WorldWideScience

Sample records for safety category sensors

  1. First investigations on the safety evaluation of smart sensors

    Energy Technology Data Exchange (ETDEWEB)

    Bousquet, S.; Elsensohn, O. [CEA Fontenay aux Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Benoit, G. [CEA Saclay, Dir. de la Recherche Technologique DRT, 91 - Gif sur Yvette (France)

    2001-10-01

    IPSN (Institute for Protection and Nuclear Safety) is the technical support for the French nuclear safety authority and thus involved in the safety evaluation of new I and C technologies and particularly of smart sensors. Smart sensors are characterized by the use of a microprocessor that converts the process variable into digital signals and exchanges other information with I and C control systems. There are two types of smart sensors: HART (Highway Addressable Remote Transducer) sensors, which provide both analogue (4 to 20 mA) and digital signals, and network sensors, which provide only digital signals. The expected benefits for operators are improved accuracy and reliability and cost savings in installation, commissioning, testing and maintenance. Safety evaluation of these smart sensors raises new issues: How does the sensor react to unknown commands? How to avoid unexpected changes in configuration? What is its sensitivity to electromagnetic interferences (EMI), to radiations...? In order to evaluate whether these sensors can be qualified for a safety application and to define the qualification tests to be done, IPSN has planned some functional and hardware tests (EMI, radiations) on 'HART' and field bus sensors. During the functional tests, we were not able to disrupt the HART tested sensors by invalid commands. However, these results cannot be extended to other sensors, because of the use of different technology, of different versions of hardware and software and of constructors' specific commands. Furthermore, easy modifications of configuration parameters can cause additional failures. Environmental tests are in progress on HART sensors and will be followed by experiments on field bus sensors. These preliminary investigations and the latest incident initiated by an incorrect computing algorithm of digital switchgear at Ringhals NPP, clearly illustrate that testing and verification programmes for smart equipment must be meticulously designed

  2. First investigations on the safety evaluation of smart sensors

    International Nuclear Information System (INIS)

    Bousquet, S.; Elsensohn, O.

    2001-10-01

    IPSN (Institute for Protection and Nuclear Safety) is the technical support for the French nuclear safety authority and thus involved in the safety evaluation of new I and C technologies and particularly of smart sensors. Smart sensors are characterized by the use of a microprocessor that converts the process variable into digital signals and exchanges other information with I and C control systems. There are two types of smart sensors: HART (Highway Addressable Remote Transducer) sensors, which provide both analogue (4 to 20 mA) and digital signals, and network sensors, which provide only digital signals. The expected benefits for operators are improved accuracy and reliability and cost savings in installation, commissioning, testing and maintenance. Safety evaluation of these smart sensors raises new issues: How does the sensor react to unknown commands? How to avoid unexpected changes in configuration? What is its sensitivity to electromagnetic interferences (EMI), to radiations...? In order to evaluate whether these sensors can be qualified for a safety application and to define the qualification tests to be done, IPSN has planned some functional and hardware tests (EMI, radiations) on 'HART' and field bus sensors. During the functional tests, we were not able to disrupt the HART tested sensors by invalid commands. However, these results cannot be extended to other sensors, because of the use of different technology, of different versions of hardware and software and of constructors' specific commands. Furthermore, easy modifications of configuration parameters can cause additional failures. Environmental tests are in progress on HART sensors and will be followed by experiments on field bus sensors. These preliminary investigations and the latest incident initiated by an incorrect computing algorithm of digital switchgear at Ringhals NPP, clearly illustrate that testing and verification programmes for smart equipment must be meticulously designed and reviewed

  3. Applying Sensor-Based Technology to Improve Construction Safety Management.

    Science.gov (United States)

    Zhang, Mingyuan; Cao, Tianzhuo; Zhao, Xuefeng

    2017-08-11

    Construction sites are dynamic and complicated systems. The movement and interaction of people, goods and energy make construction safety management extremely difficult. Due to the ever-increasing amount of information, traditional construction safety management has operated under difficult circumstances. As an effective way to collect, identify and process information, sensor-based technology is deemed to provide new generation of methods for advancing construction safety management. It makes the real-time construction safety management with high efficiency and accuracy a reality and provides a solid foundation for facilitating its modernization, and informatization. Nowadays, various sensor-based technologies have been adopted for construction safety management, including locating sensor-based technology, vision-based sensing and wireless sensor networks. This paper provides a systematic and comprehensive review of previous studies in this field to acknowledge useful findings, identify the research gaps and point out future research directions.

  4. The Use of Wireless Sensor Network for Increasing Airport Safety

    Directory of Open Access Journals (Sweden)

    Jakub Kraus

    2013-09-01

    Full Text Available This article deals with the use of wireless sensor networks for increasing safety at airports, respectively for replacing the current monitoring system to ensure safety. The article describes sensor networks and their applications to the identified processes and consideration of financial and safety benefits.

  5. Modeling patient safety incidents knowledge with the Categorial Structure method.

    Science.gov (United States)

    Souvignet, Julien; Bousquet, Cédric; Lewalle, Pierre; Trombert-Paviot, Béatrice; Rodrigues, Jean Marie

    2011-01-01

    Following the WHO initiative named World Alliance for Patient Safety (PS) launched in 2004 a conceptual framework developed by PS national reporting experts has summarized the knowledge available. As a second step, the Department of Public Health of the University of Saint Etienne team elaborated a Categorial Structure (a semi formal structure not related to an upper level ontology) identifying the elements of the semantic structure underpinning the broad concepts contained in the framework for patient safety. This knowledge engineering method has been developed to enable modeling patient safety information as a prerequisite for subsequent full ontology development. The present article describes the semantic dissection of the concepts, the elicitation of the ontology requirements and the domain constraints of the conceptual framework. This ontology includes 134 concepts and 25 distinct relations and will serve as basis for an Information Model for Patient Safety.

  6. Robust optical sensors for safety critical automotive applications

    Science.gov (United States)

    De Locht, Cliff; De Knibber, Sven; Maddalena, Sam

    2008-02-01

    Optical sensors for the automotive industry need to be robust, high performing and low cost. This paper focuses on the impact of automotive requirements on optical sensor design and packaging. Main strategies to lower optical sensor entry barriers in the automotive market include: Perform sensor calibration and tuning by the sensor manufacturer, sensor test modes on chip to guarantee functional integrity at operation, and package technology is key. As a conclusion, optical sensor applications are growing in automotive. Optical sensor robustness matured to the level of safety critical applications like Electrical Power Assisted Steering (EPAS) and Drive-by-Wire by optical linear arrays based systems and Automated Cruise Control (ACC), Lane Change Assist and Driver Classification/Smart Airbag Deployment by camera imagers based systems.

  7. Data-Centric Knowledge Discovery Strategy for a Safety-Critical Sensor Application

    Directory of Open Access Journals (Sweden)

    Nilamadhab Mishra

    2014-01-01

    Full Text Available In an indoor safety-critical application, sensors and actuators are clustered together to accomplish critical actions within a limited time constraint. The cluster may be controlled by a dedicated programmed autonomous microcontroller device powered with electricity to perform in-network time critical functions, such as data collection, data processing, and knowledge production. In a data-centric sensor network, approximately 3–60% of the sensor data are faulty, and the data collected from the sensor environment are highly unstructured and ambiguous. Therefore, for safety-critical sensor applications, actuators must function intelligently within a hard time frame and have proper knowledge to perform their logical actions. This paper proposes a knowledge discovery strategy and an exploration algorithm for indoor safety-critical industrial applications. The application evidence and discussion validate that the proposed strategy and algorithm can be implemented for knowledge discovery within the operational framework.

  8. Advanced Sensors for Safety and Security

    CERN Document Server

    Khudaverdyan, Surik

    2013-01-01

    This book results from a NATO Advanced Research Workshop titled “Technological Innovations in CBRNE Sensing and Detection for Safety, Security, and Sustainability” held in Yerevan, Armenia in 2012. The objective was to discuss and exchange views as to how fusion of advanced technologies can lead to improved sensors/detectors in support of defense, security, and situational awareness. The chapters range from policy and implementation, advanced sensor platforms using stand-off (THz and optical) and point-contact methods for detection of chemical, nuclear, biological, nuclear and explosive agents and contaminants in water, to synthesis methods for several materials used for sensors.  In view of asymmetric, kinetic, and distributed nature of threat vectors, an emphasis is placed to examine new generation of sensors/detectors that utilize an ecosystems of innovation and advanced sciences convergence in support of effective counter-measures against  CBRNE threats. The book will be of considerable interest and...

  9. Microfabricated Chemical Sensors for Safety and Emission Control Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Knight, D.; Liu, C. C.; Wu, Q. H.

    1998-01-01

    Chemical sensor technology is being developed for leak detection, emission monitoring, and fire safety applications. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication (MicroElectroMechanical Systems (MEMS)-based) technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Using these technologies, sensors to measure hydrogen, hydrocarbons, nitrogen oxides, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  10. Risk reduction category (RRC-A) accident studies in the safety analysis report of the EPR trademark reactor

    International Nuclear Information System (INIS)

    Poehlmann, M.; Bleher, G.; Ismaier, A.; Knoll, A.; Levi, P.; Garcia, E. Vera; Schels, A.; Seitz, H.; Lima Campos, L.

    2013-01-01

    The Risk Reduction Category (RRC-A) is considered in the safety demonstration of nuclear reactors in addition to design basis operating conditions (Plant Condition Category, PCC), in order to analyze with a risk reduction approach any operating conditions with multiple failures. As extending the operating conditions of the plant 'beyond design basis', the Risk Reduction Category (RRC-A) is also denoted as Design Extension Condition (DEC-A). In the German licensing framework, the RRCA (or DEC-A) transients correspond to safety assessment level '4b' of the 'Sicherheitsanforderungen an Kernkraftwerke' (Safety Requirements for Nuclear Power Plants), Az. RS I 5 - 13303/01 of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. These RRC-A (or DEC-A) operating conditions require specific design provisions (implemented by manual or automatic action), known as RRC-A measures, intended to render consequences of accumulated failures admissible. In contrast, RRC-B constitute severe accidents that lead to core melt. Identification of RRC-A operating conditions and corresponding RRC-A measures is based on the use of results of probabilistic safety assessments. After the Fukushima accident the RRC-A accidents like Station Black Out (SBO) or Loss of Ultimate Heat Sink (LUHS) are of particular interest in the safety assessment of nuclear new builds. In several chapters of the Safety Analysis Report it is demonstrated that the AREVA EPRTM design is resistant at RRC-A accident conditions. (orig.)

  11. Data fusion and sensor management for nuclear power plant safety

    Energy Technology Data Exchange (ETDEWEB)

    Ciftcioglu, O [Istanbul Technical Univ., Istanbul (Turkey). Nuclear Power Dept.; Turkcan, E [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

    1997-12-31

    The paper describes the implementation of the data-sensor fusion and sensor management technology for accident management through simulated severe accident (SA) scenarios subjected to study. The organization of the present paper is as follows. As the data-sensor fusion and sensor management is an emerging technology which is not widely known, in Sec. 2, the definition and goals of data-sensor fusion and sensor management technology is described. In Sec. 3 fits, with reference to Kalman filtering as an information filter, statistical data-sensor fusion technology is described. This is followed by deterministic data-sensor fusion technology using gross plant state variables and neural networks (NN) and the implementation for severe accident management in NPPs. In Sec. 4, the sensor management technology is described. Finally, the performance of the data-sensor fusion technology for NPP safety is discussed. 12 refs, 6 figs.

  12. Data fusion and sensor management for nuclear power plant safety

    International Nuclear Information System (INIS)

    Ciftcioglu, O.

    1996-01-01

    The paper describes the implementation of the data-sensor fusion and sensor management technology for accident management through simulated severe accident (SA) scenarios subjected to study. The organization of the present paper is as follows. As the data-sensor fusion and sensor management is an emerging technology which is not widely known, in Sec. 2, the definition and goals of data-sensor fusion and sensor management technology is described. In Sec. 3 fits, with reference to Kalman filtering as an information filter, statistical data-sensor fusion technology is described. This is followed by deterministic data-sensor fusion technology using gross plant state variables and neural networks (NN) and the implementation for severe accident management in NPPs. In Sec. 4, the sensor management technology is described. Finally, the performance of the data-sensor fusion technology for NPP safety is discussed. 12 refs, 6 figs

  13. Overview of the U.S. DOE Hydrogen Safety, Codes and Standards Program. Part 4: Hydrogen Sensors; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J.; Rivkin, Carl; Burgess, Robert; Brosha, Eric; Mukundan, Rangachary; James, C. Will; Keller, Jay

    2016-12-01

    Hydrogen sensors are recognized as a critical element in the safety design for any hydrogen system. In this role, sensors can perform several important functions including indication of unintended hydrogen releases, activation of mitigation strategies to preclude the development of dangerous situations, activation of alarm systems and communication to first responders, and to initiate system shutdown. The functionality of hydrogen sensors in this capacity is decoupled from the system being monitored, thereby providing an independent safety component that is not affected by the system itself. The importance of hydrogen sensors has been recognized by DOE and by the Fuel Cell Technologies Office's Safety and Codes Standards (SCS) program in particular, which has for several years supported hydrogen safety sensor research and development. The SCS hydrogen sensor programs are currently led by the National Renewable Energy Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory. The current SCS sensor program encompasses the full range of issues related to safety sensors, including development of advance sensor platforms with exemplary performance, development of sensor-related code and standards, outreach to stakeholders on the role sensors play in facilitating deployment, technology evaluation, and support on the proper selection and use of sensors.

  14. A sensor monitoring system for telemedicine, safety and security applications

    Science.gov (United States)

    Vlissidis, Nikolaos; Leonidas, Filippos; Giovanis, Christos; Marinos, Dimitrios; Aidinis, Konstantinos; Vassilopoulos, Christos; Pagiatakis, Gerasimos; Schmitt, Nikolaus; Pistner, Thomas; Klaue, Jirka

    2017-02-01

    A sensor system capable of medical, safety and security monitoring in avionic and other environments (e.g. homes) is examined. For application inside an aircraft cabin, the system relies on an optical cellular network that connects each seat to a server and uses a set of database applications to process data related to passengers' health, safety and security status. Health monitoring typically encompasses electrocardiogram, pulse oximetry and blood pressure, body temperature and respiration rate while safety and security monitoring is related to the standard flight attendance duties, such as cabin preparation for take-off, landing, flight in regions of turbulence, etc. In contrast to previous related works, this article focuses on the system's modules (medical and safety sensors and associated hardware), the database applications used for the overall control of the monitoring function and the potential use of the system for security applications. Further tests involving medical, safety and security sensing performed in an real A340 mock-up set-up are also described and reference is made to the possible use of the sensing system in alternative environments and applications, such as health monitoring within other means of transport (e.g. trains or small passenger sea vessels) as well as for remotely located home users, over a wired Ethernet network or the Internet.

  15. INTELLIGENT TRAFFIC-SAFETY MIRROR BY USING WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    Peter Danišovič

    2014-03-01

    Full Text Available This article is focused on the problematic of traffic safety, dealing with the problem of car intersections with blocked view crossing by a special wireless sensor network (WSN proposed for the traffic monitoring, concretely for vehicle’s detection at places, where it is necessary. Some ultra-low-power TI products were developed due to this reason: microcontroller MSP430F2232, 868MHz RF transceiver CC1101 and LDO voltage regulator TPS7033. The WSN consist of four network nodes supplied with the special safety lightings which serve the function of intelligent traffic safety mirror.

  16. Data fusion and sensor management for nuclear power plant safety

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1996-05-01

    The paper describes the implementation of the data-sensor fusion and sensor management technology for accident management through simulated severe accident (SA) scenarios subjected to study. By means of accident management the appropriate prompt actions to be taken to avoid nuclear accident (SA) scenarios subjected to study. By means of accident management the appropriate prompt actions to be taken to avoid nuclear accidents are meant, while such accidents are deemed to somehow be imminent during plant operation. The organisation of the present paper is as follows. As the data-sensor fusion and sensor management is an emerging technology which is not widely known, in Sec. 2, the definition and goals of data-sensor fusion and sensor management technology is described. In Sec. 3 first, with reference to Kalman filtering as an information filter, statistical data-sensor fusion technology is described. This is followed by the examples of deterministic data-sensor fusion technology using gross plant state variables and neural networks (NN) and the implementation for severe accident management in NPPs. In Sec. 4, the sensor management technology is described. Finally, the performance of the data-sensor fusion technology for NPP safety is discussed. (orig./WL)

  17. Motorcycle That See: Multifocal Stereo Vision Sensor for Advanced Safety Systems in Tilting Vehicles

    Directory of Open Access Journals (Sweden)

    Gustavo Gil

    2018-01-01

    Full Text Available Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications.

  18. Motorcycles that See: Multifocal Stereo Vision Sensor for Advanced Safety Systems in Tilting Vehicles

    Science.gov (United States)

    2018-01-01

    Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications. PMID:29351267

  19. Motorcycle That See: Multifocal Stereo Vision Sensor for Advanced Safety Systems in Tilting Vehicles.

    Science.gov (United States)

    Gil, Gustavo; Savino, Giovanni; Piantini, Simone; Pierini, Marco

    2018-01-19

    Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications.

  20. Operational Safety Assessment of Turbo Generators with Wavelet Rényi Entropy from Sensor-Dependent Vibration Signals

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    2015-04-01

    Full Text Available With the rapid development of sensor technology, various professional sensors are installed on modern machinery to monitor operational processes and assure operational safety, which play an important role in industry and society. In this work a new operational safety assessment approach with wavelet Rényi entropy utilizing sensor-dependent vibration signals is proposed. On the basis of a professional sensor and the corresponding system, sensor-dependent vibration signals are acquired and analyzed by a second generation wavelet package, which reflects time-varying operational characteristic of individual machinery. Derived from the sensor-dependent signals’ wavelet energy distribution over the observed signal frequency range, wavelet Rényi entropy is defined to compute the operational uncertainty of a turbo generator, which is then associated with its operational safety degree. The proposed method is applied in a 50 MW turbo generator, whereupon it is proved to be reasonable and effective for operation and maintenance.

  1. Artificial neural networks and neuro-fuzzy inference systems as virtual sensors for hydrogen safety prediction

    Energy Technology Data Exchange (ETDEWEB)

    Karri, Vishy; Ho, Tien [School of Engineering, University of Tasmania, GPO Box 252-65, Hobart, Tasmania 7001 (Australia); Madsen, Ole [Department of Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg (Denmark)

    2008-06-15

    Hydrogen is increasingly investigated as an alternative fuel to petroleum products in running internal combustion engines and as powering remote area power systems using generators. The safety issues related to hydrogen gas are further exasperated by expensive instrumentation required to measure the percentage of explosive limits, flow rates and production pressure. This paper investigates the use of model based virtual sensors (rather than expensive physical sensors) in connection with hydrogen production with a Hogen 20 electrolyzer system. The virtual sensors are used to predict relevant hydrogen safety parameters, such as the percentage of lower explosive limit, hydrogen pressure and hydrogen flow rate as a function of different input conditions of power supplied (voltage and current), the feed of de-ionized water and Hogen 20 electrolyzer system parameters. The virtual sensors are developed by means of the application of various Artificial Intelligent techniques. To train and appraise the neural network models as virtual sensors, the Hogen 20 electrolyzer is instrumented with necessary sensors to gather experimental data which together with MATLAB neural networks toolbox and tailor made adaptive neuro-fuzzy inference systems (ANFIS) were used as predictive tools to estimate hydrogen safety parameters. It was shown that using the neural networks hydrogen safety parameters were predicted to less than 3% of percentage average root mean square error. The most accurate prediction was achieved by using ANFIS. (author)

  2. A new principle for low-cost hydrogen sensors for fuel cell technology safety

    Energy Technology Data Exchange (ETDEWEB)

    Liess, Martin [Rhein Main University of Applied Sciences, Rüsselsheim, Wiesbaden (Germany)

    2014-03-24

    Hydrogen sensors are of paramount importance for the safety of hydrogen fuel cell technology as result of the high pressure necessary in fuel tanks and its low explosion limit. I present a novel sensor principle based on thermal conduction that is very sensitive to hydrogen, highly specific and can operate on low temperatures. As opposed to other thermal sensors it can be operated with low cost and low power driving electronics. On top of this, as sensor element a modified standard of-the shelf MEMS thermopile IR-sensor can be used. The sensor principle presented is thus suited for the future mass markets of hydrogen fuel cell technology.S.

  3. Design and implementation of an integrated safety management system for compressed natural gas stations using ubiquitous sensor network

    International Nuclear Information System (INIS)

    Yang, Jae Mo; Ko, Byung Seok; Park, Chulhwan; Ko, Jae Wook; Yoo, Byungtae; Shin, Dongil

    2014-01-01

    To increase awareness of safety in facilities where hazards may exist, operators, managers, and executive officers on the site should be able to monitor such facilities. However, most compressed natural gas (CNG) service stations in Korea use only local-mode monitoring, with only on-site operators to monitor the facility. To complement this local-mode monitoring, an online safety management system called Ubiquitous-gas safety management system (U-GSMS) was developed. The U-GSMS consists largely of software and hardware. The software consists of systems that can manage safety and operations, while the hardware consists of sensors installed in the gas facility and wireless communication systems using a ubiquitous sensor network (USN) technology that facilitates communication between sensors as well as between sensors and other devices. As these systems are web-based, on-site operators as well as managers and executive officers at the headquarters can more effectively and efficiently perform monitoring and safety management

  4. Design and implementation of an integrated safety management system for compressed natural gas stations using ubiquitous sensor network

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Mo; Ko, Byung Seok; Park, Chulhwan; Ko, Jae Wook [Kwangwoon University, Seoul (Korea, Republic of); Yoo, Byungtae [National Disaster Management Institute, Seoul (Korea, Republic of); Shin, Dongil [Myongji University, Yongin (Korea, Republic of)

    2014-03-15

    To increase awareness of safety in facilities where hazards may exist, operators, managers, and executive officers on the site should be able to monitor such facilities. However, most compressed natural gas (CNG) service stations in Korea use only local-mode monitoring, with only on-site operators to monitor the facility. To complement this local-mode monitoring, an online safety management system called Ubiquitous-gas safety management system (U-GSMS) was developed. The U-GSMS consists largely of software and hardware. The software consists of systems that can manage safety and operations, while the hardware consists of sensors installed in the gas facility and wireless communication systems using a ubiquitous sensor network (USN) technology that facilitates communication between sensors as well as between sensors and other devices. As these systems are web-based, on-site operators as well as managers and executive officers at the headquarters can more effectively and efficiently perform monitoring and safety management.

  5. Hydrogen Safety Sensor Performance and Use Gap Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burgess, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schmidt, Kara [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hartmann, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wright, Hannah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Weidner, Eveline [Joint Research Centre, Petten, the Netherlands; Cebolla, Rafael O. [Joint Research Centre, Petten, the Netherlands; Bonato, Christian [Joint Research Centre, Petten, the Netherlands; Moretto, Pietro [Joint Research Centre, Petten, the Netherlands

    2017-11-15

    Hydrogen sensors are recognized as an important technology for facilitating the safe implementation of hydrogen as an alternative fuel, and there are numerous reports of a sensor alarm successfully preventing a potentially serious event. However, gaps in sensor metrological specifications, as well as in their performance for some applications, exist.The U.S. Department of Energy (DOE) Fuel Cell Technology Office published a short list of critical gaps in the 2007 and 2012 multiyear project plans; more detailed gap analyses were independently performed by the JRC and NREL. There have been, however, some significant advances in sensor technologies since these assessments, including the commercial availability of hydrogen sensors with fast response times (t90 less than 1 s, which had been an elusive DOE target since 2007), improved robustness to chemical poisons, improved selectivity, and improved lifetime and stability. These improvements, however, have not been universal and typically pertain to select platforms or models. Moreover, as hydrogen markets grow and new applications are being explored, more demands will be imposed on sensor performance. The hydrogen sensor laboratories at NREL and JRC are currently updating the hydrogen safety sensor gap analysis through direct interaction with international stakeholders in the hydrogen community, especially end-users. NREL and the JRC are currently organizing a series of workshops (in Europe and the U.S.) with sensor developers, end-users, and other stakeholders in 2017 to identify technology gaps and to develop a path forward to address them. One workshop is scheduled for May 10 in Brussels, Belgium at the Headquarters of the Fuel Cell and Hydrogen Joint Undertaking. A second workshop is planned at the National Renewable Energy Laboratory in Golden, CO, USA. This presentation will review improvements in sensor technologies in the past 5 to 10 years, identify gaps in sensor performance and use requirements, and identify

  6. PALLADIUM DOPED TIN OXIDE BASED HYDROGEN GAS SENSORS FOR SAFETY APPLICATIONS

    International Nuclear Information System (INIS)

    Kasthurirengan, S.; Behera, Upendra; Nadig, D. S.

    2010-01-01

    Hydrogen is considered to be a hazardous gas since it forms a flammable mixture between 4 to 75% by volume in air. Hence, the safety aspects of handling hydrogen are quite important. For this, ideally, highly selective, fast response, small size, hydrogen sensors are needed. Although sensors based on different technologies may be used, thin-film sensors based on palladium (Pd) are preferred due to their compactness and fast response. They detect hydrogen by monitoring the changes to the electrical, mechanical or optical properties of the films. We report the development of Pd-doped tin-oxide based gas sensors prepared on thin ceramic substrates with screen printed platinum (Pt) contacts and integrated nicrome wire heaters. The sensors are tested for their performances using hydrogen-nitrogen gas mixtures to a maximum of 4%H 2 in N 2 . The sensors detect hydrogen and their response times are less than a few seconds. Also, the sensor performance is not altered by the presence of helium in the test gas mixtures. By the above desired performance characteristics, field trials of these sensors have been undertaken. The paper presents the details of the sensor fabrication, electronic circuits, experimental setup for evaluation and the test results.

  7. Designation of facility usage categories for Hanford Site facilities

    International Nuclear Information System (INIS)

    Wodrich, D.; Ellingson, D.; Scott, M.; Schade, A.

    1991-01-01

    This report summarizes the Hanford Site methodology used to ensure facility compliance with the natural phenomena design criteria set forth in the US Department of Energy orders and guidance. In particular, the Hanford Site approach to designating a suitable facility open-quotes Usage Category,close quotes is presented. The current Hanford Site methodology for Usage Category designation is based on an engineered feature's safety function and on the feature's assigned Safety Class. At the Hanford Site, Safety Class assignments are deterministic in nature and are based on the consequences of failure, without regard to the likelihood of occurrence. The report also proposes a risk-based approach to Usage Category designation, which is being considered for future application at the Hanford Site. To establish a proper Usage Category designation, the safety analysis and engineering design processes must be coupled. This union produces a common understanding of the safety function(s) to be accomplished by the design feature(s) and a sound basis for the assignment of Usage Categories to the appropriate systems, structures, and components

  8. Designation of facility usage categories for Hanford Site facilities

    International Nuclear Information System (INIS)

    Woodrich, D.D.; Ellingson, D.R.; Scott, M.A.; Schade, A.R.

    1991-10-01

    This report summarizes the Hanford Site methodology used to ensure facility compliance with the natural phenomena design criteria set forth in the US Department of Energy Orders and guidance. The current Hanford Site methodology for Usage Category designation is based on an engineered feature's safety function and on the feature's assigned Safety Class. At the Hanford Site, Safety Class assignments are deterministic in nature and are based on teh consequences of failure, without regard to the likelihood of occurrence. The report also proposes a risk-based approach to Usage Category designation, which is being considered for future application at the Hanford Site. To establish a proper Usage Category designation, the safety analysis and engineering design processes must be coupled. This union produces a common understanding of the safety function(s) to be accomplished by the design feature(s) and a sound basis for the assignment of Usage Categories to the appropriate systems, structures, and components. 4 refs., 9 figs., 1 tab

  9. Radiation protection in category III large gamma irradiators

    International Nuclear Information System (INIS)

    Costa, Neivaldo; Furlan, Gilberto Ribeiro; Itepan, Natanael Marcio

    2011-01-01

    This article discusses the advantages of category III large gamma irradiator compared to the others, with emphasis on aspects of radiological protection, in the industrial sector. This category is a kind of irradiators almost unknown to the regulators authorities and the industrial community, despite its simple construction and greater radiation safety intrinsic to the model, able to maintain an efficiency of productivity comparable to those of category IV. Worldwide, there are installed more than 200 category IV irradiators and there is none of a category III irradiator in operation. In a category III gamma irradiator, the source remains fixed in the bottom of the tank, always shielded by water, negating the exposition risk. Taking into account the benefits in relation to radiation safety, the category III large irradiators are highly recommended for industrial, commercial purposes or scientific research. (author)

  10. Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications

    International Nuclear Information System (INIS)

    Boon-Brett, L.; Bousek, J.; Black, G.; Moretto, P.; Castello, P.; Huebert, T.; Banach, U.

    2010-01-01

    A market survey has been performed of commercially available hydrogen safety sensors, resulting in a total sample size of 53 sensors from 21 manufacturers. The technical specifications, as provided by the manufacturer, have been collated and are displayed herein as a function of sensor working principle. These specifications comprise measuring range, response and recovery times, ambient temperature, pressure and relative humidity, power consumption and lifetime. These are then compared against known performance targets for both automotive and stationary applications in order to establish in how far current technology satisfies current requirements of sensor end users. Gaps in the performance of hydrogen sensing technologies are thus identified and areas recommended for future research and development. (author)

  11. Intelligent Hardware-Enabled Sensor and Software Safety and Health Management for Autonomous UAS

    Science.gov (United States)

    Rozier, Kristin Y.; Schumann, Johann; Ippolito, Corey

    2015-01-01

    Unmanned Aerial Systems (UAS) can only be deployed if they can effectively complete their mission and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. We propose to design a real-time, onboard system health management (SHM) capability to continuously monitor essential system components such as sensors, software, and hardware systems for detection and diagnosis of failures and violations of safety or performance rules during the ight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the- y temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power hardware realization using Field Programmable Gate Arrays (FPGAs) in order to avoid overburdening limited computing resources or costly re-certi cation of ight software due to instrumentation. No currently available SHM capabilities (or combinations of currently existing SHM capabilities) come anywhere close to satisfying these three criteria yet NASA will require such intelligent, hardwareenabled sensor and software safety and health management for introducing autonomous UAS into the National Airspace System (NAS). We propose a novel approach of creating modular building blocks for combining responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. Our proposed research program includes both developing this novel approach and demonstrating its capabilities using the NASA Swift UAS as a demonstration platform.

  12. Web of Things-Based Remote Monitoring System for Coal Mine Safety Using Wireless Sensor Network

    OpenAIRE

    Bo, Cheng; Xin, Cheng; Zhongyi, Zhai; Chengwen, Zhang; Junliang, Chen

    2014-01-01

    Frequent accidents have occurred in coal mine enterprises; therefore, raising the technological level of coal mine safety monitoring systems is an urgent problem. Wireless sensor networks (WSN), as a new field of research, have broad application prospects. This paper proposes a Web of Things- (WoT-) based remote monitoring system that takes full advantage of wireless sensor networks in combination with the CAN bus communication technique that abstracts the underground sensor data and capabili...

  13. A Novel Multi-Sensor Environmental Perception Method Using Low-Rank Representation and a Particle Filter for Vehicle Reversing Safety

    Directory of Open Access Journals (Sweden)

    Zutao Zhang

    2016-06-01

    Full Text Available Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety.

  14. A review of potential uses for fiber optic sensors in nuclear power plants, with attendant benefits in plant safety and operational efficiency

    International Nuclear Information System (INIS)

    Holcomb, D.E.; Antonescu, C.

    1994-01-01

    Fiber optic-based sensing has a wide range of potential applications in nuclear power plants, and a fiber optic analog presently exists for virtually every conventional nuclear power plant sensing system. Fiber optic-based sensors are likely to eventually supplant many conventional sensors because of their inherent advantages-reduced mass, reduced size, ruggedness to vibration and shock, physical flexibility, high sensitivity, electrical isolation, extreme resistance to electromagnetic interference, high temperature resistance, reduced calibration requirements, passive operation, and high radiation resistance. In addition, fiber optic-based sensors exist which are capable of measuring parameters important to safety and performance which cannot be conventionally measured (high electromagnetic field, in-core, and distributed measurements). However, fiber optic sensors remain at too low a level of development for immediate application in safety-critical systems. Moreover, fiber optic sensors have different failure modes and mechanisms than conventional sensors; hence, considerable regulatory research will be necessary to establish the technical basis for the use of fiber optic sensors in safety-critical systems

  15. Sensors, Volume 4, Thermal Sensors

    Science.gov (United States)

    Scholz, Jorg; Ricolfi, Teresio

    1996-12-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume describes the construction and applicational aspects of thermal sensors while presenting a rigorous treatment of the underlying physical principles. It provides a unique overview of the various categories of sensors as well as of specific groups, e.g. temperature sensors (resistance thermometers, thermocouples, and radiation thermometers), noise and acoustic thermometers, heat-flow and mass-flow sensors. Specific facettes of applications are presented by specialists from different fields including process control, automotive technology and cryogenics. This volume is an indispensable reference work and text book for both specialists and newcomers, researchers and developers.

