WorldWideScience

Sample records for safety chemical safety

  1. Chemical Hazards and Safety Issues in Fusion Safety Design

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    2003-01-01

    Radiological inventory releases have dominated accident consequences for fusion; these consequences are important to analyze and are generally the most severe result of a fusion facility accident event. However, the advent of, or plan for, large-scale usage of some toxic materials poses the additional hazard of chemical exposure from an accident event. Examples of toxic chemicals are beryllium for magnetic fusion and fluorine for laser fusion. Therefore, chemical exposure consequences must also be addressed in fusion safety assessment. This paper provides guidance for fusion safety analysis. US Department of Energy (DOE) chemical safety assessment practices for workers and the public are reviewed. The US Environmental Protection Agency (EPA) has published some guidance on public exposure to releases of mixtures of chemicals, this guidance has been used to create an initial guideline for treating mixed radiological and toxicological releases in fusion; for example, tritiated hazardous dust from a tokamak vacuum vessel. There is no convenient means to judge the hazard severity of exposure to mixed materials. The chemical fate of mixed material constituents must be reviewed to determine if there is a separate or combined radiological and toxicological carcinogenesis, or if other health threats exist with radiological carcinogenesis. Recommendations are made for fusion facility chemical safety evaluation and safety guidance for protecting the public from chemical releases, since such levels are not specifically identified in the DOE fusion safety standard

  2. New set of Chemical Safety rules

    CERN Multimedia

    HSE Unit

    2011-01-01

    A new set of four Safety Rules was issued on 28 March 2011: Safety Regulation SR-C ver. 2, Chemical Agents (en); General Safety Instruction GSI-C1, Prevention and Protection Measures (en); General Safety Instruction GSI-C2, Explosive Atmospheres (en); General Safety Instruction GSI-C3, Monitoring of Exposure to Hazardous Chemical Agents in Workplace Atmospheres (en). These documents form part of the CERN Safety Rules and are issued in application of the “Staff Rules and Regulations” and of document SAPOCO 42. These documents set out the minimum requirements for the protection of persons from risks to their occupational safety and health arising, or likely to arise, from the effects of hazardous chemical agents that are present in the workplace or used in any CERN activity. Simultaneously, the HSE Unit has published seven Safety Guidelines and six Safety Forms. These documents are available from the dedicated Web page “Chemical, Cryogenic and Biological Safety&...

  3. Chemical Safety Vulnerability Working Group Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This report marks the culmination of a 4-month review conducted to identify chemical safety vulnerabilities existing at DOE facilities. This review is an integral part of DOE's efforts to raise its commitment to chemical safety to the same level as that for nuclear safety.

  4. Chemical process safety at fuel cycle facilities

    International Nuclear Information System (INIS)

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document

  5. New Safety rule for Chemical Agents

    CERN Multimedia

    Safety Commission

    2010-01-01

    The following Safety rule has been issued on 08-01-2010: Safety Regulation SR-C Chemical Agents This document applies to all persons under the Director General’s authority. It sets out the minimal requirements for the protection of persons from risks to their safety and health arising, or likely to arise, from the effects of hazardous chemical agents used in any CERN activity. All Safety rules are available on the web pages.

  6. 78 FR 48029 - Improving Chemical Facility Safety and Security

    Science.gov (United States)

    2013-08-07

    ... Improving Chemical Facility Safety and Security By the authority vested in me as President by the... at reducing the safety risks and security risks associated with hazardous chemicals. However... to further improve chemical facility safety and security in coordination with owners and operators...

  7. Chemical Hygiene and Safety Plan

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, K.

    1992-08-01

    The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

  8. Safety Culture: Lessons Learned from the US Chemical Safety and Hazard Investigations Board

    International Nuclear Information System (INIS)

    Griffon, M.

    2016-01-01

    The U.S. Chemical Safety and Hazard Investigation Board (CSB) investigation of the 2005 BP Texas City Refinery disaster as well as the Baker Panel Report have set the stage for the consideration of human and organizational factors and safety culture as contributing causes of major accidents in the oil and gas industry. The investigation of the BP Texas City tragedy in many ways started a shift in the way the oil and chemical industry sectors looked at process safety and the importance of human and organizational factors in improving safety. Since the BP Texas City incident the CSB has investigated several incidents, including the 2010 Macondo disaster in the Gulf of Mexico, where organizational factors and safety culture, once again, were contributing causes of the incidents. In the Texas City incident the CSB found that “while most attention was focused on the injury rate, the overall safety culture and process safety management (PSM) program had serious deficiencies.” The CSB concluded that “safety campaigns, goals, and rewards focused on improving personal safety metrics and worker behaviors rather than on process safety and management safety systems.” The Baker panel, established as a result of a CSB recommendation, did a more extensive review of BPs safety culture. The Baker panel found that ‘while BP has aspirational goals of “no accidents, no harm to people” BP has not provided effective leadership in making certain it’s management and US refining workforce understand what is expected of them regarding process safety performance.’ This may have been in part due to a misinterpretation of positive trends in personal injury rates as an indicator of effective process safety. The panel also found that “at some of its US refineries BP has not established a positive, trusting and open environment with effective lines of communication between management and the workforce, including employee representatives.” In 2010 when the CSB began to

  9. Designing continuous safety improvement within chemical industrial areas

    NARCIS (Netherlands)

    Reniers, G.L.L.; Ale, B. J.M.; Dullaert, W.; Soudan, K.

    This article provides support in organizing and implementing novel concepts for enhancing safety on a cluster level of chemical plants. The paper elaborates the requirements for integrating Safety Management Systems of chemical plants situated within a so-called chemical cluster. Recommendations of

  10. Chemical Safety Vulnerability Working Group report. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports.

  11. Chemical Safety Vulnerability Working Group report. Volume 3

    International Nuclear Information System (INIS)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports

  12. Chemical plant innovative safety investments decision-support methodology.

    Science.gov (United States)

    Reniers, G L L; Audenaert, A

    2009-01-01

    This article examines the extent to which investing in safety during the creation of a new chemical installation proves profitable. The authors propose a management supporting cost-benefit model that identifies and evaluates investments in safety within a chemical company. This innovative model differentiates between serious accidents and less serious accidents, thus providing an authentic image of prevention-related costs and benefits. In classic cost-benefit analyses, which do not make such differentiations, only a rudimentary image of potential profitability resulting from investments in safety is obtained. The resulting management conclusions that can be drawn from such classical analyses are of a very limited nature. The proposed model, however, is applied to a real case study and the proposed investments in safety at an appointed chemical installation are weighed against the estimated hypothetical benefits resulting from the preventive measures to be installed at the installation. In the case-study carried out in question, it would appear that the proposed prevention investments are justified. Such an economic exercise may be very important to chemical corporations trying to (further) improve their safety investments.

  13. Chemical Safety – Introduction

    CERN Multimedia

    DG Unit

    2009-01-01

    A course of "Chemical Safety – Introduction" will be held in English on 29 May 2009, 9:30-12:00. There are some places left. If you are interested in participating, please register on the Training Catalogue. You will then receive an invitation by email.

  14. Food Safety and Chemical Contaminants: An Overview a

    Directory of Open Access Journals (Sweden)

    A. Ali

    2004-06-01

    Full Text Available Food safety is a major consumer’s concern worldwide. Although several incidences of food poisoning have placed microbial contamination on the forefront during recent years, health risks due to chemical contamination still remain high. The most often cited chemical contaminants are derived from a variety of sources such as pesticides, environmental chemicals (PCBs. dioxin, heavy metals including lead, mercury, chemical contaminants as a result of food processing (acrylamide, nitrosamines etc., naturally occurring toxicants (glycoalkaloids, mycotoxins, antinutritives etc, chemicals migrating from packaging materials, veterinary drugs and other chemical residues. In addition to the presence of unintentional contaminants, the quality and safety of foods could also be compromised by the addition of certain food additives, phytonutrients, exposure to irradiation and other substances. Food processors and the regulatory and enforcement agencies are facing an ever-increasing challenge to meet the consumer’s demands for safe foods that do not pose health risks or alter their lifestyle. As the food trade expands throughout the world, food safety has become a shared concern among both the developed and developing countries. Although food control systems do exist in the countries of Gulf region, in most of the cases they are not in line with national and international needs and are not able to cope with the new challenges of the modern era. The most appropriate methods to ensure the safety of food supplies are the strengthening of regular surveillance systems, developing methods for the systematic application of risk analysis, risk assessment and risk management strategies, and timely communication of information to develop and enforce the appropriate food safety laws globally as well as the development of international and national cooperation. This paper reviews issues, challenges and solutions to achieve food safety with respect to chemical

  15. Using game theory to improve safety within chemical industrial parks

    CERN Document Server

    Reniers, Genserik

    2013-01-01

    Though the game-theoretic approach has been vastly studied and utilized in relation to economics of industrial organizations, it has hardly been used to tackle safety management in multi-plant chemical industrial settings. Using Game Theory for Improving Safety within Chemical Industrial Parks presents an in-depth discussion of game-theoretic modelling which may be applied to improve cross-company prevention and -safety management in a chemical industrial park.   By systematically analyzing game-theoretic models and approaches in relation to managing safety in chemical industrial parks, Using Game Theory for Improving Safety within Chemical Industrial Parks explores the ways game theory can predict the outcome of complex strategic investment decision making processes involving several adjacent chemical plants. A number of game-theoretic decision models are discussed to provide strategic tools for decision-making situations.   Offering clear and straightforward explanations of methodologies, Using Game Theor...

  16. Safety Considerations in the Chemical Process Industries

    Science.gov (United States)

    Englund, Stanley M.

    There is an increased emphasis on chemical process safety as a result of highly publicized accidents. Public awareness of these accidents has provided a driving force for industry to improve its safety record. There has been an increasing amount of government regulation.

  17. Animal-Free Chemical Safety Assessment

    Directory of Open Access Journals (Sweden)

    George D Loizou

    2016-07-01

    Full Text Available The exponential growth of the Internet of Things and the global popularity and remarkable decline in cost of the mobile phone is driving the digital transformation of medical practice. The rapidly maturing digital, nonmedical world of mobile (wireless devices, cloud computing and social networking is coalescing with the emerging digital medical world of omics data, biosensors and advanced imaging which offers the increasingly realistic prospect of personalized medicine. Described as a potential seismic shift from the current healthcare model to a wellness paradigm that is predictive, preventative, personalized and participatory, this change is based on the development of increasingly sophisticated biosensors which can track and measure key biochemical variables in people. Additional key drivers in this shift are metabolomic and proteomic signatures, which are increasingly being reported as pre-symptomatic, diagnostic and prognostic of toxicity and disease. These advancements also have profound implications for toxicological evaluation and safety assessment of pharmaceuticals and environmental chemicals. An approach based primarily on human in vivo and high-throughput in vitro human cell-line data is a distinct possibility. This would transform current chemical safety assessment practise which operates in a human data poor to a human data rich environment. This could also lead to a seismic shift from the current animal-based to an animal-free chemical safety assessment paradigm.

  18. Chemical Safety Vulnerability Working Group report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains the Executive summary; Introduction; Summary of vulnerabilities; Management systems weaknesses; Commendable practices; Summary of management response plan; Conclusions; and a Glossary of chemical terms.

  19. Chemical Safety Vulnerability Working Group report. Volume 1

    International Nuclear Information System (INIS)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains the Executive summary; Introduction; Summary of vulnerabilities; Management systems weaknesses; Commendable practices; Summary of management response plan; Conclusions; and a Glossary of chemical terms

  20. JICST Factual DatabaseJICST Chemical Substance Safety Regulation Database

    Science.gov (United States)

    Abe, Atsushi; Sohma, Tohru

    JICST Chemical Substance Safety Regulation Database is based on the Database of Safety Laws for Chemical Compounds constructed by Japan Chemical Industry Ecology-Toxicology & Information Center (JETOC) sponsored by the Sience and Technology Agency in 1987. JICST has modified JETOC database system, added data and started the online service through JOlS-F (JICST Online Information Service-Factual database) in January 1990. JICST database comprises eighty-three laws and fourteen hundred compounds. The authors outline the database, data items, files and search commands. An example of online session is presented.

  1. 78 FR 69433 - Executive Order 13650 Improving Chemical Facility Safety and Security Listening Sessions

    Science.gov (United States)

    2013-11-19

    ... Chemical Facility Safety and Security Listening Sessions AGENCY: National Protection and Programs... from stakeholders on issues pertaining to Improving Chemical Facility Safety and Security (Executive... regulations, guidance, and policies; and identifying best practices in chemical facility safety and security...

  2. Chemical Safety Vulnerability Working Group report. Volume 2

    International Nuclear Information System (INIS)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site

  3. Chemical Safety Vulnerability Working Group report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site.

  4. Chemical process safety management within the Department of Energy

    International Nuclear Information System (INIS)

    Piatt, J.A.

    1995-07-01

    Although the Department of Energy (DOE) is not well known for its chemical processing activities, the DOE does have a variety of chemical processes covered under OSHA's Rule for Process Safety Management of Highly Hazardous Chemicals (the PSM Standard). DOE, like industry, is obligated to comply with the PSM Standard. The shift in the mission of DOE away from defense programs toward environmental restoration and waste management has affected these newly forming process safety management programs within DOE. This paper describes the progress made in implementing effective process safety management programs required by the PSM Standard and discusses some of the trends that have supported efforts to reduce chemical process risks within the DOE. In June of 1994, a survey of chemicals exceeding OSHA PSM or EPA Risk Management Program threshold quantities (TQs) at DOE sites found that there were 22 processes that utilized toxic or reactive chemicals over TQs; there were 13 processes involving flammable gases and liquids over TQs; and explosives manufacturing occurred at 4 sites. Examination of the survey results showed that 12 of the 22 processes involving toxic chemicals involved the use of chlorine for water treatment systems. The processes involving flammable gases and liquids were located at the Strategic Petroleum Reserve and Naval petroleum Reserve sites

  5. Defining safety culture and the nexus between safety goals and safety culture. 1. An Investigation Study on Practical Points of Safety Management

    International Nuclear Information System (INIS)

    Hasegawa, Naoko; Takano, Kenichi; Hirose, Ayako

    2001-01-01

    In a report after the Chernobyl accident, the International Atomic Energy Agency indicated the definition and the importance of safety culture and the ideal organizational state where safety culture pervades. However, the report did not mention practical approaches to enhance safety culture. In Japan, although there had been investigations that clarified the consciousness of employees and the organizational climate in the nuclear power and railway industries, organizational factors that clarified the level of organization safety and practical methods that spread safety culture in an organization had not been studied. The Central Research Institute of the Electric Power Industry conducted surveys of organizational culture for the construction, chemical, and manufacturing industries. The aim of our study was to clarify the organizational factors that influence safety in an organization expressed in employee safety consciousness, commitment to safety activities, rate of accidents, etc. If these areas were clarified, the level of organization safety might be evaluated, and practical ways could be suggested to enhance the safety culture. Consequently, a series of investigations was conducted to clarify relationships among organizational climate, employee consciousness, safety management and activities, and rate of accidents. The questionnaire surveys were conducted in 1998-1999. The subjects were (a) managers of the safety management sections in the head offices of the construction, chemical, and manufacturing industries; (b) responsible persons in factories of the chemical and manufacturing industries; and (c) general workers in factories of the chemical and manufacturing industries. The number of collected data was (a) managers in the head office: 48 from the construction industry and 58 from the chemical and manufacturing industries, (b) responsible persons in factories: 567, and (c) general workers: from 29 factories. Items in the questionnaires were selected from

  6. Safety management and risk assessment in chemical laboratories.

    Science.gov (United States)

    Marendaz, Jean-Luc; Friedrich, Kirstin; Meyer, Thierry

    2011-01-01

    The present paper highlights a new safety management program, MICE (Management, Information, Control and Emergency), which has been specifically adapted for the academic environment. The process starts with an exhaustive hazard inventory supported by a platform assembling specific hazards encountered in laboratories and their subsequent classification. A proof of concept is given by a series of implementations in the domain of chemistry targeting workplace health protection. The methodology is expressed through three examples to illustrate how the MICE program can be used to address safety concerns regarding chemicals, strong magnetic fields and nanoparticles in research laboratories. A comprehensive chemical management program is also depicted.

  7. Practicing chemical process safety: a look at the layers of protection

    International Nuclear Information System (INIS)

    Sanders, Roy E.

    2004-01-01

    This presentation will review a few public perceptions of safety in chemical plants and refineries, and will compare these plant workplace risks to some of the more traditional occupations. The central theme of this paper is to provide a 'within-the-fence' view of many of the process safety practices that world class plants perform to pro-actively protect people, property, profits as well as the environment. It behooves each chemical plant and refinery to have their story on an image-rich presentation to stress stewardship and process safety. Such a program can assure the company's employees and help convince the community that many layers of safety protection within our plants are effective, and protect all from harm

  8. OSHA safety requirements for hazardous chemicals in the workplace.

    Science.gov (United States)

    Dohms, J

    1992-01-01

    This article outlines the Occupational Safety and Health Administration (OSHA) requirements set forth by the Hazard Communication Standard, which has been in effect for the healthcare industry since 1987. Administrators who have not taken concrete steps to address employee health and safety issues relating to hazardous chemicals are encouraged to do so to avoid the potential of large fines for cited violations. While some states administer their own occupational safety and health programs, they must adopt standards and enforce requirements that are at least as effective as federal requirements.

  9. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Science.gov (United States)

    2010-01-01

    ...; (iv) Potential accident sequences caused by process deviations or other events internal to the... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process... this safety program; namely, process safety information, integrated safety analysis, and management...

  10. Evaluation of Hazardous Material Management Safety in the Chemical Laboratory in BATAN

    International Nuclear Information System (INIS)

    Nur-Rahmah-Hidayati

    2005-01-01

    The management safety of the hazardous material (B3) in the chemical laboratory of BATAN was evaluated. The evaluation is necessary to be done because B3 is often used together with radioactive materials in the laboratory, but the attention to the safety aspect of B3 is not paid sufficiently in spite of its big potential hazard. The potential hazard generated from the nature of B3 could be flammable, explosive, oxidative, corrosive and poisonous. The handling of B3 could be conducted by enforcing the labelling and classification in the usage and disposal processes. Some observations of the chemical laboratory of BATAN show that the management safety of hazardous material in compliance with the government regulation no. 74 year 2001 has not been dully conducted. The management safety of B3 could be improved by, designating one who has adequate skill in hazardous material safety specially as the B3 safety officer, providing the Material Safety Data Sheet that is updated periodically to use in the laboratory and storage room, updating periodically the inventory of B3, performing training in work safety periodically, and monitoring the ventilation system intensively in laboratory and storage room. (author)

  11. Evaluation model for safety capacity of chemical industrial park based on acceptable regional risk

    Institute of Scientific and Technical Information of China (English)

    Guohua Chen; Shukun Wang; Xiaoqun Tan

    2015-01-01

    The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose of exploring the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity of chemical industrial park, and then by combining with the safety storage capacity, a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized in the regional risk control of the park effectively.

  12. Process safety management for highly hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  13. Interactive Chemical Safety for Sustainablity Toxicity Forecaster Dashboard

    Science.gov (United States)

    EPA researchers have been using advances in computational toxicology to address lack of data on the thousands of chemicals. EPA released chemical data on 1,800 chemicals. The 1,800 chemicals were screened in more than 800 rapid, automated tests (called high-throughput screening assays) to determine potential human health effects. The data is available through the interactive Chemical Safety for Sustainability Dashboards (iCSS dashboard) and the complete data sets are also available for download.

  14. Economic aspects of risk assessment in chemical safety

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, M F; Shannon, H S

    1986-05-01

    This paper considers how the economic aspects of risk assessment in chemical safety can be strengthened. Its main focus is on how economic appraisal techniques, such as cost-benefit and cost-effectiveness analysis, can be adapted to the requirements of the risk-assessment process. Following a discussion of the main methodological issues raised by the use of economic appraisal, illustrated by examples from the health and safety field, a number of practical issues are discussed. These include the consideration of the distribution of costs, effects and benefits, taking account of uncertainty, risk probabilities and public perception, making the appraisal techniques useful to the early stages of the risk-assessment process and structuring the appraisal to permit continuous feedback to the participants in the risk-assessment process. It is concluded that while the way of thinking embodied in economic appraisal is highly relevant to the consideration of choices in chemical safety, the application of these principles in formal analysis of risk reduction procedures presents a more mixed picture. The main suggestions for improvement in the analyses performed are the undertaking of sensitivity analyses of study results to changes in the key assumptions, the presentation of the distribution of costs and benefits by viewpoint, the comparison of health and safety measures in terms of their incremental cost per life-year (or quality-adjusted life-year) gained and the more frequent retrospective review and revision of the economic analyses that are undertaken.

  15. chemical safety in laboratories of african universities

    African Journals Online (AJOL)

    unesco

    Universities in Africa are in need of chemical safety and security facilities, ... In March 2009, fifty one 4th year undergraduate students (graduating class) of .... manufacturing industries, and many of them are concerned primarily ... advancement of chemistry world wide to do their best both to push the African chemistry.

  16. The main chemical safety problems in main process of nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Song Fengli; Zhao Shangui; Liu Xinhua; Zhang Chunlong; Lu Dan; Liu Yuntao; Yang Xiaowei; Wang Shijun

    2014-01-01

    There are many chemical reactions in the aqueous process of nuclear fuel reprocessing. The reaction conditions and the products are different so that the chemical safety problems are different. In the paper the chemical reactions in the aqueous process of nuclear fuel reprocessing are described and the main chemical safety problems are analyzed. The reference is offered to the design and accident analysis of the nuclear fuel reprocessing plant. (authors)

  17. Technical safety appraisal of the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    1992-05-01

    On June 27, 1989, Secretary of Energy, Admiral James D. Watkins, US Navy (Retired), announced a 10-point initiative to strengthen environment, safety, and health (ES ampersand H) programs and waste management operations in the Department of Energy (DOE). One of the initiatives involved conducting independent Tiger Team Assessments (TTA) at DOE operating facilities. A TTA of the Idaho National Engineering Laboratory (INEL) was performed during June and July 1991. Technical Safety Appraisals (TSA) were conducted in conjunction with the TTA as its Safety and Health portion. However, because of operational constraints the the Idaho Chemical Processing Plant (ICPP), operated for the DOE by Westinghouse Idaho Nuclear Company, Inc. (WINCO), was not included in the Safety and Health Subteam assessment at that time. This TSA, conducted April 12 - May 8, 1992, was performed by the DOE Office of Performance Assessment to complete the normal scope of the Safety and Health portion of the Tiger Team Assessment of the Idaho National Engineering Laboratory. The purpose of TSAs is to evaluate and strengthen DOE operations by verifying contractor compliance with DOE Orders, to assure that lessons learned from commercial operations are incorporated into facility operations, and to stimulate and encourage pursuit of excellence; thus, the appraisal addresses more issues than would be addressed in a strictly compliance-oriented appraisal. A total of 139 Performance Objectives have been addressed by this appraisal in 19 subject areas. These 19 areas are: organization and administration, quality verification, operations, maintenance, training and certification, auxiliary systems, emergency preparedness, technical support, packaging and transportation, nuclear criticality safety, safety/security interface, experimental activities, site/facility safety review, radiological protection, worker safety and health compliance, personnel protection, fire protection, medical services and natural

  18. School Chemistry Laboratory Safety Guide

    Science.gov (United States)

    Brundage, Patricia; Palassis, John

    2006-01-01

    The guide presents information about ordering, using, storing, and maintaining chemicals in the high school laboratory. The guide also provides information about chemical waste, safety and emergency equipment, assessing chemical hazards, common safety symbols and signs, and fundamental resources relating to chemical safety, such as Material…

  19. Safety of mechanical devices. Safety of automation systems

    International Nuclear Information System (INIS)

    Pahl, G.; Schweizer, G.; Kapp, K.

    1985-01-01

    The paper deals with the classic procedures of safety engineering in the sectors mechanical engineering, electrical and energy engineering, construction and transport, medicine technology and process technology. Particular stress is laid on the safety of automation systems, control technology, protection of mechanical devices, reactor safety, mechanical constructions, transport systems, railway signalling devices, road traffic and protection at work in chemical plans. (DG) [de

  20. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 1

    International Nuclear Information System (INIS)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains a discussion of the chemical safety improvements planned or already underway at DOE sites to correct facility or site-specific vulnerabilities. The main part of the report is a discussion of each of the programmatic deficiencies; a description of the tasks to be accomplished; the specific actions to be taken; and the organizational responsibilities for implementation

  1. SAFETY INSTRUCTION AND SAFETY NOTE

    CERN Multimedia

    TIS Secretariat

    2002-01-01

    Please note that the SAFETY INSTRUCTION N0 49 (IS 49) and the SAFETY NOTE N0 28 (NS 28) entitled respectively 'AVOIDING CHEMICAL POLLUTION OF WATER' and 'CERN EXHIBITIONS - FIRE PRECAUTIONS' are available on the web at the following urls: http://edms.cern.ch/document/335814 and http://edms.cern.ch/document/335861 Paper copies can also be obtained from the TIS Divisional Secretariat, email: TIS.Secretariat@cern.ch

  2. Improving Chemical Plant Safety Training Using Virtual Reality

    OpenAIRE

    Nasios, Konstantinos

    2002-01-01

    The chemical engineering industry often requires people to work in hazardous environments and to operate complicated equipment which often limits the type of training that be carried out on site. The daily job of chemical plant operators is becoming more demanding due to the increasing plant complexity together with increasing requirements on plant safety, production capacity, product quality and cost effectiveness. The importance of designing systems and environments that are as safe as poss...

  3. Aligning the 3Rs with new paradigms in the safety assessment of chemicals.

    Science.gov (United States)

    Burden, Natalie; Mahony, Catherine; Müller, Boris P; Terry, Claire; Westmoreland, Carl; Kimber, Ian

    2015-04-01

    There are currently several factors driving a move away from the reliance on in vivo toxicity testing for the purposes of chemical safety assessment. Progress has started to be made in the development and validation of non-animal methods. However, recent advances in the biosciences provide exciting opportunities to accelerate this process and to ensure that the alternative paradigms for hazard identification and risk assessment deliver lasting 3Rs benefits, whilst improving the quality and relevance of safety assessment. The NC3Rs, a UK-based scientific organisation which supports the development and application of novel 3Rs techniques and approaches, held a workshop recently which brought together over 20 international experts in the field of chemical safety assessment. The aim of this workshop was to review the current scientific, technical and regulatory landscapes, and to identify key opportunities towards reaching these goals. Here, we consider areas where further strategic investment will need to be focused if significant impact on 3Rs is to be matched with improved safety science, and why the timing is right for the field to work together towards an environment where we no longer rely on whole animal data for the accurate safety assessment of chemicals.

  4. Chemical safety management in WIP, Kalpakkam - an overview

    International Nuclear Information System (INIS)

    Das, Biplab; Ravi, K.V.

    2016-01-01

    Nuclear Waste Management necessitates several chemicals for its process. Many of them are substantially hazardous to health, if exposed. Our department takes utmost care in transport, storing and handling of chemicals. We must put maximum efforts to prevent spillage or leak of chemicals and prevent any exposure to employees, but once it occurs, safety of the employees depend on our quick and appropriate response. Therefore, periodical review of the chemical risk needs to be done to ensure that the steps taken by the plant are in place. Purpose of this paper is to assess the overall chemical management system of this plant to ensure the prevention of any untoward incident arising from chemicals. (author)

  5. 77 FR 66638 - The Standard on Process Safety Management of Highly Hazardous Chemicals; Extension of the Office...

    Science.gov (United States)

    2012-11-06

    ... Standard on Process Safety Management of Highly Hazardous Chemicals; Extension of the Office of Management...) approval of the information collection requirements specified in the Standard on Process Safety Management...: The Standard on Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). OMB Number...

  6. Do provisions to advance chemical facility safety also advance chemical facility security? - An analysis of possible synergies

    OpenAIRE

    Hedlund, Frank Huess

    2012-01-01

    The European Commission has launched a study on the applicability of existing chemical industry safety provisions to enhancing security of chemical facilities covering the situation in 18 EU Member States. This paper reports some preliminary analytical findings regarding the extent to which existing provisions that have been put into existence to advance safety objectives due to synergy effects could be expected advance security objectives as well.The paper provides a conceptual definition of...

  7. Health and safety manual

    International Nuclear Information System (INIS)

    1980-02-01

    The manual consists of the following chapters: general policies and administration; the Environmental Health and Safety Department; the Medical Services Department: biological hazards; chemical safety; confined space entry; cryogenic safety; electrical safety; emergency plans; engineering and construction; evacuations, trenching, and shoring; fire safety; gases, flammable and compressed; guarding, mechanical; ladders and scaffolds, work surfaces; laser safety; materials handling and storage; noise; personal protective equipment; pressure safety; radiation safety, ionizing and non-ionizing; sanitation; seismic safety; training, environmental health and safety; tools, power and hand-operated; traffic and transportation; and warning signs and devices

  8. Safety handbook

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of the Australian Nuclear Science and Technology Organization's Safety Handbook is to outline simply the fundamental procedures and safety precautions which provide an appropriate framework for safe working with any potential hazards, such as fire and explosion, welding, cutting, brazing and soldering, compressed gases, cryogenic liquids, chemicals, ionizing radiations, non-ionising radiations, sound and vibration, as well as safety in the office. It also specifies the organisation for safety at the Lucas Heights Research Laboratories and the responsibilities of individuals and committees. It also defines the procedures for the scrutiny and review of all operations and the resultant setting of safety rules for them. ills

  9. Savannah River Site management response plan for chemical safety vulnerability field assessment. Revision 1

    International Nuclear Information System (INIS)

    Kahal, E.J.; Murphy, S.L.; Salaymeh, S.R.

    1994-09-01

    As part of the U.S. Department of Energy's (DOE) initiative to identify potential chemical safety vulnerabilities in the DOE complex, the Chemical Safety Vulnerability Core Working Group issued a field verification assessment report. While the report concluded that Savannah River Site (SRS) is moving in a positive direction, the report also identified five chemical safety vulnerabilities with broad programmatic impact that are not easily nor quickly remedied. The May 1994 SRS Management Response Plan addressed the five SRS vulnerabilities identified in the field assessment report. The SRS response plan listed observations supporting the vulnerabilities and any actions taken or planned toward resolution. Many of the observations were resolved by simple explanations, such as the existence of implementation plans for Safety Analysis Report updates. Recognizing that correcting individual observations does not suffice in remedying the vulnerabilities, a task team was assembled to address the broader programmatic issues and to recommend corrective actions

  10. Probabilistic safety assessment in the chemical and nuclear industries

    CERN Document Server

    Fullwood, Ralph R

    2000-01-01

    Probabilistic Safety Analysis (PSA) determines the probability and consequences of accidents, hence, the risk. This subject concerns policy makers, regulators, designers, educators and engineers working to achieve maximum safety with operational efficiency. Risk is analyzed using methods for achieving reliability in the space program. The first major application was to the nuclear power industry, followed by applications to the chemical industry. It has also been applied to space, aviation, defense, ground, and water transportation. This book is unique in its treatment of chemical and nuclear risk. Problems are included at the end of many chapters, and answers are in the back of the book. Computer files are provided (via the internet), containing reliability data, a calculator that determines failure rate and uncertainty based on field experience, pipe break calculator, event tree calculator, FTAP and associated programs for fault tree analysis, and a units conversion code. It contains 540 references and many...

  11. Safety Education and Science.

    Science.gov (United States)

    Ralph, Richard

    1980-01-01

    Safety education in the science classroom is discussed, including the beginning of safe management, attitudes toward safety education, laboratory assistants, chemical and health regulation, safety aids, and a case study of a high school science laboratory. Suggestions for safety codes for science teachers, student behavior, and laboratory…

  12. Food safety. [chemical contaminants and human toxic diseases

    Science.gov (United States)

    Pier, S. M.; Valentine, J. L.

    1975-01-01

    Illness induced by unsafe food is a problem of great public health significance. This study relates exclusively to the occurrence of chemical agents which will result in food unsafe for human consumption since the matter of food safety is of paramount importance in the mission and operation of the manned spacecraft program of the National Aeronautics and Space Administration.

  13. Safety in the Chemical Laboratory: An Undergraduate Chemical Laboratory Safety Course.

    Science.gov (United States)

    Nicholls, L. Jewel

    1982-01-01

    Describes a two-quarter hour college chemistry course focusing on laboratory safety. Includes lists of topics/assignments, problem sets (toxicology, storage, and energy) and videotapes, films, and slide sets used in the course. (JN)

  14. Views on chemical safety information and influences on chemical disposal behaviour in the UK

    International Nuclear Information System (INIS)

    Hinks, J.; Bush, J.; Andras, P.; Garratt, J.; Pigott, G.; Kennedy, A.; Pless-Mulloli, T.

    2009-01-01

    This study examined how groups representing four tiers in the chemical supply chain (manufacturers, vendors, workers and consumers) understood safety information, and the factors that influenced disposal behaviour. Data from seven, semi-structured, focus groups was analysed both qualitatively (textual analysis) and quantitatively (network analysis). Such combined analytical methods enabled us to achieve both detailed insights into perceptions and behaviour and an objective understanding of the prevailing opinions that occurred within and between the focus group discussions. We found issues around awareness, trust, access and disposal behaviours differed between groups within the supply chain. Participants from the lower tiers perceived chemical safety information to be largely inaccessible. Labels were the main source of information on chemical risks for the middle and bottom tiers of the supply chain. Almost all of the participants were aware of the St Andrew's Cross and skull and crossbones symbols but few were familiar with the Volatile Organic Compound logo or the fish and tree symbol. Both the network and thematic analysis demonstrated that whilst frequent references to health risks associated with chemicals were made environmental risks were usually only articulated after prompting. It is clear that the issues surrounding public understanding of chemical safety labels are highly complex and this is compounded by inconsistencies in the cognitive profiles of chemical users. Substantially different cognitive profiles are likely to contribute towards communication difficulties between different tiers of the supply chain. Further research is needed to examine the most effective ways of communicating chemical hazards information to the public. The findings demonstrate a need to improve and simplify disposal guidance to members of the public, to raise public awareness of the graphic symbols in the CHIP 3.1, 2005 regulations and to improve access to disposal guidance

  15. Assessing food safety concepts on the dairy farm: the case of chemical hazards

    NARCIS (Netherlands)

    Valeeva, N.I.; Meuwissen, M.P.M.; Oude Lansink, A.G.J.M.; Bergevoet, R.H.M.; Huirne, R.B.M.

    2004-01-01

    Adaptive conjoint analysis was used to elicit farmers' and experts' preferences for attributes of improving food safety with respect to chemical hazards on the dairy farm. Groups of respondents were determined by cluster analysis based on similar farmers' and experts' perceptions of food safety

  16. Materials Safety Data Sheets: the basis for control of toxic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Ketchen, E.E.; Porter, W.E.

    1979-09-01

    The Material Safety Data Sheets contained in this volume are the basis for the Toxic Chemical Control Program developed by the Industrial Hygiene Department, Health Division, ORNL. The three volumes are the update and expansion of ORNL/TM-5721 and ORNL/TM-5722 Material Safety Data Sheets: The Basis for Control of Toxic Chemicals, Volume I and Volume II. As such, they are a valuable adjunct to the data cards issued with specific chemicals. The chemicals are identified by name, stores catalog number where appropriate, and sequence numbers from the NIOSH Registry of Toxic Effects of Chemical Substances, 1977 Edition, if available. The data sheets were developed and compiled to aid in apprising the employees of hazards peculiar to the handling and/or use of specific toxic chemicals. Space limitation necessitate the use of descriptive medical terms and toxicological abbreviations. A glossary and an abbreviation list were developed to define some of those sometimes unfamiliar terms and abbreviations. The page numbers are keyed to the catalog number in the chemical stores at ORNL.

  17. Undergraduate Organic Chemistry Laboratory Safety

    Science.gov (United States)

    Luckenbaugh, Raymond W.

    1996-11-01

    Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.

  18. Safety in the Chemical Laboratory: Safety in the Chemistry Laboratories: A Specific Program.

    Science.gov (United States)

    Corkern, Walter H.; Munchausen, Linda L.

    1983-01-01

    Describes a safety program adopted by Southeastern Louisiana University. Students are given detailed instructions on laboratory safety during the first laboratory period and a test which must be completely correct before they are allowed to return to the laboratory. Test questions, list of safety rules, and a laboratory accident report form are…

  19. A sequential-move game for enhancing safety and security cooperation within chemical clusters

    International Nuclear Information System (INIS)

    Pavlova, Yulia; Reniers, Genserik

    2011-01-01

    The present paper provides a game theoretic analysis of strategic cooperation on safety and security among chemical companies within a chemical industrial cluster. We suggest a two-stage sequential move game between adjacent chemical plants and the so-called Multi-Plant Council (MPC). The MPC is considered in the game as a leader player who makes the first move, and the individual chemical companies are the followers. The MPC's objective is to achieve full cooperation among players through establishing a subsidy system at minimum expense. The rest of the players rationally react to the subsidies proposed by the MPC and play Nash equilibrium. We show that such a case of conflict between safety and security, and social cooperation, belongs to the 'coordination with assurance' class of games, and we explore the role of cluster governance (fulfilled by the MPC) in achieving a full cooperative outcome in domino effects prevention negotiations. The paper proposes an algorithm that can be used by the MPC to develop the subsidy system. Furthermore, a stepwise plan to improve cross-company safety and security management in a chemical industrial cluster is suggested and an illustrative example is provided.

  20. Process Control Systems in the Chemical Industry: Safety vs. Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  1. 化工企业危化品安全管理解析%Analysis on Safety Management of Hazardous Chemicals in Chemical Enterprises

    Institute of Scientific and Technical Information of China (English)

    韩宇

    2016-01-01

    With the development of economy in our country,chemical enterprises in our country are developing rapidly.The dangerous chemicals produced by chemical enterprises have certain function under specific environment.The chemical enterprise must make good safety management measures,To develop clear safety rules and sound rules and regulations to enhance the safety awareness of chemical workers,the use of hazardous chemicals and the use of good norms,enhance the safety of chemical enterprises,hazardous chemicals,and effectively prevent the occurrence of accidents,On the current chemical enterprises in China's chemical safety supervision and management of the existing problems,and in accordance with existing problems to develop a clear safety management measures to enhance the safety of chemical companies.%随着我国经济的不断发展,我国化工企业也在飞速的发展,在化工企业生产的危险化学品在特定的环境下有着特定的作用,化工企业一定要制定良好的安全管理措施,制定明确的安全准则和健全的规章制度,提升工作人员的安全意识,对危险化学品的使用范围和使用过程进行良好的规范,提升化工企业危险化学品的安全性,有效防止安全事故的发生。对现今我国化工企业危险化学品安全管理监督存在的问题进分析,并根据存在的问题制定明确的安全管理措施,以提升化工企业的安全性。

  2. IMPLEMENTATION OF A SAFETY PROGRAM FOR THE WORK ACCIDENTS’ CONTROL. A CASE STUDY IN THE CHEMICAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Edison Cesar de Faria Nogueira

    2015-03-01

    Full Text Available This article presents a case study related to the implementation of a Work Safety Program in a chemical industry, based on the Process Safety Program, PSP, of a huge energy company. The research was applied, exploratory, qualitative and with and data collection method through documentary and bibliographical research. There will be presented the main practices adopted in order to make the Safety Program a reality inside a chemical industry, its results and contributions for its better development. This paper proposes the implementation of a Safety Program must be preceded by a diagnosis of occupational safety and health management system and with constant critical analysis in order to make the necessary adjustments.

  3. 77 FR 71561 - Health and Safety Data Reporting; Addition of Certain Chemicals

    Science.gov (United States)

    2012-12-03

    ...). Manufacturers of basic organic chemical products (except aromatic petrochemicals, industrial gases, synthetic... Health and Safety Data Reporting; Addition of Certain Chemicals AGENCY: Environmental Protection Agency... EPA. The Interagency Testing Committee (ITC), established under section 4(e) of the Toxic Substances...

  4. A sequential-move game for enhancing safety and security cooperation within chemical clusters.

    Science.gov (United States)

    Pavlova, Yulia; Reniers, Genserik

    2011-02-15

    The present paper provides a game theoretic analysis of strategic cooperation on safety and security among chemical companies within a chemical industrial cluster. We suggest a two-stage sequential move game between adjacent chemical plants and the so-called Multi-Plant Council (MPC). The MPC is considered in the game as a leader player who makes the first move, and the individual chemical companies are the followers. The MPC's objective is to achieve full cooperation among players through establishing a subsidy system at minimum expense. The rest of the players rationally react to the subsidies proposed by the MPC and play Nash equilibrium. We show that such a case of conflict between safety and security, and social cooperation, belongs to the 'coordination with assurance' class of games, and we explore the role of cluster governance (fulfilled by the MPC) in achieving a full cooperative outcome in domino effects prevention negotiations. The paper proposes an algorithm that can be used by the MPC to develop the subsidy system. Furthermore, a stepwise plan to improve cross-company safety and security management in a chemical industrial cluster is suggested and an illustrative example is provided. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Environmental, safety, and health engineering

    International Nuclear Information System (INIS)

    Woodside, G.; Kocurek, D.

    1997-01-01

    A complete guide to environmental, safety, and health engineering, including an overview of EPA and OSHA regulations; principles of environmental engineering, including pollution prevention, waste and wastewater treatment and disposal, environmental statistics, air emissions and abatement engineering, and hazardous waste storage and containment; principles of safety engineering, including safety management, equipment safety, fire and life safety, process and system safety, confined space safety, and construction safety; and principles of industrial hygiene/occupational health engineering including chemical hazard assessment, personal protective equipment, industrial ventilation, ionizing and nonionizing radiation, noise, and ergonomics

  6. Safety management system in a Swiss chemical company

    International Nuclear Information System (INIS)

    Vouillamoz, R.

    1996-01-01

    Through the implementation of the fine chemical strategy, i.e. the manufacture of products with a higher value, the Lonza AG was confronted with a drastic increase of complexity in safety and disposal. In this connection, a concept of risk reduction was developed and carried out. This concept is based on 3 different steps: - prevention, - reduction, - provision. The details of these steps are explained here and illustrated with concrete examples. (author) 5 figs., tabs

  7. Revolutionizing safety and security in the chemical and process industry: applying the CHESS concept

    NARCIS (Netherlands)

    Reniers, G.L.L.M.E.; Khakzad Rostami, N.

    2017-01-01

    This paper argues that a new concept, summarized as ‘CHESS’, should be used in the chemical industry to further substantially advance safety (where we use the term in a broad sense, that is, safety and physical security, amongst others). The different domains that need to be focused upon, and where

  8. Regulation of chemical safety at fuel cycle facilities by the United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Ramsey, Kevin M.

    2013-01-01

    When the U.S. Nuclear Regulatory Commission (NRC) was established in 1975, its regulations were based on radiation dose limits. Chemical hazards rarely influenced NRC regulations. After the Three Mile Island reactor accident in 1979, the NRC staff was directed to address emergency planning at non-reactor facilities. Several fuel cycle facilities were ordered to submit emergency plans consistent with reactor emergency plans because no other guidance was available. NRC published a notice that it was writing regulations to codify the requirements in the Orders and upgrade the emergency plans to address all hazards, including chemical hazards. The legal authority of NRC to regulate chemical safety was questioned. In 1986, an overfilled uranium hexafluoride cylinder ruptured and killed a worker. The NRC staff was directed to address emergency planning for hazardous chemicals in its regulations. The final rule included a requirement for fuel cycle facilities to certify compliance with legislation requiring local authorities to establish emergency plans for hazardous chemicals. As with emergency planning, NRC's authority to regulate chemical safety during routine operations was limited. NRC established memoranda of understanding (MOUs) with other regulatory agencies to encourage exchange of information between the agencies regarding occupational hazards. In 2000, NRC published new, performance-based, regulations for fuel cycle facilities. The new regulations required an integrated safety analysis (ISA) which used quantitative standards to assess chemical exposures. Some unique chemical exposure cases were addressed while implementing the new regulations. In addition, some gaps remain in the regulation of hazardous chemicals at fuel cycle facilities. The status of ongoing efforts to improve regulation of chemical safety at fuel cycle facilities is discussed. (authors)

  9. The chemical safety of irradiated foods

    International Nuclear Information System (INIS)

    Giddings, G.G.

    1990-01-01

    While animal feeding studies and other biological testing methods have contributed greatly to the establishment of the toxicological safety of irradiated foods, probably no other single factor has lent itself so conclusively to this end as the availability of an unprecedented volume of analytical chemistry data on radiolytic products generated in a variety of foods and their raw materials and ingredients, collected at laboratories worldwide over decades. Such direct analytical chemical evidence, backed up by a general knowledge of radiation chemistry of bio-organic materials has allowed regulatory scientists and other competent, qualified and objective interested parties to discern with a high degree of confidence what takes place chemically at the sub-molecular level, and in the parts-per-trillion range, as a result of food irradiation. Ironically, this has also opened the way for nonqualified, subjectively negatively biased individuals to, for example, grossly misrepresent such compounds as benzene and formaldehyde in this context in an alarmist fashion to anyone predisposed to listen

  10. Safety criteria for nuclear chemical plants

    International Nuclear Information System (INIS)

    Ball, P.W.; Curtis, L.M.

    1983-01-01

    Safety measures have always been required to limit the hazards due to accidental release of radioactive substances from nuclear power plants and chemical plants. The risk associated with the discharge of radioactive substances during normal operation has also to be kept acceptably low. BNFL (British Nuclear Fuels Ltd.) are developing risk criteria as targets for safe plant design and operation. The numerical values derived are compared with these criteria to see if plants are 'acceptably safe'. However, the criteria are not mandatory and may be exceeded if this can be justified. The risk assessments are subject to independent review and audit. The Nuclear Installations Inspectorate also has to pass the plants as safe. The assessment principles it uses are stated. The development of risk criteria for a multiplant site (nuclear chemical plants tend to be sited with many others which are related functionally) is discussed. This covers individual members of the general public, societal risks, risks to the workforce and external hazards. (U.K.)

  11. 10 April 2014: Safety Day at CERN

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    A wide variety of chemicals is used every day in the different laboratories and workshops around CERN. Potentially toxic, corrosive, polluting or hazardous in other ways, these chemicals all have to be handled carefully, as we will be reminded by the Safety Day campaign to be held by the HSE Unit on 10 April to mark World Day for Safety and Health at Work.   The use of chemicals at CERN is regulated by "Safety Regulation SR-C, Chemical Agents", which defines the minimum health and safety protection requirements for people exposed to the potentially hazardous effects of dangerous chemicals. This regulation is complemented by other Safety guides. Regretfully, despite strict procedures and regular inspections, accidents caused by the improper use of chemicals do occur every year. "Unfortunately, each year we see a small number of accidents related to the handling of chemicals," confirms chemicals expert Jonathan Gulley, who is a member of the Prevention and Sa...

