y.

    2003-01-01

    The use of the nuclear techniques int he social practice confers a special imporatnce to the relative aspects to the safety of the practices and radiationsources, for what the implementation of efficient programs of radiation protection constitutes a priority. However in spite of the will before expressed, regrettably radiological situations happen accidental assocaited to multiple causes taht suggest the creation of response capacities to intervention before these fortuitous facts. The experiences accumulated in the last decades related with accidental exposures have evidenced the convenience of having properly qualified human resources for the Medical Response in Radiological Emergencies. The training in the medical aspects of the radiological emergencies acquires a singular character. In such a sense when valuing the national situation put onof manifest deficiences as for the training in medical aspects of the radiological emergencies that advised the development of training programs in such aspects for the different response groups linked to the topic. After identified the training necessities and the scope of the same ones, the contents of the training program were elaborated. The program has as general purpose the invigoration of the capacity of the medical response in front of accidental radiological situations, by means of actions that they bear to prepare groups of medical response in the handling of people accident victims and to the identification of potentials,accidental scenarios, as well as of the necessary resources to confront them. The program content approaches theoretical and paractical aspects to the medical aspect to radiological emergencies. The program include the different topics about fundamental of physical biological to radiation protection, radiation protection during exposure of radiological accidents, medical care for overexposed or contaminated persons, drill, exercises and concludes with designation of a strategy as preparation and

  1. Generic Procedures for Response to a Nuclear or Radiological Emergency at Triga Research Reactors. Attachment 1 (2011)

    International Nuclear Information System (INIS)

    2011-01-01

    The publication provides guidance for response to emergencies at TRIGA research reactors in Threat Category II and III. It contains information on the unique behaviour of TRIGA fuel during accident conditions; it describes design characteristics of TRIGA research reactors and provides specific symptom-based emergency classification for this type of research reactor. This publication covers the determination of the appropriate emergency class and protective actions for a nuclear or radiological emergency at TRIGA research reactors. It does not cover nuclear security at TRIGA research reactors. The term 'threat category' is used in this publication as described in Ref. [6] and for the purposes of emergency preparedness and response only; this usage does not imply that any threat, in the sense of an intention and capability to cause harm, has been made in relation to facilities, activities or sources. The threat category is determined by an analysis of potential nuclear and radiological emergencies and the associated radiation hazard that could arise as a consequence of those emergencies. STRUCTURE. The attachment consists of an introduction which defines the background, objective, scope and structure, two sections covering technical aspects and appendices. Section 2 describes the characteristics of TRIGA fuel in normal and accident conditions. Section 3 contains TRIGA research reactor specific emergency classification tables for Threat Category II and III. These tables should be used instead of the corresponding emergency classification tables presented in Ref. [1] while developing the emergency response arrangements at TRIGA research reactors. The appendices present some historical overview and typical general data for TRIGA research reactor projects and the list of TRIGA installations around the world. The terms used in this document are defined in the IAEA Safety Glossary and the IAEA Code of Conduct on the Safety of Research Reactors.

  2. Safety assessment of emergency power systems for nuclear power plants

    International Nuclear Information System (INIS)

    1992-01-01

    This publication is intended to assist the safety assessor within a regulatory body, or one working as a consultant, in assessing the safety of a given design of the emergency power systems (EPS) for a nuclear power plant. The present publication refers closely to the NUSS Safety Guide 50-SG-D7 (Rev. 1), Emergency Power Systems at Nuclear Power Plants. It covers therefore exactly the same technical subject as that Safety Guide. In view of its objective, however, it attempts to help in the evaluation of possible technical solutions which are intended to fulfill the safety requirements. Section 2 clarifies the scope further by giving an outline of the assessment steps in the licensing process. After a general outline of the assessment process in relation to the licensing of a nuclear power plant, the publication is divided into two parts. First, all safety issues are presented in the form of questions that have to be answered in order for the assessor to be confident of a safe design. The second part presents the same topics in tabulated form, listing the required documentation which the assessor has to consult and those international and national technical standards pertinent to the topics. An extensive reference list provides information on standards. 1 tab

  3. Arrangements for preparedness for a nuclear or radiological emergency. Safety guide (Spanish Edition); Disposiciones de preparacion para emergencias nucleares o radiologicas. Guia de seguridad

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    Under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and available results of research relating to response to such emergencies. The primary objectives of this Safety Guide, co-sponsored by FAO, OCHA, ILO, PAHO and WHO, are to provide guidance on preparedness and response for a nuclear or radiological emergency, to describe appropriate responses to a range of emergencies, and to provide background information on past experience, thus helping the user to better implement arrangements that address the underlying issues.

  4. Considerations in Emergency Preparedness and Response for a State Embarking on a Nuclear Power Programme, Training Materials

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of these training materials is to provide a practical tool for emergency planning for a State embarking on a nuclear power programme, and to fulfil, in part, functions assigned to the IAEA under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the Assistance Convention). Under Article 5.a(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. One of the concerns associated with nuclear power is the possibility that a State embarking on a nuclear power programme might not have sufficient capabilities and therefore would not be adequately prepared to respond to a radiation emergency caused by severe accident conditions. Protecting the public, the environment and property in the event of a failure of any level of defence in depth is the most important safety objective. A robust framework for emergency preparedness and response to a radiation emergency forms the last level of defence in depth and, as such, must be developed and implemented by any State embarking on a nuclear power programme, using best international practices. The establishment of capabilities and arrangements for emergency preparedness and response to severe accident conditions is one of the principal tasks in the development of a national infrastructure for nuclear power. State of the art emergency preparedness and response is a key element in achieving overall plant safety. This training course complements the IAEA publication 'Considerations in Emergency Preparedness and Response for a State Embarking on a Nuclear Power Programme' (EPR-Embarking 2012). These materials are designed to help States apply the guidance in EPR-Embarking 2012, in order to develop the capability to adequately prepare for and respond to a radiation emergency after the commissioning and start of

  5. Using principles from emergency management to improve emergency response plans for research animals.

    Science.gov (United States)

    Vogelweid, Catherine M

    2013-10-01

    Animal research regulatory agencies have issued updated requirements for emergency response planning by regulated research institutions. A thorough emergency response plan is an essential component of an institution's animal care and use program, but developing an effective plan can be a daunting task. The author provides basic information drawn from the field of emergency management about best practices for developing emergency response plans. Planners should use the basic principles of emergency management to develop a common-sense approach to managing emergencies in their facilities.

  6. 30 CFR 75.1507 - Emergency Response Plan; refuge alternatives.

    Science.gov (United States)

    2010-07-01

    ... accident at a mine. (3) Permissions to cross properties, build roads, and construct drill sites. (4.... 75.1507 Section 75.1507 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Mine Emergencies § 75...

  7. Southern states radiological emergency response laws and regulations

    International Nuclear Information System (INIS)

    1990-06-01

    The purpose of this report is to provide a summary of the emergency response laws and regulations in place in the various states within the southern region for use by legislators, emergency response planners, the general public and all persons concerned about the existing legal framework for emergency response. SSEB expects to periodically update the report as necessary. Radiation protection regulations without emergency response provisions are not included in the summary. The radiological emergency response laws and regulations of the Southern States Energy Compact member states are in some cases disparate. Several states have very specific laws on radiological emergency response while in others, the statutory law mentions only emergency response to ''natural disasters.'' Some states have adopted extensive regulations on the topic, others have none. For this reason, any general overview must necessarily discuss laws and regulations in general terms. State-by-state breakdowns are given for specific states

  8. The emergency response guidelines for the Westinghouse pressurized water reactor

    International Nuclear Information System (INIS)

    Dekens, J.P.; Bastien, R.; Prokopovich, S.R.

    1985-01-01

    The Three Mile Island accident has demonstrated that the guidance provided for mitigating the consequences of design basis accidents could be inadequate when multiple incidents, failures or errors occur during or after the accident. Westinghouse and the Westinghouse Owners Group have developed new Emergency Response Guidelines (E.R.G.). The E.R.G. are composed of two independent sets of procedures and of a systematic tool to continuously evaluate the plant safety throughout the response to an accident. a) The Optimal Recovery Guidelines are entered each time the reactor is tripped or the Emergency Core Cooling System is actuated. An immediate verification of the automatic protective actuations is performed and the accident diagnosis process is initiated. When nature of the accident is identified, the operator is transferred to the applicable recovery procedure and subprocedures. A permanent rediagnosis is performed throughout the application of the optimal Recovery Guidelines and cross connections are provided to the adequate procedure if an error in diagnosis is identified. b) Early in the course of the accident, the operating staff initiates monitoring of the Critical Safety Functions. These are defined as the set of functions ensuring the integrity of the physical barriers against radioactivity release. The review of these functions is peformed continuously through a cyclic application of the status trees. c) The Function Restoration Guidelines are entered when the Critical Safety Function monitoring identifies a challenge to one of the functions. Depending on the severity of the challenge, the transfer to a Function Restoration Guideline can be immediate for a severe challenge or delayed for a minor challenge. Those guidelines are independent of the scenario of the accident, but only based on plant parameters and equipment availability

  9. Current and emerging occupational safety and health (OSH) issues in the healthcare sector, including home and community care

    NARCIS (Netherlands)

    Jong, T. de; Bos, E.; Pawlowska-Cyprysiak, K.; Hildt-Ciupinska, K.; Malinska, M.; Nicolescu, G.; Trifu, A.

    2014-01-01

    This report gives an overview of the current and emerging OSH issues for health- and social care workers and how these affect their safety and health at work and influence the quality of care they provide. It combines a literature review and the responses received to a questionnaire sent to OSH

  10. What Should I Do? A Safety and Emergency Care Handbook.

    Science.gov (United States)

    Crist, Mary Jo; And Others

    One of a series written especially for parents and other caregivers, this handbook offers an overview of emergency care and safety considerations. The discussion of emergency care focuses on supplies for the first aid kit and provides guidelines for dealing with bleeding, bites, burns, suffocation, eye injury, broken bones, head injuries, fevers,…

  11. Adaptive workflow simulation of emergency response

    NARCIS (Netherlands)

    Bruinsma, Guido Wybe Jan

    2010-01-01

    Recent incidents and major training exercises in and outside the Netherlands have persistently shown that not having or not sharing information during emergency response are major sources of emergency response inefficiency and error, and affect incident mitigation outcomes through workflow planning

  12. Radiation emergency response in Illinois, Alabama, and Texas

    International Nuclear Information System (INIS)

    Larsen, D.K.; Chester, R.O.

    1978-03-01

    The objective of this study was to examine state radiation emergency response and to locate any areas of emergency planning in need of improvement. This report briefly presents a summary of laws and defining documents governing radiation emergency response, describes the existing and projected need for such response, and presents the authors' analyses of the evolution of state response plans and their application to radiation incidents. Three states' programs are discussed in detail: Illinois, Alabama, and Texas. These states were selected because they have quite different emergency-response programs. Therefore, these state programs provide a wide variety of approaches to state radiation emergency response

  13. Emergency planning and response - role nad responsibilities of the regulatory body

    International Nuclear Information System (INIS)

    Nizamska, M.

    1999-01-01

    The development of a emergency plan and organisation of adequate emergency preparedness in case of radiological accident in NPP cannot be effective without the appropriate preparatory work. In most countries, also in Republic of Bulgaria, several organisations are identified to have a potential role to play in a radiological emergency. For these reason is very important to have a national organisation, with a mandate to organise, inspect and co-ordinate the possibility of ministries and institution to react in case of radiological emergency, i.e. to quarantine the possibility for implementation of adequate counter measure for protection of the population and environment in case of radiological emergency in NPP. For the purposes of the emergency planning and response the NPP operator, ministries and the institutions developed an Emergency plan - NPP Emergency Plan and National Emergency Plan. The development of the emergency plans will be impossible without the good co-operation of the organisations which have a responsibilities in a radiological emergency. Once emergency plans are adopted, each individual organisation, also the NPP operator, must ensure that in can carry out its role effectively in accordance with the emergency plan and can develop the appropriate organisation for action and implementation of protection counter measures. For testing the emergency plans a regular exercise must be organised. Periodic reviews of the plan and modifications, based on actual events and exercise experience must be performed. The main aim of these report is to present the Bulgarian emergency planning organisation and response by explaining the national emergency panning and response legislation, implementation of IAEA recommendations and exercise experience

  14. Collaboration and patient safety at an emergency department - a qualitative case study.

    Science.gov (United States)

    Pedersen, Anna Helene Meldgaard; Rasmussen, Kurt; Grytnes, Regine; Nielsen, Kent Jacob

    2018-03-19

    Purpose The purpose of this paper is to examine how conflicts about collaboration between staff at different departments arose during the establishment of a new emergency department and how these conflicts affected the daily work and ultimately patient safety at the emergency department. Design/methodology/approach This qualitative single case study draws on qualitative semi-structured interviews and participant observation. The theoretical concepts "availability" and "receptiveness" as antecedents for collaboration will be applied in the analysis. Findings Close collaboration between departments was an essential precondition for the functioning of the new emergency department. The study shows how a lack of antecedents for collaboration affected the working relation and communication between employees and departments, which spurred negative feelings and reproduced conflicts. This situation was seen as a potential threat for the safety of the emergency patients. Research limitations/implications This study presents a single case study, at a specific point in time, and should be used as an illustrative example of how contextual and situational factors affect the working environment and through that patient safety. Originality/value Few studies provide an in-depth investigation of what actually takes place when collaboration between professional groups goes wrong and escalates, and how problems in collaboration may affect patient safety.

  15. Safety pharmacology — Current and emerging concepts

    International Nuclear Information System (INIS)

    Hamdam, Junnat; Sethu, Swaminathan; Smith, Trevor; Alfirevic, Ana; Alhaidari, Mohammad; Atkinson, Jeffrey; Ayala, Mimieveshiofuo; Box, Helen; Cross, Michael; Delaunois, Annie; Dermody, Ailsa; Govindappa, Karthik; Guillon, Jean-Michel; Jenkins, Rosalind; Kenna, Gerry; Lemmer, Björn; Meecham, Ken; Olayanju, Adedamola; Pestel, Sabine; Rothfuss, Andreas

    2013-01-01

    Safety pharmacology (SP) is an essential part of the drug development process that aims to identify and predict adverse effects prior to clinical trials. SP studies are described in the International Conference on Harmonisation (ICH) S7A and S7B guidelines. The core battery and supplemental SP studies evaluate effects of a new chemical entity (NCE) at both anticipated therapeutic and supra-therapeutic exposures on major organ systems, including cardiovascular, central nervous, respiratory, renal and gastrointestinal. This review outlines the current practices and emerging concepts in SP studies including frontloading, parallel assessment of core battery studies, use of non-standard species, biomarkers, and combining toxicology and SP assessments. Integration of the newer approaches to routine SP studies may significantly enhance the scope of SP by refining and providing mechanistic insight to potential adverse effects associated with test compounds. - Highlights: • SP — mandatory non-clinical risk assessments performed during drug development. • SP organ system studies ensure the safety of clinical participants in FiH trials. • Frontloading in SP facilitates lead candidate drug selection. • Emerging trends: integrating SP-Toxicological endpoints; combined core battery tests

  16. Safety pharmacology — Current and emerging concepts

    Energy Technology Data Exchange (ETDEWEB)

    Hamdam, Junnat; Sethu, Swaminathan; Smith, Trevor; Alfirevic, Ana; Alhaidari, Mohammad [MRC Centre for Drug Safety Science, University of Liverpool (United Kingdom); Atkinson, Jeffrey [Lorraine University Pharmacolor Consultants Nancy PCN (France); Ayala, Mimieveshiofuo; Box, Helen; Cross, Michael [MRC Centre for Drug Safety Science, University of Liverpool (United Kingdom); Delaunois, Annie [UCB Pharma (Belgium); Dermody, Ailsa; Govindappa, Karthik [MRC Centre for Drug Safety Science, University of Liverpool (United Kingdom); Guillon, Jean-Michel [Sanofi-aventis (France); Jenkins, Rosalind [MRC Centre for Drug Safety Science, University of Liverpool (United Kingdom); Kenna, Gerry [Astra-Zeneca (United Kingdom); Lemmer, Björn [Ruprecht-Karls-Universität Heidelberg (Germany); Meecham, Ken [Huntingdon Life Sciences (United Kingdom); Olayanju, Adedamola [MRC Centre for Drug Safety Science, University of Liverpool (United Kingdom); Pestel, Sabine [Boehringer-Ingelheim (Germany); Rothfuss, Andreas [Roche (Switzerland); and others

    2013-12-01

    Safety pharmacology (SP) is an essential part of the drug development process that aims to identify and predict adverse effects prior to clinical trials. SP studies are described in the International Conference on Harmonisation (ICH) S7A and S7B guidelines. The core battery and supplemental SP studies evaluate effects of a new chemical entity (NCE) at both anticipated therapeutic and supra-therapeutic exposures on major organ systems, including cardiovascular, central nervous, respiratory, renal and gastrointestinal. This review outlines the current practices and emerging concepts in SP studies including frontloading, parallel assessment of core battery studies, use of non-standard species, biomarkers, and combining toxicology and SP assessments. Integration of the newer approaches to routine SP studies may significantly enhance the scope of SP by refining and providing mechanistic insight to potential adverse effects associated with test compounds. - Highlights: • SP — mandatory non-clinical risk assessments performed during drug development. • SP organ system studies ensure the safety of clinical participants in FiH trials. • Frontloading in SP facilitates lead candidate drug selection. • Emerging trends: integrating SP-Toxicological endpoints; combined core battery tests.

  17. Southern states radiological emergency response laws and regulations

    International Nuclear Information System (INIS)

    1989-07-01

    The purpose of this report is to provide a summary of the emergency response laws and regulations in place in the various states within the southern region for use by legislators, emergency response planners, the general public and all persons concerned about the existing legal framework for emergency response. SSEB expects to periodically update the report as necessary. Radiation protection regulations without emergency response provisions are not included in the summary

  18. The TransPetro emergency response system

    Energy Technology Data Exchange (ETDEWEB)

    Filho, A.T.F.; Cardoso, V.F.; Carbone, R.; Berardinelli, R.P. [Petrobras-TransPetro, Rio de Janeiro (Brazil); Carvalho, M.T.M.; Casanova, M.A. [Pontificia Univ. Catolica, Rio de Janeiro (Brazil). Dept. de Informatica, TeCGraf

    2004-07-01

    Petrobras-TransPetro developed the TransPetro Emergency Response System in response to emergency situations at large oil pipelines or at terminal facilities located in sea or river harbour areas. The standard of excellence includes full compliance with environmental regulations set by the federal government. A distributed workflow management software called InfoPAE forms the basis of the system in which actions are defined, along with geographic and conventional data. The first prototype of InfoPAE was installed in 1999. Currently it is operational in nearly 80 installations. The basic concepts and functionality of the TransPetro Emergency Response System were outlined in this paper with reference to the mitigative actions that are based on an evaluation of the organization of the emergency teams; the communication procedures; characterization of the installations; definition of accidental scenarios; environmental sensitivity maps; simulation of oil spill trajectories and dispersion behaviour; geographical data of the area surrounding the installations; and, other conventional data related to the installations, including available equipment. The emergency response team can take action as soon as an accident is detected. The action plan involves characterizing several scenarios and delegating mitigative actions to specific sub-teams, each with access to geographic data on the region where the emergency occurred. 13 refs., 3 figs.

  19. Licensee responsibility for nuclear power plant safety

    International Nuclear Information System (INIS)

    Schneider, Horst

    2010-01-01

    Simple sentences easy to grasp are desirable in regulations and bans. However, in a legal system, their meaning must be unambiguous. Article 6, Paragraph 1 of the EURATOM Directive on a community framework for the nuclear safety of nuclear facilities of June 2009 states that 'responsibility for the nuclear safety of a nuclear facility is incumbent primarily on the licensee.' The draft 'Safety Criteria for Nuclear Power Plants, Revision D, April 2009' of the German Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU) (A Module 1, 'Safety Criteria for Nuclear Power Plants: Basic Safety Criteria' / '0 Principles' Paragraph 2) reads: 'Responsibility for ensuring safety rests with the licensee. He shall give priority to compliance with the safety goal over the achievement of other operational objectives.' In addition, the existing rules and regulations, whose rank is equivalent to that of international regulations, assign priority to the safety goal to be pursued by the licensee over all other objectives of the company. The operator's responsibility for nuclear safety can be required and achieved only on the basis of permits granted, which must meet legal requirements. The operator's proximity to plant operation is the reason for his 'primary responsibility.' Consequently, verbatim incorporation of Article 6, Paragraph 1 of the EURATOM Directive would only be a superscript added to existing obligations of the operator - inclusive of a safety culture designed as an incentive to further 'the spirit of safety-related actions' - without any new legal contents and consequences. In the reasons of the regulation, this would have to be clarified in addition to the cryptic wording of 'responsibility.. primarily,' at the same time expressing that operators and authorities work together in a spirit of openness and trust. (orig.)

  20. Emergency response strategies

    International Nuclear Information System (INIS)

    Carrilo, D.; Dias de la Cruz, F.

    1984-01-01

    In the present study is estimated, on the basis of a release category (PWR4) and several accident scenarios previously set up, the emergency response efficacy obtained in the application of different response strategies on each of the above mentioned scenarios. The studied strategies contemplate the following protective measures: evacuation, shelter and relocation. The radiological response has been obtained by means of CRAC2 (Calculation of Reactor Accident Consequences) code, and calculated in terms of absorbed dose equivalent (Whole body and thyroid), as well as early and latent biological effects. (author)

  1. [Organisational responsibility versus individual responsibility: safety culture? About the relationship between patient safety and medical malpractice law].

    Science.gov (United States)

    Hart, Dieter

    2009-01-01

    The contribution is concerned with the correlations between risk information, patient safety, responsibility and liability, in particular in terms of liability law. These correlations have an impact on safety culture in healthcare, which can be evaluated positively if--in addition to good quality of medical care--as many sources of error as possible can be identified, analysed, and minimised or eliminated by corresponding measures (safety or risk management). Liability influences the conduct of individuals and enterprises; safety is (probably) also a function of liability; this should also apply to safety culture. The standard of safety culture does not only depend on individual liability for damages, but first of all on strict enterprise liability (system responsibility) and its preventive effects. Patient safety through quality and risk management is therefore also an organisational programme of considerable relevance in terms of liability law.

  2. A Conceptual Framework for Studying the Safety of Transitions in Emergency Care

    National Research Council Canada - National Science Library

    Behara, Ravi; Wears, Robert L; Perry, Shawna J; Eisenberg, Eric; Murphy, Lexa; Vanderhoef, Mary; Shapiro, Marc; Beach, Christopher; Croskerry, Pat; Cosby, Karen

    2005-01-01

    .... We observed transitions of care in five hospital emergency departments as part of a larger study on safety in emergency care and found that in addition to many other differences in work patterns...

  3. Containment-emergency-sump performance. Technical findings related to Unresolved Safety Issue A-43

    International Nuclear Information System (INIS)

    1983-04-01

    This report summarizes key technical findings related to the Unresolved Safety Issue A-43, Containment Emergency Sump Performance, and provides recommendations for resolution of attendant safety issues. The key safety questions relate to: (a) effects of insulation debris on sump performance; (b) sump hydraulic performance as determined by design features, submergence, and plant induced effects, and (c) recirculation pump performance wherein air and/or particulate ingestion can occur. The technical findings presented in this report provide information relevant to the design and performance evaluation of the containment emergency sump

  4. The Fukushima Daiichi Nuclear Power Plant Accident: OECD/NEA Nuclear Safety Response and Lessons Learnt

    International Nuclear Information System (INIS)

    2013-01-01

    Following the March 2011 accident at the Fukushima Daiichi nuclear power plant, all NEA member countries took early action to ensure and confirm the continued safety of their nuclear power plants and the protection of the public. After these preliminary safety reviews, all countries with nuclear facilities carried out comprehensive safety reviews, often referred to as 'stress tests', which reassessed safety margins of nuclear facilities with a primary focus on challenges related to conditions experienced at the Fukushima Daiichi nuclear power plant, for example extreme external events and the loss of safety functions, or capabilities to cope with severe accidents. As appropriate, improvements are being made to safety and emergency response systems to ensure that nuclear power plants are capable of withstanding events that lead to loss of electrical power and/or cooling capability. In the weeks following the accident, the NEA immediately began establishing expert groups in the nuclear safety and radiological protection areas, as well as contributing to information exchange with the Japanese authorities and other international organisations. It promptly provided a forum for high-level decision makers and regulators within the G8-G20 frameworks. The NEA actions taken at the international level in response to the accident have been carried out primarily by the three NEA standing technical committees concerned with nuclear and radiation safety issues - the Committee on Nuclear Regulatory Activities (CNRA), the Committee on the Safety of Nuclear Installations (CSNI) and the Committee on Radiation Protection and Public Health (CRPPH) - under the leadership of the CNRA. More than two years following the accident, the NEA continues to assist the Japanese authorities in dealing with their nuclear safety and recovery efforts as well as to facilitate international co-operation on nuclear safety and radiological protection matters. It is strongly supporting the establishment of

  5. Identification of training and emergency-planning needs through job-safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Veltrie, J.

    1987-01-01

    Training and emergency-planning needs within the photovoltaic industry may be more accurately determined through the performance of detailed job-safety analysis. This paper outlines the four major components of such an analysis, namely operational review, hazards evaluation, personnel review and resources evaluation. It then shows how these may be developed into coherent training and planning recommendations, for both emergency and non-emergency situations.

  6. Emergency response technical centre of the IPSN

    International Nuclear Information System (INIS)

    Dallendre, R.

    2000-01-01

    The Institute for Nuclear Safety and Protection (IPSN), the technical support of the French nuclear safety authority, provides the technical support needed for protect the surrounding population from the consequences of radioactive releases. In the event of an accident arising at a nuclear facility, the IPSN would set up an Emergency Response Technical Centre (CTC) at Fontenay-aux-Roses. The IPSN's objectives are: (a) to diagnose the state of the nuclear facility and monitor its development, (b) to prepare prognosis for the evolution of the accident and to give an estimation of the associated consequences according to the situation evolution, (c) to estimate the risk of radioactive releases and the consequences on man and on the environment, mainly on the basis of weather forecasts and on the prognosis. This diagnosis-prognosis approach is build-up with the information on the state of the installation given by: the concerned site via audio-conference system and telescope, the security panels of the nuclear plant via networks. To perform its missions, the CTC, which has to be both safe and secure, uses multiple telecommunication resources to dialogue with partners and also mapping computer systems, data bases and software tools: (a) the SESAME system, which gives, during an accident of a PWR, a calculation method for the diagnosis-prognosis aforesaid, (b) the CONRAD system, which calculates the atmospheric dispersal of radioactive substances and consequences in the environment in the early phase of an accident, (c) the ASTRAL code, which allows to cope with long lasting situations. In order to be operational, the IPSN expert regularly undergo training in emergency situation management and participate in exercises organised by the government authorities. (author)

  7. Preparation and response to radiation and nuclear emergencies in case of natural disasters

    International Nuclear Information System (INIS)

    Vegueria, Pablo Jerez; Lafortune, J.F.

    2013-01-01

    The impact of natural disasters in cities and communities has grown by different causes in different parts of the world. There are several examples of the impact that have caused extreme natural events in facilities and activities in which ionizing radiation are used. The recent example of the accident at the nuclear power plant of Fukushima Daichi with release of radioactive substances to the environment caused by an earthquake and a tsunami show the need of the increasing improvement in the safety of facilities and activities that use ionizing radiation and radioactive materials in general. Planning and response to events of this nature is another aspect that is important and needs attention. The IAEA documents offer a comprehensive and effective guide to achieve an appropriate degree of readiness to respond to nuclear and radiological emergencies in any situation. However, there are specific challenges for planning and response posed a radiological emergency caused by an extreme natural event or occurring simultaneously with this. The present work deals with essential aspects to take into account by the authorities who coordinate the planning and response to radiological emergencies to deal with extreme natural events

  8. Nuclear Safety through International Cooperation

    International Nuclear Information System (INIS)

    Flory, Denis

    2013-01-01

    The Fukushima Daiichi nuclear accident was the worst at a nuclear facility since the Chernobyl accident in 1986. It caused deep public anxiety and damaged confidence in nuclear power. Following this accident, strengthening nuclear safety standards and emergency response has become an imperative at the global level. The IAEA is leading in developing a global approach, and the IAEA Action Plan on Nuclear Safety is providing a comprehensive framework and acting as a significant driving force to identify lessons learned and to implement safety improvements. Strengthening nuclear safety is addressed through a number of measures proposed in the Action Plan including 12 main actions focusing on safety assessments in the light of the accident. Significant progress has been made in assessing safety vulnerabilities of nuclear power plants, strengthening the IAEA's peer review services, improvements in emergency preparedness and response capabilities, strengthening and maintaining capacity building, as well as widening the scope and enhancing communication and information sharing with Member States, international organizations and the public. Progress has also been made in reviewing the IAEA's safety standards, which continue to be widely applied by regulators, operators and the nuclear industry in general, with increased attention and focus on accident prevention, in particular severe accidents, and emergency preparedness and response.

  9. Preliminary study on Malaysian Nuclear Agency emergency response and preparedness plan from ICT perspective

    International Nuclear Information System (INIS)

    Amy Hamijah Ab Hamid; Muhd Noor Muhd Yunus; Mohd Ashhar Khalid; Abdul Muin Abdul Rahman; Mohd Yusof Mohd Ali; Mohamad Safuan Sulaiman; Hasfazilah Hassan

    2009-01-01

    Emergency response and preparedness (ERP) is an important components of a safety programme developed for any nuclear research centre or nuclear power plant to ensure that the facility can be operated safely and immediate response and actions can be taken to minimize the risk in case of unplanned events and incidences. ERP inclusion in the safety program has been made compulsory by most of the safety standard systems introduced currently including those of ISO 14000, OSHAS 18001 and IAEA. ERP has been included in the Nuclear Malaysia's Safety Health and Environment Management System (SHE-MS) for similar purpose. The ERP has been developed based on guidelines stipulated by AELB, IAEA, DOSH, Fire Brigade and Police Force, taking into consideration all possible events and incidences that can happen within the laboratories and irradiation facilities as a result of activities carried out by its personnel. This paper briefly describes the overall structure of the Nuclear Malaysia ERP, how it functions and being managed, and a brief historical perspective. However ERP is not easily implemented because of human errors and other weaknesses identified. Some ERP cases are analysed and assessed which based on the challenges, strategies and lessons learned from an ICT (Information and Communication Technology) perspective. Therefore, results of the analysis could then be used as inputs to develop a new system of Decision Support System (DSS) for ERP that is more effective in managing emergencies. This system is to be incorporated into the existing SHE-MS of Nuclear Malaysia. (Author)

  10. Preparation of site emergency preparedness plans for nuclear installations

    International Nuclear Information System (INIS)

    1999-10-01

    Safety of public, occupational workers and the protection of environment should be assured while activities for economic and social progress are pursued. These activities include the establishment and utilisation of nuclear facilities and use of radioactive sources. This safety guidelines is issued as a lead document to facilitate preparation of specific site manuals by the responsible organisation for emergency response plans at each site to ensure their preparedness to meet any eventuality due to site emergency in order to mitigate its consequences on the health and safety of site personnel. It takes cognizance of an earlier AERB publications on the subject: Safety manual on site emergency plan on nuclear installations. AERB/SM/NISD-1, 1986 and also takes into consideration the urgent need for promoting public awareness and drawing up revised emergency response plans, which has come about in a significant manner after the accidents at Chernobyl and Bhopal

  11. A Tactical Emergency Response Management System (Terms ...

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... information is a result of collaboration between accident response personnel. ... Tactical Emergency Response Management System (TERMS) which unifies all these different ... purpose of handling crisis and emergency.

  12. Food safety--who is responsible?

    Science.gov (United States)

    Rollin, Bernard E

    2006-01-01

    Though scientists believe that issues of risk can be handled without appeal to values in general or ethics in particular, this is demonstrably false. The very notion of risk is enmeshed in a complex of social ethics. This is clearly true with regard to food safety. With this in mind, it is plausible to affirm that responsibility for food safety at a given point in the chain from producer to consumer rests with the person or entity under whose control the management of that risk most plausibly lies. This principle is illustrated with various examples and with clear cases of industry shouldering and avoiding responsibility. An additional ethical concern relevant to food safety arises from genetically modified foods. Given that the situation here is uncertain and risk unknown, it is hard to see who is responsible for managing such risks. It is arguable that this situation militates in favor of labeling, since consumers are in effect research subjects. The reasonable moral approach to risk we have outlined is jeopardized by the societal tendency towards "victimology" and abrogation of personal responsibility. In such a world, it is incumbent on industry to educate the public with regard to consumer minimization of food safety risks, the impossibility of zero-risk situations, and the economic costs to freedom of protectionism.

  13. Emergency Response Resources guide for nuclear power plant emergencies

    International Nuclear Information System (INIS)

    1992-07-01

    On August 28 and September 18, 1990, the States of Louisiana and Mississippi, Gulf States Utilities, five local parishes, six Federal agencies, and the American Nuclear Insurers participated in a post-emergency TABLETOP exercise in Baton Rouge, Louisiana. One of the products developed from that experience was this guide for understanding the responsibilities and obtaining resources for specific needs from the various participants, particularly from those organizations within the Federal Government. This first revision of that guide broadens the focus of the original document. Also, new information defines the major Federal response facilities. This guide should assist State and local government organizations with identifying and obtaining those resources for the post-emergency response when their resources have been exhausted

  14. The Safety Attitudes Questionnaire: psychometric properties, benchmarking data, and emerging research

    Directory of Open Access Journals (Sweden)

    Boyden James

    2006-04-01

    Full Text Available Abstract Background There is widespread interest in measuring healthcare provider attitudes about issues relevant to patient safety (often called safety climate or safety culture. Here we report the psychometric properties, establish benchmarking data, and discuss emerging areas of research with the University of Texas Safety Attitudes Questionnaire. Methods Six cross-sectional surveys of health care providers (n = 10,843 in 203 clinical areas (including critical care units, operating rooms, inpatient settings, and ambulatory clinics in three countries (USA, UK, New Zealand. Multilevel factor analyses yielded results at the clinical area level and the respondent nested within clinical area level. We report scale reliability, floor/ceiling effects, item factor loadings, inter-factor correlations, and percentage of respondents who agree with each item and scale. Results A six factor model of provider attitudes fit to the data at both the clinical area and respondent nested within clinical area levels. The factors were: Teamwork Climate, Safety Climate, Perceptions of Management, Job Satisfaction, Working Conditions, and Stress Recognition. Scale reliability was 0.9. Provider attitudes varied greatly both within and among organizations. Results are presented to allow benchmarking among organizations and emerging research is discussed. Conclusion The Safety Attitudes Questionnaire demonstrated good psychometric properties. Healthcare organizations can use the survey to measure caregiver attitudes about six patient safety-related domains, to compare themselves with other organizations, to prompt interventions to improve safety attitudes and to measure the effectiveness of these interventions.

  15. Hazardous materials emergency response training program at Texas A ampersand M University

    International Nuclear Information System (INIS)

    Stirling, A.G.

    1989-01-01

    The Texas Engineering Extension Service (TEEX) as the engineering vocational training arm of the Texas A ampersand M University system has conducted oil-spill, hazardous-material, and related safety training for industry since 1976 and fire suppression training since 1931. In 1987 TEEX conducted training for some 66,000 persons, of which some 6000 were in hazardous-materials safety training and 22,000 in fire suppression or related fields. Various laws and regulations exist relative to employee training at an industrial facility, such as the Hazard Communication Act, the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or more commonly Superfund), the Community Right to Know Law, and the Superfund Amendments and Reauthorization Act (SARA), Titles I and III. The TEEX programs developed on the foundation emphasize the hands-on approach (60% field exercises) to provide a comprehensive training curriculum resulting in regulatory compliance, an effective emergency response capability, a prepared community, and a safe work environment

  16. Emergency concepts for the safety level four; Notfallkonzepte der Sicherheitsebene Vier

    Energy Technology Data Exchange (ETDEWEB)

    Richner, Martin [Axpo Power AG, Doettingen (Switzerland). Kernkraftwerk Beznau

    2016-04-15

    According to the IAEA Guidelines and the Swiss Safety Guidelines the defence-in depth safety concept for a nuclear power plant consists of four safety levels. Emergency measures for the limitation of beyond design basis accidents are of safety level four. They are referred to as incident management. After the Chernobyl accident in 1986, in Switzerland the former regulatory body HSK (today ENSI) requested several retrofit measures in the field of accident management. The importance of accident management was visible again in Fukushima and demands for preventive measures grew.

  17. Radiological Emergency Response Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Quality Data Asset includes all current and historical emergency radiological response event and incident of national significance data and surveillance, monitoring,...

  18. Legislative framework on establishing emergency response plan in the case of a nuclear accident

    International Nuclear Information System (INIS)

    Novosel, N.; Valcic, I.; Biscan, R.

    2000-01-01

    To give an overview of the legislative framework, which defined emergency planning in Croatia in the case of a nuclear accident, it's necessary to look at all international recommendations and obligations and the national legislation, acts and regulations. It has to be emphasized that Croatia signed three international conventions in this field, and by that took over some responsibilities and obligations. Beside that, it is also in Croatian interest to follow the recommendations of international institutions such as International Atomic Energy Agency (IAEA standards and technical documents). On the other hand, national legislation in this field consists of several laws, which cover nuclear safety measures, governmental organization, natural disasters and acts (decree, decisions) of responsible authority for emergency planning in the case of a nuclear accident (Ministry of Economy). This paper presents an overview of the international and Croatian legislation which influenced the emergency planning in the case of a nuclear accident. (author)

  19. 76 FR 23708 - Safety Zone; Pierce County Department of Emergency Management Regional Water Exercise, East...