  16. Safety issues in the handling of radiation sources in category IV gamma radiation facilities

    International Nuclear Information System (INIS)

    Kohli, A.K.

    2002-01-01

    There is potential for incidents/accidents related to handling of radiation sources. This is increasing due to the fact that more number of plants that too with much larger levels of activity are now coming up. Such facilities produce very high levels of exposure rates during irradiation. A person accidentally present in the irradiation cell can receive a lethal dose within a very short time. Apart from safety requirements during operation and maintenance of these facilities, safety during loading and unloading of sources is important. Category IV type irradiators are the most common. Doubly encapsulated Co-60 slugs are employed to form the source pencils. These irradiators employ a water pool for safely storing the source pencils when irradiation of the products is not going on or when human access is needed into the irradiation cell for some maintenance or source loading/unloading operations. Safety during loading/unloading operations of source pencils is important. In design itself care needs to be taken such that all such operations are convenient and any incident will not lead to a situation where it becomes difficult to come out. Different situations, which can arise during handling of radiation sources and suggested designs to obviate such tight situations, are discussed. (Author)

  17. A Practical Application Combining Wireless Sensor Networks and Internet of Things: Safety Management System for Tower Crane Groups

    Directory of Open Access Journals (Sweden)

    Dexing Zhong

    2014-07-01

    Full Text Available The so-called Internet of Things (IoT has attracted increasing attention in the field of computer and information science. In this paper, a specific application of IoT, named Safety Management System for Tower Crane Groups (SMS-TC, is proposed for use in the construction industry field. The operating status of each tower crane was detected by a set of customized sensors, including horizontal and vertical position sensors for the trolley, angle sensors for the jib and load, tilt and wind speed sensors for the tower body. The sensor data is collected and processed by the Tower Crane Safety Terminal Equipment (TC-STE installed in the driver’s operating room. Wireless communication between each TC-STE and the Local Monitoring Terminal (LMT at the ground worksite were fulfilled through a Zigbee wireless network. LMT can share the status information of the whole group with each TC-STE, while the LMT records the real-time data and reports it to the Remote Supervision Platform (RSP through General Packet Radio Service (GPRS. Based on the global status data of the whole group, an anti-collision algorithm was executed in each TC-STE to ensure the safety of each tower crane during construction. Remote supervision can be fulfilled using our client software installed on a personal computer (PC or smartphone. SMS-TC could be considered as a promising practical application that combines a Wireless Sensor Network with the Internet of Things.

  18. A Practical Application Combining Wireless Sensor Networks and Internet of Things: Safety Management System for Tower Crane Groups

    Science.gov (United States)

    Zhong, Dexing; Lv, Hongqiang; Han, Jiuqiang; Wei, Quanrui

    2014-01-01

    The so-called Internet of Things (IoT) has attracted increasing attention in the field of computer and information science. In this paper, a specific application of IoT, named Safety Management System for Tower Crane Groups (SMS-TC), is proposed for use in the construction industry field. The operating status of each tower crane was detected by a set of customized sensors, including horizontal and vertical position sensors for the trolley, angle sensors for the jib and load, tilt and wind speed sensors for the tower body. The sensor data is collected and processed by the Tower Crane Safety Terminal Equipment (TC-STE) installed in the driver's operating room. Wireless communication between each TC-STE and the Local Monitoring Terminal (LMT) at the ground worksite were fulfilled through a Zigbee wireless network. LMT can share the status information of the whole group with each TC-STE, while the LMT records the real-time data and reports it to the Remote Supervision Platform (RSP) through General Packet Radio Service (GPRS). Based on the global status data of the whole group, an anti-collision algorithm was executed in each TC-STE to ensure the safety of each tower crane during construction. Remote supervision can be fulfilled using our client software installed on a personal computer (PC) or smartphone. SMS-TC could be considered as a promising practical application that combines a Wireless Sensor Network with the Internet of Things. PMID:25196106

  19. A practical application combining wireless sensor networks and Internet of Things: Safety Management System for Tower Crane Groups.

    Science.gov (United States)

    Zhong, Dexing; Lv, Hongqiang; Han, Jiuqiang; Wei, Quanrui

    2014-07-30

    The so-called Internet of Things (IoT) has attracted increasing attention in the field of computer and information science. In this paper, a specific application of IoT, named Safety Management System for Tower Crane Groups (SMS-TC), is proposed for use in the construction industry field. The operating status of each tower crane was detected by a set of customized sensors, including horizontal and vertical position sensors for the trolley, angle sensors for the jib and load, tilt and wind speed sensors for the tower body. The sensor data is collected and processed by the Tower Crane Safety Terminal Equipment (TC-STE) installed in the driver's operating room. Wireless communication between each TC-STE and the Local Monitoring Terminal (LMT) at the ground worksite were fulfilled through a Zigbee wireless network. LMT can share the status information of the whole group with each TC-STE, while the LMT records the real-time data and reports it to the Remote Supervision Platform (RSP) through General Packet Radio Service (GPRS). Based on the global status data of the whole group, an anti-collision algorithm was executed in each TC-STE to ensure the safety of each tower crane during construction. Remote supervision can be fulfilled using our client software installed on a personal computer (PC) or smartphone. SMS-TC could be considered as a promising practical application that combines a Wireless Sensor Network with the Internet of Things.

  20. Polymer optical fiber sensors in human life safety

    Science.gov (United States)

    Marques, C. A. F.; Webb, D. J.; Andre, P.

    2017-07-01

    The current state of research into polymer optical fiber (POF) sensors linked to safety in human life is summarized in this paper. This topic is directly related with new solutions for civil aircraft, structural health monitoring, healthcare and biomedicine fields. In the last years, the properties of polymers have been explored to identify situations offering potential advantages over conventional silica fiber sensing technology, replacing, in some cases, problematic electronic technology used in these mentioned fields, where there are some issues to overcome. POFs could preferably replace their silica counterparts, with improved performance and biocompatibility. Finally, new developments are reported which use the unique properties of POF.

  1. The long-term safety and performance analyses of the surface disposal facility for the Belgian category a waste at Dessel

    Energy Technology Data Exchange (ETDEWEB)

    Cool, Wim; Vermarien, Elise; Wacquier, William [ONDRAF/NIRAS Avenue des Arts 14, BE-1210 Bruxelles (Belgium); Perko, Janez [SCK-CEN Boeretang 200, BE-2400 Mol (Belgium)

    2013-07-01

    ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, and its partners have developed long-term safety and performance analyses in the framework of the license application for a surface disposal facility for low level radioactive waste (category A waste) at Dessel, Belgium. This paper focusses on the methodology of the safety assessments and on key results from the application of this methodology. An overview is given (1) of the performance analyses for the containment safety function of the disposal system and (2) of the radiological impact analyses confirming that radiological impacts are below applicable reference values and constraints and leading to radiological criteria for the waste and the facility. In this discussion, multiple indicators for performance and safety are used to illustrate the multi-faceted nature of long-term performance and safety of the surface disposal. This contributes to the multiple lines of reasoning for confidence building that a positive decision to proceed to the next stage of construction is justified. (authors)

  2. Wireless Sensor Network Safety Study

    OpenAIRE

    M.Shankar; Dr.M.Sridar; Dr.M.Rajani

    2012-01-01

    Few security mechanisms in wireless sensor networks (WSNs) have been implemented, and even fewer have been applied in real deployments. The limited resources of each sensor node makes security in WSNs hard, as the tradeoff between security and practicality must be carefully considered. These complex systems include in their design different types of information and communication technology systems, such as wireless (mesh) sensor networks, to carry out control processes in real time. This fact...

  3. Consumer Product Category Database

    Science.gov (United States)

    The Chemical and Product Categories database (CPCat) catalogs the use of over 40,000 chemicals and their presence in different consumer products. The chemical use information is compiled from multiple sources while product information is gathered from publicly available Material Safety Data Sheets (MSDS). EPA researchers are evaluating the possibility of expanding the database with additional product and use information.

  4. Barriers to the Adoption of Wearable Sensors in the Workplace: A Survey of Occupational Safety and Health Professionals.

    Science.gov (United States)

    Schall, Mark C; Sesek, Richard F; Cavuoto, Lora A

    2018-05-01

    To gather information on the (a) types of wearable sensors, particularly personal activity monitors, currently used by occupational safety and health (OSH) professionals; (b) potential benefits of using such technologies in the workplace; and (c) perceived barriers preventing the widespread adoption of wearable sensors in industry. Wearable sensors are increasingly being promoted as a means to improve employee health and well-being, and there is mounting evidence supporting their use as exposure assessment and personal health tools. Despite this, many workplaces have been hesitant to adopt these technologies. An electronic survey was emailed to 28,428 registered members of the American Society of Safety Engineers (ASSE) and 1,302 professionals certified by the Board of Certification in Professional Ergonomics (BCPE). A total of 952 valid responses were returned. Over half of respondents described being in favor of using wearable sensors to track OSH-related risk factors and relevant exposure metrics at their respective workplaces. However, barriers including concerns regarding employee privacy/confidentiality of collected data, employee compliance, sensor durability, the cost/benefit ratio of using wearables, and good manufacturing practice requirements were described as challenges precluding adoption. The broad adoption of wearable technologies appears to depend largely on the scientific community's ability to successfully address the identified barriers. Investigators may use the information provided to develop research studies that better address OSH practitioner concerns and help technology developers operationalize wearable sensors to improve employee health and well-being.

  5. A survey on the wireless sensor network technology

    International Nuclear Information System (INIS)

    Kim, Jae Hee; Jun, Hyeong Seop; Lee, Jae Cheol; Choi, Yoo Rak

    2007-12-01

    Wireless sensor technology is required in the safety inspection for safety-critical unit of nuclear power plant. This report describes wireless sensor technology related with the project named 'Development of a remote care system of NPP components based on the network and safety database'. This report includes contents of methodology and status of sensor network construction, status of zigbee sensor network, problem of security and sensor battery. Energy harvesting technology will be mentioned on the next report

  6. Frequency of Specific Categories of Aviation Accidents and Incidents During 2001-2010

    Science.gov (United States)

    Evans, Joni K.

    2014-01-01

    The purpose of this study was to determine the types of accidents or incidents that are most important to the aviation safety risk. All accidents and incidents from 2001-2010 were assigned occurrence categories based on the taxonomy developed by the Commercial Aviation Safety Team/International Civil Aviation Organization (CAST/ICAO) Common Taxonomy Team (CICTT). The most frequently recorded categories were selected within each of five metrics: total accidents, fatal accidents, total injuries, fatal injuries and total incidents. This analysis was done separately for events within Part 121, Scheduled Part 135, Non-Scheduled Part 135 and Part 91. Combining those five sets of categories resulted in groups of between seven and eleven occurrence categories, depending on the flight operation. These groups represent 65-85% of all accidents and 68-81% of incidents.

  7. Safety comparison of four types of rabies vaccines in patients with WHO category II animal exposure: An observation based on different age groups.

    Science.gov (United States)

    Peng, Jun; Lu, Sha; Zhu, Zhenggang; Zhang, Man; Hu, Quan; Fang, Yuan

    2016-11-01

    To evaluate the safeties of 4 types of rabies vaccines for patients with WHO category II animal exposure, especially in different age groups.A total of 4000 patients with WHO category II animal exposure were randomly divided into 4 vaccine groups, and were respectively given with Vaccines A, B, C, and D. And subjects in each vaccine group were divided into 4 age groups (≤5, 5-18, 19-60, and ≥60-year-old groups). Then adverse events (including local and systemic ones) were recorded and compared. Consequently, except for Vaccine B, patients under the age of 5 in Groups A, C, and D suffered from more adverse reactions than those in other age groups. Furthermore, for the children aged less than 5 years, incidence of adverse events following administration of Vaccine B, with the dose of 0.5 mL and production of bioreactor systems, was significantly lower than Vaccines A and D.Our data showed that rabies vaccines with smaller doses and more advanced processing techniques are of relatively high safety for the patients, especially for the young children.

  8. Design, implementation and evaluation of an independent real-time safety layer for medical robotic systems using a force-torque-acceleration (FTA) sensor.

    Science.gov (United States)

    Richter, Lars; Bruder, Ralf

    2013-05-01

    Most medical robotic systems require direct interaction or contact with the robot. Force-Torque (FT) sensors can easily be mounted to the robot to control the contact pressure. However, evaluation is often done in software, which leads to latencies. To overcome that, we developed an independent safety system, named FTA sensor, which is based on an FT sensor and an accelerometer. An embedded system (ES) runs a real-time monitoring system for continuously checking of the readings. In case of a collision or error, it instantaneously stops the robot via the robot's external emergency stop. We found that the ES implementing the FTA sensor has a maximum latency of [Formula: see text] ms to trigger the robot's emergency stop. For the standard settings in the application of robotized transcranial magnetic stimulation, the robot will stop after at most 4 mm. Therefore, it works as an independent safety layer preventing patient and/or operator from serious harm.

  9. 30 CFR 75.1103-1 - Automatic fire sensors.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors. 75.1103-1 Section 75.1103-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... fire sensors. A fire sensor system shall be installed on each underground belt conveyor. Sensors so...

  10. Safety study application guide

    International Nuclear Information System (INIS)

    1993-07-01

    Martin Marietta Energy Systems, Inc., (Energy Systems) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Included are analyses of existing facilities done under the aegis of the Safety Analysis Report Upgrade Program, and analyses of new and modified facilities. A graded approach is used wherein the level of analysis and documentation for each facility is commensurate with the magnitude of the hazard(s), the complexity of the facility and the stage of the facility life cycle. Safety analysis reports (SARs) for hazard Category 1 and 2 facilities are usually detailed and extensive because these categories are associated with public health and safety risk. SARs for Category 3 are normally much less extensive because the risk to public health and safety is slight. At Energy Systems, safety studies are the name given to SARs for Category 3 (formerly open-quotes lowclose quotes) facilities. Safety studies are the appropriate instrument when on-site risks are limited to irreversible consequences to a few people, and off-site consequences are limited to reversible consequences to a few people. This application guide provides detailed instructions for performing safety studies that meet the requirements of DOE Orders 5480.22, open-quotes Technical Safety Requirements,close quotes and 5480.23, open-quotes Nuclear Safety Analysis Reports.close quotes A seven-chapter format has been adopted for safety studies. This format allows for discussion of all the items required by DOE Order 5480.23 and for the discussions to be readily traceable to the listing in the order. The chapter titles are: (1) Introduction and Summary, (2) Site, (3) Facility Description, (4) Safety Basis, (5) Hazardous Material Management, (6) Management, Organization, and Institutional Safety Provisions, and (7) Accident Analysis

  11. Beknopte literatuurstudie inzake categorie-indeling van wegen.

    NARCIS (Netherlands)

    Dijkstra, A. & Twisk, D.A.M.

    1992-01-01

    This literature study describes the road categorization from the road user point of view. The study describes the following subjects: (1) the mental load of road users; (2) road categories in relation to road safety; (3) a model for the traffic and transport system; (4) recognition of road types;

  12. Specific environmental release categories--A tool for improving chemical safety assessment in the EC--report of a multi-stakeholder workshop.

    Science.gov (United States)

    Sättler, Daniel; Schnöder, Frank; Aust, Nannett; Ahrens, Andreas; Bögi, Christian; Traas, Theo; Tolls, Johannes

    2012-10-01

    In April 2011, experts from industry and authorities met for a workshop to discuss experience and future developments regarding the use of specific environmental release categories (SPERCs) in chemicals safety assessment (CSA) under the European Chemicals Regulation Registration, Evaluation and Authorization of Chemicals (REACH). This article provides a summary of the workshop. It briefly explains what a SPERC is, why SPERCs are needed, where the challenges of the concept are, and what improvements are needed to make SPERCs a useful tool for assessments under REACH. Copyright © 2012 SETAC.

  13. MEMS sensor technologies for human centred applications in healthcare, physical activities, safety and environmental sensing: a review on research activities in Italy.

    Science.gov (United States)

    Ciuti, Gastone; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2015-03-17

    Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users' health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users' physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson's disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy.

  14. MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy

    Directory of Open Access Journals (Sweden)

    Gastone Ciuti

    2015-03-01

    Full Text Available Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users’ health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users’ physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson’s disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy.

  15. Reliability estimates for selected sensors in fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1996-09-01

    This report presents the results of a study to define several types of sensors in use, the qualitative reliability (failure modes) and quantitative reliability (average failure rates) for these types of process sensors. Temperature, pressure, flow, and level sensors are discussed for water coolant and for cryogenic coolants. The failure rates that have been found are useful for risk assessment and safety analysis. Repair times and calibration intervals are also given when found in the literature. All of these values can also be useful to plant operators and maintenance personnel. Designers may be able to make use of these data when planning systems. The final chapter in this report discusses failure rates for several types of personnel safety sensors, including ionizing radiation monitors, toxic and combustible gas detectors, humidity sensors, and magnetic field sensors. These data could be useful to industrial hygienists and other safety professionals when designing or auditing for personnel safety

  16. Research on PWR safety in France

    International Nuclear Information System (INIS)

    Zammite, R.

    1988-07-01

    The French nuclear safety arrangements form a centralized system characterized by cooperation between the government authorities, their technical advisers and the operators of the installations, especially between the Commissariat a l'Energie Atomique (CEA) and Electricite de France (EDF). This cooperation in no way contradicts the respective responsibilities of the different parties, in particular those of EDF regarding the safety of its installations and those of CEA as the government's technical adviser and safety analyst. However, it considerably affects the research on reactor safety, which is mainly performed by the CEA Institute for Nuclear Safety and Protection (IPSN), in collaboration with EDF. For PWRs, the safety preoccupations concerning their development, commissioning and operation can be divided into the following three categories: A. Safety in design and construction, B. Safety in operation and the control of potential accidents, C. Maintaining safety - aging problems. The effort consecrated to each category has varied in the past and will continue to do so in the future. At the present stage, emphasis is being given to categories B and C. The appendix includes tables which indicate, for categories A, B and C, the relationship between the existing research programmes and the questions remaining open that they are intended to solve

  17. Radiation protection in category III large gamma irradiators; Radioprotecao em irradiadores de grande porte de categoria III

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Neivaldo; Furlan, Gilberto Ribeiro, E-mail: neivaldo@cena.usp.b, E-mail: gilfurlan@cena.usp.b [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Itepan, Natanael Marcio, E-mail: natanael.itepan@unianhanguera.edu.b [Universidade Anhanguera, Goiania, GO (Brazil)

    2011-07-01

    This article discusses the advantages of category III large gamma irradiator compared to the others, with emphasis on aspects of radiological protection, in the industrial sector. This category is a kind of irradiators almost unknown to the regulators authorities and the industrial community, despite its simple construction and greater radiation safety intrinsic to the model, able to maintain an efficiency of productivity comparable to those of category IV. Worldwide, there are installed more than 200 category IV irradiators and there is none of a category III irradiator in operation. In a category III gamma irradiator, the source remains fixed in the bottom of the tank, always shielded by water, negating the exposition risk. Taking into account the benefits in relation to radiation safety, the category III large irradiators are highly recommended for industrial, commercial purposes or scientific research. (author)

  18. Development of sensors and sensing technology for hydrogen fuel cell vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Brosha, Eric L [Los Alamos National Laboratory; Sekhar, Praveen K [Los Alamos National Laboratory; Mukundan, Rangchary [Los Alamos National Laboratory; Williamson, Todd L [Los Alamos National Laboratory; Barzon, Fernando H [Los Alamos National Laboratory; Woo, Leta Y [LLNL; Glass, Robert S [LLNL

    2010-01-01

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features.

  19. Mining robotics sensors

    CSIR Research Space (South Africa)

    Green, JJ

    2011-07-01

    Full Text Available International Conference of CAD/CAM, Robotics & Factories of the Future (CARs&FOF 2011) 26-28 July 2-11, Kuala Lumpur, Malaysia Mining Robotics Sensors Perception Sensors on a Mine Safety Platform Green JJ1, Hlophe K2, Dickens J3, Teleka R4, Mathew Price5...-28 July 2-11, Kuala Lumpur, Malaysia visualization in confined, lightless environments, and thermography for assessing the safety and stability of hanging walls. Over the last decade approximately 200 miners have lost their lives per year in South...

  20. Technical evaluation of the susceptibility of safety-related systems to flooding caused by the failure of non-category I systems for Palisades nuclear power plant

    International Nuclear Information System (INIS)

    Collins, E.K.

    1979-10-01

    The technical evaluation is presented of Consumers Power Company's Palisades nuclear power plant to determine whether the failure of any non-Category I (seismic) equipment could result in a condition, such as flooding, that might potentially adversely affect the performance of safety-related equipment required for the safe shutdown of the facility or to mitigate the consequences of an accident. Criteria developed by the US Nuclear Regulatory Commission were used to evaluate the acceptability of the existing protection as well as measures taken by Consumers Power Company to minimize the danger of flooding and to protect safety-related equipment

  1. The Application of a Piezo-Resistive Cardiorespiratory Sensor System in an Automobile Safety Belt

    Science.gov (United States)

    Hamdani, Syed Talha Ali; Fernando, Anura

    2015-01-01

    Respiratory and heart failure are conditions that can occur with little warning and may also be difficult to predict. Therefore continuous monitoring of these bio-signals is advantageous for ensuring human health. The car safety belt is mainly designed to secure the occupants of the vehicle in the event of an accident. In the current research a prototype safety belt is developed, which is used to acquire respiratory and heart signals, under laboratory conditions. The current safety belt is constructed using a copper ink based nonwoven material, which works based on the piezo-resistive effect due to the pressure exerted on the sensor as a result of expansion of the thorax/abdomen area of the body for respiration and due to the principle of ballistocardiography (BCG) in heart signal sensing. In this research, the development of a theoretical model to qualitatively describe the piezo-resistive material is also presented in order to predict the relative change in the resistance of the piezo-resistive material due to the pressure applied. PMID:25831088

  2. The application of a piezo-resistive cardiorespiratory sensor system in an automobile safety belt.

    Science.gov (United States)

    Hamdani, Syed Talha Ali; Fernando, Anura

    2015-03-30

    Respiratory and heart failure are conditions that can occur with little warning and may also be difficult to predict. Therefore continuous monitoring of these bio-signals is advantageous for ensuring human health. The car safety belt is mainly designed to secure the occupants of the vehicle in the event of an accident. In the current research a prototype safety belt is developed, which is used to acquire respiratory and heart signals, under laboratory conditions. The current safety belt is constructed using a copper ink based nonwoven material, which works based on the piezo-resistive effect due to the pressure exerted on the sensor as a result of expansion of the thorax/abdomen area of the body for respiration and due to the principle of ballistocardiography (BCG) in heart signal sensing. In this research, the development of a theoretical model to qualitatively describe the piezo-resistive material is also presented in order to predict the relative change in the resistance of the piezo-resistive material due to the pressure applied.

  3. The Application of a Piezo-Resistive Cardiorespiratory Sensor System in an Automobile Safety Belt

    Directory of Open Access Journals (Sweden)

    Syed Talha Ali Hamdani

    2015-03-01

    Full Text Available Respiratory and heart failure are conditions that can occur with little warning and may also be difficult to predict. Therefore continuous monitoring of these bio-signals is advantageous for ensuring human health. The car safety belt is mainly designed to secure the occupants of the vehicle in the event of an accident. In the current research a prototype safety belt is developed, which is used to acquire respiratory and heart signals, under laboratory conditions. The current safety belt is constructed using a copper ink based nonwoven material, which works based on the piezo-resistive effect due to the pressure exerted on the sensor as a result of expansion of the thorax/abdomen area of the body for respiration and due to the principle of ballistocardiography (BCG in heart signal sensing. In this research, the development of a theoretical model to qualitatively describe the piezo-resistive material is also presented in order to predict the relative change in the resistance of the piezo-resistive material due to the pressure applied.

  4. ITER plasma safety interface models and assessments

    International Nuclear Information System (INIS)

    Uckan, N.A.; Bartels, H-W.; Honda, T.; Amano, T.; Boucher, D.; Post, D.; Wesley, J.

    1996-01-01

    Physics models and requirements to be used as a basis for safety analysis studies are developed and physics results motivated by safety considerations are presented for the ITER design. Physics specifications are provided for enveloping plasma dynamic events for Category I (operational event), Category II (likely event), and Category III (unlikely event). A safety analysis code SAFALY has been developed to investigate plasma anomaly events. The plasma response to ex-vessel component failure and machine response to plasma transients are considered

  5. Design of a dynamic compensated temperature sensor

    International Nuclear Information System (INIS)

    Yan, Wu; Katz, E.M.; Kerlin, T.W.

    1991-01-01

    One important function of a temperature sensor in a nuclear power plant is to track changing process temperatures, but the sensor output lags the changing temperature. This lag may have a large influence when the sensor is used in control or safety systems. Therefore, it is advantageous to develop methods that increase the sensor response speed. The goal of this project is to develop a fast-responding temperature sensor, the dynamic compensated temperature sensor (DCTS), based on signal dynamic compensation technology. To verify the theoretical basis of the DCTS and incorporate the DCTS into a real temperature measurement process, several experiments have been performed. The DCTS is a simple approach that can decrease the temperature sensor's response time, and it can provide faster temperature signals to the nuclear power plant safety system

  6. Hall Sensor Output Signal Fault-Detection & Safety Implementation Logic

    Directory of Open Access Journals (Sweden)

    Lee SangHun

    2016-01-01

    Full Text Available Recently BLDC motors have been popular in various industrial applications and electric mobility. Recently BLDC motors have been popular in various industrial applications and electric mobility. In most brushless direct current (BLDC motor drives, there are three hall sensors as a position reference. Low resolution hall effect sensor is popularly used to estimate the rotor position because of its good comprehensive performance such as low cost, high reliability and sufficient precision. Various possible faults may happen in a hall effect sensor. This paper presents a fault-tolerant operation method that allows the control of a BLDC motor with one faulty hall sensor and presents the hall sensor output fault-tolerant control strategy. The situations considered are when the output from a hall sensor stays continuously at low or high levels, or a short-time pulse appears on a hall sensor signal. For fault detection, identification of a faulty signal and generating a substitute signal, this method only needs the information from the hall sensors. There are a few research work on hall effect sensor failure of BLDC motor. The conventional fault diagnosis methods are signal analysis, model based analysis and knowledge based analysis. The proposed method is signal based analysis using a compensation signal for reconfiguration and therefore fault diagnosis can be fast. The proposed method is validated to execute the simulation using PSIM.

  7. Probability based load combinations for design of category I structures

    International Nuclear Information System (INIS)

    Reich, M.; Hwang, H.

    1985-01-01

    This paper discusses a reliability analysis method and a procedure for developing the load combination design criteria for category I structures. For safety evaluation of category I concrete structures under various static and dynamic loads, a probability-based reliability analysis method has been developed. This reliability analysis method is also used as a tool for determining the load factors for design of category I structures. In this paper, the load combinations for design of concrete containments, corresponding to a target limit state probability of 1.0 x 10 -6 in 4 years, are described. A comparison of containments designed using the ASME code and the proposed design criteria is also presented

  8. Sensors in Education

    NARCIS (Netherlands)

    Van Rosmalen, Peter; Schneider, Jan; Börner, Dirk

    2014-01-01

    Sensors rapidly become available both for personal as well as scientific use. A wide range of applications exists for personal use e.g. safety in and around the house, sport, fitness and health. In this workshop we will explore how sensors are (can be) used in education. We start with an

  9. Automotive sensors

    Science.gov (United States)

    Marek, Jiri; Illing, Matthias

    2003-01-01

    Sensors are an essential component of most electronic systems in the car. They deliver input parameters for comfort features, engine and emission control as well as for the active and passive safety systems. New technologies such as silicon micromachining play an important role for the introduction of these sensors in all vehicle classes. The importance and use of these sensor technologies in today"s automotive applications will be shown in this article. Finally an outlook on important current developments and new functions in the car will be given.

  10. Initial development of a practical safety audit tool to assess fleet safety management practices.

    Science.gov (United States)

    Mitchell, Rebecca; Friswell, Rena; Mooren, Lori

    2012-07-01

    Work-related vehicle crashes are a common cause of occupational injury. Yet, there are few studies that investigate management practices used for light vehicle fleets (i.e. vehicles less than 4.5 tonnes). One of the impediments to obtaining and sharing information on effective fleet safety management is the lack of an evidence-based, standardised measurement tool. This article describes the initial development of an audit tool to assess fleet safety management practices in light vehicle fleets. The audit tool was developed by triangulating information from a review of the literature on fleet safety management practices and from semi-structured interviews with 15 fleet managers and 21 fleet drivers. A preliminary useability assessment was conducted with 5 organisations. The audit tool assesses the management of fleet safety against five core categories: (1) management, systems and processes; (2) monitoring and assessment; (3) employee recruitment, training and education; (4) vehicle technology, selection and maintenance; and (5) vehicle journeys. Each of these core categories has between 1 and 3 sub-categories. Organisations are rated at one of 4 levels on each sub-category. The fleet safety management audit tool is designed to identify the extent to which fleet safety is managed in an organisation against best practice. It is intended that the audit tool be used to conduct audits within an organisation to provide an indicator of progress in managing fleet safety and to consistently benchmark performance against other organisations. Application of the tool by fleet safety researchers is now needed to inform its further development and refinement and to permit psychometric evaluation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. S3: School Zone Safety System Based on Wireless Sensor Network

    Science.gov (United States)

    Yoo, Seong-eun; Chong, Poh Kit; Kim, Daeyoung

    2009-01-01

    School zones are areas near schools that have lower speed limits and where illegally parked vehicles pose a threat to school children by obstructing them from the view of drivers. However, these laws are regularly flouted. Thus, we propose a novel wireless sensor network application called School zone Safety System (S3) to help regulate the speed limit and to prevent illegal parking in school zones. S3 detects illegally parked vehicles, and warns the driver and records the license plate number. To reduce the traveling speed of vehicles in a school zone, S3 measures the speed of vehicles and displays the speed to the driver via an LED display, and also captures the image of the speeding vehicle with a speed camera. We developed a state machine based vehicle detection algorithm for S3. From extensive experiments in our testbeds and data from a real school zone, it is shown that the system can detect all kinds of vehicles, and has an accuracy of over 95% for speed measurement. We modeled the battery life time of a sensor node and validated the model with a downscaled measurement; we estimate the battery life time to be over 2 years. We have deployed S3 in 15 school zones in 2007, and we have demonstrated the robustness of S3 by operating them for over 1 year. PMID:22454567

  12. A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies.

    Science.gov (United States)

    Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng

    2018-02-02

    In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications.

  13. Multiparametric methane sensor for environmental monitoring

    Science.gov (United States)

    Borecki, M.; Duk, M.; Kociubiński, A.; Korwin-Pawlowski, M. L.