  12. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    International Nuclear Information System (INIS)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt

    2001-01-01

    The current paper gives an overview of the legislation and the methods used in safety and risk management in the chemical industry within Europe and in particular within the European Union. The paper is based on a report that has been written for the SOS-1 project under the Nordic nuclear safety research (NKS). Safety- and risk-related matters in the process industry, in particular, in chemical, within the EU are subject to consideration at three levels: (1) EU legislation, (2) European/intemational standardisation, and (3) socio-economic analysis. EC Directives define the 'essential requirements', e.g., protection of health and safety, that must be fulfilled when goods are placed on the market or some industry is put into operation. The European standards bodies (CEN, CENELEC and ETSI) have the task of establishing the corresponding technical specifications, meeting the essential requirements of the Directives, compliance with which will provide a presumption of conformity with the essential requirements. Such specifications are referred to as 'harmonised standards'. Compliance with harmonised standards remains voluntary, and manufacturers are free to choose any other technical solution that provides compliance with the essential requirements. This view is stated in the 'New Approach' to technical harmonisation and standardisation (details can be found on the web page: http://europe.eu.int/comm/enterprise/newapproach/standardization/index .html). Standardisation as well as the regulation of technical risks is increasingly being undertaken at European or international level. The European legislator limits its role to the affirmation of overall objectives, and leaves it to the economic players to draw up the technical procedures and standards to specify in detail the ways and means of attaining them. Many countries have introduced requirements that new legislation and/or administrative regulations be subject to socio-economic analysis. In this respect there is a

  13. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt [Risoe National Laboratory, Roskilde (Denmark). Systems Analysis Department

    2001-07-01

    The current paper gives an overview of the legislation and the methods used in safety and risk management in the chemical industry within Europe and in particular within the European Union. The paper is based on a report that has been written for the SOS-1 project under the Nordic nuclear safety research (NKS). Safety- and risk-related matters in the process industry, in particular, in chemical, within the EU are subject to consideration at three levels: (1) EU legislation, (2) European/intemational standardisation, and (3) socio-economic analysis. EC Directives define the 'essential requirements', e.g., protection of health and safety, that must be fulfilled when goods are placed on the market or some industry is put into operation. The European standards bodies (CEN, CENELEC and ETSI) have the task of establishing the corresponding technical specifications, meeting the essential requirements of the Directives, compliance with which will provide a presumption of conformity with the essential requirements. Such specifications are referred to as 'harmonised standards'. Compliance with harmonised standards remains voluntary, and manufacturers are free to choose any other technical solution that provides compliance with the essential requirements. This view is stated in the 'New Approach' to technical harmonisation and standardisation (details can be found on the web page: http://europe.eu.int/comm/enterprise/newapproach/standardization/index .html). Standardisation as well as the regulation of technical risks is increasingly being undertaken at European or international level. The European legislator limits its role to the affirmation of overall objectives, and leaves it to the economic players to draw up the technical procedures and standards to specify in detail the ways and means of attaining them. Many countries have introduced requirements that new legislation and/or administrative regulations be subject to socio-economic analysis

  14. Do provisions to advance chemical facility safety also advance chemical facility security? An analysis of possible synergies

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2012-01-01

    The European Commission has launched a study on the applicability of existing chemical industry safety provisions to enhancing security of chemical facilities covering the situation in 18 EU Member States. This paper reports some preliminary analytical findings regarding the extent to which exist...

  15. Impacts on health and safety from transfer/consolidation of nuclear materials and hazardous chemicals

    International Nuclear Information System (INIS)

    Gallucci, R.H.V.

    1994-11-01

    Environmental restoration plans at the US Department of Energy (USDOE) Hanford Site calls for transfer/consolidation of ''targets/threats,'' namely nuclear materials and hazardous chemicals. Reductions in the health and safety hazards will depend on the plans implemented. Pacific Northwest Laboratory (PNL) estimated these potential impacts, assuming implementation of the current reference plan and employing ongoing risk and safety analyses. The results indicated the potential for ''significant'' reductions in health and safety hazards in the long term (> 25 years) and a potentially ''noteworthy'' reduction in health hazard in the short term (≤ 25 years)

  16. Chemistry laboratory safety manual available

    Science.gov (United States)

    Elsbrock, R. G.

    1968-01-01

    Chemistry laboratory safety manual outlines safe practices for handling hazardous chemicals and chemistry laboratory equipment. Included are discussions of chemical hazards relating to fire, health, explosion, safety equipment and procedures for certain laboratory techniques and manipulations involving glassware, vacuum equipment, acids, bases, and volatile solvents.

  17. Farm Health and Safety

    Science.gov (United States)

    ... the United States. Farms have many health and safety hazards, including Chemicals and pesticides Machinery, tools and ... inspection and maintenance can help prevent accidents. Using safety gloves, goggles and other protective equipment can also ...

  18. The General Safety Group Annual Report 2001/2002

    CERN Document Server

    Weingarten, W

    2003-01-01

    This report summarizes the main activities of the General Safety (GS) Group of the Technical Inspection and Safety Division during 2001 and 2002, and the results obtained. The different topics in which the group is active are covered: general safety inspections and ergonomics, electrical, chemical and gas safety, chemical pollution containment and control, industrial hygiene, the safety of civil engineering works and outside contractors, fire prevention and the safety aspects of the LHC experiments.

  19. The current status of exposure-driven approaches for chemical safety assessment: A cross-sector perspective.

    Science.gov (United States)

    Sewell, Fiona; Aggarwal, Manoj; Bachler, Gerald; Broadmeadow, Alan; Gellatly, Nichola; Moore, Emma; Robinson, Sally; Rooseboom, Martijn; Stevens, Alexander; Terry, Claire; Burden, Natalie

    2017-08-15

    For the purposes of chemical safety assessment, the value of using non-animal (in silico and in vitro) approaches and generating mechanistic information on toxic effects is being increasingly recognised. For sectors where in vivo toxicity tests continue to be a regulatory requirement, there has been a parallel focus on how to refine studies (i.e. reduce suffering and improve animal welfare) and increase the value that in vivo data adds to the safety assessment process, as well as where to reduce animal numbers where possible. A key element necessary to ensure the transition towards successfully utilising both non-animal and refined safety testing is the better understanding of chemical exposure. This includes approaches such as measuring chemical concentrations within cell-based assays and during in vivo studies, understanding how predicted human exposures relate to levels tested, and using existing information on human exposures to aid in toxicity study design. Such approaches promise to increase the human relevance of safety assessment, and shift the focus from hazard-driven to risk-driven strategies similar to those used in the pharmaceutical sectors. Human exposure-based safety assessment offers scientific and 3Rs benefits across all sectors marketing chemical or medicinal products. The UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) convened an expert working group of scientists across the agrochemical, industrial chemical and pharmaceutical industries plus a contract research organisation (CRO) to discuss the current status of the utilisation of exposure-driven approaches, and the challenges and potential next steps for wider uptake and acceptance. This paper summarises these discussions, highlights the challenges - particularly those identified by industry - and proposes initial steps for moving the field forward. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. Safety design requirements for safety systems and components of JSFR

    International Nuclear Information System (INIS)

    Kubo, Shigenobu; Shimakawa, Yoshio; Yamano, Hidemasa; Kotake, Shoji

    2011-01-01

    Safety design requirements for JSFR were summarized taking the development targets of the FaCT project and design feature of JSFR into account. The related safety principle and requirements for Monju, CRBRP, PRISM, SPX, LWRs, IAEA standards, goals of GIF, basic principle of INPRO etc. were also taken into account so that the safety design requirements can be a next-generation global standard. The development targets for safety and reliability are set based on those of FaCT, namely, ensuring safety and reliability equal to future LWR and related fuel cycle facilities. In order to achieve these targets, the defence-in-depth concept is used as the basic safety design principle. General features of the safety design requirements are 1) Achievement of higher reliability, 2) Achievement of higher inspectability and maintainability, 3) Introduction of passive safety features, 4) Reduction of operator action needs, 5) Design consideration against Beyond Design Basis Events, 6) In-Vessel Retention of degraded core materials, 7) Prevention and mitigation against sodium chemical reactions, and 8) Design against external events. The current specific requirements for each system and component are summarized taking the basic design concept of JSFR into account, which is an advanced loop-type large-output power plant with a mixed-oxide-fuelled core. (author)

  1. Safety advice sheets

    CERN Multimedia

    HSE Unit

    2013-01-01

    You never know when you might be faced with questions such as: when/how should I dispose of a gas canister? Where can I find an inspection report? How should I handle/store/dispose of a chemical substance…?   The SI section of the DGS/SEE Group is primarily responsible for safety inspections, evaluating the safety conditions of equipment items, premises and facilities. On top of this core task, it also regularly issues “Safety Advice Sheets” on various topics, designed to be of assistance to users but also to recall and reinforce safety rules and procedures. These clear and concise sheets, complete with illustrations, are easy to display in the appropriate areas. The following safety advice sheets have been issued so far: Other sheets will be published shortly. Suggestions are welcome and should be sent to the SI section of the DGS/SEE Group. Please send enquiries to general-safety-visits.service@cern.ch.

  2. The new risk paradigm for chemical process security and safety.

    Science.gov (United States)

    Moore, David A

    2004-11-11

    The world of safety and security in the chemical process industries has certainly changed since 11 September, but the biggest challenges may be yet to come. This paper will explain that there is a new risk management paradigm for chemical security, discuss the differences in interpreting this risk versus accidental risk, and identify the challenges we can anticipate will occur in the future on this issue. Companies need to be ready to manage the new chemical security responsibilities and to exceed the expectations of the public and regulators. This paper will outline the challenge and a suggested course of action.

  3. Dukovany nuclear power plant safety

    International Nuclear Information System (INIS)

    1999-01-01

    Presentation covers recommended safety issues for the Dukovany NPP which have been solved with satisfactory conclusions. Safety issues concerned include: radiation safety; nuclear safety; security; emergency preparedness; health protection at work; fire protection; environmental protection; chemical safety; technical safety. Quality assurance programs at all stages on NPP life time is described. Report includes description of NPP staff training provision, training simulator, emergency operating procedures, emergency preparedness, Year 2000 problem, inspections and life time management. Description of Dukovany Plant Safety Analysis Projects including integrity of the equipment, modernisation, equipment innovation and safety upgrading program show that this approach corresponds to the actual practice applied in EU countries, and fulfilment of current IAEA requirements for safety enhancement of the WWER 440/213 units in the course of MORAWA Equipment Upgrading program

  4. Occupational safety of different industrial sectors in Khartoum State, Sudan. Part 1: Safety performance evaluation.

    Science.gov (United States)

    Zaki, Gehan R; El-Marakby, Fadia A; H Deign El-Nor, Yasser; Nofal, Faten H; Zakaria, Adel M

    2012-12-01

    Safety performance evaluation enables decision makers improve safety acts. In Sudan, accident records, statistics, and safety performance were not evaluated before maintenance of accident records became mandatory in 2005. This study aimed at evaluating and comparing safety performance by accident records among different cities and industrial sectors in Khartoum state, Sudan, during the period from 2005 to 2007. This was a retrospective study, the sample in which represented all industrial enterprises in Khartoum state employing 50 workers or more. All industrial accident records of the Ministry of Manpower and Health and those of different enterprises during the period from 2005 to 2007 were reviewed. The safety performance indicators used within this study were the frequency-severity index (FSI) and fatal and disabling accident frequency rates (DAFR). In Khartoum city, the FSI [0.10 (0.17)] was lower than that in Bahari [0.11 (0.21)] and Omdurman [0.84 (0.34)]. It was the maximum in the chemical sector [0.33 (0.64)] and minimum in the metallurgic sector [0.09 (0.19)]. The highest DAFR was observed in Omdurman [5.6 (3.5)] and in the chemical sector [2.5 (4.0)]. The fatal accident frequency rate in the mechanical and electrical engineering industry was the highest [0.0 (0.69)]. Male workers who were older, divorced, and had lower levels of education had the lowest safety performance indicators. The safety performance of the industrial enterprises in Khartoum city was the best. The safety performance in the chemical sector was the worst with regard to FSI and DAFR. The age, sex, and educational level of injured workers greatly affect safety performance.

  5. Workshop on Indian Chemical Industry: perspectives on safety, cleaner production and environment production

    NARCIS (Netherlands)

    Ham, J.M.

    1996-01-01

    A Workshop on "Indian Chemical Industry: Perspectives on Safety, Cleaner Production and Environmental Protection" was held on 3, 4 and 5 January 1996, in Bombay, India. The main objective of the workshop, which was organised jointly by the Government of India, UNIDO/UNDP and the Indian Chemical

  6. Safety assessment of smoke flavouring primary products by the European Food Safety Authority

    NARCIS (Netherlands)

    Theobald, A.; Arcella, D.; Carere, A.; Croera, C.; Engel, K.H.; Gott, D.; Gurtler, R.; Meier, D.; Pratt, I.; Rietjens, I.M.C.M.; Simon, R.; Walker, R.

    2012-01-01

    This paper summarises the safety assessments of eleven smoke flavouring primary products evaluated by the European Food Safety Authority (EFSA). Data on chemical composition, content of polyaromatic hydrocarbons and results of genotoxicity tests and subchronic toxicity studies are presented and

  7. Ab initio chemical safety assessment: A workflow based on exposure considerations and non-animal methods.

    Science.gov (United States)

    Berggren, Elisabet; White, Andrew; Ouedraogo, Gladys; Paini, Alicia; Richarz, Andrea-Nicole; Bois, Frederic Y; Exner, Thomas; Leite, Sofia; Grunsven, Leo A van; Worth, Andrew; Mahony, Catherine

    2017-11-01

    We describe and illustrate a workflow for chemical safety assessment that completely avoids animal testing. The workflow, which was developed within the SEURAT-1 initiative, is designed to be applicable to cosmetic ingredients as well as to other types of chemicals, e.g. active ingredients in plant protection products, biocides or pharmaceuticals. The aim of this work was to develop a workflow to assess chemical safety without relying on any animal testing, but instead constructing a hypothesis based on existing data, in silico modelling, biokinetic considerations and then by targeted non-animal testing. For illustrative purposes, we consider a hypothetical new ingredient x as a new component in a body lotion formulation. The workflow is divided into tiers in which points of departure are established through in vitro testing and in silico prediction, as the basis for estimating a safe external dose in a repeated use scenario. The workflow includes a series of possible exit (decision) points, with increasing levels of confidence, based on the sequential application of the Threshold of Toxicological (TTC) approach, read-across, followed by an "ab initio" assessment, in which chemical safety is determined entirely by new in vitro testing and in vitro to in vivo extrapolation by means of mathematical modelling. We believe that this workflow could be applied as a tool to inform targeted and toxicologically relevant in vitro testing, where necessary, and to gain confidence in safety decision making without the need for animal testing.

  8. Patient safety: Safety culture and patient safety ethics

    DEFF Research Database (Denmark)

    Madsen, Marlene Dyrløv

    2006-01-01

    ,demonstrating significant, consistent and sometimes large differences in terms of safety culture factors across the units participating in the survey. Paper 5 is the results of a study of the relation between safety culture, occupational health andpatient safety using a safety culture questionnaire survey......Patient safety - the prevention of medical error and adverse events - and the initiative of developing safety cultures to assure patients from harm have become one of the central concerns in quality improvement in healthcare both nationally andinternationally. This subject raises numerous...... challenging issues of systemic, organisational, cultural and ethical relevance, which this dissertation seeks to address through the application of different disciplinary approaches. The main focus of researchis safety culture; through empirical and theoretical studies to comprehend the phenomenon, address...

  9. Safety barriers and safety functions a comparison of different applications

    International Nuclear Information System (INIS)

    Harms-Ringdahl, L.

    1998-01-01

    A study is being made with the focus on different theories and applications concerning 'safety barriers' and 'safety functions'. One aim is to compare the characteristics of different kinds of safely functions, which can be purpose, efficiency, reliability, weak points etc. A further aim is to summarize how the combination of different barriers are described and evaluated. Of special interest are applications from nuclear and chemical process safety. The study is based on a literature review, interviews and discussions. Some preliminary conclusions are made. For example, it appears to exist a need for better tools to support the design and evaluation of procedures. There are a great number of theoretical models describing safety functions. However, it still appears to be an interest in further development of models, which might give the basis for improved practical tools. (author)

  10. A Laboratory Safety Program at Delaware.

    Science.gov (United States)

    Whitmyre, George; Sandler, Stanley I.

    1986-01-01

    Describes a laboratory safety program at the University of Delaware. Includes a history of the program's development, along with standard safety training and inspections now being implemented. Outlines a two-day laboratory safety course given to all graduate students and staff in chemical engineering. (TW)

  11. Safety (management and technology). Safety of chemical materials; Anzen (manejimento to tekunoroji). Kagaku busshitsu no anzensei

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T. [Hosei Univ., Tokyo (Japan). Faculty of Engineering

    1994-08-05

    In chemical materials there exist hazardous materials causing health damages, environmental pollution, fires and explosions. The hazard analysis has been noted as a means for preventing accidents due to chemical materials. This means leads to an effective method of recognizing hazard, evaluating the risk, and lowering the degree of hazard to an allowable level. This paper describes a hazard analysis of autoreactive materials, out of chemical materials causing fires and explosions, which may react by theirselves and cause accidents. In particular, an example is introduced in which this hazard analysis method is adapted to an experimental production of the next generation gas generating agent for automobile collision safety air-bags. In this manufacturing process, in kneading and granulating processes where lots of materials are handled, materials are used in a moistened state, thus countermeasures for preventing occurrence of combustion and explosion being taken. 5 refs., 2 figs., 4 tabs.

  12. Relationship of safety culture and process safety

    International Nuclear Information System (INIS)

    Olive, Claire; O'Connor, T. Michael; Mannan, M. Sam

    2006-01-01

    Throughout history, humans have gathered in groups for social, religious, and industrial purposes. As the conglomeration of people interact, a set of underlying values, beliefs, and principles begins to develop that serve to guide behavior within the group. These 'guidelines' are commonly referred to as the group culture. Modern-day organizations, including corporations, have developed their own unique cultures derived from the diversity of the organizational interests and the background of the employees. Safety culture, a sub-set of organizational culture, has been a major focus in recent years. This is especially true in the chemical industry due to the series of preventable, safety-related disasters that occurred in the late seventies and eighties. Some of the most notable disasters, during this time period, occurred at Bhopal, Flixborough, and Seveso. However, current events, like the September 11th terrorist attacks and the disintegration of the Columbia shuttle, have caused an assessment of safety culture in a variety of other organizations

  13. Behavior based safety process - a pragmatic approach

    International Nuclear Information System (INIS)

    Sharma, R.K.; Malaikar, N.L.; Belokar, S.G.; Arora, Yashpal

    2009-01-01

    Materials handling, processing and storage of hazardous chemicals has grown exponentially. The chemical industries has reacted to the situation by introducing numerous safety systems such as IS18001, 'HAZOP', safety audits, risk assessment, training etc, which has reduced hazards and improved safety performance, but has not totally eliminated exposure to the hazards. These safety systems aim to bring change in attitude of the persons which is difficult to change or control. However, behaviour of plant personnel can be controlled or improved upon, which should be our aim. (author)

  14. Defining safety culture and the nexus between safety goals and safety culture. 4. Enhancing Safety Culture Through the Establishment of Safety Goals

    International Nuclear Information System (INIS)

    Tateiwa, Kenji; Miyata, Koichi; Yahagi, Kimitoshi

    2001-01-01

    Safety culture is the perception of each individual and organization of a nuclear power plant that safety is the first priority, and at Tokyo Electric Power Company (TEPCO), we have been practicing it in everyday activities. On the other hand, with the demand for competitiveness of nuclear power becoming even more intense these days, we need to pursue efficient management while maintaining the safety level at the same time. Below, we discuss how to achieve compatibility between safety culture and efficient management as well as enhance safety culture. Discussion at Tepco: safety culture-nurturing activities such as the following are being implemented: 1. informing the employees of the 'Declaration of Safety Promotion' by handing out brochures and posting it on the intranet home page; 2. publishing safety culture reports covering stories on safety culture of other industry sectors, recent movements on safety culture, etc.; 3. conducting periodic questionnaires to employees to grasp how deeply safety culture is being established; 4. carrying out educational programs to learn from past cases inside and outside the nuclear industry; 5. committing to common ownership of information with the public. The current status of safety culture in Japan sometimes seems to be biased to the quest of ultimate safety; rephrasing it, there have been few discussions regarding the sufficiency of the quantitative safety level in conjunction with the safety culture. Safety culture is one of the most crucial foundations guaranteeing the plant's safety, and for example, the plant safety level evaluated by probabilistic safety assessment (PSA) could be said to be valid only on the ground that a sound and sufficient safety culture exists. Although there is no doubt that the safety culture is a fundamental and important attitude of an individual and organization that keeps safety the first priority, the safety culture in itself should not be considered an obstruction to efforts to implement

  15. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 2

    International Nuclear Information System (INIS)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. To address the facility-specific and site-specific vulnerabilities, responsible DOE and site-contractor line organizations have developed initial site response plans. These plans, presented as Volume 2 of this Management Response Plan, describe the actions needed to mitigate or eliminate the facility- and site-specific vulnerabilities identified by the CSV Working Group field verification teams. Initial site response plans are described for: Brookhaven National Lab., Hanford Site, Idaho National Engineering Lab., Lawrence Livermore National Lab., Los Alamos National Lab., Oak Ridge Reservation, Rocky Flats Plant, Sandia National Laboratories, and Savannah River Site

  16. TIS General Safety Group Annual Report 2000

    CERN Document Server

    Weingarten, W

    2001-01-01

    This report summarises the main activities of the General Safety (GS) Group of the Technical Inspection and Safety Division (TIS) during the year 2000, and the results obtained. The different topics in which the Group is active are covered: general safety inspections and ergonomy, electrical, chemistry and gas safety, chemical pollution containment and control, industrial hygiene, the safety of civil engineering works and outside contractors, fire prevention and the safety aspects of the LHC experiments.

  17. Implementation of the chemicals regulation REACH : Exploring the impact on occupational health and safety management among Swedish downstream users

    OpenAIRE

    Schenk, Linda; Antonsson, Ann-Beth

    2015-01-01

    In the present study we have examined how the European chemicals regulation Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) has influenced occupational risk management of chemicals at Swedish downstream user companies. The data were collected through interviews with occupational health and safety professionals, safety representatives and authority employees. The results show that most of the informants had scarce knowledge about REACH and that REACH implementation...

  18. Safety issues of nuclear production of hydrogen

    International Nuclear Information System (INIS)

    Piera, Mireia; Martinez-Val, Jose M.; Jose Montes, Ma

    2006-01-01

    Hydrogen is not an uncommon issue in Nuclear Safety analysis, particularly in relation to severe accidents. On the other hand, hydrogen is a household name in the chemical industry, particularly in oil refineries, and is also a well known chemical element currently produced by steam reforming of natural gas, and other methods (such as coal gasification). In the not-too-distant future, hydrogen will have to be produced (by chemical reduction of water) using renewable and nuclear energy sources. In particular, nuclear fission seems to offer the cheapest way to provide the primary energy in the medium-term. Safety principles are fundamental guidelines in the design, construction and operation both of hydrogen facilities and nuclear power plants. When these two technologies are integrated, a complete safety analysis must consider not only the safety practices of each industry, but any interaction that could be established between them. In particular, any accident involving a sudden energy release from one of the facilities can affect the other. Release of dangerous substances (chemicals, radiotoxic effluents) can also pose safety problems. Although nuclear-produced hydrogen facilities will need specific approaches and detailed analysis on their safety features, a preliminary approach is presented in this paper. No significant roadblocks are identified that could hamper the deployment of this new industry, but some of the hydrogen production methods will involve very demanding safety standards

  19. 4th annual Safety Day: full of colour!

    CERN Multimedia

    HSE Unit

    2014-01-01

    On Thursday 10 April, more than 240 people took part in the 4th annual Safety Day, organised on the occasion of the World Day for Safety and Health at Work. The HSE Unit, in partnership with the Fire Brigade (GS/FB) and the TE and BE Departments, organised various stands and activities connected with this year’s theme, chosen by the International Labour Organization: "Safety and health in the use of chemicals at work”.   The stands, set up at lunchtime in all three of CERN’s restaurants as well as in the entrance hall of Building 500, were designed to: Remind visitors of the need to use personal protective equipment appropriate to the chemicals they are using; Make visitors aware of the potential environmental impact of using chemicals; Encourage visitors to always read the labels and safety data sheets of dangerous chemicals and everyday domestic products; Inform visitors that a safety training course called “Chemical Risk Awareness&r...

  20. The approaches of safety design and safety evaluation at HTTR (High Temperature Engineering Test Reactor)

    International Nuclear Information System (INIS)

    Iigaki, Kazuhiko; Saikusa, Akio; Sawahata, Hiroaki; Shinozaki, Masayuki; Tochio, Daisuke; Honma, Fumitaka; Tachibana, Yukio; Iyoku, Tatsuo; Kawasaki, Kozo; Baba, Osamu

    2006-06-01

    Gas Cooled Reactor has long history of nuclear development, and High Temperature Gas Cooled Reactor (HTGR) has been expected that it can be supply high temperature energy to chemical industry and to power generation from the points of view of the safety, the efficiency, the environment and the economy. The HTGR design is tried to installed passive safety equipment. The current licensing review guideline was made for a Low Water Reactor (LWR) on safety evaluation therefore if it would be directly utilized in the HTGR it needs the special consideration for the HTGR. This paper describes that investigation result of the safety design and the safety evaluation traditions for the HTGR, comparison the safety design and safety evaluation feature for the HTGT with it's the LWR, and reflection for next HTGR based on HTTR operational experiment. (author)

  1. The 'PROCESO' index: a new methodology for the evaluation of operational safety in the chemical industry

    International Nuclear Information System (INIS)

    Marono, M.; Pena, J.A.; Santamaria, J.

    2006-01-01

    The acknowledgement of industrial installations as complex systems in the early 1980s outstands as a milestone in the path to operational safety. Process plants are social-technical complex systems of a dynamic nature, whose properties depend not only on their components, but also on the inter-relations among them. A comprehensive assessment of operational safety requires a systemic approach, i.e. an integrated framework that includes all the relevant factors influencing safety. Risk analysis methodologies and safety management systems head the list of methods that point in this direction, but they normally require important plant resources. As a consequence, their use is frequently restricted to especially dangerous processes often driven by compliance with legal requirements. In this work a new safety index for the chemical industry, termed the 'Proceso' Index (standing for the Spanish terms for PROCedure for the Evaluation of Operational Safety), has been developed. PROCESO is based on the principles of systems theory, has a tree-like structure and considers 25 areas to guide the review of plant safety. The method uses indicators whose respective weight values have been obtained via an expert judgement technique. This paper describes the steps followed to develop this new Operational Safety Index, explains its structure and illustrates its application to process plants

  2. 40 CFR 68.65 - Process safety information.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.65 Process safety... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Process safety information. 68.65... compilation of written process safety information before conducting any process hazard analysis required by...

  3. [Formation mechanism and chemical safety of nonintentional chemical substances present in chlorinated drinking water and wastewater].

    Science.gov (United States)

    Onodera, Sukeo

    2010-09-01

    This paper reviews the formation mechanism and chemical safety of nonintentional chemical substances (NICS) present in chlorine-treated water containing organic contaminants. Undesirable compounds, i.e., NICS, may be formed under certain conditions when chlorine reacts with organic matter. The rate and extent of chlorine consumption with organics are strongly dependent on their chemical structures, particularly whether double bonds or sulfur and nitrogen atoms occur in the molecules. Organothiophosphorus pesticides (P=S type) are easily oxidized to their phosphorus compounds (P=O type) in chlorinated water containing HOCl as little as 0.5 mg/l, resulting in an increase in cholinesterase-inhibitory activity. Chlorination of phenols in water also produces a series of highly chlorinated compounds, including chlorophenols, chloroquinones, chlorinated carboxylic acids, and polychlorinated phenoxyphenols (PCPPs). In some of these chloroquinones, 2,6-dichloroalkylsemiquinones exhibit a strong mutagenic response as do positive controls used in the Ames test. 2-phenoxyphenols in these PCPPs are particularly interesting, as they are present in the chlorine-treated phenol solution and they are also precursors (predioxins) of the highly toxic chlorinated dioxins. Polynuclear aromatic hydrocarbons (PAHs) were found to undergo chemical changes due to hypochlorite reactions to give chloro-substituted PAHs, oxygenated (quinones) and hydroxylated (phenols) compounds, but they exhibit a lower mutagenic response. In addition, field work was performed in river water and drinking water to obtain information on chemical distribution and their safety, and the results are compared with those obtained in the model chlorination experiments.

  4. Nuclear safety culture and nuclear safety supervision

    International Nuclear Information System (INIS)

    Chai Jianshe

    2013-01-01

    In this paper, the author reviews systematically and summarizes up the development process and stage characteristics of nuclear safety culture, analysis the connotation and characteristics of nuclear safety culture, sums up the achievements of our country's nuclear safety supervision, dissects the challenges and problems of nuclear safety supervision. This thesis focused on the relationship between nuclear safety culture and nuclear safety supervision, they are essential differences, but there is a close relationship. Nuclear safety supervision needs to introduce some concepts of nuclear safety culture, lays emphasis on humanistic care and improves its level and efficiency. Nuclear safety supervision authorities must strengthen nuclear safety culture training, conduct the development of nuclear safety culture, make sure that nuclear safety culture can play significant roles. (author)

  5. Nordic studies in reactor safety

    International Nuclear Information System (INIS)

    Pershagen, N.

    1993-01-01

    The Nordic Nuclear Safety Research Programme SIK programme in reactor safety is part of a major joint Nordic research effort in nuclear safety. The report summarizes the achievements of the SIK programme, which was carried out during 1990-1993 in collaboration between Nordic nuclear utilities, safety authorities, and research institutes. Three main projects were successfully completed dealing with: 1) development and application of a living PSA concept for monitoring the risk of core damage, and of safety indicators for early warning of possible safety problems; 2) review and intercomparison of severe accident codes, case studies of potential core melt accidents in nordic reactors, development of chemical models for the MAAP code, and outline of a system for computerized accident management support; 3) compilation of information about design and safety features of neighbouring reactors in Germany, Lithuania and Russia, and for naval reactors and nuclear submarines. The report reviews the state-of-the-art in each subject matter as an introduction to the individual project summaries. The main findings of each project are highlighted. The report also contains an overview of reactor safety research in the Nordic countries and a summary of fundamental reactor safety principles. (au) (69 refs.)

  6. Laboratory safety handbook

    Science.gov (United States)

    Skinner, E.L.; Watterson, C.A.; Chemerys, J.C.

    1983-01-01

    Safety, defined as 'freedom from danger, risk, or injury,' is difficult to achieve in a laboratory environment. Inherent dangers, associated with water analysis and research laboratories where hazardous samples, materials, and equipment are used, must be minimized to protect workers, buildings, and equipment. Managers, supervisors, analysts, and laboratory support personnel each have specific responsibilities to reduce hazards by maintaining a safe work environment. General rules of conduct and safety practices that involve personal protection, laboratory practices, chemical handling, compressed gases handling, use of equipment, and overall security must be practiced by everyone at all levels. Routine and extensive inspections of all laboratories must be made regularly by qualified people. Personnel should be trained thoroughly and repetitively. Special hazards that may involve exposure to carcinogens, cryogenics, or radiation must be given special attention, and specific rules and operational procedures must be established to deal with them. Safety data, reference materials, and texts must be kept available if prudent safety is to be practiced and accidents prevented or minimized.

  7. Safety balance: Analysis of safety systems

    International Nuclear Information System (INIS)

    Delage, M.; Giroux, C.

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses

  8. Ensuring Adequate Health and Safety Information for Decision Makers during Large-Scale Chemical Releases

    Science.gov (United States)

    Petropoulos, Z.; Clavin, C.; Zuckerman, B.

    2015-12-01

    The 2014 4-Methylcyclohexanemethanol (MCHM) spill in the Elk River of West Virginia highlighted existing gaps in emergency planning for, and response to, large-scale chemical releases in the United States. The Emergency Planning and Community Right-to-Know Act requires that facilities with hazardous substances provide Material Safety Data Sheets (MSDSs), which contain health and safety information on the hazardous substances. The MSDS produced by Eastman Chemical Company, the manufacturer of MCHM, listed "no data available" for various human toxicity subcategories, such as reproductive toxicity and carcinogenicity. As a result of incomplete toxicity data, the public and media received conflicting messages on the safety of the contaminated water from government officials, industry, and the public health community. Two days after the governor lifted the ban on water use, the health department partially retracted the ban by warning pregnant women to continue avoiding the contaminated water, which the Centers for Disease Control and Prevention deemed safe three weeks later. The response in West Virginia represents a failure in risk communication and calls to question if government officials have sufficient information to support evidence-based decisions during future incidents. Research capabilities, like the National Science Foundation RAPID funding, can provide a solution to some of the data gaps, such as information on environmental fate in the case of the MCHM spill. In order to inform policy discussions on this issue, a methodology for assessing the outcomes of RAPID and similar National Institutes of Health grants in the context of emergency response is employed to examine the efficacy of research-based capabilities in enhancing public health decision making capacity. The results of this assessment highlight potential roles rapid scientific research can fill in ensuring adequate health and safety data is readily available for decision makers during large

  9. AERB information booklet: personal protective equipment- safety footwear

    International Nuclear Information System (INIS)

    1992-01-01

    The main classes of safety footwear required for industrial operations in the units of Department of Atomic Energy are the following; leather safety boots and shoes, firemen's leather boots - Wellington type, electrical safety shoes, chemical safety shoes, shoes suitable for mining operations. The criteria to be adopted for selection of safety shoes for nuclear installations are given. (M.K.V.). 5 annexures, 1 appendix

  10. OSHA and Experimental Safety Design.

    Science.gov (United States)

    Sichak, Stephen, Jr.

    1983-01-01

    Suggests that a governmental agency, most likely Occupational Safety and Health Administration (OSHA) be considered in the safety design stage of any experiment. Focusing on OSHA's role, discusses such topics as occupational health hazards of toxic chemicals in laboratories, occupational exposure to benzene, and role/regulations of other agencies.…

  11. Laboratory Safety Manual for Alabama Schools. Bulletin 1975. No. 20.

    Science.gov (United States)

    Alabama State Dept. of Education, Montgomery.

    This document presents the Alabama State Department of Education guidelines for science laboratory safety, equipment, storage, chemical safety, rocket safety, electrical safety, safety with radioisotopes, and safety with biologicals. Also included is a brief bibliography, a teacher's checklist, a listing of laser facts and regulations, and a…

  12. Safety margins in deterministic safety analysis

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    The concept of safety margins has acquired certain prominence in the attempts to demonstrate quantitatively the level of the nuclear power plant safety by means of deterministic analysis, especially when considering impacts from plant ageing and discovery issues. A number of international or industry publications exist that discuss various applications and interpretations of safety margins. The objective of this presentation is to bring together and examine in some detail, from the regulatory point of view, the safety margins that relate to deterministic safety analysis. In this paper, definitions of various safety margins are presented and discussed along with the regulatory expectations for them. Interrelationships of analysis input and output parameters with corresponding limits are explored. It is shown that the overall safety margin is composed of several components each having different origins and potential uses; in particular, margins associated with analysis output parameters are contrasted with margins linked to the analysis input. While these are separate, it is possible to influence output margins through the analysis input, and analysis method. Preserving safety margins is tantamount to maintaining safety. At the same time, efficiency of operation requires optimization of safety margins taking into account various technical and regulatory considerations. For this, basic definitions and rules for safety margins must be first established. (author)

  13. Elements of safety and non proliferation

    International Nuclear Information System (INIS)

    Jalouneix, Jean; Aurelle, Jacques; Funk, Pierre; Ladsous, David; Bon Nguyen, Romuald; Goue, Georges; Lefevre, Odile

    2015-01-01

    This book on nuclear safety and non proliferation is based on knowledge and expertise of the IRSN. The first chapter addresses the safety of nuclear materials, of their installations and of their transportations. It proposes some contextual elements, presents the general guidelines of the French nuclear safety arrangement, the approach to take risks into account, the involved governmental and public bodies, the legal framework, and the protection and control arrangement (in terms of planning of safety-related activities, in terms of operator obligations, in terms of exercises and management crisis). The second part addresses the safety of radioactive sources: context (peculiarity, losses and thefts), international framework (source categories, Euratom directive), and the French organisation. The third chapter addresses nuclear non proliferation: historical background (creation and role of the IAEA and of the EAEC, definitions), principle of statements, inspection process, and French organisation (legal framework, governmental bodies, the IRSN). The last chapter addresses the issue of chemical non proliferation: historical background, international context (Convention on chemical weapons, organisation for their ban), and the French organisation

  14. Seminar series on Safety matters

    CERN Multimedia

    HSE

    2010-01-01

    The HSE - Occupational Health & Safety and Environmental Protection - Unit is starting a seminar series on Safety matters. The aim is to invite colleagues from Universities, Industries or Government Agencies to share their experience. The seminars will take place in intervals of several months. Part of the Seminars will be held in the form of a Forum where participants can discuss and share views with persons who manage, teach or research Safety matters elsewhere. You are invited to the first Safety Seminar on 22nd September 2010 at 10h00 in building 40 S2 A1 "Salle Andersson" L’Ecole Polytechnique Fédérale de Lausanne (EPFL) will present the way safety is managed in their research institution. Some aspects of research in physics and chemical laboratories will also be presented. The seminar will be given by Dr Thierry Meyer, Head of OHS at FSB-EPFL and Dr Amela Groso, responsible for the safety of the physics institutes

  15. Safety Training: places available in October 2014

    CERN Multimedia

    2014-01-01

    There are places available in the forthcoming Safety courses. For updates and registrations, please refer to the Safety Training Catalogue. Safety Training, HSE Unit safety-training@cern.ch Title of the course EN Title of the course FR Date Hours Language Chemical Safety ATEX Habilitation - Level 2 Habilitation ATEX - Niveau 2 16-Oct-14 to 17-Oct-14 9:00 - 17:30 French Cryogenic Safety Cryogenic Safety - Fundamentals Sécurité Cryogénie - Fondamentaux 23-Oct-14 10:00 - 12:00 English Cryogenic Safety - Helium Transfer Sécurité Cryogénie - Transfert d'hélium 30-Oct-14 9:30 - 12:00 English Electrical Safety Habilitation Electrique - Electrician Low Voltage - Initial Habilitation électrique - Électricien basse tension - Initial 02-Oct-14 to 06-Oct-14 9:00 - 17:30 English 20-Oct-14 to 22-Oct-14 9:00 -...

  16. Safety assessment of novel foods and strategies to determine their safety in use

    International Nuclear Information System (INIS)

    Edwards, Gareth

    2005-01-01

    Safety assessment of novel foods requires a different approach to that traditionally used for the assessment of food chemicals. A case-by-case approach is needed which must be adapted to take account of the characteristics of the individual novel food. A thorough appraisal is required of the origin, production, compositional analysis, nutritional characteristics, any previous human exposure and the anticipated use of the food. The information should be compared with a traditional counterpart of the food if this is available. In some cases, a conclusion about the safety of the food may be reached on the basis of this information alone, whereas in other cases, it will help to identify any nutritional or toxicological testing that may be required to further investigate the safety of the food. The importance of nutritional evaluation cannot be over-emphasised. This is essential for the conduct of toxicological studies in order to avoid dietary imbalances, etc., that might lead to interpretation difficulties, but also in the context of its use as food and to assess the potential impact of the novel food on the human diet. The traditional approach used for chemicals, whereby an acceptable daily intake (ADI) is established with a large safety margin relative to the expected exposure, cannot be applied to foods. The assessment of safety in use should be based upon a thorough knowledge of the composition of the food, evidence from nutritional, toxicological and human studies, expected use of the food and its expected consumption. Safety equates to a reasonable certainty that no harm will result from intended uses under the anticipated conditions of consumption

  17. System safety education focused on flight safety

    Science.gov (United States)

    Holt, E.

    1971-01-01

    The measures necessary for achieving higher levels of system safety are analyzed with an eye toward maintaining the combat capability of the Air Force. Several education courses were provided for personnel involved in safety management. Data include: (1) Flight Safety Officer Course, (2) Advanced Safety Program Management, (3) Fundamentals of System Safety, and (4) Quantitative Methods of Safety Analysis.

  18. Labor unions and safety climate: perceived union safety values and retail employee safety outcomes.

    Science.gov (United States)

    Sinclair, Robert R; Martin, James E; Sears, Lindsay E

    2010-09-01

    Although trade unions have long been recognized as a critical advocate for employee safety and health, safety climate research has not paid much attention to the role unions play in workplace safety. We proposed a multiple constituency model of workplace safety which focused on three central safety stakeholders: top management, ones' immediate supervisor, and the labor union. Safety climate research focuses on management and supervisors as key stakeholders, but has not considered whether employee perceptions about the priority their union places on safety contributes contribute to safety outcomes. We addressed this gap in the literature by investigating unionized retail employee (N=535) perceptions about the extent to which their top management, immediate supervisors, and union valued safety. Confirmatory factor analyses demonstrated that perceived union safety values could be distinguished from measures of safety training, workplace hazards, top management safety values, and supervisor values. Structural equation analyses indicated that union safety values influenced safety outcomes through its association with higher safety motivation, showing a similar effect as that of supervisor safety values. These findings highlight the need for further attention to union-focused measures related to workplace safety as well as further study of retail employees in general. We discuss the practical implications of our findings and identify several directions for future safety research. 2009 Elsevier Ltd. All rights reserved.

  19. Final Safety Analysis Document for Building 693 Chemical Waste Storage Building at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Salazar, R.J.; Lane, S.

    1992-02-01

    This Safety Analysis Document (SAD) for the Lawrence Livermore National Laboratory (LLNL) Building 693, Chemical Waste Storage Building (desipated as Building 693 Container Storage Unit in the Laboratory's RCRA Part B permit application), provides the necessary information and analyses to conclude that Building 693 can be operated at low risk without unduly endangering the safety of the building operating personnel or adversely affecting the public or the environment. This Building 693 SAD consists of eight sections and supporting appendices. Section 1 presents a summary of the facility designs and operations and Section 2 summarizes the safety analysis method and results. Section 3 describes the site, the facility desip, operations and management structure. Sections 4 and 5 present the safety analysis and operational safety requirements (OSRs). Section 6 reviews Hazardous Waste Management's (HWM) Quality Assurance (QA) program. Section 7 lists the references and background material used in the preparation of this report Section 8 lists acronyms, abbreviations and symbols. Appendices contain supporting analyses, definitions, and descriptions that are referenced in the body of this report

  20. Preharvest food safety.

    Science.gov (United States)

    Childers, A B; Walsh, B

    1996-07-23

    Preharvest food safety is essential for the protection of our food supply. The production and transport of livestock and poultry play an integral part in the safety of these food products. The goals of this safety assurance include freedom from pathogenic microorganisms, disease, and parasites, and from potentially harmful residues and physical hazards. Its functions should be based on hazard analysis and critical control points from producer to slaughter plant with emphasis on prevention of identifiable hazards rather than on removal of contaminated products. The production goal is to minimize infection and insure freedom from potentially harmful residues and physical hazards. The marketing goal is control of exposure to pathogens and stress. Both groups should have functional hazard analysis and critical control points management programs which include personnel training and certification of producers. These programs must cover production procedures, chemical usage, feeding, treatment practices, drug usage, assembly and transportation, and animal identification. Plans must use risk assessment principles, and the procedures must be defined. Other elements would include preslaughter certification, environmental protection, control of chemical hazards, live-animal drug-testing procedures, and identification of physical hazards.

  1. Sustainable Development of Food Safety

    DEFF Research Database (Denmark)

    Fabech, B.; Georgsson, F.; Gry, Jørn

    to food safety - Strengthen efforts against zoonoses and pathogenic microorganisms - Strengthen safe food handling and food production in industry and with consumers - Restrict the occurrence of chemical contaminants and ensure that only well-examined production aids, food additives and flavours are used...... - Strengthen scientific knowledge of food safety - Strengthen consumer knowledge The goals for sustainable development of food safety are listed from farm to fork". All of the steps and areas are important for food safety and consumer protection. Initiatives are needed in all areas. Many of the goals...... in other areas. It should be emphasized that an indicator will be an excellent tool to assess the efficacy of initiatives started to achieve a goal. Conclusions from the project are: - Sustainable development in food safety is important for humanity - Focus on the crucial goals would optimize the efforts...

  2. Linking Safety Analysis to Safety Requirements

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark

    Software for safety critical systems must deal with the hazards identified by safety analysistechniques: Fault trees, event trees,and cause consequence diagrams can be interpreted as safety requirements and used in the design activity. We propose that the safety analysis and the system design use...

  3. Safety of Research Reactors. Safety Requirements

    International Nuclear Information System (INIS)

    2010-01-01

    The main objective of this Safety Requirements publication is to provide a basis for safety and a basis for safety assessment for all stages in the lifetime of a research reactor. Another objective is to establish requirements on aspects relating to regulatory control, the management of safety, site evaluation, design, operation and decommissioning. Technical and administrative requirements for the safety of research reactors are established in accordance with these objectives. This Safety Requirements publication is intended for use by organizations engaged in the site evaluation, design, manufacturing, construction, operation and decommissioning of research reactors as well as by regulatory bodies

  4. Personnel Safety for Future Magnetic Fusion Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee Cadwallader

    2009-07-01

    The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical

  5. Personnel Safety for Future Magnetic Fusion Power Plants

    International Nuclear Information System (INIS)

    Cadwallader, Lee

    2009-01-01

    The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical

  6. Hurricane Harvey, Houston's Petrochemical Industry, and US Chemical Safety Policy: Impacts to Environmental Justice Communities

    Science.gov (United States)

    Goldman, G. T.; Johnson, C.; Gutierrez, A.; Declet-Barreto, J.; Berman, E.; Bergman, A.

    2017-12-01

    When Hurricane Harvey made landfall outside Houston, Texas, the storm's wind speeds and unprecedented precipitation caused significant damage to the region's petrochemical infrastructure. Most notably, the company Arkema's Crosby facility suffered a power failure that led to explosions and incineration of six of its peroxide tanks. Chemicals released into the air from the explosions sent 15 emergency responders to the hospital with severe respiratory conditions and led to the evacuation of hundreds of surrounding households. Other petrochemical facilities faced other damages that resulted in unsafe and acute chemical releases into the air and water. What impacts did such chemical disasters have on the surrounding communities and emergency responders during Harvey's aftermath? What steps might companies have taken to prevent such chemical releases? And what chemical safety policies might have ensured that such disaster risks were mitigated? In this talk we will report on a survey of the extent of damage to Houston's oil and gas infrastructure and related chemical releases and discuss the role of federal chemical safety policy in preventing and mitigating the potential for such risks for future storms and other extreme weather and climate events. We will also discuss how these chemical disasters created acute toxics exposures on environmental justice communities already overburdened with chronic exposures from the petrochemical industry.

  7. 40 CFR 68.48 - Safety information.

    Science.gov (United States)

    2010-07-01

    ...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 2 Prevention Program § 68.48 Safety information. (a) The... regulated substances, processes, and equipment: (1) Material Safety Data Sheets that meet the requirements...) Equipment specifications; and (5) Codes and standards used to design, build, and operate the process. (b...

  8. Microfabricated Chemical Sensors for Safety and Emission Control Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Knight, D.; Liu, C. C.; Wu, Q. H.

    1998-01-01

    Chemical sensor technology is being developed for leak detection, emission monitoring, and fire safety applications. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication (MicroElectroMechanical Systems (MEMS)-based) technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Using these technologies, sensors to measure hydrogen, hydrocarbons, nitrogen oxides, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  9. [Non-animal toxicology in the safety testing of chemicals].

    Science.gov (United States)

    Heinonen, Tuula; Tähti, Hanna

    2013-01-01

    There is an urgent need to develop predictive test methods better than animal experiments for assessing the safety of chemical substances to man. According to today's vision this is achieved by using human cell based tissue and organ models. In the new testing strategy the toxic effects are assessed by the changes in the critical parameters of the cellular biochemical routes (AOP, adverse toxic outcome pathway-principle) in the target tissues. In vitro-tests are rapid and effective, and with them automation can be applied. The change in the testing paradigm is supported by all stakeholders: scientists, regulators and people concerned on animal welfare.

  10. Middle East food safety perspectives.

    Science.gov (United States)

    Idriss, Atef W; El-Habbab, Mohammad S

    2014-08-01

    Food safety and quality assurance are increasingly a major issue with the globalisation of agricultural trade, on the one hand, and intensification of agriculture, on the other. Consumer protection has become a priority in policy-making amongst the large economies of the Middle East and North Africa (MENA) countries following a number of food safety incidents. To enhance food safety, it is necessary to establish markets underpinned by knowledge and resources, including analysis of international rejections of food products from MENA countries, international laboratory accreditation, improved reporting systems and traceability, continued development and validation of analytical methods, and more work on correlating sensory evaluation with analytical results. MENA countries should develop a national strategy for food safety based on a holistic approach that extends from farm-to-fork and involves all the relevant stakeholders. Accordingly, food safety should be a regional programme, raising awareness among policy- and decision-makers of the importance of food safety and quality for consumer protection, food trade and economic development. © 2014 Society of Chemical Industry.