    Science.gov (United States)

    2011-04-28

    ...-AA00 Safety Zone; Pierce County Department of Emergency Management Regional Water Exercise, East... the Regional Water Rescue Exercise. Basis and Purpose The Pierce County, Washington, Department of... to read as follows: Sec. 165.T13-0251 Safety Zone; Pierce County Department of Emergency Management...

  20. A new emergency response model for MACCS. Final report

    International Nuclear Information System (INIS)

    Chanin, D.I.

    1992-01-01

    Under DOE sponsorship, as directed by the Los Alamos National Laboratory (LANL), the MACCS code (version 1.5.11.1) [Ch92] was modified to implement a series of improvements in its modeling of emergency response actions. The purpose of this effort has been to aid the Westinghouse Savannah River Company (WSRC) in its performance of the Level III analysis for the Savannah River Site (SRS) probabilistic risk analysis (PRA) of K Reactor [Wo90]. To ensure its usefulness to WSRC, and facilitate the new model's eventual merger with other MACCS enhancements, close cooperation with WSRC and the MACCS development team at Sandia National Laboratories (SNL) was maintained throughout the project. These improvements are intended to allow a greater degree of flexibility in modeling the mitigative actions of evacuation and sheltering. The emergency response model in MACCS version 1.5.11.1 was developed to support NRC analyses of consequences from severe accidents at commercial nuclear power plants. The NRC code imposes unnecessary constraints on DOE safety analyses, particularly for consequences to onsite worker populations, and it has therefore been revamped. The changes to the code have been implemented in a manner that preserves previous modeling capabilities and therefore prior analyses can be repeated with the new code

  1. Simulation analysis of the use of emergency resources during the emergency response to a major fire

    NARCIS (Netherlands)

    Zhou, Jianfeng; Reniers, G.L.L.M.E.

    2016-01-01

    During an emergency response to an accident or disaster, emergency response actions often need to use various emergency resources. The use of resources plays an important role in the successful implementation of emergency response, but there may be conflicts in the use of resources for emergency

  2. National radiological emergency response to the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Dela Rosa, Alumanda M.

    2011-01-01

    The Fukushima nuclear power plant accident occurred on March 11, 2011, when two natural disasters of unprecedented strengths, an earthquake with magnitude 9 followed one hour later by a powerful tsunami struck northeastern Japan and felled the external power supply and the emergency diesel generators of the Fukushima Daiichi nuclear power station, resulting in a loss of coolant accident. There were core meltdowns in three nuclear reactors with the release of radioactivity estimated to be 1/10 of what was released to the environment during the Chernobyl nuclear power plant accident in April 1986. The Fukushima nuclear accident tested the capability of the Philippine Nuclear Research Institute (PNRI) and the National Disaster Risk Reduction and Management Council (NDRRMC) in responding to such radiological emergency as a nuclear power plant accident. The PNRI and NDRRMC activated the RADPLAN for possible radiological emergency. The emergency response was calibrated to the status of the nuclear reactors on site and the environmental monitoring undertaken around the site and off-site, including the marine environment. This orchestrated effort enabled the PNRI and the national agencies concerned to reassure the public that the nuclear accident does not have a significant impact on the Philippines, both on the health and safety of the people and on the safety of the environment. National actions taken during the accident will be presented. The role played by the International Atomic Energy Agency as the central UN agency for nuclear matters will be discussed. (author)

  3. Emergency response to mass casualty incidents in Lebanon.

    Science.gov (United States)

    El Sayed, Mazen J

    2013-08-01

    The emergency response to mass casualty incidents in Lebanon lacks uniformity. Three recent large-scale incidents have challenged the existing emergency response process and have raised the need to improve and develop incident management for better resilience in times of crisis. We describe some simple emergency management principles that are currently applied in the United States. These principles can be easily adopted by Lebanon and other developing countries to standardize and improve their emergency response systems using existing infrastructure.

  4. Analysis and development of the automated emergency algorithm to control primary to secondary LOCA for SUNPP safety upgrading

    International Nuclear Information System (INIS)

    Kim, V.; Kuznetsov, V.; Balakan, G.; Gromov, G.; Krushynsky, A.; Sholomitsky, S.; Lola, I.

    2007-01-01

    The paper presents the results of the study conducted to support planned modernization of the South Ukraine nuclear power plant. The objective of the analysis has been to develop the automated emergency control algorithm for primary to secondary LOCA accident for SUNPP WWER-1000 safety upgrading. According to the analyses performed in the framework of safety assesment report, given accident is the most complex for control and has the largest contribution into the core damage frequency value. This is because of initial event diagnostics is difficult, emergency control is complicated for personnel, time available for decision making and actions performing is limited with coolant inventory for make-up, probability of steam dump valves on affected steam generator non-closing after opening is high, and as a consequence containment bypass, irretrievable loss of coolant and radioactive materials release into the environment are possible. Unit design modifications are directed on expansion of safety systems capabilities to overcome given accident and to facilitate the personnel actions on emergency control. Safety systems modification according to developed algorithm will allow to simplify accident control by personnel and enable to control the ECCS discharge limiting pressure below the affected steam generator steam dump valve opening pressure, and decrease the probability of the containment bypass sequences. The analysis of the primary-to-secondary LOCA thermal-hydraulics has been conducted with RELAP5/Mod 3.2, and involved development of the dedicated analytical model, calculations of various plant response accident scenarios, conducting of plant personnel intervention analyses using full-scale simulator, development and justification of the emergency control algorithm aimed on the minimization of negative consequences of the primary-to-secondary LOCA (Authors)

  5. Towards accurate emergency response behavior

    International Nuclear Information System (INIS)

    Sargent, T.O.

    1981-01-01

    Nuclear reactor operator emergency response behavior has persisted as a training problem through lack of information. The industry needs an accurate definition of operator behavior in adverse stress conditions, and training methods which will produce the desired behavior. Newly assembled information from fifty years of research into human behavior in both high and low stress provides a more accurate definition of appropriate operator response, and supports training methods which will produce the needed control room behavior. The research indicates that operator response in emergencies is divided into two modes, conditioned behavior and knowledge based behavior. Methods which assure accurate conditioned behavior, and provide for the recovery of knowledge based behavior, are described in detail

  6. OEM Emergency Response Information

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Emergency Management retains records of all incident responses in which it participates. This data asset includes three major sources of information:...

  7. Response surface use in safety analyses

    International Nuclear Information System (INIS)

    Prosek, A.

    1999-01-01

    When thousands of complex computer code runs related to nuclear safety are needed for statistical analysis, the response surface is used to replace the computer code. The main purpose of the study was to develop and demonstrate a tool called optimal statistical estimator (OSE) intended for response surface generation of complex and non-linear phenomena. The performance of optimal statistical estimator was tested by the results of 59 different RELAP5/MOD3.2 code calculations of the small-break loss-of-coolant accident in a two loop pressurized water reactor. The results showed that OSE adequately predicted the response surface for the peak cladding temperature. Some good characteristic of the OSE like monotonic function between two neighbor points and independence on the number of output parameters suggest that OSE can be used for response surface generation of any safety or system parameter in the thermal-hydraulic safety analyses.(author)

  8. Post-emergency response resources guide

    International Nuclear Information System (INIS)

    1991-07-01

    On August 28 and September 18, 1990, the States of Louisiana and Mississippi, Gulf States Utilities, five local parishes, six Federal agencies, and the American Nuclear Insurers participated in a post-emergency TABLETOP exercise in Baton Rouge, Louisiana. One of the products developed from that experience is this guide for understanding the responsibilities and obtaining resources for specific needs from the various participants, particularly those organizations within the federal government. This guide should assist state and local government organizations with identifying and obtaining those resources for the post-emergency response when theirs have been exhausted

  9. Implementation of the Service for Radiological Emergency Response of CRCN-NE/CNEN-PE, Recife, PE, Brazil

    International Nuclear Information System (INIS)

    Menezes, Claudio J.M.

    2005-01-01

    In 1998, it was created in the Centro Regional de Ciencias Nucleares (CRCN-NE) - the Brazilian regional center of nuclear sciences -, Recife, PE, Brazil, the Service for Radiological Emergency Response with the objective of providing the population of Pernambuco and neighboring States a team of professionals specialized in emergency situations and radiological protection. This action has the purpose of decentralization of actions of the Brazilian National Nuclear Energy Commission (CNEN), an agency responsible for licensing and safety of radioactive sources in Brazil. With this study we can conclude that the settlement of SAER/CRCN came to meet initial expectations, having in the last years provided assistance in situations with suspected radioactive material and participated actively: with radioactive load simulation; of the Exercicio de Emergencia Aeronautica Completo (EXEAC) - an emergency simulated training in airports- from the Guararapes-Gilberto Freire Airport; trained, every two years, the services of emergency for accidents and participated in events of the area

  10. Emergency response planning in Pennsylvania

    International Nuclear Information System (INIS)

    Reilly, M.A.

    1988-01-01

    In the decade since the accident at Three Mile Island, emergency planning for response to these events has undergone a significant change in Pennsylvania, as elsewhere. Changes respond to federal guidance and to state agency initiatives. The most singular change is the practice of implementing a protective action throughout the entire emergency planning zone (EPZ). Due to Pennsylvania agency experiences during the accident, the decision was made soon after to develop a staff of nuclear engineers, each giving special day-to-day attention to a specific nuclear power station in the state. Changes in communications capabilities are significant, these being dedicated phone lines between the Commonwealth and each power station, and the reorientation of the Department of Environmental Resources radio network to accommodate direction of field monitoring teams from Harrisburg. Changes that are being or will be implemented in the near future include assessing the emergency response data system for electronic delivery of plant parameter data form facilities during accidents, increased participation in exercises, emergency medical planning, and training, the inclusion of all 67 counties in Pennsylvania in an ingestion EPZ, and the gradual severance of dependence on land-line emergency communication systems

  11. [Emergency response management near the tracks of the public railway network: special aspects of missions connected with the German national railway system].

    Science.gov (United States)

    Krämer, P; Aul, A; Vock, B; Frank, C

    2010-11-01

    Emergency response management and rescue operations concerning the railway network in Germany need special attention and implementation in several ways. The emergency response concerning the German national railway network managed by Deutsche Bahn AG is subject to various rules and regulations which have to be followed precisely. Only by following these rules and procedures is the safety of all emergency staff at the scene ensured. The German national railway network (Deutsche Bahn AG) provides its own emergency response control center, which specializes in managing its response to emergencies and dispatches an emergency response manager to the scene. This person serves as the primary Deutsche Bahn AG representative at the scene and is the only person who is allowed to earth the railway electrical power lines. This article will discuss different emergency situations concerning railway accidents and the emergency medical response to them based on a near collision with a high speed train during a rescue mission close to the railway track. Injury to personnel could only be avoided by chance and luck. The dangers and risks for rescue staff are specified. Furthermore, the article details practical guidelines for rescue operations around the German national railway track system.

  12. An emergency response plan for transportation

    International Nuclear Information System (INIS)

    Fontaine, M.V.; Guerel, E.

    2000-01-01

    Transnucleaire is involved in road and rail transport of nuclear fuel cycle materials. To comply with IAEA recommendations, Transnucleaire has to master methods of emergency response in the event of a transport accident. Considering the utmost severe situations, Transnucleaire has studied several cases and focused especially on an accident involving a heavy cask. In France, the sub-prefect of each department is in charge of the organisation of the emergency teams. The sub-prefect may request Transnucleaire to supply experts, organisation, equipment and technical support. The Transnucleaire Emergency Response Plan covers all possible scenarios of land transport accidents and relies on: (i) an organisation ready for emergency situations, (ii) equipment dedicated to intervention, and (iii) training of its own experts and specialised companies. (author)

  13. Off-site response for radiological emergencies

    International Nuclear Information System (INIS)

    Eldridge, J.S.; Oakes, T.W.; Hubbard, H.M.; Hibbitts, H.W.

    1982-01-01

    Environmental radiological surveillance under emergency conditions at off-site locations is one of the advisory functions provided by DOE within the ORO jurisdiction. The Department of Environmental Management of ORNL has been requested to provide sampling and analytical assistance at such emergency response activities. We have assembled and identified specific individuals and equipment to provide a rapid response force to perform field measurements for environmental radioactivity releases as a consequence of nuclear accidents. Survey teams for sample collection and field measurements are provided along with analytical assistance to operate the radioactivity measuring equipment in the DOE emergency van

  14. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    Science.gov (United States)

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    Background Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. Methods We developed a quality improvement program—the Difficult Airway Response Team (DART)—to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had three core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Results Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index > 40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous

  15. Difficult airway response team: a novel quality improvement program for managing hospital-wide airway emergencies.

    Science.gov (United States)

    Mark, Lynette J; Herzer, Kurt R; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I; Berkow, Lauren C; Haut, Elliott R; Hillel, Alexander T; Miller, Christina R; Feller-Kopman, David J; Schiavi, Adam J; Xie, Yanjun J; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W; Mirski, Marek A

    2015-07-01

    Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. We developed a quality improvement program-the Difficult Airway Response Team (DART)-to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had 3 core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a Web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index >40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous or current tracheostomy. Twenty

  16. Safety Systems

    Science.gov (United States)

    Halligan, Tom

    2009-01-01

    Colleges across the country are rising to the task by implementing safety programs, response strategies, and technologies intended to create a secure environment for teachers and students. Whether it is preparing and responding to a natural disaster, health emergency, or act of violence, more schools are making campus safety a top priority. At…

  17. Assessing Emergency Preparedness and Response Capacity Using Community Assessment for Public Health Emergency Response Methodology: Portsmouth, Virginia, 2013.

    Science.gov (United States)

    Kurkjian, Katie M; Winz, Michelle; Yang, Jun; Corvese, Kate; Colón, Ana; Levine, Seth J; Mullen, Jessica; Ruth, Donna; Anson-Dwamena, Rexford; Bayleyegn, Tesfaye; Chang, David S

    2016-04-01

    For the past decade, emergency preparedness campaigns have encouraged households to meet preparedness metrics, such as having a household evacuation plan and emergency supplies of food, water, and medication. To estimate current household preparedness levels and to enhance disaster response planning, the Virginia Department of Health with remote technical assistance from the Centers for Disease Control and Prevention conducted a community health assessment in 2013 in Portsmouth, Virginia. Using the Community Assessment for Public Health Emergency Response (CASPER) methodology with 2-stage cluster sampling, we randomly selected 210 households for in-person interviews. Households were questioned about emergency planning and supplies, information sources during emergencies, and chronic health conditions. Interview teams completed 180 interviews (86%). Interviews revealed that 70% of households had an emergency evacuation plan, 67% had a 3-day supply of water for each member, and 77% had a first aid kit. Most households (65%) reported that the television was the primary source of information during an emergency. Heart disease (54%) and obesity (40%) were the most frequently reported chronic conditions. The Virginia Department of Health identified important gaps in local household preparedness. Data from the assessment have been used to inform community health partners, enhance disaster response planning, set community health priorities, and influence Portsmouth's Community Health Improvement Plan.

  18. Emergency response training with the BNL plant analyzer

    International Nuclear Information System (INIS)

    Cheng, H.S.; Guppy, J.G.; Mallen, A.N.; Wulff, W.

    1987-01-01

    Presented is the experience in the use of the BNL Plant Analyzer for NRC emergency response training to simulated accidents in a BWR. The unique features of the BNL Plant Analyzer that are important for the emergency response training are summarized. A closed-loop simulation of all the key systems of a power plant in question was found essential to the realism of the emergency drills conducted at NRC. The faster than real-time simulation speeds afforded by the BNL Plant Analyzer have demonstrated its usefulness for the timely conduct of the emergency response training

  19. Ontario Power Generation Fukushima emergency response drill strengthens and lessons learned - Ontario Power Generation Fukushima Emergency Response Drill Highlights

    International Nuclear Information System (INIS)

    Miller, David W.

    2014-01-01

    Japan's Fukushima Daiichi severe nuclear accident in March 2011 has resulted in a reassessment of nuclear emergency response and preparedness in Canada. On May 26, 27 and 28, 2014 Ontario Power Generation (OPG) conducted the first North American full scale nuclear emergency response exercise designed to include regional, provincial and federal bodies as well as the utility. This paper describes the radiological aspects of the OPG Exercise Unified Response (ExUR) with emphasis on deployment of new Fukushima equipment on the Darlington site, management of emergency workers deplored in the vicinity of Darlington to collect environmental samples and radiation measurements, performance of dose calculations, communication of dose projections and protective actions to local, provincial and federal agencies and conduct of vehicle, truck and personnel monitoring and decontamination facilities. The ExUR involved more than 1000 personnel from local, provincial and federal bodies. Also, 200 OPG employees participated in the off-site emergency response duties. The objective of the ExUR was to test and enhance the preparedness of the utility (OPG), government and non-government agencies and communities to respond to a nuclear emergency. The types of radiological instrumentation and mobile facilities employed are highlighted in the presentation. The establishment of temporary emergency rooms with 8 beds and treatment facilities to manage potentially contaminated injuries from the nuclear emergency is also described. (author)

  20. Southern states radiological emergency response laws and regulations

    International Nuclear Information System (INIS)

    1989-02-01

    The radiological emergency response laws and regulations of the Southern States Energy Compact member states are in some cases disparate. Several states have very specific laws on radiological emergency response while in others, the statutory law mentions only emergency response to ''natural disasters.'' Some states have adopted extensive regulations on the topic; others have none. For this reason, any general overview must necessarily discuss laws and regulations in general terms

  1. Human factors and safety in emergency medicine

    Science.gov (United States)

    Schaefer, H. G.; Helmreich, R. L.; Scheidegger, D.

    1994-01-01

    A model based on an input process and outcome conceptualisation is suggested to address safety-relevant factors in emergency medicine. As shown in other dynamic and demanding environments, human factors play a decisive role in attaining high quality service. Attitudes held by health-care providers, organisational shells and work-cultural parameters determine communication, conflict resolution and workload distribution within and between teams. These factors should be taken into account to improve outcomes such as operational integrity, job satisfaction and morale.

  2. Scaling-up Support for Emergency Response Organizations

    NARCIS (Netherlands)

    Oomes, A.H.J.; Neef, R.M.

    2005-01-01

    We present the design of an information system that supports the process of scaling-up of emergency response organizations. This process is vital for effective emergency response but tends to go awry in practice. Our proposed system consists of multiple distributed agents that are capable of

  3. Medical Response in Radiation Emergency in Argentina

    International Nuclear Information System (INIS)

    Vazquez, M.A.; Tadic, M.M.

    2011-01-01

    According to the Nuclear Federal Law No. 24804, the Nuclear Regulatory Authority (ARN) is empowered to regulate and control the nuclear activity with regard to radiological and nuclear safety, physical protection and nuclear non-proliferation issues. ARN has a system for intervention in radiological -and nuclear emergencies with a primary intervention group, which is on duty in weekly shifts all year round. This paper aims at describing the system as implemented at present. The Emergency Medical System has been developed into three levels: Level I: local emergency services. This level includes triage (conventional and radiological), first-aid care, and first management of contaminated victims Level II: emergency departments of local general hospitals that are in charge of performing a second triage by a biomedical approach, the treatment of conventional and/or radiocombined injuries and completing decontamination as necessary. In this way the initial triage is completed by a physical examination, timing and severity of prodromal signs and symptoms, sequential blood counts and serum enzymatic levels that allow a first-stage dosimetric approach at this level. Victims requiring higher complexity assistance shall be transferred to third-level hospitals. Level III: three central reference hospitals (Hospital Naval 'Pedro Mallo', Hospital de Quemados from Gobierno Autonomo de la Ciudad de Buenos Aires and Hospital Britanico de Ciudad de Buenos Aires) capable of providing healthcare for diagnosis and treatment of acute radiation syndrome, cutaneous radiation syndrome and internal contamination constitute this level. An educational program for medical and paramedical responders is regularly carried out at the three levels, including theoretical background as well as practical training. Guidelines and protocols for medical handling of victims have been drawn up. Research and development of new strategies for first medical response, diagnosis and treatment of radiation

  4. Medical response in radiation emergency in Argentina

    International Nuclear Information System (INIS)

    Vazquez, Marina A.; Tadic, Maria M.

    2008-01-01

    According to the Nuclear Federal Law Nr. 24804, the Nuclear Regulatory Authority (ARN) is empowered to regulate and control the nuclear activity with regard to radiological and nuclear safety, physical protection and nuclear non-proliferation issues. ARN has a system for intervention in radiological -and nuclear emergencies with a primary intervention group, which is on duty in weekly shifts all year round. This paper aims at describing the system as implemented at present. The Emergency Medical System has been developed into three levels: Level I: local emergency services. This level includes triage (conventional and radiological), first-aid care, and first management of contaminated victims. Level II: Emergency departments of local general hospitals that are in charge of performing a second triage by a biomedical approach, the treatment of conventional and/or radio-combined injuries and completing decontamination as necessary. In this way the initial triage is completed by a physical examination, timing and severity of prodromal signs and symptoms, sequential blood counts and serum enzymatic levels that allow a first-stage dosimetric approach at this level. Victims requiring higher complexity assistance shall be transferred to third-level hospitals. Level III: three central reference hospitals (Hospital Naval 'Pedro Mallo', Hospital de Quemados from Gobierno Autonomo de la Ciudad de Buenos Aires and Hospital Britanico de Ciudad de Buenos Aires) capable of providing health care for diagnosis and treatment of acute radiation syndrome, cutaneous radiation syndrome and internal contamination constitute this level. An educational program for medical and paramedical responders is regularly carried out at the three levels, including theoretical background as well as practical training. Guidelines and protocols for medical handling of victims have been drawn up. Research and development of new strategies for first medical response, diagnosis and treatment of radiation

  5. Some Qualitative Requirements for Testing of Nuclear Emergency Response Robots

    International Nuclear Information System (INIS)

    Eom, Heungseop; Cho, Jai Wan; Choi, Youngsoo; Jeong, Kyungmin

    2014-01-01

    Korea Atomic Energy Research Institute (KAERI) is carrying out the project 'Development of Core Technology for Remote Response in Nuclear Emergency Situation', and as a part of the project, we are studying the reliability and performance requirements of nuclear emergency response robots. In this paper, we described some qualitative requirements for testing of nuclear emergency response robots which are different to general emergency response robots. We briefly introduced test requirements of general emergency response robots and described some qualitative aspects of test requirements for nuclear emergency response robots. When considering an immature field-robot technology and variety of nuclear emergency situations, it seems hard to establish quantitative test requirements of these robots at this time. However, based on studies of nuclear severe accidents and the experience of Fukushima NPP accident, we can expect some test requirements including quantitative ones for nuclear emergency response robots

  6. Development of computerized supporting system for emergency response in nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Jae Il

    1992-02-01

    In emergency situation of nuclear power plants, effective use of emergency operating procedures (EOPs) is a crucial part of the emergency response process. However, there are several problems in the emergency operating procedures because of the form of the written procedures. They are voluminous and complicate for effective references under high stress situation. Inevitably, it takes time that could be better spent employing measures to control and stabilize to select the correct procedures and apply the decision logic. In this study, a computerized supporting system has been developed to reduce the operator error possibility under emergency situations of nuclear power plant. Using on-line input parameters, the system can determine the status of the critical safety functions and can find appropriate procedures and necessary operator actions automatically. Moreover, the system can help the operator decision making in the core melt accident situation. By tracking the EOP in an on-line mode, most steps concerning checking or verifying plant state are processed automatically without operator participations. Therefore, the interactions between the system and the operator are simplified significantly and the possibility of human error is reduced

  7. Expert forecast on emerging psychosocial risks related to occupational safety and health

    NARCIS (Netherlands)

    Milczarek, M.; Brun, E.; Houtman, I.; Goudswaard, A.; Evers, M.; Bovenkamp, M. van de; Roskams, N.; Op de Beeck, R.; Pahkin, K.; Berthet, M.; Morvan, E.; Kuhn, K.; Kaluza, K.; Hupke, M.; Hauke, A.; Reinert, D.; Widerszal-Bazyl, M.; Perez, J.; Oncins de Frutos, M.

    2007-01-01

    This report is in cooperation with TNO Work and Employment and the European Agency for Safety and Health at Work. The expert forecast on emerging psychosocial risks was carried out by means of the Delphi method. The main emerging psychosocial risks revealed were related to new forms of employment

  8. Science in Emergency Response at CDC: Structure and Functions.

    Science.gov (United States)

    Iskander, John; Rose, Dale A; Ghiya, Neelam D

    2017-09-01

    Recent high-profile activations of the US Centers for Disease Control and Prevention (CDC) Emergency Operations Center (EOC) include responses to the West African Ebola and Zika virus epidemics. Within the EOC, emergency responses are organized according to the Incident Management System, which provides a standardized structure and chain of command, regardless of whether the EOC activation occurs in response to an outbreak, natural disaster, or other type of public health emergency. By embedding key scientific roles, such as the associate director for science, and functions within a Scientific Response Section, the current CDC emergency response structure ensures that both urgent and important science issues receive needed attention. Key functions during emergency responses include internal coordination of scientific work, data management, information dissemination, and scientific publication. We describe a case example involving the ongoing Zika virus response that demonstrates how the scientific response structure can be used to rapidly produce high-quality science needed to answer urgent public health questions and guide policy. Within the context of emergency response, longer-term priorities at CDC include both streamlining administrative requirements and funding mechanisms for scientific research.

  9. Emergency notification and assistance technical operations manual. Emergency preparedness and response. Date effective: 1 December 2002

    International Nuclear Information System (INIS)

    2002-11-01

    last edition of ENATOM was issued, several factors have warranted some modifications to the existing ENATOM arrangements: the publication of Safety Requirements on Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, in the IAEA's Safety Standards Series, in particular those requirements relating to the threshold for early notification and information exchange; feedback from the first meeting of representatives of competent authorities identified under the Early Notification and Assistance Convention, held in June 2001; and lessons identified from the Joint International Exercise CONVEX 3/JINEX 1 (2001) conducted in May 2001 based on a national exercise held at the Gravelines nuclear power plant in France. Other factors that called for updating the ENATOM manual were: changes due to revision of the Joint Plan, in particular those arising from incorporating an additional four co-sponsoring international organizations; recommendations from the Inter-Agency Committee on Nuclear Accidents (IACRNA) concerning the modalities of international exercises; lessons identified from experience in responding to requests for information and assistance during radiological emergencies in the past two years; changes to better reflect that emergency situations can arise from both accidents and deliberate acts; and recent resolutions of the IAEA General Conference. This manual describes arrangements operative from 1 December 2002 and supersedes the previous edition, EPR-ENATOM (2000). A new edition of ENATOM will be reissued in two years time. Any important amendments before completion of the new edition will be communicated through information bulletins. The current version of ENATOM is not restricted and will be maintained on the IAEA public web site under http://www.iaea.org/ns/rasanet/programme/emergency/enatom.htm. The General Conference of the IAEA in resolution GC(44)/RES/16 has encouraged Member States 'to implement instruments for improving their response

  10. Radioactive materials transportation emergency response plan

    International Nuclear Information System (INIS)

    Karmali, N.

    1987-05-01

    Ontario Hydro transports radioactive material between its nuclear facilities, Atomic Energy of Canada Limited at Chalk River Laboratories and Radiochemical Company in Kanata, on a regular basis. Ontario Hydro also occasionally transports to Whiteshell Laboratories, Hydro-Quebec and New Brunswick Electric Power Commission. Although there are stringent packaging and procedural requirements for these shipments, Ontario Hydro has developed a Radioactive Materials Transportation Emergency Response Plan in the event that there is an accident. The Transportation Emergency Response plan is based on six concepts: 1) the Province id divided into three response areas with each station (Pickering, Darlington, Bruce) having identified response areas; 2) response is activated via a toll-free number. A shift supervisor at Pickering will answer the call, determine the hazards involved from the central shipment log and provide on-line advice to the emergency worker. At the same time he will notify the nearest Ontario Hydro area office to provide initial corporate response, and will request the nearest nuclear station to provide response assistance; 3) all stations have capability in terms of trained personnel and equipment to respond to an accident; 4) all Ontario Hydro shipments are logged with Pickering NGS. Present capability is based on computerized logging with the computer located in the shift office at Pickering to allow quick access to information on the shipment; 5) there is a three tier structure for emergency public information. The local Area Manager is the first Ontario Hydro person at the scene of the accident. The responding facility technical spokesperson is the second line of Corporate presence and the Ontario Hydro Corporate spokesperson is notified in case the accident is a media event; and 6) Ontario Hydro will respond to non-Hydro shipments of radioactive materials in terms of providing assistance, guidance and capability. However, the shipper is responsible

  11. Physical design correlates of efficiency and safety in emergency departments: a qualitative examination.

    Science.gov (United States)

    Pati, Debajyoti; Harvey, Thomas E; Pati, Sipra

    2014-01-01

    The objective of this study was to explore and identify physical design correlates of safety and efficiency in emergency department (ED) operations. This study adopted an exploratory, multimeasure approach to (1) examine the interactions between ED operations and physical design at 4 sites and (2) identify domains of physical design decision-making that potentially influence efficiency and safety. Multidisciplinary gaming and semistructured interviews were conducted with stakeholders at each site. Study data suggest that 16 domains of physical design decisions influence safety, efficiency, or both. These include (1) entrance and patient waiting, (2) traffic management, (3) subwaiting or internal waiting areas, (4) triage, (5) examination/treatment area configuration, (6) examination/treatment area centralization versus decentralization, (7) examination/treatment room standardization, (8) adequate space, (9) nurse work space, (10) physician work space, (11) adjacencies and access, (12) equipment room, (13) psych room, (14) staff de-stressing room, (15) hallway width, and (16) results waiting area. Safety and efficiency from a physical environment perspective in ED design are mutually reinforcing concepts--enhancing efficiency bears positive implications for safety. Furthermore, safety and security emerged as correlated concepts, with security issues bearing implications for safety, thereby suggesting important associations between safety, security, and efficiency.

  12. Radiation Safety in Industrial Radiography. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  13. Tools for plant safety engineer

    International Nuclear Information System (INIS)

    Fabic, S.

    1996-01-01

    This paper contains: - review of tools for monitoring plant safety equipment reliability and readiness, before and accident (performance indicators for monitoring the risk and reliability performance and for determining when degraded performance alert levels are achieved) - brief reviews of tools for use during an accident: Emergency Operating Procedures (EOPs), Emergency Response Data System (ERDS), Reactor Safety Assessment System (RSAS), Computerized Accident Management Support

  14. Occupational safety and health criteria for responsible development of nanotechnology

    Science.gov (United States)

    Schulte, P. A.; Geraci, C. L.; Murashov, V.; Kuempel, E. D.; Zumwalde, R. D.; Castranova, V.; Hoover, M. D.; Hodson, L.; Martinez, K. F.

    2014-01-01

    Organizations around the world have called for the responsible development of nanotechnology. The goals of this approach are to emphasize the importance of considering and controlling the potential adverse impacts of nanotechnology in order to develop its capabilities and benefits. A primary area of concern is the potential adverse impact on workers, since they are the first people in society who are exposed to the potential hazards of nanotechnology. Occupational safety and health criteria for defining what constitutes responsible development of nanotechnology are needed. This article presents five criterion actions that should be practiced by decision-makers at the business and societal levels—if nanotechnology is to be developed responsibly. These include (1) anticipate, identify, and track potentially hazardous nanomaterials in the workplace; (2) assess workers' exposures to nanomaterials; (3) assess and communicate hazards and risks to workers; (4) manage occupational safety and health risks; and (5) foster the safe development of nanotechnology and realization of its societal and commercial benefits. All these criteria are necessary for responsible development to occur. Since it is early in the commercialization of nanotechnology, there are still many unknowns and concerns about nanomaterials. Therefore, it is prudent to treat them as potentially hazardous until sufficient toxicology, and exposure data are gathered for nanomaterial-specific hazard and risk assessments. In this emergent period, it is necessary to be clear about the extent of uncertainty and the need for prudent actions.

  15. Emergency response and radiation monitoring systems in Russian regions

    International Nuclear Information System (INIS)

    Arutyunyan, R.; Osipiyants, I.; Kiselev, V.; Ogar, K; Gavrilov, S.

    2008-01-01

    Full text: Preparedness of the emergency response system to elimination of radiation incidents and accidents is one of the most important elements of ensuring safe operation of nuclear power facilities. Routine activities on prevention of emergency situations along with adequate, efficient and opportune response actions are the key factors reducing the risks of adverse effects on population and environment. Both high engineering level and multiformity of the nuclear branch facilities make special demands on establishment of response system activities to eventual emergency situations. First and foremost, while resolving sophisticated engineering and scientific problems emerging during the emergency response process, one needs a powerful scientific and technical support system.The emergency response system established in the past decade in Russian nuclear branch provides a high efficiency of response activities due to the use of scientific and engineering potential and experience of the involved institutions. In Russia the responsibility for population protection is imposed on regional authority. So regional emergence response system should include up-to-date tools of radiation monitoring and infrastructure. That's why new activities on development of radiation monitoring and emergency response system were started in the regions of Russia. The main directions of these activities are: 1) Modernization of the existing and setting-up new facility and territorial automatic radiation monitoring systems, including mobile radiation surveillance kits; 2) Establishment of the Regional Crisis Centres and Crisis Centres of nuclear and radiation hazardous facilities; 3) Setting up communication systems for transfer, acquisition, processing, storage and presentation of data for participants of emergency response at the facility, regional and federal levels; 4) Development of software and hardware systems for expert support of decision-making on protection of personnel, population

  16. Technical information management in an emergency response

    International Nuclear Information System (INIS)

    Berry, H.A.; Greve, C.; Best, R.G.; Phillipson, D.S.

    1991-01-01

    Through many experiences in responding to real radiation accidents and emergency response exercises, the Department of Energy (DOE) has developed a technical information management system that will be used in the Federal Radiological Monitoring and Assessment Center (FRMAC) in the event of a major radiological accident. The core of the system is the Data Center in the FRMAC, utilizing a computerized database of all off-site environmental radiological data. The information contained and managed by the Data Center will be comprehensive, accountable, and traceable, providing information to the assessors for immediate health and safety needs as well as for long-term documentation requirements. A DOE task force has been formed to develop compatibility guidelines for video, automated data processing, and communication systems. An electronic mail, information status, and bulletin board system is also being developed to assist in the dissemination of information. Geographic Information Systems (GIS) offer a giant step forward in displaying and analyzing information in a geographically referenced system

  17. IEA Response System for Oil Supply Emergencies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-15

    Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available -- focusing on stockdraw -- and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security.

  18. IEA Response System for Oil Supply Emergencies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available -- focusing on stockdraw -- and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security.

  19. Basic concept of the nuclear emergency preparedness and response in Japan after the accident of the Fukushima Dai-ichi Nuclear Power Station. The plain explanation for regional officials and emergency workers

    International Nuclear Information System (INIS)

    Sato, Sohei; Yamamoto, Kazuya

    2013-07-01

    After the accident of TEPCO's Fukushima Dai-ichi Nuclear Power Station occurred on March 11, 2011, actions for controlling the accident and protective actions for the residents like evacuation were taken. In parallel with this, it has been developed to reform the nuclear regulatory systems and the emergency preparedness and response systems in Japan. Especially the Nuclear Regulation Authority's Nuclear Emergency Preparedness and Response Guidelines were adopted with the introducing the basic concepts and the criteria on the basis of the IAEA's safety standards and differed greatly from the prior guidelines. Thus the arrangement of emergency response systems, resources and the operational procedures will be developed complying with according to the guidelines in municipalities around the nuclear power station sites. This work attempts to provide a plain explanation as possible for the regional officials and emergency workers about the basic concepts of the new guidelines. (author)

  20. Chinese experience on medical response to radiation emergencies

    International Nuclear Information System (INIS)

    Liu, Ying; Qin, Bin; Lei, Cuiping; Chen, Huifang; Han, Yuhong

    2008-01-01

    Full text: Chinese Center for Medical Response to Radiation Emergency (CCMRRE) was established in 1992, based on the National Institute for Radiological Protection, China CDC (NIRP, China CDC). CCMRRE is a liaison of WHO/REMPAN and functions as a national and professional institute for medical preparedness and response to emergencies involving radioactive material. CCMRRE participates in drafting National Medical Assistant Program for Radiation Emergency and relevant technical documents, develops preventive measures and technique means of medical preparedness and response to radiation emergency. CCMRRE is responsible for medical response to radiological or nuclear accident on national level. CCMRRE holds training courses, organizes drills and provides technical support to local medical organizations in practicing medical preparedness and response to radiation emergency. CCMRRE collects, analyzes and exchanges information on medical response to radiological and nuclear emergency and establishes relevant database. CCMRRE also guides and participates in radiation pollution monitoring on accident sites. In the past ten years, we accumulate much knowledge and experience on medical response to radiation emergencies. In this context, we will discuss Xinzhou Accident, which took place in 1992 and involved in three deaths, and Ha'erbin Accident that took place in 2005 and involved one death. A father and two brothers in Xinzhou Accident died of over-exposed to 60 Co source and misdiagnosis and improper treatment, which indicates that most general practitioners are uncertain about the health consequences of exposure to ionizing radiation and the medical management of exposed patients. When Ha'erbin Accident happened in 2005, the local hospital gave the right diagnosis and treatment based on the clinic symptoms and signs, which prevent more people suffering from over-expose to 192 Ir source. The distinct changes comes from the education and training to primary doctors related

  1. Project management plan, Hazardous Materials Management and Emergency Response Training Center

    International Nuclear Information System (INIS)

    Borgeson, M.E.