    2016-12-01

    Today, methane sensors find applications mostly in safety alarm installations, gas parameters detection and air pollution classification. Such sensors and sensors elements exists for industry and home use. Under development area of methane sensors application is dedicated to ground gases monitoring. Proper monitoring of soil gases requires reliable and maintenance-free semi-constant and longtime examination at relatively low cost of equipment. The sensors for soil monitoring have to work on soil probe. Therefore, sensor is exposed to environment conditions, as a wide range of temperatures and a full scale of humidity changes, as well as rain, snow and wind, that are not specified for classical methane sensors. Development of such sensor is presented in this paper. The presented sensor construction consists of five commercial non dispersive infra-red (NDIR) methane sensing units, a set of temperature and humidity sensing units, a gas chamber equipped with a micro-fan, automated gas valves and also a microcontroller that controls the measuring procedure. The electronics part of sensor was installed into customized 3D printed housing equipped with self-developed gas valves. The main development of proposed sensor is on the side of experimental evaluation of construction reliability and results of data processing included safety procedures and function for hardware error correction. Redundant methane sensor units are used providing measurement error correction as well as improved measurement accuracy. The humidity and temperature sensors are used for internal compensation of methane measurements as well as for cutting-off the sensor from the environment when the conditions exceed allowable parameters. Results obtained during environment sensing prove that the gas concentration readings are not sensitive to gas chamber vertical or horizontal position. It is important as vertical sensor installation on soil probe is simpler that horizontal one. Data acquired during six

  14. Sensor Technologies for Intelligent Transportation Systems.

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali; Contreras-Castillo, Juan

    2018-04-16

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  15. Sensor Technologies for Intelligent Transportation Systems

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali

    2018-01-01

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment. PMID:29659524

  16. Sensor Technologies for Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Juan Guerrero-Ibáñez

    2018-04-01

    Full Text Available Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  17. Discussion on the safety classification of nuclear safety mechanical equipment

    International Nuclear Information System (INIS)

    Shen Wei

    2010-01-01

    The purpose and definition of the equipment safety classification in nuclear plant are introduced. The differences of several safety classification criterions are compared, and the object of safety classification is determined. According to the regulation, the definition and category of the safety functions are represented. The safety classification method, safety classification process, safety class interface, and the requirement for the safety class mechanical equipment are explored. At last, the relation of the safety classification between the mechanical and electrical equipment is presented, and the relation of the safety classification between mechanical equipment and system is also presented. (author)

  18. Health and safety education for joint occupational health and safety committees

    Directory of Open Access Journals (Sweden)

    Myriam Mahecha Angulo

    2015-09-01

    Full Text Available Objective: To build a proposal to develop the educational process in health and safety joint committees aimed at safety and health at work (copasst. Methodology: Qualitative, descriptive study in which an in-depth interview to 32 copasst assets was made. Each interview was transcribed and interpreted by applying check with participants, finding meaningful statements, organizing groups of subjects, exhaustive description and validation with participants. The information was placed in the categories planning, organization, development, evaluation and feedback, emerging the following categories: responsible for processes management; planning, place and frequency of educational sessions; topics; format of sessions; involving/ development of sessions; understanding of the issues; applicability to daily life and work environment; applicability to personal/professional life and to the organization. Results: From emerging categories and according to the conceptual framework on adult health education and health and safety for workers, a participatory methodology for the development of educational processes with copasst was built. Conclusions: According to the statement by the members of the copasst, educational processes in health and safety, as they are developed at present, preclude them from achieving necessary competences to perform its functions, thus they are irrelevant.

  19. Working Group Report: Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  20. Sleep Deprivation Attack Detection in Wireless Sensor Network

    OpenAIRE

    Bhattasali, Tapalina; Chaki, Rituparna; Sanyal, Sugata

    2012-01-01

    Deployment of sensor network in hostile environment makes it mainly vulnerable to battery drainage attacks because it is impossible to recharge or replace the battery power of sensor nodes. Among different types of security threats, low power sensor nodes are immensely affected by the attacks which cause random drainage of the energy level of sensors, leading to death of the nodes. The most dangerous type of attack in this category is sleep deprivation, where target of the intruder is to maxi...

  1. A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks.

    Science.gov (United States)

    Effatparvar, Mehdi; Dehghan, Mehdi; Rahmani, Amir Masoud

    2016-09-01

    Wireless body area sensor network is a special purpose wireless sensor network that, employing wireless sensor nodes in, on, or around the human body, makes it possible to measure biological parameters of a person for specific applications. One of the most fundamental concerns in wireless body sensor networks is accurate routing in order to send data promptly and properly, and therefore overcome some of the challenges. Routing protocols for such networks are affected by a large number of factors including energy, topology, temperature, posture, the radio range of sensors, and appropriate quality of service in sensor nodes. Since energy is highly important in wireless body area sensor networks, and increasing the network lifetime results in benefiting greatly from sensor capabilities, improving routing performance with reduced energy consumption presents a major challenge. This paper aims to study wireless body area sensor networks and the related routing methods. It also presents a thorough, comprehensive review of routing methods in wireless body area sensor networks from the perspective of energy. Furthermore, different routing methods affecting the parameter of energy will be classified and compared according to their advantages and disadvantages. In this paper, fundamental concepts of wireless body area sensor networks are provided, and then the advantages and disadvantages of these networks are investigated. Since one of the most fundamental issues in wireless body sensor networks is to perform routing so as to transmit data precisely and promptly, we discuss the same issue. As a result, we propose a classification of the available relevant literature with respect to the key challenge of energy in the routing process. With this end in view, all important papers published between 2000 and 2015 are classified under eight categories including 'Mobility-Aware', 'Thermal-Aware', 'Restriction of Location and Number of Relays', 'Link-aware', 'Cluster- and Tree

  2. Traffic legislation and safety in Europe concerning the moped and the A1 category (125 cc) motorcycle : a literature and questionnaire study commissioned by the Swedish National Road Administration

    NARCIS (Netherlands)

    Schoon, C.C.

    2004-01-01

    A study, commissioned by the Swedish National Road Administration, of the safety aspects of mopeds and the light motorcycle A1 category (max. 125 cc) has been carried out. The study consists of a comparison of European countries. An important part of the information was gathered using questionnaires

  3. Transportation Safety Excellence in Operations Through Improved Transportation Safety Document

    International Nuclear Information System (INIS)

    Dr. Michael A. Lehto; MAL

    2007-01-01

    A recent accomplishment of the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Nuclear Safety analysis group was to obtain DOE-ID approval for the inter-facility transfer of greater-than-Hazard-Category-3 quantity radioactive/fissionable waste in Department of Transportation (DOT) Type A drums at MFC. This accomplishment supported excellence in operations through safety analysis by better integrating nuclear safety requirements with waste requirements in the Transportation Safety Document (TSD); reducing container and transport costs; and making facility operations more efficient. The MFC TSD governs and controls the inter-facility transfer of greater-than-Hazard-Category-3 radioactive and/or fissionable materials in non-DOT approved containers. Previously, the TSD did not include the capability to transfer payloads of greater-than-Hazard-Category-3 radioactive and/or fissionable materials using DOT Type A drums. Previous practice was to package the waste materials to less-than-Hazard-Category-3 quantities when loading DOT Type A drums for transfer out of facilities to reduce facility waste accumulations. This practice allowed operations to proceed, but resulted in drums being loaded to less than the Waste Isolation Pilot Plant (WIPP) waste acceptance criteria (WAC) waste limits, which was not cost effective or operations friendly. An improved and revised safety analysis was used to gain DOE-ID approval for adding this container configuration to the MFC TSD safety basis. In the process of obtaining approval of the revised safety basis, safety analysis practices were used effectively to directly support excellence in operations. Several factors contributed to the success of MFC's effort to obtain approval for the use of DOT Type A drums, including two practices that could help in future safety basis changes at other facilities. (1) The process of incorporating the DOT Type A drums into the TSD at MFC helped to better integrate nuclear safety

  4. Ferrocyanide Safety Program: Safety criteria for ferrocyanide watch list tanks

    International Nuclear Information System (INIS)

    Postma, A.K.; Meacham, J.E.; Barney, G.S.

    1994-01-01

    This report provides a technical basis for closing the ferrocyanide Unreviewed Safety Question (USQ) at the Hanford Site. Three work efforts were performed in developing this technical basis. The efforts described herein are: 1. The formulation of criteria for ranking the relative safety of waste in each ferrocyanide tank. 2. The current classification of tanks into safety categories by comparing available information on tank contents with the safety criteria; 3. The identification of additional information required to resolve the ferrocyanide safety issue

  5. Sensors in Education

    OpenAIRE

    Van Rosmalen, Peter; Schneider, Jan; Börner, Dirk

    2014-01-01

    Sensors rapidly become available both for personal as well as scientific use. A wide range of applications exists for personal use e.g. safety in and around the house, sport, fitness and health. In this workshop we will explore how sensors are (can be) used in education. We start with an introduction on sensors and their use, discuss the FP7 project METALOGUE (www.metalogue.eu), a Multi-perspective Multi-modal Dialogue system, and close with a hands-on and a discussion of the design of the Pr...

  6. Sensors Applications, Volume 4, Sensors for Automotive Applications

    Science.gov (United States)

    Marek, Jiri; Trah, Hans-Peter; Suzuki, Yasutoshi; Yokomori, Iwao

    2003-07-01

    An international team of experts from the leading companies in this field gives a detailed picture of existing as well as future applications. They discuss in detail current technologies, design and construction concepts, market considerations and commercial developments. Topics covered include vehicle safety, fuel consumption, air conditioning, emergency control, traffic control systems, and electronic guidance using radar and video. Meeting the growing need for comprehensive information on the capabilities, potentials and limitations of modern sensor systems, Sensors Applications is a book series covering the use of sophisticated technologies and materials for the creation of advanced sensors and their implementation in the key areas process monitoring, building control, health care, automobiles, aerospace, environmental technology and household appliances.

  7. Sensor Compendium - A Snowmass Whitepaper-

    Energy Technology Data Exchange (ETDEWEB)

    Artuso, M. [Syracuse Univ., NY (United States); Battaglia, M. [Univ. of California, Santa Cruz, CA (United States); Bolla, G. [Purdue Univ., West Lafayette, IN (United States); Bortoletto, D. [Purdue Univ., West Lafayette, IN (United States); Caberera, B. [Stanford Univ., CA (United States); Carlstrom, J E [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Chang, C. L. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Cooper, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Da Via, C. [Univ. of Manchester (United Kingdom); Demarteau, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Fast, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Frisch, H. [Univ. of Chicago, IL (United States), et al.

    2013-10-01

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  8. Feature-Based versus Category-Based Induction with Uncertain Categories

    Science.gov (United States)

    Griffiths, Oren; Hayes, Brett K.; Newell, Ben R.

    2012-01-01

    Previous research has suggested that when feature inferences have to be made about an instance whose category membership is uncertain, feature-based inductive reasoning is used to the exclusion of category-based induction. These results contrast with the observation that people can and do use category-based induction when category membership is…

  9. Research oil guidelines for safety review of category 2 waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Safety confirmation items and monitoring items for engineered barriers were compiled, considering the current technical status and monitoring plan for the simulated subsurface disposal and its test facilities. In order to develop the guidelines of the safety review for the disposal of LLW generated from RI facilities and research facilities, technical issues relating toxic substances were surveyed. (author)

  10. 14 CFR 27.1413 - Safety belts.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Safety belts. 27.1413 Section 27.1413 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1413 Safety belts. Each safety belt...

  11. Probability-based load combinations for design of category I structures - overview of research program and recent results

    International Nuclear Information System (INIS)

    Reich, M.; Hwang, H.

    1984-01-01

    This paper discusses the probability-based load combinations for the program dealing with the design of Category I structures, currently being worked on at Brookhaven National Laboratory (BNL) for the Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission (NRC). The objective of this program is to develop a probabilistic approach for the safety evaluations of reactor containments and other seismic Category I structures subjected to multiple static and dynamic loadings. Furthermore, on the basis of the developed probabilistic approach, a load combination methodology for the design of seismic Category I structures will also be established. The major tasks of this program are: (1) establish probabilistic representations for various loads and structural resistance, (2) select appropriate structural analysis methods and identify limit states of structures, (3) develop a reliability analysis method applicable to nuclear structures, (4) apply the developed methodology to existing Category I structures in order to evaluate the reliability levels implied in the current design criteria, and (5) recommend load combination design criteria for Category I structures. When the program is completed, it will be possible to (1) provide a method that can evaluate the safety margins of existing containment and other Category I structures and (2) recommended probability-based load combinations and load factors for the design of Category I structures. At the present time, a reliability analysis method for seismic Category I concrete structures has been completed. By utilizing this method, it is possible to evaluate the safety of structures under various static and dynamic loads. In this paper, results of a reliability analysis of a realistic reinforced concrete containment structure under dead load, accidental pressure, and earthquake ground acceleration are presented to demonstrate the feasibility of the methodology. (orig.)

  12. Chemical Gas Sensors for Aeronautic and Space Applications

    Science.gov (United States)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.

  13. Calculation of Hazard Category 2/3 Threshold Quantities Using Contemporary Dosimetric Data

    Energy Technology Data Exchange (ETDEWEB)

    Walker, William C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-01

    The purpose of this report is to describe the methodology and selection of input data utilized to calculate updated Hazard Category 2 and Hazard Category 3 Threshold Quantities (TQs) using contemporary dosimetric information. The calculation of the updated TQs will be considered for use in the revision to the Department of Energy (DOE) Technical Standard (STD-) 1027-92 Change Notice (CN)-1, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports.” The updated TQs documented in this report complement an effort previously undertaken by the National Nuclear Security Administration (NNSA), which in 2014 issued revised Supplemental Guidance documenting the calculation of updated TQs for approximately 100 radionuclides listed in DOE-STD-1027-92, CN-1. The calculations documented in this report complement the NNSA effort by expanding the set of radionuclides to more than 1,250 radionuclides with a published TQ. The development of this report was sponsored by the Department of Energy’s Office of Nuclear Safety (AU-30) within the Associate Under Secretary for Environment, Health, Safety, and Security organization.

  14. 10 CFR 830.202 - Safety basis.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility must establish and maintain the safety basis...

  15. Online Sensor Calibration Assessment in Nuclear Power Systems

    International Nuclear Information System (INIS)

    Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash

    2013-01-01

    Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and storage, used fuel processing, etc.) relies on transmission of accurate and reliable measurements. During operation, sensors degrade due to age, environmental exposure, and maintenance interventions. Sensor degradation can affect the measured and transmitted signals, including sensor failure, signal drift, sensor response time, etc. Currently, periodic sensor recalibration is performed to avoid these problems. Sensor recalibration activities include both calibration assessment and adjustment (if necessary). In nuclear power plants, periodic recalibration of safety-related sensors is required by the plant technical specifications. Recalibration typically occurs during refueling outages (about every 18 to 24 months). Non-safety-related sensors also undergo recalibration, though not as frequently. However, this approach to maintaining sensor calibration and performance is time-consuming and expensive, leading to unnecessary maintenance, increased radiation exposure to maintenance personnel, and potential damage to sensors. Online monitoring (OLM) of sensor performance is a non-invasive approach to assess instrument calibration. OLM can mitigate many of the limitations of the current periodic recalibration practice by providing more frequent assessment of calibration and identifying those sensors that are operating outside of calibration tolerance limits without removing sensors or interrupting operation. This can support extended operating intervals for unfaulted sensors and target recalibration efforts to only degraded sensors

  16. Calculation and definition of safety indicators

    International Nuclear Information System (INIS)

    Cristian, I.; Branzeu, N.; Vidican, D.; Vladescu, G.

    1997-01-01

    This paper presents, based on Cernavoda safety indicators proposal, the purpose definition and calculation formulas for each of the selected safety indicators. Five categories of safety indicators for Cernavoda Unit 1 were identified, namely: overall plant safety performance; initiating events; safety system availability, physical barrier integrity; indirect indicators. Definition, calculation and use of some safety indicators are shown in a tabular form. (authors)

  17. Development of Sensors and Sensing Technology for Hydrogen Fuel Cell Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brosha, E L; Sekhar, P K; Mukundan, R; Williamson, T; Garzon, F H; Woo, L Y; Glass, R R

    2010-01-06

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features. Some of these devices (e.g. yaw sensors for dynamic stability control systems or tire presure warning RF-based devices) may be used on fuel cell vehicles without any modification. However the use of hydrogen as a fuel will dictate the development of completely new technologies for such requirements as the detection of hydrogen leaks, sensors and systems to continuously monitor hydrogen fuel purity and protect the fuel cell stack from poisoning, and for the important, yet often taken for granted, tasks such as determining the state of charge of the hydrogen fuel storage and delivery system. Two such sensors that rely on different transduction mechanisms will be highlighted in this presentation. The first is an electrochemical device for monitoring hydrogen levels in air. The other technology covered in this work, is an acoustic-based approach to determine the state of charge of a hydride storage system.

  18. Seismic simulation and functional performance evaluation of a safety related, seismic category I control room emergency air cleaning system

    International Nuclear Information System (INIS)

    Manley, D.K.; Porco, R.D.; Choi, S.H.

    1985-01-01

    Under a nuclear contract MSA was required to design, manufacture, seismically test and functionally test a complete Safety Related, Seismic Category I, Control Room Emergency Air Cleaning System before shipment to the Yankee Atomic Electric Company, Yankee Nuclear Station in Rowe, Massachusetts. The installation of this system was required to satisfy the NRC requirements of NUREG-0737, Section III, D.3.4, ''Control Room Habitability''. The filter system tested was approximately 3 ft. wide by 8 ft. high by 18 ft. long and weighed an estimated 8300 pounds. It had a design flow rate of 3000 SCFM and contained four stages of filtration - prefilters, upstream and downstream HEPA filters and Type II sideload charcoal adsorber cells. The filter train design followed the guidelines set forth by ANSI/ASME N509-1980. Seismic Category I Qualification Testing consisted of resonance search testing and triaxial random multifrequency testing. In addition to ANSI/ASME N510-1980 testing, triaxial response accelerometers were placed at specific locations on designated prefilters, HEPA filters, charcoal adsorbers and test canisters along with accelerometers at the corresponding filter seal face locations. The purpose of this test was to demonstrate the integrity of the filters, filter seals, and monitor seismic response levels which is directly related to the system's ability to function during a seismic occurrence. The Control Room Emergency Air Cleaning System demonstrated the ability to withstand the maximum postulated earthquake for the plant site by remaining structurally sound and functional

  19. Procedural-Based Category Learning in Patients with Parkinson's Disease: Impact of Category Number and Category Continuity

    Directory of Open Access Journals (Sweden)

    J. Vincent eFiloteo

    2014-02-01

    Full Text Available Previously we found that Parkinson's disease (PD patients are impaired in procedural-based category learning when category membership is defined by a nonlinear relationship between stimulus dimensions, but these same patients are normal when the rule is defined by a linear relationship (Filoteo et al., 2005; Maddox & Filoteo, 2001. We suggested that PD patients' impairment was due to a deficit in recruiting ‘striatal units' to represent complex nonlinear rules. In the present study, we further examined the nature of PD patients' procedural-based deficit in two experiments designed to examine the impact of (1 the number of categories, and (2 category discontinuity on learning. Results indicated that PD patients were impaired only under discontinuous category conditions but were normal when the number of categories was increased from two to four. The lack of impairment in the four-category condition suggests normal integrity of striatal medium spiny cells involved in procedural-based category learning. In contrast, and consistent with our previous observation of a nonlinear deficit, the finding that PD patients were impaired in the discontinuous condition suggests that these patients are impaired when they have to associate perceptually distinct exemplars with the same category. Theoretically, this deficit might be related to dysfunctional communication among medium spiny neurons within the striatum, particularly given that these are cholinergic neurons and a cholinergic deficiency could underlie some of PD patients’ cognitive impairment.

  20. Overview of North American Hydrogen Sensor Standards

    Energy Technology Data Exchange (ETDEWEB)

    O' Malley, Kathleen [SRA International, Inc., Colorado Springs, CO (United States); Lopez, Hugo [UL LLC, Chicago, IL (United States); Cairns, Julie [CSA Group, Cleveland, OH (United States); Wichert, Richard [Professional Engineering, Inc.. Citrus Heights, CA (United States); Rivkin, Carl [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burgess, Robert [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Buttner, William [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-11

    An overview of the main North American codes and standards associated with hydrogen safety sensors is provided. The distinction between a code and a standard is defined, and the relationship between standards and codes is clarified, especially for those circumstances where a standard or a certification requirement is explicitly referenced within a code. The report identifies three main types of standards commonly applied to hydrogen sensors (interface and controls standards, shock and hazard standards, and performance-based standards). The certification process and a list and description of the main standards and model codes associated with the use of hydrogen safety sensors in hydrogen infrastructure are presented.

  1. Characterisation of a Mechanical Deflection Sensor

    CSIR Research Space (South Africa)

    Miyambo, M

    2012-10-01

    Full Text Available Mechanical Defl ection Sensor M MIYAMBO AND T PANDELANI CSIR Defence, Peace, Safety and Security, PO Box 395, Pretoria, South Africa, 0001 Email: mmiyambo@csir.co.za ? www.csir.co.za INTRODUCTION The CSIR Defence, Peace, Safety and Security (DPSS...-time duration, which is integrated over time to provide the total measured impulse of a shallow-buried explosive charge near-field blast (Snyman et al, 2006). The Mechanical Deflection Sensor (MDS) was developed by the CSIR LS, in conjunction with Conical...

  2. Contested Categories

    DEFF Research Database (Denmark)

    Drawing on social science perspectives, Contested Categories presents a series of empirical studies that engage with the often shifting and day-to-day realities of life sciences categories. In doing so, it shows how such categories remain contested and dynamic, and that the boundaries they create...

  3. Reactor Safety Assessment System

    International Nuclear Information System (INIS)

    Sebo, D.E.; Bray, M.A.; King, M.A.

    1987-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSAS is designed for use at the USNRC Operations Center in the event of a serious incident at a licensed nuclear power plant. RSAS is a situation assessment expert system which uses plant parametric data to generate conclusions for use by the NRC Reactor Safety Team. RSAS uses multiple rule bases and plant specific setpoint files to be applicable to all licensed nuclear power plants in the United States. RSAS currently covers several generic reactor categories and multiple plants within each category

  4. Reactor safety assessment system

    International Nuclear Information System (INIS)

    Sebo, D.E.; Bray, M.A.; King, M.A.

    1987-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSA is designed for use at the USNRC Operations Center in the event of a serious incident at a licensed nuclear power plant. RSAS is a situation assessment expert system which uses plant parametric data to generate conclusions for use by the NRC Reactor Safety Team. RSAS uses multiple rule bases and plant specific setpoint files to be applicable to all licensed nuclear power plants in the United States. RSAS currently covers several generic reactor categories and multiple plants within each category

  5. Optical fiber sensors: Systems and applications. Volume 2

    Science.gov (United States)

    Culshaw, Brian; Dakin, John

    State-of-the-art fiber-optic (FO) sensors and their applications are described in chapters contributed by leading experts. Consideration is given to interferometers, FO gyros, intensity- and wavelength-based sensors and optical actuators, Si in FO sensors, point-sensor multiplexing principles, and distributed FO sensor systems. Also examined are chemical, biochemical, and medical sensors; physical and chemical sensors for process control; FO-sensor applications in the marine and aerospace industries; FO-sensor monitoring systems for security and safety, structural integrity, NDE, and the electric-power industry; and the market situation for FO-sensor technology. Diagrams, drawings, graphs, and photographs are provided.

  6. Prescribing Safety in Ambulatory Care: Physician Perspectives

    National Research Council Canada - National Science Library

    Rundall, Thomas G; Hsu, John; Lafata, Jennifer E; Fung, Vicki; Paez, Kathryn A; Simpkins, Jan; Simon, Steven R; Robinson, Scott B; Uratsu, Connie; Gunter, Margaret J; Soumerai, Stephen B; Selby, Joseph V

    2005-01-01

    .... We asked about current safety practices, perceptions of ambulatory prescribing safety. Using a content analysis approach, three investigators independently coded responses into thematic categories...

  7. Technical evaluation of the susceptibility of safety-related systems to flooding caused by the failure of non-category 1 systems for the San Onofre Nuclear Power Plant, Unit 1

    International Nuclear Information System (INIS)

    Latorre, V.R.; Victor, R.A.

    1980-11-01

    This report documents the technical evaluation of Southern California Edison Company's San Onofre Nuclear Power Plant, Unit 1, to determine whether the failure of any non-Category 1 (seismic) equipment could result in a condition, such as flooding, that might potentially adversely affect the performance of safety-related equipment required for the safe shutdown of the facility or to mitigate the consequences of an accident. Criteria developed by the US Nuclear Regulatory Commission were used to evaluate the acceptability of the existing protection as well as measures taken by Southern California Edison Company to minimize the danger of flooding and to protect safety-related equipment

  8. Progress of Mimetic Enzymes and Their Applications in Chemical Sensors.

    Science.gov (United States)

    Yang, Bin; Li, Jianping; Deng, Huan; Zhang, Lianming

    2016-11-01

    The need to develop innovative and reformative approaches to synthesize chemical sensors has increased in recent years because of demands for selectivity, stability, and reproducibility. Mimetic enzymes provide an efficient and convenient method for chemical sensors. This review summarizes the application of mimetic enzymes in chemical sensors. Mimetic enzymes can be classified into five categories: hydrolases, oxidoreductases, transferases, isomerases, and induced enzymes. Potential and recent applications of mimetic enzymes in chemical sensors are reviewed in detail, and the outlook of profound development has been illustrated.

  9. Enhancing Safety of Artificially Ventilated Patients Using Ambient Process Analysis.

    Science.gov (United States)

    Lins, Christian; Gerka, Alexander; Lüpkes, Christian; Röhrig, Rainer; Hein, Andreas

    2018-01-01

    In this paper, we present an approach for enhancing the safety of artificially ventilated patients using ambient process analysis. We propose to use an analysis system consisting of low-cost ambient sensors such as power sensor, RGB-D sensor, passage detector, and matrix infrared temperature sensor to reduce risks for artificially ventilated patients in both home and clinical environments. We describe the system concept and our implementation and show how the system can contribute to patient safety.

  10. Aviation Safety Issues Database

    Science.gov (United States)

    Morello, Samuel A.; Ricks, Wendell R.

    2009-01-01

    The aviation safety issues database was instrumental in the refinement and substantiation of the National Aviation Safety Strategic Plan (NASSP). The issues database is a comprehensive set of issues from an extremely broad base of aviation functions, personnel, and vehicle categories, both nationally and internationally. Several aviation safety stakeholders such as the Commercial Aviation Safety Team (CAST) have already used the database. This broader interest was the genesis to making the database publically accessible and writing this report.

  11. Microfabricated Chemical Sensors for Aerospace Fire Detection Applications

    Science.gov (United States)

    Hunter, Gary W.; Neudeck, Philip G.; Fralick, Gustave; Thomas, Valarie; Makel, D.; Liu, C. C.; Ward, B.; Wu, Q. H.

    2001-01-01

    The detection of fires on-board commercial aircraft is extremely important for safety reasons. Although dependable fire detection equipment presently exists within the cabin, detection of fire within the cargo hold has been less reliable and susceptible to false alarms. A second, independent method of fire detection to complement the conventional smoke detection techniques, such as the measurement of chemical species indicative of a fire, will help reduce false alarms and improve aircraft safety. Although many chemical species are indicative of a fire, two species of particular interest are CO and CO2. This paper discusses microfabricated chemical sensor development tailored to meet the needs of fire safety applications. This development is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. The individual sensor being developed and their level of maturity will be presented.

  12. Improvement programme of safety performance indicators (SPIs) in Korea

    International Nuclear Information System (INIS)

    Lee, S.Y.

    2001-01-01

    KINS has developed and used Safety Performance Indicators (SPIs), which are count based and composed of 10 indicators in 8 areas, to monitor the trend of performance of NPPs in Korea since 1997. However, the limited usage of SPIs and the increasing worldwide interest on SPIs became the motivation of the SPI improvement programme in Korea. Korea is planning to establish plant performance evaluation programme through analysis of SPI and result of inspection. The SPI improvement programme is a part of the plant performance evaluation programme and includes study on performance evaluation areas, indicator categories, selection and development of indicators, redefinition of indicators and introduction of graphical display system. The selected performance evaluation areas are general performance, reactor safety and radiation safety. Each area will have categories as sub-areas and a total of six categories are selected. One or two indicators for each category are determined or will be developed to make a set of Safety Performance Indicators. Also, a graphic display system will be introduced to extend the usage of SPIs. (author)

  13. Fibre optic strain sensor: examples of applications

    Science.gov (United States)

    Kruszewski, J.; Beblowska, M.; Wrzosek, P.

    2006-03-01

    Construction of strain sensor for application in safety systems has been presented. The device consists of sensor's head and source and detector units. The head is made of polymer fiber bends. Designed sensor could be mounted in monitoring place (e.g. under a floor) and controlled by PC unit or could be used as a portable device for a valuable object protection.

  14. Ultrasonic sensors in urban traffic driving-aid systems.

    Science.gov (United States)

    Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P; de Pedro, Teresa

    2011-01-01

    Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  15. Road safety in developing countries.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1991-01-01

    This paper presents a classification of countries (developing and developed alike), divided into two main categories: an economical and historical entry. When road safety problems are placed into the economical context, it then appears that, among other things: (1) The road safety problem in the

  16. Comparison of safety and immunogenicity of purified chick embryo cell vaccine using Zagreb and Essen regimens in patients with category II exposure in China.

    Science.gov (United States)

    Hu, Quan; Liu, Man-Qing; Zhu, Zheng-Gang; Zhu, Ze-Rong; Lu, Sha

    2014-01-01

    The aim was to compare the safety and immunogenicity of purified chick embryo cell vaccine (PCECV) with Zagreb 2-1-1 and Essen 1-1-1-1-1 regimens in patients with WHO category II exposure in China. Side effects including systemic and local symptoms were recorded for all patients during vaccination with purified chick embryo cell vaccine (PCECV) under Zagreb 2-1-1 or Essen 1-1-1-1-1 regimens, and the rabies neutralization antibody titers in patients' serum at days 0, 7, 14, 45, 365 post-immunization were measured to determine the immunogenicity. Fever and pain were the most common events for systemic and local symptoms respectively, and most side effects (86.78%, 105/121) occurred after the first dose of vaccination. Safety analysis showed differences in side effects inZagreb and Essen regimens, especially after the first dose of vaccination (P = 0.043). Immunogenicity analysis indicated that Zagreb can achieve higher neutralization antibody titers and a greater seroconversion rate in a shorter time but had less persistence than Essen. When compared with the Essen regimen, the Zagreb regimen had a different immunogenicity in all study subjects, and different safety profile in young children, and a further study with a larger population and longer surveillance is warranted.

  17. Comparing two K-category assignments by a K-category correlation coefficient

    DEFF Research Database (Denmark)

    Gorodkin, Jan

    2004-01-01

    Predicted assignments of biological sequences are often evaluated by Matthews correlation coefficient. However, Matthews correlation coefficient applies only to cases where the assignments belong to two categories, and cases with more than two categories are often artificially forced into two...... categories by considering what belongs and what does not belong to one of the categories, leading to the loss of information. Here, an extended correlation coefficient that applies to K-categories is proposed, and this measure is shown to be highly applicable for evaluating prediction of RNA secondary...

  18. Ultrasonic Sensors in Urban Traffic Driving-Aid Systems

    Directory of Open Access Journals (Sweden)

    Teresa de Pedro

    2011-01-01

    Full Text Available Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS, Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  19. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Quinn, Edward L. [Technology Resources, Dana Point, CA (United States); Mauck, Jerry L. [Technology Resources, Dana Point, CA (United States); Bockhorst, Richard M. [Technology Resources, Dana Point, CA (United States)

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  20. Design and Performance Analysis of an Intrinsically Safe Ultrasonic Ranging Sensor.

    Science.gov (United States)

    Zhang, Hongjuan; Wang, Yu; Zhang, Xu; Wang, Dong; Jin, Baoquan

    2016-06-13

    In flammable or explosive environments, an ultrasonic sensor for distance measurement poses an important engineering safety challenge, because the driving circuit uses an intermediate frequency transformer as an impedance transformation element, in which the produced heat or spark is available for ignition. In this paper, an intrinsically safe ultrasonic ranging sensor is designed and implemented. The waterproof piezoelectric transducer with integrated transceiver is chosen as an energy transducing element. Then a novel transducer driving circuit is designed based on an impedance matching method considering safety spark parameters to replace an intermediate frequency transformer. Then, an energy limiting circuit is developed to achieve dual levels of over-voltage and over-current protection. The detail calculation and evaluation are executed and the electrical characteristics are analyzed to verify the intrinsic safety of the driving circuit. Finally, an experimental platform of the ultrasonic ranging sensor system is constructed, which involves short-circuit protection. Experimental results show that the proposed ultrasonic ranging sensor is excellent in both ranging performance and intrinsic safety.

  1. Intelligent Chemical Sensor Systems for In-space Safety Applications

    Science.gov (United States)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  2. A Review of Microfiber-Based Temperature Sensors

    Directory of Open Access Journals (Sweden)

    Wanvisa Talataisong

    2018-02-01

    Full Text Available Optical microfiber-based temperature sensors have been proposed for many applications in a variety of industrial uses, including biomedical, geological, automotive, and defense applications. This increasing demand for these micrometric devices is attributed to their large dynamic range, high sensitivity, fast-response, compactness and robustness. Additionally, they can perform in-situ measurements remotely and in harsh environments. This paper presents an overview of optical microfibers, with a focus on their applications in temperature sensing. This review broadly divides microfiber-based temperature sensors into two categories: resonant and non-resonant microfiber sensors. While the former includes microfiber loop, knot and coil resonators, the latter comprises sensors based on functionally coated/doped microfibers, microfiber couplers, optical gratings and interferometers. In the conclusions, a summary of reported performances is presented.

  3. Optical Fiber Grating Hydrogen Sensors: A Review.

    Science.gov (United States)

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong

    2017-03-12

    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed.