  11. Efficacy and safety of superficial chemical peeling in treatment of active acne vulgaris.

    Science.gov (United States)

    Al-Talib, Hassanain; Al-Khateeb, Alyaa; Hameed, Ayad; Murugaiah, Chandrika

    2017-01-01

    Acne vulgaris is an extremely common condition affecting the pilosebaceous unit of the skin and characterized by presence of comedones, papules, pustules, nodules, cysts, which might result in permanent scars. Acne vulgaris commonly involve adolescents and young age groups. Active acne vulgaris is usually associated with several complications like hyper or hypopigmentation, scar formation and skin disfigurement. Previous studies have targeted the efficiency and safety of local and systemic agents in the treatment of active acne vulgaris. Superficial chemical peeling is a skin-wounding procedure which might cause some potentially undesirable adverse events. This study was conducted to review the efficacy and safety of superficial chemical peeling in the treatment of active acne vulgaris. It is a structured review of an earlier seven articles meeting the inclusion and exclusion criteria. The clinical assessments were based on pretreatment and post-treatment comparisons and the role of superficial chemical peeling in reduction of papules, pustules and comedones in active acne vulgaris. This study showed that almost all patients tolerated well the chemical peeling procedures despite a mild discomfort, burning, irritation and erythema have been reported; also the incidence of major adverse events was very low and easily manageable. In conclusion, chemical peeling with glycolic acid is a well-tolerated and safe treatment modality in active acne vulgaris while salicylic acid peels is a more convenient for treatment of darker skin patients and it showed significant and earlier improvement than glycolic acid.

  12. Human factors in safety assessment. Safety culture assessment

    International Nuclear Information System (INIS)

    Zhang Li; Deng Zhiliang; Wang Yiqun; Huang Weigang

    1996-01-01

    This paper analyses the present conditions and problems in enterprises safety assessment, and introduces the characteristics and effects of safety culture. The authors think that safety culture must be used as a 'soul' to form the pattern of modern safety management. Furthermore, they propose that the human safety and synthetic safety management assessment in a system should be changed into safety culture assessment. Finally, the assessment indicators are discussed

  13. Fundamental safety principles. Safety fundamentals

    International Nuclear Information System (INIS)

    2007-01-01

    This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purpose. The fundamental safety objective - to protect people and the environment from harmful effects of ionizing radiation - applies to all circumstances that give rise to radiation risks. The safety principles are applicable, as relevant, throughout the entire lifetime of all facilities and activities - existing and new - utilized for peaceful purposes, and to protective actions to reduce existing radiation risks. They provide the basis for requirements and measures for the protection of people and the environment against radiation risks and for the safety of facilities and activities that give rise to radiation risks, including, in particular, nuclear installations and uses of radiation and radioactive sources, the transport of radioactive material and the management of radioactive waste

  14. Fundamental safety principles. Safety fundamentals

    International Nuclear Information System (INIS)

    2006-01-01

    This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purpose. The fundamental safety objective - to protect people and the environment from harmful effects of ionizing radiation - applies to all circumstances that give rise to radiation risks. The safety principles are applicable, as relevant, throughout the entire lifetime of all facilities and activities - existing and new - utilized for peaceful purposes, and to protective actions to reduce existing radiation risks. They provide the basis for requirements and measures for the protection of people and the environment against radiation risks and for the safety of facilities and activities that give rise to radiation risks, including, in particular, nuclear installations and uses of radiation and radioactive sources, the transport of radioactive material and the management of radioactive waste

  15. Management of safety, safety culture and self assessment

    International Nuclear Information System (INIS)

    Carnino, A.

    2000-01-01

    Safety management is the term used for the measures required to ensure that an acceptable level of safety is maintained throughout the life of an installation, including decommissioning. The safety culture concept and its implementation are described in part one of the paper. The principles of safety are now quite well known and are implemented worldwide. It leads to a situation where harmonization is being achieved as indicated by the entry into force of the Convention on Nuclear Safety. To go beyond the present nuclear safety levels, management of safety and safety culture will be the means for achieving progress. Recent events which took place in major nuclear power countries have shown the importance of the management and the consequences on safety. At the same time, electricity deregulation is coming and will impact on safety through reductions in staffing and in operation and maintenance cost at nuclear installations. Management of safety as well as its control and monitoring by the safety authorities become a key to the future of nuclear energy.(author)

  16. Safety, health and environmental committee (JKSHE): Establishing chemical hazard management

    International Nuclear Information System (INIS)

    Shyen, A.K.S.; Noriah Mod Ali; Sangau, J.K.

    2012-01-01

    Most of the laboratories in Malaysian Nuclear Agency are using chemicals in their research activities. However, it is known that using of chemicals without proper knowledge especially on the material characteristics as well as safe handling procedure may cause great harm to the workers. Therefore, Safety, Health and Environmental Committee (JKSHE) sees the need to establish a good chemical hazard management to ensure that a safe and healthy workplace and environment is provided. One of the elements in chemical hazard management is to carry out Chemical Hazard Risk Assessment (CHRA). The assessment was done so that decision can be made on suitable control measures upon use of such chemicals, such as induction and training courses to be given to the workers and health surveillance activities that may be needed to protect the workers. For this, JKSHE has recommended to conduct CHRA for one of the laboratories at Secondary Standard Dosimetry Laboratory (SSDL) namely Film Dosimeter Processing Room (dark room) as the initial effort towards a better chemical hazard management. This paper presents the case study where CHRA was conducted to identify the chemical hazards at the selected laboratory, the adequacy of existing control measures and finally the recommendation for more effective control measures. (author)

  17. Behavioral integrity for safety, priority of safety, psychological safety, and patient safety : a team-level study

    NARCIS (Netherlands)

    Leroy, H.; Dierynck, B.; Anseel, F.; Simons, T.; Halbesleben, J.R.; McCaughey, D.; Savage, G.T.; Sels, L.

    2012-01-01

    This article clarifies how leader behavioral integrity for safety helps solve follower's double bind between adhering to safety protocols and speaking up about mistakes against protocols. Path modeling of survey data in 54 nursing teams showed that head nurse behavioral integrity for safety

  18. Margins of safety provided by COSHH Essentials and the ILO Chemical Control Toolkit.

    Science.gov (United States)

    Jones, Rachael M; Nicas, Mark

    2006-03-01

    COSHH Essentials, developed by the UK Health and Safety Executive, and the Chemical Control Toolkit (Toolkit) proposed by the International Labor Organization, are 'control banding' approaches to workplace risk management intended for use by proprietors of small and medium-sized businesses. Both systems group chemical substances into hazard bands based on toxicological endpoint and potency. COSSH Essentials uses the European Union's Risk-phrases (R-phrases), whereas the Toolkit uses R-phrases and the Globally Harmonized System (GHS) of Classification and Labeling of Chemicals. Each hazard band is associated with a range of airborne concentrations, termed exposure bands, which are to be attained by the implementation of recommended control technologies. Here we analyze the margin of safety afforded by the systems and, for each hazard band, define the minimal margin as the ratio of the minimum airborne concentration that produced the toxicological endpoint of interest in experimental animals to the maximum concentration in workplace air permitted by the exposure band. We found that the minimal margins were always occupational exposure limits, we argue that the minimal margins are better indicators of health protection. Further, given the small margins observed, we feel it is important that revisions of these systems provide the exposure bands to users, so as to permit evaluation of control technology capture efficiency.

  19. Playground Safety

    Science.gov (United States)

    ... Prevention Fall Prevention Playground Safety Poisoning Prevention Road Traffic Safety Sports Safety Get Email Updates To receive ... at the Consumer Product Safety Commission’s Playground Safety website . References U.S. Consumer Product Safety Commission. Injuries and ...

  20. More safety by improving the safety culture

    International Nuclear Information System (INIS)

    Laaksonen, J.

    1993-01-01

    In its meeting in 1986, after Chernobyl accident, the INSAG group concluded, that the most important reason for the accident was lack of safety culture. Later the group realized that the safety culture, if it is well enough, can be used as a powerful tool to assess and develop practices affecting safety in any country. A comprehensive view on the various aspects of safety culture was presented in the INSAG-4 report published in 1991. Finland was among the first nations include the concept of safety culture in its regulations. This article describes the roles of government and the regulatory body in creating a national safety culture. How safety culture is seen in the operation of a nuclear power plant is also discussed. (orig.)

  1. Ab initio chemical safety assessment: A workflow based on exposure considerations and non-animal methods

    OpenAIRE

    Berggren, Elisabet; White, Andrew; Ouedraogo, Gladys; Paini, Alicia; Richarz, Andrea-Nicole; Bois, Frederic Y.; Exner, Thomas; Leite, Sofia; Grunsven, Leo A. van; Worth, Andrew; Mahony, Catherine

    2017-01-01

    Highlights • A workflow for an exposure driven chemical safety assessment to avoid animal testing. • Hypothesis based on existing data, in silico modelling and biokinetic considerations. • A tool to inform targeted and toxicologically relevant in vitro testing.

  2. OCCUPATIONAL HEALTH AND SAFETY ACT NO.6331 AND TOXICOLOGY

    OpenAIRE

    AYAN, Burak

    2018-01-01

    Workers exposureto variety of hazardous chemicals related to the type of work carried out. Regulationsabout chemicals which may be unsafe for workers is regulated at theOccupational Health and Safety Act No.6331.In this review regulatory framework of occupational health and safety forchemicals are assessed in order for chemicals to be used properly andsafely. 

  3. SAFETY

    CERN Multimedia

    Niels Dupont

    2013-01-01

    CERN Safety rules and Radiation Protection at CMS The CERN Safety rules are defined by the Occupational Health & Safety and Environmental Protection Unit (HSE Unit), CERN’s institutional authority and central Safety organ attached to the Director General. In particular the Radiation Protection group (DGS-RP1) ensures that personnel on the CERN sites and the public are protected from potentially harmful effects of ionising radiation linked to CERN activities. The RP Group fulfils its mandate in collaboration with the CERN departments owning or operating sources of ionising radiation and having the responsibility for Radiation Safety of these sources. The specific responsibilities concerning "Radiation Safety" and "Radiation Protection" are delegated as follows: Radiation Safety is the responsibility of every CERN Department owning radiation sources or using radiation sources put at its disposition. These Departments are in charge of implementing the requi...

  4. Safety and Waste Management for SAM Chemistry Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the chemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  5. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  6. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  7. Report: EPA Should Assess Needs and Implement Management Controls to Ensure Effective Incorporation of Chemical Safety Research Products

    Science.gov (United States)

    Report #17-P-0294, June 23, 2017. With management controls that ensure the collaborative development of research products and prioritize chemical safety research needs, the EPA would be better able to conduct faster chemical risk assessments.

  8. Implementation of the safety culture for HANARO safety management

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jong Sup; Han, Gee Yang; Kim, Ik Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-11-15

    Safety is the fundamental principal upon which a management system is based. The IAEA INSAG(International Nuclear Safety Group) states the general aims of a safety management system. One of which is to foster and support a strong safety culture through the development and reinforcement of good safety attitudes and behavior in individuals and teams, so as to allow them to carry out their tasks safety. The safety culture activities have been implemented and the importance of a safety management in nuclear activities for a reactor application and utilization has also been emphasized for more than 10 years in HANARO which is a 30 MW multi purpose research reactor that achieved its first criticality in February 1995. The safety culture activities and implementation have been conducted continuously to enhance its safe operation such as the seminars and lectures related to safety matters, participation in international workshops and the development of safety culture indicators, a survey on the attitude of HANARO staff toward the safety culture indicators, a survey on the attitude of HANARO staff toward the safety culture, the development of operational safety performance indicators (SPIs), the preparation of a safety text book and the development of an e Learning program for a safety education purpose.

  9. Implementation of the safety culture for HANARO safety management

    International Nuclear Information System (INIS)

    Wu, Jong Sup; Han, Gee Yang; Kim, Ik Soo

    2008-01-01

    Safety is the fundamental principal upon which a management system is based. The IAEA INSAG(International Nuclear Safety Group) states the general aims of a safety management system. One of which is to foster and support a strong safety culture through the development and reinforcement of good safety attitudes and behavior in individuals and teams, so as to allow them to carry out their tasks safety. The safety culture activities have been implemented and the importance of a safety management in nuclear activities for a reactor application and utilization has also been emphasized for more than 10 years in HANARO which is a 30 MW multi purpose research reactor that achieved its first criticality in February 1995. The safety culture activities and implementation have been conducted continuously to enhance its safe operation such as the seminars and lectures related to safety matters, participation in international workshops and the development of safety culture indicators, a survey on the attitude of HANARO staff toward the safety culture indicators, a survey on the attitude of HANARO staff toward the safety culture, the development of operational safety performance indicators (SPIs), the preparation of a safety text book and the development of an e Learning program for a safety education purpose

  10. Implementation of the safety culture for HANARO Safety Management

    International Nuclear Information System (INIS)

    Wu, Jongsup; Han, Geeyang; Kim, Iksoo

    2008-01-01

    Safety is the fundamental principal upon which the management system is based. The IAEA INSAG(International Nuclear Safety Group) states the general aims of the safety management system. One of which is to foster and support a strong safety culture through the development and reinforcement of good safety attitudes and behavior in individuals and teams so as to allow them to carry out their tasks safety. The safety culture activities have been implemented and the importance of safety management in nuclear activities for a reactor application and utilization has also been emphasized more than 10 years in HANARO which is a 30 MW multi-purpose research reactor and achieved its first criticality in February 1995. The safety culture activities and implementations have been conducted continuously to enhance its safe operation like the seminars and lectures related to safety matters, participation in international workshops, the development of safety culture indicators, the survey on the attitude of safety culture, the development of operational safety performance indicators (SPIs), the preparation of a safety text book and the development of an e-Learning program for safety education. (author)

  11. Nuclear safety

    International Nuclear Information System (INIS)

    Tarride, Bruno

    2015-10-01

    The author proposes an overview of methods and concepts used in the nuclear industry, at the design level as well as at the exploitation level, to ensure an acceptable safety level, notably in the case of nuclear reactors. He first addresses the general objectives of nuclear safety and the notion of acceptable risk: definition and organisation of nuclear safety (relationships between safety authorities and operators), notion of acceptable risk, deterministic safety approach and main safety principles (safety functions and confinement barriers, concept of defence in depth). Then, the author addresses the safety approach at the design level: studies of operational situations, studies of internal and external aggressions, safety report, design principles for important-for-safety systems (failure criterion, redundancy, failure prevention, safety classification). The next part addresses safety during exploitation and general exploitation rules: definition of the operation domain and of its limits, periodic controls and tests, management in case of incidents, accidents or aggressions

  12. Formal Safety versus Real Safety: Quantitative and Qualitative Approaches to Safety Culture – Evidence from Estonia

    Directory of Open Access Journals (Sweden)

    Järvis Marina

    2016-10-01

    Full Text Available This paper examines differences between formal safety and real safety in Estonian small and medium-sized enterprises. The results reveal key issues in safety culture assessment. Statistical analysis of safety culture questionnaires showed many organisations with an outstanding safety culture and positive safety attitudes. However, qualitative data indicated some important safety weaknesses and aspects that should be included in the process of evaluation of safety culture in organisations.

  13. Priming patient safety: A middle-range theory of safety goal priming via safety culture communication.

    Science.gov (United States)

    Groves, Patricia S; Bunch, Jacinda L

    2018-05-18

    The aim of this paper is discussion of a new middle-range theory of patient safety goal priming via safety culture communication. Bedside nurses are key to safe care, but there is little theory about how organizations can influence nursing behavior through safety culture to improve patient safety outcomes. We theorize patient safety goal priming via safety culture communication may support organizations in this endeavor. According to this theory, hospital safety culture communication activates a previously held patient safety goal and increases the perceived value of actions nurses can take to achieve that goal. Nurses subsequently prioritize and are motivated to perform tasks and risk assessment related to achieving patient safety. These efforts continue until nurses mitigate or ameliorate identified risks and hazards during the patient care encounter. Critically, this process requires nurses to have a previously held safety goal associated with a repertoire of appropriate actions. This theory suggests undergraduate educators should foster an outcomes focus emphasizing the connections between nursing interventions and safety outcomes, hospitals should strategically structure patient safety primes into communicative activities, and organizations should support professional development including new skills and the latest evidence supporting nursing practice for patient safety. © 2018 John Wiley & Sons Ltd.

  14. Highway Safety Program Manual: Volume 3: Motorcycle Safety.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 3 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) concentrates on aspects of motorcycle safety. The purpose and specific objectives of a State motorcycle safety program are outlined. Federal authority in the highway safety area and general policies…

  15. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  16. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  17. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations; to be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; and to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  18. Safety climate practice in Korean manufacturing industry

    International Nuclear Information System (INIS)

    Baek, Jong-Bae; Bae, Sejong; Ham, Byung-Ho; Singh, Karan P.

    2008-01-01

    Safety climate survey was sent to 642 plants in 2003 to explore safety climate practices in the Korean manufacturing plants, especially in hazardous chemical treating plants. Out of 642 plants contacted 195 (30.4%) participated in the surveys. Data were collected by e-mail using SQL-server and mail. The main objective of this study was to explore safety climate practices (level of safety climate and the underlying problems). In addition, the variables that may influence the level of safety climate among managers and workers were explored. The questionnaires developed by health and safety executive (HSE) in the UK were modified to incorporate differences in Korean culture. Eleven important factors were summarized. Internal reliability of these factors was validated. Number of employees in the company varied from less than 30 employees (9.2%) to over 1000 employees (37.4%). Both managers and workers showed generally high level of safety climate awareness. The major underlying problems identified were inadequate health and safety procedures/rules, pressure for production, and rule breaking. The length of employment was a significant contributing factor to the level of safety climate. In this study, participants showed generally high level of safety climate, and length of employment affected the differences in the level of safety climate. Managers' commitment to comply safety rules, procedures, and effective safety education and training are recommended

  19. Safety climate practice in Korean manufacturing industry.

    Science.gov (United States)

    Baek, Jong-Bae; Bae, Sejong; Ham, Byung-Ho; Singh, Karan P

    2008-11-15

    Safety climate survey was sent to 642 plants in 2003 to explore safety climate practices in the Korean manufacturing plants, especially in hazardous chemical treating plants. Out of 642 plants contacted 195 (30.4%) participated in the surveys. Data were collected by e-mail using SQL-server and mail. The main objective of this study was to explore safety climate practices (level of safety climate and the underlying problems). In addition, the variables that may influence the level of safety climate among managers and workers were explored. The questionnaires developed by health and safety executive (HSE) in the UK were modified to incorporate differences in Korean culture. Eleven important factors were summarized. Internal reliability of these factors was validated. Number of employees in the company varied from less than 30 employees (9.2%) to over 1000 employees (37.4%). Both managers and workers showed generally high level of safety climate awareness. The major underlying problems identified were inadequate health and safety procedures/rules, pressure for production, and rule breaking. The length of employment was a significant contributing factor to the level of safety climate. In this study, participants showed generally high level of safety climate, and length of employment affected the differences in the level of safety climate. Managers' commitment to comply safety rules, procedures, and effective safety education and training are recommended.

  20. Safety climate practice in Korean manufacturing industry

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong-Bae [Department of Safety Engineering, Chungju National University, Chungju 380-702 (Korea, Republic of); Bae, Sejong [Department of Biostatistics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107 (United States)], E-mail: sbae@hsc.unt.edu; Ham, Byung-Ho [Department of Industrial Safety, Ministry of Labor (Korea, Republic of); Singh, Karan P. [Department of Biostatistics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107 (United States)

    2008-11-15

    Safety climate survey was sent to 642 plants in 2003 to explore safety climate practices in the Korean manufacturing plants, especially in hazardous chemical treating plants. Out of 642 plants contacted 195 (30.4%) participated in the surveys. Data were collected by e-mail using SQL-server and mail. The main objective of this study was to explore safety climate practices (level of safety climate and the underlying problems). In addition, the variables that may influence the level of safety climate among managers and workers were explored. The questionnaires developed by health and safety executive (HSE) in the UK were modified to incorporate differences in Korean culture. Eleven important factors were summarized. Internal reliability of these factors was validated. Number of employees in the company varied from less than 30 employees (9.2%) to over 1000 employees (37.4%). Both managers and workers showed generally high level of safety climate awareness. The major underlying problems identified were inadequate health and safety procedures/rules, pressure for production, and rule breaking. The length of employment was a significant contributing factor to the level of safety climate. In this study, participants showed generally high level of safety climate, and length of employment affected the differences in the level of safety climate. Managers' commitment to comply safety rules, procedures, and effective safety education and training are recommended.

  1. Health risk from radioactive and chemical environmental contamination: common basis for assessment and safety decision making

    International Nuclear Information System (INIS)

    Demin, V.

    2004-01-01

    To meet the growing practical need in risk analysis in Russia health risk assessment tools and regulations have been developed in the frame of few federal research programs. RRC Kurchatov Institute is involved in R and D on risk analysis activity in these programs. One of the objectives of this development is to produce a common, unified basis of health risk analysis for different sources of risk. Current specific and different approaches in risk assessment and establishing safety standards developed for chemicals and ionising radiation are analysed. Some recommendations are given to produce the common approach. A specific risk index R has been proposed for safety decision-making (establishing safety standards and other levels of protective actions, comparison of various sources of risk, etc.). The index R is defined as the partial mathematical expectation of lost years of healthy life (LLE) due to exposure during a year to a risk source considered. The more concrete determinations of this index for different risk sources derived from the common definition of R are given. Generic safety standards (GSS) for the public and occupational workers have been suggested in terms of this index. Secondary specific safety standards have been derived from GSS for ionizing radiation and a number of other risk sources including environmental chemical pollutants. Other general and derived levels for decision-making have also been proposed including the e-minimum level. Their possible dependence on the national or regional health-demographic data is shortly considered. Recommendations are given on methods and criteria for comparison of various sources of risk. Some examples of risk comparison are demonstrated in the frame of different comparison tasks. The paper has been prepared on the basis of the research work supported by International Science and Technology Centre, Moscow (project no. 2558). (author)

  2. Implementation of the safety culture for HANARO safety management

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jongsup; Han, Geeyang; Kim, Iksoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-11-15

    Safety is the fundamental principal upon which a management system is based. The IAEA INSAG (International Nuclear Safety Group) states the general aims of a safety management system. One of which is to foster and support a strong safety culture through the development and reinforcement of good safety attitudes and behavior in individuals and teams, so as to allow them to carry out their tasks safely. The safety culture activities have been implemented and the importance of a safety management in nuclear activities for a reactor application and utilization has also been emphasized for more than 10 years in HANARO which is a 30MW multi-purpose research reactor that achieved its first criticality in February 1995. The safety culture activities and implementations have been conducted continuously to enhance its safe operation such as the seminars and lectures related to safety matters, participation in international workshops and the development of safety culture indicators, a survey on the attitude of HANARO staff toward the safety culture, the development of operational safety performance indicators (SPIs), the preparation of a safety text book and the development of a e-learning program for a safety education purpose.

  3. Implementation of the safety culture for HANARO safety management

    International Nuclear Information System (INIS)

    Wu, Jongsup; Han, Geeyang; Kim, Iksoo

    2008-01-01

    Safety is the fundamental principal upon which a management system is based. The IAEA INSAG (International Nuclear Safety Group) states the general aims of a safety management system. One of which is to foster and support a strong safety culture through the development and reinforcement of good safety attitudes and behavior in individuals and teams, so as to allow them to carry out their tasks safely. The safety culture activities have been implemented and the importance of a safety management in nuclear activities for a reactor application and utilization has also been emphasized for more than 10 years in HANARO which is a 30MW multi-purpose research reactor that achieved its first criticality in February 1995. The safety culture activities and implementations have been conducted continuously to enhance its safe operation such as the seminars and lectures related to safety matters, participation in international workshops and the development of safety culture indicators, a survey on the attitude of HANARO staff toward the safety culture, the development of operational safety performance indicators (SPIs), the preparation of a safety text book and the development of a e-learning program for a safety education purpose

  4. The impact of masculinity on safety oversights, safety priority and safety violations in two male-dominated occupations

    DEFF Research Database (Denmark)

    Nielsen, Kent; Hansen, Claus D.; Bloksgaard, Lotte

    2015-01-01

    Background Although men have a higher risk of occupational injuries than women the role of masculinity for organizational safety outcomes has only rarely been the object of research. Aim The current study investigated the association between masculinity and safety oversights, safety priority......-related context factors (safety leadership, commitment of the safety representative, and safety involvement) and three safety-related outcome factors (safety violations, safety oversights and safety priority) were administered twice 12 months apart to Danish ambulance workers (n = 1157) and slaughterhouse workers...

  5. Safety practices in Jordanian manufacturing enterprises within industrial estates.

    Science.gov (United States)

    Khrais, Samir; Al-Araidah, Omar; Aweisi, Assaf Mohammad; Elias, Fadia; Al-Ayyoub, Enas

    2013-01-01

    This paper investigates occupational health and safety practices in manufacturing enterprises within Jordanian industrial estates. Response rates were 21.9%, 58.6% and 70.8% for small, medium and large sized enterprises, respectively. Survey results show that most companies comply with state regulations, provide necessary facilities to enhance safety and provide several measures to limit and control hazards. On the negative side, little attention is given to safety training that might be due to the lack of related regulations and follow-up, financial limitations or lack of awareness on the importance of safety training. In addition, results show that ergonomic hazards, noise and hazardous chemicals are largely present. Accident statistics show that medium enterprises have the highest accident cases per enterprise, and chemical industries reported highest total number of accidents per enterprise. The outcomes of this study establish a base for appropriate safety recommendations to enhance the awareness and commitment of companies to appropriate safety rules.

  6. Leadership and Management for Safety. General Safety Requirements

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factor, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations (registrants and licensees) and other organizations concerned with facilities and activities that give rise to radiation risks

  7. Does Employee Safety Matter for Patients Too? Employee Safety Climate and Patient Safety Culture in Health Care.

    Science.gov (United States)

    Mohr, David C; Eaton, Jennifer Lipkowitz; McPhaul, Kathleen M; Hodgson, Michael J

    2015-04-22

    We examined relationships between employee safety climate and patient safety culture. Because employee safety may be a precondition for the development of patient safety, we hypothesized that employee safety culture would be strongly and positively related to patient safety culture. An employee safety climate survey was administered in 2010 and assessed employees' views and experiences of safety for employees. The patient safety survey administered in 2011 assessed the safety culture for patients. We performed Pearson correlations and multiple regression analysis to examine the relationships between a composite measure of employee safety with subdimensions of patient safety culture. The regression models controlled for size, geographic characteristics, and teaching affiliation. Analyses were conducted at the group level using data from 132 medical centers. Higher employee safety climate composite scores were positively associated with all 9 patient safety culture measures examined. Standardized multivariate regression coefficients ranged from 0.44 to 0.64. Medical facilities where staff have more positive perceptions of health care workplace safety climate tended to have more positive assessments of patient safety culture. This suggests that patient safety culture and employee safety climate could be mutually reinforcing, such that investments and improvements in one domain positively impacts the other. Further research is needed to better understand the nexus between health care employee and patient safety to generalize and act upon findings.

  8. Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education

    Science.gov (United States)

    Klein, James A.; Davis, Richard A.

    2011-01-01

    This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…

  9. Software Safety Risk in Legacy Safety-Critical Computer Systems

    Science.gov (United States)

    Hill, Janice L.; Baggs, Rhoda

    2007-01-01

    Safety Standards contain technical and process-oriented safety requirements. Technical requirements are those such as "must work" and "must not work" functions in the system. Process-Oriented requirements are software engineering and safety management process requirements. Address the system perspective and some cover just software in the system > NASA-STD-8719.13B Software Safety Standard is the current standard of interest. NASA programs/projects will have their own set of safety requirements derived from the standard. Safety Cases: a) Documented demonstration that a system complies with the specified safety requirements. b) Evidence is gathered on the integrity of the system and put forward as an argued case. [Gardener (ed.)] c) Problems occur when trying to meet safety standards, and thus make retrospective safety cases, in legacy safety-critical computer systems.

  10. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This publication supports the Safety Requirements on the Safety of Nuclear Power Plants: Design. This Safety Guide was prepared on the basis of a systematic review of all the relevant publications including the Safety Fundamentals, Safety of Nuclear Power Plants: Design, current and ongoing revisions of other Safety Guides, INSAG reports and other publications that have addressed the safety of nuclear power plants. This Safety Guide also provides guidance for Contracting Parties to the Convention on Nuclear Safety in meeting their obligations under Article 14 on Assessment and Verification of Safety. The Safety Requirements publication entitled Safety of Nuclear Power Plants: Design states that a comprehensive safety assessment and an independent verification of the safety assessment shall be carried out before the design is submitted to the regulatory body. This publication provides guidance on how this requirement should be met. This Safety Guide provides recommendations to designers for carrying out a safety assessment during the initial design process and design modifications, as well as to the operating organization in carrying out independent verification of the safety assessment of new nuclear power plants with a new or already existing design. The recommendations for performing a safety assessment are suitable also as guidance for the safety review of an existing plant. The objective of reviewing existing plants against current standards and practices is to determine whether there are any deviations which would have an impact on plant safety. The methods and the recommendations of this Safety Guide can also be used by regulatory bodies for the conduct of the regulatory review and assessment. Although most recommendations of this Safety Guide are general and applicable to all types of nuclear reactors, some specific recommendations and examples apply mostly to water cooled reactors. Terms such as 'safety assessment', 'safety analysis' and 'independent

  11. Major accident prevention through applying safety knowledge management approach.

    Science.gov (United States)

    Kalatpour, Omid

    2016-01-01

    Many scattered resources of knowledge are available to use for chemical accident prevention purposes. The common approach to management process safety, including using databases and referring to the available knowledge has some drawbacks. The main goal of this article was to devise a new emerged knowledge base (KB) for the chemical accident prevention domain. The scattered sources of safety knowledge were identified and scanned. Then, the collected knowledge was formalized through a computerized program. The Protégé software was used to formalize and represent the stored safety knowledge. The domain knowledge retrieved as well as data and information. This optimized approach improved safety and health knowledge management (KM) process and resolved some typical problems in the KM process. Upgrading the traditional resources of safety databases into the KBs can improve the interaction between the users and knowledge repository.

  12. Reactor safety research and safety technology. Pt. 2

    International Nuclear Information System (INIS)

    Theenhaus, R.; Wolters, J.

    1987-01-01

    The state of HTR safety research work reached permits a comprehensive and reliable answer to be given to questions which have been raised by the reactor accident at Chernobyl, regarding HTR safety. Together with the probability safety analyses, the way to a safety concept suitable for an HTR is cleared; instructions are given for design optimisation with regard to safety technique and economy. The consequences of a graphite fire, the neutron physics design and the consequenes of the lack of a safety containment are briefly described. (DG) [de

  13. Developing safety in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Brown, M.L.

    1996-01-01

    The nuclear fuel cycle had its origins in the new technology developed in the 1940s and 50s involving novel physical and chemical processes. At the front end of the cycle, mining, milling and fuel fabrication all underwent development, but in general the focus of process development and safety concerns was the reprocessing stage, with radiation, contamination and criticality the chief hazards. Safety research is not over and there is still work to be done in advancing technical knowledge to new generation nuclear fuels such as Mixed Oxide Fuel and in refining knowledge of margins and of potential upset conditions. Some comments are made on potential areas for work. The NUCEF facility will provide many useful data to aid safety analysis and accident prevention. The routine operations in such plants, basically chemical factories, requires industrial safety and in addition the protection of workers against radiation or contamination. The engineering and management measures for this were novel and the early operation of such plants pioneering. Later commissioning and operating experience has improved routine operating safety, leading to a new generation of factories with highly developed worker protection, engineering safeguards and safety management systems. Ventilation of contamination control zones, remote operation and maintenance, and advanced neutron shielding are engineering examples. In safety management, dose control practices, formally controlled operating procedures and safety cases, and audit processes are comparable with, or lead, best industry practice in other hazardous industries. Nonetheless it is still important that the knowledge and experience from operating plants continue to be gathered together to provide a common basis for improvement. The NEA Working Group on Fuel Cycle Safety provides a forum for much of this interchange. Some activities in the Group are described in particular the FINAS incident reporting system. (J.P.N.)

  14. The safety relief valve handbook design and use of process safety valves to ASME and International codes and standards

    CERN Document Server

    Hellemans, Marc

    2009-01-01

    The Safety Valve Handbook is a professional reference for design, process, instrumentation, plant and maintenance engineers who work with fluid flow and transportation systems in the process industries, which covers the chemical, oil and gas, water, paper and pulp, food and bio products and energy sectors. It meets the need of engineers who have responsibilities for specifying, installing, inspecting or maintaining safety valves and flow control systems. It will also be an important reference for process safety and loss prevention engineers, environmental engineers, and plant and process designers who need to understand the operation of safety valves in a wider equipment or plant design context. . No other publication is dedicated to safety valves or to the extensive codes and standards that govern their installation and use. A single source means users save time in searching for specific information about safety valves. . The Safety Valve Handbook contains all of the vital technical and standards informat...

  15. Safety climate and safety behaviors in the construction industry: The importance of co-workers commitment to safety.

    Science.gov (United States)

    Schwatka, Natalie V; Rosecrance, John C

    2016-06-16

    There is growing empirical evidence that as safety climate improves work site safety practice improve. Safety climate is often measured by asking workers about their perceptions of management commitment to safety. However, it is less common to include perceptions of their co-workers commitment to safety. While the involvement of management in safety is essential, working with co-workers who value and prioritize safety may be just as important. To evaluate a concept of safety climate that focuses on top management, supervisors and co-workers commitment to safety, which is relatively new and untested in the United States construction industry. Survey data was collected from a cohort of 300 unionized construction workers in the United States. The significance of direct and indirect (mediation) effects among safety climate and safety behavior factors were evaluated via structural equation modeling. Results indicated that safety climate was associated with safety behaviors on the job. More specifically, perceptions of co-workers commitment to safety was a mediator between both management commitment to safety climate factors and safety behaviors. These results support workplace health and safety interventions that build and sustain safety climate and a commitment to safety amongst work teams.

  16. Safety

    International Nuclear Information System (INIS)

    1998-01-01

    A brief account of activities carried out by the Nuclear power plants Jaslovske Bohunice in 1997 is presented. These activities are reported under the headings: (1) Nuclear safety; (2) Industrial and health safety; (3) Radiation safety; and Fire protection

  17. Safety Justification and Safety Case for Safety-critical Software in Digital Reactor Protection System

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Lee, Jang-Soo; Jee, Eunkyoung

    2016-01-01

    Nuclear safety-critical software is under strict regulatory requirements and these regulatory requirements are essential for ensuring the safety of nuclear power plants. The verification & validation (V and V) and hazard analysis of the safety-critical software are required to follow regulatory requirements through the entire software life cycle. In order to obtain a license from the regulatory body through the development and validation of safety-critical software, it is essential to meet the standards which are required by the regulatory body throughout the software development process. Generally, large amounts of documents, which demonstrate safety justification including standard compliance, V and V, hazard analysis, and vulnerability assessment activities, are submitted to the regulatory body during the licensing process. It is not easy to accurately read and evaluate the whole documentation for the development activities, implementation technology, and validation activities. The safety case methodology has been kwon a promising approach to evaluate the level and depth of the development and validation results. A safety case is a structured argument, supported by a body of evidence that provides a compelling, comprehensible, and valid case that a system is safe for a given application in a given operating environment. It is suggested to evaluate the level and depth of the results of development and validation by applying safety case methodology to achieve software safety demonstration. A lot of documents provided as evidence are connected to claim that corresponds to the topic for safety demonstration. We demonstrated a case study in which more systematic safety demonstration for the target system software is performed via safety case construction than simply listing the documents

  18. Safety Justification and Safety Case for Safety-critical Software in Digital Reactor Protection System

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee-Choon; Lee, Jang-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jee, Eunkyoung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Nuclear safety-critical software is under strict regulatory requirements and these regulatory requirements are essential for ensuring the safety of nuclear power plants. The verification & validation (V and V) and hazard analysis of the safety-critical software are required to follow regulatory requirements through the entire software life cycle. In order to obtain a license from the regulatory body through the development and validation of safety-critical software, it is essential to meet the standards which are required by the regulatory body throughout the software development process. Generally, large amounts of documents, which demonstrate safety justification including standard compliance, V and V, hazard analysis, and vulnerability assessment activities, are submitted to the regulatory body during the licensing process. It is not easy to accurately read and evaluate the whole documentation for the development activities, implementation technology, and validation activities. The safety case methodology has been kwon a promising approach to evaluate the level and depth of the development and validation results. A safety case is a structured argument, supported by a body of evidence that provides a compelling, comprehensible, and valid case that a system is safe for a given application in a given operating environment. It is suggested to evaluate the level and depth of the results of development and validation by applying safety case methodology to achieve software safety demonstration. A lot of documents provided as evidence are connected to claim that corresponds to the topic for safety demonstration. We demonstrated a case study in which more systematic safety demonstration for the target system software is performed via safety case construction than simply listing the documents.

  19. New Safety rules

    CERN Multimedia

    Safety Commission

    2008-01-01

    The revision of CERN Safety rules is in progress and the following new Safety rules have been issued on 15-04-2008: Safety Procedure SP-R1 Establishing, Updating and Publishing CERN Safety rules: http://cern.ch/safety-rules/SP-R1.htm; Safety Regulation SR-S Smoking at CERN: http://cern.ch/safety-rules/SR-S.htm; Safety Regulation SR-M Mechanical Equipment: http://cern.ch/safety-rules/SR-M.htm; General Safety Instruction GSI-M1 Standard Lifting Equipment: http://cern.ch/safety-rules/GSI-M1.htm; General Safety Instruction GSI-M2 Standard Pressure Equipment: http://cern.ch/safety-rules/GSI-M2.htm; General Safety Instruction GSI-M3 Special Mechanical Equipment: http://cern.ch/safety-rules/GSI-M3.htm. These documents apply to all persons under the Director General’s authority. All Safety rules are available at the web page: http://www.cern.ch/safety-rules The Safety Commission

  20. Development of High-Level Safety Requirements for a Pyroprocessing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seok Jun; Jo, Woo Jin; You, Gil Sung; Choung, Won Myung; Lee, Ho Hee; Kim, Hyun Min; Jeon, Hong Rae; Ku, Jeong Hoe; Lee, Hyo Jik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Korea Atomic Energy Research Institute (KAERI) has been developing a pyroproceesing technology to reduce the waste volume and recycle some elements. The pyroprocessing includes several treatment processes which are related with not only radiological and physical but also chemical and electrochemical properties. Thus, it is of importance to establish safety design requirements considering all the aspects of those properties for a reliable pyroprocessing facility. In this study, high-level requirements are presented in terms of not only radiation protection, nuclear criticality, fire protection, and seismic safety but also confinement and chemical safety for the unique characteristics of a pyroprocessing facility. Several high-level safety design requirements such as radiation protection, nuclear criticality, fire protection, seismic, confinement, and chemical processing were presented for a pyroprocessing facility. The requirements must fulfill domestic and international safety technology standards for a nuclear facility. Furthermore, additional requirements should be considered for the unique electrochemical treatments in a pyroprocessing facility.

  1. Fusion safety program Annual report, Fiscal year 1995

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Carmack, W.J.

    1995-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY-95. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and the technical support for commercial fusion facility conceptual design studies. A final activity described is work to develop DOE Technical Standards for Safety of Fusion Test Facilities

  2. The safety and efficacy of contact lens wear in the industrial and chemical workplace.

    Science.gov (United States)

    Tyhurst, Keith; McNett, Ryan; Bennett, Edward

    2007-11-01

    The use and safety of contact lenses in the industrial and chemical workplace has often been questioned since the 1960s because of many unconfirmed reports of ocular injury resulting from contact lens wear. Because of these urban legends, contact lens wear has been banned or wearers have been required to wear additional personal protective equipment (PPE) not required of non-contact lens wearers. Literature review via Medline and Google search. Research has shown that contact lenses typically provide protective benefits that decrease the severity of ocular injury and improve worker performance. While contact lens wear contraindications do exist, in most cases, and with proper precautions, contact lens wear is still possible. Industrial and chemical companies need to establish written contact lens use policies based on current studies that have shown the safety of workplace contact lens wear when combined with the same PPE required of non-contact lens wearers. Practitioners need to discuss, with their contact lens patients, the additional responsibilities required to maintain proper lens hygiene and proper PPE in the workplace.

  3. Safety critical systems handbook a straightforward guide to functional safety : IEC 61508 (2010 edition) and related standards

    CERN Document Server

    Smith, David J

    2010-01-01

    Electrical, electronic and programmable electronic systems increasingly carry out safety functions to guard workers and the public against injury or death and the environment against pollution. The international functional safety standard IEC 61508 was revised in 2010, and this is the first comprehensive guide available to the revised standard. As functional safety is applicable to many industries, this book will have a wide readership beyond the chemical and process sector, including oil and gas, power generation, nuclear, aircraft, and automotive industries, plus project, instrumentation, design, and control engineers. * The only comprehensive guide to IEC 61508, updated to cover the 2010 amendments, that will ensure engineers are compliant with the latest process safety systems design and operation standards* Helps readers understand the process required to apply safety critical systems standards* Real-world approach helps users to interpret the standard, with case studies and best practice design examples...

  4. The role of probabilistic safety assessment and probabilistic safety criteria in nuclear power plant safety

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this Safety Report is to provide guidelines on the role of probabilistic safety assessment (PSA) and a range of associated reference points, collectively referred to as probabilistic safety criteria (PSC), in nuclear safety. The application of this Safety Report and the supporting Safety Practice publication should help to ensure that PSA methodology is used appropriately to assess and enhance the safety of nuclear power plants. The guidelines are intended for use by nuclear power plant designers, operators and regulators. While these guidelines have been prepared with nuclear power plants in mind, the principles involved have wide application to other nuclear and non-nuclear facilities. In Section 2 of this Safety Report guidelines are established on the role PSA can play as part of an overall safety assurance programme. Section 3 summarizes guidelines for the conduct of PSAs, and in Section 4 a PSC framework is recommended and guidance is provided for the establishment of PSC values

  5. Safety of Nuclear Power Plants: Design. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  6. Discussion on the safety classification of nuclear safety mechanical equipment

    International Nuclear Information System (INIS)

    Shen Wei

    2010-01-01

    The purpose and definition of the equipment safety classification in nuclear plant are introduced. The differences of several safety classification criterions are compared, and the object of safety classification is determined. According to the regulation, the definition and category of the safety functions are represented. The safety classification method, safety classification process, safety class interface, and the requirement for the safety class mechanical equipment are explored. At last, the relation of the safety classification between the mechanical and electrical equipment is presented, and the relation of the safety classification between mechanical equipment and system is also presented. (author)

  7. Traceability of Software Safety Requirements in Legacy Safety Critical Systems

    Science.gov (United States)

    Hill, Janice L.

    2007-01-01

    How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?

  8. Comparing REACH Chemical Safety Assessment information with practice-a case-study of polymethylmethacrylate (PMMA) in floor coating in The Netherlands.

    Science.gov (United States)

    Spee, Ton; Huizer, Daan

    2017-10-01

    On June 1st, 2007 the European regulation on Registration, Evaluation and Restriction of Chemical substances (REACH) came into force. Aim of the regulation is safe use of chemicals for humans and for the environment. The core element of REACH is chemical safety assessment of chemicals and communication of health and safety hazards and risk management measures throughout the supply chain. Extended Safety Data Sheets (Ext-SDS) are the primary carriers of health and safety information. The aim of our project was to find out whether the actual exposure to methyl methacrylate (MMA) during the application of polymethylmethacrylate (PMMA) in floor coatings as assessed in the chemical safety assessment, reflect the exposure situations as observed in the Dutch building practice. Use of PMMA flooring and typical exposure situations during application were discussed with twelve representatives of floor laying companies. Representative situations for exposure measurements were designated on the basis of this inventory. Exposure to MMA was measured in the breathing zone of the workers at four construction sites, 14 full shift samples and 14 task based samples were taken by personal air sampling. The task-based samples were compared with estimates from the Targeted Risk Assessment Tool (v3.1) of the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC-TRA) as supplied in the safety assessment from the manufacturer. For task-based measurements, in 12 out of 14 (86%) air samples measured exposure was higher than estimated exposure. Recalculation with a lower ventilation rate (50% instead of 80%) together with a higher temperature during mixing (40°C instead of 20°C) in comparison with the CSR, reduced the number of underestimated exposures to 10 (71%) samples. Estimation with the EMKG-EXPO-Tool resulted in unsafe exposure situations for all scenarios, which is in accordance with the measurement outcomes. In indoor situations, 5 out of 8 full shift exposures (62

  9. Safety design

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Shiozawa, Shusaku

    2004-01-01

    JAERI established the safety design philosophy of the HTTR based on that of current reactors such as LWR in Japan, considering inherent safety features of the HTTR. The strategy of defense in depth was implemented so that the safety engineering functions such as control of reactivity, removal of residual heat and confinement of fission products shall be well performed to ensure safety. However, unlike the LWR, the inherent design features of the high-temperature gas-cooled reactor (HTGR) enables the HTTR meet stringent regulatory criteria without much dependence on active safety systems. On the other hand, the safety in an accident typical to the HTGR such as the depressurization accident initiated by a primary pipe rupture shall be ensured. The safety design philosophy of the HTTR considers these unique features appropriately and is expected to be the basis for future Japanese HTGRs. This paper describes the safety design philosophy and safety evaluation procedure of the HTTR especially focusing on unique considerations to the HTTR. Also, experiences obtained from an HTTR safety review and R and D needs for establishing the safety philosophy for the future HTGRs are reported

  10. Safety KPIs - Monitoring of safety performance

    Directory of Open Access Journals (Sweden)

    Andrej Lališ

    2014-09-01

    Full Text Available This paper aims to provide brief overview of aviation safety development focusing on modern trends represented by implementation of Safety Key Performance Indicators. Even though aviation is perceived as safe means of transport, it is still struggling with its complexity given by long-term growth and robustness which it has reached today. Thus nowadays safety issues are much more complex and harder to handle than ever before. We are more and more concerned about organizational factors and control mechanisms which have potential to further increase level of aviation safety. Within this paper we will not only introduce the concept of Key Performance Indicators in area of aviation safety as an efficient control mechanism, but also analyse available legislation and documentation. Finally we will propose complex set of indicators which could be applied to Czech Air Navigation Service Provider.

  11. HSE's safety assessment principles for criticality safety

    International Nuclear Information System (INIS)

    Simister, D N; Finnerty, M D; Warburton, S J; Thomas, E A; Macphail, M R

    2008-01-01

    The Health and Safety Executive (HSE) published its revised Safety Assessment Principles for Nuclear Facilities (SAPs) in December 2006. The SAPs are primarily intended for use by HSE's inspectors when judging the adequacy of safety cases for nuclear facilities. The revised SAPs relate to all aspects of safety in nuclear facilities including the technical discipline of criticality safety. The purpose of this paper is to set out for the benefit of a wider audience some of the thinking behind the final published words and to provide an insight into the development of UK regulatory guidance. The paper notes that it is HSE's intention that the Safety Assessment Principles should be viewed as a reflection of good practice in the context of interpreting primary legislation such as the requirements under site licence conditions for arrangements for producing an adequate safety case and for producing a suitable and sufficient risk assessment under the Ionising Radiations Regulations 1999 (SI1999/3232 www.opsi.gov.uk/si/si1999/uksi_19993232_en.pdf). (memorandum)

  12. ITER safety

    International Nuclear Information System (INIS)

    Raeder, J.; Piet, S.; Buende, R.

    1991-01-01

    As part of the series of publications by the IAEA that summarize the results of the Conceptual Design Activities for the ITER project, this document describes the ITER safety analyses. It contains an assessment of normal operation effluents, accident scenarios, plasma chamber safety, tritium system safety, magnet system safety, external loss of coolant and coolant flow problems, and a waste management assessment, while it describes the implementation of the safety approach for ITER. The document ends with a list of major conclusions, a set of topical remarks on technical safety issues, and recommendations for the Engineering Design Activities, safety considerations for siting ITER, and recommendations with regard to the safety issues for the R and D for ITER. Refs, figs and tabs

  13. Safety culture

    International Nuclear Information System (INIS)

    Keen, L.J.