    1994-01-01

    For the next 30 years, the main activities at the Hanford Site will involve the handling and cleanup of toxic substances. Thousands of workers involved in these new activities will need systematic training appropriate to their tasks and associated risks. This project is an important part of the Hanford Site mission and will enable the US Department of Energy (DOE) to meet high standards for safety. The Hazardous Materials Management and Emergency Response Training Center (HAMMER) project will construct a centralized regional training center dedicated to training hazardous materials workers and emergency responders in classrooms and with hands-on, realistic training aids representing actual field conditions. The HAMMER Training Center will provide a cost-effective, high-quality way to meet the Hanford Site training needs. The training center creates a partnership among DOE; government contractors; labor; local, state, and tribal governments; and selected institutions of higher education

  2. A multi-agent safety response model in the construction industry.

    Science.gov (United States)

    Meliá, José L

    2015-01-01

    The construction industry is one of the sectors with the highest accident rates and the most serious accidents. A multi-agent safety response approach allows a useful diagnostic tool in order to understand factors affecting risk and accidents. The special features of the construction sector can influence the relationships among safety responses along the model of safety influences. The purpose of this paper is to test a model explaining risk and work-related accidents in the construction industry as a result of the safety responses of the organization, the supervisors, the co-workers and the worker. 374 construction employees belonging to 64 small Spanish construction companies working for two main companies participated in the study. Safety responses were measured using a 45-item Likert-type questionnaire. The structure of the measure was analyzed using factor analysis and the model of effects was tested using a structural equation model. Factor analysis clearly identifies the multi-agent safety dimensions hypothesized. The proposed safety response model of work-related accidents, involving construction specific results, showed a good fit. The multi-agent safety response approach to safety climate is a useful framework for the assessment of organizational and behavioral risks in construction.

  3. Center for emergency response at the ENUSA fuel fabrication plant in Juzbado; El centro de gestion de las emergencias de la fabrica de combustible nuclear de ENUSA en Juzbado

    Energy Technology Data Exchange (ETDEWEB)

    Alvaro Perez, C.; Romano, A.

    2016-08-01

    Effective emergency preparedness and management is critical for a safe exploitation of nuclear installations like the Enusa fuel fabrication plant. In 2012, an important project was carried out at the plant which enlarged and remodeled the Emergency Room used until then to give response to the Internal Emergency Plan postulated scenarios. This project was motivated after carefully analyzing the results of audits, inspections and operation experience as well as after studying the conclusions of the Fukushima accident emergency management weaknesses. The new Center for Emergency Response, which hosts the plant control room, devoted to monitoring the plant safety systems on a constant basis, greatly improves both technical means available and operative procedures as well as human interactions during an emergency. This paper describes the most relevant technical features of this Center, the safety systems which support its operation and the emergency management process that takes place in it. (Author)

  4. First Response to Medical Emergency

    International Nuclear Information System (INIS)

    Manisah Saedon; Sarimah Mahat; Muhamad Nurfalah Karoji; Hasnul Nizam Osman

    2015-01-01

    Accident or medical emergencies, both minor and critical, occurs each day and can happen in any workplace. In any medical emergencies, time is a critical factor because the first person to arrive at the scene of an accident has a key role in the rescue of a victim. With the knowledge of some common medical procedures and emergency actions, this first responder can make a positive contribution to the welfare of the accident victim. In some cases, this contribution can make difference between life and death. Improper response to medical emergencies by an untrained person can result in worsen injuries or death. Therefore, first aids training are necessary to provide the information. (author)

  5. Oil supply security: the emergency response potential of IEA countries

    International Nuclear Information System (INIS)

    1995-01-01

    This work deals with the oil supply security and more particularly with the emergency response potential of International Energy Agency (IEA) countries. The first part describes the changing pattern of IEA emergency response requirements. It begins with the experience from the past, then gives the energy outlook to 2010 and ends with the emergency response policy issues for the future. The second part is an overview on the IEA emergency response potential which includes the organisation, the emergency reserves, the demand restraint and the other response mechanisms. The third part gives the response potential of individual IEA countries. The last part deals with IEA emergency response in practice and more particularly with the gulf crisis of 1990-1991. It includes the initial problems raised by the gulf crisis, the adjustment and preparation and the onset of military action with the IEA response.(O.L.). 7 figs., 85 tabs

  6. Understanding Public Responses to Emerging Technologies

    NARCIS (Netherlands)

    Macnaghten, Philip; Davies, S.R.; Kearnes, Matthew

    2015-01-01

    Previous studies aimed at understanding public responses to emerging technologies have given limited attention to the social and cultural processes through which public concerns emerge. When probed, these have tended to be explained either in cognitive social psychological terms, typically in the

  7. Is culture associated with patient safety in the emergency department? A study of staff perspectives.

    NARCIS (Netherlands)

    Verbeek-van Noord, I.; Wagner, C.; Dyck, C. van; Twisk, J.W.R.; Bruijne, M.C. de

    2014-01-01

    Objective: To describe the patient safety culture of Dutch emergency departments (EDs), to examine associations between safety culture dimensions and patient safety grades as reported by ED staff and to compare these associations between nurses and physicians. DESIGN: Cross-sectional survey

  8. Disaster Monitoring and Emergency Response Services in China

    Science.gov (United States)

    Wu, J.; Han, X.; Zhou, Y.; Yue, P.; Wang, X.; Lu, J.; Jiang, W.; Li, J.; Tang, H.; Wang, F.; Li, X.; Fan, J.

    2018-04-01

    The Disaster Monitoring and Emergency Response Service(DIMERS) project was kicked off in 2017 in China, with the purpose to improve timely responsive service of the institutions involved in the management of natural disasters and man-made emergency situations with the timely and high-quality products derived from Space-based, Air-based and the in-situ Earth observation. The project team brought together a group of top universities and research institutions in the field of Earth observations as well as the operational institute in typical disaster services at national level. The project will bridge the scientific research and the response services of massive catastrophe in order to improve the emergency response capability of China and provide scientific and technological support for the implementation of the national emergency response strategy. In response to the call for proposal of "Earth Observation and Navigation" of 2017 National Key R&D Program of China, Professor Wu Jianjun, the deputy chairman of Faculty of Geographical Science of Beijing Normal University, submitted the Disaster Monitoring and Emergency Response Service (DIMERS) project, jointly with the experts and scholars from Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Wuhan University, China Institute of Earthquake Forecasting of China Earthquake Administration and China Institute of Water Resources and Hydropower Science. After two round evaluations, the proposal was funded by Ministry of Science and Technology of China.

  9. Preparation of off-site emergency preparedness plans for nuclear installations

    International Nuclear Information System (INIS)

    1999-10-01

    Safety of public, occupational workers and the protection of environment should be assured while activities for economic and social progress are pursued. These activities include the establishment and utilisation of nuclear facilities and use of radioactive sources. This document is issued as a lead document to facilitate preparation of specific site manuals by the Responsible Organisation for emergency response plans at each site to ensure their preparedness to meet any eventuality due to site emergency in order to mitigate its consequences on the health and safety of site personnel. It takes cognizance of an earlier AERB publication on the subject: Safety Manual on Off-Site Emergency Plan for Nuclear Installations, AERB/SM/NISD-2, 1988 and also takes into consideration the urgent need for promoting public awareness and drawing up revised emergency response plans, which has come out in a significant manner after the accidents at Chernobyl and Bhopal

  10. The national radiological emergency preparedness and response plan in the Philippines

    International Nuclear Information System (INIS)

    Valdezco, Eulinia Mendoza

    2007-01-01

    The use of radiation sources of various types and activities is now widespread in the fields of industry, medicine, research and education in the Philippines. These radiation sources have been under the regulatory control of the Philippine Nuclear Research Institute (PNRI) to ensure that these materials are used in a safe manner and stored in a safe and secure location, and that those which have exceeded their useful life are appropriately disposed of. And while the safety record of the nuclear industry remains admirable compared to other industries, the occurrence of an accident affecting members of the public is always a possibility but with very low probability. In 2001, the National Disaster Coordinating Council (NDCC) approved the revised National Radiological Emergency Preparedness and Response Plan (RADPLAN). This plan outlines the activities and organizations necessary to mitigate the effects of nuclear emergencies or radiation related accidents. An important component of this plan is the education of the public as well as the emergency responders such as the police authorities fire emergency personnel, medical responders, community leaders and the general public. The threat of nuclear terrorism as an aftermath of the September 11 incident in the United States has also been considered in the latest revision of this document. (author)

  11. Key regulatory and safety issues emerging NEA activities. Lessons Learned from Fukushima Dai-ichi NPS Accident - Key Regulatory and Safety Issues

    International Nuclear Information System (INIS)

    Nakoski, John

    2013-01-01

    A presentation was provided on the key safety and regulatory issues and an update of activities undertaken by the NEA and its members in response to the accident at the Fukushima Daiichi nuclear power stations (NPS) on 11 March 2011. An overview of the accident sequence and the consequences was provided that identified the safety functions that were lost (electrical power, core cooling, and primary containment) that lead to units 1, 2, and 3 being in severe accident conditions with large off-site releases. Key areas identified for which activities of the NEA and member countries are in progress include accident management; defence-in-depth; crisis communication; initiating events; operating experience; deterministic and probabilistic assessments; regulatory infrastructure; radiological protection and public health; and decontamination and recovery. For each of these areas, a brief description of the on-going and planned NEA activities was provided within the three standing technical committees of the NEA with safety and regulatory mandates (the Committee on Nuclear Regulatory Activities - CNRA, the Committee on the Safety of Nuclear Installations - CSNI, and the Committee on Radiation Protection and Public Health - CRPPH). On-going activities of CNRA include a review of enhancement being made to the regulatory aspects for the oversight of on-site accident management strategies and processes in light of the lessons learned from the accident; providing guidance to regulators on crisis communication; and supporting the peer review of the safety assessments of risk-significant research reactor facilities in light of the accident. Within the scope of the CSNI mandate, activities are being undertaken to better understand accident progression; characteristics of new fuel designs; and a benchmarking study of fast-running software for estimating source term under severe accident conditions to support protective measure recommendations. CSNI also has ongoing work in human

  12. Addressing Dual Patient and Staff Safety Through A Team-Based Standardized Patient Simulation for Agitation Management in the Emergency Department.

    Science.gov (United States)

    Wong, Ambrose H; Auerbach, Marc A; Ruppel, Halley; Crispino, Lauren J; Rosenberg, Alana; Iennaco, Joanne D; Vaca, Federico E

    2018-06-01

    Emergency departments (EDs) have seen harm rise for both patients and health workers from an increasing rate of agitation events. Team effectiveness during care of this population is particularly challenging because fear of physical harm leads to competing interests. Simulation is frequently employed to improve teamwork in medical resuscitations but has not yet been reported to address team-based behavioral emergency care. As part of a larger investigation of agitated patient care, we designed this secondary study to examine the impact of an interprofessional standardized patient simulation for ED agitation management. We used a mixed-methods approach with emergency medicine resident and attending physicians, Physician Assistants (PAs) and Advanced Practice Registered Nurses (APRNs), ED nurses, technicians, and security officers at two hospital sites. After a simulated agitated patient encounter, we conducted uniprofessional and interprofessional focus groups. We undertook structured thematic analysis using a grounded theory approach. Quantitative data consisted of responses to the KidSIM Questionnaire addressing teamwork and simulation-based learning attitudes before and after each session. We reached data saturation with 57 participants. KidSIM scores revealed significant improvements in attitudes toward relevance of simulation, opportunities for interprofessional education, and situation awareness, as well as four of six questions for roles/responsibilities. Two broad themes emerged from the focus groups: (1) a team-based agitated patient simulation addressed dual safety of staff and patients simultaneously and (2) the experience fostered interprofessional discovery and cooperation in agitation management. A team-based simulated agitated patient encounter highlighted the need to consider the dual safety of staff and patients while facilitating interprofessional dialog and learning. Our findings suggest that simulation may be effective to enhance teamwork in

  13. Radiological emergency response - a functional approach

    International Nuclear Information System (INIS)

    Chowdhury, Prosanta

    1997-01-01

    The radiological emergency response program in the State of Louisiana is discussed. The improved approach intends to maximize the efficiency for both nuclear power plant and radiological emergency response as a whole. Several broad-based components are identified: cluster of 'nodes' are generated for each component; these 'nodes' may be divided into 'sub-nodes' which will contain some 'attributes'; 'relational bonds' among the 'attributes' will exist. When executed, the process begins and continues with the 'nodes' assuming a functional and dynamic role based on the nature and characteristics of the 'attributes'. The typical response based on stand-alone elements is eliminated; overlapping of functions is avoided, and is produced a well-structure and efficient organization

  14. Numerical models and their role in emergency response: a perspective on dispersion modeling for emergency preparedness

    International Nuclear Information System (INIS)

    Greenly, G.D.; Dickerson, M.H.

    1983-03-01

    Numerical models on several levels of complexity should be available to the emergency response planner. They are a basic tool but must be used in conjunction with both measurements and experience. When these tools are used in a complimentary fashion they greatly enhance the capability of the consequence manager to respond in an emergency situation. Because each accident or incident develops it's own characteristics and requirements the system must be capable of a flexible response. Interaction and feedback between model results from a suite of models and measurements (including airborne measurements) serve the emergency response planner's spectrum of needs, ranging from planning exercises and emergency precalculations to a real-time emergency response

  15. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered.

  16. Caring for inpatient boarders in the emergency department: improving safety and patient and staff satisfaction.

    Science.gov (United States)

    Bornemann-Shepherd, Melanie; Le-Lazar, Jamie; Makic, Mary Beth Flynn; DeVine, Deborah; McDevitt, Kelly; Paul, Marcee

    2015-01-01

    Hospital capacity constraints lead to large numbers of inpatients being held for extended periods in the emergency department. This creates concerns with safety, quality of care, and dissatisfaction of patients and staff. The aim of this quality-improvement project was to improve satisfaction and processes in which nurses provided care to inpatient boarders held in the emergency department. A quality-improvement project framework that included the use of a questionnaire was used to ascertain employee and patient dissatisfaction and identify opportunities for improvement. A task force was created to develop action plans related to holding and caring for inpatients in the emergency department. A questionnaire was sent to nursing staff in spring 2012, and responses from the questionnaire identified improvements that could be implemented to improve care for inpatient boarders. Situation-background-assessment-recommendation (SBAR) communications and direct observations were also used to identify specific improvements. Post-questionnaire results indicated improved satisfaction for both staff and patients. It was recognized early that the ED inpatient area would benefit from the supervision of an inpatient director, managers, and staff. Outcomes showed that creating an inpatient unit within the emergency department had a positive effect on staff and patient satisfaction. Copyright © 2015 Emergency Nurses Association. Published by Elsevier Inc. All rights reserved.

  17. Inspection of Emergency Arrangements

    International Nuclear Information System (INIS)

    2013-01-01

    The Working Group on Inspection Practices (WGIP) was tasked by the NEA CNRA to examine and evaluate the extent to which emergency arrangements are inspected and to identify areas of importance for the development of good inspection practices. WGIP members shared their approaches to the inspection of emergency arrangements by the use of questionnaires, which were developed from the requirements set out in IAEA Safety Standards. Detailed responses to the questionnaires from WGIP member countries have been compiled and are presented in the appendix to this report. The following commendable practices have been drawn from the completed questionnaires and views provided by WGIP members: - RBs and their Inspectors have sufficient knowledge and information regarding operator's arrangements for the preparedness and response to nuclear emergencies, to enable authoritative advice to be given to the national coordinating authority, where necessary. - Inspectors check that the operator's response to a nuclear emergency is adequately integrated with relevant response organisations. - Inspectors pay attention to consider the integration of the operator's response to safety and security threats. - The efficiency of international relations is checked in depth during some exercises (e.g. early warning, assistance and technical information), especially for near-border facilities that could lead to an emergency response abroad. - RB inspection programmes consider the adequacy of arrangements for emergency preparedness and response to multi-unit accidents. - RBs assess the adequacy of arrangements to respond to accidents in other countries. - The RB's role is adequately documented and communicated to all agencies taking part in the response to a nuclear or radiological emergency. - Inspectors check that threat assessments for NPPs have been undertaken in accordance with national requirements and that up-to-date assessments have been used as the basis for developing emergency plans for

  18. Aquatic emergency response model at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1987-01-01

    The Savannah River Plant emergency response plans include a stream/river emergency response model to predict travel times, maximum concentrations, and concentration distributions as a function of time at selected downstream/river locations from each of the major SRP installations. The menu driven model can be operated from any of the terminals that are linked to the real-time computer monitoring system for emergency response

  19. Review of IAEA documentation on Nuclear and radiological emergency

    International Nuclear Information System (INIS)

    Mukhono, P. M.

    2014-10-01

    The project focuses on the review of IAEA documentation on nuclear or radiological emergencies with main focus on methodology for developing and arrangement for nuclear and radiological emergencies. The main objective of this work is to identify limitations in IAEA documentation on emergency preparedness and response (EPR) and provide recommendation on the main actions needed to fill the gaps identified thus aiding in improvement of emergency preparedness and response to nuclear and radiological accidents. The review of IAEA documentation on nuclear and radiological emergency has been carried out by evaluating various emergency response elements. Several elements for EPR were highlighted covering the safety fundamentals, general safety requirements and EPR methods for development of an effective emergence response capability for nuclear or radiological emergencies. From these issues, the limitations of IAEA documentation on EPR were drawn and recommendations suggested as a means of improving EPR methods. Among them was the need for IAEA consider establishment of follow up and inspection programmes to facilitate implementation of EPR requirements in most developing countries, establishment of programmes that provide platforms for the countries to be motivated to update their system in line with the current status of emergency preparedness, review of the international information exchange aspects of nuclear emergencies in order to improve capabilities to communicate reliable data, information and decisions quickly and effectively among national authorities and their emergency and emergency response centres. (au)

  20. Coordinating a Team Response to Behavioral Emergencies in the Emergency Department: A Simulation-Enhanced Interprofessional Curriculum.

    Science.gov (United States)

    Wong, Ambrose H; Wing, Lisa; Weiss, Brenda; Gang, Maureen

    2015-11-01

    While treating potentially violent patients in the emergency department (ED), both patients and staff may be subject to unintentional injury. Emergency healthcare providers are at the greatest risk of experiencing physical and verbal assault from patients. Preliminary studies have shown that a team-based approach with targeted staff training has significant positive outcomes in mitigating violence in healthcare settings. Staff attitudes toward patient aggression have also been linked to workplace safety, but current literature suggests that providers experience fear and anxiety while caring for potentially violent patients. The objectives of the study were (1) to develop an interprofessional curriculum focusing on improving teamwork and staff attitudes toward patient violence using simulation-enhanced education for ED staff, and (2) to assess attitudes towards patient aggression both at pre- and post-curriculum implementation stages using a survey-based study design. Formal roles and responsibilities for each member of the care team, including positioning during restraint placement, were predefined in conjunction with ED leadership. Emergency medicine residents, nurses and hospital police officers were assigned to interprofessional teams. The curriculum started with an introductory lecture discussing de-escalation techniques and restraint placement as well as core tenets of interprofessional collaboration. Next, we conducted two simulation scenarios using standardized participants (SPs) and structured debriefing. The study consisted of a survey-based design comparing pre- and post-intervention responses via a paired Student t-test to assess changes in staff attitudes. We used the validated Management of Aggression and Violence Attitude Scale (MAVAS) consisting of 30 Likert-scale questions grouped into four themed constructs. One hundred sixty-two ED staff members completed the course with >95% staff participation, generating a total of 106 paired surveys

  1. Considerations in Emergency Preparedness and Response for a State Embarking on a Nuclear Power Programme (Spanish Edition); Consideraciones sobre preparación y respuesta para casos de emergencia destinadas a un Estado que inicie un programa nucleoeléctrico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-15

    The aim of this publication is to provide a practical tool for emergency planning for States embarking on a nuclear power programme and to fulfil, in part, functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency ('Assistance Convention'). Under Article 5.a (ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to State Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. As established in the publication Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), the practical goal of emergency response is 'to ensure that arrangements are in place for a timely, managed, controlled, coordinated and effective response at the scene, and at the local, regional, national and international level, to any nuclear or radiological emergency'. In 2011 the IAEA General Conference, in resolution GC(55)/RES/9, encouraged States 'embarking on new nuclear power programmes to take timely and proactive steps, based upon gradual and systematic application of IAEA safety standards, to establish and sustain a strong safety culture'. It also 'emphasizes the importance for all Member States to implement emergency preparedness and response mechanisms and develop mitigation measures at a national level, consistent with the IAEA's Safety Standards, for improving emergency preparedness and response, facilitating communication in an emergency and contributing to harmonization of national criteria for protective and other actions'. This publication, issued in the IAEA Emergency Preparedness and Response Series, is intended to assist on steps to be taken by States embarking on a nuclear power programme to establish effective national capabilities and arrangements of preparedness for and response to a nuclear or radiological emergency (hereinafter referred to as

  2. A Study of Time Response for Safety-Related Operator Actions in Non-LOCA Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Seok; Lee, Sang Seob; Park, Min Soo; Lee, Gyu Cheon; Kim, Shin Whan [KEPCO E and C Company, Daejeon (Korea, Republic of)

    2014-10-15

    The classification of initiating events for safety analysis report (SAR) chapter 15 is categorized into moderate frequency events (MF), infrequent events (IF), and limiting faults (LF) depending on the frequency of its occurrence. For the non-LOCA safety analysis with the purpose to get construction or operation license, however, it is assumed that the operator response action to mitigate the events starts at 30 minutes after the initiation of the transient regardless of the event categorization. Such an assumption of corresponding operator response time may have over conservatism with the MF and IF events and results in a decrease in the safety margin compared to its acceptance criteria. In this paper, the plant conditions (PC) are categorized with the definitions in SAR 15 and ANS 51.1. Then, the consequence of response for safety-related operator action time is determined based on the PC in ANSI 58.8. The operator response time for safety analysis regarding PC are reviewed and suggested. The clarifying alarm response procedure would be required for the guideline to reduce the operator response time when the alarms indicate the occurrence of the transient.

  3. The development of nuclear power and emergency response

    International Nuclear Information System (INIS)

    Pan Ziqiang

    2007-01-01

    Nuclear power is a safe, clean energy, which has been evidenced by the history of nuclear power development. Nuclear power is associated with very low risk but not equal to zero. Accident emergency response and preparedness is a final barrier necessary to reduce potential risks that may arise from nuclear power plants, which must be enhanced. In the course of accident emergency response and preparedness, it is highly necessary to draw domestic and foreign experiences and lessons. Lastly, the paper presents the discussions of some issues which merit attention with respect to emergency response and preparedness in China. (authors)

  4. Development of a Real-Time Radiological Area Monitoring Network for Emergency Response at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Bertoldo, N; Hunter, S; Fertig, R; Laguna, G; MacQueen, D

    2004-01-01

    A real-time radiological sensor network for emergency response was developed and deployed at the Lawrence Livermore National Laboratory (LLNL). The Real-Time Radiological Area Monitoring (RTRAM) network is comprised of 16 Geiger-Mueller (GM) sensors positioned on the LLNL Livermore site perimeter to continuously monitor for a radiological condition resulting from a terrorist threat to site security and the health and safety of LLNL personnel. The RTRAM network sensor locations coincide with wind sector directions to provide thorough coverage of the one square mile site. These loW--power sensors are supported by a central command center (CCC) and transmit measurement data back to the CCC computer through the LLNL telecommunications infrastructure. Alarm conditions are identified by comparing current data to predetermined threshold parameters and are validated by comparison with plausible dispersion modeling scenarios and prevailing meteorological conditions. Emergency response personnel are notified of alarm conditions by automatic radio and computer based notifications. A secure intranet provides emergency response personnel with current condition assessment data that enable them to direct field response efforts remotely. The RTRAM network has proven to be a reliable system since initial deployment in August 2001 and maintains stability during inclement weather conditions

  5. Using risk based tools in emergency response

    International Nuclear Information System (INIS)

    Dixon, B.W.; Ferns, K.G.

    1987-01-01

    Probabilistic Risk Assessment (PRA) techniques are used by the nuclear industry to model the potential response of a reactor subjected to unusual conditions. The knowledge contained in these models can aid in emergency response decision making. This paper presents requirements for a PRA based emergency response support system to date. A brief discussion of published work provides background for a detailed description of recent developments. A rapid deep assessment capability for specific portions of full plant models is presented. The program uses a screening rule base to control search space expansion in a combinational algorithm

  6. Radiation Safety in Industrial Radiography. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  7. Radiation Safety in Industrial Radiography. Specific Safety Guide (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in … shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  8. Radiation Safety in Industrial Radiography. Specific Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  9. Foundational workplace safety and health competencies for the emerging workforce☆

    Science.gov (United States)

    Okun, Andrea H.; Guerin, Rebecca J.; Schulte, Paul A.

    2016-01-01

    Introduction Young workers (aged 15–24) suffer disproportionately from workplace injuries, with a nonfatal injury rate estimated to be two times higher than among workers age 25 or over. These workers make up approximately 9% of the U.S. workforce and studies have shown that nearly 80% of high school students work at some point during high school. Although young worker injuries are a pressing public health problem, the critical knowledge and skills needed to prepare youth for safe and healthy work are missing from most frameworks used to prepare the emerging U.S. workforce. Methods A framework of foundational workplace safety and health knowledge and skills (the NIOSH 8 Core Competencies)was developed based on the Health Belief Model (HBM). Results The proposed NIOSH Core Competencies utilize the HBM to provide a framework for foundational workplace safety and health knowledge and skills. An examination of how these competencies and the HBM apply to actions that workers take to protect themselves is provided. The social and physical environments that influence these actions are also discussed. Conclusions The NIOSH 8 Core Competencies, grounded in one of the most widely used health behavior theories, fill a critical gap in preparing the emerging U.S. workforce to be cognizant of workplace risks. Practical applications Integration of the NIOSH 8 Core Competencies into school curricula is one way to ensure that every young person has the foundational workplace safety and health knowledge and skills to participate in, and benefit from, safe and healthy work. National Safety Council and Elsevier Ltd. All rights reserved. PMID:27846998

  10. Emergency response facility technical data system of Taiwan Power Company

    International Nuclear Information System (INIS)

    Lin, E.; Liang, T.M.

    1987-01-01

    Taiwan Power Company (Taipower) has developed its emergency response facility program since 1981. This program is integrated with the following activities to enhance the emergency response capability of nuclear power plants: (1) survey of the plant instrumentation based on the requirements of R.G. 1.97; (2) improvement of plant specific emergency operating procedures based on the emergency response guidelines developed by the Owners group; (3) implementation of the detailed control room design review with the consideration of human engineering and task analysis; and (4) organization, staff and communication of emergency planning of nuclear power plant. The emergency response facility programs of Taipower are implemented in Chinshan (GE BWR4/MARK I), Kuosheng (GE BWR6/MARK III) and Maanshan (W PWR). The major items included in each program are: (1) to establish new buildings for On-Site Technical Support Center, Near-Site Emergency Operation Facility; (2) to establish an Emergency Executive Center at Taipower headquarters; (3) to establish the communication network between control room and emergency response facilities; and (4) to install a dedicated Emergency Response Facility Technical Data System (ERFTDS) for each plant. The ERFTDS provides the functions of data acquisition, data processing, data storage and display in meeting with the requirements of NUREG 0696. The ERFTDS is designed with plant specific requirements. These specific requirements are expected to be useful not only for the emergency condition but also for normal operation conditions

  11. Improving safety margin of LWRs by rethinking the emergency core cooling system criteria and safety system capacity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail: euo@kaist.ac.kr; Kim, Bokyung, E-mail: bkkim2@kaist.ac.kr; NO, Hee Cheon, E-mail: hcno@kaist.ac.kr

    2016-10-15

    Highlights: • Zircaloy embrittlement criteria can increase to 1370 °C for CP-ECR lower than 13%. • The draft ECCS criteria of U.S. NRC allow less than 5% in power margin. • The Japanese fracture-based criteria allow around 5% in power margin. • Increasing SIT inventory is effective in assuring safety margin for power uprates. - Abstract: This study investigates the engineering compatibility between emergency core cooling system criteria and safety water injection systems, in the pursuit of safety margin increase of light water reactors. This study proposes an acceptable temperature increase to 1370 °C as long as equivalent cladding reacted calculated by the Cathcart–Pawel equation is below 13%, after an extensive literature review. The influence of different ECCS criteria on the safety margin during large break loss of coolant accident is investigated for OPR-1000 by the system code MARS-KS, implemented with the KINS-REM method. The fracture-based emergency core cooling system (ECCS) criteria proposed in this study are shown to enable power margins up to 10%. In the meantime, the draft U.S. NRC’s embrittlement criteria (burnup-sensitive) and Japanese fracture-based criteria are shown to allow less than 5%, and around 5% of power margins, respectively. Increasing safety injection tank (SIT) water inventory is the key, yet convenient, way of assuring safety margin for power increase. More than 20% increase in the SIT water inventory is required to allow 15% power margins, for the U.S. NRC’s burnup-dependent embrittlement criteria. Controlling SIT water inventory would be a useful option that could allow the industrial desire to pursue power margins even under the recent atmosphere of imposing stricter ECCS criteria for the considerable burnup effects.

  12. Radiological emergency response - a functional approach

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Prosanta [Louisiana Radiation Protection Div., Baton Rouge, LA (United States)

    1997-12-31

    The radiological emergency response program in the State of Louisiana is discussed. The improved approach intends to maximize the efficiency for both nuclear power plant and radiological emergency response as a whole. Several broad-based components are identified: cluster of `nodes` are generated for each component; these `nodes` may be divided into `sub-nodes` which will contain some `attributes`; `relational bonds` among the `attributes` will exist. When executed, the process begins and continues with the `nodes` assuming a functional and dynamic role based on the nature and characteristics of the `attributes`. The typical response based on stand-alone elements is eliminated; overlapping of functions is avoided, and is produced a well-structure and efficient organization 1 ref., 6 figs.; e-mail: prosanta at deq.state.la.us

  13. Exploring mHealth Participation for Emergency Response Communities

    Directory of Open Access Journals (Sweden)

    David G. Schwartz

    2017-03-01

    Full Text Available We explore the challenges of participation by members of emergency response communities who share a similar condition and treatment, and are called upon to participate in emergency events experienced by fellow members. Smartphones and location-based social networking technologies present an opportunity to re-engineer certain aspects of emergency medical response. Life-saving prescription medication extended in an emergency by one individual to another occurs on a micro level, anecdotally documented. We illustrate the issues and our approach through the example of an app to support patients prone to anaphylaxis and prescribed to carry epinephrine auto-injectors. We address unique participation challenges in an mHealth environment in which interventions are primarily short-term interactions which require clear and precise decision-making and constant tracking of potential participants in responding to an emergency medical event. The conflicting effects of diffused responsibility and shared identity are identified as key factors in modeling participation.

  14. Emergency preparedness and response

    International Nuclear Information System (INIS)

    Griffiths, M.

    1996-01-01

    After the Chernobyl accident, it became painfully obvious to the international community that there was an urgent need to establish a system for the coordination of international disaster assistance. It became the task of the United Nations Office for Disaster Relief (UNDRO) to develop such a system. The former UNDRO was subsumed into the Department of Humanitarian Affairs (DHA), established in January 1992 on the basis of UN General Assembly Resolution 46/182 adopted in December 1991, and the disaster relief system presently found in DHA is a further evolution of the system established by UNDRO. One particular importance in relation to nuclear accidents is the fact that UNDRO and the International Atomic Energy Agency (IAEA) signed a Memorandum of Understanding defining their respective responsibilities and the need for cooperation in case of accidents involving the unintentional release of nuclear radiation. In essence, the MOU makes it clear that the responsibilities of the IAEA, in connection with accidents at Nuclear Power Plants, related to the technical and radiological aspects, in particular to accident prevention, to the on-site preparedness, and to remedial measures within the 30-km zone outside the NPP. DHA's responsibilities, on the other hand, relate to the general preparedness and the rescue efforts outside the 30 km zone. In this respect, the preparedness and emergency response system is no different from the system employed in any other type of sudden-onset emergency

  15. Medical response to radiation emergencies in Argentina

    International Nuclear Information System (INIS)

    Gisone, Pablo A.; Perez, Maria del R.; Dubner, Diana L.; Michelin, Severino C.; Vazquez, M.; Demayo, O.

    2006-01-01

    Although radiation accidents are not frequent, the increasing use of radioisotopes in medicine and industry increases the likelihood of such accidental situations. Additionally, risks posed by the malevolent use of radiation sources have been highlighted during the last few years. In this context, the enhancement of national capabilities for medical assistance of victims in radiation emergencies becomes relevant. This communication describes the organization of medical response to radiation emergencies existing in Argentina. A three-level system for medical response has been developed: pre-hospital response given on-site by local emergency services, assistance provided by emergency departments of local general hospitals and central reference hospitals for treatment of acute radiation syndrome, cutaneous radiation syndrome and internal contamination. An education and training program is regularly executed at the three levels, including theoretical background as well as practical training. Guidelines and protocols for medical handling of victims have been elaborated and implemented. Research and development of new strategies for diagnosis and treatment of radiation injuries are promoted by ARN in close collaboration with physicians belonging to reference hospitals. (author)

  16. Field studies of safety security rescue technologies through training and response activities

    Science.gov (United States)

    Murphy, Robin R.; Stover, Sam

    2006-05-01

    This paper describes the field-oriented philosophy of the Institute for Safety Security Rescue Technology (iSSRT) and summarizes the activities and lessons learned during calendar year 2005 of its two centers: the Center for Robot-Assisted Search and Rescue and the NSF Safety Security Rescue industry/university cooperative research center. In 2005, iSSRT participated in four responses (La Conchita, CA, Mudslides, Hurricane Dennis, Hurricane Katrina, Hurricane Wilma) and conducted three field experiments (NJTF-1, Camp Hurricane, Richmond, MO). The lessons learned covered mobility, operator control units, wireless communications, and general reliability. The work has collectively identified six emerging issues for future work. Based on these studies, a 10-hour, 1 continuing education unit credit course on rescue robotics has been created and is available. Rescue robots and sensors are available for loan upon request.

  17. Fundamental Safety Principles

    International Nuclear Information System (INIS)

    Abdelmalik, W.E.Y.

    2011-01-01

    This work presents a summary of the IAEA Safety Standards Series publication No. SF-1 entitled F UDAMENTAL Safety PRINCIPLES p ublished on 2006. This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purposes. Safety measures and security measures have in common the aim of protecting human life and health and the environment. These safety principles are: 1) Responsibility for safety, 2) Role of the government, 3) Leadership and management for safety, 4) Justification of facilities and activities, 5) Optimization of protection, 6) Limitation of risks to individuals, 7) Protection of present and future generations, 8) Prevention of accidents, 9)Emergency preparedness and response and 10) Protective action to reduce existing or unregulated radiation risks. The safety principles concern the security of facilities and activities to the extent that they apply to measures that contribute to both safety and security. Safety measures and security measures must be designed and implemented in an integrated manner so that security measures do not compromise safety and safety measures do not compromise security.

  18. A prototype nuclear emergency response decision making expert system

    International Nuclear Information System (INIS)

    Chang, C.; Shih, C.; Hong, M.; Yu, W.; Su, M.; Wang, S.

    1990-01-01

    A prototype of emergency response expert system developed for nuclear power plants, has been fulfilled by Institute of Nuclear Energy Research. Key elements that have been implemented for emergency response include radioactive material dispersion assessment, dynamic transportation evacuation assessment, and meteorological parametric forecasting. A network system consists of five 80386 Personal Computers (PCs) has been installed to perform the system functions above. A further project is still continuing to achieve a more complicated and fanciful computer aid integral emergency response expert system

  19. A model national emergency response plan for radiological accidents

    International Nuclear Information System (INIS)

    1993-09-01

    The IAEA has supported several projects for the development of a national response plan for radiological emergencies. As a results, the IAEA has developed a model National Emergency Response Plan for Radiological Accidents (RAD PLAN), particularly for countries that have no nuclear power plants. This plan can be adapted for use by countries interested in developing their own national radiological emergency response plan, and the IAEA will supply the latest version of the RAD PLAN on computer diskette upon request. 2 tabs

  20. Safe-by-Design : from Safety to Responsibility

    NARCIS (Netherlands)

    van de Poel, I.R.; Robaey, Z.H.

    2017-01-01

    Safe-by-design (SbD) aims at addressing safety issues already during the R&D and design phases of new technologies. SbD has increasingly become popular in the last few years for addressing the risks of emerging technologies like nanotechnology and synthetic biology. We ask to what extent SbD

  1. Evaluation criteria for emergency response plans in radiological transportation

    International Nuclear Information System (INIS)

    Lindell, M.K.; Perry, R.W.

    1980-01-01

    This paper identifies a set of general criteria which can be used as guides for evaluating emergency response plans prepared in connection with the transportation of radiological materials. The development of criteria takes the form of examining the meaning and role of emergency plans in general, reviewing the process as it is used in connection with natural disasters and other nonnuclear disasters, and explicitly considering unique aspects of the radiological transportation setting. Eight areas of critical importance for such response plans are isolated: notification procedures; accident assessment; public information; protection of the public at risk; other protective responses; radiological exposure control; responsibility for planning and operations; and emergency response training and exercises. (Auth.)