  4. Categories from scratch

    NARCIS (Netherlands)

    Poss, R.

    2014-01-01

    The concept of category from mathematics happens to be useful to computer programmers in many ways. Unfortunately, all "good" explanations of categories so far have been designed by mathematicians, or at least theoreticians with a strong background in mathematics, and this makes categories

  5. Determination of Safety Performance Grade of NPP Using Integrated Safety Performance Assessment (ISPA) Program

    International Nuclear Information System (INIS)

    Chung, Dae Wook

    2011-01-01

    Since the beginning of 2000, the safety regulation of nuclear power plant (NPP) has been challenged to be conducted more reasonable, effective and efficient way using risk and performance information. In the United States, USNRC established Reactor Oversight Process (ROP) in 2000 for improving the effectiveness of safety regulation of operating NPPs. The main idea of ROP is to classify the NPPs into 5 categories based on the results of safety performance assessment and to conduct graded regulatory programs according to categorization, which might be interpreted as 'Graded Regulation'. However, the classification of safety performance categories is highly comprehensive and sensitive process so that safety performance assessment program should be prepared in integrated, objective and quantitative manner. Furthermore, the results of assessment should characterize and categorize the actual level of safety performance of specific NPP, integrating all the substantial elements for assessing the safety performance. In consideration of particular regulatory environment in Korea, the integrated safety performance assessment (ISPA) program is being under development for the use in the determination of safety performance grade (SPG) of a NPP. The ISPA program consists of 6 individual assessment programs (4 quantitative and 2 qualitative) which cover the overall safety performance of NPP. Some of the assessment programs which are already implemented are used directly or modified for incorporating risk aspects. The others which are not existing regulatory programs are newly developed. Eventually, all the assessment results from individual assessment programs are produced and integrated to determine the safety performance grade of a specific NPP

  6. 14 CFR 23.303 - Factor of safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Factor of safety. 23.303 Section 23.303... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure General § 23.303 Factor of safety. Unless otherwise provided, a factor of safety of 1.5 must be used. ...

  7. Sensor fault diagnosis of aero-engine based on divided flight status

    Science.gov (United States)

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  8. Sensor fault diagnosis of aero-engine based on divided flight status.

    Science.gov (United States)

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  9. A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults

    OpenAIRE

    Rui Sun; Qi Cheng; Guanyu Wang; Washington Yotto Ochieng

    2017-01-01

    The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs’ flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in ...

  10. Risk-based reconfiguration of safety monitoring system using dynamic Bayesian network

    International Nuclear Information System (INIS)

    Kohda, Takehisa; Cui Weimin

    2007-01-01

    To prevent an abnormal event from leading to an accident, the role of its safety monitoring system is very important. The safety monitoring system detects symptoms of an abnormal event to mitigate its effect at its early stage. As the operation time passes by, the sensor reliability decreases, which implies that the decision criteria of the safety monitoring system should be modified depending on the sensor reliability as well as the system reliability. This paper presents a framework for the decision criteria (or diagnosis logic) of the safety monitoring system. The logic can be dynamically modified based on sensor output data monitored at regular intervals to minimize the expected loss caused by two types of safety monitoring system failure events: failed-dangerous (FD) and failed-safe (FS). The former corresponds to no response under an abnormal system condition, while the latter implies a spurious activation under a normal system condition. Dynamic Bayesian network theory can be applied to modeling the entire system behavior composed of the system and its safety monitoring system. Using the estimated state probabilities, the optimal decision criterion is given to obtain the optimal diagnosis logic. An illustrative example of a three-sensor system shows the merits and characteristics of the proposed method, where the reasonable interpretation of sensor data can be obtained

  11. Water quality sensor

    International Nuclear Information System (INIS)

    Ishizuka, Keiko; Takahashi, Masanori; Watanabe, Atsushi; Ibe, Hidefumi.

    1994-01-01

    The sensor of the present invention can directly measure oxygen/hydrogen peroxide concentrations in reactor water under radiation irradiation condition, and it has a long life time. Namely, an oxygen sensor comprises electrodes attached on both sides of high temperature/radiation resistant ion conductive material in which ions are sufficiently diffused within a temperature range of from a room temperature to 300degC. It has a performance for measuring electromotive force caused by the difference of a partial pressure between a reference gas and a gas to be measured contained in the high temperature/radiation resistant material. A hydrogen peroxide sensor has the oxygen sensor described above, to which a filter for causing decomposition of hydrogen peroxide is attached. The sensor of the present invention can directly measure oxygen/hydrogen peroxide concentrations in a reactor water of a BWR type reactor under high temperature/radiation irradiation condition. Accordingly, accurate water quality environment in the reactor water can be recognized. As a result, determination of incore corrosion environment is established thereby enabling to attain reactor integrity, safety and long life. (I.S.)

  12. Management concepts and safety applications for nuclear fuel facilities

    International Nuclear Information System (INIS)

    Eisner, H.; Scotti, R.S.

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities

  13. Safety cost management in construction companies: A proposal classification.

    Science.gov (United States)

    López-Alonso, M; Ibarrondo-Dávila, M P; Rubio, M C

    2016-06-16

    Estimating health and safety costs in the construction industry presents various difficulties, including the complexity of cost allocation, the inadequacy of data available to managers and the absence of an accounting model designed specifically for safety cost management. Very often, the costs arising from accidents in the workplace are not fully identifiable due to the hidden costs involved. This paper reviews some studies of occupational health and safety cost management and proposes a means of classifying these costs. We conducted an empirical study in which the health and safety costs of 40 construction worksites are estimated. A new classification of the health and safety cost and its categories is proposed: Safety and non-safety costs. The costs of the company's health and safety policy should be included in the information provided by the accounting system, as a starting point for analysis and control. From this perspective, a classification of health and safety costs and its categories is put forward.

  14. Management concepts and safety applications for nuclear fuel facilities

    Energy Technology Data Exchange (ETDEWEB)

    Eisner, H.; Scotti, R.S. [George Washington Univ., Washington, DC (United States). School of Engineering and Applied Science; Delicate, W.S. [KEVRIC Co., Inc., Silver Spring, MD (United States)

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities.

  15. Application of a sensor array based on capillary-attached conductive gas sensors for odor identification

    International Nuclear Information System (INIS)

    Bahraminejad, Behzad; Basri, Shahnor; Isa, Maryam; Hambali, Zarida

    2010-01-01

    An electronic nose based on an array of capillary-attached conductive gas sensors was fabricated. The identification ability of the developed structure was investigated by employing different categories of simple and complex odor databases. Feature data sets were generated from the dynamic and steady state responses of the sensor array to the applied odor databases. Combinations of different feature extraction and classification methods were used to detect target gases. Validation of each technique was evaluated. Achievements of the study proved high classification rates of the fabricated e-nose in odor identification. It was indicated that gas identification is possible by applying the early selected portion of transient responses of the developed sensor array. The ability of the mentioned structure in analyzing gas mixtures was also investigated. The results presented high accuracy in the classification of gas mixtures

  16. A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web

    Science.gov (United States)

    de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández

    2014-01-01

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678

  17. 14 CFR 25.303 - Factor of safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Factor of safety. 25.303 Section 25.303... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure General § 25.303 Factor of safety. Unless otherwise specified, a factor of safety of 1.5 must be applied to the prescribed limit load which are considered...

  18. 14 CFR 29.303 - Factor of safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Factor of safety. 29.303 Section 29.303... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements General § 29.303 Factor of safety. Unless otherwise provided, a factor of safety of 1.5 must be used. This factor applies to external and inertia...

  19. 14 CFR 27.303 - Factor of safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Factor of safety. 27.303 Section 27.303... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements General § 27.303 Factor of safety. Unless otherwise provided, a factor of safety of 1.5 must be used. This factor applies to external and inertia...

  20. Fabrication of 3-methoxyphenol sensor based on Fe3O4 decorated carbon nanotube nanocomposites for environmental safety: Real sample analyses.

    Directory of Open Access Journals (Sweden)

    Mohammed M Rahman

    Full Text Available Iron oxide ornamented carbon nanotube nanocomposites (Fe3O4.CNT NCs were prepared by a wet-chemical process in basic means. The optical, morphological, and structural characterizations of Fe3O4.CNT NCs were performed using FTIR, UV/Vis., FESEM, TEM; XEDS, XPS, and XRD respectively. Flat GCE had been fabricated with a thin-layer of NCs using a coating binding agent. It was performed for the chemical sensor development by a dependable I-V technique. Among all interfering analytes, 3-methoxyphenol (3-MP was selective towards the fabricated sensor. Increased electrochemical performances for example elevated sensitivity, linear dynamic range (LDR and continuing steadiness towards selective 3-MP had been observed with chemical sensor. The calibration graph found linear (R2 = 0.9340 in a wide range of 3-MP concentration (90.0 pM ~ 90.0 mM. The limit of detection and sensitivity were considered as 1.0 pM and 9×10-4 μAμM-1cm-2 respectively. The prepared of Fe3O4.CNT NCs by a wet-chemical progression is an interesting route for the development of hazardous phenolic sensor based on nanocomposite materials. It is also recommended that 3-MP sensor is exhibited a promising performances based on Fe3O4.CNT NCs by a facile I-V method for the significant applications of toxic chemicals for the safety of environmental and health-care fields.

  1. Airfield Ground Safety

    National Research Council Canada - National Science Library

    Petrescu, Jon

    2000-01-01

    .... The system developed under AGS, called the Ground Safety Tracking and Reporting System, uses multisensor data fusion from in-pavement inductive loop sensors to address a critical problem affecting out nation's airports: runway incursions...

  2. Rain Simulation for the Test of Automotive Surround Sensors

    Science.gov (United States)

    Hasirlioglu, Sinan; Riener, Andreas; Doric, Igor

    2017-04-01

    The WHO Global Health Observatory data indicates that over 1.25 million people die in traffic accidents annually. To save lives, car manufacturers spend lot of efforts on the development of novel safety systems aiming to avoid or mitigate accidents and provide maximum protection for vehicle occupants as well as vulnerable road users. All the safety features mainly rely on data from surround sensors such as radar, lidar and camera and intelligent vehicles today use these environmental data for instant decision making and vehicle control. As already small errors in sensor data measurements could lead to catastrophes like major injuries or road traffic fatalities, it is of utmost importance to ensure high reliability and accuracy of sensors and safety systems. This work focuses on the influence of environmental factors such as rain conditions, as it is known that rain drops scatter the electromagnetic waves. The result is incorrect measurements with a direct negative impact on environment detection. To identify potential problems of sensors under varying environmental conditions, systems are today tested in real-world settings with two main problems: First, tests are time-consuming and second, environmental conditions are not reproducible. Our approach to test the influence of weather on automotive sensors is to use an indoor rain simulator. Our artificial rain maker, installed at CARISSMA (Center of Automotive Research on Integrated Safety Systems and Measurement Area), is parametrized with rain characteristics measured in the field using a standard disdrometer. System behavior on artificial rain is compared and validated with natural rainfall. With this simulator it is finally possible to test environmental influence at various levels and under reproducible conditions. This saves lot of efforts required for the test process itself and furthermore has a positive impact on the reliability of sensor systems due to the fact that test driven development is enabled.

  3. A Formal Approach to the Selection by Minimum Error and Pattern Method for Sensor Data Loss Reduction in Unstable Wireless Sensor Network Communications

    OpenAIRE

    Kim, Changhwa; Shin, DongHyun

    2017-01-01

    There are wireless networks in which typically communications are unsafe. Most terrestrial wireless sensor networks belong to this category of networks. Another example of an unsafe communication network is an underwater acoustic sensor network (UWASN). In UWASNs in particular, communication failures occur frequently and the failure durations can range from seconds up to a few hours, days, or even weeks. These communication failures can cause data losses significant enough to seriously damage...

  4. Nursing home safety: does financial performance matter?

    Science.gov (United States)

    Oetjen, Reid M; Zhao, Mei; Liu, Darren; Carretta, Henry J

    2011-01-01

    This study examines the relationship between financial performance and selected safety measures of nursing homes in the State of Florida. We used descriptive analysis on a total sample of 1,197. Safety information was from the Online Survey, Certification and Reporting (OSCAR) data of 2003 to 2005, while the financial performance measures were from the Medicare cost reports of 2002 to 2004. Finally, we examined the most frequently cited deficiencies as well as the relationship between financial performance and quality indicators. Nursing homes in the bottom quartile of financial performance perform poorly on most resident-safety measures of care; however, nursing homes in the top two financial categories also experienced a higher number of deficiencies. Nursing homes in the next to lowest quartile of financial performance category best perform on most of these safety measures. The results reinforce the need to monitor nursing home quality and resident safety in US nursing homes, especially among facilities with poor overall financial performance.

  5. Category-length and category-strength effects using images of scenes.

    Science.gov (United States)

    Baumann, Oliver; Vromen, Joyce M G; Boddy, Adam C; Crawshaw, Eloise; Humphreys, Michael S

    2018-06-21

    Global matching models have provided an important theoretical framework for recognition memory. Key predictions of this class of models are that (1) increasing the number of occurrences in a study list of some items affects the performance on other items (list-strength effect) and that (2) adding new items results in a deterioration of performance on the other items (list-length effect). Experimental confirmation of these predictions has been difficult, and the results have been inconsistent. A review of the existing literature, however, suggests that robust length and strength effects do occur when sufficiently similar hard-to-label items are used. In an effort to investigate this further, we had participants study lists containing one or more members of visual scene categories (bathrooms, beaches, etc.). Experiments 1 and 2 replicated and extended previous findings showing that the study of additional category members decreased accuracy, providing confirmation of the category-length effect. Experiment 3 showed that repeating some category members decreased the accuracy of nonrepeated members, providing evidence for a category-strength effect. Experiment 4 eliminated a potential challenge to these results. Taken together, these findings provide robust support for global matching models of recognition memory. The overall list lengths, the category sizes, and the number of repetitions used demonstrated that scene categories are well-suited to testing the fundamental assumptions of global matching models. These include (A) interference from memories for similar items and contexts, (B) nondestructive interference, and (C) that conjunctive information is made available through a matching operation.

  6. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the System-Wide Safety and Assurance Technologies Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2015-01-01

    The Aviation Safety Program (AvSP) System-Wide Safety and Assurance Technologies (SSAT) Project asked the AvSP Systems and Portfolio Analysis Team to identify SSAT-related trends. SSAT had four technical challenges: advance safety assurance to enable deployment of NextGen systems; automated discovery of precursors to aviation safety incidents; increasing safety of human-automation interaction by incorporating human performance, and prognostic algorithm design for safety assurance. This report reviews incident data from the NASA Aviation Safety Reporting System (ASRS) for system-component-failure- or-malfunction- (SCFM-) related and human-factor-related incidents for commercial or cargo air carriers (Part 121), commuter airlines (Part 135), and general aviation (Part 91). The data was analyzed by Federal Aviation Regulations (FAR) part, phase of flight, SCFM category, human factor category, and a variety of anomalies and results. There were 38 894 SCFM-related incidents and 83 478 human-factorrelated incidents analyzed between January 1993 and April 2011.

  7. Sensor fusion for mobile robot navigation

    International Nuclear Information System (INIS)

    Kam, M.; Zhu, X.; Kalata, P.

    1997-01-01

    The authors review techniques for sensor fusion in robot navigation, emphasizing algorithms for self-location. These find use when the sensor suite of a mobile robot comprises several different sensors, some complementary and some redundant. Integrating the sensor readings, the robot seeks to accomplish tasks such as constructing a map of its environment, locating itself in that map, and recognizing objects that should be avoided or sought. The review describes integration techniques in two categories: low-level fusion is used for direct integration of sensory data, resulting in parameter and state estimates; high-level fusion is used for indirect integration of sensory data in hierarchical architectures, through command arbitration and integration of control signals suggested by different modules. The review provides an arsenal of tools for addressing this (rather ill-posed) problem in machine intelligence, including Kalman filtering, rule-based techniques, behavior based algorithms and approaches that borrow from information theory, Dempster-Shafer reasoning, fuzzy logic and neural networks. It points to several further-research needs, including: robustness of decision rules; simultaneous consideration of self-location, motion planning, motion control and vehicle dynamics; the effect of sensor placement and attention focusing on sensor fusion; and adaptation of techniques from biological sensor fusion

  8. Design guide for Category III reactors: pool type reactors

    International Nuclear Information System (INIS)

    Brynda, W.J.; Lobner, P.R.; Powell, R.W.; Straker, E.A.

    1978-11-01

    The Department of Energy (DOE) in the ERDA Manual requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification, operation, maintenance, and decommissioning of DOE-owned reactors be in accordance with generally uniform standards, guides, and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirement of Category III reactor structures, components, and systems

  9. Fault-tolerant system for catastrophic faults in AMR sensors

    NARCIS (Netherlands)

    Zambrano Constantini, A.C.; Kerkhoff, Hans G.

    Anisotropic Magnetoresistance angle sensors are widely used in automotive applications considered to be safety-critical applications. Therefore dependability is an important requirement and fault-tolerant strategies must be used to guarantee the correct operation of the sensors even in case of

  10. Safety Computer Vision Rules for Improved Sensor Certification

    DEFF Research Database (Denmark)

    Mogensen, Johann Thor Ingibergsson; Kraft, Dirk; Schultz, Ulrik Pagh

    2017-01-01

    Mobile robots are used across many domains from personal care to agriculture. Working in dynamic open-ended environments puts high constraints on the robot perception system, which is critical for the safety of the system as a whole. To achieve the required safety levels the perception system needs...... to be certified, but no specific standards exist for computer vision systems, and the concept of safe vision systems remains largely unexplored. In this paper we present a novel domain-specific language that allows the programmer to express image quality detection rules for enforcing safety constraints...

  11. Long-term monitoring FBG-based cable load sensor

    Science.gov (United States)

    Zhang, Zhichun; Zhou, Zhi; Wang, Chuan; Ou, Jinping

    2006-03-01

    Stay cables are the main load-bearing components of stayed-cable bridges. The cables stress status is an important factor to the stayed-cable bridge structure safety evaluation. So it's very important not only to the bridge construction, but also to the long-term safety evaluation for the bridge structure in-service. The accurate measurement for cable load depends on an effective sensor, especially to meet the long time durability and measurement demand. FBG, for its great advantage of corrosion resistance, absolute measurement, high accuracy, electro-magnetic resistance, quasi-distribution sensing, absolute measurement and so on, is the most promising sensor, which can cater for the cable force monitoring. In this paper, a load sensor has been developed, which is made up of a bushing elastic supporting body, 4 FBGs uniformly-spaced attached outside of the bushing supporting body, and a temperature compensation FBG for other four FBGs, moreover a cover for protection of FBGs. Firstly, the sensor measuring principle is analyzed, and relationship equation of FBG wavelength shifts and extrinsic load has also been gotten. And then the sensor calibration experiments of a steel cable stretching test with the FBG load sensor and a reference electric pressure sensor is finished, and the results shows excellent linearity of extrinsic load and FBG wavelength shifts, and good repeatability, which indicates that such kind of FBG-based load sensor is suitable for load measurement, especially for long-term, real time monitoring of stay-cables.

  12. Can height categories replace weight categories in striking martial arts competitions? A pilot study.

    Science.gov (United States)

    Dubnov-Raz, Gal; Mashiach-Arazi, Yael; Nouriel, Ariella; Raz, Raanan; Constantini, Naama W

    2015-09-29

    In most combat sports and martial arts, athletes compete within weight categories. Disordered eating behaviors and intentional pre-competition rapid weight loss are commonly seen in this population, attributed to weight categorization. We examined if height categories can be used as an alternative to weight categories for competition, in order to protect the health of athletes. Height and weight of 169 child and adolescent competitive karate athletes were measured. Participants were divided into eleven hypothetical weight categories of 5 kg increments, and eleven hypothetical height categories of 5 cm increments. We calculated the coefficient of variation of height and weight by each division method. We also calculated how many participants fit into corresponding categories of both height and weight, and how many would shift a category if divided by height. There was a high correlation between height and weight (r = 0.91, p<0.001). The mean range of heights seen within current weight categories was reduced by 83% when participants were divided by height. When allocating athletes by height categories, 74% of athletes would shift up or down one weight category at most, compared with the current categorization method. We conclude that dividing young karate athletes by height categories significantly reduced the range of heights of competitors within the category. Such categorization would not cause athletes to compete against much heavier opponents in most cases. Using height categories as a means to reduce eating disorders in combat sports should be further examined.

  13. B plant/WESF integrated annual safety appraisal

    International Nuclear Information System (INIS)

    Anderson, J.K.

    1990-12-01

    This report provides the results of the Fiscal Year 1990 Annual Integrated Safety Appraisal of the B Plant and Waste Encapsulation and Storage Facility in the Hanford Site 200 East Area. The appraisal was conducted in August and September 1990, by the Defense Waste Disposal Safety group, in conjunction with Health Physics and Emergency Preparedness. Reports of these three organizations for their areas of responsibility are presented. The purpose of the appraisal was to determine if the areas being appraised meet US Department of Energy (DOE) and Westinghouse Hanford Company (WHC) requirements and current industry standards of good practice. A further purpose was to identify areas in which program effectiveness could be improved. In accordance with the guidance of WHC Management Requirements and Procedures 5.6, previously identified deficiencies which are being resolved by line management were not repeated as Findings or Observations unless progress or intended disposition was considered to be unsatisfactory. The overall assessment is that there are no major safety problems associated with current operations. Programs are in place to provide the necessary safety controls, evaluations, overviews, and support. In most respects these programs are being implemented effectively. However, there are a number of deficiencies in details of program design and implementation. The appraisal identified a total of 23 Findings and 27 Observations of deficiencies. All Observations are Seriousness Category 3. Fifteen Findings were Category 2 and 8 were Category 3. Most of the Category 2 Findings were so categorized on the basis of noncompliance with mandatory DOE Orders or WHC policies and procedures, rather than potential risk to personnel

  14. From groups to categorial algebra introduction to protomodular and mal’tsev categories

    CERN Document Server

    Bourn, Dominique

    2017-01-01

    This book gives a thorough and entirely self-contained, in-depth introduction to a specific approach to group theory, in a large sense of that word. The focus lie on the relationships which a group may have with other groups, via “universal properties”, a view on that group “from the outside”. This method of categorical algebra, is actually not limited to the study of groups alone, but applies equally well to other similar categories of algebraic objects. By introducing protomodular categories and Mal’tsev categories, which form a larger class, the structural properties of the category Gp of groups, show how they emerge from four very basic observations about the algebraic litteral calculus and how, studied for themselves at the conceptual categorical level, they lead to the main striking features of the category Gp of groups. Hardly any previous knowledge of category theory is assumed, and just a little experience with standard algebraic structures such as groups and monoids. Examples and exercises...

  15. Localization Algorithms of Underwater Wireless Sensor Networks: A Survey

    Science.gov (United States)

    Han, Guangjie; Jiang, Jinfang; Shu, Lei; Xu, Yongjun; Wang, Feng

    2012-01-01

    In Underwater Wireless Sensor Networks (UWSNs), localization is one of most important technologies since it plays a critical role in many applications. Motivated by widespread adoption of localization, in this paper, we present a comprehensive survey of localization algorithms. First, we classify localization algorithms into three categories based on sensor nodes’ mobility: stationary localization algorithms, mobile localization algorithms and hybrid localization algorithms. Moreover, we compare the localization algorithms in detail and analyze future research directions of localization algorithms in UWSNs. PMID:22438752

  16. Resolving the Ferrocyanide Safety Issue at the Hanford Site

    International Nuclear Information System (INIS)

    Meacham, J.E.; Cash, R.J.; Babad, H.

    1994-02-01

    Considerable data have been obtained on the chemical and physical properties of ferrocyanide waste stored in Hanford Site single-shell tanks (SSTs). Theoretical analyses and ferrocyanide waste simulant studies have led to the development of fuel, moisture, and temperature criteria that define continued safe storage. Developing the criteria provides the technical basis for closing the Ferrocyanide Unreviewed Safety Question (USQ). Using the safety criteria, the ferrocyanide tanks have been ranked into one of three safety categories: Safe, Conditionally Safe, and Unsafe. All the ferrocyanide tanks are currently ranked in either the Safe or Conditionally Safe categories. Analyses of core samples taken from three ferrocyanide tanks have shown cyanide concentrations about a factor of ten lower than predicted by the original flowsheets. Hydrolytic and radiolytic destruction (aging) of the ferrocyanide matrix has occurred during the 35 plus years the waste has been stored at the Hanford Site. Because of waste aging, it is possible that all of the ferrocyanide tanks may now contain less than the 8 wt % sodium nickel ferrocyanide specified in the fuel criterion for the Safe category. Ferrocyanide tanks that remain in the Conditionally Safe category may require monitoring and surveillance to verify that the waste remains in an unreactive state. Further characterization of the tanks by core sampling and analyses should lead to resolution of the Ferrocyanide Safety Issue by September 1997

  17. Sleep Deprivation Attack Detection in Wireless Sensor Network

    Science.gov (United States)

    Bhattasali, Tapalina; Chaki, Rituparna; Sanyal, Sugata

    2012-02-01

    Deployment of sensor network in hostile environment makes it mainly vulnerable to battery drainage attacks because it is impossible to recharge or replace the battery power of sensor nodes. Among different types of security threats, low power sensor nodes are immensely affected by the attacks which cause random drainage of the energy level of sensors, leading to death of the nodes. The most dangerous type of attack in this category is sleep deprivation, where target of the intruder is to maximize the power consumption of sensor nodes, so that their lifetime is minimized. Most of the existing works on sleep deprivation attack detection involve a lot of overhead, leading to poor throughput. The need of the day is to design a model for detecting intrusions accurately in an energy efficient manner. This paper proposes a hierarchical framework based on distributed collaborative mechanism for detecting sleep deprivation torture in wireless sensor network efficiently. Proposed model uses anomaly detection technique in two steps to reduce the probability of false intrusion.

  18. Prospects for nuclear safety research

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  19. Traffic monitoring and modeling for Intersection Safety

    NARCIS (Netherlands)

    Pyykönen, P.; Molinier, M.; Klunder, G.A.

    2010-01-01

    The INTERSAFE-2 project aims to develop and demonstrate a Cooperative Intersection Safety System that is able to significantly reduce injury and fatal accidents at intersections. The cooperative sensor data fusion is based on state-of-the-art and advanced on-board sensors for object recognition and

  20. Validation and User Evaluation of a Sensor-Based Method for Detecting Mobility-Related Activities in Older Adults.

    Directory of Open Access Journals (Sweden)

    Hilde A E Geraedts

    Full Text Available Regular physical activity is essential for older adults to stay healthy and independent. However, daily physical activity is generally low among older adults and mainly consists of activities such as standing and shuffling around indoors. Accurate measurement of this low-energy expenditure daily physical activity is crucial for stimulation of activity. The objective of this study was to assess the validity of a necklace-worn sensor-based method for detecting time-on-legs and daily life mobility related postures in older adults. In addition user opinion about the practical use of the sensor was evaluated. Twenty frail and non-frail older adults performed a standardized and free movement protocol in their own home. Results of the sensor-based method were compared to video observation. Sensitivity, specificity and overall agreement of sensor outcomes compared to video observation were calculated. Mobility was assessed based on time-on-legs. Further assessment included the categories standing, sitting, walking and lying. Time-on-legs based sensitivity, specificity and percentage agreement were good to excellent and comparable to laboratory outcomes in other studies. Category-based sensitivity, specificity and overall agreement were moderate to excellent. The necklace-worn sensor is considered an acceptable valid instrument for assessing home-based physical activity based upon time-on-legs in frail and non-frail older adults, but category-based assessment of gait and postures could be further developed.

  1. Using a quantitative risk register to promote learning from a patient safety reporting system.

    Science.gov (United States)

    Mansfield, James G; Caplan, Robert A; Campos, John S; Dreis, David F; Furman, Cathie

    2015-02-01

    Patient safety reporting systems are now used in most health care delivery organizations. These systems, such as the one in use at Virginia Mason (Seattle) since 2002, can provide valuable reports of risk and harm from the front lines of patient care. In response to the challenge of how to quantify and prioritize safety opportunities, a risk register system was developed and implemented. Basic risk register concepts were refined to provide a systematic way to understand risks reported by staff. The risk register uses a comprehensive taxonomy of patient risk and algorithmically assigns each patient safety report to 1 of 27 risk categories in three major domains (Evaluation, Treatment, and Critical Interactions). For each category, a composite score was calculated on the basis of event rate, harm, and cost. The composite scores were used to identify the "top five" risk categories, and patient safety reports in these categories were analyzed in greater depth to find recurrent patterns of risk and associated opportunities for improvement. The top five categories of risk were easy to identify and had distinctive "profiles" of rate, harm, and cost. The ability to categorize and rank risks across multiple dimensions yielded insights not previously available. These results were shared with leadership and served as input for planning quality and safety initiatives. This approach provided actionable input for the strategic planning process, while at the same time strengthening the Virginia Mason culture of safety. The quantitative patient safety risk register serves as one solution to the challenge of extracting valuable safety lessons from large numbers of incident reports and could profitably be adopted by other organizations.

  2. Licensing system for primary category radioactive installations

    International Nuclear Information System (INIS)

    Ramirez Riquelme, Angelica Beatriz

    1997-01-01

    The development of a licensing system for primary category radioactive installations is described, which aims to satisfy the needs of the Chilean Nuclear Energy Commission's Department of Nuclear and Radiological Safety, particularly the sections for Licensing Outside Radioactive Installations and Safety Control. This system involves the identification, control and inspection of the installations, their personnel and connected activities, for the purpose of protecting the population's health and the environment. Following the basic cycle methodology, a systems analysis and engineering stage was prepared, establishing the functions of the system's elements and defining the requirements, based on interviews with the users. This stage was followed by the design stage, focusing on the data structure, the software architecture and the procedural detail. The codification stage followed, which translated the design into legible machine-readable format. In the testing stage, the entries that were defined were proven to produce the expected data. Finally and operational and maintenance stage was developed, when the system was installed and put to use. All the above generated a useful system for the Licensing section of the Department of Nuclear and Radiological Safety, since it provides faster and easier access to information. A project is described that introduces new development tools in the Computer department following standards established by the C.CH.E.N. (author)

  3. Corrosion Detection of Reinforcement of Building Materials with Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Jia Peng

    2017-06-01

    Full Text Available The extensive use of reinforced materials in the construction industry has raised increased concerns about their safety and durability, while corrosion detection of steel materials is becoming increasingly important. For the scientific management, timely repair and health monitoring of construction materials, as well as to ensure construction safety and prevent accidents, this paper investigates corrosion detection on construction materials based on piezoelectric sensors. At present, the commonly used corrosion detection methods include physical and electrochemical methods, but there are shortcomings such as large equipment area, low detection frequency, and complex operation. In this study an improved piezoelectric ultrasonic sensor was designed, which could not only detect the internal defects of buildings while not causing structural damage, but also realize continuous detection and enable qualitative and quantitative assessment. Corrosion detection of reinforced building materials with piezoelectric sensors is quick and accurate, which can find hidden dangers and provide a reliable basis for the safety of the buildings.

  4. Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network

    Directory of Open Access Journals (Sweden)

    Susel Fernandez

    2016-08-01

    Full Text Available Intelligent transportation systems are a set of technological solutions used to improve the performance and safety of road transportation. A crucial element for the success of these systems is the exchange of information, not only between vehicles, but also among other components in the road infrastructure through different applications. One of the most important information sources in this kind of systems is sensors. Sensors can be within vehicles or as part of the infrastructure, such as bridges, roads or traffic signs. Sensors can provide information related to weather conditions and traffic situation, which is useful to improve the driving process. To facilitate the exchange of information between the different applications that use sensor data, a common framework of knowledge is needed to allow interoperability. In this paper an ontology-driven architecture to improve the driving environment through a traffic sensor network is proposed. The system performs different tasks automatically to increase driver safety and comfort using the information provided by the sensors.

  5. Directory of Academic Programs in Occupational Safety and Health.

    Science.gov (United States)

    Weis, William J., III; And Others

    This booklet describes academic program offerings in American colleges and universities in the area of occupational safety and health. Programs are divided into five major categories, corresponding to each of the core disciplines: (1) occupational safety and health/industrial hygiene, (2) occupational safety, (3) industrial hygiene, (4)…

  6. Experience gained with capacitive pressure sensor noise analysis

    International Nuclear Information System (INIS)

    Ballestrin, J.; Blazquez, J.