    2003-01-01

    Safety culture has become a topic of increasing interest for industry and regulators as issues are raised on safety problems around the world. The keys to safety culture are organizational effectiveness, effective communications, organizational learning, and a culture that encourages the identification and resolution of safety issues. The necessity of a strong safety culture places an onus on all of us to continually question whether the safety measures already in place are sufficient, and are being applied. (author)

  14. Safety Climate, Perceived Risk, and Involvement in Safety Management

    OpenAIRE

    Kouabenan , Dongo Rémi; Ngueutsa , Robert ,; Safiétou , Mbaye

    2015-01-01

    International audience; This article examines the relationship between safety climate, risk perception and involvement in safety management by first-line managers (FLM). Sixty-three FLMs from two French nuclear plants answered a questionnaire measuring perceived workplace safety climate, perceived risk, and involvement in safety management. We hypothesized that a positive perception of safety climate would promote substantial involvement in safety management, and that this effect would be str...

  15. eLCOSH : Electronic Library of Construction Occupational Safety and Health

    Science.gov (United States)

    Occupational Safety & Health Administration (OSHA) about Preventing Hearing Loss Caused by Chemical 2006 that drew attention to the safety of miners, hazard detecti... OSHA Safety and Health Information , 199... CDC study of occupational respiratory health analyzes rates of worker deaths from asthma by

  16. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  17. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  18. Safety culture: a survey of the state-of-the-art

    International Nuclear Information System (INIS)

    Sorensen, J.N.

    2002-01-01

    This paper discusses the evolution of the term 'safety culture' and the perceived relationship between safety culture and safety of operations in nuclear power generation and other hazardous technologies. There is a widespread belief that safety culture is an important contributor to safety of operations. Empirical evidence that safety culture and other management and organizational factors influence operational safety is more readily available for the chemical process industry than for nuclear power plant operations. The commonly accepted attributes of safety culture include good organizational communications, good organizational learning, and senior management commitment to safety. Safety culture may be particularly important in reducing latent errors in complex, well-defended systems. The role of regulatory bodies in fostering strong safety cultures remains unclear, and additional work is required to define the essential attributes of safety culture and to identify reliable performance indicators

  19. IAEA Safety Standards

    International Nuclear Information System (INIS)

    2016-09-01

    The IAEA Safety Standards Series comprises publications of a regulatory nature covering nuclear safety, radiation protection, radioactive waste management, the transport of radioactive material, the safety of nuclear fuel cycle facilities and management systems. These publications are issued under the terms of Article III of the IAEA’s Statute, which authorizes the IAEA to establish “standards of safety for protection of health and minimization of danger to life and property”. Safety standards are categorized into: • Safety Fundamentals, stating the basic objective, concepts and principles of safety; • Safety Requirements, establishing the requirements that must be fulfilled to ensure safety; and • Safety Guides, recommending measures for complying with these requirements for safety. For numbering purposes, the IAEA Safety Standards Series is subdivided into General Safety Requirements and General Safety Guides (GSR and GSG), which are applicable to all types of facilities and activities, and Specific Safety Requirements and Specific Safety Guides (SSR and SSG), which are for application in particular thematic areas. This booklet lists all current IAEA Safety Standards, including those forthcoming

  20. 78 FR 53790 - Public Forum-Safety Culture: Enhancing Transportation Safety

    Science.gov (United States)

    2013-08-30

    ... NATIONAL TRANSPORTATION SAFETY BOARD Public Forum--Safety Culture: Enhancing Transportation Safety On Tuesday and Wednesday, September 10-11, 2013, the National Transportation Safety Board (NTSB) will convene a forum titled, ``Safety Culture: Enhancing Transportation Safety.'' The forum will begin at 9:00...

  1. Risk analysis and safety rationale

    International Nuclear Information System (INIS)

    Bengtsson, G.

    1989-01-01

    Decision making with respect to safety is becoming more and more complex. The risk involved must be taken into account together with numerous other factors such as the benefits, the uncertainties and the public perception. Can the decision maker be aided by some kind of system, general rules of thumb, or broader perspective on similar decisions? This question has been addressed in a joint Nordic project relating to nuclear power. Modern techniques for risk assessment and management have been studied, and parallels drawn to such areas as offshore safety and management of toxic chemicals in the environment. The report summarises the finding of 5 major technical reports which have been published in the NORD-series. The topics includes developments, uncertainties and limitations in probabilistic safety assessments, negligible risks, risk-cost trade-offs, optimisation of nuclear safety and radiation protection, and the role of risks in the decision making process. (author) 84 refs

  2. Nuclear safety

    International Nuclear Information System (INIS)

    1991-02-01

    This book reviews the accomplishments, operations, and problems faced by the defense Nuclear Facilities Safety Board. Specifically, it discusses the recommendations that the Safety Board made to improve safety and health conditions at the Department of Energy's defense nuclear facilities, problems the Safety Board has encountered in hiring technical staff, and management problems that could affect the Safety Board's independence and credibility

  3. Auto Safety

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Auto Safety KidsHealth / For Parents / Auto Safety What's in this ... by teaching some basic rules. Importance of Child Safety Seats Using a child safety seat (car seat) ...

  4. LFR safety approach and main ELFR safety analysis results

    International Nuclear Information System (INIS)

    Bubelis, E.; Schikorr, M.; Frogheri, M.; Mansani, L.; Bandini, G.; Burgazzi, L.; Mikityuk, K.; Zhang, Y.; Lo Frano, R.; Forgione, N.

    2013-01-01

    LFR safety approach: → A global safety approach for the LFR reference plant has been assessed and the safety analyses methodology has been developed. → LFR follows the general guidelines of the Generation IV safety concept recommendations. Thus, improved safety and higher reliability are recognized as an essential priority. → The fundamental safety objectives and the Defence-in-Depth (DiD) approach, as described by IAEA Safety Guides, have been preserved. → The recommendations of the Risk and Safety Working Group (RSWG) of GEN-IV IF has been taken into account: • safety is to be “built-in” in the fundamental design rather than “added on”; • full implementation of the Defence-in-Depth principles in a manner that is demonstrably exhaustive, progressive, tolerant, forgiving and well-balanced; • “risk-informed” approach - deterministic approach complemented with a probabilistic one; • adoption of an integrated methodology that can be used to evaluate and document the safety of Gen IV nuclear systems - ISAM. In particular the OPT tool is the fundamental methodology used throughout the design process

  5. Safety campaigns. TIS Launches New Safety Information Campaign

    CERN Multimedia

    2001-01-01

    Need to start a new installation and worried about safety aspects? Or are you newly responsible for safety matters in a CERN building? Perhaps you're simply interested in how to make the working environment safer for yourself and your colleagues. Whatever the case, a new information campaign launched by TIS this week can help. The most visible aspects of the new campaign will be posters distributed around the Laboratory treating a different subject each month. The Web site - http://safety.cern.ch/ - which provides all safety related information. But these are not the only aspects of the new campaign. Members of the TIS/GS group, whose contact details can be found on the safety web site, are available to give information and advice on a one-to-one basis at any time. The campaign's launch has been timed to coincide with European Safety Week, organized by the European Agency for Safety and Health at Work and the subject treated in the first posters is safety inspection. This particular topic only concerns thos...

  6. Safety and health in the petrochemical industry in Map Ta Phut, Thailand.

    Science.gov (United States)

    Langkulsen, Uma; Vichit-Vadakan, Nuntavarn; Taptagaporn, Sasitorn

    2011-01-01

    Petrochemical industries are known as sources of many toxic chemicals. Safety and health risks of the petrochemical workers employed at Map Ta Phut Industrial Estate, located in Rayong, Thailand, are potentially high. The research materials consisted of documents emanating from statutory reports on safety in working with toxic chemicals and the results of interviews by questionnaire among 457 petrochemical workers regarding occupational health and safety issues. Most of workers who were working with toxic chemicals had knowledge and awareness of health risks and chemical hazards at work. We found that safe behavior at work through read the safety information among operational workers less than non-operational workers around 10%. Most of workers had perceived occupational health and safety management in their companies. Some companies revealed that they had not been performing biological monitoring of blood or urine for their health examination reports and that workplace exposure monitoring had not correlated well with health examination of workers. Our study suggested that occupational health and safety for petrochemical industries requires standards and guidelines for workers' health surveillance aimed at protection of workers.

  7. The association between EMS workplace safety culture and safety outcomes.

    Science.gov (United States)

    Weaver, Matthew D; Wang, Henry E; Fairbanks, Rollin J; Patterson, Daniel

    2012-01-01

    Prior studies have highlighted wide variation in emergency medical services (EMS) workplace safety culture across agencies. To determine the association between EMS workplace safety culture scores and patient or provider safety outcomes. We administered a cross-sectional survey to EMS workers affiliated with a convenience sample of agencies. We recruited these agencies from a national EMS management organization. We used the EMS Safety Attitudes Questionnaire (EMS-SAQ) to measure workplace safety culture and the EMS Safety Inventory (EMS-SI), a tool developed to capture self-reported safety outcomes from EMS workers. The EMS-SAQ provides reliable and valid measures of six domains: safety climate, teamwork climate, perceptions of management, working conditions, stress recognition, and job satisfaction. A panel of medical directors, emergency medical technicians and paramedics, and occupational epidemiologists developed the EMS-SI to measure self-reported injury, medical errors and adverse events, and safety-compromising behaviors. We used hierarchical linear models to evaluate the association between EMS-SAQ scores and EMS-SI safety outcome measures. Sixteen percent of all respondents reported experiencing an injury in the past three months, four of every 10 respondents reported an error or adverse event (AE), and 89% reported safety-compromising behaviors. Respondents reporting injury scored lower on five of the six domains of safety culture. Respondents reporting an error or AE scored lower for four of the six domains, while respondents reporting safety-compromising behavior had lower safety culture scores for five of the six domains. Individual EMS worker perceptions of workplace safety culture are associated with composite measures of patient and provider safety outcomes. This study is preliminary evidence of the association between safety culture and patient or provider safety outcomes.

  8. Release mitigation spray safety systems for chemical demilitarization applications.

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  9. Transformational and passive leadership as cross-level moderators of the relationships between safety knowledge, safety motivation, and safety participation.

    Science.gov (United States)

    Jiang, Lixin; Probst, Tahira M

    2016-06-01

    While safety knowledge and safety motivation are well-established predictors of safety participation, less is known about the impact of leadership styles on these relationships. The purpose of the current study was to examine whether the positive relationships between safety knowledge and motivation and safety participation are contingent on transformational and passive forms of safety leadership. Using multilevel modeling with a sample of 171 employees nested in 40 workgroups, we found that transformational safety leadership strengthened the safety knowledge-participation relationship, whereas passive leadership weakened the safety motivation-participation relationship. Under low transformational leadership, safety motivation was not related to safety participation; under high passive leadership, safety knowledge was not related to safety participation. These results are discussed in light of organizational efforts to increase safety-related citizenship behaviors. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.

  10. Notification: FY 2012 Management Challenges and Internal Control Weaknesses for the Chemical Safety and Hazard Investigation Board

    Science.gov (United States)

    February 1, 2012. The EPA Office of Inspector General is beginning work to update our list of areas we consider to be the key management challenges confronting the Chemical Safety and Hazard Investigation Board.

  11. Selecting of key safety parameters in reactor nuclear safety supervision

    International Nuclear Information System (INIS)

    He Fan; Yu Hong

    2014-01-01

    The safety parameters indicate the operational states and safety of research reactor are the basis of nuclear safety supervision institution to carry out effective supervision to nuclear facilities. In this paper, the selecting of key safety parameters presented by the research reactor operating unit to National Nuclear Safety Administration that can express the research reactor operational states and safety when operational occurrence or nuclear accident happens, and the interrelationship between them are discussed. Analysis shows that, the key parameters to nuclear safety supervision of research reactor including design limits, operational limits and conditions, safety system settings, safety limits, acceptable limits and emergency action level etc. (authors)

  12. Perceived organizational support for safety and employee safety voice: the mediating role of coworker support for safety.

    Science.gov (United States)

    Tucker, Sean; Chmiel, Nik; Turner, Nick; Hershcovis, M Sandy; Stride, Chris B

    2008-10-01

    In the present study, we modeled 2 sources of safety support (perceived organizational support for safety and perceived coworker support for safety) as predictors of employee safety voice, that is, speaking out in an attempt to change unsafe working conditions. Drawing on social exchange and social impact theories, we hypothesized and tested a mediated model predicting employee safety voice using a cross-sectional survey of urban bus drivers (n = 213) in the United Kingdom. Hierarchical regression analysis showed that perceived coworker support for safety fully mediated the relationship between perceived organizational support for safety and employee safety voice. This study adds to the employee voice literature by evaluating the important role that coworkers can play in encouraging others to speak out about safety issues. Implications for research and practice related to change-oriented safety communication are discussed.

  13. Safety of Research Reactors. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Requirements publication establishes requirements for all main areas of safety for research reactors, with particular emphasis on requirements for design and operation. It explains the safety objectives and concepts that form the basis for safety and safety assessment for all stages in the lifetime of a research reactor. Technical and administrative requirements for the safety of new research reactors are established in accordance with these objectives and concepts, and they are to be applied to the extent practicable for existing research reactors. The safety requirements established in this publication for the management of safety and regulatory supervision apply to site evaluation, design, manufacturing, construction, commissioning, operation (including utilization and modification), and planning for decommissioning of research reactors (including critical assemblies and subcritical assemblies). The publication is intended for use by regulatory bodies and other organizations with responsibilities in these areas and in safety analysis, verification and review, and the provision of technical support.

  14. Relationships among Safety Climate, Safety Behavior, and Safety Outcomes for Ethnic Minority Construction Workers

    Directory of Open Access Journals (Sweden)

    Sainan Lyu

    2018-03-01

    Full Text Available In many countries, it is common practice to attract and employ ethnic minority (EM or migrant workers in the construction industry. This primarily occurs in order to alleviate the labor shortage caused by an aging workforce with a lack of new entrants. Statistics show that EM construction workers are more likely to have occupational fatal and nonfatal injuries than their local counterparts; however, the mechanism underlying accidents and injuries in this vulnerable population has been rarely examined. This study aims to investigate relationships among safety climate, safety behavior, and safety outcomes for EM construction workers. To this end, a theoretical research model was developed based on a comprehensive review of the current literature. In total, 289 valid questionnaires were collected face-to-face from 223 Nepalese construction workers and 56 Pakistani construction workers working on 15 construction sites in Hong Kong. Structural equation modelling was employed to validate the constructs and test the hypothesized model. Results show that there were significant positive relationships between safety climate and safety behaviors, and significant negative relationships between safety behaviors and safety outcomes for EM construction workers. This research contributes to the literature regarding EM workers by providing empirical evidence of the mechanisms by which safety climate affects safety behaviors and outcomes. It also provides insights in order to help the key stakeholders formulate safety strategies for EM workers in many areas where numerous EM workers are employed, such as in the U.S., the UK, Australia, Singapore, Malaysia, and the Middle East.

  15. Relationships among Safety Climate, Safety Behavior, and Safety Outcomes for Ethnic Minority Construction Workers.

    Science.gov (United States)

    Lyu, Sainan; Hon, Carol K H; Chan, Albert P C; Wong, Francis K W; Javed, Arshad Ali

    2018-03-09

    In many countries, it is common practice to attract and employ ethnic minority (EM) or migrant workers in the construction industry. This primarily occurs in order to alleviate the labor shortage caused by an aging workforce with a lack of new entrants. Statistics show that EM construction workers are more likely to have occupational fatal and nonfatal injuries than their local counterparts; however, the mechanism underlying accidents and injuries in this vulnerable population has been rarely examined. This study aims to investigate relationships among safety climate, safety behavior, and safety outcomes for EM construction workers. To this end, a theoretical research model was developed based on a comprehensive review of the current literature. In total, 289 valid questionnaires were collected face-to-face from 223 Nepalese construction workers and 56 Pakistani construction workers working on 15 construction sites in Hong Kong. Structural equation modelling was employed to validate the constructs and test the hypothesized model. Results show that there were significant positive relationships between safety climate and safety behaviors, and significant negative relationships between safety behaviors and safety outcomes for EM construction workers. This research contributes to the literature regarding EM workers by providing empirical evidence of the mechanisms by which safety climate affects safety behaviors and outcomes. It also provides insights in order to help the key stakeholders formulate safety strategies for EM workers in many areas where numerous EM workers are employed, such as in the U.S., the UK, Australia, Singapore, Malaysia, and the Middle East.

  16. Failure rate data for fusion safety and risk assessment

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1993-01-01

    The Fusion Safety Program (FSP) at the Idaho National Engineering Laboratory (INEL) conducts safety research in materials, chemical reactions, safety analysis, risk assessment, and in component research and development to support existing magnetic fusion experiments and also to promote safety in the design of future experiments. One of the areas of safety research is applying probabilistic risk assessment (PRA) methods to fusion experiments. To apply PRA, we need a fusion-relevant radiological dose code and a component failure rate data base. This paper describes the FSP effort to develop a failure rate data base for fusion-specific components

  17. Central Safety Department. Annual report 1986

    International Nuclear Information System (INIS)

    Kiefer, H.; Koenig, L.A.

    1987-03-01

    The Safety Officer and the Security Officer are responsible for radiation protection and technical safety, both conventional and nuclear, for the physical protection as well as the safeguards of nuclear materials and radioactive substances within the Kernforschungszentrum Karlsruhe GmbH (KfK). To fulfill these functions they rely on the assistance of the Central Safety Department. The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The r+d work concentrates on the following aspects: physical and chemical behavior of biologically particularly active radionuclides, behavior of HT in the air/plant/soil system, biophysics of multicellular systems, improvement in radiation protection measurement and personnel dosimetry. The report gives details of the different duties, indicates the results of 1986 routine tasks and reports about results of investigations and developments of the working groups of the Department. (orig.) [de

  18. Laws on technical safety. Vol. 1

    International Nuclear Information System (INIS)

    Eberstein, H.H.; Strecker, A.

    1981-01-01

    Loose-leaf collection containing the full text of 1) Law on the safety of technical equipment and materials, with administrative regulations and ordinances; 2) Section 24 of the Trading and Industrial Code, and ordinance on the use of compressed air; 3) Ordinance on the handling of hazardous materials; 4) Working Site Ordinance; 5) Law concerning works doctors, safety engineers and other personnel responsible for occupational safety; 6) Law for the protection of minors in working conditions; 7) Atomic Energy Law; 8) Radiation Protection Ordinance; 9) X-ray Ordinance; 10) Law on hazardous chemical substances; 11) Law on the carriage of dangerous goods. (HP) [de

  19. Safety culture : a significant influence on safety in transportation

    Science.gov (United States)

    2017-08-01

    An organizations safety culture can influence safety outcomes. Research and experience show that when safety culture is strong, accidents are less frequent and less severe. As a result, building and maintaining strong safety cultures should be a t...

  20. Guidance on health effects of toxic chemicals. Safety Analysis Report Update Program

    Energy Technology Data Exchange (ETDEWEB)

    Foust, C.B.; Griffin, G.D.; Munro, N.B.; Socolof, M.L.

    1994-02-01

    Martin Marietta Energy Systems, Inc. (MMES), and Martin Marietta Utility Services, Inc. (MMUS), are engaged in phased programs to update the safety documentation for the existing US Department of Energy (DOE)-owned facilities. The safety analysis of potential toxic hazards requires a methodology for evaluating human health effects of predicted toxic exposures. This report provides a consistent set of health effects and documents toxicity estimates corresponding to these health effects for some of the more important chemicals found within MMES and MMUS. The estimates are based on published toxicity information and apply to acute exposures for an ``average`` individual. The health effects (toxicological endpoints) used in this report are (1) the detection threshold; (2) the no-observed adverse effect level; (3) the onset of irritation/reversible effects; (4) the onset of irreversible effects; and (5) a lethal exposure, defined to be the 50% lethal level. An irreversible effect is defined as a significant effect on a person`s quality of life, e.g., serious injury. Predicted consequences are evaluated on the basis of concentration and exposure time.

  1. The Study of Implement of HCS Program at Hazardous Chemicals Knowledge and Safety performance in Tehran refinery, s laboratory unit

    Directory of Open Access Journals (Sweden)

    N. Hassanzadeh-Rangi

    2008-10-01

    Full Text Available Background and aims   The HCS standard includes listing of chemicals, labeling of chemical  containers, preparation of material safety data sheets, writing plan and employee training  programs. The aim of this study was to determine the influence of implemented program to enhance the knowledge and safety performance level of employees.   Methods   The knowledge level and unsafe act ratio were measured using both questionnaire  and behavior checklist (with safety sampling method before and after enforcing this interface.   Results   In this study, the mean and standard deviation of the knowledge level of employees  related to chemical safety before enforcing the interface was 46% and 14%. However, after  enforcing the interface, mean and standard deviation was 88% and 12%. The paired-t-test result   in this parameter was significant (p-value <0.0001. The mean and standard deviation of  knowledge level of employees related to warning labels before to enforcing the interface was 29%  and 22%. After enforcing the interface, mean and standard deviation was 80% and 16%. The paired-t-test result in this parameter was significant (p-value <0.0001. The mean and standard  deviation of the knowledge level of employees related to hazard communication methods before enforcing the interface was 25% and 11%. After enforcing the interface, mean and standard deviation was 79% and 16%. The paired-t-test result in this parameter was significant (p-value   <0.001.   Conclusion   The obtained result revealed that enhancement of the knowledge related to chemical safety, hazard communication methods and warning labels was significant. Statistical paired-t-test and control chart methods was used to comparison between unsafe act ratio before  and after enforcing the interface. The mean and standard deviation of unsafe act ratio before implementation of HCS program was 23.6% and 5.49%. However, mean and standard deviation of unsafe act ratio

  2. Total safety management: An approach to improving safety culture

    International Nuclear Information System (INIS)

    Blush, S.M.

    1993-01-01

    A little over 4 yr ago, Admiral James D. Watkins became Secretary of Energy. President Bush, who had appointed him, informed Watkins that his principal task would be to clean up the nuclear weapons complex and put the US Department of Energy (DOE) back in the business of producing tritium for the nation's nuclear deterrent. Watkins recognized that in order to achieve these objectives, he would have to substantially improve the DOE's safety culture. Safety culture is a relatively new term. The International Atomic Energy Agency (IAEA) used it in a 1986 report on the root causes of the Chernobyl nuclear accident. In 1990, the IAEA's International Nuclear Safety Advisory Group issued a document focusing directly on safety culture. It provides guidelines to the international nuclear community for measuring the effectiveness of safety culture in nuclear organizations. Safety culture has two principal aspects: an organizational framework conducive to safety and the necessary organizational and individual attitudes that promote safety. These obviously go hand in hand. An organization must create the right framework to foster the right attitudes, but individuals must have the right attitudes to create the organizational framework that will support a good safety culture. The difficulty in developing such a synergistic relationship suggests that achieving and sustaining a strong safety culture is not easy, particularly in an organization whose safety culture is in serious disrepair

  3. Safety for Users

    CERN Multimedia

    HR Department

    2008-01-01

    CERN welcomes more than 8000 Users every year. The PH Department as host to these scientific associates requires the highest safety standards. The PH Safety Office has published a Safety Flyer for Users. Important safety topics and procedures are presented. Although the Flyer is intended primarily to provide safety information for Users, the PH Safety Office invites all those on the CERN sites to keep a copy of the flyer as it gives guidance in matters of safety and explains what to do in the event of an emergency. Link: http://ph-dep.web.cern.ch/ph-dep/Safety/SafetyOffice.html PH-Safety Office PH Department

  4. Safety for Users

    CERN Multimedia

    HR Department

    2008-01-01

    CERN welcomes more than 8000 Users every year. The PH Department as host to these scientific associates requires the highest safety standards. The PH Safety Office has published a safety flyer for Users. Important safety topics and procedures are presented. Although the flyer is intended primarily to provide safety information for Users, the PH Safety Office invites all those on the CERN sites to keep a copy of the flyer as it gives guidance in matters of safety and explains what to do in the event of an emergency. The flyer is available at: http://ph-dep.web.cern.ch/ph-dep/Safety/SafetyOffice.html PH-Safety Office PH Department

  5. Safety in waste management plants: An Indian perspective

    International Nuclear Information System (INIS)

    Shekhar, P.; Ozarde, P.D.; Gandhi, P.M.

    2000-01-01

    Assurance of safety of public and plant workers and protection of the environment are prime objectives in the design and construction of Waste Management Plants. In India, waste management principles and strategies have been evolved in accordance with national and international regulations and standards for radiation protection. The regulations governing radiation protection have a far-reaching impact on the management of the radioactive waste. The wastes arise at each stages of the fuel cycle with varying chemical nature, generation rate and specific activity levels depending upon the type of the facility. Segregation of waste based on its chemical nature and specific activity levels is an essential feature, as its aids in selection of treatment and conditioning process. Selection of the process, equipment and materials in the plant, are governed by safety consideration alongside factors like efficiency and simplicity. The plant design considerations like physical separation, general arrangement, ventilation zoning, access control, remote handling, process piping routing, decontamination etc. have major role in realizing waste safety. Stringent quality control measures during all stages of construction have helped in achieving the design intended safety. These aspects together with operating experience gained form basis for the improved safety features in the design and construction of waste management plants. The comprehensive safety is derived from adoption of waste management strategies and appropriate plant design considerations. The paper briefly brings safety in waste management programme in India, in its current perspective. (author)

  6. Food safety performance indicators to benchmark food safety output of food safety management systems.

    Science.gov (United States)

    Jacxsens, L; Uyttendaele, M; Devlieghere, F; Rovira, J; Gomez, S Oses; Luning, P A

    2010-07-31

    There is a need to measure the food safety performance in the agri-food chain without performing actual microbiological analysis. A food safety performance diagnosis, based on seven indicators and corresponding assessment grids have been developed and validated in nine European food businesses. Validation was conducted on the basis of an extensive microbiological assessment scheme (MAS). The assumption behind the food safety performance diagnosis is that food businesses which evaluate the performance of their food safety management system in a more structured way and according to very strict and specific criteria will have a better insight in their actual microbiological food safety performance, because food safety problems will be more systematically detected. The diagnosis can be a useful tool to have a first indication about the microbiological performance of a food safety management system present in a food business. Moreover, the diagnosis can be used in quantitative studies to get insight in the effect of interventions on sector or governmental level. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Fusion safety program annual report fiscal year 1997

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C.

    1998-01-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1997. The Idaho National Engineering and Environmental Laboratory (INEEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in FY 1979 to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEEL, different DOE laboratories, and other institutions. The technical areas covered in this report include chemical reactions and activation product release, tritium safety, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER) project. Work done for ITER this year has focused on developing the needed information for the Non-site Specific Safety Report (NSSR-2)

  8. Fusion safety program annual report fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C. [and others

    1998-01-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1997. The Idaho National Engineering and Environmental Laboratory (INEEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in FY 1979 to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEEL, different DOE laboratories, and other institutions. The technical areas covered in this report include chemical reactions and activation product release, tritium safety, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER) project. Work done for ITER this year has focused on developing the needed information for the Non-site Specific Safety Report (NSSR-2).

  9. Safety first. Status reports on the IAEA's safety standards

    International Nuclear Information System (INIS)

    Webb, G.; Karbassioun, A.; Linsley, G.; Rawl, R.

    1998-01-01

    Documents in the IAEA's Safety Standards Series known as RASS (Radiation Safety Standards) are produced to develop an internally consistent set of regulatory-style publications that reflects an international consensus on the principles of radiation protection and safety and their application through regulation. In this article are briefly presented the Agency's programmes on Nuclear Safety Standards (NUSS), Radioactive Waste Safety Standards (RADWASS), and Safe Transport of Radioactive Materials

  10. Safety analysis SFR 1. Long-term safety

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the regulatory

  11. Safety analysis SFR 1. Long-term safety

    International Nuclear Information System (INIS)

    2008-12-01

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the regulatory

  12. Safety analysis SFR 1. Long-term safety

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the

  13. Safety evaluation and regulation of chemicals. 2. Impact of regulations - improvement of methods

    Energy Technology Data Exchange (ETDEWEB)

    Homburger, F [ed.

    1985-01-01

    This volume assesses the impact of new scientific knowledge on the testing and regulation of chemicals, including food additives, drugs, cosmetics, pesticides, and other commercial substances. Apart from describing the newest tests, regulations, and risk assessment strategies, chapters reflect changes forced by both the growing need for cost containment and the mounting pressure to find alternatives to animal testing. Based on an international congress, the book also brings the advantage of diversity in the background and nationality of the authors, thus allowing a view of central problems according to the different interests of academics, industry scientists, government scientists, and regulators. The book opens with coverage of national and international regulations designed to prevent and control damage to human health and the environment. Topics range from basic problems of policy design and enforcement to the specific requirements for chemical regulation in developing countries. The next chapters cover new tests, systems, and assays used in in vivo safety testing. Readers will find a critical assessment of tests used to determine teratogenicity, mutagenicity, carcinogenicity, neurotoxicity and chemical lethality. Other topics include factors operating in the public perception of chemical hazards, guidelines for decision making in the management and regulation of risks, and future trends in the methodology of safety evaluation. The volume concludes with an overview of in vitro methods for testing hepatotoxicity. Several short-term in vitro test models and limited in vivo bioassays are presented and evaluated in terms of their capacity to substitute for long-term animal studies. Expert and thorough in its coverage, the book offers a wealth of technical and practical information for toxicologists, pharmacologists, industrial policy makers, and government regulators. (orig.). With 67 figs., 34 tabs.

  14. Taking into account chemical safety for French basic nuclear installations

    International Nuclear Information System (INIS)

    Tabard, Laurence; Conte, Dorothee

    2013-01-01

    Among nuclear installations, some fuel cycle facilities present a high level of chemical hazards. In France, the TSN law of the 13 June 2006 requires taking into account all the risks generated by a basic nuclear installation (BNI). But, as most of the implementing regulatory texts are under development at this time, part of the previous regulation settled down in the 1990's is still applying: the order of the 31 December 1999 concerning technical regulation in order to prevent and to limit hazards generated by nuclear facilities; the decree of the 4 May 1995 and the order of the 26 November 1999 that deal with BNI discharges. Moreover, some parts of BNI or of nuclear sites can be submitted to the general regulation concerning chemical hazards, which is part of the environment code. As a result, even if the TSN law and its implementing decree Nr 2007-1557 of the 2 November 2007 settle clearly that safety of BNI is not only radiological, but must take into account chemical hazards, the latter aspects are still under development. Moreover the application of the existing regulation, even if complex, has helped to assess chemical risks inside BNI and nuclear sites. (authors)

  15. Fusion Safety Program Annual Report, Fiscal Year 1996

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C.

    1996-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1996. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. The objective is to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, chemical reactions and activation product release, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Work done for ITER this year has focused on developing the needed information for the Non- Site- Specific Safety Report (NSSR-1). A final area of activity described is development of the new DOE Technical Standards for Safety of Magnetic Fusion Facilities

  16. Report on transparency and nuclear safety 2015 - Saclay

    International Nuclear Information System (INIS)

    2016-06-01

    This document proposes, first, a presentation of the Saclay CEA centre, of its activities and installations. Then it gives a rather detailed overview of measures related to safety and to radiation protection within these activities and installations. Next, it reports significant events related to safety and to radiation protection which occurred in 2015 and which have been declared to the French nuclear safety authority (ASN). It discusses the results of release measurements (liquid and gaseous effluents, radiological assessment, and chemical assessment for various installations) and the control of the chemical and radiological impact of these gaseous and liquid effluents on the environment. Finally, it addresses the issue of radioactive wastes which are stored in the different nuclear base installations of the Centre. It indicates the different measures aimed at limiting the volume of these warehoused wastes and addresses their impact on health and environment. Nature and quantities of warehoused wastes are specified. Remarks and recommendations of the Health, Safety and Working Conditions Committee (CHSCT) are given

  17. Report on transparency and nuclear safety 2015 - Grenoble

    International Nuclear Information System (INIS)

    2016-06-01

    This document proposes, first, a presentation of the Grenoble CEA centre, of its activities and installations. Then it gives a rather detailed overview of measures related to safety and to radiation protection within these activities and installations. Next, it reports significant events related to safety and to radiation protection which occurred in 2015 and which have been declared to the French nuclear safety authority (ASN). It discusses the results of release measurements (liquid and gaseous effluents, radiological assessment, and chemical assessment for various installations) and the control of the chemical and radiological impact of these gaseous and liquid effluents on the environment. Finally, it addresses the issue of radioactive wastes which are stored in the different nuclear base installations of the Centre. It indicates the different measures aimed at limiting the volume of these warehoused wastes and addresses their impact on health and environment. Nature and quantities of warehoused wastes are specified. Remarks and recommendations of the Health, Safety and Working Conditions Committee (CHSCT) are given

  18. IAEA safety standards and approach to safety of advanced reactors

    International Nuclear Information System (INIS)

    Gasparini, M.

    2004-01-01

    The paper presents an overview of the IAEA safety standards including their overall structure and purpose. A detailed presentation is devoted to the general approach to safety that is embodied in the current safety requirements for the design of nuclear power plants. A safety approach is proposed for the future. This approach can be used as reference for a safe design, for safety assessment and for the preparation of the safety requirements. The method proposes an integration of deterministic and risk informed concepts in the general frame of a generalized concept of safety goals and defence in depth. This methodology may provide a useful tool for the preparation of safety requirements for the design and operation of any kind of reactor including small and medium sized reactors with innovative safety features.(author)

  19. Is road safety management linked to road safety performance?

    Science.gov (United States)

    Papadimitriou, Eleonora; Yannis, George

    2013-10-01

    This research aims to explore the relationship between road safety management and road safety performance at country level. For that purpose, an appropriate theoretical framework is selected, namely the 'SUNflower' pyramid, which describes road safety management systems in terms of a five-level hierarchy: (i) structure and culture, (ii) programmes and measures, (iii) 'intermediate' outcomes'--safety performance indicators (SPIs), (iv) final outcomes--fatalities and injuries, and (v) social costs. For each layer of the pyramid, a composite indicator is implemented, on the basis of data for 30 European countries. Especially as regards road safety management indicators, these are estimated on the basis of Categorical Principal Component Analysis upon the responses of a dedicated road safety management questionnaire, jointly created and dispatched by the ETSC/PIN group and the 'DaCoTA' research project. Then, quasi-Poisson models and Beta regression models are developed for linking road safety management indicators and other indicators (i.e. background characteristics, SPIs) with road safety performance. In this context, different indicators of road safety performance are explored: mortality and fatality rates, percentage reduction in fatalities over a given period, a composite indicator of road safety final outcomes, and a composite indicator of 'intermediate' outcomes (SPIs). The results of the analyses suggest that road safety management can be described on the basis of three composite indicators: "vision and strategy", "budget, evaluation and reporting", and "measurement of road user attitudes and behaviours". Moreover, no direct statistical relationship could be established between road safety management indicators and final outcomes. However, a statistical relationship was found between road safety management and 'intermediate' outcomes, which were in turn found to affect 'final' outcomes, confirming the SUNflower approach on the consecutive effect of each layer

  20. Fundamental Safety Principles

    International Nuclear Information System (INIS)

    Abdelmalik, W.E.Y.

    2011-01-01

    This work presents a summary of the IAEA Safety Standards Series publication No. SF-1 entitled F UDAMENTAL Safety PRINCIPLES p ublished on 2006. This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purposes. Safety measures and security measures have in common the aim of protecting human life and health and the environment. These safety principles are: 1) Responsibility for safety, 2) Role of the government, 3) Leadership and management for safety, 4) Justification of facilities and activities, 5) Optimization of protection, 6) Limitation of risks to individuals, 7) Protection of present and future generations, 8) Prevention of accidents, 9)Emergency preparedness and response and 10) Protective action to reduce existing or unregulated radiation risks. The safety principles concern the security of facilities and activities to the extent that they apply to measures that contribute to both safety and security. Safety measures and security measures must be designed and implemented in an integrated manner so that security measures do not compromise safety and safety measures do not compromise security.

  1. Reactor safety

    International Nuclear Information System (INIS)

    Butz, H.P.; Heuser, F.W.; May, H.

    1985-01-01

    The paper comprises an introduction into nuclear physics bases, the safety concept generally speaking, safety devices of pwr type reactors, accident analysis, external influences, probabilistic safety assessment and risk studies. It further describes operational experience, licensing procedures under the Atomic Energy Law, research in reactor safety and the nuclear fuel cycle. (DG) [de

  2. Fusion Safety Program annual report, fiscal year 1994

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1995-03-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities

  3. Safety indicators: an efficient tool for a better safety

    International Nuclear Information System (INIS)

    Aufort, P.; Lars, R.

    1993-01-01

    Safety indicators based on the examination of the Operating Technical Specifications have been defined with the aim of following the in-operation safety level of French nuclear power plants. These safety indicators are operation feedback tools which permit the a posteriori justification and the adjustment of actual procedures. They would allow detection of an abnormal unavailability occurrence rate or a situation revealing a potential safety problem. So, data acquisition, processing, analysis and display software allowing trend analysis of these indicators has been developed so far as: a reflexion tool for the power plant operators about the safety instructions and the adjustment of preventive maintenance, and a help for decision making at a national level for the examination and the improvement of Operating Technical Specifications. This paper presents the objectives of these safety indicators, the processing tool associated, the preliminary results obtained and more elaborate processing of these indicators. These safety indicators may be very useful in framing probabilistic safety assessments. (author)

  4. Safety culture: modern slogan or effective contribution to safety?

    International Nuclear Information System (INIS)

    Salm, M.

    1994-01-01

    Safety culture is defined and its impact on nuclear power plants is documented using the words of the INSAG of IAEA. Two examples from the field of aviation and space flight testify, that the upper management, by its sheer image, may considerably influence actions of the lower levels of the hierarchy. Management therefore can do a lot more for safety than is commonly assumed. Two examples, although separated by 57 years, show that the mentioned influence remains unchanged inspire of progress in management- and organisation-methods as well as in safety-engineering. Safety culture is an overriding element of safety, acting at all levels of a hierarchy. Its action is most important on those levels, for which precise reglementation is hardly possible. The chain of technical and organisational measures guarantees safety only under the condition, that it is embedded in 'safety culture'. Safety culture therefore merits our full attention. (author) 1 fig

  5. Nuclear Safety

    International Nuclear Information System (INIS)

    1978-09-01

    In this short paper it has only been possible to deal in a rather general way with the standards of safety used in the UK nuclear industry. The record of the industry extending over at least twenty years is impressive and, indeed, unique. No other industry has been so painstaking in protection of its workers and in its avoidance of damage to the environment. Headings are: introduction; how a nuclear power station works; radiation and its effects (including reference to ICRP, the UK National Radiological Protection Board, and safety standards); typical radiation doses (natural radiation, therapy, nuclear power programme and other sources); safety of nuclear reactors - design; key questions (matters of concern which arise in the public mind); safety of operators; safety of people in the vicinity of a nuclear power station; safety of the general public; safety bodies. (U.K.)

  6. Industrial safety management with emphasis on construction safety

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2016-01-01

    Safety professionals, line managers, team leaders and concerned workers today eagerly discuss to find out the best safety approach for their workplace. Some research suggested that behaviour based and comprehensive ergonomics approaches lead in average reduction of injuries. This article discusses 'the science and engineering' behind improvement in industrial safety aspects particularly at construction sites through various safety approaches. A high degree of commitment to safety by the project management and rigorous and proactive measures are essential to prevent accidents at construction sites particularly in DAE units because of its sensitivity. Persistent efforts by the project management are needed for sustainable and committed safety at work place. The number of fatalities occurring from construction work in DAE units is sometimes disturbing and fall of person from height and through openings are the major causes for serious accidents

  7. NKS/SOS-1 seminar on safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, K. [Risoe National Lab., Roskilde (Denmark); Anderson, K. [Karinta-Konsult (Sweden); Pulkkinen, U. [VTT Automation (Finland)

    2001-05-01

    The report describes presentations and discussions at a seminar held at Risoe on March 22-23, 2000. The title of the seminar was NKS/SOS-1 - Safety Analysis. It dealt with issues of relevance for the safety analysis for the entire nuclear safety field (notably reactors and nuclear waste repositories). Such issues were: objectives of safety analysis, risk criteria, decision analysis, expert judgement and risk communication. In addition, one talk dealt with criteria for chemical industries in Europe. The seminar clearly showed that the concept of risk is multidimensional, which makes clarity and transparency essential elements in risk communication, and that there are issues of common concern between different applications, such as how to deal with different kinds of uncertainty and expert judgement. (au)

  8. Organization and Nuclear Safety: Safety culture

    International Nuclear Information System (INIS)

    Martin Marquinez, A.

    1998-01-01

    This book presents the experience in nuclear safety and its influence in the exploitation on nuclear power plants. The safety organization and quality management before and after Chernobylsk and three mile island accidents

  9. Implementing process safety management in gas processing operations

    International Nuclear Information System (INIS)

    Rodman, D.L.

    1992-01-01

    The Occupational Safety and Health Administration (OSHA) standard entitled Process Safety Management of Highly Hazardous Chemicals; Explosives and Blasting Agents was finalized February 24, 1992. The purpose of the standard is to prevent or minimize consequences of catastrophic releases of toxic, flammable, or explosive chemicals. OSHA believes that its rule will accomplish this goal by requiring a comprehensive management program that integrates technologies, procedures, and management practices. Gas Processors Association (GPA) member companies are significantly impacted by this major standard, the requirements of which are extensive and complex. The purpose of this paper is to review the requirements of the standard and to discuss the elements to consider in developing and implementing a viable long term Process Safety Management Program

  10. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  11. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  12. Safety first

    CERN Multimedia

    2012-01-01

    Safety is a priority for CERN. That is a message I conveyed in my New Year’s address and that I reiterated at one of the first Enlarged Directorate meetings of 2012 when I outlined five key safety objectives for the year, designed and implemented according to accepted international standards.   As we move from spring to summer, it’s time to take stock of how we are doing. Objective number one for 2012, which overarches everything else, is to limit the number of incidents in the workplace. That means systematically investigating and acting on every incident that involves work stoppage, along with all the most frequent workplace accidents: falls, trips and slips. The performance indicator we set ourselves is the percentage of investigations and follow-ups completed. Year on year, these figures are rising but we can never be complacent, and must strive to reach and sustain 100% follow-up. The second objective is to improve hazard control, with a focus in 2012 on chemical ha...

  13. Safety and security profiles of industry networks used in safety- critical applications

    Directory of Open Access Journals (Sweden)

    Mária FRANEKOVÁ

    2008-01-01

    Full Text Available The author describes the mechanisms of safety and security profiles of industry and communication networks used within safety – related applications in technological and information levels of process control recommended according to standards IEC 61784-3,4. Nowadays the number of vendors of the safety – related communication technologies who guarantees besides the standard communication, the communication amongst the safety – related equipment according to IEC 61508 is increasing. Also the number of safety – related products is increasing, e. g. safety Fieldbus, safety PLC, safety curtains, safety laser scanners, safety buttons, safety relays and other. According to world survey the safety Fieldbus denoted the highest growth from all manufactured safety products.The main part of this paper is the description of the safety-related Fieldbus communication system, which has to guaranty Safety Integrity Level.

  14. Hospital safety climate and safety behavior: A social exchange perspective.

    Science.gov (United States)

    Ancarani, Alessandro; Di Mauro, Carmela; Giammanco, Maria D

    Safety climate is considered beneficial to the improvement of hospital safety outcomes. Nevertheless, the relations between two of its key constituents, namely those stemming from leader-subordinate relations and coworker support for safety, are still to be fully ascertained. This article uses the theoretical lens of Social Exchange Theory to study the joint impact of leader-member exchange in the safety sphere and coworker support for safety on safety-related behavior at the hospital ward level. Social exchange constructs are further related to the existence of a shame-/blame-free environment, seen as a potential antecedent of safety behavior. A cross-sectional study including 166 inpatients in hospital wards belonging to 10 public hospitals in Italy was undertaken to test the hypotheses developed. Hypothesized relations have been analyzed through a fully mediated multilevel structural equation model. This methodology allows studying behavior at the individual level, while keeping into account the heterogeneity among hospital specialties. Results suggest that the linkage between leader support for safety and individual safety behavior is mediated by coworker support on safety issues and by the creation of a shame-free environment. These findings call for the creation of a safety climate in which managerial efforts should be directed not only to the provision of new safety resources and the enforcement of safety rules but also to the encouragement of teamwork and freedom to report errors as ways to foster the capacity of the staff to communicate, share, and learn from each other.

  15. Safety assessment, safety performance indicators at the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Baji, C.; Vamos, G.; Toth, J.

    2001-01-01

    The Paks Nuclear Power Plant has been using different methods of safety assessment (event analysis, self-assessment, probabilistic safety analysis), including performance indicators characterizing both operational and safety performance since the early years of operation of the plant. Regarding the safety performance, the indicators include safety system performance, number of scrams, release of radioactive materials, number of safety significant events, industrial safety indicator, etc. The Paks NPP also reports a set of ten indicators to WANO Performance Indicator Programme which, among others, include safety related indicators as well. However, a more systematic approach to structuring and trending safety indicators is needed so that they can contribute to the enhancement of the operational safety. A more comprehensive set of indicators and a systematic evaluation process was introduced in 1996. The performance indicators framework proposed by the IAEA was adapted to Paks in this year to further improve the process. Safety culture assessment and characterizing safety culture is part of the assessment process. (author)

  16. Management of safety and safety culture at the NPPs of Ukraine

    International Nuclear Information System (INIS)

    Koltakov, Vladimir

    2002-01-01

    The report contains general aspects of safety and safety culture. The brief description of operational characteristics and basic indexes of atomic power plants at the Ukraine are represented. The information referring to structure of NPPs of Operation organization license-holder, safety responsibility of both Regulatory and Utility Bodies also is given. The main part of the report include seven sections: 1. Practical application of safety management models; 2. erspective on the relationship between safety management and safety culture; 3. The role of leadership in achieving high standards of safety; 4. Current and future challengers that impact on safety culture and safety management (e.g. the impact of competition, changing, economic and political circumstances, workforce demographics, etc.); 5. Key lessons learned from major events; 6. Practical applications of safety culture concepts (e.g. learning organizations, training staff communications, etc.); 7. dvance in human performance. Some of the main pending safety and safety culture problems that are necessary to achieve in the near future are mentioned

  17. The Safety Case and Safety Assessment for the Disposal of Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    This Safety Guide provides guidance and recommendations on meeting the safety requirements in respect of the safety case and supporting safety assessment for the disposal of radioactive waste. The safety case and supporting safety assessment provide the basis for demonstration of safety and for licensing of radioactive waste disposal facilities and assist and guide decisions on siting, design and operations. The safety case is also the main basis on which dialogue with interested parties is conducted and on which confidence in the safety of the disposal facility is developed. This Safety Guide is relevant for operating organizations preparing the safety case as well as for the regulatory body responsible for developing the regulations and regulatory guidance that determine the basis and scope of the safety case. Contents: 1. Introduction; 2. Demonstrating the safety of radioactive waste disposal; 3. Safety principles and safety requirements; 4. The safety case for disposal of radioactive waste; 5. Radiological impact assessment for the period after closure; 6. Specific issues; 7. Documentation and use of the safety case; 8. Regulatory review process.

  18. Design for safety: theoretical framework of the safety aspect of BIM system to determine the safety index

    Directory of Open Access Journals (Sweden)

    Ai Lin Evelyn Teo

    2016-12-01

    Full Text Available Despite the safety improvement drive that has been implemented in the construction industry in Singapore for many years, the industry continues to report the highest number of workplace fatalities, compared to other industries. The purpose of this paper is to discuss the theoretical framework of the safety aspect of a proposed BIM System to determine a Safety Index. An online questionnaire survey was conducted to ascertain the current workplace safety and health situation in the construction industry and explore how BIM can be used to improve safety performance in the industry. A safety hazard library was developed based on the main contributors to fatal accidents in the construction industry, determined from the formal records and existing literature, and a series of discussions with representatives from the Workplace Safety and Health Institute (WSH Institute in Singapore. The results from the survey suggested that the majority of the firms have implemented the necessary policies, programmes and procedures on Workplace Safety and Health (WSH practices. However, BIM is still not widely applied or explored beyond the mandatory requirement that building plans should be submitted to the authorities for approval in BIM format. This paper presents a discussion of the safety aspect of the Intelligent Productivity and Safety System (IPASS developed in the study. IPASS is an intelligent system incorporating the buildable design concept, theory on the detection, prevention and control of hazards, and the Construction Safety Audit Scoring System (ConSASS. The system is based on the premise that safety should be considered at the design stage, and BIM can be an effective tool to facilitate the efforts to enhance safety performance. IPASS allows users to analyse and monitor key aspects of the safety performance of the project before the project starts and as the project progresses.