  2. Development of the public exercise system for an emergency using response action applied with the event tree approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, De Whey; Lee, Byung Il; Park, Youn Won [BEES Inc., Rm No. L507, KAIST Munji Campus, Daejeon (Korea, Republic of)

    2016-12-15

    According to APPRE (Act on Physical Protection and Radiological Emergency), Korea Nuclear Safety and Security Committee (NSSC) jointly with other central government ministries shall conduct a unified radiological exercise once every year while a local government conduct an integrated exercise once every two-year period. What we experience up to date there are several limitations in the emergency exercises such as low public acceptance, poor enthusiasm in the exercise participation, not very attracting exercise scenarios, low efficiency in conducting an exercise, and so on. In order to overcome the limitations of the current exercise system, we have endeavored to develop an emergency exercise system using the VR (virtual reality) method based on a radioactive material release accident from the nuclear power plant. In this paper, we aim to introduce some basic development methods and emergency response action event tree for the public based on the exercise scenario as a beginning stage. We introduce a VR based emergency exercise system, which is expected to overcome some difficulties in the current exercise system. After developing this system properly and by testing it, we shall expect to deduce the weak points identified in the current emergency arrangements and emergency response strategy we now have.

  3. Caire - A real-time feedback system for emergency response

    International Nuclear Information System (INIS)

    Braun, H.; Brenk, H.D.; de Witt, H.

    1991-01-01

    In cases of nuclear emergencies it is the primary task of emergency response forces and decision making authorities to act properly. Whatever the specific reason for the contingency may be, a quick and most accurate estimate of the radiation exposure in consequence of the emergency must be made. This is a necessary prerequisite for decisions on protective measures and off-site emergency management. With respect to this fact ant the recent experience of the Chernobyl accident, remote monitoring systems have increased their importance as an inherent part of environmental surveillance installations in the FRG and in other countries. The existing systems in Germany are designed to cover both, routine operation and emergency situations. They provide site specific meteorological data, gross effluent dose rates, and dose rate measurements at on-site and approximately 30 off-site locations in the vicinity of a plant. Based on such telemetric surveillance networks an advanced automatic on-line system named CAIRE (Computer Aided Response to Emergencies) has been developed as a real time emergency response tool for nuclear facilities. this tool is designed to provide decision makers with most relevant radiation exposure data of the population at risk. The development phase of CAIRE has already been finished. CAIRE is now in an operational status and available for applications in emergency planning and response

  4. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1 (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered

  5. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1 (French Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered

  6. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1 (Chinese Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered

  7. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1 (Arabic Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered.

  8. Online Decision Support System (IRODOS) - an emergency preparedness tool for handling offsite nuclear emergency

    International Nuclear Information System (INIS)

    Vinod Kumar, A.; Oza, R.B.; Chaudhury, P.; Suri, M.; Saindane, S.; Singh, K.D.; Bhargava, P.; Sharma, V.K.

    2009-01-01

    A real time online decision support system as a nuclear emergency response system for handling offsite nuclear emergency at the Nuclear Power Plants (NPPs) has been developed by Health, Safety and Environment Group, Bhabha Atomic Research Centre (BARC), Department of Atomic Energy (DAE) under the frame work of 'Indian Real time Online Decision Support System 'IRODOS'. (author)

  9. Emergency response planning in hospitals, United States: 2003-2004.

    Science.gov (United States)

    Niska, Richard W; Burt, Catharine W

    2007-08-20

    This study presents baseline data to determine which hospital characteristics are associated with preparedness for terrorism and natural disaster in the areas of emergency response planning and availability of equipment and specialized care units. Information from the Bioterrorism and Mass Casualty Preparedness Supplements to the 2003 and 2004 National Hospital Ambulatory Medical Care Surveys was used to provide national estimates of variations in hospital emergency response plans and resources by residency and medical school affiliation, hospital size, ownership, metropolitan statistical area status, and Joint Commission accreditation. Of 874 sampled hospitals with emergency or outpatient departments, 739 responded for an 84.6 percent response rate. Estimates are presented with 95 percent confidence intervals. About 92 percent of hospitals had revised their emergency response plans since September 11, 2001, but only about 63 percent had addressed natural disasters and biological, chemical, radiological, and explosive terrorism in those plans. Only about 9 percent of hospitals had provided for all 10 of the response plan components studied. Hospitals had a mean of about 14 personal protective suits, 21 critical care beds, 12 mechanical ventilators, 7 negative pressure isolation rooms, and 2 decontamination showers each. Hospital bed capacity was the factor most consistently associated with emergency response planning and availability of resources.

  10. Construction of the All-region Linkage System for Emergency Management of Agricultural Product Quality and Safety in West China

    Institute of Scientific and Technical Information of China (English)

    Hua; YU; Yanbin; QI; Yubao; YAN

    2013-01-01

    Quality and safety of agricultural products are significant for national socioeconomic development,sustainable development,and vital interests of people.To safeguard quality and safety of agricultural products in west China is to safeguard economic safety and ecological safety of the country,public health and social stability,of which an important task is to properly handle emergencies concerning quality and safety of agricultural products.Considering actual conditions of west China,suggestions are given to construct the all-region linkage system for emergency management of agricultural product quality and safety in the local area,enhance the all-region linkage,and improve the linkage efficiency.

  11. Radiological transportation emergency response training course funding and timing in the southern states

    International Nuclear Information System (INIS)

    1991-10-01

    The following is a review of the enabling statutes of 16 southern states regarding training for personnel preparing for or responding to a transportation-related emergency involving highway route-controlled quantities of spent fuel and high-level radioactive waste. This report outlines the funding sources and procedures for administering funds for programs attended by state and local officials. Additionally, the report outlines the views of emergency response officials in the southem states concerning the timing and administration of future federal assistance to be provided under section 180(c) of the Nuclear Waste Policy Amendments Act. Under section 180(c) of the Nuclear Waste Policy Amendments Act of 1987, the US Department of Energy (DOE) is required to provide technical assistance and funds to states for training public safety officials of appropriate units of local government and Indian tribes when spent nuclear fuel or high-level radioactive waste is transported through their jurisdictions. The Comprehensive Cooperative Agreement (CCA) is the primary funding mechanism for federal assistance to states for the development of their overall emergency management capabilities. FEMA supports 12 separate emergency management programs including the Emergency Management Training program (EMT). This program provides funds for emergency management training and technical assistance to states for unique state training needs. Funds may be used for instructors, students and other related costs

  12. Challenges in designing interactive systems for emergency response

    DEFF Research Database (Denmark)

    Kristensen, Margit; Kyng, Morten; Nielsen, Esben Toftdahl

    2007-01-01

    and visions as ways to bridge between fieldwork and literature studies on the one hand and the emerging computer based prototypes on the other. Our case concerns design of innovative interactive systems for support in emergency response, including patient identification and monitoring as well as construction......This paper presents research on participatory design of interactive systems for emergency response. We present the work by going through the design method with a focus on the new elements that we developed for the participatory design toolkit, in particular we emphasize the use of challenges...

  13. Emergency preparedness and response plan for nuclear facilities in Indonesia

    International Nuclear Information System (INIS)

    Nur Rahmah Hidayati; Pande Made Udiyani

    2009-01-01

    All nuclear facilities in Indonesia are owned and operated by the National Nuclear Energy Agency (BATAN). The programs and activities of emergency planning and preparedness in Indonesia are based on the existing nuclear facilities, i.e. research reactors, research reactor fuel fabrication plant, radioactive waste treatment installation and radioisotopes production installation. The assessment is conducted to learn of status of emergency preparedness and response plan for nuclear facilities in Indonesia and to support the preparation of future Nuclear Power Plant. The assessment is conducted by comparing the emergency preparedness and response system in Indonesia to the system in other countries such as Japan and Republic of Korea, since the countries have many Nuclear Power Plants and other nuclear facilities. As a result, emergency preparedness response plan for existing nuclear facility in Indonesia has been implemented in many activities such as environmental monitoring program, facility monitoring equipment, and the continuous exercise of emergency preparedness and response. However, the implementation need law enforcement for imposing the responsibility of the coordinators in National Emergency Preparedness Plan. It also needs some additional technical support systems which refer to the system in Japan or Republic of Korea. The systems must be completed with some real time monitors which will support the emergency preparedness and response organization. The system should be built in NPP site before the first NPP will be operated. The system should be connected to an Off Site Emergency Center under coordination of BAPETEN as the regulatory body which has responsibility to control of nuclear energy in Indonesia. (Author)

  14. An expert system for emergency response

    International Nuclear Information System (INIS)

    Sebo, D.

    1989-01-01

    An expert system, the Reactor Safety Assessment System (RSAS), is being developed by the Idaho National Engineering Laboratory and the US Nuclear Regulatory Commission (NRC) for the NRC Operations Center. The RSAS is intended to aid the reactor safety team (RST) at the operations center in monitoring and projecting core and containment status during an emergency at a licensed nuclear power plant. The RSAS system development has two major aspects. The first is the compilation and storage of knowledge required for RST assessment tasks. The knowledge structure used by RSAS is a goal tree-success tree (GTST) model. The upper level structure of the GTST model is generic in nature. This allows development of models for generic plant-specific GTST models. The second aspect of the RSAS is the development of inferencing techniques for the access, display, and manipulation of the knowledge to meet RST requirements in a real-time manner during the activation of the operations center. This objective is achieved by critical safety function and success path monitoring. This basic strategy is used to determine the current status and estimate future challenges to the status of the reactor, identify procedures and equipment required to maintain or regain the critical safety functions, identify critical equipment, determine information requirements, and display pertinent information concerning current reactor status

  15. A FTA-based method for risk decision-making in emergency response

    DEFF Research Database (Denmark)

    Liu, Yang; Li, Hongyan

    2014-01-01

    Decision-making problems in emergency response are usually risky and uncertain due to the limited decision data and possible evolvement of emergency scenarios. This paper focuses on a risk decisionmaking problem in emergency response with several distinct characteristics including dynamic...... evolvement process of emergency, multiple scenarios, and impact of response actions on the emergency scenarios. A method based on Fault Tree Analysis (FTA) is proposed to solve the problem. By analyzing the evolvement process of emergency, the Fault Tree (FT) is constructed to describe the logical relations...

  16. Explanation of procedure on site medical emergency response for nuclear accident

    International Nuclear Information System (INIS)

    Liu Yulong; Jiang Zhong

    2012-01-01

    National occupational health standard-Procedure on Site Medical Emergency Response for Nuclear Accident has been approved and issued by the Ministry of Health. This standard is formulated according to the Emergency Response Law of the People's Republic of China, Law of the People 's Republic of China on Prevention and Control of Occupational Diseases, Regulations on Emergency Measures for Nuclear Accidents at Nuclear Power Plants, and Health Emergency Plans for Nuclear and Radiological Accidents of Ministry of Health, supporting the use of On-site Medical Emergency Planning and Preparedness for Nuclear Accidents and Off-site Medical Emergency Planning and Preparedness for Nuclear Accidents. Nuclear accident on-site medical response procedure is a part of the on-site emergency plan. The standard specifies the basic content and requirements of the nuclear accident on-site medical emergency response procedures of nuclear facilities operating units to guide and regulate the work of nuclear accident on-site medical emergency response of nuclear facilities operating units. The criteria-related contents were interpreted in this article. (authors)

  17. An emergent proposal on the Committee of Uranium Processing Factory Criticality Accident Survey of the Nuclear Safety Commission. A meantime report dated on November 5, 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The Nuclear Safety Commission was received a decision on thorough investigations of accident reason on criticality accident at the Tokai-mura uranium processing factory of the JCO Incorporation occurred on September 30, 1999, to establish the Committee of Uranium Processing Factory Criticality Accident Survey to elucidate its reason thoroughly and contribute to set up a sufficient reforming prevention countermeasure. This Committee judged that it was important to propose a countermeasure directly obtainable by grasping some fact relations clarified before now as soon as possible and intended to conduct this meantime report of 'emergent proposal' by arrangement of such fact relations. Here were described on accidental conditions and their effects, response to the accident (on prevention of the accident), its reasons and their relating conditions, and some emergent proposals. In the last items, safety security at accidental site, health countermeasures to residents and others, establishment of safety security for nuclear business workers and others, and reconstruction on safety regulation in national government. (G.K.)

  18. Plutonium ocean shipment safety between Europe and Japan

    International Nuclear Information System (INIS)

    Pierce, J.D.; Hohnstreiter, G.F.; McClure, J.D.; Smith, J.D.; Dukart, R.J.; Koski, J.A.; Braithwate, J.W.; Sorenson, N.R.; Yamamoto, K.; Kitamura, T.; Shibata, K.; Ouchi, Y.; Ito, T.

    2004-01-01

    Sandia National Laboratories (SNL) and Japan Nuclear Cycle Development Institute (JNC) have conducted an extensive emergency response planning study of the safety of the sea transport of plutonium for JNC. This study was conducted in response to international concerns about the safety of the marine transport of PuO2 powder that began with the sea transport of plutonium powder from France to Japan in 1992 using a purposebuilt ship. This emergency response planning study addressed four topics to better define the accident environment for long-range sea transport of nuclear materials. The first topic is a probabilistic safety analysis that evaluates the technical issues of transporting plutonium between Europe and Japan. An engine-room fire aboard a purposebuilt ship is evaluated as the second topic to determine the vulnerability and safety margin of radioactive material packaging for plutonium designed to meet International Atomic Energy Agency (IAEA) standards. The third topic is a corrosion study performed for generic plutonium packaging to estimate the time required to breach the containment boundary in the event of submersion in seawater. The final study topic is a worldwide survey of information on high-value cargo salvage capabilities from sunken ships. The primary purpose of this overall emergency response planning study is to describe and analyze the safety of radioactive material transportation operations for the international transportation of radioactive materials by maritime cargo vessels

  19. Plutonium ocean shipment safety between Europe and Japan

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, J D; Hohnstreiter, G F; McClure, J D; Smith, J D; Dukart, R J; Koski, J A; Braithwate, J W; Sorenson, N R [Sandia National Labs., Albuquerque, NM (United States); Yamamoto, K; Kitamura, T; Shibata, K; Ouchi, Y; Ito, T [Japan Nuclear Cycle Development Inst., Tokai-mura (Japan)

    2004-07-01

    Sandia National Laboratories (SNL) and Japan Nuclear Cycle Development Institute (JNC) have conducted an extensive emergency response planning study of the safety of the sea transport of plutonium for JNC. This study was conducted in response to international concerns about the safety of the marine transport of PuO2 powder that began with the sea transport of plutonium powder from France to Japan in 1992 using a purposebuilt ship. This emergency response planning study addressed four topics to better define the accident environment for long-range sea transport of nuclear materials. The first topic is a probabilistic safety analysis that evaluates the technical issues of transporting plutonium between Europe and Japan. An engine-room fire aboard a purposebuilt ship is evaluated as the second topic to determine the vulnerability and safety margin of radioactive material packaging for plutonium designed to meet International Atomic Energy Agency (IAEA) standards. The third topic is a corrosion study performed for generic plutonium packaging to estimate the time required to breach the containment boundary in the event of submersion in seawater. The final study topic is a worldwide survey of information on high-value cargo salvage capabilities from sunken ships. The primary purpose of this overall emergency response planning study is to describe and analyze the safety of radioactive material transportation operations for the international transportation of radioactive materials by maritime cargo vessels.

  20. Emergency response preparedness analysis for radioactive materials transportation

    International Nuclear Information System (INIS)

    Parentela, E.M.; Burli, S.S.; Sathisan, S.K.; Vodrazka, W.C.

    1994-01-01

    This paper evaluates the emergency response capabilities of first responders, specifically fire services, within the state of Nevada. It addresses issues relating to the available emergency responders such as general capabilities, jurisdictions, and response times. Graphical displays of the response units and attribute tables were created using GIS ARC/INFO. These coverages, plus the existing Census Bureau TIGER Files and highway network for the state of Nevada, were utilized to determine approximate service areas of each response unit, population density served by each response unit, population density served by each response unit and the areas that can be served by a response unit for 3, 5, 10, and 30 minutes response times. Results of the analysis enabled identification of the critical areas along the proposed highway route corridor

  1. Coordinating a Team Response to Behavioral Emergencies in the Emergency Department: A Simulation-Enhanced Interprofessional Curriculum

    Directory of Open Access Journals (Sweden)

    Ambrose H. Wong

    2015-10-01

    Full Text Available Introduction: While treating potentially violent patients in the emergency department (ED, both patients and staff may be subject to unintentional injury. Emergency healthcare providers are at the greatest risk of experiencing physical and verbal assault from patients. Preliminary studies have shown that a teambased approach with targeted staff training has significant positive outcomes in mitigating violence in healthcare settings. Staff attitudes toward patient aggression have also been linked to workplace safety, but current literature suggests that providers experience fear and anxiety while caring for potentially violent patients. The objectives of the study were (1 to develop an interprofessional curriculum focusing on improving teamwork and staff attitudes toward patient violence using simulation-enhanced education for ED staff, and (2 to assess attitudes towards patient aggression both at pre- and post-curriculum implementation stages using a survey-based study design. Methods: Formal roles and responsibilities for each member of the care team, including positioning during restraint placement, were predefined in conjunction with ED leadership. Emergency medicine residents, nurses and hospital police officers were assigned to interprofessional teams. The curriculum started with an introductory lecture discussing de-escalation techniques and restraint placement as well as core tenets of interprofessional collaboration. Next, we conducted two simulation scenarios using standardized participants (SPs and structured debriefing. The study consisted of a survey-based design comparing pre- and post-intervention responses via a paired Student t-test to assess changes in staff attitudes. We used the validated Management of Aggression and Violence Attitude Scale (MAVAS consisting of 30 Likert-scale questions grouped into four themed constructs. Results: One hundred sixty-two ED staff members completed the course with >95% staff participation

  2. Development of emergency response plans for community water ...

    African Journals Online (AJOL)

    All water services systems, irrespective of size, location etc., should have emergency response plans (ERPs) to guide officials, stakeholders and consumers through emergencies, as part of managing risks in the water supply system. Emergencies in the water supply system may result from, among other causes, natural ...

  3. Confusion in practice: on nuclear safety responsibility subject of our nation

    International Nuclear Information System (INIS)

    Wang Jia

    2014-01-01

    Nuclear safety responsibility subject seems a unquestionable issue, but when I took part in the CNNC searching team of 'nuclear law legislation', I found that there are confusions on understanding of this concept and in application. The paper focuses on the content of nuclear safety responsibility, using legal and practical method to dig out the differences with the related and frequently confusing concepts, on which basis to analyze the situation of nuclear safety responsibility subject of our nation. In conclusion, I give suggestions on who shall be the nuclear safety responsibility subject. (author)

  4. An expert system for improving nuclear emergency response

    International Nuclear Information System (INIS)

    Salame-Alfie, A.; Goldbogen, G.C.; Ryan, R.M.; Wallace, W.A.; Yeater, M.L.

    1987-01-01

    The accidents at TMI-2 and Chernobyl have produced initiatives aimed at improving nuclear plant emergency response capabilities. Among them are the development of emergency response facilities with capabilities for the acquisition, processing, and diagnosis of data which are needed to help coordinate plant operations, engineering support and management under emergency conditions. An effort in this direction prompted the development of an expert system. EP (EMERGENCY PLANNER) is a prototype expert system that is intended to help coordinate the overall management during emergency conditions. The EP system was built using the GEN-X expert system shell. GEN-X has a variety of knowledge representation mechanisms including AND/OR trees, Decision trees, and IF/THEN tables, and runs on an IBM PC-XT or AT computer or compatible. Among the main features, EP is portable, modular, user friendly, can interact with external programs and interrogate data bases. The knowledge base is made of New York State (NYS) Procedures for Emergency Classification, NYS Radiological Emergency Preparedness Plan (REPP) and knowledge from experts of the NYS Radiological Emergency Preparedness Group and the Office of Radiological Health and Chemistry of the New York Power Authority (NYPA)

  5. Development of Operational Safety Monitoring System and Emergency Preparedness Advisory System for CANDU Reactors (I)

    International Nuclear Information System (INIS)

    Kim, Ma Woong; Shin, Hyeong Ki; Lee, Sang Kyu; Kim, Hyun Koon; Yoo, Kun Joong; Ryu, Yong Ho; Son, Han Seong; Song, Deok Yong

    2007-01-01

    As increase of operating nuclear power plants, an accident monitoring system is essential to ensure the operational safety of nuclear power plant. Thus, KINS has developed the Computerized Advisory System for a Radiological Emergency (CARE) system to monitor the operating status of nuclear power plant continuously. However, during the accidents or/and incidents some parameters could not be provided from the process computer of nuclear power plant to the CARE system due to limitation of To enhance the CARE system more effective for CANDU reactors, there is a need to provide complement the feature of the CARE in such a way to providing the operating parameters using to using safety analysis tool such as CANDU Integrated Safety Analysis System (CISAS) for CANDU reactors. In this study, to enhance the safety monitoring measurement two computerized systems such as a CANDU Operational Safety Monitoring System (COSMOS) and prototype of CANDU Emergency Preparedness Advisory System (CEPAS) are developed. This study introduces the two integrated safety monitoring system using the R and D products of the national mid- and long-term R and D such as CISAS and ISSAC code

  6. 45 CFR 673.5 - Emergency response plan.

    Science.gov (United States)

    2010-10-01

    ... ensure that: (a) The vessel owner's or operator's shipboard oil pollution emergency plan, prepared and... Pollution from Ships, 1973, as modified by the Protocol of 1978 relating thereto (MARPOL 73/78), has provisions for prompt and effective response action to such emergencies as might arise in the performance of...

  7. Wind emergency response system

    International Nuclear Information System (INIS)

    Garrett, A.J.; Buckner, M.R.; Mueller, R.A.

    1981-01-01

    The WIND system is an automated emergency response system for real-time predictions of the consequences of liquid and airborne releases from SRP. The system consists of a minicomputer and associated peripherals necessary for acquisition and handling of large amounts of meteorological data from a local tower network and the National Weather Service. The minicomputer uses these data and several predictive models to assess the impact of accidental releases. The system is fast and easy to use, and output is displayed both in tabular form and as trajectory map plots for quick interpretation. The rapid response capabilities of the WIND system have been demonstrated in support of SRP operations

  8. 75 FR 32855 - Safety Zone; Pierce County, WA, Department of Emergency Management, Regional Water Exercise

    Science.gov (United States)

    2010-06-10

    ...-AA00 Safety Zone; Pierce County, WA, Department of Emergency Management, Regional Water Exercise AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Pierce County, Washington, Department of... immediate action is necessary to ensure safety of participants in the Pierce County Regional Water Rescue...

  9. Review of off-site emergency preparedness and response plan of Indian NPPs based on experience of Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Singh, Hukum; Dash, M.; Shukla, Vikas; Vijayan, P.; Krishnamurthy, P.R.

    2012-01-01

    Nuclear power plants in India are designed, constructed and operated based on the principle of the highest priority to nuclear safety. To deal with any unlikely situation of radiological emergency, the emergency preparedness and response plans are ensured to be in place at all NPPs prior to their commissioning. These plans are periodically reviewed and tested by conducting emergency exercise with the participation of various agencies such as Nuclear Power Corporation of India Limited, NDMA, district authorities, regulatory body and general public. On March 11, 2011 an earthquake of magnitude 9.0 hit the Fukushima Dai-ichi and Dai-ni followed by tsunami waves of height 15 meters above reference sea level. This resulted in large scale release of radioactive material from Fukushima Dai-ichi NPS. This led to the evacuation of a large number of people from the areas surrounding the affected nuclear power plants. The event was rated as level 7 event in International Nuclear Event Scale (INES). The event also revealed the challenges in handling radiological emergency situation in adverse environmental conditions, The experience of managing radiological emergency situation during Fukushima nuclear accident provides opportunities to review and improve emergency preparedness and response programme. The present paper presents the chronology of the emergency situation, challenges faced and handled in Fukushima. Even though the possibility of a Fukushima type nuclear accident in India is very remote due to the low probability of a high intensity earthquake followed by tsunami at NPP sites, the efforts needs to be initiated from the regulatory point of view for an effective Nuclear and Radiological Emergency Preparedness and Response Plans. The Emergency Preparedness and Response Plans of NPP sites were reviewed in the light of unique challenges of accident at Fukushima. It is realized that multi unit events are the realities that must be addressed as part of Emergency

  10. Review of off-site emergency preparedness and response plan of Indian NPPs based on experience of Fukushima nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hukum; Dash, M.; Shukla, Vikas; Vijayan, P.; Krishnamurthy, P.R., E-mail: vshukla@aerb.gov.in [Operating Plants Safety Division, Atomic Energy Regulatory Board, Mumbai (India)

    2012-07-01

    Nuclear power plants in India are designed, constructed and operated based on the principle of the highest priority to nuclear safety. To deal with any unlikely situation of radiological emergency, the emergency preparedness and response plans are ensured to be in place at all NPPs prior to their commissioning. These plans are periodically reviewed and tested by conducting emergency exercise with the participation of various agencies such as Nuclear Power Corporation of India Limited, NDMA, district authorities, regulatory body and general public. On March 11, 2011 an earthquake of magnitude 9.0 hit the Fukushima Dai-ichi and Dai-ni followed by tsunami waves of height 15 meters above reference sea level. This resulted in large scale release of radioactive material from Fukushima Dai-ichi NPS. This led to the evacuation of a large number of people from the areas surrounding the affected nuclear power plants. The event was rated as level 7 event in International Nuclear Event Scale (INES). The event also revealed the challenges in handling radiological emergency situation in adverse environmental conditions, The experience of managing radiological emergency situation during Fukushima nuclear accident provides opportunities to review and improve emergency preparedness and response programme. The present paper presents the chronology of the emergency situation, challenges faced and handled in Fukushima. Even though the possibility of a Fukushima type nuclear accident in India is very remote due to the low probability of a high intensity earthquake followed by tsunami at NPP sites, the efforts needs to be initiated from the regulatory point of view for an effective Nuclear and Radiological Emergency Preparedness and Response Plans. The Emergency Preparedness and Response Plans of NPP sites were reviewed in the light of unique challenges of accident at Fukushima. It is realized that multi unit events are the realities that must be addressed as part of Emergency

  11. Meteorological considerations in emergency response capability at nuclear power plant

    International Nuclear Information System (INIS)

    Fairobent, J.E.

    1985-01-01

    Meteorological considerations in emergency response at nuclear power plants are discussed through examination of current regulations and guidance documents, including discussion of the rationale for current regulatory requirements related to meteorological information for emergency response. Areas discussed include: major meteorological features important to emergency response; onsite meteorological measurements programs, including redundant and backup measurements; access to offsite sources of meteorological information; consideration of real-time and forecast conditions and atmospheric dispersion modeling

  12. Generic Procedures for Medical Response During a Nuclear or Radiological Emergency

    International Nuclear Information System (INIS)

    2009-01-01

    The aim of this manual is to provide the medical community with practical guidance for medical emergency preparedness and response, describing the tasks and actions of different members of the national, regional or local medical infrastructure in accordance with international standards. This document provides generic response procedures for medical personnel responding to different types of radiation emergencies and at the different stages of the emergency response (at the scene of the emergency, pre-hospital, hospital), and during the early post-emergency stage (about 1-2 months afterwards).

  13. Safety technology: Emergency equipment and sea rescue techniques

    Energy Technology Data Exchange (ETDEWEB)

    1986-06-01

    In June 1986, a two day workshop was convened to review mobile offshore drilling unit (MODU) evacuation research and development (R D) requirements for programs currently sponsored by the Marine Engineering Committee for PERD (Panel on Energy Research and Development) task 6.2. The proceedings of the workshop are presented in terms of: evacuation technology needs; a review of current R D projects for their relevance to the technological needs; recommended changes to current projects where warranted; and recommended priority R D projects that are not presently being undertaken to meet the evacuation technology needs. Current R D projects reviewed include: preferred orientation and displacement (PROD) lifeboat launching, personal transfer baskets, arctic escape system (AES), fast rescue craft (FRC), helicopter survival suits, diving bell emergency heaters, working immersion suits, diving bell emergency ascent system, undersea robotics systems and DCIEM decompression tables. It was concluded that gaps in offshore safety/evacuation capability cannot be adequately addressed by one or two major projects. Rather, a wider range of problems exist that require attention through a greater financial commitment than is presently the case. Government-industry cooperation in this field is required. Overall, the projects were judged to have been well planned, managed, and relevant to offshore safety needs. The only exception was a feeling that diving related projects consummed a disproportionate share of the available funding. Further, there was some reservation that the robotics study was outside the 6.2 PERD R D mandate. A list of recommendations is presented. 1 tab.

  14. Oswer integrated health and safety standard operating practices. Directive

    International Nuclear Information System (INIS)

    1993-02-01

    The directive implements the OSWER (Office of Solid Waste and Emergency Response) Integrated Health and Safety Standards Operating Practices in conjunction with the OSHA (Occupational Safety and Health Act) Worker Protection Standards, replacing the OSWER Integrated Health and Safety Policy

  15. Lawrence Livermore National Laboratory Emergency Response Capability Baseline Needs Assessment Requirement Document

    Energy Technology Data Exchange (ETDEWEB)

    Sharry, J A

    2009-12-30

    performance criteria may not be the level of performance desired Lawrence Livermore National Laboratory or Sandia/CA. Performance at levels greater than those established by this document will provide a higher level of fire safety, fire protection, or loss control and is encouraged. In Section 7, Determination of Baseline Needs, a standard template was used to describe the process used that involves separating basic emergency response needs into nine separate services. Each service being evaluated contains a determination of minimum requirements, an analysis of the requirements, a statement of minimum performance, and finally a summary of the minimum performance. The requirement documents, listed in Section 5, are those laws, regulations, DOE Directives, contractual obligations, or LLNL policies that establish service levels. The determination of minimum requirements section explains the rationale or method used to determine the minimum requirements.

  16. [Regional Study of Patient Safety Incidents (ERIDA) in the Emergency Services].

    Science.gov (United States)

    Alcaraz-Martínez, J; Aranaz-Andrés, J M; Martínez-Ros, C; Moreno-Reina, S; Escobar-Álvaro, L; Ortega-Liarte, J V

    2016-01-01

    Evaluate the patient safety incidents that occur in the emergency departments of our region. Observational study conducted in all the hospital emergency departments in the Regional Health Service of Murcia. After systematic random sampling, data were collected during care and a week later by telephone survey. Health professionals of each service were trained and collected the information, following the methodology of the National Study of Adverse Events Related to Hospitalization -ENEAS- and the Adverse Events Related to Spanish Hospital Emergency Department Care -EVADUR-. A total of 393 samples were collected, proportional to the cases treated in each hospital. In 10 cases (3.1%) the complaint was a previous safety incident. At least one incident was detected in 47 patients (11.95%; 8.7 to 15.1%). In 3 cases there were 2 incidents, bringing the number of incidents to 50. Regarding the impact, the 51% of incidents caused harm to the patients. The effects more frequent in patients were the need for repeat visits (9 cases), and mismanagement of pain (8 cases). In 24 cases (51.1%) health care was not affected, although 3 cases required an additional test, 11 cases required further consultation, and led to hospitalisation in 2 cases. The most frequent causal factors of these incidents were medication (14) and care (12). The incidents were considered preventable in 60% of cases. A rate of incidents in the emergency departments, representative of the region, has been obtained. The implications of the results for the population means that 12 out of every 100 patients treated in emergency departments have an adverse event, and 7 of these are avoidable. Copyright © 2016 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. A Probabilistic Risk Assessment For Emergency Preparedness

    International Nuclear Information System (INIS)

    Lee, Joomyung; Jae, Moosung; Ahn, Kwangil

    2013-01-01

    The importance of nuclear power plant PSA has grown up all over the world due to this incident. The main concern of this study is to develop a methodology to carry on an emergency preparedness evaluation and to set an exclusive area, or the emergency response area boundary in order to apply it to domestic reference plants. This study also focuses on evaluating the risk parameter of major nuclides through a sensitivity analysis and a safety assessment by calculating the population dose, early fatality, and cancer fatality rates. A methodology for an emergency preparedness, which can be applied to evaluate the damage of the radioactive release as well as to assess the safety of the accident scenario of a nuclear power plant, has been developed and applied for the reference plants in Korea. By applying a source term analysis, an exclusive zone based on the radioactive dose is obtained. And the results of the health effect assessment based on the release fraction of specific nuclides to public with an effective emergency response activity have been simulated. A methodology utilizing the Level 3 PSA with the actual emergency response activities has been developed and applied to typical nuclear accident situations. The plausible standard for performing an emergency plan is suggested and the valuable information regarding emergency preparedness has been produced in this study. For further works, the sensitivity study on important parameters will be performed to simulate the actual severe accident situations such as sheltering, evacuation, and emergency response activities

  18. Cryogenic safety organisation at CERN

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    With Safety being a top priority of CERN’s general policy, the Organisation defines and implements a Policy that sets out the general principles governing Safety at CERN. To the end of the attainment of said Safety objectives, the organic units (owners/users of the equipment) are assigned the responsibility for the implementation of the CERN Safety Policy at all levels of the organization, whereas the Health and Safety and Environmental Protection Unit (HSE) has the role of providing assistance for the implementation of the Safety Policy, and a monitoring role related to the implementation of continuous improvement of Safety, compliance with the Safety Rules and the handling of emergency situations. This talk will elaborate on the roles, responsibilities and organisational structure of the different stakeholders within the Organization with regards to Safety, and in particular to cryogenic safety. The roles of actors of particular importance such as the Cryogenic Safety Officers (CSOs) and the Cryogenic Sa...

  19. Enhancing nuclear emergency response through international co-operation

    International Nuclear Information System (INIS)

    Ugletveit, F.; Aaltonen, H.

    2003-01-01

    Full text: A large number of different national plans and procedures have been established and substantial resources allocated world wide with varying comprehensiveness and quality depending an the national requirements and the possible threat scenarios considered. These national plans are only to a small degree harmonized. It is clear that it is the responsibility of the authorities in the respective countries or utilities under their jurisdiction, to decide upon and implement appropriate response actions to a nuclear emergency. The basic needs for responding properly are: infrastructure in terms of plans, procedures etc.; information regarding the accident, its development and consequences; resources in terms of expertise, man power and tools for acquiring and processing information, making assessments and decisions and carry out the actions. When a large number of countries are making assessments and decisions for their own country and providing the public with information, it is important that assessments, decisions and public information become correct, complete and consistent across boarders. In order to achieve this, they should all have access to the same information as basis for their actions. Lack of information or wrong information could easily lead to wrong assessments, wrong decisions and misleading information to the public. If there is a serious nuclear emergency somewhere that could potentially affect several or many States in one way or another, 'everyone' would like to know 'everything' that happens 'everywhere'. In this case, all States should have the obligation to share with the international community the relevant information they have available themselves and that could be of interest for other States responding to the situation. During a serious nuclear or radiological emergency, the demand for different kinds of resources is huge and could, in many countries, probably exceed national capabilities. Looking at the situation in a global

  20. IEA Response System for Oil Supply Emergencies (2012 update)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available -- focusing on stockdraw -- and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security.

  1. Emergency preparedness at the UJD

    International Nuclear Information System (INIS)

    Seliga, Mojmir

    2001-01-01

    The objective of the emergency planning is to suggest optimum organisational and technical measures to restrict the threat or to eliminate the menace to the population in case of incident or accident at nuclear facility. The emergency plan is activated and executed through the set of emergency procedures, which define basic activities of the UJD during the emergency situations in compliance with legislation regulations. The assessment of the course and consequences of serious incidents and accidents of nuclear installations is carried out by the Emergency Response Centre (KKC). The Emergency Plan of UJD is the set of technical and organisation measures with the aim to propose optimal measures for protection of population and environment. The UJD- Department of Emergency Management and Informatics has an irreplaceable role in the structure of emergency response. The Emergency Response Centre is its organisational part. The UJD is a contact point of the Slovak Republic with the IAEA in frame of convention on early notification of nuclear accidents. The same is valid for bilateral agreements between the Slovak Republic and Czech Republic, Germany, Austria, Hungary, Poland and Ukraine. Uninterrupted 24 hours duty service of the contact point is assured for the UJD by the Office of Civil Protection of Ministry of Interior. In order to fulfil the tasks of the emergency planning UJD established its Emergency Response Group, which consists of four professional teams: 1. Reactor safety group, 2. Radiation protection group, 3. Logistic group, 4. Information group. Information Group consists of the head of Group, the report analysis experts and news service experts. The information group is responsible for public information as well as for informing the authorities. The Information Centre is situated closely to the Emergency Response Centre. The information group gathers, coordinates and prepares all pieces of information in compliance with commitments of the Slovak Republic

  2. Reactor Safety Assessment System--A situation assessment aid for USNRC emergency response

    International Nuclear Information System (INIS)

    Bray, M.A.; Sebo, D.E.; Dixon, B.W.

    1985-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSAS is intended for use at the NRC's Operations Center in the event of a serious incident at a licensed nuclear power plant. The system uses plant parameter data and status information from the power plant. It has a rule base that uses the parametric values, the known operator actions, and the time sequence information in the data to generate situation assessment conclusions for use by the NRC Reactor Safety Team. RSAS rules currently cover one specific reactor type and use setpoints specific to one power plant

  3. Reactor Safety Assessment System: a situation assessment aid for USNRC emergency response

    International Nuclear Information System (INIS)

    Bray, M.A.; Sebo, D.E.; Dixon, B.W.