    1996-01-01

    Due to safety requirements, pressure sensors in a nuclear power plant must be kept under surveillance. The dynamics of the capacitive type Rosemount sensors is known. Sensor response time to a pressure ramp is the usual quantity required and it can be calculated. The noise signals contain the sensor dynamics, but in this case other irrelevant information from the plant is held, which disturbs the results. So, the signals must be conditioned previously. Also, it is necessary to do a process in order to separate the pressure sensor dynamics and to get a stationary signal. This can be done by using the autocorrelation function and filtering. Deterministic steps have been made and a relationship between the sensor response time, and the static pressure has been found. (author)

  7. The impact of category structure and training methodology on learning and generalizing within-category representations.

    Science.gov (United States)

    Ell, Shawn W; Smith, David B; Peralta, Gabriela; Hélie, Sébastien

    2017-08-01

    When interacting with categories, representations focused on within-category relationships are often learned, but the conditions promoting within-category representations and their generalizability are unclear. We report the results of three experiments investigating the impact of category structure and training methodology on the learning and generalization of within-category representations (i.e., correlational structure). Participants were trained on either rule-based or information-integration structures using classification (Is the stimulus a member of Category A or Category B?), concept (e.g., Is the stimulus a member of Category A, Yes or No?), or inference (infer the missing component of the stimulus from a given category) and then tested on either an inference task (Experiments 1 and 2) or a classification task (Experiment 3). For the information-integration structure, within-category representations were consistently learned, could be generalized to novel stimuli, and could be generalized to support inference at test. For the rule-based structure, extended inference training resulted in generalization to novel stimuli (Experiment 2) and inference training resulted in generalization to classification (Experiment 3). These data help to clarify the conditions under which within-category representations can be learned. Moreover, these results make an important contribution in highlighting the impact of category structure and training methodology on the generalization of categorical knowledge.

  8. A virtual infrastructure based on honeycomb tessellation for data dissemination in multi-sink mobile wireless sensor networks

    NARCIS (Netherlands)

    Erman-Tüysüz, A.; Dilo, Arta; Havinga, Paul J.M.

    2012-01-01

    A new category of intelligent sensor network applications emerges where motion is a fundamental characteristic of the system under consideration. In such applications, sensors are attached to vehicles, or people that move around large geographic areas. For instance, in mission critical applications

  9. 16 CFR 1211.11 - Requirements for photoelectric sensors.

    Science.gov (United States)

    2010-01-01

    ....11 Section 1211.11 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY...) long. The obstruction is to be centered under the door perpendicular to the plane of the door when in... photoelectric sensor's beam from a position 45 degrees from the plane of the door when in the closed position...

  10. Self-assembled micro-structured sensors for food safety in paper based food packaging

    Energy Technology Data Exchange (ETDEWEB)

    Hakovirta, M., E-mail: marko.hakovirta@storaenso.com; Aksoy, B.; Hakovirta, J.

    2015-08-01

    Natural self-assembled microstructured particles (diatomaceous earth) were used to develop a gas sensor paper with detection mechanism based on visible and distinct color changes of the sensor paper when exposed to volatile basic nitrogen compounds. The coating formulation for paper was prepared by applying diatomites, polyvinyl alcohol (PVOH), and pH sensitive dyes on acidic paper substrate. The surface coating was designed to allow a maximum gas flow through the diatomite sensors. The produced sensor paper was tested for sensitivity using different ammonia concentrations and we observed a sensitivity lower limit at 63 ppm. As a comparison, the results show comparable sensitivity levels to carbon nanotube based sensor technologies reported in literature. - Highlights: • Novel sensor paper was developed using micro-structured diatomaceous earth and pH sensitive dye. • The functionality is based on pH sensitive dye to indicate spoilage of meat or fish by color change. • Diatomaceous earth was successfully immobilized to the polyvinyl alcohol coating. • The coating was engineered to maximize the exposure of the diatom morphology. • The sensor paper achieved very high sensitivities for ammonia gas detection.

  11. Self-assembled micro-structured sensors for food safety in paper based food packaging

    International Nuclear Information System (INIS)

    Hakovirta, M.; Aksoy, B.; Hakovirta, J.

    2015-01-01

    Natural self-assembled microstructured particles (diatomaceous earth) were used to develop a gas sensor paper with detection mechanism based on visible and distinct color changes of the sensor paper when exposed to volatile basic nitrogen compounds. The coating formulation for paper was prepared by applying diatomites, polyvinyl alcohol (PVOH), and pH sensitive dyes on acidic paper substrate. The surface coating was designed to allow a maximum gas flow through the diatomite sensors. The produced sensor paper was tested for sensitivity using different ammonia concentrations and we observed a sensitivity lower limit at 63 ppm. As a comparison, the results show comparable sensitivity levels to carbon nanotube based sensor technologies reported in literature. - Highlights: • Novel sensor paper was developed using micro-structured diatomaceous earth and pH sensitive dye. • The functionality is based on pH sensitive dye to indicate spoilage of meat or fish by color change. • Diatomaceous earth was successfully immobilized to the polyvinyl alcohol coating. • The coating was engineered to maximize the exposure of the diatom morphology. • The sensor paper achieved very high sensitivities for ammonia gas detection

  12. Chemical Gas Sensors for Aeronautic and Space Applications 2

    Science.gov (United States)

    Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.

  13. Chemical Gas Sensors for Aeronautics and Space Applications III

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. Y.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, Z.; Hammond, J.; Makel, D.; Liu, M.; hide

    1999-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  14. Safety and security of radioactive sources in Taiwan

    International Nuclear Information System (INIS)

    Tsay Yeousong; Guan Channan; Cheng Yungfu

    2008-01-01

    In Taiwan, the safety and security of radioactive sources is a high priority issue. Ionizing Radiation Protection Act (IRPA) and correlating regulations had been in place for effective control of the safety and security of radioactive sources since 2003. For increased control of sealed radioactive sources, Atomic Energy Council (AEC) established in March 2004 an online reporting system through the Internet, assisting source owners in reporting their sources every month. To conform to the Code of Conduct on the Safety and Security of Radioactive Sources and the Categorization of radioactive sources, published by the International Atomic Energy Agency (IAEA), AEC has taken the following actions: 1. Established an inventory of Categories 1 and 2 radioactive sources, and implemented the Import/Export Provisions of the Code. 2. Required that each licensee shall control access to Categories 1 and 2 radioactive sources, and AEC will conduct project inspection on Categories 1 and 2 radioactive sources. 3. Using a new radiation warning symbol by ISO for Categories 1 and 2 radioactive sources. The reinforcement of orphaned source control was implemented as early as 1995. All steel mills have installed radiation detectors to scan incoming metal scrap to prevent accidental smelting of radioactive sources. The results of this effort will be discussed in the paper. The above measures are examples for demonstrating AEC's commitment to reinforced control of radioactive sources. AEC will continue to protect public safety and security, ensuring that Taiwan's regulatory system in radiation protection conforms to international standards. (author)

  15. 340 waste handling facility interim safety basis

    Energy Technology Data Exchange (ETDEWEB)

    VAIL, T.S.

    1999-04-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  16. 340 waste handling facility interim safety basis

    International Nuclear Information System (INIS)

    VAIL, T.S.

    1999-01-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people

  17. Encoding tasks dissociate the effects of divided attention on category-cued recall and category-exemplar generation.

    Science.gov (United States)

    Parker, Andrew; Dagnall, Neil; Munley, Gary

    2012-01-01

    The combined effects of encoding tasks and divided attention upon category-exemplar generation and category-cued recall were examined. Participants were presented with pairs of words each comprising a category name and potential example of that category. They were then asked to indicate either (i) their liking for both of the words or (ii) if the exemplar was a member of the category. It was found that divided attention reduced performance on the category-cued recall task under both encoding conditions. However, performance on the category-exemplar generation task remained invariant across the attention manipulation following the category judgment task. This provides further evidence that the processes underlying performance on conceptual explicit and implicit memory tasks can be dissociated, and that the intentional formation of category-exemplar associations attenuates the effects of divided attention on category-exemplar generation.

  18. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications.

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori

    2017-08-28

    Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.

  19. Computing color categories

    NARCIS (Netherlands)

    Yendrikhovskij, S.N.; Rogowitz, B.E.; Pappas, T.N.

    2000-01-01

    This paper is an attempt to develop a coherent framework for understanding, modeling, and computing color categories. The main assumption is that the structure of color category systems originates from the statistical structure of the perceived color environment. This environment can be modeled as

  20. Chemical gas sensors and the characterization, monitoring and sensor technology needs of the US Department of Energy

    International Nuclear Information System (INIS)

    Bastiaans, G.J.; Haas, W.J. Jr.; Junk, G.A.

    1993-01-01

    The Office of Technology Development within the Dept. of Energy (DOE) has the responsibility of providing new technologies to aid the environmental restoration and waste management (ER/WM) activities of the DOE. There is a perception that application and judicious development of chemical sensor technologies could result in large cost savings and reduced risk to the health and safety of ER/WM personnel. A number of potential gas sensor applications which exist within DOE ER/WM operations are described. The capabilities of several chemical sensor technologies and their potential to meet the needs of ER/WM applications in the present or near term future are discussed

  1. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS2 2015. 14th international conference on infrared sensors and systems. Proceedings

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS 2 (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS 2 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical modulators; F.3

  2. Category I structures program

    International Nuclear Information System (INIS)

    Endebrock, E.G.; Dove, R.C.

    1981-01-01

    The objective of the Category I Structure Program is to supply experimental and analytical information needed to assess the structural capacity of Category I structures (excluding the reactor cntainment building). Because the shear wall is a principal element of a Category I structure, and because relatively little experimental information is available on the shear walls, it was selected as the test element for the experimental program. The large load capacities of shear walls in Category I structures dictates that the experimental tests be conducted on small size shear wall structures that incorporates the general construction details and characteristics of as-built shear walls

  3. 16 CFR 1211.12 - Requirements for edge sensors.

    Science.gov (United States)

    2010-01-01

    ... Section 1211.12 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... that the axis is perpendicular to the plane of the door. For an edge sensor intended to be used on a... direction perpendicular to the plane of the door. See figure 6. (2) With respect to the test of paragraph (a...

  4. A 2-year study of patient safety competency assessment in 29 clinical laboratories.

    Science.gov (United States)

    Reed, Robyn C; Kim, Sara; Farquharson, Kara; Astion, Michael L

    2008-06-01

    Competency assessment is critical for laboratory operations and is mandated by the Clinical Laboratory Improvement Amendments of 1988. However, no previous reports describe methods for assessing competency in patient safety. We developed and implemented a Web-based tool to assess performance of 875 laboratory staff from 29 laboratories in patient safety. Question categories included workplace culture, categorizing error, prioritization of patient safety interventions, strength of specific interventions, and general patient safety concepts. The mean score was 85.0%, with individual scores ranging from 56% to 100% and scores by category from 81.3% to 88.6%. Of the most difficult questions (laboratory technologists. Computer-based competency assessments help laboratories identify topics for continuing education in patient safety.

  5. Relationship between organizational justice and organizational safety climate: do fairness perceptions influence employee safety behaviour?

    Science.gov (United States)

    Gyekye, Seth Ayim; Haybatollahi, Mohammad

    2014-01-01

    This study investigated the relationships between organizational justice, organizational safety climate, job satisfaction, safety compliance and accident frequency. Ghanaian industrial workers participated in the study (N = 320). Safety climate and justice perceptions were assessed with Hayes, Parender, Smecko, et al.'s (1998) and Blader and Tyler's (2003) scales respectively. A median split was performed to dichotomize participants into 2 categories: workers with positive and workers with negative justice perceptions. Confirmatory factors analysis confirmed the 5-factor structure of the safety scale. Regression analyses and t tests indicated that workers with positive fairness perceptions had constructive perspectives regarding workplace safety, expressed greater job satisfaction, were more compliant with safety policies and registered lower accident rates. These findings provide evidence that the perceived level of fairness in an organization is closely associated with workplace safety perception and other organizational factors which are important for safety. The implications for safety research are discussed.

  6. Self-Recovering Sensor-Actor Networks

    Directory of Open Access Journals (Sweden)

    Maryam Kamali

    2010-07-01

    Full Text Available Wireless sensor-actor networks are a recent development of wireless networks where both ordinary sensor nodes and more sophisticated and powerful nodes, called actors, are present. In this paper we formalize a recently introduced algorithm that recovers failed actor communication links via the existing sensor infrastructure. We prove via refinement that the recovery is terminating in a finite number of steps and is distributed, thus self-performed by the actors. Most importantly, we prove that the recovery can be done at different levels, via different types of links, such as direct actor links or indirect links between the actors, in the latter case reusing the wireless infrastructure of sensors. This leads to identifying coordination classes, e.g., for delegating the most security sensitive coordination to the direct actor-actor coordination links, the least real-time constrained coordination to indirect links, and the safety critical coordination to both direct actor links and indirect sensor paths between actors. Our formalization is done using the theorem prover in the RODIN platform.

  7. Key handling in wireless sensor networks

    International Nuclear Information System (INIS)

    Li, Y; Newe, T

    2007-01-01

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided

  8. Key handling in wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y; Newe, T [Optical Fibre Sensors Research Centre, Department of Electronic and Computer Engineering, University of Limerick, Limerick (Ireland)

    2007-07-15

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided.

  9. A Formal Approach to the Selection by Minimum Error and Pattern Method for Sensor Data Loss Reduction in Unstable Wireless Sensor Network Communications.

    Science.gov (United States)

    Kim, Changhwa; Shin, DongHyun

    2017-05-12

    There are wireless networks in which typically communications are unsafe. Most terrestrial wireless sensor networks belong to this category of networks. Another example of an unsafe communication network is an underwater acoustic sensor network (UWASN). In UWASNs in particular, communication failures occur frequently and the failure durations can range from seconds up to a few hours, days, or even weeks. These communication failures can cause data losses significant enough to seriously damage human life or property, depending on their application areas. In this paper, we propose a framework to reduce sensor data loss during communication failures and we present a formal approach to the Selection by Minimum Error and Pattern (SMEP) method that plays the most important role for the reduction in sensor data loss under the proposed framework. The SMEP method is compared with other methods to validate its effectiveness through experiments using real-field sensor data sets. Moreover, based on our experimental results and performance comparisons, the SMEP method has been validated to be better than others in terms of the average sensor data value error rate caused by sensor data loss.

  10. Research Update: Nanogenerators for self-powered autonomous wireless sensors

    Science.gov (United States)

    Khan, Usman; Hinchet, Ronan; Ryu, Hanjun; Kim, Sang-Woo

    2017-07-01

    Largely distributed networks of sensors based on the small electronics have great potential for health care, safety, and environmental monitoring. However, in order to have a maintenance free and sustainable operation, such wireless sensors have to be self-powered. Among various energies present in our environment, mechanical energy is widespread and can be harvested for powering the sensors. Piezoelectric and triboelectric nanogenerators (NGs) have been recently introduced for mechanical energy harvesting. Here we introduce the architecture and operational modes of self-powered autonomous wireless sensors. Thereafter, we review the piezoelectric and triboelectric NGs focusing on their working mechanism, structures, strategies, and materials.

  11. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS{sup 2} 2015. 14th international conference on infrared sensors and systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS{sup 2} (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS{sup 2} 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical

  12. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications †

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori

    2017-01-01

    Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954

  13. Safety upgrading program in NPP Mochovce

    International Nuclear Information System (INIS)

    Baumeister, P.

    1999-01-01

    EMO interest is to operate only nuclear power plants with high standards of nuclear safety. This aim EMO declare on preparation completion and commissioning of Mochovce Nuclear Power Plant. Wide co-operation of our company with International Atomic Energy Agency and west European Inst.ions and companies has been started with aim to fulfil the nuclear safety requirements for Mochovce NPP. Set of 87 safety measures was implemented at Mochovce Unit 1 and is under construction at Unit 2. Mochovce NPP approach to safety upgrading implementation is showed on chosen measures. This presentation is focused on the issues category III.(author)

  14. Vibration Energy Harvesting for SHM Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless sensors show enormous promise for safety improvements and cost reductions in monitoring the structural health of aircraft and spacecraft. A significant...

  15. Blocking in Category Learning

    OpenAIRE

    Bott, Lewis; Hoffman, Aaron B.; Murphy, Gregory L.

    2007-01-01

    Many theories of category learning assume that learning is driven by a need to minimize classification error. When there is no classification error, therefore, learning of individual features should be negligible. We tested this hypothesis by conducting three category learning experiments adapted from an associative learning blocking paradigm. Contrary to an error-driven account of learning, participants learned a wide range of information when they learned about categories, and blocking effe...

  16. 49 CFR 575.301 - Vehicle Labeling of Safety Rating Information.

    Science.gov (United States)

    2010-10-01

    ... providing them with safety rating information developed by NHTSA in its New Car Assessment Program (NCAP..., as specified at 15 U.S.C. 1231-1233. (2) Safety rating label means the label with NCAP safety rating... has approved an optional NCAP test that will cover that category, the manufacturer may depict vehicles...

  17. Safety analysis and synthesis using fuzzy sets and evidential reasoning

    International Nuclear Information System (INIS)

    Wang, J.; Yang, J.B.; Sen, P.

    1995-01-01

    This paper presents a new methodology for safety analysis and synthesis of a complex engineering system with a structure that is capable of being decomposed into a hierarchy of levels. In this methodology, fuzzy set theory is used to describe each failure event and an evidential reasoning approach is then employed to synthesise the information thus produced to assess the safety of the whole system. Three basic parameters--failure likelihood, consequence severity and failure consequence probability, are used to analyse a failure event. These three parameters are described by linguistic variables which are characterised by a membership function to the defined categories. As safety can also be clearly described by linguistic variables referred to as the safety expressions, the obtained fuzzy safety score can be mapped back to the safety expressions which are characterised by membership functions over the same categories. This mapping results in the identification of the safety of each failure event in terms of the degree to which the fuzzy safety score belongs to each of the safety expressions. Such degrees represent the uncertainty in safety evaluations and can be synthesised using an evidential reasoning approach so that the safety of the whole system can be evaluated in terms of these safety expressions. Finally, a practical engineering example is presented to demonstrate the proposed safety analysis and synthesis methodology

  18. Sensor technology for hazardous cargo transportation safety.

    Science.gov (United States)

    2013-08-01

    The overall goal of this research project was to develop oxidant vapor detection devices that can be : used to ensure the safety of hazardous freight transportation systems. Two nanotechnology-based : systems originally developed for improvised explo...

  19. Research on integrated managing system based on CIMS for nuclear power plant safety

    International Nuclear Information System (INIS)

    Zhou Gang

    2006-01-01

    In order to improve safety, economy and reliability of operation for nuclear power plant (NPP), a novel integrated managing method was proposed based on the ideas of computer and contemporary integrated manufacturing system (CIMS). The application of CIMS to nuclear power plant safety management was researched. In order to design an integrated managing system to meet the needs of NPP safety management, all work related to nuclear safety is divided into different category according to its characters. On basis of this work, general integrated managing system was designed at first. Then subsystems were designed and every subsystem implements a category of nuclear safety management work. All subsystems are independent relatively on the one hand and are interrelated on other hand by global information system. (authors)

  20. Limits on safety in technology

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1984-01-01

    Owing to the difficulty of establishing a clear and generally binding definition of the term ''safety'', an explanation has been given of the five typical and/or most frequently encountered categories of accident causes. Following quantification of the hazards with the aid of safety factors and reliability parameters, examples of component and system failures are discussed from the nuclear engineering sector, together with the results of risk studies. In conclusion the relationship between man and machine is outlined, taking due account of malfunctions and the prevention of hazards and the superordinate problem of technical safety and ethics is also mentioned. (orig.) [de

  1. Language categories in Russian morphology

    OpenAIRE

    زهرایی زهرایی

    2009-01-01

    When studying Russian morphology, one can distinguish two categories. These categories are “grammatical” and “lexico-grammatical”. Grammatical categories can be specified through a series of grammatical features of words. Considering different criteria, Russian grammarians and linguists divide grammatical categories of their language into different types. In determining lexico-grammatical types, in addition to a series of grammatical features, they also consider a series of lexico-semantic fe...

  2. 77 FR 6411 - Training, Qualification, and Oversight for Safety-Related Railroad Employees

    Science.gov (United States)

    2012-02-07

    ... Oversight for Safety-Related Railroad Employees AGENCY: Federal Railroad Administration (FRA), Department of... establishing minimum training standards for each category and subcategory of safety-related railroad employee... or contractor that employs one or more safety-related railroad employee to develop and submit a...

  3. Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges

    Science.gov (United States)

    Radi, Marjan; Dezfouli, Behnam; Bakar, Kamalrulnizam Abu; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks. PMID:22368490

  4. Multipath routing in wireless sensor networks: survey and research challenges.

    Science.gov (United States)

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks.

  5. Organizational Categories as Viewing Categories

    OpenAIRE

    Mik-Meyer, Nanna

    2005-01-01

    This paper explores how two Danish rehabilitation organizations textual guidelines for assessment of clients’ personality traits influence the actual evaluation of clients. The analysis will show how staff members produce institutional identities corresponding to organizational categories, which very often have little or no relevance for the clients evaluated. The goal of the article is to demonstrate how the institutional complex that frames the work of the organizations produces the client ...

  6. Hole Detection for Quantifying Connectivity in Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Pearl Antil

    2014-01-01

    Full Text Available Owing to random deployment, environmental factors, dynamic topology, and external attacks, emergence of holes in wireless sensor networks is inescapable. Hole is an area in sensor network around which sensors cease to sense or communicate due to drainage of battery or any fault, either temporary or permanent. Holes impair sensing and communication functions of network; thus their identification is a major concern. This paper discusses different types of holes and significance of hole detection in wireless sensor networks. Coverage hole detection schemes have been classified into three categories based on the type of information used by algorithms, computation model, and network dynamics for better understanding. Then, relative strengths and shortcomings of some of the existing coverage hole detection algorithms are discussed. The paper is concluded by highlighting various future research directions.

  7. Simplifying documentation while approaching site closure: integrated health and safety plans as documented safety analysis

    International Nuclear Information System (INIS)

    Brown, Tulanda

    2003-01-01

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). By isolating any remediation activities that deal with Enriched Restricted Materials, the SBRs and PRs assure that the hazard categories of former nuclear facilities undergoing remediation remain less than Nuclear. These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D and D) of over 150 structures, including six major nuclear production plants. This paper presents the FCP method for maintaining safety basis documentation, using the D and D I-HASP as an example

  8. Subject categories and scope descriptions

    International Nuclear Information System (INIS)

    2002-01-01

    This document is one in a series of publications known as the ETDE/INIS Joint Reference Series. It defines the subject categories and provides the scope descriptions to be used for categorization of the nuclear literature for the preparation of INIS and ETDE input by national and regional centres. Together with the other volumes of the INIS Reference Series it defines the rules, standards and practices and provides the authorities to be used in the International Nuclear Information System and ETDE. A complete list of the volumes published in the INIS Reference Series may be found on the inside front cover of this publication. This INIS/ETDE Reference Series document is intended to serve two purposes: to define the subject scope of the International Nuclear Information System (INIS) and the Energy Technology Data Exchange (ETDE) and to define the subject classification scheme of INIS and ETDE. It is thus the guide to the inputting centres in determining which items of literature should be reported, and in determining where the full bibliographic entry and abstract of each item should be included in INIS or ETDE database. Each category is identified by a category code consisting of three alphanumeric characters. A scope description is given for each subject category. The scope of INIS is the sum of the scopes of all the categories. With most categories cross references are provided to other categories where appropriate. Cross references should be of assistance in finding the appropriate category; in fact, by indicating topics that are excluded from the category in question, the cross references help to clarify and define the scope of the category to which they are appended. A Subject Index is included as an aid to subject classifiers, but it is only an aid and not a means for subject classification. It facilitates the use of this document, but is no substitute for the description of the scope of the subject categories

  9. Design and development of self-powered sensors on wireless sensor network for standalone plant critical data management during SBO and beyond design basis events

    International Nuclear Information System (INIS)

    Aparna, J.; Dulera, I.V.; Rama Rao, A.; Vijayan, P.K.

    2015-01-01

    Advanced reactors are designed with an aim of maximum safety, optimized fuel utilization and effective system design. Safety aspects in reactor designs are being viewed for all possible vulnerabilities, and as a result, robust self-regulating passive safety features have been favored in Gen IV and advanced reactor designs. In addition to passive systems, the accidents scenarios at Fukushima indicate the dire need of reliable and stand-alone self-powered sensors, for monitoring plant critical parameters for effective damage control actions. There is a strong need for plant critical data management and situation awareness during the unavailability of all conventional power sources in a nuclear power plant, during extended station blackout (SBO) conditions. These self-powered sensors would assist the operators in managing events like SBO and help in containing any Beyond Design Basis Events (BDBE) conditions, well away from the public domain

  10. Color categories only affect post-perceptual processes when same- and different-category colors are equally discriminable.

    Science.gov (United States)

    He, Xun; Witzel, Christoph; Forder, Lewis; Clifford, Alexandra; Franklin, Anna

    2014-04-01

    Prior claims that color categories affect color perception are confounded by inequalities in the color space used to equate same- and different-category colors. Here, we equate same- and different-category colors in the number of just-noticeable differences, and measure event-related potentials (ERPs) to these colors on a visual oddball task to establish if color categories affect perceptual or post-perceptual stages of processing. Category effects were found from 200 ms after color presentation, only in ERP components that reflect post-perceptual processes (e.g., N2, P3). The findings suggest that color categories affect post-perceptual processing, but do not affect the perceptual representation of color.

  11. Toward the Responsible Development and Commercialization of Sensor Nanotechnologies.

    Science.gov (United States)

    Fadel, Tarek R; Farrell, Dorothy F; Friedersdorf, Lisa E; Griep, Mark H; Hoover, Mark D; Meador, Michael A; Meyyappan, M

    2016-01-01

    Nanotechnology-enabled sensors (or nanosensors) will play an important role in enabling the progression toward ubiquitous information systems as the Internet of Things (IoT) emerges. Nanosensors offer new, miniaturized solutions in physiochemical and biological sensing that enable increased sensitivity, specificity, and multiplexing capability, all with the compelling economic drivers of low cost and high-energy efficiency. In the United States, Federal agencies participating in the National Nanotechnology Initiative (NNI) "Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment" Nanotechnology Signature Initiative (the Sensors NSI), address both the opportunity of using nanotechnology to advance sensor development and the challenges of developing sensors to keep pace with the increasingly widespread use of engineered nanomaterials. This perspective article will introduce and provide background on the NNI signature initiative on sensors. Recent efforts by the Sensors NSI aimed at promoting the successful development and commercialization of nanosensors will be reviewed and examples of sensor nanotechnologies will be highlighted. Future directions and critical challenges for sensor development will also be discussed.

  12. Decentralized safety concept for closed-loop controlled intensive care.

    Science.gov (United States)

    Kühn, Jan; Brendle, Christian; Stollenwerk, André; Schweigler, Martin; Kowalewski, Stefan; Janisch, Thorsten; Rossaint, Rolf; Leonhardt, Steffen; Walter, Marian; Kopp, Rüdger

    2017-04-01

    This paper presents a decentralized safety concept for networked intensive care setups, for which a decentralized network of sensors and actuators is realized by embedded microcontroller nodes. It is evaluated for up to eleven medical devices in a setup for automated acute respiratory distress syndrome (ARDS) therapy. In this contribution we highlight a blood pump supervision as exemplary safety measure, which allows a reliable bubble detection in an extracorporeal blood circulation. The approach is validated with data of animal experiments including 35 bubbles with a size between 0.05 and 0.3 ml. All 18 bubbles with a size down to 0.15 ml are successfully detected. By using hidden Markov models (HMMs) as statistical method the number of necessary sensors can be reduced by two pressure sensors.

  13. Evaluation of safety climate and employee injury rates in healthcare.

    Science.gov (United States)

    Cook, Jacqueline M; Slade, Martin D; Cantley, Linda F; Sakr, Carine J

    2016-09-01

    Safety climates that support safety-related behaviour are associated with fewer work-related injuries, and prior research in industry suggests that safety knowledge and motivation are strongly related to safety performance behaviours; this relationship is not well studied in healthcare settings. We performed analyses of survey results from a Veterans Health Administration (VHA) Safety Barometer employee perception survey, conducted among VHA employees in 2012. The employee perception survey assessed 6 safety programme categories, including management participation, supervisor participation, employee participation, safety support activities, safety support climate and organisational climate. We examined the relationship between safety climate from the survey results on VHA employee injury and illness rates. Among VHA facilities in the VA New England Healthcare System, work-related injury rate was significantly and inversely related to overall employee perception of safety climate, and all 6 safety programme categories, including employee perception of employee participation, management participation, organisational climate, supervisor participation, safety support activities and safety support climate. Positive employee perceptions of safety climate in VHA facilities are associated with lower work-related injury and illness rates. Employee perception of employee participation, management participation, organisational climate, supervisor participation, safety support activities and safety support climate were all associated with lower work-related injury rates. Future implications include fostering a robust safety climate for patients and healthcare workers to reduce healthcare worker injuries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Triangulated categories (AM-148)

    CERN Document Server

    Neeman, Amnon

    2014-01-01

    The first two chapters of this book offer a modern, self-contained exposition of the elementary theory of triangulated categories and their quotients. The simple, elegant presentation of these known results makes these chapters eminently suitable as a text for graduate students. The remainder of the book is devoted to new research, providing, among other material, some remarkable improvements on Brown''s classical representability theorem. In addition, the author introduces a class of triangulated categories""--the ""well generated triangulated categories""--and studies their properties. This

  15. Building competence in radiation protection and the safe use of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    An essential element of a national infrastructure for radiation protection and safety is the maintenance of an adequate number of competent personnel. This Safety Guide makes recommendations concerning the building of competence in protection and safety, which relate to the training and assessment of qualification of new personnel and retraining of existing personnel in order to develop and maintain appropriate levels of competence. This Safety Guide addresses training in protection and safety aspects in relation to all practices and intervention situations in nuclear and radiation related technologies. This document covers the following aspects: the categories of persons to be trained. The requirements for education, training and experience for each category. The processes of qualification and authorization of persons. A national strategy for building competence

  16. Hybrid Piezoelectric/Fiber-Optic Sensor Sheets

    Science.gov (United States)

    Lin, Mark; Qing, Xinlin

    2004-01-01

    Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.

  17. Miniaturized Planar Room Temperature Ionic Liquid Electrochemical Gas Sensor for Rapid Multiple Gas Pollutants Monitoring.

    Science.gov (United States)

    Wan, Hao; Yin, Heyu; Lin, Lu; Zeng, Xiangqun; Mason, Andrew J

    2018-02-01

    The growing impact of airborne pollutants and explosive gases on human health and occupational safety has escalated the demand of sensors to monitor hazardous gases. This paper presents a new miniaturized planar electrochemical gas sensor for rapid measurement of multiple gaseous hazards. The gas sensor features a porous polytetrafluoroethylene substrate that enables fast gas diffusion and room temperature ionic liquid as the electrolyte. Metal sputtering was utilized for platinum electrodes fabrication to enhance adhesion between the electrodes and the substrate. Together with carefully selected electrochemical methods, the miniaturized gas sensor is capable of measuring multiple gases including oxygen, methane, ozone and sulfur dioxide that are important to human health and safety. Compared to its manually-assembled Clark-cell predecessor, this sensor provides better sensitivity, linearity and repeatability, as validated for oxygen monitoring. With solid performance, fast response and miniaturized size, this sensor is promising for deployment in wearable devices for real-time point-of-exposure gas pollutant monitoring.

  18. Security programs for Category I or II nuclear material or certain nuclear facilities. Regulatory guide G-274

    International Nuclear Information System (INIS)

    2003-03-01

    The purpose of this regulatory guide is to help applicants for a Canadian Nuclear Safety Commission (CNSC) licence in respect of Category I or II nuclear material - other than a licence to transport - , or a nuclear facility consisting of a nuclear reactor that may exceed 10 MW thermal power during normal operation, prepare and submit the security information to be included with the application, pursuant to the Nuclear Safety and Control Act (NSCA). Category I and II nuclear material are defined in Appendix B to this guide. This guide describes: the security information that should typically be included with the application for any licence referred to above; how the security information may be organized and presented in a separate document (hereinafter 'the security program description'), in order to assist CNSC review and processing of the application; and, the administrative procedures to be followed when preparing, submitting or revising the security program description. (author)

  19. The composition of category conjunctions.

    Science.gov (United States)

    Hutter, Russell R C; Crisp, Richard J

    2005-05-01

    In three experiments, the authors investigated the impression formation process resulting from the perception of familiar or unfamiliar social category combinations. In Experiment 1, participants were asked to generate attributes associated with either a familiar or unfamiliar social category conjunction. Compared to familiar combinations, the authors found that when the conjunction was unfamiliar, participants formed their impression less from the individual constituent categories and relatively more from novel emergent attributes. In Experiment 2, the authors replicated this effect using alternative experimental materials. In Experiment 3, the effect generalized to additional (orthogonally combined) gender and occupation categories. The implications of these findings for understanding the processes involved in the conjunction of social categories, and the formation of new stereotypes, are discussed.