  19. Periodic safety review of the HTR-10 safety analysis

    International Nuclear Information System (INIS)

    Chen Fubing; Zheng Yanhua; Shi Lei; Li Fu

    2015-01-01

    Designed by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University, the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) is the first modular High Temperature Gas-cooled Reactor (HTGR) in China. According to the nuclear safety regulations of China, the periodic safety review (PSR) of the HTR-10 was initiated by INET after approved by the National Nuclear Safety Administration (NNSA) of China. Safety analysis of the HTR-10 is one of the key safety factors of the PSR. In this paper, the main contents in the review of safety analysis are summarized; meanwhile, the internal evaluation on the review results is presented by INET. (authors)

  20. Safety-barrier diagrams as a safety management tool

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2009-01-01

    Safety-barrier diagrams and “bow-tie” diagrams have become popular methods in risk analysis and safety management. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The latter's relation to other methods such as fault trees and Bayesian...

  1. Do code of conduct audits improve chemical safety in garment factories? Lessons on corporate social responsibility in the supply chain from Fair Wear Foundation.

    Science.gov (United States)

    Lindholm, Henrik; Egels-Zandén, Niklas; Rudén, Christina

    2016-10-01

    In managing chemical risks to the environment and human health in supply chains, voluntary corporate social responsibility (CSR) measures, such as auditing code of conduct compliance, play an important role. To examine how well suppliers' chemical health and safety performance complies with buyers' CSR policies and whether audited factories improve their performance. CSR audits (n = 288) of garment factories conducted by Fair Wear Foundation (FWF), an independent non-profit organization, were analyzed using descriptive statistics and statistical modeling. Forty-three per cent of factories did not comply with the FWF code of conduct, i.e. received remarks on chemical safety. Only among factories audited 10 or more times was there a significant increase in the number of factories receiving no remarks. Compliance with chemical safety requirements in garment supply chains is low and auditing is statistically correlated with improvements only at factories that have undergone numerous audits.

  2. Risk communication activities toward nuclear safety in Tokai: your safety is our safety

    International Nuclear Information System (INIS)

    Tsuchiya, T.

    2007-01-01

    As several decades have passed since the construction of nuclear power plants began, residents have become gradually less interested in nuclear safety. The Tokai criticality accident in 1909, however, had roused residents in Tokai-Mura to realize that they live with nuclear technology risks. To prepare a field of risk communication, the Tokai-Mura C 3 project began as a pilot research project supported by NISA. Alter the project ended, we are continuing risk. communication activities as a non-profit organisation. The most important activity of C 3 project is the citizen's inspection programme for nuclear related facilities. This programme was decided by participants who voluntarily applied to the project. The concept of the citizen's inspection programme is 'not the usual facility tours'. Participants are involved from the planning stage and continue to communicate with workers of the inspected nuclear facility. Since 2003, we have conducted six programmes for five nuclear related organisations. Participants evaluated that radiation protection measures were near good but there were some problems concerning the worker's safety and safety culture, and proposed a mixture of advice based on personal experience. Some advice was accepted and it did improve the facility's safety measures. Other suggestions were not agreed upon by nuclear organisations. The reason lies in the difference of concept between the nuclear expert's 'safety' and the citizen's 'safety'. Residents do not worry about radiation only, but also about the facility's safety as a whole including the worker's safety. They say, 'If the workers are not safe, you also are unable to protect us'. Although the disagreement remained, the participants and the nuclear industry learned much about each other. Participating citizens received a substantial amount of knowledge about the nuclear industry and its safety measures, and feel the credibility and openness of the nuclear industry. On the other hand, the nuclear

  3. Patient safety climate and worker safety behaviours in acute hospitals in Scotland.

    Science.gov (United States)

    Agnew, Cakil; Flin, Rhona; Mearns, Kathryn

    2013-06-01

    To obtain a measure of hospital safety climate from a sample of National Health Service (NHS) acute hospitals in Scotland and to test whether these scores were associated with worker safety behaviors, and patient and worker injuries. Data were from 1,866 NHS clinical staff in six Scottish acute hospitals. A Scottish Hospital Safety Questionnaire measured hospital safety climate (Hospital Survey on Patient Safety Culture), worker safety behaviors, and worker and patient injuries. The associations between the hospital safety climate scores and the outcome measures (safety behaviors, worker and patient injury rates) were examined. Hospital safety climate scores were significantly correlated with clinical workers' safety behavior and patient and worker injury measures, although the effect sizes were smaller for the latter. Regression analyses revealed that perceptions of staffing levels and managerial commitment were significant predictors for all the safety outcome measures. Both patient-specific and more generic safety climate items were found to have significant impacts on safety outcome measures. This study demonstrated the influences of different aspects of hospital safety climate on both patient and worker safety outcomes. Moreover, it has been shown that in a hospital setting, a safety climate supporting safer patient care would also help to ensure worker safety. The Scottish Hospital Safety Questionnaire has proved to be a usable method of measuring both hospital safety climate as well as patient and worker safety outcomes. Copyright © 2013 National Safety Council and Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Leadership and Management for Safety. General Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  5. Leadership and Management for Safety. General Safety Requirements (Chinese Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  6. Leadership and Management for Safety. General Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  7. Leadership and Management for Safety. General Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    his Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  8. Safety Evakuation Of Triga-2000 Reactor Operation Viewed From Safety Culture

    International Nuclear Information System (INIS)

    Karliana, Itjeu

    2001-01-01

    The safety evaluation activities of TRIGA-2000 operation viewed from safety culture performed by questioners data collected from the operators and supervisor site of TRIGA-2000 P3TN, Bandung. There are 9 activity aspects surveyed, for instant to avail the policy of safety from their chairman, safety management, education and training, emergency aids planning, safety consultancy, accident information, safety analysis, safety devices, safety and occupational health. The surveying undertaken by filling the questioner that containing of 9 activity aspects and 20 samples of employees. The safety evaluation results' of the operation personnel in TRIGA-2000 P3TN are good implemented by both the operators and supervisors should be improve and attention need to provide the equipment's. The education and training especially for safety refreshment must be performing

  9. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  10. Natural safety indicators and their application to repository safety cases

    International Nuclear Information System (INIS)

    Miller, B.

    2002-01-01

    Radiological dose and risk are the standard end-points calculated in all performance assessments. Their calculation requires, however, assumptions to be made for future human behaviour. To complement dose and risk, other safety indicators have been suggested which do not require such assumptions to be made. One proposed set of safety indicators are the concentrations and fluxes of naturally-occurring chemical species in the environment which may be compared with the performance assessment predictions of repository releases. Such comparisons can be valid because both the natural and repository species would occur in the same system and their transport behaviour would be controlled by exactly the same processes at the same rates. Although simple in concept, there is currently no consensus on the most appropriate comparisons to make or on the interpretation of such comparisons. A number of national and international research projects are evaluating this proposed approach, including an IAEA Co-ordinated Research Programme. These projects suggest that that the approach appears to be workable and that it may be a valuable component of a safety case, complementing the dose and risk presentations. Further work is, however, necessary to develop the approach to a level where it may be confidently applied in further performance assessments in a consistent and methodical manner. (author)

  11. Product Safety Culture: A New Variant of Safety Culture?

    International Nuclear Information System (INIS)

    Suhanyiova, L.; Flin, R.; Irwin, A.

    2016-01-01

    Product safety culture is a new research area which concerns user safety rather than worker or process safety. The concept appears to have emerged after the investigation into the Nimrod aircraft accident (Haddon-Cave, 2009) which echoed aspects of NASA’s Challenger and Columbia crashes. In these cases, through a blend of human and organizational failures, the culture deteriorated to the extent of damaging product integrity, resulting in user fatalities. Haddon-Cave noted that it was due to a failure in leadership and organizational safety culture that accidents such as the Nimrod happened, where the aircraft exploded due to several serious technical failures, preceded by deficiencies in the safety case. Now some organizations are starting to measure product safety culture. This is important in day-to-day life as well, where a product failure as a result of poor organizational safety culture, can cause user harm or death, as in the case of Takata airbags scandal in 2015. Eight people have lost their lives and many were injured. According to investigation reports this was due to the company’s safety malpractices of fixing faulty airbags and proceeding to install them in vehicles, as well as secretly conducting tests to assess the integrity of their product and then deleting the data and denying safety issues as a result of the company’s cost-cutting policies. As such, organizational culture, specifically the applications of safety culture, can have far-reaching consequences beyond the workplace of an organization.

  12. Safety culture in nuclear installations. Management of safety and safety culture in Indian NPPs

    International Nuclear Information System (INIS)

    Rawal, S.C.

    2002-01-01

    Nuclear Power Corporation Of India Ltd. (NPCIL) is a company owned by Government of India and is responsible for Design, Construction, Commissioning, Operation and Decommissioning of Nuclear Power plants in India. Presently, a total of 13 Nuclear power Stations are in operation with an installed capacity of 2620 MWe and 2 VVR type PWR Units of 1000 MWe capacity each, 2 PHWR type units of 500 MWe capacity each and 4 PHWR type 220 MWe capacity each are under construction. NPPs generation capacity has been increased from 70% to 85% in the span Of last 7 years with high level of safety standards. This could be achieved through Management commitment towards building a strong Safety Culture. Safety culture is that assembly of characteristics and attitudes in organisation and individuals which establishes that as an overriding priority nuclear plant safety issues receives the attention warranted by their significance. This definition of safety culture brings out two major components in its manifestation. The framework within which individuals within the organisation works.The attitude and response of individual towards the safety issues over productivity and economics in the organisational work practices. The two attributes of safety culture are built in and upgraded in each individuals through special training at the time of entry in the organisation and later through in built procedures in the work practices, motivation and encouragement for free participation of each individuals. Individuals are encouraged to participate in Quality circle teams at the sectional level and review of safety proposal originated by individuals in Station operation Review Committee at Station level, in addition to this to continuously enhance the safety culture, refresher training courses are being organised at regular intervals. The safety related proposals are categorised in to two namely: Proposals from Operating Plants, and Proposals from projects and Design. The concept of safety

  13. Safety considerations and countermeasures against fire and explosion at an HTGR-hydrogen production system. Proposal of safety design concept

    International Nuclear Information System (INIS)

    Nishihara, T.; Hada, K.; Shibata, T.; Shiozawa, S.

    1996-01-01

    Establishment of safety design concept and countermeasures against fire and explosion accidents is among key safety-related issues in an HTGR-hydrogen production system. We propose the different safety design concepts depending upon the origin of fire and explosion which may happen in the HTGR-hydrogen production plant. Against fire and explosion originated outside the reactor building (R/B), namely in the area of hydrogen production plant, the safety design concept is primarily to take a safe distance for preventing the damage on safety-related items or a proof wall if necessary. Because the hydrogen production plant is designed in the same safety level as a conventional chemical plant. The safe distance is proposed to limit an incident overpressure to 10 kPa so as not to suffer any damage on the items and to limit a wall-averaged temperature of concrete structures of the R/B to 175degC according to the current regulation. On the other hand, against a potential possibility of explosion originated inside the R/B, the safety design concept is to minimize the possibility of explosion low enough to assume no occurrence inside the R/B. That is, the measure is to exclude a simultaneous failure of a secondary helium piping and an endothermic chemical reactor. Furthermore, in severe accident condition in which the explosion may be postulated a priori, an incidental overpressure of explosion inside the reactor containment vessel (C/V) should be limited so as not to fail the C/V through restricting the amount of combustible gas ingress into the C/V by means of a combination of C/V isolation valve installed in the helium piping and emergency shut off valve in the process feed gas line. (author)

  14. Correlation between safety climate and contractor safety assessment programs in construction.

    Science.gov (United States)

    Sparer, Emily H; Murphy, Lauren A; Taylor, Kathryn M; Dennerlein, Jack T

    2013-12-01

    Contractor safety assessment programs (CSAPs) measure safety performance by integrating multiple data sources together; however, the relationship between these measures of safety performance and safety climate within the construction industry is unknown. Four hundred and one construction workers employed by 68 companies on 26 sites and 11 safety managers employed by 11 companies completed brief surveys containing a nine-item safety climate scale developed for the construction industry. CSAP scores from ConstructSecure, Inc., an online CSAP database, classified these 68 companies as high or low scorers, with the median score of the sample population as the threshold. Spearman rank correlations evaluated the association between the CSAP score and the safety climate score at the individual level, as well as with various grouping methodologies. In addition, Spearman correlations evaluated the comparison between manager-assessed safety climate and worker-assessed safety climate. There were no statistically significant differences between safety climate scores reported by workers in the high and low CSAP groups. There were, at best, weak correlations between workers' safety climate scores and the company CSAP scores, with marginal statistical significance with two groupings of the data. There were also no significant differences between the manager-assessed safety climate and the worker-assessed safety climate scores. A CSAP safety performance score does not appear to capture safety climate, as measured in this study. The nature of safety climate in construction is complex, which may be reflective of the challenges in measuring safety climate within this industry. Am. J. Ind. Med. 56:1463-1472, 2013. © 2013 Wiley Periodicals, Inc. © 2013 Wiley Periodicals, Inc.

  15. Current Activities on Nuclear Safety Culture in Korea. How to meet the challenges for Safety and Safety Culture?

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Chaewoon [International Policy Department Policy and Standard Division, Korea Institute of Nuclear Safety, 19 Gusung-Dong Yuseong-Ku, 305-338 DAEJEON (Korea, Republic of)

    2008-07-01

    'Statement of Nuclear Safety Policy' declared by the Korean Government elucidates adherence to the principle of 'priority to safety'. The 3. Comprehensive Nuclear Energy Promotion Plan (2007-2011) more specifically addressed the necessity to develop and apply 'safety culture evaluation criteria' and to strengthen safety management of concerned organizations in an autonomous way. Putting these policies as a backdrop, Korean Government has taken diverse safety culture initiatives and has encouraged the relevant organizations to develop safety culture practices of their own accord. Accordingly, KHNP, the operating organization in Korea, developed a 'safety culture performance indicator', which has been used to evaluate safety mind of employees and the evaluation results have been continuously reflected in operational management and training programs. Furthermore, KHNP inserted 'nuclear safety culture subject' into every course of more than two week length, and provided employees with special lectures on safety culture. KINS, the regulatory organization, developed indicators for the safety culture evaluation based on the IAEA Guidelines. Also, KINS has hosted an annual Nuclear Safety Technology Information Meeting to share information between regulatory organizations and industries. Furthermore, KINS provided a nuclear safety culture class to the new employees and they are given a chance to participate in performance of a role-reversal socio-drama. Additionally, KINS developed a safety culture training program, published training materials and conducted a 'Nuclear Safety Culture Basic Course' in October 2007, 4 times of which are planed this year. In conclusion, from Government to relevant organizations, 'nuclear safety culture' concept is embraced as important and has been put into practice on a variety of forms. Specifically, 'education and training' is a starting line and sharing

  16. Safety

    International Nuclear Information System (INIS)

    2001-01-01

    This annual report of the Senior Inspector for the Nuclear Safety, analyses the nuclear safety at EDF for the year 1999 and proposes twelve subjects of consideration to progress. Five technical documents are also provided and discussed concerning the nuclear power plants maintenance and safety (thermal fatigue, vibration fatigue, assisted control and instrumentation of the N4 bearing, 1300 MW reactors containment and time of life of power plants). (A.L.B.)

  17. Patient participation in patient safety still missing: Patient safety experts' views.

    Science.gov (United States)

    Sahlström, Merja; Partanen, Pirjo; Rathert, Cheryl; Turunen, Hannele

    2016-10-01

    The aim of this study was to elicit patient safety experts' views of patient participation in promoting patient safety. Data were collected between September and December in 2014 via an electronic semi-structured questionnaire and interviews with Finnish patient safety experts (n = 21), then analysed using inductive content analysis. Patient safety experts regarded patients as having a crucial role in promoting patient safety. They generally deemed the level of patient safety as 'acceptable' in their organizations, but reported that patient participation in their own safety varied, and did not always meet national standards. Management of patient safety incidents differed between organizations. Experts also suggested that patient safety training should be increased in both basic and continuing education programmes for healthcare professionals. Patient participation in patient safety is still lacking in clinical practice and systematic actions are needed to create a safety culture in which patients are seen as equal partners in the promotion of high-quality and safe care. © 2016 John Wiley & Sons Australia, Ltd.

  18. Drug Safety

    Science.gov (United States)

    ... over-the-counter drug. The FDA evaluates the safety of a drug by looking at Side effects ... clinical trials The FDA also monitors a drug's safety after approval. For you, drug safety means buying ...

  19. Safety - Multiple Languages

    Science.gov (United States)

    ... bosanski (Bosnian) PDF Fire Safety at Home - English MP3 Fire Safety at Home - bosanski (Bosnian) MP3 Fire Safety at Home - English MP4 Fire Safety ... Burmese) PDF Home Safety Checklist - myanma bhasa (Burmese) MP3 Minnesota Department of Health Chinese, Simplified (Mandarin dialect) ( ...

  20. How could intelligent safety transport systems enhance safety ?

    NARCIS (Netherlands)

    Wiethoff, M. Heijer, T. & Bekiaris, E.

    2017-01-01

    In Europe, many deaths and injured each years are the cost of today's road traffic. Therefore, it is wise to look for possible solutions for enhancing traffic safety. Some Advanced Driver Assistance Systems (ADAS) are expected to increase safety, but they may also evoke new safety hazards. Only

  1. Safety design guide for safety related systems for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    In general, two types of safety related systems and structures exist in the nuclear plant; The one is a systems and structures which perform safety functions during the normal operation of the plant, and the other is a systems and structures which perform safety functions to mitigate events caused by failure of the normally operating systems or by naturally occurring phenomena. In this safety design guide, these systems are identified in detail, and the major events for which the safety functions are required and the major safety requirements are identified in the list. As the probabilistic safety assessments are completed during the course of the project, additions or deletions to the list may be justified. 3 tabs. (Author) .new

  2. Safety design guide for safety related systems for CANDU 9

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of); Wright, A.C.D. [Atomic Energy of Canada Ltd., Toronto (Canada)

    1996-03-01

    In general, two types of safety related systems and structures exist in the nuclear plant; The one is a systems and structures which perform safety functions during the normal operation of the plant, and the other is a systems and structures which perform safety functions to mitigate events caused by failure of the normally operating systems or by naturally occurring phenomena. In this safety design guide, these systems are identified in detail, and the major events for which the safety functions are required and the major safety requirements are identified in the list. As the probabilistic safety assessments are completed during the course of the project, additions or deletions to the list may be justified. 3 tabs. (Author) .new.

  3. Occupational safety motivation

    DEFF Research Database (Denmark)

    Pedersen, Louise; Kines, Pete

    2010-01-01

    Background: Motivation is one of the most important factors for safety behaviour and for implementing change in general. However, theoretical and psychometric studies of safety performance have traditionally treated safety motivation, safety compliance and safety participation unidimensionally....... At the same time many motivation questionnaire items are seldom founded on theory and/or do not account for the theories’ ontological and epistemological differences, e.g. of how knowledge, attitude and action are related. Present questionnaire items tap into occupational safety motivation in asking whether...... or not respondents ‘are’ motivated and whether they feel that safety is important or worthwhile. Another important aspect is ‘what’ motivates workers to comply to and participate in safety. The aim of this article is to introduce a new theory-based occupational safety motivation scale which is validated...

  4. Disentangling the roles of safety climate and safety culture: Multi-level effects on the relationship between supervisor enforcement and safety compliance.

    Science.gov (United States)

    Petitta, Laura; Probst, Tahira M; Barbaranelli, Claudio; Ghezzi, Valerio

    2017-02-01

    Despite increasing attention to contextual effects on the relationship between supervisor enforcement and employee safety compliance, no study has yet explored the conjoint influence exerted simultaneously by organizational safety climate and safety culture. The present study seeks to address this literature shortcoming. We first begin by briefly discussing the theoretical distinctions between safety climate and culture and the rationale for examining these together. Next, using survey data collected from 1342 employees in 32 Italian organizations, we found that employee-level supervisor enforcement, organizational-level safety climate, and autocratic, bureaucratic, and technocratic safety culture dimensions all predicted individual-level safety compliance behaviors. However, the cross-level moderating effect of safety climate was bounded by certain safety culture dimensions, such that safety climate moderated the supervisor enforcement-compliance relationship only under the clan-patronage culture dimension. Additionally, the autocratic and bureaucratic culture dimensions attenuated the relationship between supervisor enforcement and compliance. Finally, when testing the effects of technocratic safety culture and cooperative safety culture, neither safety culture nor climate moderated the relationship between supervisor enforcement and safety compliance. The results suggest a complex relationship between organizational safety culture and safety climate, indicating that organizations with particular safety cultures may be more likely to develop more (or less) positive safety climates. Moreover, employee safety compliance is a function of supervisor safety leadership, as well as the safety climate and safety culture dimensions prevalent within the organization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Predicting safety culture: the roles of employer, operations manager and safety professional.

    Science.gov (United States)

    Wu, Tsung-Chih; Lin, Chia-Hung; Shiau, Sen-Yu

    2010-10-01

    This study explores predictive factors in safety culture. In 2008, a sample 939 employees was drawn from 22 departments of a telecoms firm in five regions in central Taiwan. The sample completed a questionnaire containing four scales: the employer safety leadership scale, the operations manager safety leadership scale, the safety professional safety leadership scale, and the safety culture scale. The sample was then randomly split into two subsamples. One subsample was used for measures development, one for the empirical study. A stepwise regression analysis found four factors with a significant impact on safety culture (R²=0.337): safety informing by operations managers; safety caring by employers; and safety coordination and safety regulation by safety professionals. Safety informing by operations managers (ß=0.213) was by far the most significant predictive factor. The findings of this study provide a framework for promoting a positive safety culture at the group level. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  6. Improving construction site safety through leader-based verbal safety communication.

    Science.gov (United States)

    Kines, Pete; Andersen, Lars P S; Spangenberg, Soren; Mikkelsen, Kim L; Dyreborg, Johnny; Zohar, Dov

    2010-10-01

    The construction industry is one of the most injury-prone industries, in which production is usually prioritized over safety in daily on-site communication. Workers have an informal and oral culture of risk, in which safety is rarely openly expressed. This paper tests the effect of increasing leader-based on-site verbal safety communication on the level of safety and safety climate at construction sites. A pre-post intervention-control design with five construction work gangs is carried out. Foremen in two intervention groups are coached and given bi-weekly feedback about their daily verbal safety communications with their workers. Foremen-worker verbal safety exchanges (experience sampling method, n=1,693 interviews), construction site safety level (correct vs. incorrect, n=22,077 single observations), and safety climate (seven dimensions, n=105 questionnaires) are measured over a period of up to 42 weeks. Baseline measurements in the two intervention and three control groups reveal that foremen speak with their workers several times a day. Workers perceive safety as part of their verbal communication with their foremen in only 6-16% of exchanges, and the levels of safety at the sites range from 70-87% (correct observations). Measurements from baseline to follow-up in the two intervention groups reveal that safety communication between foremen and workers increases significantly in one of the groups (factor 7.1 increase), and a significant yet smaller increase is found when the two intervention groups are combined (factor 4.6). Significant increases in the level of safety are seen in both intervention groups (7% and 12% increases, respectively), particularly in regards to 'access ways' and 'railings and coverings' (39% and 84% increases, respectively). Increases in safety climate are seen in only one of the intervention groups with respect to their 'attention to safety.' No significant trend changes are seen in the three control groups on any of the three measures

  7. Human Factors and Safety Culture in Maritime Safety (revised

    Directory of Open Access Journals (Sweden)

    Heinz Peter Berg

    2013-09-01

    Full Text Available As in every industry at risk, the human and organizational factors constitute the main stakes for maritime safety. Furthermore, several events at sea have been used to develop appropriate risk models. The investigation on maritime accidents is, nowadays, a very important tool to identify the problems related to human factor and can support accident prevention and the improvement of maritime safety. Part of this investigation should in future also be near misses. Operation of ships is full of regulations, instructions and guidelines also addressing human factors and safety culture to enhance safety. However, even though the roots of a safety culture have been established, there are still serious barriers to the breakthrough of the safety management. One of the most common deficiencies in the case of maritime transport is the respective monitoring and documentation usually lacking of adequacy and excellence. Nonetheless, the maritime area can be exemplified from other industries where activities are ongoing to foster and enhance safety culture.

  8. Safety assurance for nuclear chemical plants - regulatory practice in the UK

    International Nuclear Information System (INIS)

    Driscoll, J.; Charlesworth, F.

    1983-01-01

    This paper describes the legislation and licensing requirements for nuclear installations as well as the related safety assurance procedures in the UK. Developments in safety assurance practice are identified and discussed in relation to the role of the regulator and of the operator. (NEA) [fr

  9. SafetyAnalyst : software tools for safety management of specific highway sites

    Science.gov (United States)

    2010-07-01

    SafetyAnalyst provides a set of software tools for use by state and local highway agencies for highway safety management. SafetyAnalyst can be used by highway agencies to improve their programming of site-specific highway safety improvements. SafetyA...

  10. 76 FR 53086 - Pipeline Safety: Safety of Gas Transmission Pipelines

    Science.gov (United States)

    2011-08-25

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket No. PHMSA-2011-0023] RIN 2137-AE72 Pipeline Safety: Safety of Gas Transmission Pipelines AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), Department of Transportation (DOT...

  11. Survey and evaluation of inherent safety characteristics and passive safety systems for use in probabilistic safety analyses

    International Nuclear Information System (INIS)

    Wetzel, N.; Scharfe, A.

    1998-01-01

    The present report examines the possibilities and limits of a probabilistic safety analysis to evaluate passive safety systems and inherent safety characteristics. The inherent safety characteristics are based on physical principles, that together with the safety system lead to no damage. A probabilistic evaluation of the inherent safety characteristic is not made. An inventory of passive safety systems of accomplished nuclear power plant types in the Federal Republic of Germany was drawn up. The evaluation of the passive safety system in the analysis of the accomplished nuclear power plant types was examined. The analysis showed that the passive manner of working was always assumed to be successful. A probabilistic evaluation was not performed. The unavailability of the passive safety system was determined by the failure of active components which are necessary in order to activate the passive safety system. To evaluate the passive safety features in new concepts of nuclear power plants the AP600 from Westinghouse, the SBWR from General Electric and the SWR 600 from Siemens, were selected. Under these three reactor concepts, the SWR 600 is specially attractive because the safety features need no energy sources and instrumentation in this concept. First approaches for the assessment of the reliability of passively operating systems are summarized. Generally it can be established that the core melt frequency for the passive concepts AP600 and SBWR is advantageous in comparison to the probabilistic objectives from the European Pressurized Water Reactor (EPR). Under the passive concepts is the SWR 600 particularly interesting. In this concept the passive systems need no energy sources and instrumentation, and has active operational systems and active safety equipment. Siemens argues that with this concept the frequency of a core melt will be two orders of magnitude lower than for the conventional reactors. (orig.) [de

  12. Safety at CERN

    CERN Document Server

    2009-01-01

    Safety is an integral part of our working lives, and should be in our minds whatever job we do at CERN. Ultimately, safety is the responsibility of the Director General – your safety is my concern. That’s why I have this week appointed a new Safety Policy Committee (SAPOCO) that reflects the new Organizational structure of CERN. CERN’s Staff Rules and Regulations clearly lay out in chapter 3 the scope of safety at CERN as well as my responsibilities and yours in safety matters. At CERN, safety is considered in the broadest sense, encompassing occupational Health and Safety, environmental protection, and the safety of equipment and installations. It is my responsibility to put appropriate measures in place to ensure that these conditions are met. And it is the responsibility of us all to ensure that we are fully conversant with safety provisions applicable in our areas of work and that we comply with them. The appointment of a n...

  13. Using US EPA’s Chemical Safety for Sustainability’s Comptox Chemistry Dashboard and Tools for Bioactivity, Chemical and Toxicokinetic Modeling Analyses (Course at 2017 ISES Annual Meeting)

    Science.gov (United States)

    Title: Using US EPA’s Chemical Safety for Sustainability’s Comptox Chemistry Dashboard and Tools for Bioactivity, Chemical and Toxicokinetic Modeling Analyses • Class format: half-day (4 hours) • Course leader(s): Barbara A. Wetmore and Antony J. Williams,...

  14. Advancing sustainable safety : National Road Safety Outlook for 2005-2020.

    NARCIS (Netherlands)

    Wegman, F.C.M. & Aarts, L.T. (eds.)

    2006-01-01

    Advancing Sustainable Safety: National Road Safety Outlook for 2005-2020 is the follow-up to Naar een duurzaam veilig wegverkeer [Towards sustainably safe road traffic] (Koornstra et al., 1992). Advancing Sustainable Safety is a critique of Sustainable Safety. In this advanced version, adaptations

  15. 76 FR 70953 - Pipeline Safety: Safety of Gas Transmission Pipelines

    Science.gov (United States)

    2011-11-16

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket ID PHMSA-2011-0023] RIN 2137-AE72 Pipeline Safety: Safety of Gas Transmission Pipelines AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION: Advance notice of...

  16. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Chinese Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  17. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  18. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  19. Safety climate and attitude as evaluation measures of organizational safety.

    Science.gov (United States)

    Isla Díaz, R; Díaz Cabrera, D

    1997-09-01

    The main aim of this research is to develop a set of evaluation measures for safety attitudes and safety climate. Specifically it is intended: (a) to test the instruments; (b) to identify the essential dimensions of the safety climate in the airport ground handling companies; (c) to assess the quality of the differences in the safety climate for each company and its relation to the accident rate; (d) to analyse the relationship between attitudes and safety climate; and (e) to evaluate the influences of situational and personal factors on both safety climate and attitude. The study sample consisted of 166 subjects from three airport companies. Specifically, this research was centered on ground handling departments. The factor analysis of the safety climate instrument resulted in six factors which explained 69.8% of the total variance. We found significant differences in safety attitudes and climate in relation to type of enterprise.

  20. Safety significance of ATR passive safety response attributes

    International Nuclear Information System (INIS)

    Atkinson, S.A.

    1990-01-01

    The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory was designed with some passive safety response attributes which contribute to the safety of the facility. The three passive safety attributes being evaluated in the paper are: 1) In-core and in-vessel natural convection cooling, 2) a passive heat sink capability of the ATR primary coolant system (PCS) for the transfer of decay power from the uninsulated piping to the confinement, and 3) gravity feed of emergency coolant makeup. The safety significance of the ATR passive safety response attributes is that the reactor can passively respond to most transients, given a reactor scram, to provide adequate decay power removal and a significant time for operator action should the normal active heat removal systems and their backup systems both fail. The ATR Interim Level 1 Probabilistic Risk Assessment (PRA) models and results were used to evaluate the significance to ATR fuel damage frequency (or probability) of the above three passive response attributes. The results of the evaluation indicate that the first attribute is a major safety characteristic of the ATR. The second attribute has a noticeable but only minor safety significance. The third attribute has no significant influence on the ATR firewater injection system (emergency coolant system)

  1. The road safety audit and road safety inspection.

    NARCIS (Netherlands)

    2007-01-01

    A road safety audit (RSA) and a road safety inspection (RSI) are used to test the safety level of the road infrastructure. The RSA tests the design of new roads or the reconstruction of existing roads, whereas the RSI is used for testing existing roads. An RSA, therefore, aims to 'improve' the road

  2. Do code of conduct audits improve chemical safety in garment factories? Lessons on corporate social responsibility in the supply chain from Fair Wear Foundation

    Science.gov (United States)

    2016-01-01

    Background In managing chemical risks to the environment and human health in supply chains, voluntary corporate social responsibility (CSR) measures, such as auditing code of conduct compliance, play an important role. Objectives To examine how well suppliers’ chemical health and safety performance complies with buyers’ CSR policies and whether audited factories improve their performance. Methods CSR audits (n = 288) of garment factories conducted by Fair Wear Foundation (FWF), an independent non-profit organization, were analyzed using descriptive statistics and statistical modeling. Results Forty-three per cent of factories did not comply with the FWF code of conduct, i.e. received remarks on chemical safety. Only among factories audited 10 or more times was there a significant increase in the number of factories receiving no remarks. Conclusions Compliance with chemical safety requirements in garment supply chains is low and auditing is statistically correlated with improvements only at factories that have undergone numerous audits. PMID:27611103

  3. Safety evaluations required in the safety regulations for Monju and the validity confirmation of safety evaluation methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The purposes of this study are to perform the safety evaluations of the fast breeder reactor 'Monju' and to confirm the validity of the safety evaluation methods. In JFY 2012, the following results were obtained. As for the development of safety evaluation methods needed in the safety examination achieved for the reactor establishment permission, development of the analysis codes, such as a core damage analysis code, were carried out according to the plan. As for the development of the safety evaluation method needed for the risk informed safety regulation, the quantification technique of the event tree using the Continuous Markov chain Monte Carlo method (CMMC method) were studied. (author)

  4. Radiation Safety in Industrial Radiography. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  5. ITER safety challenges and opportunities

    International Nuclear Information System (INIS)

    Piet, S.J.

    1992-01-01

    This paper reports on results of the Conceptual Design Activity (CDA) for the International Thermonuclear Experimental Reactor (ITER) suggest challenges and opportunities. ITER is capable of meeting anticipated regulatory dose limits, but proof is difficult because of large radioactive inventories needing stringent radioactivity confinement. Much research and development (R ampersand D) and design analysis is needed to establish that ITER meets regulatory requirements. There is a further oportunity to do more to prove more of fusion's potential safety and environmental advantages and maximize the amount of ITER technology on the path toward fusion power plants. To fulfill these tasks, three programmatic challenges and three technical challenges must be overcome. The first step is to fund a comprehensive safety and environmental ITER R ampersand D plan. Second is to strengthen safety and environment work and personnel in the international team. Third is to establish an external consultant group to advise the ITER Joint Team on designing ITER to meet safety requirements for siting by any of the Parties. The first of three key technical challenges is plasma engineering - burn control, plasma shutdown, disruptions, tritium burn fraction, and steady state operation. The second is the divertor, including tritium inventory, activation hazards, chemical reactions, and coolant disturbances. The third technical challenge is optimization of design requirements considering safety risk, technical risk, and cost

  6. Are safety data sheets for cleaning products used in Norway a factor contributing to the risk of workers exposure to chemicals?

    Directory of Open Access Journals (Sweden)

    Abdulqadir M. Suleiman

    2014-10-01

    Full Text Available Objectives: Cleaning products are considered less hazardous than those used in other sectors. Suppliers and distributors are less conscientious when it comes to informing users on health risks. The aim of the study was to elaborate on the usefulness and clarity of information in the safety data sheets (SDS for cleaning products, and considering if the use of these SDSs can be seen as a risk factor towards occupational exposure to hazardous chemicals in the sector. Material and Methods: Safety data sheets were selected based on the risk level of the product assigned in an industrial sector scheme. 320 SDSs for cleaning products were reviewed. Constituent components found in the products over a given threshold were listed and available information thereof used to assess the perceived non-hazard consideration of the chemicals. Results: The contents of the SDSs was generic and mostly incomplete. Safety measures and health information lacked sufficient specificity despite varying compositions and concentrations of components. There is generally incompatibility between mentioned sections on the suggested non-hazardous nature of the products and health effects. Not all substances used in these products have harmonized classifications, which makes them open to various classification of the products and the suggested safety measures. This results in different companies classifying similar products differently. Risk management measures and suggested personal protective equipment (PPEs are given haphazardly. Physical properties relevant to risk assessment are not included. Conclusions: The safety data sheets are ambiguous, and they lack relevant and important information. Inadequate information and risk assessment concerning the products can lead to workers being exposed to hazardous chemicals. Underestimation of the hazard contribution of the components of the products and the insufficient, non-objective mention of appropriate control and protective

  7. Survey of safety practices among hospital laboratories in Oromia Regional State, Ethiopia.

    Science.gov (United States)

    Sewunet, Tsegaye; Kebede, Wakjira; Wondafrash, Beyene; Workalemau, Bereket; Abebe, Gemeda

    2014-10-01

    Unsafe working practices, working environments, disposable waste products, and chemicals in clinical laboratories contribute to infectious and non-infectious hazards. Staffs, the community, and patients are less safe. Furthermore, such practices compromise the quality of laboratory services. We conducted a study to describe safety practices in public hospital laboratories of Oromia Regional State, Ethiopia. Randomly selected ten public hospital laboratories in Oromia Regional State were studied from Oct 2011- Feb 2012. Self-administered structured questionnaire and observation checklists were used for data collection. The respondents were heads of the laboratories, senior technicians, and safety officers. The questionnaire addressed biosafety label, microbial hazards, chemical hazards, physical/mechanical hazards, personal protective equipment, first aid kits and waste disposal system. The data was analyzed using descriptive analysis with SPSS version16 statistical software. All of the respondents reported none of the hospital laboratories were labeled with the appropriate safety label and safety symbols. These respondents also reported they may contain organisms grouped under risk group IV in the absence of microbiological safety cabinets. Overall, the respondents reported that there were poor safety regulations or standards in their laboratories. There were higher risks of microbial, chemical and physical/mechanical hazards. Laboratory safety in public hospitals of Oromia Regional State is below the standard. The laboratory workers are at high risk of combined physical, chemical and microbial hazards. Prompt recognition of the problem and immediate action is mandatory to ensure safe working environment in health laboratories.

  8. Associations between safety climate and safety management practices in the construction industry.

    Science.gov (United States)

    Marín, Luz S; Lipscomb, Hester; Cifuentes, Manuel; Punnett, Laura

    2017-06-01

    Safety climate, a group-level measure of workers' perceptions regarding management's safety priorities, has been suggested as a key predictor of safety outcomes. However, its relationship with actual injury rates is inconsistent. We posit that safety climate may instead be a parallel outcome of workplace safety practices, rather than a determinant of workers' safety behaviors or outcomes. Using a sample of 25 commercial construction companies in Colombia, selected by injury rate stratum (high, medium, low), we examined the relationship between workers' safety climate perceptions and safety management practices (SMPs) reported by safety officers. Workers' perceptions of safety climate were independent of their own company's implementation of SMPs, as measured here, and its injury rates. However, injury rates were negatively related to the implementation of SMPs. Safety management practices may be more important than workers' perceptions of safety climate as direct predictors of injury rates. © 2017 Wiley Periodicals, Inc.

  9. Dynamic Safety Cases for Through-Life Safety Assurance

    Science.gov (United States)

    Denney, Ewen; Pai, Ganesh; Habli, Ibrahim

    2015-01-01

    We describe dynamic safety cases, a novel operationalization of the concept of through-life safety assurance, whose goal is to enable proactive safety management. Using an example from the aviation systems domain, we motivate our approach, its underlying principles, and a lifecycle. We then identify the key elements required to move towards a formalization of the associated framework.

  10. Nuclear safety in Slovak Republic. Status of safety improvements

    International Nuclear Information System (INIS)

    Toth, A.

    1999-01-01

    Status of the safety improvements at Bohunice V-1 units concerning WWER-440/V-230 design upgrading were as follows: supplementing of steam generator super-emergency feed water system; higher capacity of emergency core cooling system; supplementing of automatic links between primary and secondary circuit systems; higher level of secondary system automation. The goal of the modernization program for Bohunice V-1 units WWER-440/V-230 was to increase nuclear safety to the level of the proposals and IAEA recommendations and to reach probability goals of the reactor concerning active zone damage, leak of radioactive materials, failures of safety systems and damage shields. Upgrading program for Mochovce NPP - WWER-440/V-213 is concerned with improving the integrity of the reactor pressure vessel, steam generators 'leak before break' methods applied for the NPP, instrumentation and control of safety systems, diagnostic systems, replacement of in-core monitoring system, emergency analyses, pressurizers safety relief valves, hydrogen removal system, seismic evaluations, non-destructive testing, fire protection. Implementation of quality assurance has a special role in improvement of operational safety activities as well as safety management and safety culture, radiation protection, decommissioning and waste management and training. The Year 2000 problem is mentioned as well

  11. Developing a strong safety culture - a safety management challenge

    International Nuclear Information System (INIS)

    Low, M.; Gipson, G. P.; Williams, M.

    1995-01-01

    The approach is presented adapted by Nuclear Electric to build a strong safety culture through the development of its safety management system. Two features regarded as critical to a strong safety culture are: provision of effective communications to promote an awareness and ownership of safety among craft, and commitment to continuous improvement with a genuine willingness to learn from own experiences and those from others. (N.T.) 5 refs., 4 figs., 1 tab

  12. Food safety

    Science.gov (United States)

    ... safety URL of this page: //medlineplus.gov/ency/article/002434.htm Food safety To use the sharing features on this page, please enable JavaScript. Food safety refers to the conditions and practices that preserve the quality of food. These practices prevent contamination and foodborne ...

  13. Optimization of safety equipment outages improves safety

    International Nuclear Information System (INIS)

    Cepin, Marko

    2002-01-01

    Testing and maintenance activities of safety equipment in nuclear power plants are an important potential for risk and cost reduction. An optimization method is presented based on the simulated annealing algorithm. The method determines the optimal schedule of safety equipment outages due to testing and maintenance based on minimization of selected risk measure. The mean value of the selected time dependent risk measure represents the objective function of the optimization. The time dependent function of the selected risk measure is obtained from probabilistic safety assessment, i.e. the fault tree analysis at the system level and the fault tree/event tree analysis at the plant level, both extended with inclusion of time requirements. Results of several examples showed that it is possible to reduce risk by application of the proposed method. Because of large uncertainties in the probabilistic safety assessment, the most important result of the method may not be a selection of the most suitable schedule of safety equipment outages among those, which results in similarly low risk. But, it may be a prevention of such schedules of safety equipment outages, which result in high risk. Such finding increases the importance of evaluation speed versus the requirement of getting always the global optimum no matter if it is only slightly better that certain local one

  14. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this Safety Guide is to provide harmonized guidance to designers, operators, regulators and providers of technical support on deterministic safety analysis for nuclear power plants. It provides information on the utilization of the results of such analysis for safety and reliability improvements. The Safety Guide addresses conservative, best estimate and uncertainty evaluation approaches to deterministic safety analysis and is applicable to current and future designs. Contents: 1. Introduction; 2. Grouping of initiating events and associated transients relating to plant states; 3. Deterministic safety analysis and acceptance criteria; 4. Conservative deterministic safety analysis; 5. Best estimate plus uncertainty analysis; 6. Verification and validation of computer codes; 7. Relation of deterministic safety analysis to engineering aspects of safety and probabilistic safety analysis; 8. Application of deterministic safety analysis; 9. Source term evaluation for operational states and accident conditions; References

  15. Safety analysis fundamentals

    International Nuclear Information System (INIS)

    Wright, A.C.D.

    2002-01-01

    This paper discusses the safety analysis fundamentals in reactor design. This study includes safety analysis done to show consequences of postulated accidents are acceptable. Safety analysis is also used to set design of special safety systems and includes design assist analysis to support conceptual design. safety analysis is necessary for licensing a reactor, to maintain an operating license, support changes in plant operations

  16. Beyond safety accountability

    CERN Document Server

    Geller, E Scott

    2001-01-01

    Written in an easy-to-read conversational tone, Beyond Safety Accountability explains how to develop an organizational culture that encourages people to be accountable for their work practices and to embrace a higher sense of personal responsibility. The author begins by thoroughly explaining the difference between safety accountability and safety responsibility. He then examines the need of organizations to improve safety performance, discusses why such performance improvement can be achieved through a continuous safety process, as distinguished from a safety program, and provides the practic

  17. Leadership and Safety Culture: Leadership for Safety

    International Nuclear Information System (INIS)

    Fischer, E.

    2016-01-01

    Following the challenge to operate Nuclear Power Plants towards operational excellence, a highly skilled and motivated organization is needed. Therefore, leadership is a valuable success factor. On the other hand a well-engineered safety orientated design of NPP’s is necessary. Once built, an NPP constantly requires maintenance, ageing management and lifetime modifications. E.ON tries to keep the nuclear units as close as possible to the state of the art of science and technology. Not at least a requirement followed by our German regulation. As a consequence of this we are continuously challenged to improve our units and the working processes using national and international operational experiences too. A lot of modifications are driven by our self and by regulators. That why these institutions — authorities and independent examiners—contribute significantly to the safety success. Not that it is easy all the day. The relationship between the regulatory body, examiners and the utilities should be challenging but also cooperative and trustful within a permanent dialog. To reach the common goal of highest standards regarding nuclear safety all parties have to secure a living safety culture. Without this attitude there is a higher risk that safety relevant aspects may stay undetected and room for improvement is not used. Nuclear operators should always be sensitized and follow each single deviation. Leaders in an NPP-organization are challenged to create a safety-, working-, and performance culture based on clear common values and behaviours, repeated and lived along all of our days to create a least a strong identity in the staffs mind to the value of safety, common culture and overall performance. (author)

  18. Safety Learning, Organizational Contradictions and the Dynamics of Safety Practice

    Science.gov (United States)

    Ripamonti, Silvio Carlo; Scaratti, Giuseppe

    2015-01-01

    Purpose: The purpose of this paper is to explore the enactment of safety routines in a transshipment port. Research on work safety and reliability has largely neglected the role of the workers' knowledge in practice in the enactment of organisational safety. The workers' lack of compliance with safety regulations represents an enduring problem…

  19. Ferrocyanide Safety Program: Safety criteria for ferrocyanide watch list tanks

    International Nuclear Information System (INIS)

    Postma, A.K.; Meacham, J.E.; Barney, G.S.

    1994-01-01

    This report provides a technical basis for closing the ferrocyanide Unreviewed Safety Question (USQ) at the Hanford Site. Three work efforts were performed in developing this technical basis. The efforts described herein are: 1. The formulation of criteria for ranking the relative safety of waste in each ferrocyanide tank. 2. The current classification of tanks into safety categories by comparing available information on tank contents with the safety criteria; 3. The identification of additional information required to resolve the ferrocyanide safety issue

  20. Major food safety episodes in Taiwan: implications for the necessity of international collaboration on safety assessment and management.

    Science.gov (United States)

    Li, Jih-Heng; Yu, Wen-Jing; Lai, Yuan-Hui; Ko, Ying-Chin

    2012-07-01

    The major food safety episodes that occurred in Taiwan during the past decade are briefly reviewed in this paper. Among the nine major episodes surveyed, with the exception of a U.S. beef (associated with Creutzfeldt-Jakob disease)-related incident, all the others were associated with chemical toxicants. The general public, which has a layperson attitude of zero tolerance toward food safety, may panic over these food-safety-associated incidents. However, the health effects and impacts of most incidents, with the exception of the melamine incident, were essentially not fully evaluated. The mass media play an important role in determining whether a food safety concern becomes a major incident. A well-coordinated and harmonized system for domestic and international collaboration to set up standards and regulations is critical, as observed in the incidents of pork with ractopamine, Chinese hairy crab with nitrofuran antibiotics, and U.S. wheat with malathion. In the future, it can be anticipated that food safety issues will draw more attention from the general public. For unknown new toxicants or illicit adulteration of food, the establishment of a more proactive safety assessment system to monitor potential threats and provide real-time information exchange is imperative. Copyright © 2012. Published by Elsevier B.V.

  1. Leadership and safety culture. Leadership for safety

    International Nuclear Information System (INIS)

    Fischer, Erwin; Nithack, Eckhard

    2016-01-01

    The meaning of leadership for safety in the nuclear industry is pointed out. This topic has became an increasing rank since the German ''Energiewende''. Despite the phase-out of the German NPP's nuclear safety and the belonging safety culture needs to be well maintained. A challenge for the whole organisation. Following the challenge to operate nuclear power plants towards Operational Excellence a highly skilled and motivated organisation is needed. Therefore Leadership is a valuable success factor.