    1985-04-01

    The Reactor Safety Assessment System is an expert system under development for the United States Nuclear Regulatory Commission (NRC). RSAS is intended for use at the NRC's Operations Center in the event of a serious incident at a licensed nuclear power plant. The system uses plant parameter data and status information from the power plant. It has a rule base which uses the parametric values, the known operator actions and the time sequence information in the data to generate situation assessment conclusions for use by the NRC Reactor Safety Team. RSAS rules currently cover one specific reactor type and use setpoints specific to one power plant. 5 figs

  4. Safety pharmacology--current and emerging concepts.

    Science.gov (United States)

    Hamdam, Junnat; Sethu, Swaminathan; Smith, Trevor; Alfirevic, Ana; Alhaidari, Mohammad; Atkinson, Jeffrey; Ayala, Mimieveshiofuo; Box, Helen; Cross, Michael; Delaunois, Annie; Dermody, Ailsa; Govindappa, Karthik; Guillon, Jean-Michel; Jenkins, Rosalind; Kenna, Gerry; Lemmer, Björn; Meecham, Ken; Olayanju, Adedamola; Pestel, Sabine; Rothfuss, Andreas; Sidaway, James; Sison-Young, Rowena; Smith, Emma; Stebbings, Richard; Tingle, Yulia; Valentin, Jean-Pierre; Williams, Awel; Williams, Dominic; Park, Kevin; Goldring, Christopher

    2013-12-01

    Safety pharmacology (SP) is an essential part of the drug development process that aims to identify and predict adverse effects prior to clinical trials. SP studies are described in the International Conference on Harmonisation (ICH) S7A and S7B guidelines. The core battery and supplemental SP studies evaluate effects of a new chemical entity (NCE) at both anticipated therapeutic and supra-therapeutic exposures on major organ systems, including cardiovascular, central nervous, respiratory, renal and gastrointestinal. This review outlines the current practices and emerging concepts in SP studies including frontloading, parallel assessment of core battery studies, use of non-standard species, biomarkers, and combining toxicology and SP assessments. Integration of the newer approaches to routine SP studies may significantly enhance the scope of SP by refining and providing mechanistic insight to potential adverse effects associated with test compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Online Food Safety Information System for Nuclear or Radiological Emergencies

    International Nuclear Information System (INIS)

    Albinet, Franck; Adjigogov, Lazar; Dercon, Gerd

    2016-01-01

    Over the last year, the protocol with regards to data management and visualization requirements for food safety decision-making, developed under CRP D1.50.15 on R esponse to Nuclear Emergency Affecting Food and Agriculture , was further implemented. The development team moved away from early series of disconnected prototypes to a more advanced Information System integrating both data management and visualization components outlined in the agreed protocol

  6. Toward a federal/state/local partnership in hazardous materials transportation safety

    International Nuclear Information System (INIS)

    1982-09-01

    In recognition of the federal government's responsibility for initiating a national strategy for hazardous materials transportation safety, the Materials Transportation Bureau (MTB) prepared an internal strategy paper for creating a federal/state/local partnership in hazardous materials transportation safety in August 1981. The paper outlined the scope of the hazardous materials transportation problem and established MTB's approach for creating an intergovernmental partnership for its resolution. This paper represents an update and refinement of the original plan, and is designed to chart the direction of the emerging federal/state/local relationship. The cornerstone of the plan remains the establishment of a single national set of safety regulations. It is on achievement of this objective that MTB's plan for development of enforcement, training, and emergency response capabilities at all levels of government is based. Chapter I introduces the problem with a desription of the economic importance of hazardous materials and discusses its implications for public safety. Chapter II defines the appropriate role for each level of government in the areas of rulemaking, enforcement, emergency response, and education. Chapter III demonstrates the need for uniform national safety standards and describes the economic and safety benefits of this approach. Chapter IV contains a detailed description of MTB's program for developing a successful intergovernmental partnership in hazardous materials transportation safety

  7. Addressing the gap between public health emergency planning and incident response

    Science.gov (United States)

    Freedman, Ariela M; Mindlin, Michele; Morley, Christopher; Griffin, Meghan; Wooten, Wilma; Miner, Kathleen

    2013-01-01

    Objectives: Since 9/11, Incident Command System (ICS) and Emergency Operations Center (EOC) are relatively new concepts to public health, which typically operates using less hierarchical and more collaborative approaches to organizing staff. This paper describes the 2009 H1N1 influenza outbreak in San Diego County to explore the use of ICS and EOC in public health emergency response. Methods: This study was conducted using critical case study methodology consisting of document review and 18 key-informant interviews with individuals who played key roles in planning and response. Thematic analysis was used to analyze data. Results: Several broad elements emerged as key to ensuring effective and efficient public health response: 1) developing a plan for emergency response; 2) establishing the framework for an ICS; 3) creating the infrastructure to support response; 4) supporting a workforce trained on emergency response roles, responsibilities, and equipment; and 5) conducting regular preparedness exercises. Conclusions: This research demonstrates the value of investments made and that effective emergency preparedness requires sustained efforts to maintain personnel and material resources. By having the infrastructure and experience based on ICS and EOC, the public health system had the capability to surge-up: to expand its day-to-day operation in a systematic and prolonged manner. None of these critical actions are possible without sustained funding for the public health infrastructure. Ultimately, this case study illustrates the importance of public health as a key leader in emergency response. PMID:28228983

  8. Some issues on nuclear and radiological emergency preparedness and response in China

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1999-01-01

    The nuclear emergency preparedness and response have comprehensively been developed over ten years in China. In order to promote the sound development of emergency preparedness and response, it is useful to retrospect the process of emergency preparedness and response, to summarize the experiences and absorb the experiences from foreign countries. The main issues are as follows: 1) The preparedness and response to nuclear and radiological accident is basically the same as the response to any accident involving hazardous material. 2) The classification of emergency planning, not only for nuclear facilities, but also irradiation installation, etc. 3) The hazard assessment-- a top priority. 4) The emergency planning zones. 5) Psychological impact

  9. LNG - emergency control

    Energy Technology Data Exchange (ETDEWEB)

    Berardinelli, Ricardo Porto; Correa, Kleber Macedo; Moura Filho, Nelson Barboza de; Fernandez, Carlos Antonio [TRANSPETRO, Rio de Janeiro, RJ (Brazil); Matos, Jose Eduardo Nogueira de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The operation of liquefied natural gas (LNG) is pioneering within the PETROBRAS System. PETROBRAS Transporte - TRANSPETRO is going to operate two flexible LNG terminals, located in Ceara and Rio de Janeiro. In accordance with the Corporate Health, Safety and Environmental (HSE) Directive - Training, Education and Awareness, PETROBRAS Transporte S.A. - TRANSPETRO has prepared an action plan with the objective of ensuring the operational safety of the undertaking. Among other actions a training program for the emergency control of LNG will be inserted into the timetable. The above mentioned training program was held over a period of 20 hours, and was divided between theory and practice. In the theoretical part, the characteristics of the product, the history of accidents and the emergency response procedures were covered. In the practical part, 3000 gallons of LNG were utilized where the behavior of the product could be confirmed following a confined leak, thereby verifying the efficacy of the emergency control resources. The teaching process of the course was developed in the company through the preparation of specific procedures, emergency plans and the formation of internal instructors. (author)

  10. The production and operation of the nuclear industry road emergency response plan (NIREP)

    International Nuclear Information System (INIS)

    Higson, J.

    1991-01-01

    For many years, radioactive material, ranging from small sources used for medical and commercial purposes to large consignments of irradiated fuel, has been safely moved by road in Great Britain. All such movements are controlled by law and have to meet clearly specified safety requirements concerning packaging and shielding to ensure that if the transporting vehicle is involved in an accident, there is no increase in the hazards involved because of the nature of its load. There are currently some 40,000 movements by road every year, but over more than 25 years, there has never been an accident which has led to any significant radiological impact to members of the public. A national scheme to provide contingency arrangements in the event of a road accident involving radioactive materials has now been set up by the major users and consignors of radioactive material. Called NIREP (Nuclear Industry Road Emergency Response Plan), the member industries have agreed immediately to despatch, from the nearest organisation to the incident, qualified health physicist personnel to deal with any incident involving radioactive material belonging to (or consigned by) any of the participating companies. With their widespread location of establishments, all parts of the UK mainland are covered. Vehicles covered by the scheme will display a NIREP placard, thus giving the Police, or other emergency services, an emergency telephone number of a coordinating centre and information on the site responsible for the load. (author)

  11. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies - Training Materials

    International Nuclear Information System (INIS)

    2013-01-01

    These materials are designed for use at a four day training course on the application of cytogenetic dosimetry in preparedness for and response to radiation emergencies. They contain information on: (1) Basics of biological effects of ionizing radiation: Parts 1+2; (2) Basics of dosimetry; (3) dicentric assay; (4) Retrospective dosimetry by translocation analysis; (5) Premature chromosome condensation analysis; (6) Cytokinesis block micronucleus assay; (7) Applied statistics for biodosimetry; (8) Automatic analysis of chromosomal assays; (9) Biodosimetry in mass casualty events; (10) Safety of laboratory staff and quality programmes; (11) Examples of accident investigations; (12) Cytogenetic dose estimation in the criticality accident in Tokaimura; (13) Radiological accidents in Latin America; (14) Radiological accidents in Georgia. Additionally, the CD contains two working sessions with the reference materials for use and a standard training programme. This training course consists of lectures and work sessions that can easily be utilized by a State to build a basic capability in biodosimetry application in a nuclear or radiological emergency

  12. Integrating Social Media Monitoring Into Public Health Emergency Response Operations.

    Science.gov (United States)

    Hadi, Tamer A; Fleshler, Keren

    2016-10-01

    Social media monitoring for public health emergency response and recovery is an essential response capability for any health department. The value of social media for emergency response lies not only in the capacity to rapidly communicate official and critical incident information, but as a rich source of incoming data that can be gathered to inform leadership decision-making. Social media monitoring is a function that can be formally integrated into the Incident Command System of any response agency. The approach to planning and required resources, such as staffing, logistics, and technology, is flexible and adaptable based on the needs of the agency and size and scope of the emergency. The New York City Department of Health and Mental Hygiene has successfully used its Social Media Monitoring Team during public health emergency responses and planned events including major Ebola and Legionnaires' disease responses. The concepts and implementations described can be applied by any agency, large or small, interested in building a social media monitoring capacity. (Disaster Med Public Health Preparedness. 2016;page 1 of 6).

  13. Food control concept: Food safety/ingestion issues

    International Nuclear Information System (INIS)

    Armstrong, B.

    1995-01-01

    This talk outlines the issues in food safety/ingestion in the case of radiation accidents at nuclear power plants and how emergency preparedness plans can/should be tailored. The major topics are as follows: In Washington: food safety/ingestion issues exist at transition between response and regulatory worlds; agricultural concerns; customer concerns; Three Mile Island: detailed maps; development of response procedures; development of tools; legal issues

  14. Building Fire Safety Audit at Faculty X, University of Indonesia, Year 2006

    Directory of Open Access Journals (Sweden)

    Fatma Lestari

    2010-10-01

    Full Text Available Fire may cause loss of life, material and valuable assets. The objective of this study is to conduct audit for fire safety and emergency response in the building at Faculty X, University of Indonesia, Depok. The audit results on the building fire safety facilities including emergency response and preparedness are then compared to the Building Code Australia (BCA and Indonesian regulation on the building fire safety (Kep.MenPU.No 10 and 11/KPTS/2000. The building selected are Building A, B, C, D, F and G. Building classification for A, B, D, F and G are classified as Class 5, while Building C is classified as Class 9b. Variable which are evaluated including emergency exit, building structure, fire alarm and detector, communication and fire warning system, evacuation procedure, portable fire extinguishers, hydrant, sprinkler, and emergency response preparedness. Results suggested that emergency exit is locked, and this is not comply to the regulation. Building structure has been complied to the regulation since it was made of concrete. Fire detector and alarm only provided in Building G, while other building is not available. There is no evacuation procedure available. Portable fire extinguisher has been available in all the building. Hydrant an sprinkler only available in building G. There is no emergency response preparedness in this faculty. In conclusion, the fire safety facilities in this faculty need to be improved.

  15. United States Department of Energy radiological emergency response programme - a national capability

    International Nuclear Information System (INIS)

    Gordon-Hagerty, L.E.

    1993-01-01

    In order to respond to a radiological emergency, the United States Department of Energy (USDOE) maintains seven emergency response assets and capabilities in support of a radiological emergency of any proportion within the continental United States and abroad. The seven emergency response assets and capabilities include: Accident Response Group; Aerial Measuring Systems; Atmospheric Release Advisory Capability; Federal Radiological Monitoring and Assessment Center; Nuclear Emergency Search Team; Radiation Emergency Assistance Center/Training Site; and Radiological Assistance Program. Presently, USDOE maintains the most comprehensive national radiological emergency response assets in the United States, capable of dealing with any type of emergency involving nuclear materials. In all, the Department's assets are available to support any type of accident/incident involving radioactive materials in coordination with other United States Federal agencies, as well as state and local governments, as required. (author)

  16. Contraceptive availability during an emergency response in the United States.

    Science.gov (United States)

    Ellington, Sascha R; Kourtis, Athena P; Curtis, Kathryn M; Tepper, Naomi; Gorman, Susan; Jamieson, Denise J; Zotti, Marianne; Barfield, Wanda

    2013-03-01

    This article provides the evidence for contraceptive need to prevent unintended pregnancy during an emergency response, discusses the most appropriate types of contraceptives for disaster situations, and details the current provisions in place to provide contraceptives during an emergency response.

  17. Emergency response facilities including primary and secondary prevention strategies across 79 professional football clubs in England.

    Science.gov (United States)

    Malhotra, Aneil; Dhutia, Harshil; Gati, Sabiha; Yeo, Tee-Joo; Finocchiaro, Gherardo; Keteepe-Arachi, Tracey; Richards, Thomas; Walker, Mike; Birt, Robin; Stuckey, David; Robinson, Laurence; Tome, Maite; Beasley, Ian; Papadakis, Michael; Sharma, Sanjay

    2017-06-14

    To assess the emergency response planning and prevention strategies for sudden cardiac arrest (SCA) across a wide range of professional football clubs in England. A written survey was sent to all professional clubs in the English football league, namely the Premiership, Championship, League 1 and League 2. Outcomes included: (1) number of clubs performing cardiac screening and frequency of screening; (2) emergency planning and documentation; (3) automated external defibrillator (AED) training and availability; and (4) provision of emergency services at sporting venues. 79 clubs (86%) responded to the survey. 100% clubs participated in cardiac screening. All clubs had AEDs available on match days and during training sessions. 100% Premiership clubs provided AED training to designated staff. In contrast, 30% of lower division clubs with AEDs available did not provide formal training. Most clubs (n=66; 83%) reported the existence of an emergency action plan for SCA but formal documentation was variable. All clubs in the Premiership and League 1 provided an ambulance equipped for medical emergencies on match days compared with 75% of clubs in the Championship and 66% in League 2. The majority of football clubs in England have satisfactory prevention strategies and emergency response planning in line with European recommendations. Additional improvements such as increasing awareness of European guidelines for emergency planning, AED training and mentorship with financial support to lower division clubs are necessary to further enhance cardiovascular safety of athletes and spectators and close the gap between the highest and lower divisions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Emergency response planning in Saskatchewan

    International Nuclear Information System (INIS)

    Irwin, R.W.

    1998-01-01

    Release reporting and spill clean-up requirements by Saskatchewan Energy and Mines were reviewed. Wascana's experience in response planning was discussed. It was suggested that the key to prevention was up-front due diligence, including facility and oil well analysis. Details of Wascana's emergency plan, and details of Saskatchewan Energy and Mines release reporting procedures were also provided

  19. Department of Agriculture, Food Safety and Inspection Service

    Science.gov (United States)

    ... Standard Forms FSIS United States Department of Agriculture Food Safety and Inspection Service About FSIS District Offices Careers Contact Us Ask ... Reports Fact Sheets Food Defense and Emergency Response Food Safety Education FSIS ... Assistance Contact Centers Cooperative Agreements Email Subscription ...

  20. 40 CFR 1.47 - Office of Solid Waste and Emergency Response.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Office of Solid Waste and Emergency... ORGANIZATION AND GENERAL INFORMATION Headquarters § 1.47 Office of Solid Waste and Emergency Response. The Office of Solid Waste and Emergency Response (OSWER), under the supervision of the Assistant...

  1. Delaware Estuary situation reports. Emergency response: How do emergency management officials address disasters in the Delaware Estuary

    International Nuclear Information System (INIS)

    Sylves, R.T.

    1991-01-01

    From hurricanes and other natural threats to oil spills and other manmade emergencies, the Delaware Estuary has experienced a variety of disasters over the years. The toll that these events take on the estuary and those who live on its shores depends largely upon the degree of emergency preparedness, speed of response, and effectiveness of recovery operations. In Emergency Response: How Do Emergency Management Officials Address Disasters in the Delaware Estuary, the latest addition to its Delaware Estuary Situation Report series, the University of Delaware Sea Grant College Program defines emergency management; examines the roles that the Coast Guard, Army Corps of Engineers, and Environmental Protection Agency play in an emergency; and reviews how each of these federal agencies operated during an actual disaster--the 1985 Grand Eagle oil spill. The report was written by Dr. Richard T. Sylves, a professor of political science at the University of Delaware. Sylves has been studying emergency management for the past 15 years, with special emphasis on oil spill preparedness and response in the Mid-Atlantic Region. The Delaware Estuary Situation Report is 12 pages long and contains maps and photographs, as well as a detailed account of response and recovery operations undertaken during the Grand Eagle oil spill. A comparison of the 1985 Grand Eagle spill and the 1989 Presidente Rivera spill also is included

  2. 76 FR 10898 - Public Safety and Homeland Security Bureau; Federal Advisory Committee Act; Emergency Response...

    Science.gov (United States)

    2011-02-28

    ... FEDERAL COMMUNICATIONS COMMISSION Public Safety and Homeland Security Bureau; Federal Advisory..., Public Safety and Homeland Security Bureau, Federal Communications Commission, 445 12th Street, SW., Room..., Public Safety and Homeland Security Bureau. [FR Doc. 2011-4398 Filed 2-25-11; 8:45 am] BILLING CODE 6712...

  3. The appropriateness of emergency medical service responses in the ...

    African Journals Online (AJOL)

    The appropriateness of emergency medical service responses in the eThekwini district of KwaZulu-Natal, South Africa. PR Newton, R Naidoo, P Brysiewicz. Abstract. Introduction. Emergency medical services (EMS) are sometimes required to respond to cases that are later found not to be emergencies, resulting in high ...

  4. Radiation Safety in Industrial Radiography. Specific Safety Guide (French Edition); Surete radiologique en radiographie industrielle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in Horizontal-Ellipsis shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  5. Incidence of emergency contacts (red responses to Norwegian emergency primary healthcare services in 2007 – a prospective observational study

    Directory of Open Access Journals (Sweden)

    Hansen Elisabeth

    2009-07-01

    Full Text Available Abstract Background The municipalities are responsible for the emergency primary health care services in Norway. These services include casualty clinics, primary doctors on-call and local emergency medical communication centres (LEMC. The National centre for emergency primary health care has initiated an enterprise called "The Watchtowers", comprising emergency primary health care districts, to provide routine information (patients' way of contact, level of urgency and first action taken by the out-of-hours services over several years based on a minimal dataset. This will enable monitoring, evaluation and comparison of the respective activities in the emergency primary health care services. The aim of this study was to assess incidence of emergency contacts (potential life-threatening situations, red responses to the emergency primary health care service. Methods A representative sample of Norwegian emergency primary health care districts, "The Watchtowers" recorded all contacts and first action taken during the year of 2007. All the variables were continuously registered in a data program by the attending nurses and sent by email to the National Centre for Emergency Primary Health Care at a monthly basis. Results During 2007 the Watchtowers registered 85 288 contacts, of which 1 946 (2.3% were defined as emergency contacts (red responses, corresponding to a rate of 9 per 1 000 inhabitants per year. 65% of the instances were initiated by patient, next of kin or health personnel by calling local emergency medical communication centres or meeting directly at the casualty clinics. In 48% of the red responses, the first action taken was a call-out of doctor and ambulance. On a national basis we can estimate approximately 42 500 red responses per year in the EPH in Norway. Conclusion The emergency primary health care services constitute an important part of the emergency system in Norway. Patients call the LEMC or meet directly at casualty clinics

  6. EM Health and Safety Plan Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This document contains information about the Health and Safety Plan Guidelines. Topics discussed include: Regulatory framework; key personnel; hazard assessment; training requirements; personal protective equipment; extreme temperature disorders or conditions; medical surveillance; exposure monitoring/air sampling; site control; decontamination; emergency response/contingency plan; emergency action plan; confined space entry; and spill containment.

  7. Emergency management in nuclear power plants: a regulatory view

    International Nuclear Information System (INIS)

    Shukla, Vikas; Chander, Vipin; Vijayan, P.; Nair, P.S.; Krishnamurthy, P.R.

    2011-01-01

    The nuclear power plants in India adopts a high level of defence in depth concept in design and operates at highest degree of safety, however the possibility of nuclear accidents cannot be ruled out. The safety and regulatory review of Nuclear Power Plants (NPPs) in India are carried out by Atomic Energy Regulatory Board (AERB). Section 33 of Atomic Energy (Radiation Protection) Rules-2004 provides the basic requirements of emergency preparedness aspects for a nuclear facility. Prior to the issuance of a license for the operation of NPPs, AERB ensures that the site specific emergency response manuals are in place and tested. The emergency response plan includes the emergency response organization, their responsibilities, the detailed scheme of emergency preparedness, response, facilities, equipments, coordination and support of various organizations and other technical aspects. These emergency preparedness plans are tested at periodic interval to check the overall effectiveness. The plant and site emergency exercise is handled by the plant authorities as per the site emergency plan. The events with off-site consequences are handled by the district authorities according to the off-site emergency plan. In off-site emergency exercises, observers from AERB and other associated organizations participate. Observations of the participants are discussed in the feedback session of the exercise for their disposition. This paper reviews the current level of emergency planning and preparedness, statistics of emergency exercises conducted and their salient findings. The paper highlights improvement in the emergency management programme over the years including development of advance technical support systems. The major challenges in off-site emergency management programme such as industrial growth and increase in population within the sterilized zone, frequent transfer of district officials and the floating population around the NPPs are outlined. The areas for improvement in

  8. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  9. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  10. Actions to Protect the Public in an Emergency due to Severe Conditions at a Light Water Reactor. Date Effective: May 2013

    International Nuclear Information System (INIS)

    2013-01-01

    Under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the 'Assistance Convention'), one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to a nuclear or radiological emergency. This publication is intended to help fulfil in part these functions assigned to the IAEA in the Assistance Convention. The aim of this publication is to provide those persons who are responsible for making and for acting on decisions in the event of an emergency at a light water reactor with an understanding of the actions that are necessary to protect the public. The publication provides a basis for developing the tools and criteria at the preparedness stage that would be needed in taking protective actions and other actions in response to such an emergency. The publication applies the safety principles stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and it will be of assistance to Member States in meeting the requirements established in IAEA Safety Standards Series No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. The application of these requirements is intended to minimize the consequences for people and the environment in any nuclear or radiological emergency. This guidance should be adapted to fit the State's organizational arrangements, language, terminology, concept of operation and capabilities. The IAEA General Conference, in resolution GC(55)/RES/9: 'Emphasizes the importance for all Member States to implement emergency preparedness and response mechanisms and develop mitigation measures at a national level, consistent with the Agency's Safety Standards, for improving emergency preparedness and response, facilitating communication in an emergency and contributing to harmonization of national criteria for protective and other

  11. New Nuclear Emergency Prognosis system in Korea

    Science.gov (United States)

    Lee, Hyun-Ha; Jeong, Seung-Young; Park, Sang-Hyun; Lee, Kwan-Hee

    2016-04-01

    This paper reviews the status of assessment and prognosis system for nuclear emergency response in Korea, especially atmospheric dispersion model. The Korea Institute of Nuclear Safety (KINS) performs the regulation and radiological emergency preparedness of the nuclear facilities and radiation utilizations. Also, KINS has set up the "Radiological Emergency Technical Advisory Plan" and the associated procedures such as an emergency response manual in consideration of the IAEA Safety Standards GS-R-2, GS-G-2.0, and GS-G-2.1. The Radiological Emergency Technical Advisory Center (RETAC) organized in an emergency situation provides the technical advice on radiological emergency response. The "Atomic Computerized Technical Advisory System for nuclear emergency" (AtomCARE) has been developed to implement assessment and prognosis by RETAC. KINS developed Accident Dose Assessment and Monitoring (ADAMO) system in 2015 to reflect the lessons learned from Fukushima accident. It incorporates (1) the dose assessment on the entire Korean peninsula, Asia region, and global region, (2) multi-units accident assessment (3) applying new methodology of dose rate assessment and the source term estimation with inverse modeling, (4) dose assessment and monitoring with the environmental measurements result. The ADAMO is the renovated version of current FADAS of AtomCARE. The ADAMO increases the accuracy of the radioactive material dispersion with applying the LDAPS(Local Data Assimilation Prediction System, Spatial resolution: 1.5 km) and RDAPS(Regional Data Assimilation Prediction System, Spatial resolution: 12km) of weather prediction data, and performing the data assimilation of automatic weather system (AWS) data from Korea Meteorological Administration (KMA) and data from the weather observation tower at NPP site. The prediction model of the radiological material dispersion is based on the set of the Lagrangian Particle model and Lagrangian Puff model. The dose estimation methodology

  12. The role of emerging technologies to ensure the microbial safety of fresh produce, milk and eggs

    Science.gov (United States)

    This article reviews emerging techniques that are applied in the produce and dairy industry to ensure product safety. Microbial safety of produce, dairy and egg continues to be a major concern. According to Economic Research Service, USDA the cost of foodborne illnesses in the U.S. tops $15.6 billio...

  13. Information for nuclear emergency response: a case study based on ANGRA nuclear power plant emergency simulation exercises

    International Nuclear Information System (INIS)

    Carvalho, Paulo V.R. de

    2008-01-01

    Full text: Current nuclear emergency management procedures do not always satisfactorily address issues related to the information availability and to how people in emergency control centres use this information to respond to an nuclear accident. The lack of an adequate and prompt information may lead to a response that can be very different from what authorities recommend and thus create confusion, mistrust, and widespread uncertainty. This is a potentially serious problem for emergency planners. An adequate and prompt access to relevant information is a critical requirement that emergency teams face while they work towards reducing the undesired consequences of the emergency. There are three basic types of knowledge according to a conceptual framework developed to deal with emergency response: Previous Personal, Previous and, Current Contextual knowledge. Most decisions in emergency control centres require a dynamic combination of all types of knowledge, particularly the current contextual that comes from the emergency settings, including all information about the activities of other emergency teams. The aim of this paper is to describe the concepts and the structure of a system that aims at storing and disseminating the previous formal and contextual knowledge to help teams make the correct decisions during the evolution of an emergency. The elicitation of critical requirements are provided by a case study based on Cognitive Work Analysis and Naturalistic Decision Making methods, applied to a nuclear emergency response simulation. The framework and a prototype system were tested in a controlled experiment. The paper reports the results of this experiment. (author)

  14. Nuclear regulation and safety

    International Nuclear Information System (INIS)

    Hendrie, J.M.

    1982-01-01

    Nuclear regulation and safety are discussed from the standpoint of a hypothetical country that is in the process of introducing a nuclear power industry and setting up a regulatory system. The national policy is assumed to be in favor of nuclear power. The regulators will have responsibility for economic, reliable electric production as well as for safety. Reactor safety is divided into three parts: shut it down, keep it covered, take out the afterheat. Emergency plans also have to be provided. Ways of keeping the core covered with water are discussed

  15. Warning citizens; influencing self-reliance in emergencies

    NARCIS (Netherlands)

    Sillem, S.

    2010-01-01

    An important part of the response to an emergency is making sure that people are able to take themselves and others to a place of safety. To make people aware that there is an emergency, there are three steps that have to be taken: there has to be a warning that something is going on, people have to

  16. Tactical and strategic decision-making aids for nuclear power plant emergency response

    International Nuclear Information System (INIS)

    Cain, D.G.

    1987-01-01

    This paper examines the prospective role of computer-based decision aids for nuclear power plant emergency response. The role of these systems is subordinate to human activities, but in a complementary manner these systems process decision logic more accurately and foster a more thorough understanding of emergency situations than might other wise be possible. Within this context two decision support systems being developed are discussed. Both of these systems utilize technology derived from artificial intelligence, focussing on two different facets of emergency response. An automated emergency operating procedures (EOP) tracking expert system is described as a tactical aid for control room operator response. A reactor emergency action level monitor (REALM) expert system is proposed as a strategic decision aid for site emergency response. The discrimination between tactical and strategic decision-making is an intrinsic part of this examination

  17. Towards an International Approach to Nuclear Safety

    International Nuclear Information System (INIS)

    Tomihiro Taniguchi

    2006-01-01

    This document presents in a series of transparencies the different activities of the IAEA: Introduction of International Atomic Energy Agency, Changing world, Changing Technology, Changing Global Security, Developing Innovative Nuclear Energy Systems, Global Nuclear Safety Regime, IAEA Safety Standards: Hierarchy - Global Reference for Striving for Excellence, IAEA Safety Reviews and Services: Integrated Safety Approach, Global Knowledge Network - Asian Nuclear Safety Network, Safety Issues and Challenges, Synergy between Safety and Security, Recent Developments: Safety and Security of Radioactive Sources, Convention on Physical Protection of Nuclear Material (CPPNM), Incident and Emergency Preparedness and Response, Holistic Approach for Safety and Security, Sustainable Development. (J.S.)

  18. Method for the development of emergency response preparedness for nuclear or radiological accidents

    International Nuclear Information System (INIS)

    2000-03-01

    This report supplements IAEA emergency preparedness guidance published in the 1980s, and is consistent with the new international guidance. It provides practical advice for the development of an emergency response capability based on the potential nature and magnitude of the risk. In order to apply this method, emergency planners should have a good understanding of the basic radiological emergency response principles. Therefore, other applicable international guidance should be reviewed before using this report. This report provides a practical step-by-step method for developing integrated user, local and national emergency response capabilities. It can also be used as the basis for conducting an audit of an existing emergency response capability

  19. Method for the development of emergency response preparedness for nuclear or radiological accidents

    International Nuclear Information System (INIS)

    1998-04-01

    This report supplements IAEA emergency preparedness guidance published in the 1980s, and is consistent with the new international guidance. It provides practical advice for the development of an emergency response capability based on the potential nature and magnitude of the risk. In order to apply this method, emergency planners should have a good understanding of the basic radiological emergency response principles. Therefore, other applicable international guidance should be reviewed before using this report. This report provides a practical step-by-step method for developing integrated user, local and national emergency response capabilities. It can also be used as the basis for conducting an audit of an existing emergency response capability

  20. Radiation Safety in Industrial Radiography. Specific Safety Guide (Spanish Edition); Seguridad radiologica en la radiografia industrial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  1. Safety parameter display system: an operator support system for enhancement of safety in Indian PHWRs

    International Nuclear Information System (INIS)

    Subramaniam, K.; Biswas, T.

    1994-01-01

    Ensuring operational safety in nuclear power plants is important as operator errors are observed to contribute significantly to the occurrence of accidents. Computerized operator support systems, which process and structure information, can help operators during both normal and transient conditions, and thereby enhance safety and aid effective response to emergency conditions. An important operator aid being developed and described in this paper, is the safety parameter display system (SPDS). The SPDS is an event-independent, symptom-based operator aid for safety monitoring. Knowledge-based systems can provide operators with an improved quality of information. An information processing model of a knowledge based operator support system (KBOSS) developed for emergency conditions using an expert system shell is also presented. The paper concludes with a discussion of the design issues involved in the use of a knowledge based systems for real time safety monitoring and fault diagnosis. (author). 8 refs., 4 figs., 1 tab

  2. Emergency planning and response: An independent safety assessment of Department of Energy nuclear reactor facilities

    International Nuclear Information System (INIS)

    Knuth, D.; Boyd, R.

    1981-02-01

    The Department of Energy (DOE) has formed a Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee to assess the implications of the recommendations contained in the President's Commission Report on the Three Mile Island (TMI) Accident (the Kemeny Commission report) that are applicable to DOE's nuclear reactor operations. Thirteen DOE nuclear reactors have been reviewed. The assessments of the 13 facilities are based on information provided by the individual operator organizations and/or cognizant DOE Field Offices. Additional clarifying information was supplied in some, but not all, instances. This report indicates how these 13 reactor facilities measure up in light of the Kemeny and other TMI-related studies and recommendations, particularly those that have resulted in upgraded Nuclear Regulatory Commission (NRC) requirements in the area of emergency planning and response

  3. Comparison of nuclear plant emergency plans of PBNCC members

    International Nuclear Information System (INIS)

    Kato, W.Y.; Hopwood, J.M.

    1987-01-01

    The Nuclear Safety Working Group (NSWG) of the Pacific Basin Nuclear Cooperation Committee initiated cooperation among Pacific Basin areas based primarily around emergency planning. The NSWG conducted a review of the emergency response plans of members. This paper briefly reviews and makes a comparison of the emergency response plans, with particular attention on the response organization, the planning zone, and the protective action guidelines for emergencies. Although all areas have adopted the same basic elements of emergency planning and are similar, there are also variances due to different governmental structures, population densities, and available resources. It is found that the most significant difference is in the size of the emergency planning zone. The paper concludes with a discussion on possible future cooperative activities of the working group. (author)

  4. Crisis management of State Office for Nuclear Safety of Czech Republic

    International Nuclear Information System (INIS)

    Koldus, F.; Starostova, V.

    2005-01-01

    tate Office for Nuclear Safety is a regulatory body responsible for governmental administration and supervision in the fields, of uses of nuclear energy and of radiation protection. firstly and secondly which establish a workplace for the crisis management and Crisis Staff and compile a Crisis Plan because of to be prepared to solve the emergency situations at the field of its own activities. At the beginning of the contribution the basic information about activities of Emergency Response Center of State Office for Nuclear Safety as a workplace of Crisis Staff of State Office for Nuclear Safety , which provide technical and organizational support to Crisis Staff of State Office for Nuclear Safety , is presented. State Office for Nuclear Safety has its own elaborated and approved Crisis Plan as a general document to plan measures and procedures in case of emergency situations and which is compile according to law No. 240/2000 Coll., on Crisis management of the Czech Republic, and according to Governmental Order No. 462/2000 Coll. (authors)

  5. Safety/security interface assessments at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Byers, K.R.; Brown, P.J.; Norderhaug, L.R.

    1985-01-01

    The findings of the Haynes Task Force Committee (NUREG-0992) are used as the basis for defining safety/security assessment team activities at commercial nuclear power plants in NRC Region V. A safety/security interface assessment outline and the approach used for making the assessments are presented along with the composition of team members. As a result of observing simulated plant emergency conditions during scheduled emergency preparedness exercises, examining security and operational response procedures, and interviewing plant personnel, the team has identified instances where safety/security conflicts can occur

  6. Safety/security interface assessments at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Byers, K.R.; Brown, P.J.; Norderhaug, L.R.

    1985-07-01

    The findings of the Haynes Task Force Committee (NUREG-0992) are used as the basis for defining safety/security assessment team activities at commercial nuclear power plants in NRC Region V. A safety/security interface assessment outline and the approach used for making the assessments are presented along with the composition of team members. As a result of observing simulated plant emergency conditions during scheduled emergency preparedness exercises, examining security and operational response procedures, and interviewing plant personnel, the team has identified instances where safety/security conflicts can occur. 2 refs

  7. Relations Between Rainfall and Postfire Debris-Flow and Flood Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Boldt, Eric M.; Kean, Jason W.; Laber, Jayme; Staley, Dennis M.

    2010-01-01

    Following wildfires, emergency-response and public-safety agencies are faced often with making evacuation decisions and deploying resources both well in advance of each coming winter storm and during storms themselves. Information critical to this process is provided for recently burned areas in the San Gabriel Mountains of southern California. The National Weather Service (NWS) issues Quantitative Precipitation Forecasts (QPFs) for the San Gabriel Mountains twice a day, at approximately 4 a.m. and 4 p.m., along with unscheduled updates when conditions change. QPFs provide estimates of rainfall totals in 3-hour increments for the first 12-hour period and in 6-hour increments for the second 12-hour period. Estimates of one-hour rainfall intensities can be provided in the forecast narrative, along with probable peak intensities and timing, although with less confidence than rainfall totals. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands was used to develop a system for classifying the magnitude of the postfire hydrologic response. The four-class system is based on a combination of the reported volume of individual debris flows, the consequences of these events in an urban setting, and the spatial extent of the response to the triggering storm. Threshold rainfall conditions associated with debris flow and floods of different magnitude classes are defined by integrating local rainfall data with debris-flow and flood magnitude information. The within-storm rainfall accumulations (A) and durations (D) above which magnitude I events are expected are defined by A=0.3D0.6. The function A=0.5D0.6 defines the within-storm rainfall accumulations and durations above which a magnitude III event will occur in response to a regional-scale storm, and a magnitude II event will occur if the storm affects only a few drainage basins. The function A=1.0D0.5defines the rainfall conditions above which

  8. NKS - The Nordic region's cooperative network for addressing challenges in nuclear safety and emergency preparedness

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, K.G. [NKS/Technical University of Denmark (Denmark); Andgren, K. [NKS/Vattenfall R and D (Sweden); Leino, K. [NKS/Fortum Power and Heat Oy (Finland); Magnusson, S. [NKS/Icelandic Radiation Safety Authority (Iceland); Physant, F. [NKS/FRIT, Roskilde (Denmark)

    2014-07-01

    Based on the foundation of a common cultural and historical heritage and a long tradition of collaboration, NKS aims to facilitate a common Nordic view on nuclear and radiation safety. A common understanding of rules, practice and measures, and national differences in this context, is here an essential requirement. Problems can generally be tackled quicker, more efficiently, more consistently and at a lower cost through collaboration, bearing in mind that key competencies are not equally distributed in the different Nordic countries. For instance common Nordic challenges emerge in relation to nuclear installations, where nuclear power plants are in operation in Finland and Sweden, and research reactors have been operated in Denmark, Finland, Norway and Sweden. There is an obvious benefit in exchanging ideas and technologies in relation to plant operation, and since a number of reactors in different Nordic countries are under decommissioning, a collaborative benefit can also be realised in that context. Sweden also has a nuclear fuel production plant, and its collaboration with other Nordic nuclear installations can also be beneficial. Further, a number of large radiological installations are projected in Nordic areas (e.g., the MAX-LAB/MAX IV synchrotron radiation source and the European spallation source ESS), where Nordic organisations are collaborating in addressing, e.g., potential environmental implications. On the emergency preparedness side, the Fukushima accident in March 2011 was a reminder that large accidents at nuclear installations can lead to widespread radioactive contamination in the environment. In order to respond to nuclear or radiological emergencies, should they affect Nordic populations, it is necessary to maintain an operational emergency preparedness. By continuously improving detection, response and decision aiding tools while maintaining an informal collaborative network between relevant stakeholders in the Nordic countries (including

  9. Global approach of emergency response, reflection analysis

    International Nuclear Information System (INIS)

    Velasco Garcia, E.; Garcia Ahumada, F.; Albaladejo Vidal, S.