  20. Official News relating to CERN Safety Rules

    CERN Multimedia

    HSE Unit

    2015-01-01

    The CERN Safety Rules listed below have been published on the official CERN Safety Rules website (see here).   Safety Regulation SR-WS Works and services: this SR-WS (version 1) will cancel and replace the corresponding provisions of Safety Instruction IS50 “Safety Coordination on CERN Worksites”. General Safety Instruction GSI-WS-1 Safety coordination for works and services: this GSI-WS-1 (version 1) will cancel and replace the corresponding provisions of Safety Instruction IS39 “Notice of Start of Works (AOC)” and of Safety Instruction IS50 “Safety Coordination on CERN Worksites” ​Specific Safety Instruction SSI-WS-1-1 Safety coordinator for category 1 operations: this SSI-WS-1-4 (version 1) will cancel and replace the corresponding provisions of Safety Instruction IS50 “Safety Coordination on CERN Worksites”.​ ​ In order to limit the impact on the end-of-year technical st...

  1. Model-Based Method for Sensor Validation

    Science.gov (United States)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  2. Dynamic Sleep Scheduling on Air Pollution Levels Monitoring with Wireless Sensor Network

    OpenAIRE

    Gezaq Abror; Rusminto Tjatur Widodo; M. Udin Harun Al Rasyid

    2018-01-01

    Wireless Sensor Network (WSN) can be applied for Air Pollution Level Monitoring System that have been determined by the Environmental Impact Management Agency which is  PM10, SO2, O3, NO2 and CO. In WSN, node system is constrained to a limited power supply, so that the node system has a lifetime. To doing lifetime maximization, power management scheme is required and sensor nodes should use energy efficiently. This paper proposes dynamic sleep scheduling using Time Category-Fuzzy Logic (Time-...

  3. Safety logic systems of PFBR

    International Nuclear Information System (INIS)

    Sambasivan, S. Ilango

    2004-01-01

    Full text : PFBR is provided with two independent, fast acting and diverse shutdown systems to detect any abnormalities and to initiate safety action. Each system consists of sensors, signal processing systems, logics, drive mechanisms and absorber rods. The absorber rods of the first system are Control and Safety Rods (CSR) and that of the second are called as Diverse Safety Rods (DSR). There are nine CSR and three DSR. While CSR are used for startup, control of reactor power, controlled shutdown and SCRAM, the DSR are used only for SCRAM. The respective drive mechanisms are called as CSRDM and DSRDM. Each of these two systems is capable of executing the shutdown satisfactorily with single failure criteria. Two independent safety logic systems based on diverse principles have been designed for the two shut down systems. The analog outputs of the sensors of Core Monitoring Systems comprising of reactor flux monitoring, core temperature monitoring, failed fuel detection and core flow monitoring systems are processed and converted into binary signals depending on their instantaneous values. Safety logic systems receive the binary signals from these core-monitoring systems and process them logically to protect the reactor against postulated initiating events. Neutronic and power to flow (P/Q) signals form the inputs to safety logic system-I and temperature signals are inputs to the safety logic system II. Failed fuel detection signals are processed by both the shut down systems. The two logic systems to actuate the safety rods are also based on two diverse designs and implemented with solid-state devices to meet all the requirements of safety systems. Safety logic system I that caters to neutronic and P/Q signals is designed around combinational logic and has an on-line test facility to detect struck at faults. The second logic system is based on dynamic logic and hence is inherently safe. This paper gives an overview of the two logic systems that have been

  4. Safety analysis reports - new strategies

    International Nuclear Information System (INIS)

    Booth, J.A.

    1994-01-01

    Within the past year there have been many external changes in the requirements of safety analysis reports. Now there is emphasis on open-quotes graded approachesclose quotes depending on the Hazard Classification of the project. The Energy Facility Contractors Group (EFCOG) has a Safety Analysis Working Group. The results of this group for the past year are discussed as well as the implications for EG ampersand G. New strategies include ideas for incorporating the graded approach, auditable safety documents, additional guidance for Hazard Classification per DOE-STD-1027-92. The emphasis in the paper is on those projects whose hazard classification is category three or less

  5. Justification of response time testing requirements for pressure and differential pressure sensors

    International Nuclear Information System (INIS)

    Weiss, J.M.; Mayo, C.; Swisher, V.

    1991-01-01

    This paper reports on response time testing (RTT) requirements that were imposed on pressure, differential pressure sensors as a conservative approach to insure that assumptions in the plant safety analyses were met. The purpose of this project has been to identify the need for response time testing using the bases identified in IEEE Standard 338. A combination of plant data analyses, failure modes, and effects analyses (FMEAs) was performed. Eighteen currently qualified sensor models were utilized. The results of these analyses indicate that there are only two failure modes that affect response time, not sensor output concurrently. For these failure modes, appropriate plant actions and testing techniques were identified. Safety system RTT requirements were established by IEEE Standard 338-1975. Criteria for the Periodic Testing of Class IE Power, Protection Systems, presuming the need existed for this testing. This standard established guidelines for periodic testing to verify that loop response times of installed nuclear safety-related equipment were within the limits presumed by the design basis plant transient, accident analyses. The requirements covered all passive, active components in an instrument loop, including sensors. Individual components could be tested either in groups or separately to determine the overall loop response time

  6. Design guide for category II reactors light and heavy water cooled reactors

    International Nuclear Information System (INIS)

    Brynda, W.J.; Lobner, P.R.; Powell, R.W.; Straker, E.A.

    1978-05-01

    The Department of Energy (DOE), in the ERDA Manual, requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification operation, maintainance, and decommissioning of DOW-owned reactors be in accordance with generally uniform standards, guide and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirements of Category II reactor structure, components, and systems

  7. 242-A evaporator safety analysis report

    International Nuclear Information System (INIS)

    Campbell, T.A.

    1998-01-01

    In compliance with DOE Orders, an update of the 242-A SAR has been prepared, as documented in the referenced ECN. Several categories of changes were identified for inclusion in this revision of the SAR. These categories will be utilized to simplify the discussion of the changes for this USQ document. However, it is important to note that no new tests or experiments were included in this revision of the SAR. Editorial changes and/or informational updates to Chapters 9 and 11 were included as part of this revision. However, no changes to Operational Safety Requirements (OSRs) contained in Chapter 11 were required. General categories of changes included in this revision are listed

  8. How categories come to matter

    DEFF Research Database (Denmark)

    Leahu, Lucian; Cohn, Marisa; March, Wendy

    2013-01-01

    In a study of users' interactions with Siri, the iPhone personal assistant application, we noticed the emergence of overlaps and blurrings between explanatory categories such as "human" and "machine". We found that users work to purify these categories, thus resolving the tensions related to the ...... initial data analysis, due to our own forms of latent purification, and outline the particular analytic techniques that helped lead to this discovery. We thus provide an illustrative case of how categories come to matter in HCI research and design.......In a study of users' interactions with Siri, the iPhone personal assistant application, we noticed the emergence of overlaps and blurrings between explanatory categories such as "human" and "machine". We found that users work to purify these categories, thus resolving the tensions related...

  9. 14 CFR 23.3 - Airplane categories.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airplane categories. 23.3 Section 23.3... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES General § 23.3 Airplane categories. (a) The normal category is limited to airplanes that have a seating configuration, excluding pilot...

  10. Ultrahigh Temperature Capacitive Pressure Sensor

    Science.gov (United States)

    Harsh, Kevin

    2014-01-01

    Robust, miniaturized sensing systems are needed to improve performance, increase efficiency, and track system health status and failure modes of advanced propulsion systems. Because microsensors must operate in extremely harsh environments, there are many technical challenges involved in developing reliable systems. In addition to high temperatures and pressures, sensing systems are exposed to oxidation, corrosion, thermal shock, fatigue, fouling, and abrasive wear. In these harsh conditions, sensors must be able to withstand high flow rates, vibration, jet fuel, and exhaust. In order for existing and future aeropropulsion turbine engines to improve safety and reduce cost and emissions while controlling engine instabilities, more accurate and complete sensor information is necessary. High-temperature (300 to 1,350 C) capacitive pressure sensors are of particular interest due to their high measurement bandwidth and inherent suitability for wireless readout schemes. The objective of this project is to develop a capacitive pressure sensor based on silicon carbon nitride (SiCN), a new class of high-temperature ceramic materials, which possesses excellent mechanical and electric properties at temperatures up to 1,600 C.

  11. Context-aware system for pre-triggering irreversible vehicle safety actuators.

    Science.gov (United States)

    Böhmländer, Dennis; Dirndorfer, Tobias; Al-Bayatti, Ali H; Brandmeier, Thomas

    2017-06-01

    New vehicle safety systems have led to a steady improvement of road safety and a reduction in the risk of suffering a major injury in vehicle accidents. A huge leap forward in the development of new vehicle safety systems are actuators that have to be activated irreversibly shortly before a collision in order to mitigate accident consequences. The triggering decision has to be based on measurements of exteroceptive sensors currently used in driver assistance systems. This paper focuses on developing a novel context-aware system designed to detect potential collisions and to trigger safety actuators even before an accident occurs. In this context, the analysis examines the information that can be collected from exteroceptive sensors (pre-crash data) to predict a certain collision and its severity to decide whether a triggering is entitled or not. A five-layer context-aware architecture is presented, that is able to collect contextual information about the vehicle environment and the actual driving state using different sensors, to perform reasoning about potential collisions, and to trigger safety functions upon that information. Accident analysis is used in a data model to represent uncertain knowledge and to perform reasoning. A simulation concept based on real accident data is introduced to evaluate the presented system concept. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Bundles of C*-categories and duality

    OpenAIRE

    Vasselli, Ezio

    2005-01-01

    We introduce the notions of multiplier C*-category and continuous bundle of C*-categories, as the categorical analogues of the corresponding C*-algebraic notions. Every symmetric tensor C*-category with conjugates is a continuous bundle of C*-categories, with base space the spectrum of the C*-algebra associated with the identity object. We classify tensor C*-categories with fibre the dual of a compact Lie group in terms of suitable principal bundles. This also provides a classification for ce...

  13. The influence of sodium fires on LMFBRs safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Justin, F [DSN/Centre de Fontenay-aux-Roses, Fontenay-aux-Roses (France)

    1979-03-01

    In a sodium cooled reactor, sodium fires are accidental conditions to be taken into account in safety analysis. For the various sodium categories, fire conditions, associated risks, safety analysis objectives and detailed corresponding issues are indicated, An experimental research program can be deduced from these considerations. This report covers the following: safety analysis methodology; primary sodium fires; secondary sodium fires; auxiliary sodium fires, and related experimental research programs.

  14. The influence of sodium fires on LMFBRs safety analysis

    International Nuclear Information System (INIS)

    Justin, F.

    1979-01-01

    In a sodium cooled reactor, sodium fires are accidental conditions to be taken into account in safety analysis. For the various sodium categories, fire conditions, associated risks, safety analysis objectives and detailed corresponding issues are indicated, An experimental research program can be deduced from these considerations. This report covers the following: safety analysis methodology; primary sodium fires; secondary sodium fires; auxiliary sodium fires, and related experimental research programs

  15. Models as Relational Categories

    Science.gov (United States)

    Kokkonen, Tommi

    2017-11-01

    Model-based learning (MBL) has an established position within science education. It has been found to enhance conceptual understanding and provide a way for engaging students in authentic scientific activity. Despite ample research, few studies have examined the cognitive processes regarding learning scientific concepts within MBL. On the other hand, recent research within cognitive science has examined the learning of so-called relational categories. Relational categories are categories whose membership is determined on the basis of the common relational structure. In this theoretical paper, I argue that viewing models as relational categories provides a well-motivated cognitive basis for MBL. I discuss the different roles of models and modeling within MBL (using ready-made models, constructive modeling, and generative modeling) and discern the related cognitive aspects brought forward by the reinterpretation of models as relational categories. I will argue that relational knowledge is vital in learning novel models and in the transfer of learning. Moreover, relational knowledge underlies the coherent, hierarchical knowledge of experts. Lastly, I will examine how the format of external representations may affect the learning of models and the relevant relations. The nature of the learning mechanisms underlying students' mental representations of models is an interesting open question to be examined. Furthermore, the ways in which the expert-like knowledge develops and how to best support it is in need of more research. The discussion and conceptualization of models as relational categories allows discerning students' mental representations of models in terms of evolving relational structures in greater detail than previously done.

  16. Chemical Gas Sensors for Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.; Liu, C. C.

    1998-01-01

    Chemical sensors often need to be specifically designed (or tailored) to operate in a given environment. It is often the case that a chemical sensor that meets the needs of one application will not function adequately in another application. The more demanding the environment and specialized the requirement, the greater the need to adapt exiting sensor technologies to meet these requirements or, as necessary, develop new sensor technologies. Aerospace (aeronautic and space) applications are particularly challenging since often these applications have specifications which have not previously been the emphasis of commercial suppliers. Further, the chemical sensing needs of aerospace applications have changed over the years to reflect the changing emphasis of society. Three chemical sensing applications of particular interest to the National Aeronautics and Space Administration (NASA) which illustrate these trends are launch vehicle leak detection, emission monitoring, and fire detection. Each of these applications reflects efforts ongoing throughout NASA. As described in NASA's "Three Pillars for Success", a document which outlines NASA's long term response to achieve the nation's priorities in aerospace transportation, agency wide objectives include: improving safety and decreasing the cost of space travel, significantly decreasing the amount of emissions produced by aeronautic engines, and improving the safety of commercial airline travel. As will be discussed below, chemical sensing in leak detection, emission monitoring, and fire detection will help enable the agency to meet these objectives. Each application has vastly different problems associated with the measurement of chemical species. Nonetheless, the development of a common base technology can address the measurement needs of a number of applications.

  17. A Power-Frequency Electric Field Sensor for Portable Measurement.

    Science.gov (United States)

    Xiao, Dongping; Ma, Qichao; Xie, Yutong; Zheng, Qi; Zhang, Zhanlong

    2018-03-31

    In this paper, a new type of electric field sensor is proposed for the health and safety protection of inspection staff in high-voltage environments. Compared with the traditional power frequency electric field measurement instruments, the portable instrument has some special performance requirements and, thus, a new kind of double spherical shell sensor is presented. First, the mathematical relationships between the induced voltage of the sensor, the output voltage of the measurement circuit, and the original electric field in free space are deduced theoretically. These equations show the principle of the proposed sensor to measure the electric field and the effect factors of the measurement. Next, the characteristics of the sensor are analyzed through simulation. The simulation results are in good agreement with the theoretical analysis. The influencing rules of the size and material of the sensor on the measurement results are summarized. Then, the proposed sensor and the matching measurement system are used in a physical experiment. After calibration, the error of the measurement system is discussed. Lastly, the directional characteristic of the proposed sensor is experimentally tested.

  18. Categories and logical syntax

    NARCIS (Netherlands)

    Klev, Ansten Morch

    2014-01-01

    The notions of category and type are here studied through the lens of logical syntax: Aristotle's as well as Kant's categories through the traditional form of proposition `S is P', and modern doctrines of type through the Fregean form of proposition `F(a)', function applied to argument. Topics

  19. Data categories for marine planning

    Science.gov (United States)

    Lightsom, Frances L.; Cicchetti, Giancarlo; Wahle, Charles M.

    2015-01-01

    The U.S. National Ocean Policy calls for a science- and ecosystem-based approach to comprehensive planning and management of human activities and their impacts on America’s oceans. The Ocean Community in Data.gov is an outcome of 2010–2011 work by an interagency working group charged with designing a national information management system to support ocean planning. Within the working group, a smaller team developed a list of the data categories specifically relevant to marine planning. This set of categories is an important consensus statement of the breadth of information types required for ocean planning from a national, multidisciplinary perspective. Although the categories were described in a working document in 2011, they have not yet been fully implemented explicitly in online services or geospatial metadata, in part because authoritative definitions were not created formally. This document describes the purpose of the data categories, provides definitions, and identifies relations among the categories and between the categories and external standards. It is intended to be used by ocean data providers, managers, and users in order to provide a transparent and consistent framework for organizing and describing complex information about marine ecosystems and their connections to humans.

  20. Systematic Review of Real-time Remote Health Monitoring System in Triage and Priority-Based Sensor Technology: Taxonomy, Open Challenges, Motivation and Recommendations.

    Science.gov (United States)

    Albahri, O S; Albahri, A S; Mohammed, K I; Zaidan, A A; Zaidan, B B; Hashim, M; Salman, Omar H

    2018-03-22

    The new and ground-breaking real-time remote monitoring in triage and priority-based sensor technology used in telemedicine have significantly bounded and dispersed communication components. To examine these technologies and provide researchers with a clear vision of this area, we must first be aware of the utilised approaches and existing limitations in this line of research. To this end, an extensive search was conducted to find articles dealing with (a) telemedicine, (b) triage, (c) priority and (d) sensor; (e) comprehensively review related applications and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were checked for articles on triage and priority-based sensor technology in telemedicine. The retrieved articles were filtered according to the type of telemedicine technology explored. A total of 150 articles were selected and classified into two categories. The first category includes reviews and surveys of triage and priority-based sensor technology in telemedicine. The second category includes articles on the three-tiered architecture of telemedicine. Tier 1 represents the users. Sensors acquire the vital signs of the users and send them to Tier 2, which is the personal gateway that uses local area network protocols or wireless body area network. Medical data are sent from Tier 2 to Tier 3, which is the healthcare provider in medical institutes. Then, the motivation for using triage and priority-based sensor technology in telemedicine, the issues related to the obstruction of its application and the development and utilisation of telemedicine are examined on the basis of the findings presented in the literature.

  1. Corrosion Sensor Development for Condition-Based Maintenance of Aircraft

    Directory of Open Access Journals (Sweden)

    Gino Rinaldi

    2012-01-01

    Full Text Available Aircraft routinely operate in atmospheric environments that, over time, will impact their structural integrity. Material protection and selection schemes notwithstanding, recurrent exposure to chlorides, pollution, temperature gradients, and moisture provide the necessary electrochemical conditions for the development and profusion of corrosion in aircraft structures. For aircraft operators, this becomes an important safety matter as corrosion found in a given aircraft must be assumed to be present in all of that type of aircraft. This safety protocol and its associated unscheduled maintenance requirement drive up the operational costs of the fleet and limit the availability of the aircraft. Hence, there is an opportunity at present for developing novel sensing technologies and schemes to aid in shifting time-based maintenance schedules towards condition-based maintenance procedures. In this work, part of the ongoing development of a multiparameter integrated corrosion sensor is presented. It consists of carbon nanotube/polyaniline polymer sensors and commercial-off-the-shelf sensors. It is being developed primarily for monitoring environmental and material factors for the purpose of providing a means to more accurately assess the structural integrity of aerospace aluminium alloys through fusion of multiparameter sensor data. Preliminary experimental test results are presented for chloride ion concentration, hydrogen gas evolution, humidity variations, and material degradation.

  2. Enhancing Safety through Generic Competencies

    Directory of Open Access Journals (Sweden)

    S. Mockel

    2014-03-01

    Full Text Available This article provides insights into proactive safety management and mitigation. An analysis of accident reports reveals categories of supervening causes of accidents which can be directly linked to the concept of generic competencies (information management, communication and coordination, problem solving, and effect control. These findings strongly suggest adding the human element as another safety-constituting pillar to the concept of ship safety next to technology and regulation. We argue that the human element has unique abilities in dealing with critical and highly dynamic situations which can contribute to the system's recovery from non-routine or critical situations. By educating seafarers in generic competencies we claim to enable the people onboard to successfully deal with critical situations.

  3. Quality and safety in radiotherapy

    CERN Document Server

    Pawlicki, Todd

    2010-01-01

    The first text to focus solely on quality and safety in radiotherapy, this work encompasses not only traditional, more technically oriented, quality assurance activities, but also general approaches of quality and safety. It includes contributions from experts both inside and outside the field to present a global view. The task of assuring quality is no longer viewed solely as a technical, equipment-dependent endeavor. Instead, it is now recognized as depending on both the processes and the people delivering the service. Divided into seven broad categories, the text covers: Quality Management

  4. Two phase flow measurement and visualization using Wire Mesh Sensors (WMS)

    International Nuclear Information System (INIS)

    Rajalakshmi, R.; Robin, Roshini; Rama Rao, A.

    2016-01-01

    Two phase flow behavior studies have gained importance in nuclear power plants to enhance fuel performance and safety. In this paper, taking into consideration low cost, high space-time resolution and instantaneous mapping, electrical sensors such as wire mesh sensors (WMS) is proposed for measurement of void distribution and its visualization. The sensor works on the conductivity principle and by measuring the variations in conductivity values of the two phases, the flow distributions can be identified. This paper describes the conceptual design of the WMS for two phase void measurements, Mathematical modeling of the sensor for data evaluation, modeling of the sensor geometry and FEM simulation studies for optimizing sensor geometry and excitation parameters, CFD two phase flows simulations, development of suitable algorithm and programming for two phase visualization and void distribution studies, prototype sensor fabrication and testing

  5. Distributed Opportunistic Sensing in Mobile Phone Sensor Networks

    NARCIS (Netherlands)

    Le Viet Duc, L Duc

    2013-01-01

    The advantages of smartphones such as integrated sensors, programmability, scalability and cloud servers have enabled low-cost and efficient public safety applications. However, designing such applications has to face daunting challenges, for instance, short battery life, low computing capability

  6. Proceedings of the theme meeting on the journey of BARC Safety Council for strengthening safety culture in BARC facilities: 2000-2017

    International Nuclear Information System (INIS)

    Jayarajan, K.; Jolly, V.M.

    2017-07-01

    The book has about one hundred articles, written by the regulators and the authorities of the facilities and projects of BARC. The articles are organised into four parts. Part-I gives an overview of the history of safety regulation in BARC and the details of BARC Safety Framework. Part-II of the book has articles about the facilities and projects of BARC, for which BSC had issued of regulatory consents. The facility-specific articles, written by the concerned project/facility authorities, emphasis safety aspects of the facilities and the regulatory processes they had undergone. This part is divided into seven sections, based on the broad category of facility. Experts in the concerned areas have written general articles on each category of facility. The Part-III consists of the work carried out by the specialised committees, which are under the purview of BSC. Some of the other regulatory activities of BSC are summarised in Part-IV of this book. In addition to safety and regulatory activities of BSC, the book contains the details of the major facilities and upcoming projects of BARC. Papers relevant to INIS are indexed separately

  7. Sensor technology for smart homes.

    Science.gov (United States)

    Ding, Dan; Cooper, Rory A; Pasquina, Paul F; Fici-Pasquina, Lavinia

    2011-06-01

    A smart home is a residence equipped with technology that observes the residents and provides proactive services. Most recently, it has been introduced as a potential solution to support independent living of people with disabilities and older adults, as well as to relieve the workload from family caregivers and health providers. One of the key supporting features of a smart home is its ability to monitor the activities of daily living and safety of residents, and in detecting changes in their daily routines. With the availability of inexpensive low-power sensors, radios, and embedded processors, current smart homes are typically equipped with a large amount of networked sensors which collaboratively process and make deductions from the acquired data on the state of the home as well as the activities and behaviors of its residents. This article reviews sensor technology used in smart homes with a focus on direct environment sensing and infrastructure mediated sensing. The article also points out the strengths and limitations of different sensor technologies, as well as discusses challenges and opportunities from clinical, technical, and ethical perspectives. It is recommended that sensor technologies for smart homes address actual needs of all stake holders including end users, their family members and caregivers, and their doctors and therapists. More evidence on the appropriateness, usefulness, and cost benefits analysis of sensor technologies for smart homes is necessary before these sensors should be widely deployed into real-world residential settings and successfully integrated into everyday life and health care services. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Manpower analysis in transportation safety. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.S.; Bowden, H.M.; Colford, C.A.; DeFilipps, P.J.; Dennis, J.D.; Ehlert, A.K.; Popkin, H.A.; Schrader, G.F.; Smith, Q.N.

    1977-05-01

    The project described provides a manpower review of national, state and local needs for safety skills, and projects future manning levels for transportation safety personnel in both the public and private sectors. Survey information revealed that there are currently approximately 121,000 persons employed directly in transportation safety occupations within the air carrier, highway and traffic safety, motor carrier, pipeline, rail carrier, and marine carrier transportation industry groups. The projected need for 1980 is over 145,000 of which over 80 percent will be in highway safety. An analysis of transportation tasks is included, and shows ten general categories about which the majority of safety activities are focused. A skills analysis shows a generally high level of educational background and several years of experience are required for most transportation safety jobs. An overall review of safety programs in the transportation industry is included, together with chapters on the individual transportation modes.

  9. Nanostructured Metal Oxide Gas Sensors, a Survey of Applications Carried out at SENSOR Lab, Brescia (Italy in the Security and Food Quality Fields

    Directory of Open Access Journals (Sweden)

    Emanuela Gobbi

    2012-12-01

    Full Text Available In this work we report on metal oxide (MOX based gas sensors, presenting the work done at the SENSOR laboratory of the CNR-IDASC and University of Brescia, Italy since the 80s up to the latest results achieved in recent times. In particular we report the strategies followed at SENSOR during these 30 years to increase the performance of MOX sensors through the development of different preparation techniques, from Rheotaxial Growth Thermal Oxidation (RGTO to nanowire technology to address sensitivity and stability, and the development of electronic nose systems and pattern recognition techniques to address selectivity. We will show the obtained achievement in the context of selected applications such as safety and security and food quality control.

  10. Tank Monitor and Control System sensor acceptance test procedure. Revision 5

    International Nuclear Information System (INIS)

    Scaief, C.C. III.

    1994-01-01

    The purpose of this acceptance test procedure (ATP) is to verify the correct reading of sensor elements connected to the Tank Monitor and Control System (TMACS). This ATP is intended to be used for testing of the connection of existing temperature sensors, new temperature sensors, pressure sensing equipment, new Engraf level gauges, sensors that generate a current output, and discrete (on/off) inputs. It is intended that this ATP will be used each time sensors are added to the system. As a result, the data sheets have been designed to be generic. The TMACS has been designed in response to recommendations from the Defense Nuclear Facilities Safety Board primarily for improved monitoring of waste tank temperatures. The system has been designed with the capability to monitor other types of sensor input as well

  11. Feature extraction and sensor selection for NPP initiating event identification

    International Nuclear Information System (INIS)

    Lin, Ting-Han; Wu, Shun-Chi; Chen, Kuang-You; Chou, Hwai-Pwu

    2017-01-01

    Highlights: • A two-stage feature extraction scheme for NPP initiating event identification. • With stBP, interrelations among the sensors can be retained for identification. • With dSFS, sensors that are crucial for identification can be efficiently selected. • Efficacy of the scheme is illustrated with data from the Maanshan NPP simulator. - Abstract: Initiating event identification is essential in managing nuclear power plant (NPP) severe accidents. In this paper, a novel two-stage feature extraction scheme that incorporates the proposed sensor type-wise block projection (stBP) and deflatable sequential forward selection (dSFS) is used to elicit the discriminant information in the data obtained from various NPP sensors to facilitate event identification. With the stBP, the primal features can be extracted without eliminating the interrelations among the sensors of the same type. The extracted features are then subjected to a further dimensionality reduction by selecting the sensors that are most relevant to the events under consideration. This selection is not easy, and a combinatorial optimization technique is normally required. With the dSFS, an optimal sensor set can be found with less computational load. Moreover, its sensor deflation stage allows sensors in the preselected set to be iteratively refined to avoid being trapped into a local optimum. Results from detailed experiments containing data of 12 event categories and a total of 112 events generated with a Taiwan’s Maanshan NPP simulator are presented to illustrate the efficacy of the proposed scheme.

  12. New Wireless Sensors for Diagnostics Under Harsh Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — High-temperature passive wireless surface acoustic wave (SAW) sensors are highly desirable for improving safety and efficiency in aviation and space vehicles. This...

  13. Achieving Network Level Privacy in Wireless Sensor Networks†

    Science.gov (United States)

    Shaikh, Riaz Ahmed; Jameel, Hassan; d’Auriol, Brian J.; Lee, Heejo; Lee, Sungyoung; Song, Young-Jae

    2010-01-01

    Full network level privacy has often been categorized into four sub-categories: Identity, Route, Location and Data privacy. Achieving full network level privacy is a critical and challenging problem due to the constraints imposed by the sensor nodes (e.g., energy, memory and computation power), sensor networks (e.g., mobility and topology) and QoS issues (e.g., packet reach-ability and timeliness). In this paper, we proposed two new identity, route and location privacy algorithms and data privacy mechanism that addresses this problem. The proposed solutions provide additional trustworthiness and reliability at modest cost of memory and energy. Also, we proved that our proposed solutions provide protection against various privacy disclosure attacks, such as eavesdropping and hop-by-hop trace back attacks. PMID:22294881

  14. Achieving Network Level Privacy in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sungyoung Lee

    2010-02-01

    Full Text Available Full network level privacy has often been categorized into four sub-categories: Identity, Route, Location and Data privacy. Achieving full network level privacy is a critical and challenging problem due to the constraints imposed by the sensor nodes (e.g., energy, memory and computation power, sensor networks (e.g., mobility and topology and QoS issues (e.g., packet reach-ability and timeliness. In this paper, we proposed two new identity, route and location privacy algorithms and data privacy mechanism that addresses this problem. The proposed solutions provide additional trustworthiness and reliability at modest cost of memory and energy. Also, we proved that our proposed solutions provide protection against various privacy disclosure attacks, such as eavesdropping and hop-by-hop trace back attacks.

  15. Structural health monitoring using wireless sensor networks

    Science.gov (United States)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  16. New Sensors and Techniques for the Structural Health Monitoring of Propulsion Systems

    Directory of Open Access Journals (Sweden)

    Mark Woike

    2013-01-01

    Full Text Available The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA, through the Aviation Safety Program (AVSP, has taken a lead role in the development of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. This paper presents a summary of key results and findings obtained from three different structural health monitoring approaches that have been investigated. This includes evaluating the performance of a novel microwave blade tip clearance sensor; a vibration based crack detection technique using an externally mounted capacitive blade tip clearance sensor; and lastly the results of using data driven anomaly detection algorithms for detecting cracks in a rotating disk.

  17. A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults.

    Science.gov (United States)

    Sun, Rui; Cheng, Qi; Wang, Guanyu; Ochieng, Washington Yotto

    2017-09-29

    The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.

  18. A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2017-09-01

    Full Text Available The use of Unmanned Aerial Vehicles (UAVs has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs’ flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.

  19. Right away: A late, right-lateralized category effect complements an early, left-lateralized category effect in visual search.

    Science.gov (United States)

    Constable, Merryn D; Becker, Stefanie I

    2017-10-01

    According to the Sapir-Whorf hypothesis, learned semantic categories can influence early perceptual processes. A central finding in support of this view is the lateralized category effect-namely, the finding that categorically different colors (e.g., blue and green hues) can be discriminated faster than colors within the same color category (e.g., different hues of green), especially when they are presented in the right visual field. Because the right visual field projects to the left hemisphere, this finding has been popularly couched in terms of the left-lateralization of language. However, other studies have reported bilateral category effects, which has led some researchers to question the linguistic origins of the effect. Here we examined the time course of lateralized and bilateral category effects in the classical visual search paradigm by means of eyetracking and RT distribution analyses. Our results show a bilateral category effect in the manual responses, which is combined of an early, left-lateralized category effect and a later, right-lateralized category effect. The newly discovered late, right-lateralized category effect occurred only when observers had difficulty locating the target, indicating a specialization of the right hemisphere to find categorically different targets after an initial error. The finding that early and late stages of visual search show different lateralized category effects can explain a wide range of previously discrepant findings.

  20. The transport safety programme

    International Nuclear Information System (INIS)

    Selling, H.A.