  2. Leadership and safety culture. Leadership for safety

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Erwin; Nithack, Eckhard [PreussenElektra GmbH, Hannover (Germany)

    2016-08-15

    The meaning of leadership for safety in the nuclear industry is pointed out. This topic has became an increasing rank since the German ''Energiewende''. Despite the phase-out of the German NPP's nuclear safety and the belonging safety culture needs to be well maintained. A challenge for the whole organisation. Following the challenge to operate nuclear power plants towards Operational Excellence a highly skilled and motivated organisation is needed. Therefore Leadership is a valuable success factor.

  3. Safety sans Frontières: An International Safety Culture Model.

    Science.gov (United States)

    Reader, Tom W; Noort, Mark C; Shorrock, Steven; Kirwan, Barry

    2015-05-01

    The management of safety culture in international and culturally diverse organizations is a concern for many high-risk industries. Yet, research has primarily developed models of safety culture within Western countries, and there is a need to extend investigations of safety culture to global environments. We examined (i) whether safety culture can be reliably measured within a single industry operating across different cultural environments, and (ii) if there is an association between safety culture and national culture. The psychometric properties of a safety culture model developed for the air traffic management (ATM) industry were examined in 17 European countries from four culturally distinct regions of Europe (North, East, South, West). Participants were ATM operational staff (n = 5,176) and management staff (n = 1,230). Through employing multigroup confirmatory factor analysis, good psychometric properties of the model were established. This demonstrates, for the first time, that when safety culture models are tailored to a specific industry, they can operate consistently across national boundaries and occupational groups. Additionally, safety culture scores at both regional and national levels were associated with country-level data on Hofstede's five national culture dimensions (collectivism, power distance, uncertainty avoidance, masculinity, and long-term orientation). MANOVAs indicated safety culture to be most positive in Northern Europe, less so in Western and Eastern Europe, and least positive in Southern Europe. This indicates that national cultural traits may influence the development of organizational safety culture, with significant implications for safety culture theory and practice. © 2015 Society for Risk Analysis.

  4. Safety class methodology

    International Nuclear Information System (INIS)

    Donner, E.B.; Low, J.M.; Lux, C.R.

    1992-01-01

    DOE Order 6430.1A, General Design Criteria (GDC), requires that DOE facilities be evaluated with respect to ''safety class items.'' Although the GDC defines safety class items, it does not provide a methodology for selecting safety class items. The methodology described in this paper was developed to assure that Safety Class Items at the Savannah River Site (SRS) are selected in a consistent and technically defensible manner. Safety class items are those in the highest of four categories determined to be of special importance to nuclear safety and, merit appropriately higher-quality design, fabrication, and industrial test standards and codes. The identification of safety class items is approached using a cascading strategy that begins at the 'safety function' level (i.e., a cooling function, ventilation function, etc.) and proceeds down to the system, component, or structure level. Thus, the items that are required to support a safety function are SCls. The basic steps in this procedure apply to the determination of SCls for both new project activities, and for operating facilities. The GDC lists six characteristics of SCls to be considered as a starting point for safety item classification. They are as follows: 1. Those items whose failure would produce exposure consequences that would exceed the guidelines in Section 1300-1.4, ''Guidance on Limiting Exposure of the Public,'' at the site boundary or nearest point of public access 2. Those items required to maintain operating parameters within the safety limits specified in the Operational Safety Requirements during normal operations and anticipated operational occurrences. 3. Those items required for nuclear criticality safety. 4. Those items required to monitor the release of radioactive material to the environment during and after a Design Basis Accident. Those items required to achieve, and maintain the facility in a safe shutdown condition 6. Those items that control Safety Class Item listed above

  5. Safety first!

    CERN Multimedia

    2016-01-01

    Among the many duties I assumed at the beginning of the year was the ultimate responsibility for Safety at CERN: the responsibility for the physical safety of the personnel, the responsibility for the safe operation of the facilities, and the responsibility to ensure that CERN acts in accordance with the highest standards of radiation and environmental protection.   The Safety Policy document drawn up in September 2014 is an excellent basis for the implementation of Safety in all areas of CERN’s work. I am happy to commit during my mandate to help meet its objectives, not least by ensuring the Organization makes available the necessary means to achieve its Safety objectives. One of the main objectives of the HSE (Occupational Health and Safety and Environmental Protection) unit in the coming months is to enhance the measures to minimise CERN’s impact on the environment. I believe CERN should become a role model for an environmentally-aware scientific research laboratory. Risk ...

  6. IAEA Safety Standards on Management Systems and Safety Culture

    International Nuclear Information System (INIS)

    Persson, Kerstin Dahlgren

    2007-01-01

    The IAEA has developed a new set of Safety Standard for applying an integrated Management System for facilities and activities. The objective of the new Safety Standards is to define requirements and provide guidance for establishing, implementing, assessing and continually improving a Management System that integrates safety, health, environmental, security, quality and economic related elements to ensure that safety is properly taken into account in all the activities of an organization. With an integrated approach to management system it is also necessary to include the aspect of culture, where the organizational culture and safety culture is seen as crucial elements of the successful implementation of this management system and the attainment of all the goals and particularly the safety goals of the organization. The IAEA has developed a set of service aimed at assisting it's Member States in establishing. Implementing, assessing and continually improving an integrated management system. (author)

  7. Nuclear Safety Culture

    International Nuclear Information System (INIS)

    2017-01-01

    Ethics is caring about people and Safety is caring that no physical harm comes to people.Therefore Safety is a type of Ethical Behavior. Culture: is The Way We Do Things Here.Safety Culture is mixture of organization traditions, values, attitudes and behaviors modeled by Its leaders and internalized by its members that serve to make nuclear safety the overriding priority. Safety Culture is that assembly of characteristics and attitudes in Organisations and individuals which established that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance

  8. Safety- barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2008-01-01

    Safety-barrier diagrams and the related so-called 'bow-tie' diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation of safety-barrier diagrams to other methods such as fault...... trees and Bayesian networks is discussed. A simple method for quantification of safety-barrier diagrams is proposed. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk analysis with operational safety management....

  9. Safety-barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2007-01-01

    Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk...... analysis with operational safety management....

  10. Defining safety culture and the nexus between safety goals and safety culture. 2. Decreasing Ambiguity of the Safety Culture Concept

    International Nuclear Information System (INIS)

    Inoue, Shiichiro; Hosoda, Satoshi; Suganuma, Takashi; Monta, Kazuo; Kameda, Akiyuki

    2001-01-01

    The concept of safety culture was first advocated for the industrial world by INSAG reports that discussed the Chernobyl accident [INSAG-3 1988 (Ref. 1); INSAG-4, 1991 (Ref. 2)]. Since then, the term 'safety culture' has been discussed on various occasions when the causes of accidents were analyzed, and it has created interest among people-not only safety managers but also engineers and top management-and it has become inevitable as an influential factor of disasters. The JCO's 1999 criticality accident in Japan underscored the need for the safety culture concept. There had been a sort of myth in the past, at least among the people of this industry in Japan, that the nuclear industry had high technology and maintained a high level of safety. Therefore, the people related with the accident said in the first instance, 'Unbelievable') Some of them even insisted that the fuel processing and the power generation were two different systems. As the causes of JCO's criticality accident were revealed, they started to recognize that safety in the nuclear industry could not be secured without safety culture. We review the situation of the past 13 yr after the safety culture concept was introduced. To our regret, the culture has not yet taken root in the organization. What causes have delayed the realization of the culture? The first cause is the ambiguity of the concept. The expression 'safety culture' is too abstract to define something that the plant employees should do. People who are supposed to create the culture concept are held responsible for this point. The second cause is the enthusiasm and strong intentions of the related people. Although the importance of the concept is well recognized, the basic attitude of the people is like 'agreeing in generalities, but disagreeing in specifics'. The authorities for regulation seem somewhat suspicious about its effectiveness even if they set the rules and regulations based on the safety culture concept. Power companies are

  11. China's nuclear safety regulatory body: The national nuclear safety administration

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1991-04-01

    The establishment of an independent nuclear safety regulatory body is necessary for ensuring the safety of nuclear installations and nuclear fuel. Therefore the National Nuclear Safety Administration was established by the state. The aim, purpose, organization structure and main tasks of the Administration are presented. At the same time the practical examples, such as nuclear safety regulation on the Qinshan Nuclear Power Plant, safety review and inspections for the Daya Bay Nuclear Power Plant during the construction, and nuclear material accounting and management system in the nuclear fuel fabrication plant in China, are given in order to demonstrate the important roles having been played on nuclear safety by the Administration after its founding

  12. Producing health, producing safety. Developing a collective safety culture in radiotherapy

    International Nuclear Information System (INIS)

    Nascimento, Adelaide

    2009-01-01

    This research thesis aims at a better understanding of safety management in radiotherapy and at proposing improvements for patient safety through the development of a collective safety culture. A first part presents the current context in France and abroad, addresses the transposition of other safety methods to the medical domain, and discusses the peculiarities of radiotherapy in terms of risks and the existing quality-assurance approaches. The second part presents the theoretical framework by commenting the intellectual evolution with respect to system safety and the emergence of the concept of safety culture, and by presenting the labour collective aspects and their relationship with system safety. The author then comments the variety of safety cultures among the different professions present in radiotherapy, highlights the importance of the collective dimension in correcting discrepancies at the end of the treatment process, and highlights how physicians take their colleagues work into account. Recommendations are made to improve patient safety in radiotherapy

  13. Indicators of safety culture - selection and utilization of leading safety performance indicators

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Teemu; Pietikaeinen, Elina (VTT, Technical Research Centre of Finland (Finland))

    2010-03-15

    Safety indicators play a role in providing information on organizational performance, motivating people to work on safety and increasing organizational potential for safety. The aim of this report is to provide an overview on leading safety indicators in the domain of nuclear safety. The report explains the distinction between lead and lag indicators and proposes a framework of three types of safety performance indicators - feedback, monitor and drive indicators. Finally the report provides guidance for nuclear energy organizations for selecting and interpreting safety indicators. It proposes the use of safety culture as a leading safety performance indicator and offers an example list of potential indicators in all three categories. The report concludes that monitor and drive indicators are so called lead indicators. Drive indicators are chosen priority areas of organizational safety activity. They are based on the underlying safety model and potential safety activities and safety policy derived from it. Drive indicators influence control measures that manage the socio technical system; change, maintain, reinforce, or reduce something. Monitor indicators provide a view on the dynamics of the system in question; the activities taking place, abilities, skills and motivation of the personnel, routines and practices - the organizational potential for safety. They also monitor the efficacy of the control measures that are used to manage the socio technical system. Typically the safety performance indicators that are used are lagging (feedback) indicators that measure the outcomes of the socio technical system. Besides feedback indicators, organizations should also acknowledge the important role of monitor and drive indicators in managing safety. The selection and use of safety performance indicators is always based on an understanding (a model) of the socio technical system and safety. The safety model defines what risks are perceived. It is important that the safety

  14. Indicators of safety culture - selection and utilization of leading safety performance indicators

    International Nuclear Information System (INIS)

    Reiman, Teemu; Pietikaeinen, Elina

    2010-03-01

    Safety indicators play a role in providing information on organizational performance, motivating people to work on safety and increasing organizational potential for safety. The aim of this report is to provide an overview on leading safety indicators in the domain of nuclear safety. The report explains the distinction between lead and lag indicators and proposes a framework of three types of safety performance indicators - feedback, monitor and drive indicators. Finally the report provides guidance for nuclear energy organizations for selecting and interpreting safety indicators. It proposes the use of safety culture as a leading safety performance indicator and offers an example list of potential indicators in all three categories. The report concludes that monitor and drive indicators are so called lead indicators. Drive indicators are chosen priority areas of organizational safety activity. They are based on the underlying safety model and potential safety activities and safety policy derived from it. Drive indicators influence control measures that manage the socio technical system; change, maintain, reinforce, or reduce something. Monitor indicators provide a view on the dynamics of the system in question; the activities taking place, abilities, skills and motivation of the personnel, routines and practices - the organizational potential for safety. They also monitor the efficacy of the control measures that are used to manage the socio technical system. Typically the safety performance indicators that are used are lagging (feedback) indicators that measure the outcomes of the socio technical system. Besides feedback indicators, organizations should also acknowledge the important role of monitor and drive indicators in managing safety. The selection and use of safety performance indicators is always based on an understanding (a model) of the socio technical system and safety. The safety model defines what risks are perceived. It is important that the safety

  15. NPP Krsko periodic safety review. Safety assessment and analyses

    International Nuclear Information System (INIS)

    Basic, I.; Spiler, J.; Thaulez, F.

    2002-01-01

    Definition of a PSR (Periodic Safety Review) project is a comprehensive safety review of a plant after ten years of operation. The objective is a verification by means of a comprehensive review using current methods that the plant remains safe when judged against current safety objectives and practices and that adequate arrangements are in place to maintain plant safety. The overall goals of the NEK PSR Program are defined in compliance with the basic role of a PSR and the current practice typical for most of the countries in EU. This practice is described in the related guides and good practice documents issued by international organizations. The overall goals of the NEK PSR are formulated as follows: to demonstrate that the plant is as safe as originally intended; to evaluate the actual plant status with respect to aging and wear-out identifying any structures, systems or components that could limit the life of the plant in the foreseeable future, and to identify appropriate corrective actions, where needed; to compare current level of safety in the light of modern standards and knowledge, and to identify where improvements would be beneficial for minimizing deviations at justifiable costs. The Krsko PSR will address the following safety factors: Operational Experience, Safety Assessment, EQ and Aging Management, Safety Culture, Emergency Planning, Environmental Impact and Radioactive Waste.(author)

  16. EUROSAFE Forum for nuclear safety. Towards Convergence of Technical Nuclear Safety Practices in Europe. Safety Improvements - Reasons, Strategies, Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Erven, Ulrich (ed.) [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS mbH, Schwertnergasse 1, 50667 Koeln (Germany); Cherie, Jean-Bernard (ed.) [Institut de Radioprotection et de Surete Nucleaire, IRSN, BP 17, 92262 Fontenay-aux-Roses Cedex (France); Boeck, Benoit De (ed.) [Association Vincotte Nuclear, AVN, Rue Walcourt 148, 1070 Bruxelles (Belgium)

    2005-07-01

    The EUROSAFE Forum for Nuclear Safety is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE Web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety. The goal is to share experiences, to exchange technical and scientific opinions, and to conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum on 2005 focused on Safety Improvements, Reasons - Strategies - Implementation, from the point of view of the authorities, TSOs and industry. Latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe are presented. A high level of nuclear safety is a priority for the countries of Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining

  17. EUROSAFE Forum for nuclear safety. Towards Convergence of Technical Nuclear Safety Practices in Europe. Safety Improvements - Reasons, Strategies, Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Erven, Ulrich [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS mbH, Schwertnergasse 1, 50667 Koeln (Germany); Cherie, Jean-Bernard [Institut de Radioprotection et de Surete Nucleaire, IRSN, BP 17, 92262 Fontenay-aux-Roses Cedex (France); Boeck, Benoit De [Association Vincotte Nuclear, AVN, Rue Walcourt 148, 1070 Bruxelles (Belgium)

    2005-07-01

    The EUROSAFE Forum for Nuclear Safety is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE Web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety. The goal is to share experiences, to exchange technical and scientific opinions, and to conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum on 2005 focused on Safety Improvements, Reasons - Strategies - Implementation, from the point of view of the authorities, TSOs and industry. Latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe are presented. A high level of nuclear safety is a priority for the countries of Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining

  18. University building safety index measurement using risk and implementation matrix

    Science.gov (United States)

    Rahman, A.; Arumsari, F.; Maryani, A.

    2018-04-01

    Many high rise building constructed in several universities in Indonesia. The high-rise building management must provide the safety planning and proper safety equipment in each part of the building. Unfortunately, most of the university in Indonesia have not been applying safety policy yet and less awareness on treating safety facilities. Several fire accidents in university showed that some significant risk should be managed by the building management. This research developed a framework for measuring the high rise building safety index in university The framework is not only assessed the risk magnitude but also designed modular building safety checklist for measuring the safety implementation level. The safety checklist has been developed for 8 types of the university rooms, i.e.: office, classroom, 4 type of laboratories, canteen, and library. University building safety index determined using risk-implementation matrix by measuring the risk magnitude and assessing the safety implementation level. Building Safety Index measurement has been applied in 4 high rise buildings in ITS Campus. The building assessment showed that the rectorate building in secure condition and chemical department building in beware condition. While the library and administration center building was in less secure condition.

  19. Discussion on building safety culture inside a nuclear safety regulatory body

    International Nuclear Information System (INIS)

    Fan Yumao

    2013-01-01

    A strong internal safety culture plays a key role in improving the performance of a nuclear regulatory body. This paper discusses the definition of internal safety culture of nuclear regulatory bodies, and explains the functions that the safety culture to facilitate the nuclear safety regulation and finally puts forward some thoughts about building internal safety culture inside regulatory bodies. (author)

  20. Central Safety Department, annual report 1987

    International Nuclear Information System (INIS)

    Kiefer, H.; Koenig, L.A.

    1988-02-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The r+d work concentrates on the following aspects: physical and chemical behaviour of biologically particularly active radionuclides, behaviour of HT in the air/plan/soil system, biophysics of multicellular systems, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1987 routine tasks and reports about results of investigations and developments of the working groups of the Department. (orig./HP) [de

  1. Transition towards replacing animal tests in safety assessment of cosmetics and chemicals: a combined TIS-MLP framework

    NARCIS (Netherlands)

    Kooijman, M.; Meer, P. van de; Moors, E.H.M.; Schellekens, H.; Hekkert, M.P.

    2012-01-01

    The urgency of the transition to replace animal tests in safety assessment of chemicals and cosmetics was triggered by societal resistance to animal testing (Rowan, 2007) and the scientific dispute concerning the value of animal testing (Olson et al., 2000). Since the 1980s the European Union (EU)

  2. CERN's new safety policy

    CERN Multimedia

    2014-01-01

    The documents below, published on 29 September 2014 on the HSE website, together replace the document SAPOCO 42 as well as Safety Codes A1, A5, A9, A10, which are no longer in force. As from the publication date of these documents any reference made to the document SAPOCO 42 or to Safety Codes A1, A5, A9 and A10 in contractual documents or CERN rules and regulations shall be deemed to constitute a reference to the corresponding provisions of the documents listed below.   "The CERN Safety Policy" "Safety Regulation SR-SO - Responsibilities and organisational structure in matters of Safety at CERN" "General Safety Instruction GSI-SO-1 - Departmental Safety Officer (DSO)" "General Safety Instruction GSI-SO-2 - Territorial Safety Officer (TSO)" "General Safety Instruction GSI-SO-3 - Safety Linkperson (SLP)" "General Safety Instruction GSI-SO-4 - Large Experiment Group Leader In Matters of Safety (LEXGLI...

  3. Safety standards and safety record of nuclear power plants

    International Nuclear Information System (INIS)

    Davis, A.B.

    1984-01-01

    This paper focuses on the use of standards and the measurement and enforcement of these standards to achieve safe operation of nuclear power plants. Since a discussion of the safety standards that the Nuclear Regulatory Commission (NRC) uses to regulate the nuclear power industry can be a rather tedious subject, this discussion will provide you with not only a description of what safety standards are, but some examples of their application, and various indicators that provide an overall perspective on safety. These remarks are confined to the safety standards adopted by the NRC. There are other agencies such as the Environmental Protection Agency, the Occupational Safety and Health Administration, and the state regulatory agencies which impact on a nuclear power plant. The NRC has regulatory authority for the commercial use of the nuclear materials and facilities which are defined in the Atomic Energy Act of 1954 to assure that the public health and safety and national security are protected

  4. Safety performance indicators used by the Russian Safety Regulatory Authority in its practical activities on nuclear power plant safety regulation

    International Nuclear Information System (INIS)

    Khazanov, A.L.

    2005-01-01

    The Sixth Department of the Nuclear, Industrial and Environmental Regulatory Authority of Russia, Scientific and Engineering Centre for Nuclear and Radiation Safety process, analyse and use the information on nuclear power plants (NPPs) operational experience or NPPs safety improvement. Safety performance indicators (SPIs), derived from processing of information on operational violations and analysis of annual NPP Safety Reports, are used as tools to determination of trends towards changing of characteristics of operational safety, to assess the effectiveness of corrective measures, to monitor and evaluate the current operational safety level of NPPs, to regulate NPP safety. This report includes a list of the basic SPIs, those used by the Russian safety regulatory authority in regulatory activity. Some of them are absent in list of IAEA-TECDOC-1141 ('Operational safety performance indicators for nuclear power plants'). (author)

  5. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  6. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  7. Safety in construction?

    NARCIS (Netherlands)

    Swuste, P.H.J.J.

    2013-01-01

    The available literature on Construction Safety is not very optimistic about the chances of evidence-based safety in the construction industry exerting a positive influence. Many articles indicate that the structures and processes that are designed to ensure safety in the industry are poor. Safety

  8. An Innovative Multimedia Approach to Laboratory Safety

    Science.gov (United States)

    Anderson, M. B.; Constant, K. P.

    1996-01-01

    A new approach for teaching safe laboratory practices has been developed for materials science laboratories at Iowa State university. Students are required to complete a computerized safety tutorial and pass an exam before working in the laboratory. The safety tutorial includes sections on chemical, electrical, radiation, and high temperature safety. The tutorial makes use of a variety of interactions, including 'assembly' interactions where a student is asked to drag and drop items with the mouse (either labels or pictures) to an appropriate place on the screen (sometimes in a specific order). This is extremely useful for demonstrating safe lab practices and disaster scenarios. Built into the software is a record tracking scheme so that a professor can access a file that records which students have completed the tutorial and their scores on the exam. This paper will describe the development and assessment of the safety tutorials.

  9. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  10. Safety analysis and risk assessment handbook

    International Nuclear Information System (INIS)

    Peterson, V.L.; Colwell, R.G.; Dickey, R.L.

    1997-01-01

    This Safety Analysis and Risk Assessment Handbook (SARAH) provides guidance to the safety analyst at the Rocky Flats Environmental Technology Site (RFETS) in the preparation of safety analyses and risk assessments. Although the older guidance (the Rocky Flats Risk Assessment Guide) continues to be used for updating the Final Safety Analysis Reports developed in the mid-1980s, this new guidance is used with all new authorization basis documents. With the mission change at RFETS came the need to establish new authorization basis documents for its facilities, whose functions had changed. The methodology and databases for performing the evaluations that support the new authorization basis documents had to be standardized, to avoid the use of different approaches and/or databases for similar accidents in different facilities. This handbook presents this new standardized approach. The handbook begins with a discussion of the requirements of the different types of authorization basis documents and how to choose the one appropriate for the facility to be evaluated. It then walks the analyst through the process of identifying all the potential hazards in the facility, classifying them, and choosing the ones that need to be analyzed further. It then discusses the methods for evaluating accident initiation and progression and covers the basic steps in a safety analysis, including consequence and frequency binning and risk ranking. The handbook lays out standardized approaches for determining the source terms of the various accidents (including airborne release fractions, leakpath factors, etc.), the atmospheric dispersion factors appropriate for Rocky Flats, and the methods for radiological and chemical consequence assessments. The radiological assessments use a radiological open-quotes templateclose quotes, a spreadsheet that incorporates the standard values of parameters, whereas the chemical assessments use the standard codes ARCHIE and ALOHA

  11. Safety functions and safety function indicators - key elements in SKB'S methodology for assessing long-term safety of a KBS-3 repository

    International Nuclear Information System (INIS)

    Hedin, A.

    2008-01-01

    The application of so called safety function indicators in SKB safety assessment of a KBS-3 repository for spent nuclear fuel is presented. Isolation and retardation are the two main safety functions of the KBS-3 concept. In order to quantitatively evaluate safety on a sub-system level, these functions need to be differentiated, associated with quantitative measures and, where possible, with quantitative criteria relating to the fulfillment of the safety functions. A safety function is defined as a role through which a repository component contributes to safety. A safety function indicator is a measurable or calculable property of a repository component that allows quantitative evaluation of a safety function. A safety function indicator criterion is a quantitative limit such that if the criterion is fulfilled, the corresponding safety function is upheld. The safety functions and their associated indicators and criteria developed for the KBS-3 repository are primarily related to the isolating potential and to physical states of the canister and the clay buffer surrounding the canister. They are thus not directly related to release rates of radionuclides. The paper also describes how the concepts introduced i) aid in focussing the assessment on critical, safety related issues, ii) provide a framework for the accounting of safety throughout the different time frames of the assessment and iii) provide key information in the selection of scenarios for the safety assessment. (author)

  12. Safety: Preventive Medicine.

    Science.gov (United States)

    Kotula, John R.; Digenakis, Anthony

    1985-01-01

    Underscores the need for community colleges to practice safety within the institutions and to instruct students in workplace safety procedures and requirements. Reviews Occupational Safety and Health Act (OSHA) regulations and their impact on industry and education. Looks at the legal responsibilities of colleges for safety. (DMM)

  13. Improving safety culture through the health and safety organization: a case study.

    Science.gov (United States)

    Nielsen, Kent J

    2014-02-01

    International research indicates that internal health and safety organizations (HSO) and health and safety committees (HSC) do not have the intended impact on companies' safety performance. The aim of this case study at an industrial plant was to test whether the HSO can improve company safety culture by creating more and better safety-related interactions both within the HSO and between HSO members and the shop-floor. A quasi-experimental single case study design based on action research with both quantitative and qualitative measures was used. Based on baseline mapping of safety culture and the efficiency of the HSO three developmental processes were started aimed at the HSC, the whole HSO, and the safety representatives, respectively. Results at follow-up indicated a marked improvement in HSO performance, interaction patterns concerning safety, safety culture indicators, and a changed trend in injury rates. These improvements are interpreted as cultural change because an organizational double-loop learning process leading to modification of the basic assumptions could be identified. The study provides evidence that the HSO can improve company safety culture by focusing on safety-related interactions. © 2013. Published by Elsevier Ltd and National Safety Council.

  14. Benchmarking Global Food Safety Performances: The Era of Risk Intelligence.

    Science.gov (United States)

    Valleé, Jean-Charles Le; Charlebois, Sylvain

    2015-10-01

    Food safety data segmentation and limitations hamper the world's ability to select, build up, monitor, and evaluate food safety performance. Currently, there is no metric that captures the entire food safety system, and performance data are not collected strategically on a global scale. Therefore, food safety benchmarking is essential not only to help monitor ongoing performance but also to inform continued food safety system design, adoption, and implementation toward more efficient and effective food safety preparedness, responsiveness, and accountability. This comparative study identifies and evaluates common elements among global food safety systems. It provides an overall world ranking of food safety performance for 17 Organisation for Economic Co-Operation and Development (OECD) countries, illustrated by 10 indicators organized across three food safety risk governance domains: risk assessment (chemical risks, microbial risks, and national reporting on food consumption), risk management (national food safety capacities, food recalls, food traceability, and radionuclides standards), and risk communication (allergenic risks, labeling, and public trust). Results show all countries have very high food safety standards, but Canada and Ireland, followed by France, earned excellent grades relative to their peers. However, any subsequent global ranking study should consider the development of survey instruments to gather adequate and comparable national evidence on food safety.

  15. Regulatory review of safety cases and safety assessments - associated challenges

    International Nuclear Information System (INIS)

    Bennett, D.G.; Ben Belfadhel, M.; Metcalf, P.E.

    2006-01-01

    Regulatory reviews of safety cases and safety assessments are essential for credible decision making on the licensing or authorization of radioactive waste disposal facilities. Regulatory review also plays an important role in developing the safety case and in establishing stakeholders' confidence in the safety of the facility. Reviews of safety cases for radioactive waste disposal facilities need to be conducted by suitably qualified and experienced staff, following systematic and well planned review processes. Regulatory reviews should be sufficiently comprehensive in their coverage of issues potentially affecting the safety of the disposal system, and should assess the safety case against clearly established criteria. The conclusions drawn from a regulatory review, and the rationale for them should be reproducible and documented in a transparent and traceable way. Many challenges are faced when conducting regulatory reviews of safety cases. Some of these relate to issues of project and programme management, and resources, while others derive from the inherent difficulties of assessing the potential long term future behaviour of engineered and environmental systems. The paper describes approaches to the conduct of regulatory reviews and discusses some of the challenges faced. (author)

  16. Nuclear Safety. 1997

    International Nuclear Information System (INIS)

    1998-01-01

    A quick review of the nuclear safety at EDF may be summarized as follows: - the nuclear safety at EDF maintains at a rather good standard; - none of the incidents that took place has had any direct impact upon safety; - the availability remained good; - initiation of the floor 4 reactor generation (N4 unit - 1450 MW) ensued without major difficulties (the Civaux 1 NPP has been coupled to the power network at 24 december 1997); - the analysis of the incidents interesting from the safety point of view presents many similarities with earlier ones. Significant progress has been recorded in promoting actively and directly a safe operation by making visible, evident and concrete the exertion of the nuclear operation responsibility and its control by the hierarchy. The report develops the following chapters and subjects: 1. An overview on 1997; 1.1. The technical issues of the nuclear sector; 1.2. General performances in safety; 1.3. The main incidents; 1.4. Wastes and radiation protection; 2. Nuclear safety management; 2.1. Dynamics and results; 2.2. Ameliorations to be consolidated; 3. Other important issues in safety; 3.1. Probabilistic safety studies; 3.2. Approach for safety re-evaluation; 3.3. The network safety; 3.4. Crisis management; 3.5. The Lifetime program; 3.6. PWR; 3.7. Documentation; 3.8. Competence; 4. Safety management in the future; 4.1. An open future; 4.2. The fast neutron NPP at Creys-Malville; 4.3. Stabilization of the PWR reference frame; 4.4. Implementing the EURATOM directive regarding the radiation protection standards; 4.5. Development of biomedical research and epidemiological studies; 4.6. New regulations concerning the liquid and gaseous effluents; 5. Visions of an open future; 5.1. Alternative views upon safety ay EDF; 5.2. Safety authority; 5.3. International considerations; 5.4. What happens abroad; 5.5. References from non-nuclear domain. Four appendices are added referring to policy of safety management, policy of human factors in NPPs

  17. Does the concept of safety culture help or hinder systems thinking in safety?

    Science.gov (United States)

    Reiman, Teemu; Rollenhagen, Carl

    2014-07-01

    The concept of safety culture has become established in safety management applications in all major safety-critical domains. The idea that safety culture somehow represents a "systemic view" on safety is seldom explicitly spoken out, but nevertheless seem to linger behind many safety culture discourses. However, in this paper we argue that the "new" contribution to safety management from safety culture never really became integrated with classical engineering principles and concepts. This integration would have been necessary for the development of a more genuine systems-oriented view on safety; e.g. a conception of safety in which human, technological, organisational and cultural factors are understood as mutually interacting elements. Without of this integration, researchers and the users of the various tools and methods associated with safety culture have sometimes fostered a belief that "safety culture" in fact represents such a systemic view about safety. This belief is, however, not backed up by theoretical or empirical evidence. It is true that safety culture, at least in some sense, represents a holistic term-a totality of factors that include human, organisational and technological aspects. However, the departure for such safety culture models is still human and organisational factors rather than technology (or safety) itself. The aim of this paper is to critically review the various uses of the concept of safety culture as representing a systemic view on safety. The article will take a look at the concepts of culture and safety culture based on previous studies, and outlines in more detail the theoretical challenges in safety culture as a systems concept. The paper also presents recommendations on how to make safety culture more systemic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Obtaining Valid Safety Data for Software Safety Measurement and Process Improvement

    Science.gov (United States)

    Basili, Victor r.; Zelkowitz, Marvin V.; Layman, Lucas; Dangle, Kathleen; Diep, Madeline

    2010-01-01

    We report on a preliminary case study to examine software safety risk in the early design phase of the NASA Constellation spaceflight program. Our goal is to provide NASA quality assurance managers with information regarding the ongoing state of software safety across the program. We examined 154 hazard reports created during the preliminary design phase of three major flight hardware systems within the Constellation program. Our purpose was two-fold: 1) to quantify the relative importance of software with respect to system safety; and 2) to identify potential risks due to incorrect application of the safety process, deficiencies in the safety process, or the lack of a defined process. One early outcome of this work was to show that there are structural deficiencies in collecting valid safety data that make software safety different from hardware safety. In our conclusions we present some of these deficiencies.

  19. 77 FR 25179 - Patient Safety Organizations: Voluntary Relinquishment From Surgical Safety Institute

    Science.gov (United States)

    2012-04-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... voluntary relinquishment from the Surgical Safety Institute of its status as a Patient Safety Organization (PSO). The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act) authorizes the...

  20. A Methodological Framework for Software Safety in Safety Critical Computer Systems

    OpenAIRE

    P. V. Srinivas Acharyulu; P. Seetharamaiah

    2012-01-01

    Software safety must deal with the principles of safety management, safety engineering and software engineering for developing safety-critical computer systems, with the target of making the system safe, risk-free and fail-safe in addition to provide a clarified differentaition for assessing and evaluating the risk, with the principles of software risk management. Problem statement: Prevailing software quality models, standards were not subsisting in adequately addressing the software safety ...

  1. IAEA safety requirements for safety assessment of fuel cycle facilities and activities

    International Nuclear Information System (INIS)

    Jones, G.

    2013-01-01

    The IAEA's Statute authorises the Agency to establish standards of safety for protection of health and minimisation of danger to life and property. In that respect, the IAEA has established a Safety Fundamentals publication which contains ten safety principles for ensuring the protection of workers, the public and the environment from the harmful effects of ionising radiation. A number of these principles require safety assessments to be carried out as a means of evaluating compliance with safety requirements for all nuclear facilities and activities and to determine the measures that need to be taken to ensure safety. The safety assessments are required to be carried out and documented by the organisation responsible for operating the facility or conducting the activity, are to be independently verified and are to be submitted to the regulatory body as part of the licensing or authorisation process. In addition to the principles of the Safety Fundamentals, the IAEA establishes requirements that must be met to ensure the protection of people and the environment and which are governed by the principles in the Safety Fundamentals. The IAEA's Safety Requirements publication 'Safety Assessment for Facilities and Activities', establishes the safety requirements that need to be fulfilled in conducting and maintaining safety assessments for the lifetime of facilities and activities, with specific attention to defence in depth and the requirement for a graded approach to the application of these safety requirements across the wide range of fuel cycle facilities and activities. Requirements for independent verification of the safety assessment that needs to be carried out by the operating organisation, including the requirement for the safety assessment to be periodically reviewed and updated are also covered. For many fuel cycle facilities and activities, environmental impact assessments and non-radiological risk assessments will be required. The

  2. Integrated Safety in ''SARAF'

    International Nuclear Information System (INIS)

    Dickstein, P.; Grof, Y.; Machlev, M.; Pernick, A.

    2004-01-01

    As of the very early stages of the accelerator project at the Soreq Nuclear Research Center ''SARAF'' a safety group was established which has been an inseparable participant in the planning and design of the new facility. The safety group comprises of teams responsible for the shielding, radiation protection and general industrial safety aspects of ''SARAF''. The safety group prepared and documented the safety envelope for the accelerator, dealing with the safety requirements and guidelines for the first, pre-operational, stages of the project. The safety envelope, though based upon generic principles, took into account the accelerator features and the expected modes of operation. The safety envelope was prepared in a hierarchical structure, containing Basic Principles, Basic Guidelines, General Principles for Safety Implementation, Safety Requirements and Safety Underlining Issues. The above safety envelope applies to the entire facility, which entails the accelerator itself and the experimental areas and associated plant and equipment utilizing and supporting the production of the accelerated particle beams

  3. ITER-FEAT safety

    International Nuclear Information System (INIS)

    Gordon, C.W.; Bartels, H.-W.; Honda, T.; Raeder, J.; Topilski, L.; Iseli, M.; Moshonas, K.; Taylor, N.; Gulden, W.; Kolbasov, B.; Inabe, T.; Tada, E.

    2001-01-01

    Safety has been an integral part of the design process for ITER since the Conceptual Design Activities of the project. The safety approach adopted in the ITER-FEAT design and the complementary assessments underway, to be documented in the Generic Site Safety Report (GSSR), are expected to help demonstrate the attractiveness of fusion and thereby set a good precedent for future fusion power reactors. The assessments address ITER's radiological hazards taking into account fusion's favourable safety characteristics. The expectation that ITER will need regulatory approval has influenced the entire safety design and assessment approach. This paper summarises the ITER-FEAT safety approach and assessments underway. (author)

  4. Food Safety: MedlinePlus Health Topic

    Science.gov (United States)

    ... Food and Drug Administration) Also in Spanish Animal Cloning and Food Safety (Food and Drug Administration) Chemicals ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated ...

  5. 24 CFR 51.203 - Safety standards.

    Science.gov (United States)

    2010-04-01

    ... Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.203 Safety standards. The following... facilities or areas shall not exceed 0.5 psi. (c) If a hazardous substance constitutes both a thermal...

  6. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2017-01-01

    This publication is a revision of IAEA Safety Standards Series No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe commissioning, operation, and transition from operation to decommissioning of nuclear power plants. Over recent years there have been developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis review and risk informed decision making processes. It became necessary to revise the IAEA’s Safety Requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications, initiated in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan, revealed no significant areas of weakness but resulted in a small set of amendments to strengthen the requirements and facilitate their implementation. These are contained in the present publication.

  7. Defining safety culture and the nexus between safety goals and safety culture. 3. A Methodology for Identifying Deficiencies in Safety Culture

    International Nuclear Information System (INIS)

    Apostolakis, George; Weil, Rick

    2001-01-01

    At present, the drivers of performance problems at nuclear power plants (NPPs) are organizational in nature. Organizational deficiencies and other 'latent' conditions cause human errors, resulting in incidents that impact the performance of NPPs. Therefore, the human reliability community, regulators, and others concerned with NPP safety express the view that safety culture and organizational factors play an important role in plant safety. However, we have yet to identify one complete set of organizational factors, establish links between deficient safety culture and performance, or develop adequate tools to measure safety culture. This paper will contribute to the resolution of these issues. Safety culture is not a single factor but rather is a collection of several distinct factors. This paper asserts that in order to pro-actively manage safety culture at NPPs, leading indicators and appropriate measurements must be identified and developed. Central to this effort are the identification of the distinct factors comprising safety culture and the relationships between those factors and performance. We have identified several factors important to safety culture. We have developed a methodology that is a combination of traditional root-cause analysis and theories of human error, most notably Reason's theory of accident causation. In addition to this methodology's usefulness in identifying deficiencies in safety culture, it could also be used as a starting point to identify leading indicators of deteriorating safety performance. We have identified six organizational factors as being important: communication, formalization, goal prioritization, problem identification, roles and responsibilities, and technical knowledge. In addition, we have found that certain organizational factors, although pervasive throughout the organization, have a much greater influence on the successful outcome of particular tasks of work processes, rather than being equally important to all

  8. Visit safety

    CERN Document Server

    2012-01-01

    Experiment areas, offices, workshops: it is possible to have co-workers or friends visit these places.     You already know about the official visits service, the VIP office, and professional visits. But do you know about the safety instruction GSI-OHS1, “Visits on the CERN site”? This is a mandatory General Safety Instruction that was created to assist you in ensuring safety for all your visits, whatever their nature—especially those that are non-official. Questions? The HSE Unit will be happy to answer them. Write to safety-general@cern.ch.   The HSE Unit

  9. 78 FR 17140 - Upholstered Furniture Fire Safety Technology; Meeting and Request for Comments

    Science.gov (United States)

    2013-03-20

    ... retardant (FR) chemicals, specialty fibers/fabrics without FR chemicals, inherently fire resistant materials... Furniture Fire Safety Technology; Meeting and Request for Comments AGENCY: Consumer Product Safety... Commission (CPSC, Commission, or we) is announcing its intent to hold a meeting on upholstered furniture fire...

  10. Supplement to safety analysis report. 306-W building operations safety requirement

    International Nuclear Information System (INIS)

    Richey, C.R.

    1979-08-01

    The operations safety requirements (OSRs) presented in this report define the conditions, safe boundaries, and management control needed for safely conducting operations with radioactive materials in the Pacific Northwest Laboratory (PNL) 306-W building. The safety requirements are organized in five sections. Safety limits are safety-related process variables that are observable and measurable. Limiting conditions cover: equipment and technical conditions and characteristics of the facility and operations necessary for continued safe operation. Surveillance requirements prescribe the requirements for checking systems and components that are essential to safety. Equipment design controls require that changes to process equipment and systems be independently checked and approved to assure that the changes will have no adverse effect on safety. Administrative controls describe and discuss the organization and administrative systems and procedures to be used for safe operation of the facility. Details of the implementation of the operations safety requirements are prescribed by internal PNL documents such as criticality safety specifications and radiation work procedures

  11. Consideration of future safety consequences: a new predictor of employee safety.

    Science.gov (United States)

    Probst, Tahira M; Graso, Maja; Estrada, Armando X; Greer, Sarah

    2013-06-01

    Compliance with safety behaviors is often associated with longer term benefits, but may require some short-term sacrifices. This study examines the extent to which consideration of future safety consequences (CFSC) predicts employee safety outcomes. Two field studies were conducted to evaluate the reliability and validity of the newly developed Consideration of Future Safety Consequences (CFSC) scale. Surveys containing the CFSC scale and other measures of safety attitudes, behaviors, and outcomes were administered during working hours to a sample of 128 pulp and paper mill employees; after revising the CFSC scale based on these initial results, follow-up survey data were collected in a second sample of 212 copper miners. In Study I, CFSC was predictive of employee safety knowledge and motivation, compliance, safety citizenship behaviors, accident reporting attitudes and behaviors, and workplace injuries - even after accounting for conscientiousness and demographic variables. Moreover, the effects of CFSC on the variables generally appear to be direct, as opposed to mediated by safety knowledge or motivation. These findings were largely replicated in Study II. CFSC appears to be an important personality construct that may predict those individuals who are more likely to comply with safety rules and have more positive safety outcomes. Future research should examine the longitudinal stability of CFSC to determine the extent to which this construct is a stable trait, rather than a safety attitude amenable to change over time or following an intervention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Nuclear safety and regulation

    International Nuclear Information System (INIS)

    Kim, Hho Jung

    2000-03-01

    This book contains 12 chapters, which are atom and radiation, nuclear reactor and kinds of nuclear power plant, safeguard actuation system and stability evaluation for rock foundation of nuclear power plant, nuclear safety and principle, safety analysis and classification of incident, probabilistic safety assessment and major incident, nuclear safety regulation, system of nuclear safety regulation, main function and subject of safety regulation in nuclear facilities, regulation of fuel cycle and a nuclear dump site, protection of radiation and, safety supervision and, safety supervision and measurement of environmental radioactivity.

  13. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2016-01-01

    This publication describes the requirements to be met to ensure the safe operation of nuclear power plants. It takes into account developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication

  14. Radiation safety audit

    International Nuclear Information System (INIS)

    Kadadunna, K.P.I.K.; Mod Ali, Noriah

    2008-01-01

    Audit has been seen as one of the effective methods to ensure harmonization in radiation protection. A radiation safety audit is a formal safety performance examination of existing or future work activities by an independent team. Regular audit will assist the management in its mission to maintain the facilities environment that is inherently safe for its employees. The audits review the adequacy of facilities for the type of use, training, and competency of workers, supervision by authorized users, availability of survey instruments, security of radioactive materials, minimization of personnel exposure to radiation, safety equipment, and the required record keeping. All approved areas of use are included in these periodic audits. Any deficiency found in the audit shall be corrected as soon as possible after they are reported. Radiation safety audit is a proactive approach to improve radiation safety practices and identify and prevent any potential radiation accident. It is an excellent tool to identify potential problem to radiation users and to assure that safety measures to eliminate or reduce the problems are fully considered. Radiation safety audit will help to develop safety culture of the facility. It is intended to be the cornerstone of a safety program designed to aid the facility, staff and management in maintaining a safe environment in which activities are carried out. The initiative of this work is to evaluate the need of having a proper audit as one of the mechanism to manage the safety using ionizing radiation. This study is focused on the need of having a proper radiation safety audit to identify deviations and deficiencies of radiation protection programmes. It will be based on studies conducted on several institutes/radiation facilities in Malaysia in 2006. Steps will then be formulated towards strengthening radiation safety through proper audit. This will result in a better working situation and confidence in the radiation protection community

  15. Systems engineered health and safety criteria for safety analysis reports

    International Nuclear Information System (INIS)

    Beitel, G.A.; Morcos, N.

    1993-01-01

    The world of safety analysis is filled with ambiguous words: codes and standards, consequences and risks, hazard and accident, and health and safety. These words have been subject to disparate interpretations by safety analysis report (SAR) writers, readers, and users. open-quotes Principal health and safety criteriaclose quotes has been one of the most frequently misused phrases; rarely is it used consistently or effectively. This paper offers an easily understood definition for open-quotes principal health and safety criteriaclose quotes and uses systems engineering to convert an otherwise mysterious topic into the primary means of producing an integrated SAR. This paper is based on SARs being written for environmental restoration and waste management activities for the U.S. Department of Energy (DOE). Requirements for these SARs are prescribed in DOE Order 5480-23, open-quotes Nuclear Safety Analysis Reports.close quotes

  16. Regulatory Oversight of Safety Culture in Finland: A Systemic Approach to Safety

    International Nuclear Information System (INIS)

    Oedewald, P.; Väisäsvaara, J.

    2016-01-01

    In Finland the Radiation and Nuclear Safety Authority STUK specifies detailed regulatory requirements for good safety culture. Both the requirements and the practical safety culture oversight activities reflect a systemic approach to safety: the interconnections between the technical, human and organizational factors receive special attention. The conference paper aims to show how the oversight of safety culture can be integrated into everyday oversight activities. The paper also emphasises that the scope of the safety culture oversight is not specific safety culture activities of the licencees, but rather the overall functioning of the licence holder or the new build project organization from safety point of view. The regulatory approach towards human and organizational factors and safety culture has evolved throughout the years of nuclear energy production in Finland. Especially the recent new build projects have highlighted the need to systematically pay attention to the non-technical aspects of safety as it has become obvious how the HOF issues can affect the design processes and quality of construction work. Current regulatory guides include a set of safety culture related requirements. The requirements are binding to the licence holders and they set both generic and specific demands on the licencee to understand, monitor and to develop safety culture of their own organization but also that of their supplier network. The requirements set for the licence holders has facilitated the need to develop the regulator’s safety culture oversight practices towards a proactive and systemic approach.

  17. Enhancing operational nuclear safety

    International Nuclear Information System (INIS)

    Sengoku, Katsuhisa

    2008-01-01

    Since Chernobyl, the dictum A n accident anywhere is an accident everywhere i s a globally shared perception. The paper presents challenges to the international nuclear community: globalization, sustainable and dynamic development, secure, safe and clean energy supply, nuclear r enaissance , public concern for nuclear safety, nuclear security, and technology and management. Strong national safety infrastructures and international cooperation are required to maintain a high level of nuclear safety and security worldwide. There is an increasing number of countries thinking of going nuclear: Morocco, Indonesia, Iran, Poland, Turkey, Bangladesh, Egypt, Vietnam, Chile, Nigeria, Malaysia, Thailand, Uruguay, Tunisia, Algeria. Another serious incident will jeopardize the prospect of nuclear renaissance. Safety and security are preconditions for countries newly introducing NPP as well as for those with mature nuclear programmes. The Global Nuclear Safety Regime (GNSR) is referred to as the institutional, legal and technical framework to achieve worldwide implementation of the safety of nuclear installations. At the top of the framework is the Convention on Nuclear Safety which covers the nuclear power plants. The convention has 56 contracting parties which meet triennially where national reports are presented and subject to the review of peers. The International Atomic Energy Agency (IAEA) undertakes a programme to foster the GNSR through the establishment of IAEA safety standards and related publications. The programme provides for the application of standards for the (1) safety of nuclear installations, (2) safety of radioactive sources, (3) safe transport of radioactive material and (4) management of radioactive waste. It also provides for the security of nuclear installations, nuclear material and radioactive material. The safety standards hierarchy is as follows: safety fundamental, safety requirements and safety guides. The safety fundamentals are the bases for IAEA

  18. Improving safety on rural local and tribal roads safety toolkit.

    Science.gov (United States)

    2014-08-01

    Rural roadway safety is an important issue for communities throughout the country and presents a challenge for state, local, and Tribal agencies. The Improving Safety on Rural Local and Tribal Roads Safety Toolkit was created to help rural local ...