    1998-01-01

    The emergency response management approach must be dealt with adequately within company strategy, since a badly managed emergency situation can adversely affect a company, not only in terms of asset, but also in terms of the negative impact on its credibility, profitability and image. Thereby, it can be said that there are three main supports to manage the response in an emergency situation. a) Diagnosis b) Prognosis. c) Communications. To reach these capabilities it is necessary a co-ordination of different actions at the following levels. i. Facility Operation implies Local level. ii. Facility Property implies National level iii. Local Authority implies Local level iv. National Authority implies National level Taking into account all the last, these following functions must be covered: a) Management: incorporating communication, diagnosis and prognosis areas. b) Decision: incorporating communication and information means. c) Services: in order to facilitate the decision, as well as the execution of this decision. d) Analysis: in order to facilitate the situations that make easier to decide. e) Documentation: to seek the information for the analysts and decision makers. (Author)

  10. Method for the development of emergency response preparedness for nuclear or radiological accidents

    International Nuclear Information System (INIS)

    1997-07-01

    This report supplements IAEA emergency preparedness guidance published in the 1980s, and is consistent with the new international guidance. It provides practical advice for the development of an emergency response capability based on the potential nature and magnitude of the risk. In order to apply this method, emergency planners should have a good understanding of the basic radiological emergency response principles. Therefore, other applicable international guidance should be reviewed before using this report. This report provides a practical step-by-step method for developing integrated user, local and national emergency response capabilities. It can also be used as the basis for conducting an audit of an existing emergency response capability. 14 refs, 4 figs, 4 tabs

  11. Bibliography for nuclear criticality accident experience, alarm systems, and emergency management

    International Nuclear Information System (INIS)

    Putman, V.L.

    1995-09-01

    The characteristics, detection, and emergency management of nuclear criticality accidents outside reactors has been an important component of criticality safety for as long as the need for this specialized safety discipline has been recognized. The general interest and importance of such topics receives special emphasis because of the potentially lethal, albeit highly localized, effects of criticality accidents and because of heightened public and regulatory concerns for any undesirable event in nuclear and radiological fields. This bibliography lists references which are potentially applicable to or interesting for criticality alarm, detection, and warning systems; criticality accident emergency management; and their associated programs. The lists are annotated to assist bibliography users in identifying applicable: industry and regulatory guidance and requirements, with historical development information and comments; criticality accident characteristics, consequences, experiences, and responses; hazard-, risk-, or safety-analysis criteria; CAS design and qualification criteria; CAS calibration, maintenance, repair, and testing criteria; experiences of CAS designers and maintainers; criticality accident emergency management (planning, preparedness, response, and recovery) requirements and guidance; criticality accident emergency management experience, plans, and techniques; methods and tools for analysis; and additional bibliographies

  12. Radiation Emergency Planning in Petroleum Industry

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.; El-Naggar, M.A.; Abdel-Fattah, A.T.; Gomaa, A.M.

    2001-01-01

    Similar to all industrial activities utilizing radiation sources, or dealing with radioactive materials in its operations, petroleum industry requires the organization of a Radiation Emergency Plan. This plan should be based on a comprehensive and subtle understanding of the extensive multidisciplinary operations involved in petroleum processing and the dangers that threaten human health, environment and property; both from ordinary emergency situations common to petroleum industry activities and also from radiation emergency events. Radiation emergencies include radiological source accidents involving occurrence of high dose exposures. Radioactive contamination or spill are also major problems that may cause low dose exposures and environmental radioactive contamination. The simultaneous occurrence of other industrial emergency events such as fires or structural collapses will add to the seriousness of the emergency situation. The essential aspects of Radiation Emergency Planning include notification, assessment of situation, foresight, definition of roles and responsibilities including health safety and environmental concepts. An important contribution to the Emergency Planning is the proper intelligent medical response. Another essential parameter is the training of personnel that will undertake the responsibility of executing the emergency procedures according to the various emergency situations. The main features of the radiation Emergency Plan in Petroleum industry is presented in the text

  13. Analysis of Food Safety and Security Challenges in Emerging African Food Producing Areas through a One Health Lens: The Dairy Chains in Mali.

    Science.gov (United States)

    Cheng, Rachel; Mantovani, Alberto; Frazzoli, Chiara

    2017-01-01

    Challenges posed by changes in livestock production in emerging food producing areas and demographic development and climate change require new approaches and responsibilities in the management of food chains. The increasingly recognized role of primary food producers requires the support of the scientific community to instruct effective approaches based on scientific data, tools, and expertise. Mali is an emerging food producing area, and this review covers (i) the dairy farming scenario and its environment, (ii) the role of dairy production in food security, including the greatly different animal rearing systems in the Sahel and tropical regions, (iii) risk management pillars as modern infrastructures, effective farmer organizations, and institutional systems to guarantee animal health and safety of products, and (iv) feasible interventions based on good practices and risk assessment at the farm level (e.g., sustainable use of fertilizers, feeds, veterinary drugs, and pesticides) to protect consumers from food safety hazards. Social innovation based on the empowerment of the primary food producers emerges as crucial for sustainable and safe food production. Sustainable policies should be supported by the mobilization of stakeholders of One Health, which is a science-based approach to linking human health and nutrition with the health and management of food producing animals and environmental safety. In the context of the complex, multifaceted scenario of Mali dairy production, this article presents how a cost-effective animal health and food safety scheme could be established in the dairy production chain. Because milk is a major commodity in this country, benefits could be derived in food security, public health, the resilience of the farming system, animal husbandry, and international trade.

  14. Who regulates food? Australians' perceptions of responsibility for food safety.

    Science.gov (United States)

    Henderson, Julie; Coveney, John; Ward, Paul

    2010-01-01

    Food scares have diminished trust in public institutions to guarantee food safety. Food governance after the food scare era is concerned with institutional independence and transparency leading to a hybrid of public and private sector management and to mechanisms for consumer involvement in food governance. This paper explores Australian consumers' perceptions of who is, and should be responsible for food safety. Forty-seven participants were interviewed as part of a larger study on trust in the food system. Participants associate food governance with government, industry, and the individual. While few participants can name the national food regulator, there is a strong belief that the government is responsible for regulating the quality and safety of food. Participants are wary of the role of the food industry in food safety, believing that profit motives will undermine effective food regulation. Personal responsibility for food safety practices was also identified. While there are fewer mechanisms for consumer involvement and transparency built into the food governance system, Australian consumers display considerable trust in government to protect food safety. There is little evidence of the politicisation of food, reflecting a level of trust in the Australian food governance system that may arise from a lack of exposure to major food scares.

  15. Collaborative situational mapping during emergency response

    NARCIS (Netherlands)

    Gunawan, L.T.; Oomes, A.H.J.; Neerincx, M.; Brinkman, W.-P.; Alers, H.

    2009-01-01

    During emergency response, individuals observe only part of the picture, sharing of information is needed to get the required complete picture. The aim of our study is to get insight in the collaborative mapping process in order to derive requirements for a map-sharing tool. First, we analyzed the

  16. Some aspects of RF radiation safety guidelines on urgent protective measures in case of radiation emergency at NPP

    International Nuclear Information System (INIS)

    Bulgakov, V.G.; Klepikova, N.V.; Shershakov, V.M.; Ivanov, E.A.

    2003-01-01

    Full text: The work is aimed at developing a decision making strategy and tools for putting into practice the principles of reasonableness and optimization when applying countermeasures in case of a radiation related accident at a nuclear power plant in RF. The presentation discusses results of the study of the legal framework in the RF for decision making to protect the personnel and public in case of a radiation-related accident Consideration is given to issues of methodological support for emergency response systems at NPPs, as required by the RF radiation safety norms to protect personnel and the public. This work was performed as part of methodological support to the national emergency center of Rosenergoatom comprising several technical support centers on the base of leading institutes with large scientific potential in the fields of nuclear power use, environmental and public protection, radioecology etc. Such centers were set up for scientific and technical support to decision making in case of emergency at NPPs. Specialists of die centers are able to quickly assess the emerging situation and propose a set of measures to minimize damage, drawing on expert judgements. The radiation safety guidelines (NRB-99) lays down requirements and criteria for decision making to protect the public in different phases of a radiation accident which should be used when implementing countermeasures and developing emergency response plans with allowance for specific situation and local conditions. These criteria provide a basis for designating areas of emergency response that would be optimum for specific population points, intervention measures etc. Dealing with these tasks requires development of normative and methodological documentation taking into account both the NRB-99 requirements and international recommendations. In accordance with NRB-99: expected and averted radiation doses are the key criteria to be used in application of any protection measures in radiation

  17. Emergency Preparedness and Response at Nuclear Power Plants in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Khan, L. A.; Qamar, M. A.; Liaquat, M.R., E-mail: samasl@yahoo.com [Pakistan Atomic Energy Commission, Islamabad (Pakistan)

    2014-10-15

    Emergency preparedness and response arrangements at Nuclear Power Plants (NPPs) in Pakistan have been reevaluated in the light of Fukushima Daiichi accident. Appropriate measures have been taken to strengthen and effectively implement the on-site and off-site emergency plans. Verification of these plans is conducted through regulatory review and by witnessing periodic emergency drills and exercises conducted by the NPPs in the fulfilment of the regulatory requirements. Emergency Planning Zones (EPZs) have been revised at NPPs. A multi discipline reserve force has been formed for assistance during severe accidents. Nuclear Emergency Management System (NEMS) has been established at the national level in order to make necessary arrangements for responding to nuclear and radiological emergencies. Training programs for first responders and medical professionals have been launched. Emergencies coordination centres have been established at national and corporate levels. Public awareness program has been initiated to ensure that the surrounding population is provided with appropriate information on emergency planning and response. To share national and international operational experience, Pakistan has arranged various workshops and developed a strong link with International Atomic Energy Agency (IAEA). (author)

  18. Emergency Response Data System (ERDS) implementation

    International Nuclear Information System (INIS)

    Jolicoeur, J.

    1991-06-01

    The US Nuclear Regulatory Commission has begun implementation of the Emergency Response Data System (ERDS) to upgrade its ability to acquire data from nuclear power plants in the event of an emergency at the plant. ERDS provides a direct real-time transfer of data from licensee plant computers to the NRC Operations Center. The system has been designed to be activated by the licensee during an emergency which has been classified at an ALERT or higher level. The NRC portion of ERDS will receive the data stream, sort and file the data. The users will include the NRC Operations Center, the NRC Regional Office of the affected plant, and if requested the States which are within the ten mile EPZ of the site. The currently installed Emergency Notification System will be used to supplement ERDS data. This report provides the minimum guidance for implementation of ERDS at licensee sites. It is intended to be used for planning implementation under the current voluntary program as well as for providing the minimum standards for implementing the proposed ERDS rule. 4 refs., 3 figs

  19. Emergency Response Data System (ERDS) implementation

    International Nuclear Information System (INIS)

    Jolicoeur, J.

    1990-04-01

    The US Nuclear Regulatory Commission has begun implementation of the Emergency Response Data System (ERDS) to upgrade its ability to acquire data from nuclear power plants in the event of an emergency at the plant. ERDS provides a direct real-time transfer of data from licensee plant computers to the NRC Operations Center. The system has been designed to be activated by the licensee during an emergency which has been classified at an ALERT or higher level. The NRC portion of ERDS will receive the data stream, sort and file the data. The users will include the NRC Operations Center, the NRC Regional Office of the affected plant, and if requested the States which are within the ten mile EPZ of the site. The currently installed Emergency Notification System will be used to supplement ERDS data. This report provides the minimum guidance for implementation of ERDS at licensee sites. It is intended to be used for planning implementation under the current voluntary program as well as for providing the minimum standards for implementing the proposed ERDS rule

  20. Expert system technology to support emergency response: its prospects and limitations

    International Nuclear Information System (INIS)

    Belardo, S.; Wallace, W.A.

    1988-01-01

    The capabilities for computer technologies to provide decision support in emergency response are now well recognized. The information flow prior to, during, and after potentially catastrophic events must be managed in order to have effective response. We feel strongly that computer technology can be a crucial component in this management process. We will first review a relatively new facet of computer technology - expert systems. We will then provide a conceptual framework for decision making under crisis, a situation typified by emergency response. We follow with a discussion of a prototype expert system for response to an accident at a nuclear power generation facility. Our final section discusses the potential advantages and limitations of expert system technology in emergency response. (author)

  1. Radiological and nuclear emergency preparedness and response. How well are we prepared?

    International Nuclear Information System (INIS)

    Geick, Gunther H.G.; Herrmann, Andre R.; Koch, Doris; Meisenberg, Oliver; Rauber, Dominique; Stuerm, Rolf P.; Weiss, Wolfgang; Miska, Horst; Schoenhacker, Stefan

    2011-01-01

    The contributions to this topic are dealing, in a broad overview, with important aspects of Nuclear Emergency Preparedness and Response, like the influence of the new ICRP recommendations number 103 and number 109 on emergency preparedness and on planning for response, possible problems in installing and operating emergency care centres, experience from exercises as well as the training of response personnel in Austria and Germany. Finally, measures in emergency preparedness with regard to a dirty bomb attack are reported by means of an INEX-4-exercise in Switzerland. (orig.)

  2. Food safety - the roles and responsibilities of different sectors

    Science.gov (United States)

    Karabasil, N.; Bošković, T.; Dimitrijević, M.; Vasilev, D.; Đorđević, V.; Lakićević, B.; Teodorović, V.

    2017-09-01

    Serbia is a relatively small country but with a long tradition in food production, especially meat and meat products. Serbia, as part of its open negotiation process as a candidate country with the European Union (EU), started to harmonise its legislation with the EU, and has published a set of laws and regulations relating to the hygiene of food production and food safety, the official control of production and the welfare of animals. Therefore, the food safety system in Serbia is based on principles established in the EU. There is a need for cooperation of different sectors (government, food business operators and consumers) in the management of food safety, and every sector has its role and responsibility. This paper aims to provide analytical support for the process of upgrading safety and quality in Serbia’s food sector and explains the roles and responsibilities of different sectors in the food chain.

  3. Employer Requirements to Work during Emergency Responses: Key Ethics Considerations.

    Science.gov (United States)

    Rutkow, Lainie; Taylor, Holly A; Powell, Tia

    2017-03-01

    Local health departments and their employees are at the forefront of emergency preparedness and response. Yet, recent studies have found that some local public health workers are unwilling to report to work in a variety of disaster scenarios. This can greatly compromise a response, as many local health departments need "all hands on deck" to effectively meet increased demands. To address these concerns, local health departments have employed varied policy strategies to ensure that employees do report to work. After describing different approaches taken by local health departments throughout the United States, we briefly identify and explore key ethics considerations that arise for local health departments when employees are required to report to work for emergency responses. We then discuss how these ethics considerations may inform local health department practices intended to promote a robust emergency response.

  4. Tools for 'safety netting' in common paediatric illnesses: A systematic review in emergency care

    NARCIS (Netherlands)

    E. De Vos-Kerkhof (Evelien); D.H.F. Geurts (Dorien); M. Wiggers (Mariska); H.A. Moll (Henriëtte); R. Oostenbrink (Rianne)

    2016-01-01

    textabstractContext Follow-up strategies after emergency department (ED) discharge, alias safety netting, is often based on the gut feeling of the attending physician. Objective To systematically identify evaluated safetynetting strategies after ED discharge and to describe determinants of

  5. A program approach for site safety at oil spills

    International Nuclear Information System (INIS)

    Whipple, F.L.; Glenn, S.P.; Ocken, J.J.; Ott, G.L.

    1993-01-01

    When OSHA developed the hazardous waste operations (Hazwoper) regulations (29 CFR 1910.120) members of the response community envisioned a separation of oil and open-quotes hazmatclose quotes response operations. Organizations that deal with oil spills have had difficulty applying Hazwoper regulations to oil spill operations. This hinders meaningful implementation of the standard for their personnel. We should approach oil spills with the same degree of caution that is applied to hazmat response. Training frequently does not address the safety of oil spill response operations. Site-specific safety and health plans often are neglected or omitted. Certain oils expose workers to carcinogens, as well as chronic and acute hazards. Significant physical hazards are most important. In responding to oil spills, the hazards must be addressed. It is the authors' contention that a need exists for safety program at oil spill sites. Gone are the days of labor pool hires cleaning up spills in jeans and sneakers. The key to meaningful programs for oil spills requires application of controls focused on relevant safety risks rather than minimal chemical exposure hazards. Working with concerned reviewers from other agencies and organizations, the authors have developed a general safety and health program for oil spill response. It is intended to serve as the basis for organizations to customize their own written safety and health program (required by OSHA). It also provides a separate generic site safety plan for emergency phase oil spill operations (check-list) and long term post-emergency phase operations

  6. Elements of a national emergency response system for nuclear accidents

    International Nuclear Information System (INIS)

    Dickerson, M.H.

    1987-01-01

    The purpose of this paper is to suggest elements for a general emergency response system, employed at a national level, to detect, evaluate and assess the consequences of a radiological atmospheric release occurring within or outside of national boundaries. These elements are focused on the total aspect of emergency response ranging from providing an initial alarm to a total assessment of the environmental and health effects. Elements of the emergency response system are described in such a way that existing resources can be directly applied if appropriate; if not, newly developed or an expansion of existing resources can be employed. The major thrust of this paper is toward a philosophical discussion and general description of resources that would be required to implementation. If the major features of this proposal system are judged desirable for implementation, then the next level of detail can be added. The philosophy underlying this paper is preparedness - preparedness through planning, awareness and the application of technology. More specifically, it is establishment of reasonable guidelines including the definition of reference and protective action levels for public exposure to accidents involving nuclear material; education of the public, government officials and the news media; and the application of models and measurements coupled to computer systems to address a series of questions related to emergency planning, response and assessment. It is the role of a proven national emergency response system to provide reliable, quality-controlled information to decision makers for the management of environmental crises

  7. State-level emergency preparedness and response capabilities.

    Science.gov (United States)

    Watkins, Sharon M; Perrotta, Dennis M; Stanbury, Martha; Heumann, Michael; Anderson, Henry; Simms, Erin; Huang, Monica

    2011-03-01

    Prior assessments of public health readiness had identified gaps in radiation preparedness. In recent years, preparedness planning has involved an "all-hazards" approach. Current assessment of the national status related to radiation public health emergency preparedness capabilities at the state and local health department levels was needed. A survey of state health departments related to radiation readiness was undertaken in 2010 by the Council of State and Territorial Epidemiologists (CSTE). States with nuclear power plants were instructed to consider their responses exclusive of capabilities and resources related to the plants given that the emergency response plans for nuclear power plants are specific and unique. Thirty-eight (76%) state health departments responded to the survey, including 26 of the 31 states with nuclear power plants. Specific strengths noted at the state level included that the majority of states had a written radiation response plan and most plans include a detailed section for communications issues during a radiation emergency. In addition, more than half of the states indicated that their relationship with federal partners is sufficient to provide resources for radiation emergencies, indicating the importance states placed on federal resources and expertise. Specific weaknesses are discussed and include that most states had completed little to no planning for public health surveillance to assess potential human health impacts of a radiation event; less than half had written plans to address exposure assessment, environmental sampling, human specimen collection and analysis, and human health assessment. Few reported having sufficient resources to do public health surveillance, radiation exposure assessment, laboratory functions and other capabilities. Levels of planning, resources and partnerships varied among states, those with nuclear power plants were better prepared. Gaps were evident in all states; however and additional training and

  8. Actions to Protect the Public in an Emergency due to Severe Conditions at a Light Water Reactor. Date Effective: May 2013 (Spanish Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    Under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the 'Assistance Convention'), one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to a nuclear or radiological emergency. This publication is intended to help fulfil in part these functions assigned to the IAEA in the Assistance Convention. The aim of this publication is to provide those persons who are responsible for making and for acting on decisions in the event of an emergency at a light water reactor with an understanding of the actions that are necessary to protect the public. The publication provides a basis for developing the tools and criteria at the preparedness stage that would be needed in taking protective actions and other actions in response to such an emergency. The publication applies the safety principles stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and it will be of assistance to Member States in meeting the requirements established in IAEA Safety Standards Series No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. The application of these requirements is intended to minimize the consequences for people and the environment in any nuclear or radiological emergency. This guidance should be adapted to fit the State's organizational arrangements, language, terminology, concept of operation and capabilities. The IAEA General Conference, in resolution GC(55)/RES/9: 'Emphasizes the importance for all Member States to implement emergency preparedness and response mechanisms and develop mitigation measures at a national level, consistent with the Agency's Safety Standards, for improving emergency preparedness and response, facilitating communication in an emergency and contributing to harmonization of national criteria for protective and other

  9. Actions to Protect the Public in an Emergency due to Severe Conditions at a Light Water Reactor. Date Effective: May 2013 (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    Under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the 'Assistance Convention'), one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to a nuclear or radiological emergency. This publication is intended to help fulfil in part these functions assigned to the IAEA in the Assistance Convention. The aim of this publication is to provide those persons who are responsible for making and for acting on decisions in the event of an emergency at a light water reactor with an understanding of the actions that are necessary to protect the public. The publication provides a basis for developing the tools and criteria at the preparedness stage that would be needed in taking protective actions and other actions in response to such an emergency. The publication applies the safety principles stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and it will be of assistance to Member States in meeting the requirements established in IAEA Safety Standards Series No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. The application of these requirements is intended to minimize the consequences for people and the environment in any nuclear or radiological emergency. This guidance should be adapted to fit the State's organizational arrangements, language, terminology, concept of operation and capabilities. The IAEA General Conference, in resolution GC(55)/RES/9: 'Emphasizes the importance for all Member States to implement emergency preparedness and response mechanisms and develop mitigation measures at a national level, consistent with the Agency's Safety Standards, for improving emergency preparedness and response, facilitating communication in an emergency and contributing to harmonization of national criteria for

  10. Developing Off-site Emergency Preparedness and Response Model (OEPRM) for Severe Accident of NPP in a Densely Populated Country Using System Dynamics Approach

    Energy Technology Data Exchange (ETDEWEB)

    Hossena, Muhammed Mufazzal; Kang, Kyoung Ho; Song, Jin Ho [KAERI, Deajeon (Korea, Republic of)

    2016-05-15

    The main objectives of this study are to find the influencing factors of systems and sub-systems of OEPRM, to find the interdependency among the influencing factors, and to develop a conceptual qualitative OEPRM for densely populated NPP country in case of SA using system dynamics (SD). NPP accidents are classified as nuclear accidents and incidents depending on the severity. Severe accident (SA) is certain low probability accident that are beyond design basis accident which may arise due to multiple failures of safety systems leading to significant core degradation and jeopardize the integrity of many or all of the barriers to the release of radioactive material. The weakness to the off-site emergency response in the time of Fukushima accident was observed. So, it is crucial to develop an off-site emergency preparedness and responses model (OEPRM) for radiological emergency in densely populated country from the Fukushima emergency response lesson. In this study, an OEPRM is developed for densely populated NPP country to mitigate radiological effects in case of SA using SD approach. Besides, this study focuses the weakness of emergency response in Fukushima accident and proposed solution approach. The development of OEPRM in case of SA of NPP is very complex because of the involvement of various organization and it requires highly specialized agencies and technical experts. Moreover, if the country is agriculture based, it will make completely sophisticated.

  11. Developing Off-site Emergency Preparedness and Response Model (OEPRM) for Severe Accident of NPP in a Densely Populated Country Using System Dynamics Approach

    International Nuclear Information System (INIS)

    Hossena, Muhammed Mufazzal; Kang, Kyoung Ho; Song, Jin Ho

    2016-01-01

    The main objectives of this study are to find the influencing factors of systems and sub-systems of OEPRM, to find the interdependency among the influencing factors, and to develop a conceptual qualitative OEPRM for densely populated NPP country in case of SA using system dynamics (SD). NPP accidents are classified as nuclear accidents and incidents depending on the severity. Severe accident (SA) is certain low probability accident that are beyond design basis accident which may arise due to multiple failures of safety systems leading to significant core degradation and jeopardize the integrity of many or all of the barriers to the release of radioactive material. The weakness to the off-site emergency response in the time of Fukushima accident was observed. So, it is crucial to develop an off-site emergency preparedness and responses model (OEPRM) for radiological emergency in densely populated country from the Fukushima emergency response lesson. In this study, an OEPRM is developed for densely populated NPP country to mitigate radiological effects in case of SA using SD approach. Besides, this study focuses the weakness of emergency response in Fukushima accident and proposed solution approach. The development of OEPRM in case of SA of NPP is very complex because of the involvement of various organization and it requires highly specialized agencies and technical experts. Moreover, if the country is agriculture based, it will make completely sophisticated

  12. Medical Preparedness and Response for a Nuclear or Radiological Emergency. Training Materials

    International Nuclear Information System (INIS)

    2014-01-01

    In almost all nuclear and radiological emergencies, local emergency services (e.g. local medical, law enforcement, and fire brigades) will have the most important role in the early response. Within hours, hospitals may also have an important role to play in the response at the local level. Since nuclear and radiological emergencies are rare, medical responders often have little or no experience in dealing with this type of emergency and inexperience may lead to an inadequate response. For this reason, training in medical preparedness and response for a nuclear or radiological emergency is an important aspect of preparedness and response activities. These materials are designed for use at a training course on medical preparedness and response for a nuclear or radiological emergency. They contain a wide range of lectures and supporting materials, which cover the basic topics and more specific areas of medical preparedness and response. Therefore, in planning their specific courses, organizers are encouraged to choose those lectures and supportive materials from the CD-ROM that best match their training priorities. Materials on the CD-ROM address the following areas: • Terrorism in Perspective; • Malicious Act Scenarios; • Providing Information to the Medical Community and the Public; • Medical Response to a Radiation Mass Casualty Event; • Handling of Contaminated Persons in Malicious Events; • Planning and Preparedness for Medical Response to Malicious Events with Radioactive Material; • Handling the Bodies of Decedents Contaminated with Radioactive Material; • Radiation Emergencies: Scope of the Problem; • Common Sources of Radiation; • Basic Concepts of Ionizing Radiation; • Basic Concepts of Radiation Protection; • Biological Effects of Ionizing Radiation – Basic Notions; • Basics of Radiopathology; • External Radioactive Contamination; • Internal Radioactive Contamination; • Acute Radiation Syndrome; • Cutaneous Radiation

  13. The State Surveillance over Nuclear Safety of Nuclear Facilities Act No. 28/1984

    International Nuclear Information System (INIS)

    1995-01-01

    The Act lays down responsibilities of the Czechoslovak Atomic Energy Commission in the field of state surveillance over nuclear safety of nuclear facilities; determines the responsibilities of nuclear safety inspectors in their inspection activities; specifies duties of bodies and corporations responsible for nuclear safety of nuclear facilities; stipulates the obligation to set up emergency plans; and specifies penalties imposed on corporations and individuals for noncompliance with nuclear safety provisions. The Act entered into force on 4 April 1984. (J.B.)

  14. Ready to Respond: Case Studies in Campus Safety and Security

    Science.gov (United States)

    Hyatt, James A.

    2010-01-01

    Is your campus primed for the next big emergency? The National Campus Safety and Security Project (NCSSP), led by NACUBO, sought to help colleges and universities develop comprehensive emergency management plans that address the four phases of emergency management: prevention/mitigation, preparedness, response, and recovery. A major component of…

  15. Dose assessment and approach to the safety for the public in the emergency. Proceedings

    International Nuclear Information System (INIS)

    Nakajima, Toshiyuki

    1994-03-01

    This issue is the collection of the papers presented at the 21st NIRS seminar on Dose Assessment and Approach to the Safety for the Public in the Emergency. The 16 of the presented papers are indexed individually. (J.P.N.)

  16. Radiological Safety Officer (RSO): role and responsibilities

    International Nuclear Information System (INIS)

    Joshi, M.L.; Yadav, J.S.; Gopalakrishnan, R.K.; Ansari, I.A.

    2017-01-01

    The fundamental safety objective in a radiological facility (RF) is to protect people and the environment from harmful effects of ionising radiation. The radiation risks to people and the environment that may arise from the use of radiation and radioactive material must be assessed and must be controlled by means of the application of the relevant standards of safety. Thus, all facilities handling radioactive material must have experts, who are responsible for assisting the plant management in radiation protection programme

  17. Argentine criteria on nuclear safety and emergencies: their impact on the Argos PHWR 380 design

    International Nuclear Information System (INIS)

    Gonzalez, A. J.

    1988-01-01

    This paper describes first the safety criteria of the Argentine regulatory authority with emphasis on the probabilistic safety criteria based on a limitation of individual risks. Then, it is presented a discussion on emergency criteria in relation to evacuation and relocation measures. Finally, the paper briefly describes the design of an Argentine offer for a safer heavy water reactor where these criteria are applied. 9 figs., 1 tab., 46 refs. (author)

  18. Emergency Diesel: Safety-related instrumentation and control with programmable logic controllers

    International Nuclear Information System (INIS)

    Breidenich, G.; Luedtke, M.

    2004-01-01

    This report presents a new concept for the design of emergency diesel equipment protection circuits as a part of the safety related instrumentation in the nuclear power plant Biblis, units A and B. The concept was implemented with state of the art SIMATIC S7/316 programmable logic controllers (PLCs) and can be adapted to any system with high availability requirements (e.g. power plant turbines, aircraft engines, mining pumps etc). (orig.)

  19. Emergency response information within the National LLW Information Management System

    International Nuclear Information System (INIS)

    Paukert, J.G.; Fuchs, R.L.

    1986-01-01

    The U.S. Department of Energy, with operational assistance from EG and G Idaho, Inc., maintains the National Low-Level Waste Information Management System, a relational data base management system with extensive information collection and reporting capabilities. The system operates on an IBM 4341 main-frame computer in Idaho Falls, Idaho and is accessible through terminals in 46 states. One of the many programs available on the system is an emergency response data network, which was developed jointly by EG and G Idaho, Inc. and the Federal Emergency Management Agency. As a prototype, the program comprises emergency response team contacts, policies, activities and decisions; federal, state and local government contacts; facility and support center locations; and news releases for nine reactor sites in the southeast. The emergency response program provides a method for consolidating currently fragmented information into a central and user-friendly system. When the program is implemented, immediate answers to response questions will be available through a remote terminal or telephone on a 24-hour basis. In view of current hazardous and low-level waste shipment rates and future movements of high-level waste, the program can offer needed and timely information for transportation as well as site incident response

  20. Preparation, Conduct and Evaluation of Exercises to Test Preparedness for a Nuclear or Radiological Emergency

    International Nuclear Information System (INIS)

    2010-01-01

    The aim of this publication is to serve as a practical tool for the preparation, conduct and evaluation of exercises to test preparedness for response to a nuclear or radiological emergency. It fulfils in part the functions assigned to the IAEA under Article 5.a(ii) of the Convention on Assistance in Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), namely, to collect and disseminate to States Parties and Member States information concerning the methodologies, techniques and available results of research on such emergencies. To ensure effective response to radiation emergencies when needed, provisions should be made for regular training of emergency response personnel. As stated in Preparedness and Response for a Nuclear or Radiological Emergency (Safety Requirements, Safety Standard Series No. GS-R-2), 'The operator and the response organizations shall make arrangements for the selection of personnel and training to ensure that the personnel have the requisite knowledge, skills, abilities, equipment, procedures and other arrangements to perform their assigned response functions'. A further requirement is that 'Exercise programmes shall be conducted to ensure that all specified functions required to be performed for emergency response and all organizational interfaces for facilities in threat category I, II or III and the national level programmes for threat category IV or V are tested at suitable intervals'. In 2004 the IAEA General Conference, in resolution GC(48)/RES/10 encouraged Member States to 'implement the Safety Requirements for Preparedness and Response to a Nuclear or Radiological Emergency'. This document is published as part of the IAEA Emergency Preparedness and Response Series to assist in meeting these requirements and to fulfil Article 5 of the Assistance Convention. It was developed based on a number of assumptions about national and local capabilities. Therefore, the exercise structure, terms and scenarios must be

  1. Emergency Response Capability Baseline Needs Assessment - Requirements Document

    Energy Technology Data Exchange (ETDEWEB)

    Sharry, J A

    2016-10-04

    This document was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by LLNL Emergency Management Department Head James Colson. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only addresses emergency response.

  2. Dangerous goods emergency response

    International Nuclear Information System (INIS)

    Price, K.

    1991-01-01

    This paper reports on a general overview of the State of Western Australia including: the legal framework of the Dangerous Goods and Emergency response management scenarios (which consist mainly of fuel products such as LP gas); particular problems unique to the Western Australian environment; what has been done to overcome those problems. Western Australia has an area of about two and a half million square kilometers. The demography of the State is such that the population is concentrated in the south-west corner of the State with isolated pockets, mainly associated with mineral development but also associated with agriculture, scattered throughout the State

  3. The development and revision of the Federal Radiological Emergency Response Plan

    International Nuclear Information System (INIS)

    Gant, K.S.; Adler, M.V.; Wolff, W.F.

    1989-01-01

    Since 1985, federal agencies have been using the Federal Radiological Emergency Response Plan (FRERP) in exercises and real events. This experience and the development of other emergency response guidance (e.g., National System for Emergency Coordination) are fueling current efforts to review and revise the FRERP to reflect what the agencies have learned since the FRERP was published. Revision efforts are concentrating on clarifying the plan and addressing deficiencies. No major changes are expected in the general structure of the federal response nor should states need to revise their plans because of these modifications. 5 refs

  4. Human Response to Emergency Warning

    Science.gov (United States)

    Sorensen, J.

    2009-12-01

    Almost every day people evacuate from their homes, businesses or other sites, even ships, in response to actual or predicted threats or hazards. Evacuation is the primary protective action utilized in large-scale emergencies such as hurricanes, floods, tornados, tsunamis, volcanic eruptions, or wildfires. Although often precautionary, protecting human lives by temporally relocating populations before or during times of threat remains a major emergency management strategy. One of the most formidable challenges facing emergency officials is evacuating residents for a fast-moving and largely unpredictable event such as a wildfire or a local tsunami. How to issue effective warnings to those at risk in time for residents to take appropriate action is an on-going problem. To do so, some communities have instituted advanced communications systems that include reverse telephone call-down systems or other alerting systems to notify at-risk residents of imminent threats. This presentation examines the effectiveness of using reverse telephone call-down systems for warning San Diego residents of wildfires in the October of 2007. This is the first systematic study conducted on this topic and is based on interviews with 1200 households in the evacuation areas.

  5. Community response grids: using information technology to help communities respond to bioterror emergencies.

    Science.gov (United States)

    Jaeger, Paul T; Fleischmann, Kenneth R; Preece, Jennifer; Shneiderman, Ben; Wu, Philip Fei; Qu, Yan

    2007-12-01

    Access to accurate and trusted information is vital in preparing for, responding to, and recovering from an emergency. To facilitate response in large-scale emergency situations, Community Response Grids (CRGs) integrate Internet and mobile technologies to enable residents to report information, professional emergency responders to disseminate instructions, and residents to assist one another. CRGs use technology to help residents and professional emergency responders to work together in community response to emergencies, including bioterrorism events. In a time of increased danger from bioterrorist threats, the application of advanced information and communication technologies to community response is vital in confronting such threats. This article describes CRGs, their underlying concepts, development efforts, their relevance to biosecurity and bioterrorism, and future research issues in the use of technology to facilitate community response.