    1994-01-01

    The transport safety programme is one of the smaller technical sub-programmes in the Radiation Safety Section of the Division of Nuclear Safety, in terms of both regular budget and professional staff allocations. The overall aim of the programme is to promote the safe movement of radioactive material worldwide. The specific objectives are the development, review and maintenance of the Regulations for the Safe Transport of Radioactive Material, Safety Series No 6, and its supporting documents Safety Series Nos 7, 37 and 80 and the assistance to Member States and International Organizations in the proper implementation of the Regulations. One of the important issues that emerged during an ongoing Review/Revision process is the transport of Low-Specific Activity (LSA) material and Surface Contaminated Objects (SCO). Many of the radioactive waste materials fall in one of these categories. The subject has gained substance because it is expected that in the next decade radioactive waste could become available in so far unprecedented quantities and volumes due to decontamination and decommissioning of nuclear facilities. (author)

  1. The helpfulness of category labels in semi-supervised learning depends on category structure.

    Science.gov (United States)

    Vong, Wai Keen; Navarro, Daniel J; Perfors, Amy

    2016-02-01

    The study of semi-supervised category learning has generally focused on how additional unlabeled information with given labeled information might benefit category learning. The literature is also somewhat contradictory, sometimes appearing to show a benefit to unlabeled information and sometimes not. In this paper, we frame the problem differently, focusing on when labels might be helpful to a learner who has access to lots of unlabeled information. Using an unconstrained free-sorting categorization experiment, we show that labels are useful to participants only when the category structure is ambiguous and that people's responses are driven by the specific set of labels they see. We present an extension of Anderson's Rational Model of Categorization that captures this effect.

  2. Querying on Federated Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zuhal Can

    2016-09-01

    Full Text Available A Federated Sensor Network (FSN is a network of geographically distributed Wireless Sensor Networks (WSNs called islands. For querying on an FSN, we introduce the Layered Federated Sensor Network (L-FSN Protocol. For layered management, L-FSN provides communication among islands by its inter-island querying protocol by which a query packet routing path is determined according to some path selection policies. L-FSN allows autonomous management of each island by island-specific intra-island querying protocols that can be selected according to island properties. We evaluate the applicability of L-FSN and compare the L-FSN protocol with various querying protocols running on the flat federation model. Flat federation is a method to federate islands by running a single querying protocol on an entire FSN without distinguishing communication among and within islands. For flat federation, we select a querying protocol from geometrical, hierarchical cluster-based, hash-based, and tree-based WSN querying protocol categories. We found that a layered federation of islands by L-FSN increases the querying performance with respect to energy-efficiency, query resolving distance, and query resolving latency. Moreover, L-FSN’s flexibility of choosing intra-island querying protocols regarding the island size brings advantages on energy-efficiency and query resolving latency.

  3. A fibre optic oxygen sensor for monitoring of human breathing

    Science.gov (United States)

    Chen, Rongsheng; Farmery, Andrew D.; Chen, Rui; Hahn, Clive E. W.

    2011-11-01

    A reliable and cost effective fibre optic oxygen sensor for monitoring of human breathing has been developed using a normal 200μm silica core/silica cladding optical fibre and a polymer sensing matrix. The fibre optic oxygen sensor is based on the fluorescence quenching of a fluorophore by oxygen. The sensing matrix, containing immobilized Pt(II) complexes, was coated at the end of the silica core/silica cladding optical fibre. The sensitivity and time response of the sensor were evaluated using the method of luminescence lifetime measurement. The polymer substrate influence on the time response of the sensor was improved by using a fibre taper design, and the response time of the optimized sensor was less than 200ms. This silica fibre based optic oxygen sensor is suitable for monitoring of patient breathing in intensive care unit in terms of safety and low cost.

  4. Safety class methodology

    International Nuclear Information System (INIS)

    Donner, E.B.; Low, J.M.; Lux, C.R.

    1992-01-01

    DOE Order 6430.1A, General Design Criteria (GDC), requires that DOE facilities be evaluated with respect to ''safety class items.'' Although the GDC defines safety class items, it does not provide a methodology for selecting safety class items. The methodology described in this paper was developed to assure that Safety Class Items at the Savannah River Site (SRS) are selected in a consistent and technically defensible manner. Safety class items are those in the highest of four categories determined to be of special importance to nuclear safety and, merit appropriately higher-quality design, fabrication, and industrial test standards and codes. The identification of safety class items is approached using a cascading strategy that begins at the 'safety function' level (i.e., a cooling function, ventilation function, etc.) and proceeds down to the system, component, or structure level. Thus, the items that are required to support a safety function are SCls. The basic steps in this procedure apply to the determination of SCls for both new project activities, and for operating facilities. The GDC lists six characteristics of SCls to be considered as a starting point for safety item classification. They are as follows: 1. Those items whose failure would produce exposure consequences that would exceed the guidelines in Section 1300-1.4, ''Guidance on Limiting Exposure of the Public,'' at the site boundary or nearest point of public access 2. Those items required to maintain operating parameters within the safety limits specified in the Operational Safety Requirements during normal operations and anticipated operational occurrences. 3. Those items required for nuclear criticality safety. 4. Those items required to monitor the release of radioactive material to the environment during and after a Design Basis Accident. Those items required to achieve, and maintain the facility in a safe shutdown condition 6. Those items that control Safety Class Item listed above

  5. Sensor Buoy System for Monitoring Renewable Marine Energy Resources.

    Science.gov (United States)

    García, Emilio; Quiles, Eduardo; Correcher, Antonio; Morant, Francisco

    2018-03-22

    In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions.

  6. Towards extended safety in connected vehicles

    NARCIS (Netherlands)

    Ben Othmane, L.; Al-Fuqaha, A.; Ben Hamida, E.; Brand, van den M.G.J.

    2013-01-01

    Current standards for vehicle safety consider only accidental failures; they do not consider failures caused by malicious attackers. The standards implicitly assume that the sensors and Electronic Control Units (ECUs) of each vehicle compose a secure in-vehicle network because no external entity

  7. A quadcopter with heterogeneous sensors for autonomous bridge inspection.

    Science.gov (United States)

    2014-02-01

    Continuously monitoring a bridges health by sensor technologies has been widely used to maintain the operation of : a : roadwork while protecting public users safety. However, monitoring and inspecting numerous bridges in a state is a labor : -...

  8. On the (un)suitability of semantic categories

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    2009-01-01

    Since Greenberg’s groundbreaking publication on universals of grammar, typologists have used semantic categories to investigate (constraints on) morphological and syntactic variation in the world’s languages and this tradition has been continued in the WALS project. It is argued here that the emp......Since Greenberg’s groundbreaking publication on universals of grammar, typologists have used semantic categories to investigate (constraints on) morphological and syntactic variation in the world’s languages and this tradition has been continued in the WALS project. It is argued here...... that the employment of semantic categories has some serious drawbacks, however, suggesting that semantic categories, just like formal categories, cannot be equated across languages in morphosyntactic typology. Whereas formal categories are too narrow in that they do not cover all structural variants attested across...... languages, semantic categories can be too wide, including too many structural variants. Furthermore, it appears that in some major typological studies semantic categories have been confused with formal categories. A possible solution is pointed out: typologists first need to make sure that the forms...

  9. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    Science.gov (United States)

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  10. The Micro-Category Account of Analogy

    Science.gov (United States)

    Green, Adam E.; Fugelsang, Jonathan A.; Kraemer, David J. M.; Dunbar, Kevin N.

    2008-01-01

    Here, we investigate how activation of mental representations of categories during analogical reasoning influences subsequent cognitive processing. Specifically, we present and test the central predictions of the "Micro-Category" account of analogy. This account emphasizes the role of categories in aligning terms for analogical mapping. In a…

  11. Monoidal categories and topological field theory

    CERN Document Server

    Turaev, Vladimir

    2017-01-01

    This monograph is devoted to monoidal categories and their connections with 3-dimensional topological field theories. Starting with basic definitions, it proceeds to the forefront of current research. Part 1 introduces monoidal categories and several of their classes, including rigid, pivotal, spherical, fusion, braided, and modular categories. It then presents deep theorems of Müger on the center of a pivotal fusion category. These theorems are proved in Part 2 using the theory of Hopf monads. In Part 3 the authors define the notion of a topological quantum field theory (TQFT) and construct a Turaev-Viro-type 3-dimensional state sum TQFT from a spherical fusion category. Lastly, in Part 4 this construction is extended to 3-manifolds with colored ribbon graphs, yielding a so-called graph TQFT (and, consequently, a 3-2-1 extended TQFT). The authors then prove the main result of the monograph: the state sum graph TQFT derived from any spherical fusion category is isomorphic to the Reshetikhin-Turaev surgery gr...

  12. Review of design criteria and safety analysis of safety class electric building for fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1998-02-01

    Steady state fuel test loop will be equipped in HANARO to obtain the development and betterment of advanced fuel and materials through the irradiation tests. HANARO fuel test loop was designed for CANDU and PWR fuel testing. Safety related system of Fuel Test Loop such as emergency cooling water system, component cooling water system, safety ventilation system, high energy line break mitigation system and remote control room was required 1E class electric supply to meet the safety operation in accordance with related code. Therefore, FTL electric building was designed to construction and install the related equipment based on seismic category I. The objective of this study is to review the design criteria and analysis the safety function of safety class electric building for fuel test loop, and this results will become guidance for the irradiation testing in future. (author). 10 refs., 6 tabs., 30 figs.

  13. EERE-SBIR technology transfer opportunity. H2 Safety Sensors for H2

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Mariann R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-01

    The Office of Energy Efficiency and Renewable Energy’s Fuel Cell Technologies Office (FCTO) works in partnership with industry (including small businesses), academia, and DOE's national laboratories to establish fuel cell and hydrogen energy technologies as economically competitive contributors to U.S. transportation needs. The work that is envisioned between the SBIR/STTR grantee and Los Alamos National Laboratory would involve Technical Transfer of Los Alamos Intellectual Property (IP) on Thin-film Mixed Potential Sensor (U.S. Patent 7,264,700) and associated know-how for H2 sensor manufacturing and packaging.

  14. Review of Public Safety in Viewpoint of Complex Networks

    International Nuclear Information System (INIS)

    Gai Chengcheng; Weng Wenguo; Yuan Hongyong

    2010-01-01

    In this paper, a brief review of public safety in viewpoint of complex networks is presented. Public safety incidents are divided into four categories: natural disasters, industry accidents, public health and social security, in which the complex network approaches and theories are need. We review how the complex network methods was developed and used in the studies of the three kinds of public safety incidents. The typical public safety incidents studied by the complex network methods in this paper are introduced, including the natural disaster chains, blackouts on electric power grids and epidemic spreading. Finally, we look ahead to the application prospects of the complex network theory on public safety.

  15. Hydrogen Sensors Boost Hybrids; Today's Models Losing Gas?

    Science.gov (United States)

    2005-01-01

    Advanced chemical sensors are used in aeronautic and space applications to provide safety monitoring, emission monitoring, and fire detection. In order to fully do their jobs, these sensors must be able to operate in a range of environments. NASA has developed sensor technologies addressing these needs with the intent of improving safety, optimizing combustion efficiencies, and controlling emissions. On the ground, the chemical sensors were developed by NASA engineers to detect potential hydrogen leaks during Space Shuttle launch operations. The Space Shuttle uses a combination of hydrogen and oxygen as fuel for its main engines. Liquid hydrogen is pumped to the external tank from a storage tank located several hundred feet away. Any hydrogen leak could potentially result in a hydrogen fire, which is invisible to the naked eye. It is important to detect the presence of a hydrogen fire in order to prevent a major accident. In the air, the same hydrogen-leak dangers are present. Stress and temperature changes can cause tiny cracks or holes to form in the tubes that line the Space Shuttle s main engine nozzle. Such defects could allow the hydrogen that is pumped through the nozzle during firing to escape. Responding to the challenges associated with pinpointing hydrogen leaks, NASA endeavored to improve propellant leak-detection capabilities during assembly, pre-launch operations, and flight. The objective was to reduce the operational cost of assembling and maintaining hydrogen delivery systems with automated detection systems. In particular, efforts have been focused on developing an automated hydrogen leak-detection system using multiple, networked hydrogen sensors that are operable in harsh conditions.

  16. Modular categories and 3-manifold invariants

    International Nuclear Information System (INIS)

    Tureav, V.G.

    1992-01-01

    The aim of this paper is to give a concise introduction to the theory of knot invariants and 3-manifold invariants which generalize the Jones polynomial and which may be considered as a mathematical version of the Witten invariants. Such a theory was introduced by N. Reshetikhin and the author on the ground of the theory of quantum groups. here we use more general algebraic objects, specifically, ribbon and modular categories. Such categories in particular arise as the categories of representations of quantum groups. The notion of modular category, interesting in itself, is closely related to the notion of modular tensor category in the sense of G. Moore and N. Seiberg. For simplicity we restrict ourselves in this paper to the case of closed 3-manifolds

  17. Product Category Management Issues

    OpenAIRE

    Żukowska, Joanna

    2011-01-01

    The purpose of the paper is to present the issues related to category management. It includes the overview of category management definitions and the correct process of exercising it. Moreover, attention is paid to the advantages of brand management, the benefits the supplier and retailer may obtain in this way. The risk element related to this topics is also presented herein. Joanna Żukowska

  18. Long-term real-time structural health monitoring using wireless smart sensor

    Science.gov (United States)

    Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil

    2013-04-01

    Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.

  19. Summary and Findings from the NREL/DOE Hydrogen Sensor Workshop (June 8, 2011)

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, W.; Burgess, R.; Post, M.; Rivkin, C.

    2012-07-01

    On June 8, 2011, DOE/NREL hosted a hydrogen sensor workshop attended by nearly forty participants from private organizations, government facilities, and academic institutions . The workshop participants represented a cross section of stakeholders in the hydrogen community, including sensor developers, end users, site safety officials, and code and standards developers. The goals of the workshop were to identify critical applications for the emerging hydrogen infrastructure that require or would benefit from hydrogen sensors, to assign performance specifications for sensor deployed in each application, and to identify shortcomings or deficiencies (i.e., technical gaps) in the ability of current sensor technology to meet the assigned performance requirements.

  20. Finding biomedical categories in Medline®

    Directory of Open Access Journals (Sweden)

    Yeganova Lana

    2012-10-01

    Full Text Available Abstract Background There are several humanly defined ontologies relevant to Medline. However, Medline is a fast growing collection of biomedical documents which creates difficulties in updating and expanding these humanly defined ontologies. Automatically identifying meaningful categories of entities in a large text corpus is useful for information extraction, construction of machine learning features, and development of semantic representations. In this paper we describe and compare two methods for automatically learning meaningful biomedical categories in Medline. The first approach is a simple statistical method that uses part-of-speech and frequency information to extract a list of frequent nouns from Medline. The second method implements an alignment-based technique to learn frequent generic patterns that indicate a hyponymy/hypernymy relationship between a pair of noun phrases. We then apply these patterns to Medline to collect frequent hypernyms as potential biomedical categories. Results We study and compare these two alternative sets of terms to identify semantic categories in Medline. We find that both approaches produce reasonable terms as potential categories. We also find that there is a significant agreement between the two sets of terms. The overlap between the two methods improves our confidence regarding categories predicted by these independent methods. Conclusions This study is an initial attempt to extract categories that are discussed in Medline. Rather than imposing external ontologies on Medline, our methods allow categories to emerge from the text.

  1. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks.

    Science.gov (United States)

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-04-12

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes' resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach.

  2. Recent Progress in Electrochemical HbA1c Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Baozhen Wang

    2015-03-01

    Full Text Available This article reviews recent progress made in the development of electrochemical glycated hemoglobin (HbA1c sensors for the diagnosis and management of diabetes mellitus. Electrochemical HbA1c sensors are divided into two categories based on the detection protocol of the sensors. The first type of sensor directly detects HbA1c by binding HbA1c on the surface of an electrode through bio-affinity of antibody and boronic acids, followed by an appropriate mode of signal transduction. In the second type of sensor, HbA1c is indirectly determined by detecting a digestion product of HbA1c, fructosyl valine (FV. Thus, the former sensors rely on the selective binding of HbA1c to the surface of the electrodes followed by electrochemical signaling in amperometric, voltammetric, impedometric, or potentiometric mode. Redox active markers, such as ferrocene derivatives and ferricyanide/ferrocyanide ions, are often used for electrochemical signaling. For the latter sensors, HbA1c must be digested in advance by proteolytic enzymes to produce the FV fragment. FV is electrochemically detected through catalytic oxidation by fructosyl amine oxidase or by selective binding to imprinted polymers. The performance characteristics of HbA1c sensors are discussed in relation to their use in the diagnosis and control of diabetic mellitus.

  3. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sabrina Boubiche

    2016-04-01

    Full Text Available Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes’ resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach.

  4. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks

    Science.gov (United States)

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-01-01

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes’ resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach. PMID:27077866

  5. Biomimetic chemical sensors using bioengineered olfactory and taste cells.

    Science.gov (United States)

    Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping; Wu, Chunsheng

    2014-01-01

    Biological olfactory and taste systems are natural chemical sensing systems with unique performances for the detection of environmental chemical signals. With the advances in olfactory and taste transduction mechanisms, biomimetic chemical sensors have achieved significant progress due to their promising prospects and potential applications. Biomimetic chemical sensors exploit the unique capability of biological functional components for chemical sensing, which are often sourced from sensing units of biological olfactory or taste systems at the tissue level, cellular level, or molecular level. Specifically, at the cellular level, there are mainly two categories of cells have been employed for the development of biomimetic chemical sensors, which are natural cells and bioengineered cells, respectively. Natural cells are directly isolated from biological olfactory and taste systems, which are convenient to achieve. However, natural cells often suffer from the undefined sensing properties and limited amount of identical cells. On the other hand, bioengineered cells have shown decisive advantages to be applied in the development of biomimetic chemical sensors due to the powerful biotechnology for the reconstruction of the cell sensing properties. Here, we briefly summarized the most recent advances of biomimetic chemical sensors using bioengineered olfactory and taste cells. The development challenges and future trends are discussed as well.

  6. Analysis of conditions to safety and radiological protection of Brazilian research particle accelerators facilities

    International Nuclear Information System (INIS)

    Lourenco, Manuel Jacinto Martins

    2010-01-01

    Eleven institutions of education and research in Brazil use particle accelerators, which fulfill different functions and activities. Currently, these institutions employ a total of fifteen accelerators. In this paper, the object of study is the radiological protection of occupationally exposed individuals, the general public and the radiation safety of particle accelerators. Research facilities with accelerators are classified in categories I and II according to the International Atomic Energy Agency or groups IX and X in accordance with the Brazilian National Commission of Nuclear Energy. Of the 15 accelerators in use for research in Brazil, four belong to category I or group X and eleven belong to category II or group IX. The methodology presented and developed in this work was made through the inspection and assessment of safety and radiological protection of thirteen particle accelerators facilities, and its main purpose was to promote safer use of this practice by following established guidelines for safety and radiological protection. The results presented in this work showed the need to create a program, in our country, for the control of safety and radiological protection of this ionizing radiation practice. (author)

  7. How do Category Managers Manage?

    DEFF Research Database (Denmark)

    Hald, Kim Sundtoft; Sigurbjornsson, Tomas

    2013-01-01

    The aim of this research is to explore the managerial role of category managers in purchasing. A network management perspective is adopted. A case based research methodology is applied, and three category managers managing a diverse set of component and service categories in a global production...... firm is observed while providing accounts of their progress and results in meetings. We conclude that the network management classification scheme originally deve loped by Harland and Knight (2001) and Knight and Harland (2005) is a valuable and fertile theoretical framework for the analysis...

  8. Proximity sensor system development. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Haley, D.C. [Oak Ridge National Lab., TN (United States); Pigoski, T.M. [Merrit Systems, Inc. (United States)

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors.

  9. Proximity sensor system development. CRADA final report

    International Nuclear Information System (INIS)

    Haley, D.C.; Pigoski, T.M.

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors

  10. Typicality Mediates Performance during Category Verification in Both Ad-Hoc and Well-Defined Categories

    Science.gov (United States)

    Sandberg, Chaleece; Sebastian, Rajani; Kiran, Swathi

    2012-01-01

    Background: The typicality effect is present in neurologically intact populations for natural, ad-hoc, and well-defined categories. Although sparse, there is evidence of typicality effects in persons with chronic stroke aphasia for natural and ad-hoc categories. However, it is unknown exactly what influences the typicality effect in this…

  11. Validity of your safety awareness training

    CERN Multimedia

    DG Unit

    2010-01-01

    AIS is setting up an automatic e-mail reminder system for safety training. You are invited to forward this message to everyone concerned. Reminder: Please check the validity of your Safety courses Since April 2009 the compulsory basic Safety awareness courses (levels 1, 2 and 3) have been accessible on a "self-service" basis on the web (see CERN Bulletin). Participants are required to pass a test at the end of each course. The test is valid for 3 years so courses must be repeated on a regular basis. A system of automatic e-mail reminders already exists for level 4 courses on SIR and will be extended to the other levels shortly. The number of levels you are required to complete depends on your professional category. Activity Personnel concerned Level 1 Level 2 Level 3 Level 4     Basic safety Basic Safety ...

  12. A conductive grating sensor for online quantitative monitoring of fatigue crack

    Science.gov (United States)

    Li, Peiyuan; Cheng, Li; Yan, Xiaojun; Jiao, Shengbo; Li, Yakun

    2018-05-01

    Online quantitative monitoring of crack damage due to fatigue is a critical challenge for structural health monitoring systems assessing structural safety. To achieve online quantitative monitoring of fatigue crack, a novel conductive grating sensor based on the principle of electrical potential difference is proposed. The sensor consists of equidistant grating channels to monitor the fatigue crack length and conductive bars to provide the circuit path. An online crack monitoring system is established to verify the sensor's capability. The experimental results prove that the sensor is suitable for online quantitative monitoring of fatigue crack. A finite element model for the sensor is also developed to optimize the sensitivity of crack monitoring, which is defined by the rate of sensor resistance change caused by the break of the first grating channel. Analysis of the model shows that the sensor sensitivity can be enhanced by reducing the number of grating channels and increasing their resistance and reducing the resistance of the conductive bar.

  13. Categories of transactions

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter discusses the types of wholesale sales made by utilities. The Federal Energy Regulatory Commission (FERC), which regulates inter-utility sales, divides these sales into two broad categories: requirements and coordination. A variety of wholesale sales do not fall neatly into either category. For example, power purchased to replace the Three Mile Island outage is in a sense a reliability purchase, since it is bought on a long-term firm basis to meet basic load requirements. However, it does not fit the traditional model of a sale considered as part of each utility's long range planning. In addition, this chapter discusses transmission services, with a particular emphasis on wheeling

  14. Sensor integration and testing in an airborne environment

    Science.gov (United States)

    Ricks, Timothy P.; Streling, Julie T.; Williams, Kirk W.

    2005-11-01

    The U.S. Army Redstone Technical Test Center (RTTC) has been supporting captive flight testing of missile sensors and seekers since the 1980's. Successful integration and test of sensors in an airborne environment requires attention to a broad range of disciplines. Data collection requirements drive instrumentation and flight profile configurations, which along with cost and airframe performance factors influence the choice of test aircraft. Installation methods used for instrumentation must take into consideration environmental and airworthiness factors. In addition, integration of test equipment into the aircraft will require an airworthiness release; procedures vary between the government for military aircraft, and the Federal Aviation Administration (FAA) for the use of private, commercial, or experimental aircraft. Sensor mounting methods will depend on the type of sensor being used, both for sensor performance and crew safety concerns. Pilots will require navigation input to permit the execution of accurate and repeatable flight profiles. Some tests may require profiles that are not supported by standard navigation displays, requiring the use of custom hardware/software. Test locations must also be considered in their effect on successful data collection. Restricted airspace may also be required, depending on sensor emissions and flight profiles.

  15. Ullage Compatible Optical Sensor for Monitoring Safety-Significant Malfunctions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The tasks of this Phase I proposal are designed to establish the feasibility of an optical sensor for real-time, in situ monitoring of the ullage environment of an...

  16. Prior knowledge of category size impacts visual search.

    Science.gov (United States)

    Wu, Rachel; McGee, Brianna; Echiverri, Chelsea; Zinszer, Benjamin D

    2018-03-30

    Prior research has shown that category search can be similar to one-item search (as measured by the N2pc ERP marker of attentional selection) for highly familiar, smaller categories (e.g., letters and numbers) because the finite set of items in a category can be grouped into one unit to guide search. Other studies have shown that larger, more broadly defined categories (e.g., healthy food) also can elicit N2pc components during category search, but the amplitude of these components is typically attenuated. Two experiments investigated whether the perceived size of a familiar category impacts category and exemplar search. We presented participants with 16 familiar company logos: 8 from a smaller category (social media companies) and 8 from a larger category (entertainment/recreation manufacturing companies). The ERP results from Experiment 1 revealed that, in a two-item search array, search was more efficient for the smaller category of logos compared to the larger category. In a four-item search array (Experiment 2), where two of the four items were placeholders, search was largely similar between the category types, but there was more attentional capture by nontarget members from the same category as the target for smaller rather than larger categories. These results support a growing literature on how prior knowledge of categories affects attentional selection and capture during visual search. We discuss the implications of these findings in relation to assessing cognitive abilities across the lifespan, given that prior knowledge typically increases with age. © 2018 Society for Psychophysiological Research.

  17. A comparison between using distance sensors for measuring the pantograph vertically movement

    Science.gov (United States)

    Rob, R.; Panoiu, C.; Rusu-Anghel, S.; Panoiu, M.

    2018-01-01

    In railway transportation the most important problem to solve consists in assuring the safety traffic of people and freight. In this scope some of the geometrical parameters regarding the contact line must be measured. One of this parameter is the pantograph vertically movement, so it must use distance sensors. Present paper studies the performance of two kinds of distance sensors, an ultrasonic distance sensor and an infrared sensor. The performances are studied from the point of view of error distance measurement and the possibility of using a real time acquisition system. The researches were made on a laboratory model for the pantograph realized at the scale 1:2.

  18. Harrisburg and the ideology of the safety standards

    Energy Technology Data Exchange (ETDEWEB)

    Levidow, L

    1979-07-01

    The events of Three Mile Island are discussed in relation to safety standards. It was seen how the State operated with the contradictions that are inherited in the nuclear industry. The State used scientific categories to manipulate the people, while at the same time the impression was created that the people were being protected against the excesses of industry. The safety measures taken after the accident are critically outlined, particularly the late advice on evacuation.

  19. Health monitoring of civil structures using fiber optic sensors

    International Nuclear Information System (INIS)

    Varma, Veto; Kumar, Praveen; Charan, J.J.; Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    2003-08-01

    During the lifetime of the reactor, the civil structure is subjected to many operational and environmental loads. Hence it is increasingly important to monitor the conditions of the structure and insure its safety and integrity. The conventional gauges have proved to be not sufficiently catering the problem of long term health monitoring of the structure because of its many limitations. Hence it is mandatory to develop a technique for the above purpose. Present study deals with the application of Fiber optic sensors (EFPI strain Gauges) in the civil structure for its health monitoring. Various experiments were undertaken and suitability of sensors was checked. A technique to embed the optical sensor inside the concrete is successfully developed and tested. (author)

  20. Predisposal management of high level radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    , treatment and conditioning) of HLW. (B) The storage of liquid and solidified HLW. (C) The storage of conditioned spent fuel. Unless specific reference is made to one or more categories, the recommendations in this Safety Guide apply generally to all categories of HLW. The possibility of criticality is more significant for spent fuel than it is for other categories of HLW, and should be given appropriate consideration in all activities in which spent fuel is involved. The possibility of criticality involving liquid HLW should, however, also always be considered

  1. Distributed optical fiber sensors for integrated monitoring of railway infrastructures

    Science.gov (United States)

    Minardo, Aldo; Coscetta, Agnese; Porcaro, Giuseppe; Giannetta, Daniele; Bernini, Romeo; Zeni, Luigi

    2014-05-01

    We propose the application of a distributed optical fiber sensor based on stimulated Brillouin scattering, as an integrated system for safety monitoring of railway infrastructures. The strain distribution was measured dynamically along a 60 meters length of rail track, as well as along a 3-m stone arch bridge. The results indicate that distributed sensing technology is able to provide useful information in railway traffic and safety monitoring.

  2. Fiber optic pressure sensors for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Black, C.L. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    In the last few years, the nuclear industry has experienced some problems with the performance of pressure transmitters and has been interested in new sensors based on new technologies. Fiber optic pressure sensors offer the potential to improve on or overcome some of the limitations of existing pressure sensors. Up to now, research has been motivated towards development and refinement of fiber optic sensing technology. In most applications, reliability studies and failure mode analyses remain to be exhaustively conducted. Fiber optic sensors have currently penetrated certain cutting edge markets where they possess necessary inherent advantages over other existing technologies. In these markets (e.g. biomedical, aerospace, automotive, and petrochemical), fiber optic sensors are able to perform measurements for which no alternate sensor previously existed. Fiber optic sensing technology has not yet been fully adopted into the mainstream sensing market. This may be due to not only the current premium price of fiber optic sensors, but also the lack of characterization of their possible performance disadvantages. In other words, in conservative industries, the known disadvantages of conventional sensors are sometimes preferable to unknown or not fully characterized (but potentially fewer and less critical) disadvantages of fiber optic sensors. A six-month feasibility study has been initiated under the auspices of the US Nuclear Regulatory Commission (NRC) to assess the performance and reliability of existing fiber optic pressure sensors for use in nuclear power plants. This assessment will include establishment of the state of the art in fiber optic pressure sensing, characterization of the reliability of fiber optic pressure sensors, and determination of the strengths and limitations of these sensors for nuclear safety-related services.

  3. Fiber optic pressure sensors for nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Black, C.L.

    1995-01-01

    In the last few years, the nuclear industry has experienced some problems with the performance of pressure transmitters and has been interested in new sensors based on new technologies. Fiber optic pressure sensors offer the potential to improve on or overcome some of the limitations of existing pressure sensors. Up to now, research has been motivated towards development and refinement of fiber optic sensing technology. In most applications, reliability studies and failure mode analyses remain to be exhaustively conducted. Fiber optic sensors have currently penetrated certain cutting edge markets where they possess necessary inherent advantages over other existing technologies. In these markets (e.g. biomedical, aerospace, automotive, and petrochemical), fiber optic sensors are able to perform measurements for which no alternate sensor previously existed. Fiber optic sensing technology has not yet been fully adopted into the mainstream sensing market. This may be due to not only the current premium price of fiber optic sensors, but also the lack of characterization of their possible performance disadvantages. In other words, in conservative industries, the known disadvantages of conventional sensors are sometimes preferable to unknown or not fully characterized (but potentially fewer and less critical) disadvantages of fiber optic sensors. A six-month feasibility study has been initiated under the auspices of the US Nuclear Regulatory Commission (NRC) to assess the performance and reliability of existing fiber optic pressure sensors for use in nuclear power plants. This assessment will include establishment of the state of the art in fiber optic pressure sensing, characterization of the reliability of fiber optic pressure sensors, and determination of the strengths and limitations of these sensors for nuclear safety-related services

  4. Innovative Virtual Air Data Sensors: Algorithms and Flight Test Results

    OpenAIRE

    Garbarino, Luca

    2015-01-01

    This thesis deals with the design, prototype implementation and the assessment of virtual sensors for an Air Data System (ADS). The needs for the development of a virtual Air Data Sensors resides on two relevant aspects in aviation transport development: a) the opportunity to improve the safety of manned aviation, by implementing an affordable solution for ADS redundancy; b) the possibility to improve the reliability of unmanned air vehicles (UAVs), which can support their integration in non-...

  5. Shape configuration and category-specificity

    DEFF Research Database (Denmark)

    Gerlach, Christian; Law, Ian; Paulson, Olaf B.

    2006-01-01

    a recent account of category-specificity and lends support to the notion that category-specific impairments can occur for both natural objects and artefacts following damage to pre-semantic stages in visual object recognition. The implications of the present findings are discussed in relation to theories...

  6. The effect of midazolam on implicit and explicit memory in category exemplar production and category cued recall.

    Science.gov (United States)

    Arndt, Jason; Passannante, Anthony; Hirshman, Elliot

    2004-03-01

    Transfer-appropriate processing theory (Roediger, Weldon, & Challis, 1989) proposes that dissociations between performance on explicit and implicit memory tests arise because these tests often rely on different types of information processing (e.g., perceptual processing vs conceptual processing). This perspective predicts that implicit and explicit memory tasks that rely primarily on conceptual processing should show comparable results, not dissociations. Numerous studies have demonstrated such similarities. It is, however, possible that these results arise from explicit memory contamination of performance on implicit memory tasks. To address this issue, an experiment was conducted in which participants were administered the sedative midazolam prior to study. Midazolam is known to create a temporary, but dense, period of anterograde amnesia. The effects of blocking stimulus materials by semantic category at study and generation at study were investigated on category exemplar production and category-cued recall. The results of this study demonstrated a dissociation of the effects of midazolam on category exemplar production and category-cued recall. Specifically, midazolam reduced the effect of blocking stimulus materials in category-cued recall, but not in category exemplar production. The differential effect of midazolam on explicit and implicit memory is at odds with transfer-appropriate processing theory and suggests that theories of memory must distinguish the roles of different types of conceptual processing on implicit and explicit memory tests.