  19. Safety goals and safety culture opening plenary. 2. Safety Regulation Implemented by Gosatomnadzor of Russia

    International Nuclear Information System (INIS)

    Gutsalov, A.T.; Bukrinsky, A.M.

    2001-01-01

    This paper describes principles and approaches used by Gosatomnadzor of Russia in establishing safety goals. The link between safety goals and safety culture is demonstrated. The paper also contains information on nuclear regulatory activities in Russia. Regulatory documents of Gosatomnadzor of Russia do not provide precise definitions of safety goals as IAEA documents INSAG-3 or INSAG-12 do. However, overall activities of Gosatomnadzor of Russia are directed to the achievement of these safety goals, as Gosatomnadzor of Russia is a federal executive authority responsible for the regulation of nuclear and radiation safety in accordance with the Russian Federal Law 'On the Use of Nuclear Energy'. Thus, in the Statement of the Policy of the Russian Regulatory Authority, enacted in 1992, it was established that the overall activities of Gosatomnadzor of Russia are directed to the achievement of the main goal. This goal is to establish conditions that ensure that personnel, the public, and the environment are protected from unacceptable radiation and nonproliferation of nuclear materials. The practical application of such a method as given by the publication of Statements of Policy of Gosatomnadzor of Russia may be considered as a safety culture element. 'General Provisions of NPP Safety Ensuring' (OPB-88/ 97) is a regulatory document of the highest level in the hierarchy of regulatory documents of Gosatomnadzor of Russia. It establishes quantitative values of safety goals as do the foregoing IAEA documents. Thus, this regulatory document sets up the following: 1. The estimated total probability of severe accidents should not exceed 10 5 /reactor.yr. 2. The estimated probability of the worst possible radioactive release to the environment specified in the standards should not exceed 10 -7 /reactor.yr in the case of severe beyond-design-basis accidents. 3. The probability of a reactor vessel failure should not exceed 10 -7 /reactor.yr. The foregoing values are somehow

  20. Development of French technical safety regulations: safety fundamental rules

    International Nuclear Information System (INIS)

    Lebouleux, P.

    1982-09-01

    The technical regulation related to nuclear safety in France is made of a set of regulation texts, of a different nature, that define the requirements for the construction, commissioning and operations of nuclear facilities. Simultaneously, the safety authorities (Service Central de Surete des Installations Nucleaires: SCSIN) issue recommendations or guides which are not strictly speaking regulations in the juridical sense; they are called ''Regles Fondamentales de Surete'' (RFS). The RFS set up and detail the conditions, the respect of which is deemed to be complying with the French regulation pratice, for the subject to which they relate. Their purpose is to make known rules judged acceptable by safety authorities, thus making the safety review easier. The RFS program is described. A RFS -or a letter- can also give the result of the examination of the constructor and operator code (RCC) by safety authorities

  1. Development of French technical safety regulations: safety fundamental rules

    International Nuclear Information System (INIS)

    Lebouleux, P.

    1983-01-01

    The technical regulation related to nuclear safety in France is made of a set of regulation texts, of a different nature, that define the requirements for the construction, commissioning and operating of nuclear facilities. Simultaneously, the safety authorities (Service Central de Surete des Installations Nucleaires: SCSIN) issue recommendations or guides which are not strictly speaking regulations in the juridicial sense; they are called Regles Fondamentales de Surete (RFS). The RFS set up and detail the conditions, the respect of which is deemed to be complying with the French regulation practice, for the subject to which they relate. Their purpose is to make known rules judged acceptable by safety authorities, thus making the safety review easier. The RFS program is described. A RFS - or a letter - can also give the result of the examination of the constructor and operator codes (RCC) by safety authorities

  2. Measuring Safety Culture on Ships Using Safety Climate: A Study among Indian Officers

    Directory of Open Access Journals (Sweden)

    Yogendra Bhattacharya

    2015-12-01

    Full Text Available Workplace safety continues to be an area of concern in the maritime industry due to the international nature of the operations. The effectiveness of extensive legislation to manage shipboard safety remains in doubt. The focus must therefore shift towards the human element - seafarers and their perceptions of safety. The study aims to understand the alignment that exists between safety culture and safety climate on board ships as perceived by seafarers. The underlying factors of safety climate were identified using factor analysis which isolated seven factors - Support on Safety, Organizational Support, Resource Availability, Work Environment, Job Demands, ‘Just’ Culture, and Safety Compliance. The perception of safety level of seafarers was found to be low indicating the existence of misalignments between safety culture values and the actual safety climate. The study also reveals that the safety perceptions of officers employed directly by ship owners and those by managers do not differ significantly, nor do they differ between senior and junior officers. A shift in perspective towards how seafarers themselves feel towards safety might provide more effective solutions – instead of relying on regulations - and indeed aid in reducing incidents on board. This paper details practical suggestions on how to identify the factors that contribute towards a better safety climate on board ships.

  3. Safety evaluation of food flavorings

    International Nuclear Information System (INIS)

    Schrankel, Kenneth R.

    2004-01-01

    Food flavorings are an essential element in foods. Flavorings are a unique class of food ingredients and excluded from the legislative definition of a food additive because they are regulated by flavor legislation and not food additive legislation. Flavoring ingredients naturally present in foods, have simple chemical structures, low toxicity, and are used in very low levels in foods and beverages resulting in very low levels of human exposure or consumption. Today, the overwhelming regulatory trend is a positive list of flavoring substances, e.g. substances not listed are prohibited. Flavoring substances are added to the list following a safety evaluation based on the conditions of intended use by qualified experts. The basic principles for assessing the safety of flavoring ingredients will be discussed with emphasis on the safety evaluation of flavoring ingredients by the Food and Agriculture Organization (FAO) and World Health Organization (WHO) Joint Expert Committee on Food Additives (JECFA) and the US Flavor and Extract Manufacturers Expert Panel (FEXPAN). The main components of the JECFA evaluation process include chemical structure, human intake (exposure), metabolism to innocuous or harmless substances, and toxicity concerns consistent with JECFA principles. The Flavor and Extract Manufacturers Association (FEMA) evaluation is very similar to the JECFA procedure. Both the JECFA and FEMA evaluation procedures are widely recognized and the results are accepted by many countries. This implies that there is no need for developing countries to conduct their own toxicological assessment of flavoring ingredients unless it is an unique ingredient in one country, but it is helpful to survey intake or exposure assessment. The global safety program established by the International Organization of Flavor Industry (IOFI) resulting in one worldwide open positive list of flavoring substances will be reviewed

  4. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  5. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  6. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-01-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAEA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  7. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-06-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAEA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  8. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-01-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  9. Safety Training: Basic Safety and Access Courses

    CERN Multimedia

    Antonella Vignes

    2005-01-01

    Objective The purpose of the basic safety courses is to increase awareness for everyone working on the CERN site (CERN staff, associates, outside companies, students and apprentices) of the various existing on-site hazards, and how to recognize and avoid them. Safety course changes The current organization for basic safety courses is changing. There will be two main modifications: the organization of the courses and the implementation of a specific new training course for the LHC machine during the LHC tests and hardware commissioning phase. Organizational changes This concerns the existing basic safety training, currently called level1, level2 and level3. Under the new procedure, a video will be projected in registration building 55 and will run every day at 14.00 and 15.00 in English. The duration of the video will be 50 minutes. The course contents will be the same as the slides currently used, plus a video showing real situations. With this new organization, attendees will systematically follow the...

  10. Safety Training: basic safety and access courses

    CERN Multimedia

    2005-01-01

    Objective The purpose of the basic safety courses is to increase awareness for everyone working on the CERN site (CERN staff, associates, outside companies, students and apprentices) of the various hazards existing on site, and how to recognise and avoid them. Safety course changes The current organisation of basic safety courses is changing. There will be two main modifications: the organisation of the courses and the implementation of a specific new training course for the LHC machine during the LHC tests and hardware commissioning phase. Organisational changes This concerns the existing basic safety training, currently called level 1, level 2 and level 3. Under the new procedure, a video will be projected in registration building 55 and will run every day at 14.00 and 15.00 in English. The duration of the video will be 50 minutes. The course contents will be the same as the slides currently used, plus a video showing real situations. With this new organization, participants will systematically follow...

  11. Applicaiton and characteristics of food irradiation on food safety

    International Nuclear Information System (INIS)

    Ha Yiming

    2010-01-01

    Irradiation is one of non-thermal processing technology. Physical, chemical and biology effects were induced by the interaction of ionization irradiation and materials and acting on materials or food, then, food molecular was modified by rays and the harmful substances in it degraded. Irradiation is an effective method to improve food safety and extend the shelf life of food. In the article, the status of food safety at home and abroad in recently years was summarized, and the characteristic and application areas of irradiation technology in food safety were synthetically analyzed. (author)

  12. Results of activities of the State Office for Nuclear Safety in state supervision of nuclear safety of nuclear facilities and radiation protection in 2003

    International Nuclear Information System (INIS)

    Kovar, P.

    2004-01-01

    The report summarises results of activities of the State Office for Nuclear Safety (SUJB) in the supervision of nuclear safety and radiation protection in the Czech Republic. The first part of the report evaluates nuclear safety of nuclear installations and contains information concerning the results of supervision of radiation protection in 2003 in the Czech Republic. The second part of the report describes new responsibilities of the SUJB in the domain of nuclear, chemical, bacteriological (biological) and toxin weapons ban. (author)

  13. IAEA safety fundamentals: the safety of nuclear installations and the defence in depth concept

    International Nuclear Information System (INIS)

    Aro, I.

    2005-01-01

    This presentation is a replica of the similar presentation provided by the IAEA Basic Professional Training Course on Nuclear Safety. The presentation utilizes the IAEA Safety Series document No. 110, Safety Fundamentals: the Safety of Nuclear Installations. The objective of the presentation is to provide the basic rationale for actions in provision of nuclear safety. The presentation also provides basis to understand national nuclear safety requirements. There are three Safety Fundamentals documents in the IAEA Safety Series: one for nuclear safety, one for radiation safety and one for waste safety. The IAEA is currently revising its Safety Fundamentals by combining them into one general Safety Fundamentals document. The IAEA Safety Fundamentals are not binding requirements to the Member States. But, a very similar text has been provided in the Convention on Nuclear Safety which is legally binding for the Member State after ratification by the Parliament. This presentation concentrates on nuclear safety. The Safety Fundamentals documents are the 'policy documents' of the IAEA Safety Standards Series. They state the basic objectives, concepts and principles involved in ensuring protection and safety in the development and application of atomic energy for peaceful purposes. They will state - without providing technical details and without going into the application of principles - the rationale for actions necessary in meeting Safety Requirements. Chapter 7 of this presentation describes the basic features of defence in depth concept which is referred to in the Safety Fundamentals document. The defence in depth concept is a key issue in reaching high level of safety specifically at the design stage but as the reader can see the extended concept also refers to the operational stage. The appendix has been taken directly from the IAEA Basic Professional Training Course on Nuclear Safety and applied to the Finnish conditions. The text originates from the references

  14. Safety criteria of uranium enrichment plants

    International Nuclear Information System (INIS)

    Nardocci, A.C.; Oliveira Neto, J.M. de

    1994-01-01

    The applicability of nuclear reactor safety criteria applied to uranium enrichment plants is discussed, and a new criterion based on the soluble uranium compounds and hexafluoride chemical toxicities is presented. (L.C.J.A.). 21 refs, 4 tabs

  15. Rad waste disposal safety analysis / Integrated safety assessment of a waste repository

    International Nuclear Information System (INIS)

    Jeong, Jongtae; Choi, Jongwon; Kang, Chulhyung

    2012-04-01

    We developed CYPRUS+and adopted PID and RES method for the development of scenario. Safety performance assessment program was developed using GoldSim for the safety assessment of disposal system for the disposal of spnet fuels and wastes resulting from the pyrpoprocessing. Biosphere model was developed and verified in cooperation with JAEA. The capability to evaluate post-closure performance and safety was added to the previously developed program. And, nuclide migration and release to the biosphere considering site characteristics was evaluated by using deterministic and probabilistic approach. Operational safety assessment for drop, fire, and earthquake was also statistically evaluated considering well-established input parameter distribution. Conservative assessment showed that dose rate is below the limit value of low- and intermediate-level repository. Gas generation mechanism within engineered barrier was defined and its influence on safety was evaluated. We made probabilistic safety assessment by obtaining the probability distribution functions of important input variables and also made a sensitivity analysis. The maximum annual dose rate was shown to be below the safety limit value of 10 mSv/yr. The structure and element of safety case was developed to increase reliability of safety assessment methodology for a deep geological repository. Finally, milestone for safety case development and implementation strategy for each safety case element was also proposed

  16. Radiation protection and safety of radiation sources international basic safety standards

    CERN Document Server

    International Atomic Energy Agency. Vienna

    2014-01-01

    The Board of Governors of the IAEA first approved Basic Safety Standards in June 1962; they were published by the IAEA as IAEA Safety Series No. 9. A revised edition was issued in 1967. A third revision was published by the IAEA as the 1982 Edition of IAEA Safety Series No. 9 ; this edition was jointly sponsored by the IAEA, ILO, OECD/NEA and the WHO. The next edition was International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, published by the IAEA as IAEA Safety Series No. 115 in February 1996, and jointly sponsored by the FAO, IAEA, ILO, OECD/NEA, PAHO and the WHO.

  17. Exploring relationships between hospital patient safety culture and Consumer Reports safety scores.

    Science.gov (United States)

    Smith, Scott Alan; Yount, Naomi; Sorra, Joann

    2017-02-16

    A number of private and public companies calculate and publish proprietary hospital patient safety scores based on publicly available quality measures initially reported by the U.S. federal government. This study examines whether patient safety culture perceptions of U.S. hospital staff in a large national survey are related to publicly reported patient safety ratings of hospitals. The Agency for Healthcare Research and Quality Hospital Survey on Patient Safety Culture (Hospital SOPS) assesses provider and staff perceptions of hospital patient safety culture. Consumer Reports (CR), a U.S. based non-profit organization, calculates and shares with its subscribers a Hospital Safety Score calculated annually from patient experience survey data and outcomes data gathered from federal databases. Linking data collected during similar time periods, we analyzed relationships between staff perceptions of patient safety culture composites and the CR Hospital Safety Score and its five components using multiple multivariate linear regressions. We analyzed data from 164 hospitals, with patient safety culture survey responses from 140,316 providers and staff, with an average of 856 completed surveys per hospital and an average response rate per hospital of 56%. Higher overall Hospital SOPS composite average scores were significantly associated with higher overall CR Hospital Safety Scores (β = 0.24, p Consumer Reports Hospital Safety Score, which is a composite of patient experience and outcomes data from federal databases. As hospital managers allocate resources to improve patient safety culture within their organizations, their efforts may also indirectly improve consumer-focused, publicly reported hospital rating scores like the Consumer Reports Hospital Safety Score.

  18. Preliminary safety evaluation for CSR1000 with passive safety system

    International Nuclear Information System (INIS)

    Wu, Pan; Gou, Junli; Shan, Jianqiang; Zhang, Bo; Li, Xiang

    2014-01-01

    Highlights: • The basic information of a Chinese SCWR concept CSR1000 is introduced. • An innovative passive safety system is proposed for CSR1000. • 6 Transients and 3 accidents are analysed with system code SCTRAN. • The passive safety systems greatly mitigate the consequences of these incidents. • The inherent safety of CSR1000 is enhanced. - Abstract: This paper describes the preliminary safety analysis of the Chinese Supercritical water cooled Reactor (CSR1000), which is proposed by Nuclear Power Institute of China (NPIC). The two-pass core design applied to CSR1000 decreases the fuel cladding temperature and flattens the power distribution of the core at normal operation condition. Each fuel assembly is made up of four sub-assemblies with downward-flow water rods, which is favorable to the core cooling during abnormal conditions due to the large water inventory of the water rods. Additionally, a passive safety system is proposed for CSR1000 to increase the safety reliability at abnormal conditions. In this paper, accidents of “pump seizure”, “loss of coolant flow accidents (LOFA)”, “core depressurization”, as well as some typical transients are analysed with code SCTRAN, which is a one-dimensional safety analysis code for SCWRs. The results indicate that the maximum cladding surface temperatures (MCST), which is the most important safety criterion, of the both passes in the mentioned incidents are all below the safety criterion by a large margin. The sensitivity analyses of the delay time of RCPs trip in “loss of offsite power” and the delay time of RMT actuation in “loss of coolant flowrate” were also included in this paper. The analyses have shown that the core design of CSR1000 is feasible and the proposed passive safety system is capable of mitigating the consequences of the selected abnormalities

  19. Safety evaluation of a hydrogen fueled transit bus

    Energy Technology Data Exchange (ETDEWEB)

    Coutts, D.A.; Thomas, J.K.; Hovis, G.L.; Wu, T.T. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1997-12-31

    Hydrogen fueled vehicle demonstration projects must satisfy management and regulator safety expectations. This is often accomplished using hazard and safety analyses. Such an analysis has been completed to evaluate the safety of the H2Fuel bus to be operated in Augusta, Georgia. The evaluation methods and criteria used reflect the Department of Energy`s graded approach for qualifying and documenting nuclear and chemical facility safety. The work focused on the storage and distribution of hydrogen as the bus motor fuel with emphases on the technical and operational aspects of using metal hydride beds to store hydrogen. The safety evaluation demonstrated that the operation of the H2Fuel bus represents a moderate risk. This is the same risk level determined for operation of conventionally powered transit buses in the United States. By the same criteria, private passenger automobile travel in the United States is considered a high risk. The evaluation also identified several design and operational modifications that resulted in improved safety, operability, and reliability. The hazard assessment methodology used in this project has widespread applicability to other innovative operations and systems, and the techniques can serve as a template for other similar projects.

  20. Global nuclear safety culture

    International Nuclear Information System (INIS)

    1997-01-01

    As stated in the Nuclear Safety Review 1996, three components characterize the global nuclear safety culture infrastructure: (i) legally binding international agreements; (ii) non-binding common safety standards; and (iii) the application of safety standards. The IAEA has continued to foster the global nuclear safety culture by supporting intergovernmental collaborative efforts; it has facilitated extensive information exchange, promoted the drafting of international legal agreements and the development of common safety standards, and provided for the application of safety standards by organizing a wide variety of expert services

  1. Safety Management and Safety Culture Self Assessment of Kartini Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarip, S., E-mail: syarip@batan.go.id [Centre for Accelerator and Material Process Technology, National Nuclear Energy Agency (BATAN), Yogyakarta (Indonesia)

    2014-10-15

    The self-assessment of safety culture and safety management status of Kartini research reactor is a step to foster safety culture and management by identifying good practices and areas for improvement, and also to improve reactor safety in a whole. The method used in this assessment is based on questionnaires provided by the Forum for Nuclear Cooperation in Asia (FNCA), then reviewed by experts. Based on the assessment and evaluation results, it can be concluded that there were several good practices in maintaining the safety status of Kartini reactor such as: reactor operators and radiation protection workers were aware and knowledgeable of the safety standards and policies that apply to their operation, readily accept constructive criticism from their management and from the inspectors of regulatory body that address safety performance. As a proof, for the last four years the number of inspection/audit findings from Regulatory Body (BAPETEN) tended to decrease while the reactor utilization and its operating hour increased. On the other hands there were also some comments and recommendations for improvement of reactor safety culture, such as that there should be more frequent open dialogues between employees and managers, to grow and attain a mutual support to achieve safety goals. (author)

  2. Safety climate and self-reported injury: assessing the mediating role of employee safety control.

    Science.gov (United States)

    Huang, Yueng-Hsiang; Ho, Michael; Smith, Gordon S; Chen, Peter Y

    2006-05-01

    To further reduce injuries in the workplace, companies have begun focusing on organizational factors which may contribute to workplace safety. Safety climate is an organizational factor commonly cited as a predictor of injury occurrence. Characterized by the shared perceptions of employees, safety climate can be viewed as a snapshot of the prevailing state of safety in the organization at a discrete point in time. However, few studies have elaborated plausible mechanisms through which safety climate likely influences injury occurrence. A mediating model is proposed to link safety climate (i.e., management commitment to safety, return-to-work policies, post-injury administration, and safety training) with self-reported injury through employees' perceived control on safety. Factorial evidence substantiated that management commitment to safety, return-to-work policies, post-injury administration, and safety training are important dimensions of safety climate. In addition, the data support that safety climate is a critical factor predicting the history of a self-reported occupational injury, and that employee safety control mediates the relationship between safety climate and occupational injury. These findings highlight the importance of incorporating organizational factors and workers' characteristics in efforts to improve organizational safety performance.

  3. Valuation of the safety concept of the combined nuclear/chemical complex for hydrogen production with HTTR

    International Nuclear Information System (INIS)

    Verfondern, K.; Nishihara, T.

    2004-06-01

    The high-temperature engineering test reactor (HTTR) in Oarai, Japan, will be worldwide the first plant to demonstrate the production of hydrogen by applying the steam reforming process and using nuclear process heat as primary energy. Particular safety aspects for such a combined nuclear/chemical complex have to be investigated to further detail. One of these special aspects is the fire and explosion hazard associated with the presence of flammable gases including a large LNG storage tank in close vicinity to the reactor building. A special focus is laid upon the conceivable development of a detonation pressure wave and its damaging effect on the reactor building. A literature study has shown that methane is a comparatively slow reacting gas and that a methane vapor cloud in the open atmosphere or partially obstructed areas is highly unlikely to result in a detonation if inadvertently released and ignited. Various theoretical assessments and experimental studies, which have been conducted in the past and which are of significance for the HTTR-steam reforming system, include the spreading and combustion behavior of cryogenic liquids and flammable gas mixtures providing the basis of a comprehensive safety analysis of the combined nuclear/chemical facility. (orig.)

  4. Safety of nuclear fuel cycle facilities. Safety requirements

    International Nuclear Information System (INIS)

    2008-01-01

    This publication covers the broad scope of requirements for fuel cycle facilities that, in light of the experience and present state of technology, must be satisfied to ensure safety for the lifetime of the facility. Topics of specific reference include aspects of nuclear fuel generation, storage, reprocessing and disposal. Contents: 1. Introduction; 2. The safety objective, concepts and safety principles; 3. Legal framework and regulatory supervision; 4. The management system and verification of safety; 5. Siting of the facility; 6. Design of the facility; 7. Construction of the facility; 8. Commissioning of the facility; 9. Operation of the facility; 10. Decommissioning of the facility; Appendix I: Requirements specific to uranium fuel fabrication facilities; Appendix II: Requirements specific to mixed oxide fuel fabrication facilities; Appendix III: Requirements specific to conversion facilities and enrichment facilities

  5. Nuclear law - Nuclear safety

    International Nuclear Information System (INIS)

    Pontier, Jean-Marie; Roux, Emmanuel; Leger, Marc; Deguergue, Maryse; Vallar, Christian; Pissaloux, Jean-Luc; Bernie-Boissard, Catherine; Thireau, Veronique; Takahashi, Nobuyuki; Spencer, Mary; Zhang, Li; Park, Kyun Sung; Artus, J.C.

    2012-01-01

    This book contains the contributions presented during a one-day seminar. The authors propose a framework for a legal approach to nuclear safety, a discussion of the 2009/71/EURATOM directive which establishes a European framework for nuclear safety in nuclear installations, a comment on nuclear safety and environmental governance, a discussion of the relationship between citizenship and nuclear, some thoughts about the Nuclear Safety Authority, an overview of the situation regarding the safety in nuclear waste burying, a comment on the Nome law with respect to electricity price and nuclear safety, a comment on the legal consequences of the Fukushima accident on nuclear safety in the Japanese law, a presentation of the USA nuclear regulation, an overview of nuclear safety in China, and a discussion of nuclear safety in the medical sector

  6. National Nuclear Safety Report 2001. Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2001-01-01

    The First National Nuclear Safety Report was presented at the first review meeting of the Nuclear Safety Convention. At that time it was concluded that Argentina met the obligations of the Convention. This second National Nuclear Safety Report is an updated report which includes all safety aspects of the Argentinian nuclear power plants and the measures taken to enhance the safety of the plants. The present report also takes into account the observations and discussions maintained during the first review meeting. The conclusion made in the first review meeting about the compliance by Argentina of the obligations of the Convention are included as Annex 1. In general, the information contained in this Report has been updated since March 31, 1998 to March 31, 2001. Those aspects that remain unchanged were not addressed in this second report with the objective of avoiding repetitions and in order to carry out a detailed analysis considering article by article. As a result of the above mentioned detailed analysis of all the Articles, it can be stated that the country fulfils all the obligations imposed by the Nuclear Safety Convention

  7. National nuclear safety report 2004. Convention on nuclear safety

    International Nuclear Information System (INIS)

    2004-01-01

    The second National Nuclear Safety Report was presented at the second review meeting of the Nuclear Safety Convention. At that time it was concluded that Argentina met the obligations of the Convention. This third National Nuclear Safety Report is an updated report which includes all safety aspects of the Argentinian nuclear power plants and the measures taken to enhance the safety of the plants. The present report also takes into account the observations and discussions maintained during the second review meeting. The conclusion made in the first review meeting about the compliance by Argentina of the obligations of the Convention are included as Annex I and those belonging to the second review meeting are included as Annex II. In general, the information contained in this Report has been updated since March 31, 2001 to April 30, 2004. Those aspects that remain unchanged were not addressed in this third report. As a result of the detailed analysis of all the Articles, it can be stated that the country fulfils all the obligations imposed by the Nuclear Safety Convention. The questions and answers originated at the Second Review Meeting are included as Annex III

  8. Framework of nuclear safety and safety assessment

    International Nuclear Information System (INIS)

    Furuta, Kazuo

    2007-01-01

    Since enormous energy is released by nuclear chain reaction mainly as a form of radiation, a great potential risk accompanies utilization of nuclear energy. Safety has been continuously a critical issue therefore from the very beginning of its development. Though the framework of nuclear safety that has been established at an early developmental stage of nuclear engineering is still valid, more comprehensive approaches are required having experienced several events such as Three Mile Island, Chernobyl, and JCO. This article gives a brief view of the most basic principles how nuclear safety is achieved, which were introduced and sophisticated in nuclear engineering but applicable also to other engineering domains in general. (author)

  9. Safety for all: bringing together patient and employee safety.

    Science.gov (United States)

    Stevenson, R Lynn; Moss, Lesley; Newlands, Tracey; Archer, Jana

    2013-01-01

    The safety of patients and of employees in healthcare have historically been separately managed and regulated. Despite efforts to reduce injury rates for employees and adverse events for patients, healthcare organizations continue to see less-than-optimal outcomes in both domains. This article challenges readers to consider how the traditional siloed approach to patient and employee safety can lead to duplication of effort, confusion, missed opportunities and unintended consequences. The authors propose that only through integrating patient and employee safety activities and challenging the paradigms that juxtapose the two will healthcare organizations experience sustained and improved safety practice and outcomes. Copyright © 2013 Longwoods Publishing.

  10. Multimegawatt Space Reactor Safety

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1989-01-01

    The Multimegawatt (MMW) Space Reactor Project supports the Strategic Defense Initiative Office requirement to provide reliable, safe, cost-effective, electrical power in the MMW range. Specifically, power may be used for neutral particle beams, free electron lasers, electromagnetic launchers, and orbital transfer vehicles. This power plant technology may also apply to the electrical power required for other uses such as deep-space probes and planetary exploration. The Multimegawatt Space Reactor Project, the Thermionic Fuel Element Verification Program, and Centaurus Program all support the Multimegawatt Space Nuclear Power Program and form an important part of the US Department of Energy's (DOE's) space and defense power systems activities. A major objective of the MMW project is the development of a reference flight system design that provides the desired levels of public safety, health protection, and special nuclear material (SNM) protection when used during its designated missions. The safety requirements for the MMW project are a hierarchy of requirements that consist of safety requirements/regulations, a safety policy, general safety criteria, safety technical specifications, safety design specifications, and the system design. This paper describes the strategy and philosophy behind the development of the safety requirements imposed upon the MMW concept developers. The safety organization, safety policy, generic safety issues, general safety criteria, and the safety technical specifications are discussed

  11. Bathroom safety - adults

    Science.gov (United States)

    Older adult bathroom safety; Falls - bathroom safety ... You may need to have safety bars in your bathroom. These grab bars should be secured vertically or horizontally to the wall, not diagonally. DO NOT use ...

  12. Understanding safety climate in small automobile collision repair shops.

    Science.gov (United States)

    Parker, David L; Brosseau, Lisa M; Bejan, Anca; Skan, Maryellen; Xi, Min

    2014-01-01

    In the United States, approximately 236,000 people work in 37,600 auto collision-repair businesses. Workers in the collision-repair industry may be exposed to a wide range of physical and chemical hazards. This manuscript examines the relationship of safety climate as reported by collision repair shop workers and owners to: (1) an independent business safety assessment, and (2) employee self-reported work practices. The study was conducted in the Twin Cities metropolitan area. A total of 199 workers from 49 collision shops completed a survey of self-reported work practices and safety climate. Surveys were completed by an owner or manager in all but three shops. In general, self-reported work practices were poor. Workers' scores on safety climate were uniformly lower than those of owners. For workers, there was no correlation between how well the business scored on an independent audit of business safety practices and the safety climate measures they reported. For owners, however, there was a positive correlation between safety climate scores and the business safety assessment. For workers, safety rules and procedures were associated with improved work practices for those engaged in both painting-related and body technician-related activities. The enforcement of safety rules and procedures emerged as a strong factor positively affecting self-reported work practices. These findings identify a simple, cost effective path to reducing hazards in small workplaces. © 2013 Wiley Periodicals, Inc.

  13. IRSN safety research carried out for reviewing geological disposal safety case

    International Nuclear Information System (INIS)

    Serres, Christophe; Besnus, Francois; Gay, Didier

    2010-01-01

    The Radiation Protection and Nuclear Safety Institute develops a research programme on scientific issues related to geological disposal safety in order to supporting the technical assessment carried out in the framework of the regulatory review process. This research programme is organised along key safety questions that deal with various scientific disciplines as geology, hydrogeology, mechanics, geochemistry or physics and is implemented in national and international partnerships. It aims at providing IRSN with sufficient independent knowledge and scientific skills in order to be able to assess whether the scientific results gained by the waste management organisation and their integration for demonstrating the safety of the geological disposal are acceptable with regard to the safety issues to be dealt with in the Safety Case. (author)

  14. Road safety performance indicators : country profiles. SafetyNet, Building the European Road Safety Observatory, Workpackage 3, Deliverable 3.7b.

    NARCIS (Netherlands)

    Riguelle, F. Eksler, V. Holló, P. Morsink, P. Gent, A. van Gitelman, V. Assum, T. & Rackliff, L.

    2009-01-01

    The EC 6th Framework Integrated Project SafetyNet aims to accelerate the availability and use of harmonised road safety data in Europe. Having such data available throughout Europe would be tremendously beneficial for road safety, since it would enable the evaluation of road safety measures, the

  15. 76 FR 71345 - Patient Safety Organizations: Voluntary Relinquishment From Child Health Patient Safety...

    Science.gov (United States)

    2011-11-17

    ... Organizations: Voluntary Relinquishment From Child Health Patient Safety Organization, Inc. AGENCY: Agency for... notification of voluntary relinquishment from Child Health Patient Safety Organization, Inc. of its status as a Patient Safety Organization (PSO). The Patient Safety and Quality Improvement Act of 2005 (Patient Safety...

  16. 76 FR 79192 - Patient Safety Organizations: Voluntary Relinquishment From HSMS Patient Safety Organization

    Science.gov (United States)

    2011-12-21

    ... Organizations: Voluntary Relinquishment From HSMS Patient Safety Organization AGENCY: Agency for Healthcare... voluntary relinquishment from the HSMS Patient Safety Organization of its status as a Patient Safety Organization (PSO). The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act), Public Law 109...

  17. Transportation Safety Excellence in Operations Through Improved Transportation Safety Document

    International Nuclear Information System (INIS)

    Dr. Michael A. Lehto; MAL

    2007-01-01

    A recent accomplishment of the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Nuclear Safety analysis group was to obtain DOE-ID approval for the inter-facility transfer of greater-than-Hazard-Category-3 quantity radioactive/fissionable waste in Department of Transportation (DOT) Type A drums at MFC. This accomplishment supported excellence in operations through safety analysis by better integrating nuclear safety requirements with waste requirements in the Transportation Safety Document (TSD); reducing container and transport costs; and making facility operations more efficient. The MFC TSD governs and controls the inter-facility transfer of greater-than-Hazard-Category-3 radioactive and/or fissionable materials in non-DOT approved containers. Previously, the TSD did not include the capability to transfer payloads of greater-than-Hazard-Category-3 radioactive and/or fissionable materials using DOT Type A drums. Previous practice was to package the waste materials to less-than-Hazard-Category-3 quantities when loading DOT Type A drums for transfer out of facilities to reduce facility waste accumulations. This practice allowed operations to proceed, but resulted in drums being loaded to less than the Waste Isolation Pilot Plant (WIPP) waste acceptance criteria (WAC) waste limits, which was not cost effective or operations friendly. An improved and revised safety analysis was used to gain DOE-ID approval for adding this container configuration to the MFC TSD safety basis. In the process of obtaining approval of the revised safety basis, safety analysis practices were used effectively to directly support excellence in operations. Several factors contributed to the success of MFC's effort to obtain approval for the use of DOT Type A drums, including two practices that could help in future safety basis changes at other facilities. (1) The process of incorporating the DOT Type A drums into the TSD at MFC helped to better integrate nuclear safety

  18. Safety philosophy and safety technology of the Soviet RBMK reactors

    International Nuclear Information System (INIS)

    Zuend, H.; Jarvis, A.S.; Haennis, H.P.; Tikal, J.

    1986-01-01

    Safety requirements and control in USSR are outlined. Safety criteria and practical application in the case of the RBMK type reactor Chernobyl-4 are discussed. An overview of the Chernobyl-4 reactor accident including its causes is given. Measures to improve the safety of RBMK reactors are described

  19. Safety Teams: An Approach to Engage Students in Laboratory Safety

    Science.gov (United States)

    Alaimo, Peter J.; Langenhan, Joseph M.; Tanner, Martha J.; Ferrenberg, Scott M.

    2010-01-01

    We developed and implemented a yearlong safety program into our organic chemistry lab courses that aims to enhance student attitudes toward safety and to ensure students learn to recognize, demonstrate, and assess safe laboratory practices. This active, collaborative program involves the use of student "safety teams" and includes…

  20. Instrumentation and control systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for establishing safety standards for nuclear power plants. It supplements Safety Standards Series No. NS-R-1: Safety of Nuclear Power Plants: Design (the Requirements for Design), which establishes the design requirements for ensuring the safety of nuclear power plants. This Safety Guide describes how the requirements should be met for instrumentation and control (I and C) systems important to safety. This publication is a revision and combination of two previous Safety Guides: Safety Series Nos 50-SG-D3 and 50-SG-D8, which are superseded by this new Safety Guide. The revision takes account of developments in I and C systems important to safety since the earlier Safety Guides were published in 1980 and 1984, respectively. The objective of this Safety Guide is to provide guidance on the design of I and C systems important to safety in nuclear power plants, including all I and C components, from the sensors allocated to the mechanical systems to the actuated equipment, operator interfaces and auxiliary equipment. This Safety Guide deals mainly with design requirements for those I and C systems that are important to safety. It expands on paragraphs of Ref in the area of I and C systems important to safety. This publication is intended for use primarily by designers of nuclear power plants and also by owners and/or operators and regulators of nuclear power plants. This Safety Guide provides general guidance on I and C systems important to safety which is broadly applicable to many nuclear power plants. More detailed requirements and limitations for safe operation specific to a particular plant type should be established as part of the design process. The present guidance is focused on the design principles for systems important to safety that warrant particular attention, and should be applied to both the design of new I and C systems and the modernization of existing systems. Guidance is provided on how design

  1. Safety Review related to Commercial Grade Digital Equipment in Safety System

    International Nuclear Information System (INIS)

    Yu, Yeongjin; Park, Hyunshin; Yu, Yeongjin; Lee, Jaeheung

    2013-01-01

    The upgrades or replacement of I and C systems on safety system typically involve digital equipment developed in accordance with non-nuclear standards. However, the use of commercial grade digital equipment could include the vulnerability for software common-mode failure, electromagnetic interference and unanticipated problems. Although guidelines and standards for dedication methods of commercial grade digital equipment are provided, there are some difficulties to apply the methods to commercial grade digital equipment for safety system. This paper focuses on regulatory guidelines and relevant documents for commercial grade digital equipment and presents safety review experiences related to commercial grade digital equipment in safety system. This paper focuses on KINS regulatory guides and relevant documents for dedication of commercial grade digital equipment and presents safety review experiences related to commercial grade digital equipment in safety system. Dedication including critical characteristics is required to use the commercial grade digital equipment on safety system in accordance with KEPIC ENB 6370 and EPRI TR-106439. The dedication process should be controlled in a configuration management process. Appropriate methods, criteria and evaluation result should be provided to verify acceptability of the commercial digital equipment used for safety function

  2. A Public-Private Consortium Advances Cardiac Safety Evaluation: Achievements of the HESI Cardiac Safety Technical Committee

    Science.gov (United States)

    The evaluation of cardiovascular side-effects is a critical element in the development of all new drugs and chemicals. Cardiac safety issues have been and continue to be a major cause of attrition and withdrawal due to Adverse Drug Reactions (ADRs) in pharmaceutical drug developm...

  3. Safety; Avertissement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This annual report of the Senior Inspector for the Nuclear Safety, analyses the nuclear safety at EDF for the year 1999 and proposes twelve subjects of consideration to progress. Five technical documents are also provided and discussed concerning the nuclear power plants maintenance and safety (thermal fatigue, vibration fatigue, assisted control and instrumentation of the N4 bearing, 1300 MW reactors containment and time of life of power plants). (A.L.B.)

  4. Car Seat Safety

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Car Seat Safety KidsHealth / For Parents / Car Seat Safety ... certified child passenger safety technician.) Guidelines for Choosing Car Seats Choose a seat with a label that ...

  5. Food safety performance indicators to benchmark food safety output of food safety management systems

    NARCIS (Netherlands)

    Jacxsens, L.; Uyttendaele, M.; Devlieghere, F.; Rovira, J.; Oses Gomez, S.; Luning, P.A.

    2010-01-01

    There is a need to measure the food safety performance in the agri-food chain without performing actual microbiological analysis. A food safety performance diagnosis, based on seven indicators and corresponding assessment grids have been developed and validated in nine European food businesses.

  6. Arizona Traffic Safety Education, K-8. Passenger Safety, Grade 3.

    Science.gov (United States)

    Mesa Public Schools, AZ.

    One in a series designed to assist Arizona elementary and junior high school teachers in developing children's traffic safety skills, this curriculum guide contains four lessons and an appendix of school bus safety tips for use in grade 3. Introductory information provided for the teacher includes basic highway safety concepts, stressing…

  7. Bathroom safety - children

    Science.gov (United States)

    Well child - bathroom safety ... be put in charge of a younger child's safety. There should be an adult in the bathroom ... sure grandparents, friends, and other caretakers follow bathroom safety guidelines. Make sure your child's daycare also follows ...

  8. Safety-in-numbers

    DEFF Research Database (Denmark)

    Elvik, Rune; Bjørnskau, Torkel

    2017-01-01

    Highlights •26 studies of the safety-in-numbers effect are reviewed. •The existence of a safety-in-numbers effect is confirmed. •Results are consistent. •Causes of the safety-in-numbers effect are incompletely known....

  9. Packaging Evaluation Approach to Improve Cosmetic Product Safety

    OpenAIRE

    Benedetta Briasco; Priscilla Capra; Arianna Cecilia Cozzi; Barbara Mannucci; Paola Perugini

    2016-01-01

    In the Regulation 1223/2009, evaluation of packaging has become mandatory to assure cosmetic product safety. In fact, the safety assessment of a cosmetic product can be successfully carried out only if the hazard deriving from the use of the designed packaging for the specific product is correctly evaluated. Despite the law requirement, there is too little information about the chemical-physical characteristics of finished packaging and the possible interactions between formulation and packag...

  10. Nuclear Safety Review 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    The Nuclear Safety Review 2013 focuses on the dominant nuclear safety trends, issues and challenges in 2012. The Executive Overview provides crosscutting and worldwide nuclear safety information along with a summary of the major sections covered in this report. Sections A-E of this report cover improving radiation, transport and waste safety; strengthening safety in nuclear installations; improving regulatory infrastructure and effectiveness; enhancing emergency preparedness and response (EPR); and civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards (CSS), and activities relevant to the IAEA Safety Standards. The world nuclear community has made noteworthy progress in strengthening nuclear safety in 2012, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as ''the Action Plan''). For example, an overwhelming majority of Member States with operating nuclear power plants (NPPs) have undertaken and essentially completed comprehensive safety reassessments ('stress tests') with the aim of evaluating the design and safety aspects of plant robustness to protect against extreme events, including: defence in depth, safety margins, cliff edge effects, multiple failures, and the prolonged loss of support systems. As a result, many have introduced additional safety measures including mitigation of station blackout. Moreover, the IAEA's peer review services and safety standards have been reviewed and strengthened where needed. Capacity building programmes have been built or improved, and EPR programmes have also been reviewed and improved. Furthermore, in 2012, the IAEA continued to share lessons learned from the Fukushima Daiichi accident with the nuclear community including through three international experts' meetings (IEMs) on reactor and spent fuel safety, communication in the event of a nuclear or radiological emergency, and protection against extreme earthquakes and tsunamis.

  11. Nuclear Safety Review 2013

    International Nuclear Information System (INIS)

    2013-07-01

    The Nuclear Safety Review 2013 focuses on the dominant nuclear safety trends, issues and challenges in 2012. The Executive Overview provides crosscutting and worldwide nuclear safety information along with a summary of the major sections covered in this report. Sections A-E of this report cover improving radiation, transport and waste safety; strengthening safety in nuclear installations; improving regulatory infrastructure and effectiveness; enhancing emergency preparedness and response (EPR); and civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards (CSS), and activities relevant to the IAEA Safety Standards. The world nuclear community has made noteworthy progress in strengthening nuclear safety in 2012, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as ''the Action Plan''). For example, an overwhelming majority of Member States with operating nuclear power plants (NPPs) have undertaken and essentially completed comprehensive safety reassessments ('stress tests') with the aim of evaluating the design and safety aspects of plant robustness to protect against extreme events, including: defence in depth, safety margins, cliff edge effects, multiple failures, and the prolonged loss of support systems. As a result, many have introduced additional safety measures including mitigation of station blackout. Moreover, the IAEA's peer review services and safety standards have been reviewed and strengthened where needed. Capacity building programmes have been built or improved, and EPR programmes have also been reviewed and improved. Furthermore, in 2012, the IAEA continued to share lessons learned from the Fukushima Daiichi accident with the nuclear community including through three international experts' meetings (IEMs) on reactor and spent fuel safety, communication in the event of a nuclear or radiological emergency, and protection against extreme earthquakes and tsunamis

  12. Nuclear power safety

    International Nuclear Information System (INIS)

    1988-01-01

    The International Atomic Energy Agency, the organization concerned with worldwide nuclear safety has produced two international conventions to provide (1) prompt notification of nuclear accidents and (2) procedures to facilitate mutual assistance during an emergency. IAEA has also expanded operational safety review team missions, enhanced information exchange on operational safety events at nuclear power plants, and planned a review of its nuclear safety standards to ensure that they include the lessons learned from the Chernobyl nuclear plant accident. However, there appears to be a nearly unanimous belief among IAEA members that may attempt to impose international safety standards verified by an international inspection program would infringe on national sovereignty. Although several Western European countries have proposed establishing binding safety standards and inspections, no specific plant have been made; IAEA's member states are unlikely to adopt such standards and an inspection program

  13. Communication's Role in Safety Management and Performance for the Road Safety Practices

    OpenAIRE

    Salim Keffane (s)

    2014-01-01

    Communication among organizations could play an important role in increasing road safety. To get in-depth knowledge of its role, this study measured managers' and employees' perceptions of the communication's role on six safety management and performance criteria for road safety practices by conducting a survey using a questionnaire among 165 employees and 135 managers. Path analysis using AMOS-19 software shows that some of the safety management road safety practices have high correlation wi...

  14. Safety-I, Safety-II and Resilience Engineering.

    Science.gov (United States)

    Patterson, Mary; Deutsch, Ellen S

    2015-12-01

    In the quest to continually improve the health care delivered to patients, it is important to understand "what went wrong," also known as Safety-I, when there are undesired outcomes, but it is also important to understand, and optimize "what went right," also known as Safety-II. The difference between Safety-I and Safety-II are philosophical as well as pragmatic. Improving health care delivery involves understanding that health care delivery is a complex adaptive system; components of that system impact, and are impacted by, the actions of other components of the system. Challenges to optimal care include regular, irregular and unexampled threats. This article addresses the dangers of brittleness and miscalibration, as well as the value of adaptive capacity and margin. These qualities can, respectively, detract from or contribute to the emergence of organizational resilience. Resilience is characterized by the ability to monitor, react, anticipate, and learn. Finally, this article celebrates the importance of humans, who make use of system capabilities and proactively mitigate the effects of system limitations to contribute to successful outcomes. Copyright © 2015 Mosby, Inc. All rights reserved.

  15. ESTIMATION OF INDUSTRIAL WASTE SAFETY BY THE “CHEMICAL OXYGEN DEMAND” INDEX

    Directory of Open Access Journals (Sweden)

    A. S. Kayshev

    2015-01-01

    Full Text Available One of the indices of industrial waste safety including distillers grains is chemical oxygen demand (COD, and its value (53591÷64184 mg O/dm3 shows that it can be considered as unsustainable waste. This high value of COD is conditioned by the absence of toxins in distillers grains, and by concentration of biologically active substances after which isolation the distillers grains index lowers by 74%. This allows considering the distillers grains as environmentally safe. The results received evidence the necessity for consideration of COD index only as an index of oxidized substances, but not the criteria of waste pollution.

  16. Safety behavior: Job demands, job resources, and perceived management commitment to safety.

    Science.gov (United States)

    Hansez, Isabelle; Chmiel, Nik

    2010-07-01

    The job demands-resources model posits that job demands and resources influence outcomes through job strain and work engagement processes. We test whether the model can be extended to effort-related "routine" safety violations and "situational" safety violations provoked by the organization. In addition we test more directly the involvement of job strain than previous studies which have used burnout measures. Structural equation modeling provided, for the first time, evidence of predicted relationships between job strain and "routine" violations and work engagement with "routine" and "situational" violations, thereby supporting the extension of the job demands-resources model to safety behaviors. In addition our results showed that a key safety-specific construct 'perceived management commitment to safety' added to the explanatory power of the job demands-resources model. A predicted path from job resources to perceived management commitment to safety was highly significant, supporting the view that job resources can influence safety behavior through both general motivational involvement in work (work engagement) and through safety-specific processes.

  17. Safety assessment for facilities and activities. General safety requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF 6 ; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  18. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  19. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2010-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  20. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation.? read more The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are

  1. Development of safety related technology and infrastructure for safety assessment

    International Nuclear Information System (INIS)

    Venkat Raj, V.

    1997-01-01

    Development and optimum utilisation of any technology calls for the building up of the necessary infrastructure and backup facilities. This is particularly true for a developing country like India and more so for an advanced technology like nuclear technology. Right from the inception of its nuclear power programme, the Indian approach has been to develop adequate infrastructure in various areas such as design, construction, manufacture, installation, commissioning and safety assessment of nuclear plants. This paper deals with the development of safety related technology and the relevant infrastructure for safety assessment. A number of computer codes for safety assessment have been developed or adapted in the areas of thermal hydraulics, structural dynamics etc. These codes have undergone extensive validation through data generated in the experimental facilities set up in India as well as participation in international standard problem exercises. Side by side with the development of the tools for safety assessment, the development of safety related technology was also given equal importance. Many of the technologies required for the inspection, ageing assessment and estimation of the residual life of various components and equipment, particularly those having a bearing on safety, were developed. This paper highlights, briefly, the work carried out in some of the areas mentioned above. (author)

  2. Knowledge Management Methodologies for Improving Safety Culture

    International Nuclear Information System (INIS)

    Rusconi, C.