  6. Moments of disaster response in the emergency department (ED).

    Science.gov (United States)

    Hammad, Karen S; Arbon, Paul; Gebbie, Kristine; Hutton, Alison

    2017-11-01

    We experience our lives as a series of memorable moments, some good and some bad. Undoubtedly, the experience of participating in disaster response, is likely to stand out as a memorable moment in a nurses' career. This presentation will describe five distinct moments of nursing in the emergency department (ED) during a disaster response. A Hermeneutic Phenomenological approach informed by van Manen underpins the research process. Thirteen nurses from different countries around the world participated in interviews about their experience of working in the ED during a disaster. Thematic analysis resulted in five moments of disaster response which are common to the collective participant experience. The 5 themes emerge as Notification (as a nurse finds out that the ED will be receiving casualties), Waiting (waiting for the patients to arrive to the ED), Patient Arrival (the arrival of the first patients to the ED), Caring for patients (caring for people affected by the disaster) and Reflection (the moment the disaster response comes to an end). This paper provides an in-depth insight into the experience of nursing in the ED during a disaster response which can help generate awareness and inform future disaster preparedness of emergency nurses. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. Editorial: emerging issues in sociotechnical systems thinking and workplace safety.

    Science.gov (United States)

    Noy, Y Ian; Hettinger, Lawrence J; Dainoff, Marvin J; Carayon, Pascale; Leveson, Nancy G; Robertson, Michelle M; Courtney, Theodore K

    2015-01-01

    The burden of on-the-job accidents and fatalities and the harm of associated human suffering continue to present an important challenge for safety researchers and practitioners. While significant improvements have been achieved in recent decades, the workplace accident rate remains unacceptably high. This has spurred interest in the development of novel research approaches, with particular interest in the systemic influences of social/organisational and technological factors. In response, the Hopkinton Conference on Sociotechnical Systems and Safety was organised to assess the current state of knowledge in the area and to identify research priorities. Over the course of several months prior to the conference, leading international experts drafted collaborative, state-of-the-art reviews covering various aspects of sociotechnical systems and safety. These papers, presented in this special issue, cover topics ranging from the identification of key concepts and definitions to sociotechnical characteristics of safe and unsafe organisations. This paper provides an overview of the conference and introduces key themes and topics. Sociotechnical approaches to workplace safety are intended to draw practitioners' attention to the critical influence that systemic social/organisational and technological factors exert on safety-relevant outcomes. This paper introduces major themes addressed in the Hopkinton Conference within the context of current workplace safety research and practice challenges.

  8. On-site emergency planning

    International Nuclear Information System (INIS)

    Kueffer, K.

    1981-01-01

    This lecture covers the Emergency Planning of the Operating Organization and does not describe the functions and responsibilities of the Regulatory Body and public authorities. The lecture is based on the Codes of Practice and Safety Guides of the International Atomic Energy Agency (IAEA) and arrangements as in use in the Swiss Nuclear Power Station Beznau. (orig.)

  9. Game theoretic analysis of congestion, safety and security networks, air traffic and emergency departments

    CERN Document Server

    Zhuang, Jun

    2015-01-01

    Maximizing reader insights into the roles of intelligent agents in networks, air traffic and emergency departments, this volume focuses on congestion in systems where safety and security are at stake, devoting special attention to applying game theoretic analysis of congestion to: protocols in wired and wireless networks; power generation, air transportation and emergency department overcrowding. Reviewing exhaustively the key recent research into the interactions between game theory, excessive crowding, and safety and security elements, this book establishes a new research angle by illustrating linkages between the different research approaches and serves to lay the foundations for subsequent analysis. Congestion (excessive crowding) is defined in this work as all kinds of flows; e.g., road/sea/air traffic, people, data, information, water, electricity, and organisms. Analyzing systems where congestion occurs – which may be in parallel, series, interlinked, or interdependent, with flows one way or both way...

  10. Preparing a laboratory for radioanalytical emergency response

    International Nuclear Information System (INIS)

    Bennett, J.; Webb, C.J.; Isch, S.

    2011-01-01

    As the state of the nation's ability to respond to a radiological event is examined, it has become apparent that both capacity and capability are lacking. Department of Homeland Security National Planning Scenario 11 is designed to address the planning activities for the response to an attack using radiological dispersal devices. The scenario details show that the cleanup activity will take several years, and that there will be between 360 000 and 1 000 000 environmental samples in the first year. Based on existing capacity and capabilities it would take four to six years to analyze the samples generated at the lower end of the sample range. The Environmental Protection Agency (EPA) has been given responsibility for the remediation activities following a radiological event, and has awarded cooperative agreements to several laboratories to start the process of developing capacity and capabilities. The Connecticut Department of Public Health Laboratory (DPHL) was awarded one of the cooperative agreements. The DPHL has started activities to further those goals by investigating and implementing procedures to ensure that samples with activity higher than normal background can be processed safely, as well as implementing more rapid methods for radiochemical analysis. The DPHL already served as the primacy radiochemistry laboratory for several New England states and thus had a solid foundation to build upon. The DPHL has taken a process flow approach in preparing for radiological emergency response and recommends that radioanalytical laboratories that are reviewing their roles in such a response: - Ensure that their Nuclear Regulatory Commission licenses allow for appropriate radioisotope types and activities; - Develop procedures and processes to ensure that samples with higher activities can be processed safely, with due regard for sample screening and aliquanting samples; - Provide for enhanced radioanalytical contamination control, with careful consideration of sample

  11. Hazardous materials transportation and emergency response programs

    International Nuclear Information System (INIS)

    Joy, D.S.; Fore, C.S.

    1983-01-01

    This presentation consists of the following visual aids; (1) detailed routing capabilities of truck, rail, barge; (2) legislative data base for hazardous materials; and (3) emergency response of accident site Eddyville, Kentucky (airports in vicinity of Eddyville, KY)

  12. Insight into "Calculated Risk": An Application to the Prioritization of Emerging Infectious Diseases for Blood Transfusion Safety.

    Science.gov (United States)

    Neslo, R E J; Oei, W; Janssen, M P

    2017-09-01

    Increasing identification of transmissions of emerging infectious diseases (EIDs) by blood transfusion raised the question which of these EIDs poses the highest risk to blood safety. For a number of the EIDs that are perceived to be a threat to blood safety, evidence on actual disease or transmission characteristics is lacking, which might render measures against such EIDs disputable. On the other hand, the fact that we call them "emerging" implies almost by definition that we are uncertain about at least some of their characteristics. So what is the relative importance of various disease and transmission characteristics, and how are these influenced by the degree of uncertainty associated with their actual values? We identified the likelihood of transmission by blood transfusion, the presence of an asymptomatic phase of infection, prevalence of infection, and the disease impact as the main characteristics of the perceived risk of disease transmission by blood transfusion. A group of experts in the field of infectious diseases and blood transfusion ranked sets of (hypothetical) diseases with varying degrees of uncertainty associated with their disease characteristics, and used probabilistic inversion to obtain probability distributions for the weight of each of these risk characteristics. These distribution weights can be used to rank both existing and newly emerging infectious diseases with (partially) known characteristics. Analyses show that in case there is a lack of data concerning disease characteristics, it is the uncertainty concerning the asymptomatic phase and the disease impact that are the most important drivers of the perceived risk. On the other hand, if disease characteristics are well established, it is the prevalence of infection and the transmissibility of the disease by blood transfusion that will drive the perceived risk. The risk prioritization model derived provides an easy to obtain and rational expert assessment of the relative importance of

  13. Integrated simulation of emergency response in disasters

    International Nuclear Information System (INIS)

    Kanno, Taro; Furuta, Kazuo

    2005-01-01

    An integrated simulation system of emergency response in disasters is under development that can consider various factors of disasters, such as disaster phenomena, activities of response organizations, resident behavior, and their environment. The aim of this system is to provide support for design and assessment of disaster management systems. This paper introduces the conceptual design of the entire system and presents simulators of organizational behavior in nuclear and earthquake disasters. (author)

  14. Radioactive source recovery program responses to neutron source emergencies

    International Nuclear Information System (INIS)

    Dinehart, S.M.; Hatler, V.A.; Gray, D.W.; Guillen, A.D.

    1997-01-01

    Recovery of neutron sources containing Pu 239 and Be is currently taking place at Los Alamos National Laboratory. The program was initiated in 1979 by the Department of Energy (DOE) to dismantle and recover sources owned primarily by universities and the Department of Defense. Since the inception of this program, Los Alamos has dismantled and recovered more than 1000 sources. The dismantlement and recovery process involves the removal of source cladding and the chemical separation of the source materials to eliminate neutron emissions. While this program continues for the disposal of 239 Pu/Be sources, there is currently no avenue for the disposition of any sources other than those containing Pu 239 . Increasingly, there have been demands from agencies both inside and outside the Federal Government and from the public to dispose of unwanted sources containing 238 Pu/Be and 241 Am/Be. DOE is attempting to establish a formal program to recover these sources and is working closely with the Nuclear Regulatory Commission (NRC) on a proposed Memorandum of Understanding to formalize an Acceptance Program. In the absence of a formal program to handle 238 Pu/Be and 241 Am/Be neutron sources, Los Alamos has responded to several emergency requests to receive and recover sources that have been determined to be a threat to public health and safety. This presentation will: (1) review the established 239 Pu neutron source recovery program at Los Alamos, (2) detail plans for a more extensive neutron source disposal program, and (3) focus on recent emergency responses

  15. NNSA/NV Consequence Management Capabilities for Radiological Emergency Response

    International Nuclear Information System (INIS)

    Bowman, D. R.

    2002-01-01

    The U.S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) provides an integrated Consequence Management (CM) response capability for the (NNSA) in the event of a radiological emergency. This encompasses planning, technical operations, and home team support. As the lead organization for CM planning and operations, NNSA/NV coordinates the response of the following assets during the planning and operational phases of a radiological accident or incident: (1) Predictive dispersion modeling through the Atmospheric Release Advisory Capability (ARAC) at Lawrence Livermore National Laboratory (LLNL) and the High Consequence Assessment Group at Sandia National Laboratories (SNL); (2) Regional radiological emergency assistance through the eight Radiological Assistance Program (RAP) regional response centers; (3) Medical advice and assistance through the Radiation Emergency Assistance Center/Training Site (REAC/TS) in Oak Ridge, Tennessee; (4) Aerial radiological mapping using the fixed-wing and rotor-wing aircraft of the Aerial Measuring System (AMS); (5) Consequence Management Planning Teams (CMPT) and Consequence Management Response Teams (CMRT) to provide CM field operations and command and control. Descriptions of the technical capabilities employed during planning and operations are given below for each of the elements comprising the integrated CM capability

  16. Nuclear emergency preparedness and response in Germany

    International Nuclear Information System (INIS)

    Miska, H.

    2009-01-01

    Off-site nuclear emergency response in Germany is divided into disaster response under the responsibility of the Laender and measures for precautionary radiation protection pursuant to the Precautionary Radiation Protection Act under the lead of federal authorities. Early countermeasures at the regional level require a different management than long-term and comprehensive actions of precautionary radiation protection. As situations may arise in which measures of both approaches overlap with regard to place and time, it is essential to make thorough preparations in order to avoid problems with implementation. (orig.)

  17. Nuclear emergency preparedness in Canada

    International Nuclear Information System (INIS)

    1993-03-01

    The preparedness of utilities and government agencies at various levels for dealing with nuclear emergencies occurring at nuclear reactors in Canada is reviewed and assessed. The review is centered on power reactors, but selected research reactors are included also. Emergency planning in the U.S.A., Germany and France, and international recommendations on emergency planning are reviewed to provide background and a basis for comparison. The findings are that Canadians are generally well protected by existing nuclear emergency plans at the electric utility and provincial levels but there are improvements that can be made, mainly at the federal level and in federal-provincial coordination. Ten issues of importance are identified: commitment to nuclear emergency planning by the federal government; division of federal and provincial roles and responsibilities; auditing of nuclear emergency preparedness of all levels of government and of electric utilities; the availability of technical guidance appropriate to Canada; protective action levels for public health and safety; communication with the public; planning and response for the later phases of a nuclear emergency; off-site exercises and training; coordination of international assistance; and emergency planning for research reactors. (L.L.) 79 refs., 2 tabs

  18. Development of a Rapidly Deployed Department of Energy Emergency Response Element

    International Nuclear Information System (INIS)

    Riland, C.A.; Hopkins, R.C.; Tighe, R.J.

    1999-01-01

    The Federal Radiological Emergency Response Plan (FRERP) directs the Department of Energy (DOE) to maintain a viable, timely, and fully documented response option capable of supporting the responsible Lead Federal Agency in the event of a radiological emergency impacting any state or US territory (e.g., CONUS). In addition, the DOE maintains a response option to support radiological emergencies outside the continental US (OCONUS). While the OCUNUS mission is not governed by the FREP, this response is operationally similar to that assigned to the DOE by the FREP. The DOE is prepared to alert, activate, and deploy radiological response teams to augment the Radiological Assistance Program and/or local responders. The Radiological Monitoring and Assessment Center (RMAC) is a phased response that integrates with the Federal Radiological Monitoring and Assessment Center (FRMAC) in CONUS environments and represents a stand-alone DOE response for OCONUS environments. The FRMAC/RMAC Phase I was formally ''stood up'' as an operational element in April 1999. The FRMAC/RMAC Phase II proposed ''stand-up'' date is midyear 2000

  19. Distinguishing human responses to radiological emergencies

    International Nuclear Information System (INIS)

    Johnson, J.H. Jr.; Ziegler, D.J.

    1983-01-01

    Inherent in the revised emergency planning regulations recently issued by the federal government is the assumption that people will follow official protective action advisories during a nuclear reactor accident. In this paper the authors argue that this is an unrealistic assumption and present empirical evidence which supports the proposition that a radiological emergency in likely to give rise to a high degree of extreme public behavior. Their analyses indicate that less than one-third of the households on Long Island are likely to follow instructions in the event of an accident at the Shoreham Nuclear Power Station. Among the families who would not follow instructions, some would underreact but most would overreact. Perceived distance from the plant and age of household head appear to be the strongest discriminators among those who are most likely to follow orders, those most likely to underreact, and those most likely to overreact. Implications for radiological emergency preparedness and response planning are discussed. 71 references, 3 figures, 8 tables

  20. Oil supply security -- Emergency response of IEA countries 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-29

    When Hurricane Katrina hit the Gulf of Mexico in 2005, the region's oil production and refining infrastructure was devastated and world energy markets were disrupted. The International Energy Agency decided in a matter of days to bring 60 million barrels of additional oil to the market. The emergency response system worked - the collective action helped to stabilise global markets. Since its founding in 1974, oil supply security has been a core mission of the IEA and the Agency has improved its mechanisms to respond to short-term oil supply disruptions. Nevertheless, numerous factors will continue to test the delicate balance of supply and demand. Oil demand growth will continue to accelerate in Asia; oil will be increasingly produced by a shrinking number of countries; and capacities in the supply chain will need to expand. These are just a few of the challenges facing an already tight market. What are the emergency response systems of IEA countries? How are their emergency structures organised? How prepared is the IEA to deal with an oil supply disruption? This publication addresses these questions. It presents another cycle of rigorous reviews of the emergency response mechanisms of IEA member countries. The goal of these reviews is to ensure that the IEA stays ready to respond effectively to oil supply disruptions. This publication also includes overviews of how China, India and countries of Southeast Asia are progressing with domestic policies to improve oil supply security, based on emergency stocks.

  1. Oil supply security -- Emergency response of IEA countries 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-29

    When Hurricane Katrina hit the Gulf of Mexico in 2005, the region's oil production and refining infrastructure was devastated and world energy markets were disrupted. The International Energy Agency decided in a matter of days to bring 60 million barrels of additional oil to the market. The emergency response system worked - the collective action helped to stabilise global markets. Since its founding in 1974, oil supply security has been a core mission of the IEA and the Agency has improved its mechanisms to respond to short-term oil supply disruptions. Nevertheless, numerous factors will continue to test the delicate balance of supply and demand. Oil demand growth will continue to accelerate in Asia; oil will be increasingly produced by a shrinking number of countries; and capacities in the supply chain will need to expand. These are just a few of the challenges facing an already tight market. What are the emergency response systems of IEA countries? How are their emergency structures organised? How prepared is the IEA to deal with an oil supply disruption? This publication addresses these questions. It presents another cycle of rigorous reviews of the emergency response mechanisms of IEA member countries. The goal of these reviews is to ensure that the IEA stays ready to respond effectively to oil supply disruptions. This publication also includes overviews of how China, India and countries of Southeast Asia are progressing with domestic policies to improve oil supply security, based on emergency stocks.

  2. Emergency response preparedness: the French experience of large scale exercises

    International Nuclear Information System (INIS)

    Chanson, D.; Desnoyers, B.; Chabane, J.M.

    2004-01-01

    In compliance with the IAEA regulations for the transport of radioactive material in the event of accidents during transport of radioactive material, emergency provisions to protect persons, property and environment have to be established and developed by the relevant national organisations. In France, the prefect of the department where the accident occurs is responsible for decisions and measures required to ensure the protection of both population and property at risk owing to the accident. During an accident, the ministers concerned provide the prefect with recommendations and information, in order to help him take the requisite decisions. On their side, the nuclear industry and transport companies also have to be prepared to intervene and to support the authorities at their request, depending on their capacities and their specialities. To prepare the emergency teams properly and acquire effective emergency plans, training exercises have to be conducted regularly with every ministerial department involved, the nuclear industry and transport companies, members of the public and the media. Then, the feedback from such exercises shall be taken into account to improve the emergency procedures. This paper will introduce: - emergency response preparedness: what is required by the relevant regulations? - emergency response preparedness: how is France organised? - the French experience of conducting large training exercises simulating accidents involving the transport of radioactive material; - the main difficulties and lessons learned; - the perspectives

  3. On-site emergency planning

    International Nuclear Information System (INIS)

    Kueffer, K.

    1980-01-01

    This lecture covers the Emergency Planning of the Operating organization and is based on the Code of Practice and Safety Guides of the IAEA as well as on arrangements in use at the Swiss Nuclear Power Station Beznau and - outlines the basis and content of an emergency plan - describes the emergencies postulated for emergency planning purposes - describes the responsibilities, the organization and the procedures of the operating organization to cope with emergency situations and the liaison between the operating organization, the regulatory body and public authorities - describes the facilities and equipment which should be available to cope with emergency sitauations - describes the measures and actions to be taken when an emergency arises in order to correct abnormal plant conditions and to protect the persons on-and off-site - describes the aid to be given to affected personnel - describes the aspects relevant to maintaining the emergency plan and organization in operational readiness. (orig./RW)

  4. Health and safety education for joint occupational health and safety committees

    Directory of Open Access Journals (Sweden)

    Myriam Mahecha Angulo

    2015-09-01

    Full Text Available Objective: To build a proposal to develop the educational process in health and safety joint committees aimed at safety and health at work (copasst. Methodology: Qualitative, descriptive study in which an in-depth interview to 32 copasst assets was made. Each interview was transcribed and interpreted by applying check with participants, finding meaningful statements, organizing groups of subjects, exhaustive description and validation with participants. The information was placed in the categories planning, organization, development, evaluation and feedback, emerging the following categories: responsible for processes management; planning, place and frequency of educational sessions; topics; format of sessions; involving/ development of sessions; understanding of the issues; applicability to daily life and work environment; applicability to personal/professional life and to the organization. Results: From emerging categories and according to the conceptual framework on adult health education and health and safety for workers, a participatory methodology for the development of educational processes with copasst was built. Conclusions: According to the statement by the members of the copasst, educational processes in health and safety, as they are developed at present, preclude them from achieving necessary competences to perform its functions, thus they are irrelevant.

  5. The role of the emergency medical dispatch centre (EMDC) and prehospital emergency care safety: results from an incident report (IR) system.

    Science.gov (United States)

    Mortaro, Alberto; Pascu, Diana; Zerman, Tamara; Vallaperta, Enrico; Schönsberg, Alberto; Tardivo, Stefano; Pancheri, Serena; Romano, Gabriele; Moretti, Francesca

    2015-07-01

    The role of the emergency medical dispatch centre (EMDC) is essential to ensure coordinated and safe prehospital care. The aim of this study was to implement an incident report (IR) system in prehospital emergency care management with a view to detecting errors occurring in this setting and guiding the implementation of safety improvement initiatives. An ad hoc IR form for the prehospital setting was developed and implemented within the EMDC of Verona. The form included six phases (from the emergency call to hospital admission) with the relevant list of potential error modes (30 items). This descriptive observational study considered the results from 268 consecutive days between February and November 2010. During the study period, 161 error modes were detected. The majority of these errors occurred in the resource allocation and timing phase (34.2%) and in the dispatch phase (31.0%). Most of the errors were due to human factors (77.6%), and almost half of them were classified as either moderate (27.9%) or severe (19.9%). These results guided the implementation of specific corrective actions, such as the adoption of a more efficient Medical Priority Dispatch System and the development of educational initiatives targeted at both EMDC staff and the population. Despite the intrinsic limits of IR methodology, results suggest how the implementation of an IR system dedicated to the emergency prehospital setting can act as a major driver for the development of a "learning organization" and improve both efficacy and safety of first aid care.

  6. Identifying and training non-technical skills of nuclear emergency response teams

    International Nuclear Information System (INIS)

    Crichton, M.T.; Flin, R.

    2004-01-01

    Training of the non-technical (social and cognitive) skills that are crucial to safe and effective management by teams in emergency situations is an issue that is receiving increasing emphasis in many organisations, particularly in the nuclear power industry. As teams play a major role in emergency response organisations (ERO), effective functioning and interactions within, between and across teams is crucial, particularly as the management of an emergency situation often requires that teams are extended by members from various other sections and strategic groups throughout the company, as well as members of external agencies. A series of interviews was recently conducted with members of a UK nuclear emergency response organisation to identify the non-technical skills required by team members that would be required for managing an emergency. Critical skills have been identified as decision making and situation assessment, as well as communication, teamwork, and stress management. A number of training strategies are discussed which can be tailored to the roles and responsibilities of the team members and the team leader, based on the roles within the team being defined as either Decision Maker, Evaluator, or Implementor, according to Nuclear Energy Institute (NEI) classifications. It is anticipated that enhanced learning of the necessary non-technical skills, through experience and directed practice, will improve the skills of members of emergency response teams

  7. Identifying and training non-technical skills of nuclear emergency response teams

    Energy Technology Data Exchange (ETDEWEB)

    Crichton, M.T. E-mail: m.crichton@abdn.ac.uk; Flin, R

    2004-08-01

    Training of the non-technical (social and cognitive) skills that are crucial to safe and effective management by teams in emergency situations is an issue that is receiving increasing emphasis in many organisations, particularly in the nuclear power industry. As teams play a major role in emergency response organisations (ERO), effective functioning and interactions within, between and across teams is crucial, particularly as the management of an emergency situation often requires that teams are extended by members from various other sections and strategic groups throughout the company, as well as members of external agencies. A series of interviews was recently conducted with members of a UK nuclear emergency response organisation to identify the non-technical skills required by team members that would be required for managing an emergency. Critical skills have been identified as decision making and situation assessment, as well as communication, teamwork, and stress management. A number of training strategies are discussed which can be tailored to the roles and responsibilities of the team members and the team leader, based on the roles within the team being defined as either Decision Maker, Evaluator, or Implementor, according to Nuclear Energy Institute (NEI) classifications. It is anticipated that enhanced learning of the necessary non-technical skills, through experience and directed practice, will improve the skills of members of emergency response teams.

  8. Children's safety initiative: a national assessment of pediatric educational needs among emergency medical services providers.

    Science.gov (United States)

    Hansen, Matthew; Meckler, Garth; Dickinson, Caitlyn; Dickenson, Kathryn; Jui, Jonathan; Lambert, William; Guise, Jeanne-Marie

    2015-01-01

    Emergency medical services (EMS) providers may have critical knowledge gaps in pediatric care due to lack of exposure and training. There is currently little evidence to guide educators to the knowledge gaps that most need to be addressed to improve patient safety. The objective of this study was to identify educational needs of EMS providers related to pediatric care in various domains in order to inform development of curricula. The Children's Safety Initiative-EMS performed a three-phase Delphi survey on patient safety in pediatric emergencies among providers and content experts in pediatric emergency care, including physicians, nurses, and prehospital providers of all levels. Each round included questions related to educational needs of providers or the effect of training on patient safety events. We identified knowledge gaps in the following domains: case exposure, competency and knowledge, assessment and decision making, and critical thinking and proficiency. Individual knowledge gaps were ranked by portion of respondents who ranked them "highly likely" (Likert-type score 7-10 out of 10) to contribute to safety events. There were 737 respondents who were included in analysis of the first phase of the survey. Paramedics were 50.8% of respondents, EMT-basics/first responders were 22%, and physicians 11.4%. The top educational priorities identified in the final round of the survey include pediatric airway management, responder anxiety when working with children, and general pediatric skills among providers. The top three needs in decision-making include knowing when to alter plans mid-course, knowing when to perform an advanced airway, and assessing pain in children. The top 3 technical or procedural skills needs were pediatric advanced airway, neonatal resuscitation, and intravenous/intraosseous access. For neonates, specific educational needs identified included knowing appropriate vital signs and preventing hypothermia. This is the first large-scale Delphi

  9. Training programs for emergency response personnel at Hanford

    International Nuclear Information System (INIS)

    Oscarson, E.E.

    1979-01-01

    The Three Mile Island reactor accident has focused attention on emergency planning and preparedness including selection and training of personnel. At Hanford, Pacific Northwest Laboratory (PNL) is in the unique position of providing emergency response personnel, planning, training and equipment not only for its own organization and facilities but also for the Hanford Site in general, as well as the Interagency Radiological Assistance Plan (IRAP) Region 8 Team. Team members are chosen for one or more of the emergency teams based upon professional education and/or experience as well as interest, aptitude and specialized knowledge. Consequently, the initial training orientation of each new team member is not directed toward general professional ability, but rather toward specialized knowledge required to carry out their assigned emergency tasks. Continual training and practice is necessary to maintain the interest and skills for effectively coping with major emergencies. The types of training which are conducted include: tests of emergency systems and/or procedures; drills involving plant employees and/or emergency team members (e.g., activation of emergency notification systems); short training sessions on special topics; and realistic emergency exercises involving the simulation of major accidents wherein the emergency team must solve specific problems on a real time basis

  10. Manual of functions, assignments, and responsibilities for nuclear safety: Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-15

    The FAR Manual is a convenient easy-to-use collection of the functions, assignments, and responsibilities (FARs) of DOE nuclear safety personnel. Current DOE directives, including Orders, Secretary of Energy Notices, and other assorted policy memoranda, are the source of this information and form the basis of the FAR Manual. Today, the majority of FARs for DOE personnel are contained in DOE`s nuclear safety Orders. As these Orders are converted to rules in the Code of Federal Regulations, the FAR Manual will become the sole source for information relating to the functions, assignments, responsibilities of DOE nuclear safety personnel. The FAR Manual identifies DOE directives that relate to nuclear safety and the specific DOE personnel who are responsible for implementing them. The manual includes only FARs that have been extracted from active directives that have been approved in accordance with the procedures contained in DOE Order 1321.1B.

  11. Compliance of child care centers in Pennsylvania with national health and safety performance standards for emergency and disaster preparedness.

    Science.gov (United States)

    Olympia, Robert P; Brady, Jodi; Kapoor, Shawn; Mahmood, Qasim; Way, Emily; Avner, Jeffrey R

    2010-04-01

    To determine the preparedness of child care centers in Pennsylvania to respond to emergencies and disasters based on compliance with National Health and Safety Performance Standards for Out-of-Home Child Care Programs. A questionnaire focusing on the presence of a written evacuation plan, the presence of a written plan for urgent medical care, the immediate availability of equipment and supplies, and the training of staff in first aid/cardiopulmonary resuscitation (CPR) as delineated in Caring for Our Children: National Health and Safety Performance Standards for Out-of-Home Child Care Programs, 2nd Edition, was mailed to 1000 randomly selected child care center administrators located in Pennsylvania. Of the 1000 questionnaires sent, 496 questionnaires were available for analysis (54% usable response rate). Approximately 99% (95% confidence interval [CI], 99%-100%) of child care centers surveyed were compliant with recommendations to have a comprehensive written emergency plan (WEP) for urgent medical care and evacuation, and 85% (95% CI, 82%-88%) practice their WEP periodically throughout the year. More than 20% of centers did not have specific written procedures for floods, earthquakes, hurricanes, blizzards, or bomb threats, and approximately half of the centers did not have specific written procedures for urgent medical emergencies such as severe bleeding, unresponsiveness, poisoning, shock/heart or circulation failure, seizures, head injuries, anaphylaxis or allergic reactions, or severe dehydration. A minority of centers reported having medications available to treat an acute asthma attack or anaphylaxis. Also, 77% (95% CI, 73%-80%) of child care centers require first aid training for each one of its staff members, and 33% (95% CI, 29%-37%) require CPR training. Although many of the child care centers we surveyed are in compliance with the recommendations for emergency and disaster preparedness, specific areas for improvement include increasing the frequency

  12. Using Geo-Data Corporately on the Response Phase of Emergency Management

    Science.gov (United States)

    Demir Ozbek, E.; Ates, S.; Aydinoglu, A. C.

    2015-08-01

    Response phase of emergency management is the most complex phase in the entire cycle because it requires cooperation between various actors relating to emergency sectors. A variety of geo-data is needed at the emergency response such as; existing data provided by different institutions and dynamic data collected by different sectors at the time of the disaster. Disaster event is managed according to elaborately defined activity-actor-task-geodata cycle. In this concept, every activity of emergency response is determined with Standard Operation Procedure that enables users to understand their tasks and required data in any activity. In this study, a general conceptual approach for disaster and emergency management system is developed based on the regulations to serve applications in Istanbul Governorship Provincial Disaster and Emergency Directorate. The approach is implemented to industrial facility explosion example. In preparation phase, optimum ambulance locations are determined according to general response time of the ambulance to all injury cases in addition to areas that have industrial fire risk. Management of the industrial fire case is organized according to defined actors, activities, and working cycle that describe required geo-data. A response scenario was prepared and performed for an industrial facility explosion event to exercise effective working cycle of actors. This scenario provides using geo-data corporately between different actors while required data for each task is defined to manage the industrial facility explosion event. Following developing web technologies, this scenario based approach can be effective to use geo-data on the web corporately.

  13. The use of social media for campus safety.

    Science.gov (United States)

    Haupt, Brittany; Kapucu, Naim; Morgan, Jeffrey

    As public safety communication evolved, each disaster or emergency presented unique challenges for emergency managers and others response to disasters. Yet, a foundational focus is the timely dissemination of accurate information to keep communities informed and able to prepare, mitigate, respond, and recover. For the campus community, the increase in bomb threats, active shooter incidents, and geographic-based natural disasters call for the discovery of reliable and cost-effective solutions for emergency information management. Social media is becoming a critical asset in this endeavor. This article examines the evolution of public safety communication, the unique setting of the campus community, and social media's role in campus disaster resilience. In addition, an exploratory study was done to better understand the perception of social media use for public safety within the campus community. The findings provide practical recommendations for campus emergency management professions; however, future research is needed to provide specific, actionable ways to achieve these goals as well as understand how diverse universities utilize a variety of platforms.

  14. Propofol for procedural sedation and analgesia reduced dedicated emergency nursing time while maintaining safety in a community emergency department.

    Science.gov (United States)

    Reynolds, Joshua C; Abraham, Michael K; Barrueto, Fermin F; Lemkin, Daniel L; Hirshon, Jon M

    2013-09-01

    Procedural sedation and analgesia is a core competency in emergency medicine. Propofol is replacing midazolam in many emergency departments. Barriers to performing procedural sedation include resource utilization. We hypothesized that emergency nursing time is shorter with propofol than midazolam, without increasing complications. Retrospective analysis of a procedural sedation registry for two community emergency departments with combined census of 100,000 patients/year. Demographics, procedure, and ASA physical classification status of adult patients receiving procedural sedation between 2007-2010 with midazolam or propofol were analyzed. Primary outcome was dedicated emergency nursing time. Secondary outcomes were procedural success, ED length of stay, and complication rate. Comparative statistics were performed with Mann-Whitney, Kruskal-Wallis, chi-square, or Fisher's exact test. Linear regression was performed with log-transformed procedural sedation time to define predictors. Of 328 procedural sedation and analgesia, 316 met inclusion criteria, of which 60 received midazolam and 256 propofol. Sex distribution varied between groups (midazolam 3% male; propofol 55% male; P = 0.04). Age, procedure, and ASA status were not significantly different. Propofol had shorter procedural sedation time (propofol 32.5 ± 24.2 minutes; midazolam 78.7 ± 51.5 minutes; P differences between complication rates (propofol 14%; midazolam 13%; P = 0.88) or emergency department length of stay (propofol 262.5 ± 132.8 minutes; midazolam 288.6 ± 130.6 minutes; P = 0.09). Use of propofol resulted in shorter emergency nursing time and higher procedural success rate than midazolam with a comparable safety profile. Copyright © 2013 Emergency Nurses Association. Published by Mosby, Inc. All rights reserved.

  15. Reflections on the emergency preparations and responses of China to Fukushima nuclear accident in Japan

    International Nuclear Information System (INIS)

    Chen Xiaoqiu; Li Bing; Yu Shaoqing

    2012-01-01

    This paper reviewed the emergency response of Japan in Fukushima nuclear accident, provided and discussed the issues should be of concern on emergency preparedness and response in future: (1) modifying the existing emergency preparedness and response system; (2) consolidating the concept of emergency preparedness as the ultimate level of defense-in-depth; (3) promoting the emergency response decision-making support capabilities; (4) valuing the information opening of involving nuclear news and radiation environmental information. (authors)

  16. Enhancing nuclear safety. Annual report 2014. Financial report 2014

    International Nuclear Information System (INIS)

    2015-01-01

    After some introductory texts proposed by several IRSN head managers, and a brief presentation of some key data illustrating the activity, the annual report presents the main strategic orientations, notably in the field of knowledge management, and of information and communication. After some images illustrating the past year, activities are presented. They first deal with safety: Reactor safety (operating experience feedback), From decommissioning old reactors to designing those of the future, Safety of laboratories and plants, Safety regarding risks due to infrastructure near nuclear facilities, Reactor aging, Fuel: research on corrosion and deformation, Research and assessments for improved understanding of accident situations, Earthquakes: research and assessments, About defense, Geological disposal of radioactive waste. They secondly deal with security and non-proliferation (nuclear security, nuclear non-proliferation, chemical weapon ban), thirdly with radiation protection for human and environment health (environment monitoring, radionuclide transfer in the environment, radon and polluted sites, human exposure, radiation protection in the workplace, effects of low-dose chronic exposures, Organization of radiation protection at the European level, protection in health care), and fourthly with emergency and post-accident situations (emergency and post-accident preparedness and response, Emergency response tools). The next part of the activity report addresses issues related to efficiency: Real estate program (construction projects get started), Hygiene, safety, social responsibility, Human resources, Organization chart, Board of directors, Steering committee for the nuclear defense expertise Division - CODEND, Scientific council, Ethics commission composition, Nuclear safety and radiation protection Research policy committee - COR. The financial report proposes a management report, financial statements with an appendix to annual accounts, and an auditor

  17. [Establishment of response system to emergency parasitic disease affairs in China].

    Science.gov (United States)

    Chun-Li, C; Le-Ping, S; Qing-Biao, H; Bian-Li, X U; Bo, Z; Jian-Bing, L; Dan-Dan, L; Shi-Zhu, L I; Oning, X; Xiao-Nong, Z

    2017-08-14

    China's prevention and control of parasitic diseases has made remarkable achievements. However, the prevalence and transmission of parasitic diseases is impacted by the complicated natural and social factors of environment, natural disasters, population movements, and so on. Therefore, there are still the risks of the outbreak of emergency parasitic diseases affairs, which may affect the control effectiveness of parasitic diseases and endanger the social stability seriously. In this article, we aim at the analysis of typical cases of emergency parasitic disease affairs and their impacts on public health security in China in recently years, and we also elaborate the disposal characteristics of emergency parasitic disease affairs, and propose the establishment of response system to emergency parasitic disease affairs in China, including the organizational structure and response flow path, and in addition, point out that, in the future, we should strengthen the system construction and measures of the response system to emergency parasitic disease affairs, so as to control the risk and harm of parasitic disease spread as much as possible and to realize the early intervention and proper disposal of emergency parasitic disease affairs.

  18. The Fukushima Daiichi Accident. Technical Volume 3/5. Emergency Preparedness and Response

    International Nuclear Information System (INIS)

    2015-08-01

    This volume describes the key events and response actions from the onset of the accident at the Fukushima Daiichi nuclear power plant (NPP), operated by the Tokyo Electric Power Company (TEPCO), on 11 March 2011. It also describes the national emergency preparedness and response (EPR) system in place in Japan and the international EPR framework prior to the accident. It is divided into five sections. Section 3.1 describes the initial actions taken by Japan in response to the accident, involving: identification of the accident, notification of off-site authorities and activation of the response; mitigatory actions taken on-site; and initial off-site response. Section 3.2 describes the protective measures taken for personnel in response to the natural disaster, protection of emergency workers, medical management of emergency workers and the voluntary involvement of members of the public in the emergency response. Section 3.3 describes the protective actions and other response actions taken by Japan to protect the public. It addresses urgent and early protective actions; the use of a dose projection model, the System for Prediction of Environmental Emergency Dose Information (SPEEDI), as a basis for decisions on protective actions during the accident; environmental monitoring; provision of information to the public and international community; and issues related to international trade and waste management. Section 3.4 describes the transition from the emergency phase to the recovery phase. It also addresses the national analysis of the accident and the emergency response. Section 3.5 describes the response by the IAEA, other international organizations within the Inter- Agency Committee on Radiological and Nuclear Emergencies (IACRNE), the actions of IAEA Member States with regard to protective actions recommended to their nationals in Japan and the provision of international assistance. A summary, observations and lessons conclude each section. There are three

  19. Applications of complex terrain meteorological models to emergency response management

    International Nuclear Information System (INIS)

    Yamada, Tetsuji; Leone, J.M. Jr.; Rao, K.S.; Dickerson, M.H.; Bader, D.C.; Williams, M.D.