    2016-01-01

    Epistemic uncertainties could affect operator’s capability to prevent rare but potentially catastrophic accident sequences. Safety analysis methodologies are powerful but fragile tools if basic assumptions are not sound and exhaustive. In particular, expert judgments and technical data could be invalidated by organizational context change (e.g., maintenance planning, supply systems etc.) or by unexpected events. In 1986 accidents like Chernobyl, the explosion of Shuttle Challenger and, two years before, the toxic release at Bhopal chemical plant represented the point of no return with respect to the previous vision of safety and highlighted the undelayable need to change paradigm and face safety issues in complex systems not only from a technical point of view but to adopt a systemic vision able to include and integrate human and organizational aspects.

  3. Safety-barrier diagrams as a tool for modelling safety of hydrogen applications

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan; Markert, Frank

    2009-01-01

    Safety-barrier diagrams have proven to be a useful tool in documenting the safety measures taken to prevent incidents and accidents in process industry. Especially during the introduction of new hydrogen technologies or applications, as e.g. hydrogen refuelling stations, safety-barrier diagrams...... are considered a valuable supplement to other traditional risk analysis tools to support the communication with authorities and other stakeholders during the permitting process. Another advantage of safety-barrier diagrams is that they highlight the importance of functional and reliable safety barriers in any...... system and here is a direct focus on those barriers that need to be subject to safety management in terms of design and installation, operational use, inspection and monitoring, and maintenance. Safety-barrier diagrams support both quantitative and qualitative approaches. The paper will describe...

  4. A Study on Safety and Risk Assessment of Dangerous Cargo Operations in Oil/Chemical Tankers

    OpenAIRE

    Cenk ŞAKAR; Yusuf ZORBA

    2017-01-01

    The safety and risk assessment of dangerous cargo operations in oil and chemical tankers is a necessary process to prevent possible accidents during these operations. Fire and explosion are the major accidents encountered in tanker operations. In this study, a model was constructed through the Fuzzy Bayes Network Method for the probabilistic relationships between the causes of fire and explosion accidents that could occur during the tank cleaning process. The study is composed of two stages. ...

  5. International conference on the strengthening of nuclear safety in Eastern Europe. Keynote papers. Regulatory aspects of NPP safety, status of safety improvements, status of safety analysis report

    International Nuclear Information System (INIS)

    1999-06-01

    The Objective of the Conference was to assess the past decade of nuclear safety efforts in countries operating WWER and RBMK nuclear reactors and to address remaining safety issues which require further work. A particular focus of the Conference was on international co-operation and assistance and where such efforts should be focused in the future. All Eastern European countries that operate RBMK or WWER reactors participated in the Conference, and presented papers on three key areas of nuclear safety: Regulatory Aspects of Nuclear Power Plant Safety; Status of Safety Improvements; and Status of Safety Analysis Reports. In addition, representatives from 18 additional countries that provide financial and/or technical assistance and co-operation in the area of WWER and RBMK safety offered the most extensive commentary. Key international (IAEA, World Association of Nuclear Operators, the Nuclear Energy Agency, the G-24 NUSAC, the European Commission, and the EBRD) organizations that provide nuclear safety assistance for WWER and RBMK reactors also made presentations. There is no question that considerable progress on nuclear safety has been made in Eastern Europe. Special mention should be made of successful efforts to strengthen the independence and technical competence of the nuclear regulatory authorities. Efforts should now concentrate on improving the depth and scope of the technical abilities of the regulatory authorities. More attention by governments is needed to ensure that the regulatory authorities have the financial resources and enforcement authority to fully execute their missions. In respect to the operators of the nuclear power plants, they have demonstrated clear progress in operational safety improvements. Significant additional efforts are required to maintain and enhance an effective safety culture. Design safety improvement programmes are in place in all countries. Implementation of these programmes has varied and is particularly affected by

  6. Radiation Safety in Industrial Radiography. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  7. Radiation Safety in Industrial Radiography. Specific Safety Guide (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in … shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  8. Radiation Safety in Industrial Radiography. Specific Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  9. Safety goals and safety culture opening plenary. 1. WANO's Role in Maintaining and Improving Safety Culture

    International Nuclear Information System (INIS)

    Tsutsumi, Ryosuke

    2001-01-01

    Over the past several years, operators of the world's nuclear plants have compiled an increasingly impressive record of operational performance. Among the many factors that have led to this improvement are the unprecedented cooperation and information exchange among the world's nuclear operators. This paper presents the World Association of Nuclear Operators (WANO) operating experience program and WANO peer review program as examples of the kinds of interaction that are occurring around the globe to maintain and improve the nuclear safety culture. In addition, some unique features of WANO are discussed. WANO has established four programs to help its members communicate effectively with each other. These include the exchange of operating experiences, voluntary peer reviews, professional and technical development, and technical support and exchange. The operating experience program alerts members to events that have occurred at other NPPs and enables members to take appropriate actions to prevent event recurrence. When an event occurs at a plant, management at that plant analyses the event and completes an event report, which is then sent to the WANO regional center to which the plant belongs. After a regional center review and necessary iteration, the report is posted onto the WANO Web site to make it available to all WANO members. By the end of 2000, more than 1500 event reports had been posted. The WANO Peer Review Program is a unique opportunity for members to learn and share the best worldwide insights into safe and reliable nuclear operations. The peer review program has become one of WANO's most important activities containing all essential elements of WANO's mission. A WANO peer review team consists of 15 to 16 people with NPP experience; most team members are from countries outside the one that they are visiting. These teams of peers from plants around the world visit host plants upon request to identify strengths and areas for improvement, with a strong

  10. Laboratory safety and the WHO World Alliance for Patient Safety.

    Science.gov (United States)

    McCay, Layla; Lemer, Claire; Wu, Albert W

    2009-06-01

    Laboratory medicine has been a pioneer in the field of patient safety; indeed, the College of American Pathology first called attention to the issue in 1946. Delivering reliable laboratory results has long been considered a priority, as the data produced in laboratory medicine have the potential to critically influence individual patients' diagnosis and management. Until recently, most attention on laboratory safety has focused on the analytic stage of laboratory medicine. Addressing this stage has led to significant and impressive improvements in the areas over which laboratories have direct control. However, recent data demonstrate that pre- and post-analytical phases are at least as vulnerable to errors; to further improve patient safety in laboratory medicine, attention must now be focused on the pre- and post-analytic phases, and the concept of patient safety as a multi-disciplinary, multi-stage and multi-system concept better understood. The World Alliance for Patient Safety (WAPS) supports improvement of patient safety globally and provides a potential framework for considering the total testing process.

  11. Electrical safety guidelines

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  12. Protection of environment, health and safety using risk management

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, G [Ghafari Associates, Inc. 17101 Michegan Avenue Dearborn, MI 48126-2736 (United States); Kummler, R H [Department of Chemical engineering Wayne Stae University Detroit, MI 48202 (United States); louvar, J [Research Services Basf Corporation Wyandotte, MI 48192 (United States)

    1997-12-31

    Section 304 of the 1990 clean air amendments (CAAA) directed the US occupational safety and health administration (OSFA) to develop a chemical process safety standard to protect workers on-site from accidents involving hazardous substances. OSHA issued 29 CFR 1910.119, process safety management of Highly hazardous chemicals (PSM) in 1992. Section 112 r of the CAAA further mandated that a standard be developed to protect the environment from accidental releases of hazardous substances. The US environmental protection agency (EPA) proposed such a standard in 1993 (58 Fr 54190) and revised their proposal in 1995). The final rule for risk management and accidental release prevention is more comprehensive and extensive than OSHA`s PSM standard. In this paper we will discuss the concepts of both programs, the classes of substances that would trigger a facility`s need for compliance and review the regulations for risk management.

  13. Protection of environment, health and safety using risk management

    International Nuclear Information System (INIS)

    Abraham, G.; Kummler, R.H.; louvar, J.

    1996-01-01

    Section 304 of the 1990 clean air amendments (CAAA) directed the US occupational safety and health administration (OSFA) to develop a chemical process safety standard to protect workers on-site from accidents involving hazardous substances. OSHA issued 29 CFR 1910.119, process safety management of Highly hazardous chemicals (PSM) in 1992. Section 112 r of the CAAA further mandated that a standard be developed to protect the environment from accidental releases of hazardous substances. The US environmental protection agency (EPA) proposed such a standard in 1993 (58 Fr 54190) and revised their proposal in 1995). The final rule for risk management and accidental release prevention is more comprehensive and extensive than OSHA's PSM standard. In this paper we will discuss the concepts of both programs, the classes of substances that would trigger a facility's need for compliance and review the regulations for risk management

  14. A Methodology To Incorporate The Safety Culture Into Probabilistic Safety Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sunghyun; Kim, Namyeong; Jae, Moosung [Hanyang University, Seoul (Korea, Republic of)

    2015-10-15

    In order to incorporate organizational factors into PSA, a methodology needs to be developed. Using the AHP to weigh organizational factors as well as the SLIM to rate those factors, a methodology is introduced in this study. The safety issues related to nuclear safety culture have occurred increasingly. The quantification tool has to be developed in order to include the organizational factor into Probabilistic Safety Assessments. In this study, the state-of-the-art for the organizational evaluation methodologies has been surveyed. This study includes the research for organizational factors, maintenance process, maintenance process analysis models, a quantitative methodology using Analytic Hierarchy Process, Success Likelihood Index Methodology. The purpose of this study is to develop a methodology to incorporate the safety culture into PSA for obtaining more objective risk than before. The organizational factor considered in nuclear safety culture might affect the potential risk of human error and hardware-failure. The safety culture impact index to monitor the plant safety culture can be assessed by applying the developed methodology into a nuclear power plant.

  15. Improving safety in small enterprises through an integrated safety management intervention.

    Science.gov (United States)

    Kines, Pete; Andersen, Dorte; Andersen, Lars Peter; Nielsen, Kent; Pedersen, Louise

    2013-02-01

    This study tests the applicability of a participatory behavior-based injury prevention approach integrated with safety culture initiatives. Sixteen small metal industry enterprises (10-19 employees) are randomly assigned to receive the intervention or not. Safety coaching of owners/managers result in the identification of 48 safety tasks, 85% of which are solved at follow-up. Owner/manager led constructive dialogue meetings with workers result in the prioritization of 29 tasks, 79% of which are accomplished at follow-up. Intervention enterprises have significant increases on six of eight safety-perception-survey factors, while comparisons increase on only one factor. Both intervention and comparison enterprises demonstrate significant increases in their safety observation scores. Interview data validate and supplement these results, providing some evidence for behavior change and the initiation of safety culture change. Given that over 95% of enterprises in most countries have less than 20 employees, there is great potential for adapting this integrated approach to other industries. Copyright © 2012 National Safety Council and Elsevier Ltd. All rights reserved.

  16. A Methodology To Incorporate The Safety Culture Into Probabilistic Safety Assessments

    International Nuclear Information System (INIS)

    Park, Sunghyun; Kim, Namyeong; Jae, Moosung

    2015-01-01

    In order to incorporate organizational factors into PSA, a methodology needs to be developed. Using the AHP to weigh organizational factors as well as the SLIM to rate those factors, a methodology is introduced in this study. The safety issues related to nuclear safety culture have occurred increasingly. The quantification tool has to be developed in order to include the organizational factor into Probabilistic Safety Assessments. In this study, the state-of-the-art for the organizational evaluation methodologies has been surveyed. This study includes the research for organizational factors, maintenance process, maintenance process analysis models, a quantitative methodology using Analytic Hierarchy Process, Success Likelihood Index Methodology. The purpose of this study is to develop a methodology to incorporate the safety culture into PSA for obtaining more objective risk than before. The organizational factor considered in nuclear safety culture might affect the potential risk of human error and hardware-failure. The safety culture impact index to monitor the plant safety culture can be assessed by applying the developed methodology into a nuclear power plant

  17. Radiation safety

    International Nuclear Information System (INIS)

    Jain, Priyanka

    2014-01-01

    The use of radiation sources is a privilege; in order to retain the privilege, all persons who use sources of radiation must follow policies and procedures for their safe and legal use. The purpose of this poster is to describe the policies and procedures of the Radiation Protection Program. Specific conditions of radiation safety require the establishment of peer committees to evaluate proposals for the use of radionuclides, the appointment of a radiation safety officer, and the implementation of a radiation safety program. In addition, the University and Medical Centre administrations have determined that the use of radiation producing machines and non-ionizing radiation sources shall be included in the radiation safety program. These Radiation Safety policies are intended to ensure that such use is in accordance with applicable State and Federal regulations and accepted standards as directed towards the protection of health and the minimization of hazard to life or property. It is the policy that all activities involving ionizing radiation or radiation emitting devices be conducted so as to keep hazards from radiation to a minimum. Persons involved in these activities are expected to comply fully with the Canadian Nuclear Safety Act and all it. The risk of prosecution by the Department of Health and Community Services exists if compliance with all applicable legislation is not fulfilled. (author)

  18. Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems

    Science.gov (United States)

    Hill, Janice; Victor, Daniel

    2008-01-01

    When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard

  19. Supplement report to the Nuclear Criticality Safety Handbook of Japan

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Komuro, Yuichi; Nakajima, Ken

    1995-10-01

    Supplementing works to 'The Nuclear Criticality Safety Handbook' of Japan have been continued since 1988, the year the handbook edited by the Science and Technology Agency first appeared. This report publishes the fruits obtained in the supplementing works. Substantial improvements are made in the chapters of 'Modelling the evaluation object' and 'Methodology for analytical safety assessment', and newly added are chapters of 'Criticality safety of chemical processes', 'Criticality accidents and their evaluation methods' and 'Basic principles on design and installation of criticality alarm system'. (author)

  20. Safety Culture Monitoring: How to Assess Safety Culture in Real Time?

    International Nuclear Information System (INIS)

    Zronek, B.; Maryska, J.; Treslova, L.

    2016-01-01

    Do you know what is current level of safety culture in your company? Are you able to follow trend changes? Do you know what your recent issues are? Since safety culture is understood as vital part of nuclear industry daily life, it is crucial to know what the current level is. It is common to perform safety culture survey or ad hoc assessment. This contribution shares Temelin NPP, CEZ approach how to assess safety culture level permanently. Using behavioral related outputs of gap solving system, observation program, dedicated surveys, regulatory assessment, etc., allows creating real time safety culture monitoring without the need to perform any other activities. (author)

  1. Environment, Health and Safety (EH&S): Division Liaisons

    Science.gov (United States)

    . Israel Tadesse Chemical Sciences x4043 Cell: 610-0856 Maram Kassis Electronic waste (E-waste) pickup or Source Representative 2231, 2014 Scott E. Taylor Chemical Safety Subcommittee Chairperson 4103 Hendrik Representative 7457 Stephen M. Franaszek Genomics Representative 925-296-5807 Vera Potapenko Marcia Ocon Leimer

  2. ITER safety challenges and opportunities

    International Nuclear Information System (INIS)

    Piet, S.J.

    1991-01-01

    Results of the Conceptual Design Activity (CDA) for the International Thermonuclear Experimental Reactor (ITER) suggest challenges and opportunities. ''ITER is capable of meeting anticipated regulatory dose limits,'' but proof is difficult because of large radioactive inventories needing stringent radioactivity confinement. We need much research and development (R ampersand D) and design analysis to establish that ITER meets regulatory requirements. We have a further opportunity to do more to prove more of fusion's potential safety and environmental advantages and maximize the amount of ITER technology on the path toward fusion power plants. To fulfill these tasks, we need to overcome three programmatic challenges and three technical challenges. The first programmatic challenge is to fund a comprehensive safety and environmental ITER R ampersand D plan. Second is to strengthen safety and environment work and personnel in the international team. Third is to establish an external consultant group to advise the ITER Joint Team on designing ITER to meet safety requirements for siting by any of the Parties. The first of the three key technical challenges is plasma engineering -- burn control, plasma shutdown, disruptions, tritium burn fraction, and steady state operation. The second is the divertor, including tritium inventory, activation hazards, chemical reactions, and coolant disturbances. The third technical challenge is optimization of design requirements considering safety risk, technical risk, and cost. Some design requirements are now too strict; some are too lax. Fuel cycle design requirements are presently too strict, mandating inappropriate T separation from H and D. Heat sink requirements are presently too lax; they should be strengthened to ensure that maximum loss of coolant accident temperatures drop

  3. Highway Safety Program Manual: Volume 8: Alcohol in Relation to Highway Safety.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 8 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) concentrates on alcohol in relation to highway safety. The purpose and objectives of the alcohol program are outlined. Federal authority in the area of highway safety and general policies regarding…

  4. Knowledge and practices of pharmaceutical laboratory workers on laboratory safety

    Directory of Open Access Journals (Sweden)

    Esra Emerce

    2017-09-01

    Full Text Available Laboratories are classified as very hazardous workplaces. Objective: The aim of this descriptive study was to determine the knowledge and practice of laboratory safety by analysts and technicians in the laboratories of the Turkish Medicine and Medical Devices Agency. Methods:  85.0% (n=93 of the workers (n=109 was reached. A pre-tested, laboratory safety oriented, self-administered questionnaire was completed under observation. Results: Participants were mostly female (66,7%, had 12.8±8.2 years of laboratory experience and worked 24.6±10.3 hours per week. 53.8% of the employees generally worked with flammable and explosive substances, 29.0% with acute toxic or carcinogenic chemicals and 30.1% with physical dangers. Of all surveyed, 14.0% had never received formal training on laboratory safety. The proportion of ‘always use’ of laboratory coats, gloves, and goggles were 84.9%, 66.7%, and 6.5% respectively. 11.9% of the participants had at least one serious injury throughout their working lives and 24.7% had at least one small injury within the last 6 months. Among these injuries, incisions, bites and tears requiring no stiches (21.0% and the inhalation of chemical vapors (16.1% took first place. The mean value for the number of correct responses to questions on basic safety knowledge was 65.4±26.5, out of a possible 100. Conclusion: Overall, the participants have failed in some safety practices and have been eager to get regular education on laboratory safety.  From this point onwards, it would be appropriate for the employers to organize periodic trainings on laboratory safety.Keywords: Health personnel, laboratory personnel, occupational health, occupational safety, pharmacy

  5. 1978 annual report of the safety department

    International Nuclear Information System (INIS)

    Kiefer, H.; Koelzer, W.

    1979-04-01

    The Safety Officer and the Security Officer, respectively, are responsible for radiation protection and technical safety, both conventional and nuclear, for the physical protection as well as the security of nuclear materials and radioactive substances within the Kernforschungszentrum Karlsruhe GmbH. (KfK). To fulfill these functions they rely on the assitance of the Safety Department. The duties of this Department cover tasks relative to radiation protection, safety and security on behalf of the institutes and departments of KfK and environmental monitoring for the whole Karlsruhe Nuclear Research Center as well as research and development work, mainly performed under the Nuclear Safety Project and the Nuclear Safeguards Project. The centers of interest of r and d activities are: investigation of the atmospheric diffusion of nuclear pollutants on the micro- and meso-scales, evaluation of the radiological consequences of accidents in reactors under probabilistic aspects, studies of the physical and chemical behavior of radionuclides with particularly high biological effectiveness in the environment, implementation of nuclear fuel safequarding systems, improvements in radiation protection measurement technology. This report gives details of the different duties, indicates the results of 1978 routine tasks, and reports about new results of investigations and developments of the working groups of the Department. (orig.) [de

  6. Annual Report 1979 of the Safety Department

    International Nuclear Information System (INIS)

    Kiefer, H.; Koelzer, W.; Koenig, L.A.

    1980-04-01

    The Safety Officer and the Security Officer, respectively, are responsible for radiation protection and technical safety, both conventional and nuclear, for the physical protection as well as the security of nuclear materials and radioactive substances within the Kernforschungszentrum Karlsruhe GmbH. (KfK). To fulfill these functions they rely on the assistance of the Safety Department. The duties of this Department cover tasks relative to radiation protection, safety and security on behalf of the institutes and departments of KfK and environmental monitoring for the whole Karlsruhe Nuclear Research Center as well as research and development work, mainly performed under the Nuclear Safety Project and the Nuclear Safeguards Project. The centers of interest of r and d activities are: investigation of the atmospheric diffusion of nuclear pollutants on the micro- and meso-scales, evaluation of the radiological consequences of accidents in reactors under probabilistic aspects, studies of the physical and chemical behavior of radionuclides with particularly high biological effectiveness in the environment, implemantation of nuclear fuel safeguarding systems, improvements in radiation protection measurement technology. This report gives details of the different duties, indicates the results of 1979 routine tasks, and reports about results of investigations and developments of the working groups of the Department. (orig.) [de

  7. Resolving conflicting safety cultures

    International Nuclear Information System (INIS)

    Slider, J.E.; Patterson, M.

    1993-01-01

    Several nuclear power plant sites have been wounded in the crossfire between two distinct corporate cultures. The traditional utility culture lies on one side and that of the nuclear navy on the other. The two corporate cultures lead to different perceptions of open-quotes safety culture.close quotes This clash of safety cultures obscures a very important point about nuclear plant operations: Safety depends on organizational learning. Organizational learning provides the foundation for a perception of safety culture that transcends the conflict between utility and nuclear navy cultures. Corporate culture may be defined as the knowledge, attitudes, and beliefs shared by employees of a given company. Safety culture is the part of corporate culture concerning shared attitudes and beliefs affecting individual or public safety. If the safety culture promotes behaviors that lead to greater safety, employees will tend to open-quotes do the right thingclose quotes even when circumstances and formal guidance alone do not ensure that actions will be correct. Safety culture has become particularly important to nuclear plant owners and regulators as they have sought to establish and maintain a high level of safety in today's plants

  8. Safety applications of computer based systems for the process industry

    International Nuclear Information System (INIS)

    Bologna, Sandro; Picciolo, Giovanni; Taylor, Robert

    1997-11-01

    Computer based systems, generally referred to as Programmable Electronic Systems (PESs) are being increasingly used in the process industry, also to perform safety functions. The process industry as they intend in this document includes, but is not limited to, chemicals, oil and gas production, oil refining and power generation. Starting in the early 1970's the wide application possibilities and the related development problems of such systems were recognized. Since then, many guidelines and standards have been developed to direct and regulate the application of computers to perform safety functions (EWICS-TC7, IEC, ISA). Lessons learnt in the last twenty years can be summarised as follows: safety is a cultural issue; safety is a management issue; safety is an engineering issue. In particular, safety systems can only be properly addressed in the overall system context. No single method can be considered sufficient to achieve the safety features required in many safety applications. Good safety engineering approach has to address not only hardware and software problems in isolation but also their interfaces and man-machine interface problems. Finally, the economic and industrial aspects of the safety applications and development of PESs in process plants are evidenced throughout all the Report. Scope of the Report is to contribute to the development of an adequate awareness of these problems and to illustrate technical solutions applied or being developed

  9. Nuclear safety regulations

    International Nuclear Information System (INIS)

    1998-01-01

    The Departmental Rules and The Safety Guides were issued by the NNSA in 1998. The NNSA performed the activities of propagation and implementation of nuclear safety regulations at QTNPP in order to improve the nuclear safety culture of operating organization and construct and contract organizations

  10. Safety culture

    International Nuclear Information System (INIS)

    1991-01-01

    The response to a previous publication by the International Nuclear Safety Advisory Group (INSAG), indicated a broad international interest in expansion of the concept of Safety Culture, in such a way that its effectiveness in particular cases may be judged. This report responds to that need. In its manifestation, Safety Culture has two major components: the framework determined by organizational policy and by managerial action, and the response of individuals in working within and benefiting by the framework. 1 fig

  11. Nuclear safety in France

    International Nuclear Information System (INIS)

    Tanguy, P.

    1979-01-01

    A brief description of the main safety aspects of the French nuclear energy programme and of the general safety organization is followed by a discussion on the current thinking in CEA on some important safety issues. As far as methodology is concerned, the use of probabilistic analysis in the licensing procedure is being extensively developed. Reactor safety research is aimed at a better knowledge of the safety margins involved in the present designs of both PWRs and LMFBRs. A greater emphasis should be put during the next years in the safety of the nuclear fuel cycle installations, including waste disposals. Finally, it is suggested that further international cooperation in the field of nuclear safety should be developed in order to insure for all countries the very high safety level which has been achieved up till now. (author)

  12. Safety aspects in a chemical exchange process plant

    International Nuclear Information System (INIS)

    Sharma, B.K.

    2016-01-01

    Based on a chemical exchange process involving solid liquid exchange, studies have been undertaken to enrich 10 B isotope of boron using ion exchange chromatography in which a strong base anion exchange resin in hydroxyl form is equilibrated with boric acid solution in presence of mannitol (a complexing reagent to boric acid) to enhance the acidity and hence the isotopic exchange separation factor for 10 B = 11 B exchange reaction. Using the electrochemical techniques such as pH-metry and conductimetry, the choice of a suitable complexing reagent was made amongst ethylene glycol, propylene glycol, dextrose and mannitol for cost-effective separation of isotopes of boron and monitoring of band movements using these electrochemical techniques. The optimum conditions for the regeneration of strong base anion exchange resins of type-I and type-II were determined for cost-effective separation of isotopes of boron by ion exchange chromatography. The possibility of using unspent alkali content of the effluent was also exploited. Removal of carbonate impurity from Rayon grade caustic lye (used as regenerant after dilution) and recycling of Ba(OH) 2 was studied to avoid waste disposal problems. This process is an industrially viable process. The various safety aspects followed during operation of this plant are described in this paper. (author)

  13. Vaccine Safety

    Science.gov (United States)

    ... During Pregnancy Frequently Asked Questions about Vaccine Recalls Historical Vaccine Safety Concerns FAQs about GBS and Menactra ... CISA Resources for Healthcare Professionals Evaluation Current Studies Historical Background 2001-12 Publications Technical Reports Vaccine Safety ...

  14. Integration of radiation protection in safety management: sharing best practices between radiation protection and other safety areas

    International Nuclear Information System (INIS)

    Kockerols, Pierre; Fessler, Andreas

    2008-01-01

    Full text: The Institute for Reference Materials and Measurements (IRMM) located in Geel is one of the seven institutes of the Joint Research Centre of the European Commission (EC, DG JRC). The institute was founded in 1960 as a nuclear research centre, but has gradually shifted its activities to also include 'non-nuclear' domains, mainly in the areas of food safety and environmental surveillance. As the activities on the IRMM site are currently quite diversified, they necessitate the operation of nuclear controlled areas, accelerators, as well as bio safety restricted areas and chemical laboratories. Therefore, the care for occupational health and safety and for environmental protection has to take into consideration various types of hazards and threats. Recently an integrated management system according to ISO-9001, ISO-14001 and OHSAS-18001 was implemented. The integrated system combines 'vertically' quality, occupational health and safety and environmental issues and covers 'horizontally' the nuclear, biological and chemical fields. The paper outlines how the radiation protection can be included in an overall health, safety and environmental management system. It will give various practical examples where synergies can be applied: 1-) the overall policy; 2-) The assessment and ranking of all risks and the identification, in a combined way, of the appropriate prevention measures; 3-) The planning and review of related actions; 4-) The monitoring, auditing and registration of anomalies and incidents and the definition of corrective actions; 5-) The training of personnel based on lessons learned from past experiences; 6-) The organisation of an internal emergency plan dealing with nuclear and non-nuclear hazards. Based on these examples, the benefits of having an integrated approach are commented. In addition, the paper will illustrate how the recent ICRP fundamental recommendations and more particularly some of the principles of radiation protection such as

  15. Patient safety--worker safety: building a culture of safety to improve healthcare worker and patient well-being.

    Science.gov (United States)

    Yassi, Annalee; Hancock, Tina

    2005-01-01

    Patient safety within the Canadian healthcare system is currently a high national priority, which merits a comprehensive understanding of the underlying causes of adverse events. Not least among these is worker health and safety, which is linked to patient outcomes. Healthcare workers have a high risk of workplace injuries and more mental health problems than most other occupational groups. Many healthcare professionals feel fatigued, stressed, in pain, or at risk of illness or injury-factors they feel impede their ability to provide consistent quality care. With this background, the Occupational Health and Safety Agency for Healthcare (OHSAH) in British Columbia, jointly governed by healthcare unions and healthcare employers, launched several major initiatives to improve the healthcare workplace. These included the promotion of safe patient handling, adaptive clothing, scheduled toileting, stroke management training, measures to improve management of aggressive behaviour and, of course, infection control-all intended to improve the safety of workers, but also to improve patient safety and quality of care. Other projects also explicitly promoting physical and mental health at work, as well as patient safety are also underway. Results of the projects are at various stages of completion, but ample evidence has already been obtained to indicate that looking after the well-being of healthcare workers results in safer and better quality patient care. While more research is needed, our work to date suggests that a comprehensive systems approach to promoting a climate of safety, which includes taking into account workplace organizational factors and physical and psychological hazards for workers, is the best way to improve the healthcare workplace and thereby patient safety.

  16. Nuclear power safety

    International Nuclear Information System (INIS)

    1991-11-01

    This paper reports that since the Chernobyl nuclear plant accident in 1986, over 70 of the International Atomic Energy Agency's 112 member states have adopted two conventions to enhance international cooperation by providing timely notification of an accident and emergency assistance. The Agency and other international organizations also developed programs to improve nuclear power plant safety and minimize dangers from radioactive contamination. Despite meaningful improvements, some of the measures have limitations, and serious nuclear safety problems remain in the design and operation of the older, Soviet-designed nuclear power plants. The Agency's ability to select reactors under its operational safety review program is limited. Also, information on the extent and seriousness of safety-related incidents at reactors in foreign countries is not publicly available. No agreements exist among nuclear power countries to make compliance with an nuclear safety standards or principles mandatory. Currently, adherence to international safety standards or principles is voluntary and nonbinding. Some states support the concept of mandatory compliance, but others, including the United States, believe that mandatory compliance infringes on national sovereignty and that the responsibility for nuclear reactor safety remains with each nation

  17. Taking ownership of safety. What are the active ingredients of safety coaching and how do they impact safety outcomes in critical offshore working environments?

    Science.gov (United States)

    Krauesslar, Victoria; Avery, Rachel E; Passmore, Jonathan

    2015-01-01

    Safety coaching interventions have become a common feature in the safety critical offshore working environments of the North Sea. Whilst the beneficial impact of coaching as an organizational tool has been evidenced, there remains a question specifically over the use of safety coaching and its impact on behavioural change and producing safe working practices. A series of 24 semi-structured interviews were conducted with three groups of experts in the offshore industry: safety coaches, offshore managers and HSE directors. Using a thematic analysis approach, several significant themes were identified across the three expert groups including connecting with and creating safety ownership in the individual, personal significance and humanisation, ingraining safety and assessing and measuring a safety coach's competence. Results suggest clear utility of safety coaching when applied by safety coaches with appropriate coach training and understanding of safety issues in an offshore environment. The current work has found that the use of safety coaching in the safety critical offshore oil and gas industry is a powerful tool in managing and promoting a culture of safety and care.

  18. Safety Aspects of Sustainable Storage Dams and Earthquake Safety of Existing Dams

    Directory of Open Access Journals (Sweden)

    Martin Wieland

    2016-09-01

    Full Text Available The basic element in any sustainable dam project is safety, which includes the following safety elements: ① structural safety, ② dam safety monitoring, ③ operational safety and maintenance, and ④ emergency planning. Long-term safety primarily includes the analysis of all hazards affecting the project; that is, hazards from the natural environment, hazards from the man-made environment, and project-specific and site-specific hazards. The special features of the seismic safety of dams are discussed. Large dams were the first structures to be systematically designed against earthquakes, starting in the 1930s. However, the seismic safety of older dams is unknown, as most were designed using seismic design criteria and methods of dynamic analysis that are considered obsolete today. Therefore, we need to reevaluate the seismic safety of existing dams based on current state-of-the-art practices and rehabilitate deficient dams. For large dams, a site-specific seismic hazard analysis is usually recommended. Today, large dams and the safety-relevant elements used for controlling the reservoir after a strong earthquake must be able to withstand the ground motions of a safety evaluation earthquake. The ground motion parameters can be determined either by a probabilistic or a deterministic seismic hazard analysis. During strong earthquakes, inelastic deformations may occur in a dam; therefore, the seismic analysis has to be carried out in the time domain. Furthermore, earthquakes create multiple seismic hazards for dams such as ground shaking, fault movements, mass movements, and others. The ground motions needed by the dam engineer are not real earthquake ground motions but models of the ground motion, which allow the safe design of dams. It must also be kept in mind that dam safety evaluations must be carried out several times during the long life of large storage dams. These features are discussed in this paper.

  19. Safety assessment in plant layout design using indexing approach: Implementing inherent safety perspective

    International Nuclear Information System (INIS)

    Tugnoli, Alessandro; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio

    2008-01-01

    Layout planning plays a key role in the inherent safety performance of process plants since this design feature controls the possibility of accidental chain-events and the magnitude of possible consequences. A lack of suitable methods to promote the effective implementation of inherent safety in layout design calls for the development of new techniques and methods. In the present paper, a safety assessment approach suitable for layout design in the critical early phase is proposed. The concept of inherent safety is implemented within this safety assessment; the approach is based on an integrated assessment of inherent safety guideword applicability within the constraints typically present in layout design. Application of these guidewords is evaluated along with unit hazards and control devices to quantitatively map the safety performance of different layout options. Moreover, the economic aspects related to safety and inherent safety are evaluated by the method. Specific sub-indices are developed within the integrated safety assessment system to analyze and quantify the hazard related to domino effects. The proposed approach is quick in application, auditable and shares a common framework applicable in other phases of the design lifecycle (e.g. process design). The present work is divided in two parts: Part 1 (current paper) presents the application of inherent safety guidelines in layout design and the index method for safety assessment; Part 2 (accompanying paper) describes the domino hazard sub-index and demonstrates the proposed approach with a case study, thus evidencing the introduction of inherent safety features in layout design

  20. Value of preapproval safety data in predicting postapproval hepatic safety and assessing the legitimacy of class warning.

    Science.gov (United States)

    Lin, Yeong-Liang; Wu, Ya-Chi; Gau, Churn-Shiouh; Lin, Min-Shung

    2012-02-01

    The objective of this study was to systematically evaluate whether preapproval safety data for nonhepatotoxic drugs and hepatotoxic drugs can be compared to improve preapproval prediction of postapproval hepatic safety and to assess the legitimacy of applying class warnings. Drugs within a therapeutic class that included at least one drug that had been withdrawn from the market because of liver toxicity or had a warning of potential liver toxicity issued by major regulatory agencies, and at least one drug free from such regulatory action, were identified and divided into two groups: drugs with and drugs without regulatory action. Preapproval clinical data [including the elevation rates of alanine aminotransferse (ALT) and withdrawal due to liver toxicity, the number of patients with combined elevation of ALT and bilirubin, and liver failure] and nonclinical data (including chemical structures, metabolic pathways, and other significant findings in animal studies) were compared between the two groups. Six drug classes were assessed in this study: thiazolidinediones, cyclooxygenase-2 inhibitors, fluoroquinolones, catechol-O-methyltransferase (COMT) inhibitors, leukotriene receptor inhibitors, and endothelin receptor antagonists. In two classes (COMT inhibitors and endothelin receptor antagonists), drugs with regulatory action had significantly higher rates of ALT elevation of more than threefold and greater numbers of patients with combined elevation of ALT and bilirubin than drugs without regulatory action. Drugs with regulatory action also had chemical structures or metabolic pathways associated with the toxicity. The legitimacy of class warnings was refuted in all six classes of drugs. Preapproval safety data may help predict postapproval hepatic safety and can be used to assess the legitimacy of applying class warnings.

  1. General safety considerations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This document presents the full filling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 4 of the document contains some details about the priority to safety, financial and human resources, human factors, quality assurance, safety assessment and verification, radiation protection and emergency preparedness.

  2. General safety considerations

    International Nuclear Information System (INIS)

    2001-01-01

    This document presents the full filling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 4 of the document contains some details about the priority to safety, financial and human resources, human factors, quality assurance, safety assessment and verification, radiation protection and emergency preparedness

  3. General safety considerations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    This document presents the full filling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 4 of the document contains some details about the priority to safety, financial and human resources, human factors, quality assurance, safety assessment and verification, radiation protection and emergency preparedness.

  4. General safety considerations

    International Nuclear Information System (INIS)

    1998-01-01

    This document presents the full filling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 4 of the document contains some details about the priority to safety, financial and human resources, human factors, quality assurance, safety assessment and verification, radiation protection and emergency preparedness

  5. Safety aspects in rare earths recovery

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2014-01-01

    Recovery of rare earths involves mining of beach sands, mineral separation to obtain monazite and its chemical processing to obtain rare earth composites. The composites are then subjected to further chemical treatment to obtain individual rare earths. Although the separated out rare earths are not radioactive, the process for recovery of rare earths involve both radiological as well as conventional hazards. This paper highlights the safety aspects in the mining, mineral separation and chemical processing of monazite to obtain rare earths

  6. International conference on the strengthening of nuclear safety in Eastern Europe. Keynote papers. Regulatory aspects of NPP safety, status of safety improvements, status of safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The Objective of the Conference was to assess the past decade of nuclear safety efforts in countries operating WWER and RBMK nuclear reactors and to address remaining safety issues which require further work. A particular focus of the Conference was on international co-operation and assistance and where such efforts should be focused in the future. All Eastern European countries that operate RBMK or WWER reactors participated in the Conference, and presented papers on three key areas of nuclear safety: Regulatory Aspects of Nuclear Power Plant Safety; Status of Safety Improvements; and Status of Safety Analysis Reports. In addition, representatives from 18 additional countries that provide financial and/or technical assistance and co-operation in the area of WWER and RBMK safety offered the most extensive commentary. Key international (IAEA, World Association of Nuclear Operators, the Nuclear Energy Agency, the G-24 NUSAC, the European Commission, and the EBRD) organizations that provide nuclear safety assistance for WWER and RBMK reactors also made presentations. There is no question that considerable progress on nuclear safety has been made in Eastern Europe. Special mention should be made of successful efforts to strengthen the independence and technical competence of the nuclear regulatory authorities. Efforts should now concentrate on improving the depth and scope of the technical abilities of the regulatory authorities. More attention by governments is needed to ensure that the regulatory authorities have the financial resources and enforcement authority to fully execute their missions. In respect to the operators of the nuclear power plants, they have demonstrated clear progress in operational safety improvements. Significant additional efforts are required to maintain and enhance an effective safety culture. Design safety improvement programmes are in place in all countries. Implementation of these programmes has varied and is particularly affected by

  7. Reactor safety; Description and evaluation of safety activities in Nordic countries

    International Nuclear Information System (INIS)

    Wahlstroem, B.; Gunsell, L.

    1998-03-01

    The report gives a description of safety activities in the nuclear power industry. The study has been carried out as a part of the four year programme in Nordic Safety Research (NKS) which was completed in 1997. The objective of the NKS/RAK-1.1 project 'A survey and an evaluation of safety activities in nuclear power' was to make a broad description of various activities important for safety and to make an assessment of their efficiency. A special consideration was placed on a comparison of practices in Finland and Sweden, and between their nuclear utilities. The study has been divided into two parts, one theoretical part in which a model of the relationships between various activities important for safety has been constructed and one practical part where a total of 62 persons have been interviewed at the authorities, the nuclear utilities and one reactor vendor. To restrict the amount of work two activities, safety analysis and experience feedback, were selected. A few cases connected to incidents at nuclear power plants were discussed in more detail. The report has been structured around a simple model of nuclear safety consisting of the concepts of goals, means and outcomes. This model illustrates the importance of goal formulation, systematic planning and feedback of operational experience as major components in nuclear safety. In assessing organisation and management at authorities and the power utilities there is a clear trend of decentralisation and delegation of authority. The general impression from the study is that the safety activities in Finland and Sweden are efficient and well targeted. The experience from the methodology is favourable and the comparison of practices gives a good ground for a discussion of contents and targeting of safety activities. (EG) activities. (EG)

  8. Improved safety at CERN

    CERN Multimedia

    2006-01-01

    As announced in Weekly Bulletin No. 43/2006, a new approach to the implementation of Safety at CERN has been decided, which required taking some managerial decisions. The guidelines of the new approach are described in the document 'New approach to Safety implementation at CERN', which also summarizes the main managerial decisions I have taken to strengthen compliance with the CERN Safety policy and Rules. To this end I have also reviewed the mandates of the Safety Commission and the Safety Policy Committee (SAPOCO). Some details of the document 'Safety Policy at CERN' (also known as SAPOCO42) have been modified accordingly; its essential principles, unchanged, remain the basis for the safety policy of the Organisation. I would also like to inform you that I have appointed Dr M. Bona as the new Head of the Safety Commission until 31.12.2008, and that I will proceed soon to the appointment of the members of the new Safety Policy Committee. All members of the personnel are deemed to have taken note of the d...

  9. Safety studies on Korean fusion DEMO plant using integrated safety assessment methodology

    International Nuclear Information System (INIS)

    Oh, Kyemin; Kang, Myoung-suk; Heo, Gyunyoung; Kim, Hyoung-chan

    2014-01-01

    Highlights: •The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant. •The concepts of integrated safety assessment methodology (ISAM) that can be applied in addressing regulatory requirements and recognizing safety issues for K-DEMO were emphasized. •Phenomena identification and ranking table (PIRT) was proposed. It can recognize vulnerabilities of systems and identify the gaps in technical areas requiring additional researches. •This work is expected to contribute on the conceptual design of safety features for K-DEMO to design engineers and the guidance for regulatory requirements to licensers. -- Abstract: The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant (K-DEMO) as a part of R and D program through the National Fusion Research Institute of Korea. Even though nuclear regulation and licensing framework is well setup due to the operating and design experience of Pressurized Water Reactors (PWRs) since 1970s, the regulatory authority of South Korea has concerns on the challenge of facing new nuclear facilities including K-DEMO due to the differences in systems, materials, and inherent safety feature from conventional PWRs. Even though the follow-up of the ITER license process facilitates to deal with significant safety issues of fusion facilities, a licensee as well as a licenser should identify the gaps between ITER and DEMO in terms of safety issues. First we reviewed the methods of conducting safety analysis for unprecedented nuclear facilities such as Generation IV reactors, particularly very high temperature reactor (VHTR), which is called as integrated safety assessment methodology (ISAM). Second, the analysis for the conceptual design of K-DEMO on the basis of ISAM was conducted. The ISAM consists of five analytical tools to develop the safety requirements from licensee

  10. Safety studies on Korean fusion DEMO plant using integrated safety assessment methodology

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Kyemin; Kang, Myoung-suk [Kyung Hee University, Youngin-si, Gyeonggi-do 446-701 (Korea, Republic of); Heo, Gyunyoung, E-mail: gheo@khu.ac.kr [Kyung Hee University, Youngin-si, Gyeonggi-do 446-701 (Korea, Republic of); Kim, Hyoung-chan [National Fusion Research Institute, Daejeon-si 305-333 (Korea, Republic of)

    2014-10-15

    Highlights: •The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant. •The concepts of integrated safety assessment methodology (ISAM) that can be applied in addressing regulatory requirements and recognizing safety issues for K-DEMO were emphasized. •Phenomena identification and ranking table (PIRT) was proposed. It can recognize vulnerabilities of systems and identify the gaps in technical areas requiring additional researches. •This work is expected to contribute on the conceptual design of safety features for K-DEMO to design engineers and the guidance for regulatory requirements to licensers. -- Abstract: The purpose of this paper is to suggest methodology that can investigate safety issues and provides a case study for Korean fusion DEMO plant (K-DEMO) as a part of R and D program through the National Fusion Research Institute of Korea. Even though nuclear regulation and licensing framework is well setup due to the operating and design experience of Pressurized Water Reactors (PWRs) since 1970s, the regulatory authority of South Korea has concerns on the challenge of facing new nuclear facilities including K-DEMO due to the differences in systems, materials, and inherent safety feature from conventional PWRs. Even though the follow-up of the ITER license process facilitates to deal with significant safety issues of fusion facilities, a licensee as well as a licenser should identify the gaps between ITER and DEMO in terms of safety issues. First we reviewed the methods of conducting safety analysis for unprecedented nuclear facilities such as Generation IV reactors, particularly very high temperature reactor (VHTR), which is called as integrated safety assessment methodology (ISAM). Second, the analysis for the conceptual design of K-DEMO on the basis of ISAM was conducted. The ISAM consists of five analytical tools to develop the safety requirements from licensee

  11. Editorial safety science special issue road safety management.

    NARCIS (Netherlands)

    Wegman, F.C.M. & Hagezieker, M.P.

    2014-01-01

    The articles presented in this Special Issue on Road Safety Management represent an illustration of the growing interest in policy-related research in the area of road safety. The complex nature of this type of research combined with the observation that scientific journals pay limited attention to

  12. 75 FR 45591 - Pipeline Safety: Notice of Technical Pipeline Safety Advisory Committee Meetings

    Science.gov (United States)

    2010-08-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... Committee Meetings AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION... safety standards, risk assessments, and safety policies for natural gas pipelines and for hazardous...

  13. Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Silver, E G [ed.

    1989-01-01

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  14. Radiation safety

    International Nuclear Information System (INIS)

    1996-04-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. The health effects of radiation - both natural and artificial - are relatively well understood and can be effectively minimized through careful safety measures and practices. The IAEA, together with other international and expert organizations, is helping to promote and institute Basic Safety Standards on an international basis to ensure that radiation sources and radioactive materials are managed for both maximum safety and human benefit

  15. Economic consideration of nuclear safety and cost benefit analysis in nuclear safety regulation

    International Nuclear Information System (INIS)

    Choi, Y. S.; Choi, K. S.; Choi, K. W.; Song, I. J.; Park, D. K.

    2001-01-01

    For the optimization of nuclear safety regulation, understanding of economic aspects of it becomes increasingly important together with the technical approach used so far to secure nuclear safety. Relevant economic theories on private and public goods were reviewed to re-illuminate nuclear safety from the economic perspective. The characteristics of nuclear safety as a public good was reviewed and discussed in comparison with the car safety as a private safety good. It was shown that the change of social welfare resulted from the policy change induced can be calculated by the summation of compensating variation(CV) of individuals. It was shown that the value of nuclear safety could be determined in monetary term by this approach. The theoretical background and history of cost benefit analysis of nuclear safety regulation were presented and topics for future study were suggested

  16. HTGR safety philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Joksimovic, V.; Fisher, C. R. [General Atomic Co., San Diego, CA (USA)

    1981-01-15

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the U.S. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity.

  17. HTGR safety philosophy

    International Nuclear Information System (INIS)

    Joksimovic, V.; Fisher, C.R.

    1981-01-01

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the U.S. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity. (author)

  18. HTGR safety philosophy

    International Nuclear Information System (INIS)

    Joskimovic, V.; Fisher, C.R.

    1980-08-01

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the US. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity

  19. Water Safety

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Water Safety KidsHealth / For Parents / Water Safety What's in ... remains your best measure of protection. Making Kids Water Wise It's important to teach your kids proper ...

  20. The Impact of Transformational Leadership on Safety Climate and Individual Safety Behavior on Construction Sites

    Directory of Open Access Journals (Sweden)

    Yuzhong Shen

    2017-01-01

    Full Text Available Unsafe acts contribute dominantly to construction accidents, and increasing safety behavior is essential to reduce accidents. Previous research conceptualized safety behavior as an interaction between proximal individual differences (safety knowledge and safety motivation and distal contextual factors (leadership and safety climate. However, relatively little empirical research has examined this conceptualization in the construction sector. Given the cultural background of the sample, this study makes a slight modification to the conceptualization and views transformational leadership as an antecedent of safety climate. Accordingly, this study establishes a multiple mediator model showing the mechanisms through which transformational leadership translates into safety behavior. The multiple mediator model is estimated by the structural equation modeling (SEM technique, using individual questionnaire responses from a random sample of construction personnel based in Hong Kong. As hypothesized, transformational leadership has a significant impact on safety climate which is mediated by safety-specific leader–member exchange (LMX, and safety climate in turn impacts safety behavior through safety knowledge. The results suggest that future safety climate interventions should be more effective if supervisors exhibit transformational leadership, encourage construction personnel to voice safety concerns without fear of retaliation, and repeatedly remind them about safety on the job.