    1989-01-01

    The Office of Health and Environmental Research (OHER), US Department of Energy (DOE), has supported the development of mesoscale transport and diffusion and meteorological models for several decades. The model development activities are closely tied to the OHER field measurement program which has generated a large amount of meteorological and tracer gas data that have been used extensively to test and improve both meteorological and dispersion models. This paper briefly discusses the history of the model development activities associated with the OHER atmospheric science program. The discussion will then focus on how results from this program have made their way into the emergency response community in the past, and what activities are presently being pursued to improve real-time emergency response capabilities. Finally, fruitful areas of research for improving real-time emergency response modeling capabilities are suggested. 35 refs., 5 figs

  20. Nuclear safety cooperation in Southeast Asia. Lessons from Asia's regional networks

    International Nuclear Information System (INIS)

    Trajano, Julius Cesar I.

    2017-01-01

    Debate has been ongoing among key stakeholders on whether South-east Asia should use or reject nuclear power. However, there are still significant regional concerns over nuclear safety and security in South-east Asia. As some ASEAN countries plan to pursue nuclear power, they need to create and maintain a pool of local nuclear professionals with actual relevant experience in the nuclear industry. While the IAEA does not influence a country's decision on introducing nuclear power, it supports Member States' efforts to evaluate all options towards making a knowledgeable decision. Nuclear safety is the responsibility of every nation that utilizes nuclear technology. National governments are responsible for regulations that govern how safety at nuclear facilities is maintained, as well as to reduce radiation risks, including emergency response and recovery actions. But nuclear energy has transboundary/ regional implications if nuclear safety in each member state is not strengthened. ASEAN countries share a common goal in achieving high level of public safety and confidence in nuclear and radiation related issues. Can regional cooperation help ASEAN Member-States strengthen nuclear safety? The paper examines the importance of regional cooperation on nuclear energy governance and the role of regional organisations in Asia in strengthening nuclear safety cooperation and emergency preparedness and response in Southeast Asia. (author)

  1. Verifying the buildingEXODUS through an emergency response procedure (ERP) exercise at an underground intervention shaft

    Science.gov (United States)

    Tajedi, Noor Aqilah A.; Sukor, Nur Sabahiah A.; Ismail, Mohd Ashraf M.; Shamsudin, Shahrul A.

    2017-10-01

    An Emergency Response Plan (ERP) is an essential safety procedure that needs to be taken into account for railway operations, especially for underground railway networks. Several parameters need to be taken into consideration in planning an ERP such as the design of tunnels and intervention shafts, and operation procedures for underground transportation systems. Therefore, the purpose of this paper is to observe and analyse the Emergency Response Procedure (ERP) exercise for the underground train network at the LRT Kelana Jaya Line. The exercise was conducted at one of the underground intervention shaft exits, where the height of the staircase from the bottom floor to the upper floor was 24.59 metres. Four cameras were located at selected levels of the shaft, and 71 participants were assigned for the evacuation exercise. The participants were tagged with a number at the front and back of their safety vests. Ten respondents were randomly selected to give details of their height and weight and, at the same time, they had to self-record the time taken for them to evacuate from the bottom to the top of the shaft. The video footages that were taken during the ERP were analysed, and the data were used for the verification process on the buildingEXODUS simulation software. It was found that the results of the ERP experiment were significantly similar to the simulation results, thereby successfully verifying the simulation. This verification process was important to ensure that the results of the simulation were in accordance with the real situation. Therefore, a further evacuation analysis made use of the results from this verification.

  2. Brief introduction of nuclear power plant emergency system EmInfoSys

    International Nuclear Information System (INIS)

    Xiao Yuhua; Zhao Zhigang

    2014-01-01

    Nuclear safety is the lifeline of nuclear energy and nuclear technology, nuclear accident emergency response is the last line of nuclear security defense, and is one of the important measures to ensure the healthy development of the nuclear energy safety. The establishment of complete function, sensitive reaction and efficient emergency management system for operation of nuclear and radiation accidents is an important task of nuclear security. From 2001 China Techenergy Co., Ltd. participated in the Qinshan, Tianwan, Ministry of Environmental Protection, Haiyang, Taishan, Fangchenggang, Sanmen, etc. nuclear emergency projects, and the nuclear emergency EmInfoSys (emergency management information system) platform was developed with independent intellectual property rights. A brief introduction about EmInfoSys system was performed in this paper. (authors)

  3. New and recently finalised activities within the NKS Programmes for Nordic cooperation on nuclear reactor safety and emergency preparedness

    DEFF Research Database (Denmark)

    Andgren, Karin; Andersson, Kasper Grann; Magnússon, Sigurður M.

    2015-01-01

    Over the years, NKS has provided funding for hundreds of research activities in fields comprising reactor safety, decommissioning, nuclear and radiological emergency preparedness, and management of radioactive waste. Advanced technologies and methods developed under the NKS framework have been used...... within the Nordic countries as well as internationally. Two programme areas are defined under the NKS platform: The NKS-R programme on nuclear reactor safety and the NKS-B programme on emergency preparedness. Three articles, giving an introduction to NKS and its two programmes, were published...

  4. Exercising the federal radiological emergency response plan

    International Nuclear Information System (INIS)

    Gant, K.S.; Adler, M.V.; Wolff, W.F.

    1986-01-01

    Multiagency exercises were an important part of the development of the Federal Radiological Emergency Response Plan. This paper concentrates on two of these exercises, the Federal Field Exercise in March 1984 and the Relocation Tabletop Exercise in December 1985. The Federal Field Exercise demonstrated the viability and usefulness of the draft plan; lessons learned from the exercise were incorporated into the published plan. The Relocation Tabletop Exercise examined the federal response in the postemergency phase. This exercise highlighted the change over time in the roles of some agencies and suggested response procedures that should be developed or revised. 8 refs

  5. L-007: Objectives preparation and Emergency response

    International Nuclear Information System (INIS)

    2011-01-01

    This lecture explains the preparation and response in a nuclear and radiological emergency. Must be taken into consideration a program of preparedness, the public health and environment protection, propagation of contamination limit, first aid and treatment radiation damage, the stochastic, psychological and physical effects reduction

  6. Emergency preparedness and response to 'Not-in-a-Facility' radiological accidents

    International Nuclear Information System (INIS)

    Grlicarev, Igor

    2008-01-01

    The paper provides an overview of lessons learned from the past radiological accidents, which have not occurred in an operating facility, i.e. 'not-in-a-facility' radiological emergencies. A method to analyze status of prevention of accidents is proposed taking into account the experiences and findings from the past events. The main emergency planning items are discussed, which would render effective response in case of such emergencies. Although the IAEA has published many documents about establishing an adequate emergency response capability, it is not an easy task to bring these recommendations into life. This paper gives some hints how to overcome the most obvious difficulties while users of these documents trying to adapt the guidance to their own needs. The special cases of alpha emitters and radiological dispersal devices were considered separately. The balanced approach to emergency response is promoted throughout the text, which means that a level of preparedness should be commensurate to the threat and the existing resources should be used to the extent possible. (author)

  7. [Use of complementary tests in emergencies and their relation with patient safety incidents].

    Science.gov (United States)

    Alcaraz-Martínez, J; Aranaz-Andrés, J M; Cantero-Sandoval, A; Piñera-Salmerón, P; Mas-Luzón, J; Serrano-Martínez, J A; González Garro, E

    2018-03-10

    To analyse the use of complementary tests and their relationship with safety incidents in hospital emergency departments. An analysis was performed on 935 patients seen in the 9 hospital emergency departments. The source of data used for the detection of incidents were: emergency department clinical record and reports, together with face-to-face observation in the department, plus a telephone survey of the patient or family member at one week after the care. Statistical tests used: The Student t test for quantitative variables, Chi squared test for qualitative variables, and the ANOVA test. A peripheral venous catheter was used in 397 patients (42.4% (95% CI; 39.3-45.5%)), with a variability with significant differences between hospitals (P<.01), with a range of use from 37% to 81.8%. It was also observed that in 23.4% (95% CI; 19.2-27.6%) of the cases, the catheter was not used after the first blood draw. Radiological tests were requested for 351 patients, 37.7% (95% CI; 34.6-40.8%), also with significant differences between hospitals (P<.01), ranging from 24.6 to 65, 1%. Incidents were detected in 95 (10.2%) patients (95% CI; 8.3-12.1%) in the all the study centres. A higher proportion of safety incidents have been observed in patients where peripheral venous catheter has been used (12.8%) than in those in whom they had not been used (8.5%) (P=.03), as well as in patients on whom an x-ray was requested (12.8%) compared to those who did not (8.64%) (P=.04). A longer stay was also observed in cases with an incident (mean 248.9minutes) than in those where there were none (mean 164.1minutes) (P<.001). No statistically significant differences were found in the other parameters studied. A relationship was observed between the use of a peripheral venous catheter (many of them without use) and radiological tests and the occurrence of safety incidents in the Emergency Departments. Copyright © 2018 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1, Revision 1 (Chinese Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication establishes requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  9. Indian Point Nuclear Power Station: verification analysis of County Radiological Emergency-Response Plans

    International Nuclear Information System (INIS)

    Nagle, J.; Whitfield, R.

    1983-05-01

    This report was developed as a management tool for use by the Federal Emergency Management Agency (FEMA) Region II staff. The analysis summarized in this report was undertaken to verify the extent to which procedures, training programs, and resources set forth in the County Radiological Emergency Response Plans (CRERPs) for Orange, Putnam, and Westchester counties in New York had been realized prior to the March 9, 1983, exercise of the Indian Point Nuclear Power Station near Buchanan, New York. To this end, a telephone survey of county emergency response organizations was conducted between January 19 and February 22, 1983. This report presents the results of responses obtained from this survey of county emergency response organizations

  10. Application of geographic information system for radiologic emergency response

    International Nuclear Information System (INIS)

    Best, R.G.; Doyle, J.F.; Mueller, P.G.

    1998-01-01

    Comprehensive and timely radiological, cultural, and environmental data are required in order to make informed decisions during a radiological emergency. Within the Federal Radiological Monitoring and Assessment Center (FRMAC), there is a continuing effort to improve the data management and communication process. The most recent addition to this essential function has been the development of the Field Analysis System for Emergency Response (FASER). It is an integrated system with compatible digital image processing and Geographic Information System (GIS) capabilities. FASER is configured with commercially available off-the-shelf hardware and software components. To demonstrate the potential of the FASER system for radiological emergency response, the system has been utilized in interagency FRMAC exercises to analyze the available spatial data to help determine the impact of a hypothetical radiological release and to develop mitigation plans. (R.P.)

  11. Roles that numerical models can play in emergency response

    International Nuclear Information System (INIS)

    Dickerson, M.H.

    1982-03-01

    Four points are presented with regard to a perspective on modeling for emergency preparedness. First, and probably foremost, modeling should be considered a tool, along with measurements and experience when used for emergency preparedness. The second point is that the potential for large errors associated with knowing the source term during an accident should not be used as a guide for determining the level of the model development and application. There are many other uses for models than estimating consequences, given the source term. These uses range from estimating the source term to bracketing the problem at hand. The third point is that several levels of model complexity should be considered when addressing emergency response. These levels can vary from the simple Gaussian calculation to the more complex three-dimensional transport and diffusion calculations where terrain and vertical and horizontal shears in the wind fields can be modeled. Lastly, proper interaction and feedback between model results and measurements enhances the capabilities of each if they were applied independently for emergency response purposes

  12. Survey of state and tribal emergency response capabilities for radiological transportation incidents

    Energy Technology Data Exchange (ETDEWEB)

    Vilardo, F J; Mitter, E L; Palmer, J A; Briggs, H C; Fesenmaier, J [Indiana Univ., Bloomington, IN (USA). School of Public and Environmental Affairs

    1990-05-01

    This publication is the final report of a project to survey the fifty states, the District of Columbia, Puerto Rico, and selected Indian Tribal jurisdictions to ascertain their emergency-preparedness planning and capabilities for responding to transportation incidents involving radioactive materials. The survey was conducted to provide the Nuclear Regulatory Commission and other federal agencies with information concerning the current level of emergency-response preparedness of the states and selected tribes and an assessment of the changes that have occurred since 1980. There have been no major changes in the states' emergency-response planning strategies and field tactics. The changes noted included an increased availability of dedicated emergency-response vehicles, wider availability of specialized radiation-detection instruments, and higher proportions of police and fire personnel with training in the handling of suspected radiation threats. Most Indian tribes have no capability to evaluate suspected radiation threats and have no formal relations with emergency-response personnel in adjacent states. For the nation as a whole, the incidence of suspected radiation threats declined substantially from 1980 to 1988. 58 tabs.

  13. Emergency response planning for transport accidents involving radioactive materials

    International Nuclear Information System (INIS)

    1982-03-01

    The document presents a basic discussion of the various aspects and philosophies of emergency planning and preparedness along with a consideration of the problems which might be encountered in a transportation accident involving a release of radioactive materials. Readers who are responsible for preparing emergency plans and procedures will have to decide on how best to apply this guidance to their own organizational structures and will also have to decide on an emergency planning and preparedness philosophy suitable to their own situations

  14. Principles of off-site nuclear emergency exercises

    International Nuclear Information System (INIS)

    Miska, H.

    2011-01-01

    Due to high safety standards at nuclear power plants, no experience exits with nuclear emergencies in Western Europe. Thus, emergency exercises are the only possibility to assure effective protective measures should the very unlikely severe accident occur. The main objectives of exercises are generally the check of response plans for suitability, the test of the equipment's applicability and training of personnel for the unusual task to manage a nuclear emergency. After an introduction into the different types of exercises, this contribution focuses on offsite nuclear emergency exercises, explaining frame conditions to ensure good practice and, finally, reports some experience from exercises. (orig.)

  15. Automated emergency meteorological response system

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1980-01-01

    A sophisticated emergency response system was developed to aid in the evaluation of accidental releases of hazardous materials from the Savannah River Plant to the environment. A minicomputer system collects and archives data from both onsite meteorological towers and the National Weather Service. In the event of an accidental release, the computer rapidly calculates the trajectory and dispersion of pollutants in the atmosphere. Computer codes have been developed which provide a graphic display of predicted concentration profiles downwind from the source, as functions of time and distance

  16. Emergency Response Capability Baseline Needs Assessment Compliance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sharry, John A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-16

    This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2013 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2009 BNA, the 2012 BNA document, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures.

  17. Hybrid Decision-making Method for Emergency Response System of Unattended Train Operation Metro

    Directory of Open Access Journals (Sweden)

    Bobo Zhao

    2016-04-01

    Full Text Available Suitable selection of the emergency alternatives is a critical issue in emergency response system of Unattended Train Operation (UTO metro system of China. However, there is no available method for dispatcher group in Operating Control Center (OCC to evaluate the decision under emergency situation. It was found that the emergency decision making in UTO metro system is relative with the preferences and the importance of multi-dispatcher in emergency. Regarding these factors, this paper presents a hybrid method to determinate the priority weights of emergency alternatives, which aggregates the preference matrix by constructing the emergency response task model based on the Weighted Ordered Weighted Averaging (WOWA operator. This calculation approach derives the importance weights depending on the dispatcher emergency tasks and integrates it into the Ordered Weighted Averaging (OWA operator weights based on a fuzzy membership relation. A case from train fire is given to demonstrate the feasibility and practicability of the proposed methods for Group Multi-Criteria Decision Making (GMCDM in emergency management of UTO metro system. The innovation of this research is paving the way for a systematic emergency decision-making solution which connects the automatic metro emergency response system with the GMCDM theory.

  18. The FIFA medical emergency bag and FIFA 11 steps to prevent sudden cardiac death: setting a global standard and promoting consistent football field emergency care.

    Science.gov (United States)

    Dvorak, Jiri; Kramer, Efraim B; Schmied, Christian M; Drezner, Jonathan A; Zideman, David; Patricios, Jon; Correia, Luis; Pedrinelli, André; Mandelbaum, Bert

    2013-12-01

    Life-threatening medical emergencies are an infrequent but regular occurrence on the football field. Proper prevention strategies, emergency medical planning and timely access to emergency equipment are required to prevent catastrophic outcomes. In a continuing commitment to player safety during football, this paper presents the FIFA Medical Emergency Bag and FIFA 11 Steps to prevent sudden cardiac death. These recommendations are intended to create a global standard for emergency preparedness and the medical response to serious or catastrophic on-field injuries in football.

  19. PHMC post-NPH emergency response training

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1997-01-01

    This document describes post-Natural Phenomena Hazard (NPH) emergency response training that was provided to two teams of Project Hanford Management Contractors (PHMC) staff that will be used to assess potential structural damage that may occur as a result of a significant natural phenomena event. This training supports recent plans and procedures to use trained staff to inspect structures following an NPH event on the Hanford Site

  20. PHMC post-NPH emergency response training

    Energy Technology Data Exchange (ETDEWEB)

    Conrads, T.J.

    1997-04-08

    This document describes post-Natural Phenomena Hazard (NPH) emergency response training that was provided to two teams of Project Hanford Management Contractors (PHMC) staff that will be used to assess potential structural damage that may occur as a result of a significant natural phenomena event. This training supports recent plans and procedures to use trained staff to inspect structures following an NPH event on the Hanford Site.

  1. Extension of responsibilities of the State Office for Nuclear Safety

    International Nuclear Information System (INIS)

    Hrehor, M.

    1995-01-01

    The responsibilities of the State Office for Nuclear Safety have been extended by Act No. 85/1995 to cover protection against ionizing radiation. The following responsibilities of the State Office for Nuclear Safety are defined by the Act: a) state surveillance over nuclear safety of nuclear facilities, and over radioactive waste and spent fuel management; b) state surveillance over nuclear materials, their record-keeping and accountancy; c) state surveillance over the safeguarding of nuclear facilities and nuclear materials; d) state surveillance over selected materials, facilities and technologies used in the nuclear field, as well as dual-purpose materials and facilities; e) state surveillance over protection against ionizing radiation; f) coordination of the performance of the Radiation Monitoring Network over the Czech Republic and responsibility for international exchange of data on the radiological situation. The Act is reproduced in full, and the organizational structure of the Office is shown in a chart. (J.B.)

  2. Engineering thinking in emergency situations: A new nuclear safety concept.

    Science.gov (United States)

    Guarnieri, Franck; Travadel, Sébastien

    2014-11-01

    The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for "engineering thinking in emergency situations." This is a new concept that emphasizes adaptability and resilience within organizations-such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident.

  3. Administrative practices for nuclear criticality safety, ANSI/ANS-8.19-1996

    International Nuclear Information System (INIS)

    Smith, D.R.

    1996-01-01

    American National Standard, open-quotes Administrative Practices for Nuclear Criticality Safety,close quotes American National Standards Institute/American Nuclear Society (ANSI/ANS)-8.19-1996, addresses the responsibilities of management, supervision, and the criticality safety staff in the administration of an effective criticality safety program. Characteristics of operating procedures, process evaluations, material control procedures, and emergency plans are discussed

  4. System model for evaluation of an emergency response plan for a nuclear power plant based on an assessment of nuclear emergency exercises

    International Nuclear Information System (INIS)

    Silva, Marcos Vinicius C.; Medeiros, Jose A.C.C.

    2011-01-01

    Nuclear power plants are designed and built with systems dedicated to provide a high degree of protection to its workers, the population living in their neighborhoods and the environment. Among the requirements for ensuring safety there are the existence of the nuclear emergency plan. Due to the relationship between the actions contemplated in the emergency plan and the nuclear emergency exercise, it becomes possible to assess the quality of the nuclear emergency plan, by means of emergency exercise evaluation, The techniques used in this work aim at improving the evaluation method of a nuclear emergency exercise through the use of performance indicators in the evaluation of the structures, actions and procedures involved. The proposed model enables comparisons between different moments of an emergency plan directed to a nuclear power plant as well as comparisons between plans dedicated to different facilities. (author)

  5. System model for evaluation of an emergency response plan for a nuclear power plant based on an assessment of nuclear emergency exercises

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcos Vinicius C.; Medeiros, Jose A.C.C. [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear

    2011-07-01

    Nuclear power plants are designed and built with systems dedicated to provide a high degree of protection to its workers, the population living in their neighborhoods and the environment. Among the requirements for ensuring safety there are the existence of the nuclear emergency plan. Due to the relationship between the actions contemplated in the emergency plan and the nuclear emergency exercise, it becomes possible to assess the quality of the nuclear emergency plan, by means of emergency exercise evaluation, The techniques used in this work aim at improving the evaluation method of a nuclear emergency exercise through the use of performance indicators in the evaluation of the structures, actions and procedures involved. The proposed model enables comparisons between different moments of an emergency plan directed to a nuclear power plant as well as comparisons between plans dedicated to different facilities. (author)

  6. A simulator-based nuclear reactor emergency response training exercise.

    Science.gov (United States)

    Waller, Edward; Bereznai, George; Shaw, John; Chaput, Joseph; Lafortune, Jean-Francois

    Training offsite emergency response personnel basic awareness of onsite control room operations during nuclear power plant emergency conditions was the primary objective of a week-long workshop conducted on a CANDU® virtual nuclear reactor simulator available at the University of Ontario Institute of Technology, Oshawa, Canada. The workshop was designed to examine both normal and abnormal reactor operating conditions, and to observe the conditions in the control room that may have impact on the subsequent offsite emergency response. The workshop was attended by participants from a number of countries encompassing diverse job functions related to nuclear emergency response. Objectives of the workshop were to provide opportunities for participants to act in the roles of control room personnel under different reactor operating scenarios, providing a unique experience for participants to interact with the simulator in real-time, and providing increased awareness of control room operations during accident conditions. The ability to "pause" the simulator during exercises allowed the instructors to evaluate and critique the performance of participants, and to provide context with respect to potential offsite emergency actions. Feedback from the participants highlighted (i) advantages of observing and participating "hands-on" with operational exercises, (ii) their general unfamiliarity with control room operational procedures and arrangements prior to the workshop, (iii) awareness of the vast quantity of detailed control room procedures for both normal and transient conditions, and (iv) appreciation of the increased workload for the operators in the control room during a transient from normal operations. Based upon participant feedback, it was determined that the objectives of the training had been met, and that future workshops should be conducted.

  7. Relations between Rainfall and Postfire Debris-Flow- and Flood-Event Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California, USA

    Science.gov (United States)

    Cannon, Susan; Collins, Larry; Boldt, Eric; Staley, Dennis

    2010-05-01

    Following wildfires, emergency-response and public-safety agencies are often faced with making evacuation decisions and deploying resources both well in advance of each coming winter storm and during storm events themselves. We here provide information critical to this process for recently burned areas in the San Gabriel Mountains of southern California. The National Weather Service (NWS) issues Quantitative Precipitation Forecasts (QPFs) for the San Gabriel Mountains twice a day, at approximately 4 am and 4 pm, along with unscheduled updates when conditions change. QPFs provide estimates of rainfall totals in 3-hour increments for the first 12-hour period and in 6-hour increments for the second. Estimates of one-hour rainfall intensities can be provided in the forecast narrative, along with probable peak intensities and timing, although with less confidence than rainfall totals. A compilation of information on the hydrologic response to winter storm events from recently burned areas in southern California was used to develop a system for classifying the magnitude of postfire hydrologic events. The three-class system is based on differences between the reported volume of individual debris flows, the consequences of these events in an urban setting, and the spatial extent of the response to the triggering storm. Threshold rainfall conditions that may lead to debris flow and floods of different magnitude classes are defined by integrating local rainfall data with debris-flow- and flood-event magnitude information. The within-storm rainfall accumulations (A) and durations (D) below which Magnitude I events are expected, and above which Magnitude II events may occur, are defined by A=0.4D0.55. The function A=0.6D0.50 defines the within-storm rainfall accumulations and durations above which a Magnitude III event will occur in response to a regional-scale storm, and a Magnitude II event will occur if the storm affects only a few drainage basins. The function A=1.1D0

  8. Nuclear Safety Review 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    The Nuclear Safety Review 2013 focuses on the dominant nuclear safety trends, issues and challenges in 2012. The Executive Overview provides crosscutting and worldwide nuclear safety information along with a summary of the major sections covered in this report. Sections A-E of this report cover improving radiation, transport and waste safety; strengthening safety in nuclear installations; improving regulatory infrastructure and effectiveness; enhancing emergency preparedness and response (EPR); and civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards (CSS), and activities relevant to the IAEA Safety Standards. The world nuclear community has made noteworthy progress in strengthening nuclear safety in 2012, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as ''the Action Plan''). For example, an overwhelming majority of Member States with operating nuclear power plants (NPPs) have undertaken and essentially completed comprehensive safety reassessments ('stress tests') with the aim of evaluating the design and safety aspects of plant robustness to protect against extreme events, including: defence in depth, safety margins, cliff edge effects, multiple failures, and the prolonged loss of support systems. As a result, many have introduced additional safety measures including mitigation of station blackout. Moreover, the IAEA's peer review services and safety standards have been reviewed and strengthened where needed. Capacity building programmes have been built or improved, and EPR programmes have also been reviewed and improved. Furthermore, in 2012, the IAEA continued to share lessons learned from the Fukushima Daiichi accident with the nuclear community including through three international experts' meetings (IEMs) on reactor and spent fuel safety, communication in the event of a nuclear or radiological emergency, and protection against extreme earthquakes and tsunamis.

  9. Nuclear Safety Review 2013

    International Nuclear Information System (INIS)

    2013-07-01

    The Nuclear Safety Review 2013 focuses on the dominant nuclear safety trends, issues and challenges in 2012. The Executive Overview provides crosscutting and worldwide nuclear safety information along with a summary of the major sections covered in this report. Sections A-E of this report cover improving radiation, transport and waste safety; strengthening safety in nuclear installations; improving regulatory infrastructure and effectiveness; enhancing emergency preparedness and response (EPR); and civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards (CSS), and activities relevant to the IAEA Safety Standards. The world nuclear community has made noteworthy progress in strengthening nuclear safety in 2012, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as ''the Action Plan''). For example, an overwhelming majority of Member States with operating nuclear power plants (NPPs) have undertaken and essentially completed comprehensive safety reassessments ('stress tests') with the aim of evaluating the design and safety aspects of plant robustness to protect against extreme events, including: defence in depth, safety margins, cliff edge effects, multiple failures, and the prolonged loss of support systems. As a result, many have introduced additional safety measures including mitigation of station blackout. Moreover, the IAEA's peer review services and safety standards have been reviewed and strengthened where needed. Capacity building programmes have been built or improved, and EPR programmes have also been reviewed and improved. Furthermore, in 2012, the IAEA continued to share lessons learned from the Fukushima Daiichi accident with the nuclear community including through three international experts' meetings (IEMs) on reactor and spent fuel safety, communication in the event of a nuclear or radiological emergency, and protection against extreme earthquakes and tsunamis

  10. The Fukushima radiological emergency and challenges identified for future public health responses.

    Science.gov (United States)

    Miller, Charles W

    2012-05-01

    On 11 March 2011, northern Japan was rocked by first a magnitude 9.0 earthquake off the eastern coast and then an ensuing tsunami. The Fukushima Daiichi Nuclear Power Plant complex was hit by these twin disasters, and a cascade of events was initiated that led to radionuclide releases causing widespread radioactive contamination of residential areas, agricultural land, and coastal waters. Radioactive material from Japan was subsequently transmitted to locations around the globe, including the U.S. The levels of radioactive material that arrived in the U.S. were never large enough to be a concern for health effects, but the presence of this material in the environment was enough to create a public health emergency in the U.S. The radiation safety and public health communities in the U.S. are identifying challenges they faced in responding to this incident. This paper discusses three of those challenges: (1) The growing shortage of trained radiation subject matter experts in the field of environmental transport and dosimetry of radionuclides; (2) the need to begin expressing all radiation-related quantities in terms of the International System of Units; and (3) the need to define when a radiation dose is or is not one of "public health concern." This list represents only a small subset of the list of challenges being identified by public health agencies that responded to the Fukushima incident. However, these three challenges are fundamental to any radiological emergency response. Addressing them will have a significant positive impact on how the U.S. responds to the next radiological emergency.

  11. Report of the emergency preparedness and response task force

    International Nuclear Information System (INIS)

    Dynes, R.R.; Purcell, A.H.; Wenger, D.E.; Stern, P.S.; Stallings, R.A.; Johnson, Q.T.

    1979-10-01

    The accident at Three Mile Island (TMI) marked the first time in the US when traditional planning for emergencies was applied to a possible radiological emergency. This report examines the planning that existed in the counties surrounding the plant and at the state and federal levels. It also examines the responses of the various governmental units following the initial accident

  12. Report of the Emergency Preparedness and Response Task Force

    International Nuclear Information System (INIS)

    Dynes, R.R.; Purcell, A.H.; Wenger, D.E.; Stern, P.S.; Stallings, R.A.; Johnson, Q.T.

    1979-10-01

    The accident at Three Mile Island (TMI) marked the first time in the US when traditional planning for emergencies was applied to a possible radiological emergency. This report examines the planning that existed in the counties surrounding the plant and at the state and federal levels. It also examines the responses of the various governmental units following the initial accident

  13. Progress of nuclear safety research - 2005

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amaya, Masaki; Saito, Junichi; Sato, Atsushi; Sono, Hiroki; Tamaki, Hitoshi; Tonoike, Kotaro; Nemoto, Yoshiyuki; Motoki, Yasuo; Moriyama, Kiyofumi; Yamaguchi, Tetsuji; Araya, Fumimasa

    2006-03-01

    The Japan Atomic Energy Research Institute (JAERI), one of the predecessors of the Japan Atomic Energy Agency (JAEA), had conducted nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Five-Years Program for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI were the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI had conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI had taken a responsible role by providing experts in assistance to conducting accident investigations or emergency responses by the government or local government. These nuclear safety research and technical assistance to the government have been taken over as an important role by JAEA. This report summarizes the nuclear safety research activities of JAERI from April 2003 through September 2005 and utilized facilities. (author)

  14. Responsibility for the Violation of Ecological Safety Requirements

    Science.gov (United States)

    Selivanovskaya, J. I.; Gilmutdinova, I.

    2018-01-01

    The article deals with the problems of responsibility for the violation of ecological safety requirements from the point of view of sustainable development of the state. Such types of responsibility as property, disciplinary, financial, administrative and criminal responsibility in the area are analysed. Suggestions on the improvement of legislation are put forward. Among other things it is suggested to introduce criminal sanctions against legal bodies (enterprises) for ecological crimes with punishments in the form of fines, suspension or discontinuation of activities.

  15. Assessment of safety and interferon gamma responses of Mycobacterium bovis BCG vaccine in goat kids and milking goats.

    Science.gov (United States)

    Pérez de Val, Bernat; Vidal, Enric; López-Soria, Sergio; Marco, Alberto; Cervera, Zoraida; Martín, Maite; Mercader, Irene; Singh, Mahavir; Raeber, Alex; Domingo, Mariano

    2016-02-10

    Vaccination of domestic animals has emerged as an alternative long-term strategy for the control of tuberculosis (TB). A trial under field conditions was conducted in a TB-free goat herd to assess the safety of the Mycobacterium bovis BCG vaccine. Eleven kids and 10 milking goats were vaccinated with BCG. Bacterial shedding and interferon gamma (IFN-γ) responses were monitored throughout the study. Comprehensive pathological examination and mycobacterial culture of target tissues were performed. BCG vaccine strain was only isolated from the draining lymph node of the injection site of a kid euthanized at week 8 post-vaccination. The remaining animals were euthanized at week 24. Six out of 20 showed small granulomas at the injection site. BCG shedding was not detected in either faeces or in milk throughout the study. All vaccinated kids showed BCG-induced IFN-γ responses at week 8 post-vaccination. BCG vaccination of goats showed no lack of biological safety for the animals, environment and public health, and local adverse reactions were negligible. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Build-up forces at Military Institute of Medical Radiology and Oncology for emergency medical response to some eventualities of radiological accidents - some suggestions

    International Nuclear Information System (INIS)

    Ho Van Cu; Nguyen Huu Nghia

    2011-01-01

    Nowadays, the use of various nuclear sources in some fields of the life has brought many practical advantages in general; especially in the next several years, our country will begin construction of the first nuclear plant. However, if there were user carelessness or objective disadvantageous factors (earthquake, tsunami, etc.), that disadvantages could lead to a radiation accident or nuclear accident which causes damages not only for economy but also for public health. Therefore, the emergency response to radiation accident, especially the emergency medical response that has a great important position. To satisfy this real demand, in 1996, Vietnam Ministry of Defence made the decision to establish Center for Nuclear Medicine and Radiation Protecting (now becomes Military Institute of Medical Radiology and Oncology) with the main missions are research, applying radiation protecting methods and organizing treatments to radiation injured victims. To fulfill above main missions, with the help of Vietnam Atomic Energy Institute (VAEI), Vietnam Agency for Radiation and Nuclear Safety (VARANS), the doctors and staffs of our Institute have been participated in the international training courses and workshops that organized in Vietnam or in regional countries about emergency medical response to radiation accidents, they get valuable information, knowledge and documents from these courses and workshops. Depending on the principles of radiation emergency medical response to nuclear/ radiation accidents that International Atomic Energy Agency (IAEA) guided, and with the experience learned from other countries in Asia region, our Institute have been gradually improving on organization and curing processes for the radiation victims and also setting the preparedness for emergency medical response to radiation accidents if maybe they could occur. (author)

  17. Nuclear Safety Review for the Year 2008

    International Nuclear Information System (INIS)

    2009-07-01

    Nuclear technologies are increasingly seen as important solutions for meeting a number of challenges. Enabling the peaceful use of nuclear technology to support global energy demands and other human needs must be accompanied by deliberate, internationally-coordinated actions to minimize the potential for nuclear accidents and terrorism. While in recent years, the safety performance of the nuclear industry has been good, it is important to avoid any complacency. The Agency continues to support and promote the global nuclear safety and security regime as a framework for worldwide achievement of high levels of safety and security in nuclear activities. In 2008, three general themes can be observed from the global trends, issues and challenges in nuclear safety: the continuous improvements in strengthening safety worldwide through international cooperation; an expected increase of new entrant nuclear power programmes and the expansion of existing programmes; and safety and security synergy. Regarding continuous improvements to strengthen safety worldwide, the focus was on operating experience feedback and knowledge networking; and self-assessment and peer review. In the areas of new entrant nuclear programmes and expansion of existing nuclear programmes, activities centred on national safety infrastructures; human resources and capacity building; regulatory independence; nuclear incident and emergency preparedness and response; spent fuel and radioactive waste management; and multinational aspects of nuclear activities. In the area of safety and security synergy, in 2008 there was increasing awareness that processes need to be in place to ensure that safety activities do not compromise security and vice versa. As outlined in Safety Fundamentals No. SF-1, the prime responsibility for safety must rest with the person or organization responsible for facilities and activities that give rise to radiation risks. An effective legal and governmental framework for safety

  18. Pearl Harbor: lessons for the dam safety community

    Energy Technology Data Exchange (ETDEWEB)

    Martin, T.E. [AMEC Earth and Environmental Ltd., Burnaby, BC (Canada)

    2001-10-01

    Every good dam safety program must be based on surveillance and emergency response planning. The same principles apply to the gathering of information for military intelligence and the planning of defence tactics. Lessons learned from failure have spurred the advancement of dam engineering. Dam safety experts can benefit from the inadequacies encountered by the military community, with the most famous occurring on December 7, 1941 in Pearl Harbor. Both intelligence gathering and contingency response planning failed miserably. The data was not properly disseminated, interpreted, analysed. The proper response to the situation was not initiated. Human error and failure to communicate are the two main reasons that explain the debacle. The inquiries into the tragedy at Pearl Harbor provided valuable lessons, related to individual and organizational failures, which the authors shared in this presentation. The relevance to dam safety was made. All Federal Bureau of Investigation (FBI) agents must read the lessons drawn from Pearl Harbor, as they have responsibility for dam safety. 4 refs.

  19. Nuclear emergency preparedness. Final report of the Nordic Nuclear Safety Research Project BOK-1

    DEFF Research Database (Denmark)

    Lauritzen, B.

    2002-01-01

    Final report of the Nordic Nuclear Safety Research project BOK-1. The BOK-1 project, “Nuclear Emergency Preparedness”, was carried out in 1998-2001 with participants from the Nordic and Baltic Sea regions. The project consists of six sub-projects:Laboratory measurements and quality assurance (BOK-1.......1); Mobile measurements and measurement strategies (BOK-1.2); Field measurements and data assimilation (BOK-1.3); Countermeasures in agriculture and forestry (BOK-1.4); Emergency monitoring in theNordic and Baltic Sea countries (BOK-1.5); and Nuclear exercises (BOK-1.6). For each sub-project, the project...

  20. SRNL EMERGENCY RESPONSE CAPABILITY FOR ATMOSPHERIC CONTAMINANT RELEASES

    International Nuclear Information System (INIS)

    Koffman, L; Chuck Hunter, C; Robert Buckley, R; Robert Addis, R

    2006-01-01

    Emergency response to an atmospheric release of chemical or radiological contamination is enhanced when plume predictions, field measurements, and real-time weather information are integrated into a geospatial framework. The Weather Information and Display (WIND) System at Savannah River National Laboratory (SRNL) utilizes such an integrated framework. The rapid availability of predictions from a suite of atmospheric transport models within this geospatial framework has proven to be of great value to decision makers during an emergency involving an atmospheric contaminant release