  7. International Conference on Category Theory

    CERN Document Server

    Pedicchio, Maria; Rosolini, Guiseppe

    1991-01-01

    With one exception, these papers are original and fully refereed research articles on various applications of Category Theory to Algebraic Topology, Logic and Computer Science. The exception is an outstanding and lengthy survey paper by Joyal/Street (80 pp) on a growing subject: it gives an account of classical Tannaka duality in such a way as to be accessible to the general mathematical reader, and to provide a key for entry to more recent developments and quantum groups. No expertise in either representation theory or category theory is assumed. Topics such as the Fourier cotransform, Tannaka duality for homogeneous spaces, braided tensor categories, Yang-Baxter operators, Knot invariants and quantum groups are introduced and studies. From the Contents: P.J. Freyd: Algebraically complete categories.- J.M.E. Hyland: First steps in synthetic domain theory.- G. Janelidze, W. Tholen: How algebraic is the change-of-base functor?.- A. Joyal, R. Street: An introduction to Tannaka duality and quantum groups.- A. Jo...

  8. The management and disposal of radioactive wastes - safety principles and guidelines

    International Nuclear Information System (INIS)

    Linsley, G.; Bell, M.; Saire, D.

    1991-01-01

    This paper describes the current plans for the establishment of the Radioactive Waste Safety Standards (RADWASS), a new series of IAEA documents in the Safety Series category intended to set out internationally agreed approaches to the safe management and disposal or radioactive waste. RADWASS is being implemented to document the harmonization which exists in the approaches to establishing safety in the field of radioactive waste management and disposal at the international level. (au)

  9. Nuclear safety culture and integrated risk management

    International Nuclear Information System (INIS)

    Joksimovich, V.; Orvis, D.D.

    1993-01-01

    A primary focus of nuclear safety is the prevention of large releases of radioactivity in the case of low-probability severe accidents. An analysis of the anatomy of nuclear (Chernobyl, Three Mile Island Unit 2) and nonnuclear (Challenger, Bhopal, Piper Alpha, etc.) severe accidents yields four broad categories of root causes: human (operating crew response), machine (design with its basic flaws), media (natural phenomena, operational considerations, political environment, commercial pressures, etc.)-providing triggering events, and management (basic organizational safety culture flaws). A strong management can minimize the contributions of humans, machines, and media to the risk arising from the operation of hazardous facilities. One way that management can have a powerful positive influence is through the establishment of a proper safety culture. The term safety culture is used as defined by the International Atomic Energy Agency's International Safety Advisory Group

  10. Reconceptualizing 'extremism' and 'moderation': from categories of analysis to categories of practice in the construction of collective identity.

    Science.gov (United States)

    Hopkins, Nick; Kahani-Hopkins, Vered

    2009-03-01

    Much psychological research employs the categories of extremism and moderation as categories of analysis (e.g. to identify the psychological bases for, and consequences of, holding certain positions). This paper argues these categorizations inevitably reflect one's values and taken-for-granted assumptions about social reality and that their use as analytic categories limits our ability to explore what is really important: social actors' own constructions of social reality. In turn we argue that if we are to focus on this latter, there may be merit in exploring how social actors themselves use the categories of moderation and extremism to construct their own terms of reference. That is we propose to re-conceptualize the categories of moderation and extremism as categories of practice rather than analysis. The utility of this approach is illustrated with qualitative data. We argue that these data illustrate the importance of respecting social actors' own constructions of social reality (rather than imposing our own). Moreover, we argue that categories of moderation and extremism may be employed by social actors in diverse ways to construct different terms of reference and so recruit support for different identity-related projects.

  11. Adapting Cognitive Task Analysis to Investigate Clinical Decision Making and Medication Safety Incidents.

    Science.gov (United States)

    Russ, Alissa L; Militello, Laura G; Glassman, Peter A; Arthur, Karen J; Zillich, Alan J; Weiner, Michael

    2017-05-03

    Cognitive task analysis (CTA) can yield valuable insights into healthcare professionals' cognition and inform system design to promote safe, quality care. Our objective was to adapt CTA-the critical decision method, specifically-to investigate patient safety incidents, overcome barriers to implementing this method, and facilitate more widespread use of cognitive task analysis in healthcare. We adapted CTA to facilitate recruitment of healthcare professionals and developed a data collection tool to capture incidents as they occurred. We also leveraged the electronic health record (EHR) to expand data capture and used EHR-stimulated recall to aid reconstruction of safety incidents. We investigated 3 categories of medication-related incidents: adverse drug reactions, drug-drug interactions, and drug-disease interactions. Healthcare professionals submitted incidents, and a subset of incidents was selected for CTA. We analyzed several outcomes to characterize incident capture and completed CTA interviews. We captured 101 incidents. Eighty incidents (79%) met eligibility criteria. We completed 60 CTA interviews, 20 for each incident category. Capturing incidents before interviews allowed us to shorten the interview duration and reduced reliance on healthcare professionals' recall. Incorporating the EHR into CTA enriched data collection. The adapted CTA technique was successful in capturing specific categories of safety incidents. Our approach may be especially useful for investigating safety incidents that healthcare professionals "fix and forget." Our innovations to CTA are expected to expand the application of this method in healthcare and inform a wide range of studies on clinical decision making and patient safety.

  12. Remotely deployable aerial inspection using tactile sensors

    Science.gov (United States)

    MacLeod, C. N.; Cao, J.; Pierce, S. G.; Sullivan, J. C.; Pipe, A. G.; Dobie, G.; Summan, R.

    2014-02-01

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

  13. 76 FR 53660 - Federal Motor Vehicle Safety Standards; Seat Belt Assemblies

    Science.gov (United States)

    2011-08-29

    ... Traffic Safety Administration 49 CFR Part 571 [Docket No. NHTSA-2011-0078] Federal Motor Vehicle Safety... integration of electrical signals from vehicle crash sensors would work with the requested mechanical seat... (350,000) of the vehicles were stopped in the traffic lane prior to the crash event (pg. 22, Table 7...

  14. Energy information data base: energy categories

    International Nuclear Information System (INIS)

    1980-03-01

    Citations entered into DOE's computerized bibliographic information system are assigned six-digit subject category numbers to group information broadly for storage, retrieval, and manipulation. These numbers are used in the preparation of printed documents, such as bibliographies and abstract journals, to arrange the citations and as searching aids in the on-line system, DOE/RECON. This document has been prepared for use by those individuals responsible for the assignment of category numbers to documents being entered into the Technical Information Center (TIC) system, those individuals and organizations processing magnetic tape copies of the files, those individuals doing on-line searching for information in TIC-created files, and others who, having no access to RECON, need printed copy. The six-digit numbers assigned to documents are listed, along with the category names and text to define the scope of interest. Asterisks highlight those categories added or changed since the previous printing, and a subject index further details the subject content of each category

  15. Understanding the relationship between safety culture dimensions and safety performance of construction projects through partial least square method

    Science.gov (United States)

    Latief, Yusuf; Machfudiyanto, Rossy A.; Arifuddin, Rosmariani; Yogiswara, Yoko

    2017-03-01

    Based on the data, 32% of accidental cases in Indonesia occurs on constructional sectors. It is supported by the data from Public Work and Housing Department that 27.43% of the implementation level of Safety Management System policy at construction companies in Indonesia remains unsafe categories. Moreover, there are dimensions of occupational safety culture formed including leadership, behavior, strategy, policy, process, people, safety cost, value and contract system. The aim of this study is to determine the model of an effective safety culture and know the relationship between dimensions in construction industry. The method used in this research was questionnaire survey which was distributed to the sample of construction companies either in a national private one in Indonesia. The result of this research is supposed to be able to illustrate the development of the relationship among occupational safety culture dimensions which have influences to the performances of constructional companies in Indonesia.

  16. Conformal field theories and tensor categories. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics

    2014-08-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  17. The ethnic category from a linguistic perspective

    Directory of Open Access Journals (Sweden)

    Răzvan Săftoiu

    2017-03-01

    Full Text Available In this paper, I put forward an analysis from a linguistic perspective of an ethnic category in Romania that is defined by at least two terms: gypsy and Romany. The concept of category refers to the members of a particular group that sets apart from other groups by a set of specific elements acknowledged at the level of a larger community. In interaction, individuals frequently use categories and the set of features that a certain category is characterized by, since it is easier to deal with sets of knowledge than with references for each individual separately. The analysis is based on a series of expressions and phrases, proverbs and jokes which were (or still are getting about in the Romanian space and which delineated, at the level of the collective mentality, the image of an ethnic category whose name (still oscillates between two terms. The texts were grouped depending on the different stereotypes associated with the ethnic category under discussion, by highlighting the pejorative connotations of the uses of the term gypsy in relation to the ethnic category Romany, a significance-free category that can be ‘filled up’ by elements that can sketch a positive image.

  18. Conformal field theories and tensor categories. Proceedings

    International Nuclear Information System (INIS)

    Bai, Chengming; Fuchs, Juergen; Huang, Yi-Zhi; Kong, Liang; Runkel, Ingo; Schweigert, Christoph

    2014-01-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  19. Harrisburg and the ideology of the safety standards

    International Nuclear Information System (INIS)

    Levidow, L.

    1979-01-01

    The events of three mile island one discussed in relation to safety standards. It was seen how the State operated with the contradictions that are inherited in the nuclear industry. The State used scientific categories to manipulate the people, while at the same time the impression was created that the people were being protected against the excesses of industry. The safety measures taken after the accident are critically outlined, particularly the late advice on evakuation. (C.F.)

  20. Application of Monte-Carlo method in definition of key categories of most radioactive polluted soil

    International Nuclear Information System (INIS)

    Mahmudov, H.M.; Valibeyova, G.; Jafarov, Y.D.; Musaeva, Sh.Z.

    2006-01-01

    Full text: The principle of analysis by Monte Carlo method consists of a choice of random variables of coefficients of an exposition doze capacities of radiation and data on activity within the boundaries of their individual density of frequency distribution upon corresponding sizes of exposition doses capacities. This procedure repeats for many times using computer and results of each round of calculations create universal density of frequency distribution of exposition doses capacities. The analysis using Monte Carlo method can be carried out at the level of radiation polluted soil categories. The analysis by Monte Carlo method is useful for realization of sensitivity analysis of measured capacity amount of an exposition dose in order to define the major factors causing uncertainty in reports. Reception of such conceptions can be valuable for definition of key categories of radiation polluted soil and establishment of priorities to use resources for enhancement of the report. Relative uncertainty of radiation polluted soil categories determined with the help of the analysis by Monte Carlo method in case of their availability can be applied using more significant divergence between average value and a confidential limit in case when borders of a confidential interval are asymmetric. It is important to determine key categories of radiation polluted soil to establish priorities to use reports of resources available for preparation and to prepare possible estimations for the most significant categories of sources. Usage of the notion u ncertainty i n reports also allows to set threshold value for a key category of sources, if it is necessary, for exact reflection of 90 percent uncertainty in reports. According to radiation safety norms level of radiation background exceeding 33 mkR/hour is considered dangerous. By calculated Monte Carlo method much more dangerous sites and sites frequently imposed to disposals and utilization were chosen from analyzed samples of

  1. Application of Monte-Carlo method in definition of key categories of most radioactive polluted soil

    Energy Technology Data Exchange (ETDEWEB)

    Mahmudov, H M; Valibeyova, G; Jafarov, Y D; Musaeva, Sh Z [Institute of Radiation Problems, Azerbaijan National Academy of Sciences, Baku (Azerbaijan)

    2006-11-15

    Full text: The principle of analysis by Monte Carlo method consists of a choice of random variables of coefficients of an exposition doze capacities of radiation and data on activity within the boundaries of their individual density of frequency distribution upon corresponding sizes of exposition doses capacities. This procedure repeats for many times using computer and results of each round of calculations create universal density of frequency distribution of exposition doses capacities. The analysis using Monte Carlo method can be carried out at the level of radiation polluted soil categories. The analysis by Monte Carlo method is useful for realization of sensitivity analysis of measured capacity amount of an exposition dose in order to define the major factors causing uncertainty in reports. Reception of such conceptions can be valuable for definition of key categories of radiation polluted soil and establishment of priorities to use resources for enhancement of the report. Relative uncertainty of radiation polluted soil categories determined with the help of the analysis by Monte Carlo method in case of their availability can be applied using more significant divergence between average value and a confidential limit in case when borders of a confidential interval are asymmetric. It is important to determine key categories of radiation polluted soil to establish priorities to use reports of resources available for preparation and to prepare possible estimations for the most significant categories of sources. Usage of the notion {sup u}ncertainty{sup i}n reports also allows to set threshold value for a key category of sources, if it is necessary, for exact reflection of 90 percent uncertainty in reports. According to radiation safety norms level of radiation background exceeding 33 mkR/hour is considered dangerous. By calted Monte Carlo method much more dangerous sites and sites frequently imposed to disposals and utilization were chosen from analyzed samples of

  2. Hot Cell Facility (HCF) Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  3. Hot Cell Facility (HCF) Safety Analysis Report

    International Nuclear Information System (INIS)

    MITCHELL, GERRY W.; LONGLEY, SUSAN W.; PHILBIN, JEFFREY S.; MAHN, JEFFREY A.; BERRY, DONALD T.; SCHWERS, NORMAN F.; VANDERBEEK, THOMAS E.; NAEGELI, ROBERT E.

    2000-01-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR

  4. Optical hydrogen sensors based on metal-hydrides

    Science.gov (United States)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  5. Nuclear safety, Volume 38, Number 1, January--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-03-01

    This journal contains nine articles which fall under the following categories: (1) general safety considerations; (2) control and instrumentation; (3) design features (4) environmental effects; (5) US Nuclear Regulatory Commission information and analyses; and (6) recent developments.

  6. Investigating cross-category brand loyalty behavior in FMCG

    DEFF Research Database (Denmark)

    Boztug, Yasemin; Hildebrandt, Lutz; Silberhorn, Nadja

    category depend on purchases in other categories. The aspect of cross-category related brand loyalty has been somewhat neglected so far. We concentrate on cross-category relationships of strong national brands and on how customers' brand choice decisions are related across several product categories.......In competitive markets, customer retention is more efficient than trying to attract new customers. Brand loyalty is an intrinsic commitment to repeatedly purchase a particular brand. But most analyses have been conducted in one specific category only. It has been shown that product purchases in one...

  7. Hippocampal activation during episodic and semantic memory retrieval: comparing category production and category cued recall.

    Science.gov (United States)

    Ryan, Lee; Cox, Christine; Hayes, Scott M; Nadel, Lynn

    2008-01-01

    Whether or not the hippocampus participates in semantic memory retrieval has been the focus of much debate in the literature. However, few neuroimaging studies have directly compared hippocampal activation during semantic and episodic retrieval tasks that are well matched in all respects other than the source of the retrieved information. In Experiment 1, we compared hippocampal fMRI activation during a classic semantic memory task, category production, and an episodic version of the same task, category cued recall. Left hippocampal activation was observed in both episodic and semantic conditions, although other regions of the brain clearly distinguished the two tasks. Interestingly, participants reported using retrieval strategies during the semantic retrieval task that relied on autobiographical and spatial information; for example, visualizing themselves in their kitchen while producing items for the category kitchen utensils. In Experiment 2, we considered whether the use of these spatial and autobiographical retrieval strategies could have accounted for the hippocampal activation observed in Experiment 1. Categories were presented that elicited one of three retrieval strategy types, autobiographical and spatial, autobiographical and nonspatial, and neither autobiographical nor spatial. Once again, similar hippocampal activation was observed for all three category types, regardless of the inclusion of spatial or autobiographical content. We conclude that the distinction between semantic and episodic memory is more complex than classic memory models suggest.

  8. National Waste Repository Novi Han operational safety analysis report. Safety assessment methodology

    International Nuclear Information System (INIS)

    2003-01-01

    The scope of the safety assessment (SA), presented includes: waste management functions (acceptance, conditioning, storage, disposal), inventory (current and expected in the future), hazards (radiological and non-radiological) and normal and accidental modes. The stages in the development of the SA are: criteria selection, information collection, safety analysis and safety assessment documentation. After the review the facilities functions and the national and international requirements, the criteria for safety level assessment are set. As a result from the 2nd stage actual parameters of the facility, necessary for safety analysis are obtained.The methodology is selected on the base of the comparability of the results with the results of previous safety assessments and existing standards and requirements. The procedure and requirements for scenarios selection are described. A radiological hazard categorisation of the facilities is presented. Qualitative hazards and operability analysis is applied. The resulting list of events are subjected to procedure for prioritization by method of 'criticality analysis', so the estimation of the risk is given for each event. The events that fall into category of risk on the boundary of acceptability or are unacceptable are subjected to the next steps of the analysis. As a result the lists with scenarios for PSA and possible design scenarios are established. PSA logical modeling and quantitative calculations of accident sequences are presented

  9. Radiation safety in 'install and operate type' irradiator

    International Nuclear Information System (INIS)

    Sahoo, D.K.; Kohli, A.K.

    2003-01-01

    Install and operate type irradiator has been designed to carry out radiation processing of various food products as well as medical products. It is a category 1 type batch irradiator. This paper brings out the radiation safety aspects of this irradiator. Comparison has been made with conveyor type category IV irradiators, which are more common in use for commercial purposes. The design has many features that make it a very safe, convenient and economical method for processing of all items that are permitted and amenable for gamma radiation processing. (author)

  10. Category O for quantum groups

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Mazorchuk, Volodymyr

    2015-01-01

    We study the BGG-categories O_q associated to quantum groups. We prove that many properties of the ordinary BGG-category O for a semisimple complex Lie algebra carry over to the quantum case. Of particular interest is the case when q is a complex root of unity. Here we prove a tensor decomposition...... for simple modules, projective modules, and indecomposable tilting modules. Using the known Kazhdan–Lusztig conjectures for O and for finite-dimensional U_q-modules we are able to determine all irreducible characters as well as the characters of all indecomposable tilting modules in O_q . As a consequence......, we also recover the known result that the generic quantum case behaves like the classical category O....

  11. Sensor Failure Detection of FASSIP System using Principal Component Analysis

    Science.gov (United States)

    Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.

  12. [Operating Room Nurses' Experiences of Securing for Patient Safety].

    Science.gov (United States)

    Park, Kwang Ok; Kim, Jong Kyung; Kim, Myoung Sook

    2015-10-01

    This study was done to evaluate the experience of securing patient safety in hospital operating rooms. Experiential data were collected from 15 operating room nurses through in-depth interviews. The main question was "Could you describe your experience with patient safety in the operating room?". Qualitative data from the field and transcribed notes were analyzed using Strauss and Corbin's grounded theory methodology. The core category of experience with patient safety in the operating room was 'trying to maintain principles of patient safety during high-risk surgical procedures'. The participants used two interactional strategies: 'attempt continuous improvement', 'immersion in operation with sharing issues of patient safety'. The results indicate that the important factors for ensuring the safety of patients in the operating room are manpower, education, and a system for patient safety. Successful and safe surgery requires communication, teamwork and recognition of the importance of patient safety by the surgical team.

  13. Category-specificity in visual object recognition

    DEFF Research Database (Denmark)

    Gerlach, Christian

    2009-01-01

    Are all categories of objects recognized in the same manner visually? Evidence from neuropsychology suggests they are not: some brain damaged patients are more impaired in recognizing natural objects than artefacts whereas others show the opposite impairment. Category-effects have also been...... demonstrated in neurologically intact subjects, but the findings are contradictory and there is no agreement as to why category-effects arise. This article presents a Pre-semantic Account of Category Effects (PACE) in visual object recognition. PACE assumes two processing stages: shape configuration (the...... binding of shape elements into elaborate shape descriptions) and selection (among competing representations in visual long-term memory), which are held to be differentially affected by the structural similarity between objects. Drawing on evidence from clinical studies, experimental studies...

  14. Self-Test Procedures for Gas Sensors Embedded in Microreactor Systems

    Science.gov (United States)

    Helwig, Andreas; Hackner, Angelika; Zappa, Dario; Sberveglieri, Giorgio

    2018-01-01

    Metal oxide (MOX) gas sensors sensitively respond to a wide variety of combustible, explosive and poisonous gases. However, due to the lack of a built-in self-test capability, MOX gas sensors have not yet been able to penetrate safety-critical applications. In the present work we report on gas sensing experiments performed on MOX gas sensors embedded in ceramic micro-reaction chambers. With the help of an external micro-pump, such systems can be operated in a periodic manner alternating between flow and no-flow conditions, thus allowing repetitive measurements of the sensor resistances under clean air, R0, and under gas exposure, Rgas, to be obtained, even under field conditions. With these pairs of resistance values, eventual drifts in the sensor baseline resistance can be detected and drift-corrected values of the relative resistance response Resp=(R0−Rgas)/R0 can be determined. Residual poisoning-induced changes in the relative resistance response can be detected by reference to humidity measurements taken with room-temperature-operated capacitive humidity sensors which are insensitive to the poisoning processes operative on heated MOX gas sensors. PMID:29401673

  15. Self-Test Procedures for Gas Sensors Embedded in Microreactor Systems.

    Science.gov (United States)

    Helwig, Andreas; Hackner, Angelika; Müller, Gerhard; Zappa, Dario; Sberveglieri, Giorgio

    2018-02-03

    Metal oxide (MOX) gas sensors sensitively respond to a wide variety of combustible, explosive and poisonous gases. However, due to the lack of a built-in self-test capability, MOX gas sensors have not yet been able to penetrate safety-critical applications. In the present work we report on gas sensing experiments performed on MOX gas sensors embedded in ceramic micro-reaction chambers. With the help of an external micro-pump, such systems can be operated in a periodic manner alternating between flow and no-flow conditions, thus allowing repetitive measurements of the sensor resistances under clean air, R 0 , and under gas exposure, R g a s , to be obtained, even under field conditions. With these pairs of resistance values, eventual drifts in the sensor baseline resistance can be detected and drift-corrected values of the relative resistance response R e s p = ( R 0 - R g a s ) / R 0 can be determined. Residual poisoning-induced changes in the relative resistance response can be detected by reference to humidity measurements taken with room-temperature-operated capacitive humidity sensors which are insensitive to the poisoning processes operative on heated MOX gas sensors.

  16. Data Fusion Based on Node Trust Evaluation in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhou Jianming

    2014-01-01

    Full Text Available Abnormal behavior detection and trust evaluation mode of traditional sensor node have a single function without considering all the factors, and the trust value algorithm is relatively complicated. To avoid these above disadvantages, a trust evaluation model based on the autonomous behavior of sensor node is proposed in this paper. Each sensor node has the monitoring privilege and obligation. Neighboring sensor nodes can monitor each other. Their direct and indirect trust values can be achieved by using a relatively simple calculation method, the synthesis trust value of which could be got according to the composition rule of D-S evidence theory. Firstly, the cluster head assigns different weighted value for the data from each sensor node, then the weight vector is set according to the synthesis trust value, the data fusion processing is executed, and finally the cluster head sensor node transmits the fused result to the base station. Simulation experiment results demonstrate that the trust evaluation model can rapidly, exactly, and effectively recognize malicious sensor node and avoid malicious sensor node becoming cluster head sensor node. The proposed algorithm can greatly increase the safety and accuracy of data fusion, improve communication efficiency, save energy of sensor node, suit different application fields, and deploy environments.

  17. Individual differences in attention during category learning

    NARCIS (Netherlands)

    Lee, M.D.; Wetzels, R.

    2010-01-01

    A central idea in many successful models of category learning—including the Generalized Context Model (GCM)—is that people selectively attend to those dimensions of stimuli that are relevant for dividing them into categories. We use the GCM to re-examine some previously analyzed category learning

  18. In Situ Multi-Species (O2, N2, Fuel, Other) Fiber Optic Sensor for Fuel Tank Ullage

    Science.gov (United States)

    Nguyen, Quang-Viet

    2007-01-01

    A rugged and compact fiber optic sensor system for in situ real-time measurement of nitrogen (N2), oxygen (O2), hydrocarbon (HC) fuel vapors, and other gases has been developed over the past several years at Glenn Research Center. The intrinsically-safe, solid-state fiber optic sensor system provides a 1% precision measurement (by volume) of multiple gases in a 5-sec time window. The sensor has no consumable parts to wear out and requires less than 25 W of electrical power to operate. The sensor head is rugged and compact and is ideal for use in harsh environments such as inside an aircraft fuel tank, or as a feedback sensor in the vent-box of an on-board inert gas generation system (OBIGGS). Multiple sensor heads can be monitored with a single optical detection unit for a cost-effective multi-point sensor system. The present sensor technology is unique in its ability to measure N2 concentration directly, and in its ability to differentiate different types of HC fuels. The present sensor system provides value-added aircraft safety information by simultaneously and directly measuring the nitrogen-oxygen-fuel triplet, which provides the following advantages: (1) information regarding the extent of inerting by N2, (2) information regarding the chemical equivalence ratio, (3) information regarding the composition of the aircraft fuel, and (4) by providing a self-consistent calibration by utilizing a singular sensor for all species. Using the extra information made available by this sensor permits the ignitability of a fuel-oxidizer mixture to be more accurately characterized, which may permit a reduction in the amount of inerting required on a real-time basis, and yet still maintain a fire-safe fuel tank. This translates to an increase in fuel tank fire-safety through a better understanding of the physics of fuel ignition, and at the same time, a reduction in compressed bleed air usage and concomitant aircraft operational costs over the long-run. The present fiber

  19. Routes for GMR-Sensor Design in Non-Destructive Testing

    Directory of Open Access Journals (Sweden)

    Andreas Schütze

    2012-09-01

    Full Text Available GMR sensors are widely used in many industrial segments such as information technology, automotive, automation and production, and safety applications. Each area requires an adaption of the sensor arrangement in terms of size adaption and alignment with respect to the field source involved. This paper deals with an analysis of geometric sensor parameters and the arrangement of GMR sensors providing a design roadmap for non-destructive testing (NDT applications. For this purpose we use an analytical model simulating the magnetic flux leakage (MFL distribution of surface breaking defects and investigate the flux leakage signal as a function of various sensor parameters. Our calculations show both the influence of sensor length and height and that when detecting the magnetic flux leakage of µm sized defects a gradiometer base line of 250 µm leads to a signal strength loss of less than 10% in comparison with a magnetometer response. To validate the simulation results we finally performed measurements with a GMR magnetometer sensor on a test plate with artificial µm-range cracks. The differences between simulation and measurement are below 6%. We report on the routes for a GMR gradiometer design as a basis for the fabrication of NDT-adapted sensor arrays. The results are also helpful for the use of GMR in other application when it comes to measure positions, lengths, angles or electrical currents.

  20. Health and Safety Audit Design Manual

    Energy Technology Data Exchange (ETDEWEB)

    Ternes, Mark P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Langley, Brandon R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Accawi, Gina K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Malhotra, Mini [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-01

    The Health and Safety Audit is an electronic audit tool developed by the Oak Ridge National Laboratory to assist in the identification and selection of health and safety measures when a home is being weatherized (i.e., receiving home energy upgrades), especially as part of the US Department of Energy (DOE) Weatherization Assistance Program, or during home energy-efficiency retrofit or remodeling jobs. The audit is specifically applicable to existing single-family homes (including mobile homes), and is generally applicable to individual dwelling units in low-rise multifamily buildings. The health and safety issues covered in the audit are grouped in nine categories: mold and moisture, lead, radon, asbestos, formaldehyde and volatile organic compounds (VOCs), combustion, pest infestation, safety, and ventilation. Development of the audit was supported by the US Department of Housing and Urban Development Office of Healthy Homes and Lead Hazard Control and the DOE Weatherization Assistance Program.

  1. Order of Presentation Effects in Learning Color Categories

    Science.gov (United States)

    Sandhofer, Catherine M.; Doumas, Leonidas A. A.

    2008-01-01

    Two studies, an experimental category learning task and a computational simulation, examined how sequencing training instances to maximize comparison and memory affects category learning. In Study 1, 2-year-old children learned color categories with three training conditions that varied in how categories were distributed throughout training and…

  2. Supervised and Unsupervised Learning of Multidimensional Acoustic Categories

    Science.gov (United States)

    Goudbeek, Martijn; Swingley, Daniel; Smits, Roel

    2009-01-01

    Learning to recognize the contrasts of a language-specific phonemic repertoire can be viewed as forming categories in a multidimensional psychophysical space. Research on the learning of distributionally defined visual categories has shown that categories defined over 1 dimension are easy to learn and that learning multidimensional categories is…

  3. Basic category theory

    CERN Document Server

    Leinster, Tom

    2014-01-01

    At the heart of this short introduction to category theory is the idea of a universal property, important throughout mathematics. After an introductory chapter giving the basic definitions, separate chapters explain three ways of expressing universal properties: via adjoint functors, representable functors, and limits. A final chapter ties all three together. The book is suitable for use in courses or for independent study. Assuming relatively little mathematical background, it is ideal for beginning graduate students or advanced undergraduates learning category theory for the first time. For each new categorical concept, a generous supply of examples is provided, taken from different parts of mathematics. At points where the leap in abstraction is particularly great (such as the Yoneda lemma), the reader will find careful and extensive explanations. Copious exercises are included.

  4. Sensor/signal monitoring and plant maintenance

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.; Tuerkcan, E.

    1994-02-01

    Nuclear Power Plant (NPO) availability is determined by the intended functionality of safety related system and components. Therefore, maintenance is an important issue in a power plant connected to the plant's reliability and safety. The traditional maintenance policies proved to be rather costly and even not effectively addressing NPP requirements. Referring to these drawbacks, in the last decade, in the nuclear reliability centered maintenance (RCM) gained substantial interest due to its merits. In the formal implementation of RCM, apparently, predictive maintenance is not considered. However, with the impact of modern real-time and on-line surveillance and monitoring methodologies, the predictive maintenance procedures like sensor/signal verification and validation are to be included into RCM. (orig.)

  5. Abrupt category shifts during real-time person perception.

    Science.gov (United States)

    Freeman, Jonathan B

    2014-02-01

    Previous studies have suggested that real-time person perception relies on continuous competition, in which partially active categories smoothly compete over time. Here, two studies demonstrated the involvement of a different kind of competition. In Study 1, before participants selected the correct sex category for morphed faces, their mouse trajectories often exhibited a continuous attraction toward the incorrect category that increased with sex-category ambiguity, indicating continuous competition. On other trials, however, trajectories initially pursued the incorrect category and then abruptly redirected toward the correct category, suggesting early incorrect category activation that was rapidly reversed later in processing. These abrupt category reversals also increased with ambiguity. In Study 2, participants were presented with faces containing a sex-typical or sex-atypical hair cue, in a context in which the norm was either sex-typical targets (normative context) or sex-atypical targets (counternormative context). Sex-atypical targets induced greater competition in the normative context, but sex-typical targets induced greater competition in the counternormative context. Together, these results demonstrate that categorizing others involves both smooth competition and abrupt category shifts, and that these flexibly adapt to the social context.

  6. QCM-based biomimetic sensors for the detection of nicotine, histamine, and malachite green in body fluids and environmental samples.

    OpenAIRE

    Alenus, Jan

    2013-01-01

    The need for fast monitoring of compounds is increasing in medicine, food safety and environmental safety. This can be accomplished with the use of sensors which are highly sensitive and selective. Biosensors can fulfill these requirements with an array of different natural recognition elements such as DNA, antibodies, enzymes, cells, etc. The biggest concerns about these sensors are the cost, shelf life and their inability to be used in extreme pH or temperature environments. Synthetic recog...

  7. Evaluation of a hydrogen sensor for nuclear reactor containment monitoring

    International Nuclear Information System (INIS)

    Hoffheins, B.S.; McKnight, T.E.; Lauf, R.J.; Smith, R.R.; James, R.E.

    1997-01-01

    Measurement of hydrogen concentration in containment atmospheres in nuclear plants is a key safety capability. Current technologies require extensive sampling systems and subsequent maintenance and calibration costs can be very expensive. A new hydrogen sensor has been developed that is small and potentially inexpensive to install and maintain. Its size and low power requirement make it suitable in distributed systems for pinpointing hydrogen buildup. This paper will address the first phase of a testing program conducted to evaluate this sensor for operation in reactor containments

  8. Lessons learned from the Galileo and Ulysses flight safety review experience

    International Nuclear Information System (INIS)

    Bennett, Gary L.

    1998-01-01

    In preparation for the launches of the Galileo and Ulysses spacecraft, a very comprehensive aerospace nuclear safety program and flight safety review were conducted. A review of this work has highlighted a number of important lessons which should be considered in the safety analysis and review of future space nuclear systems. These lessons have been grouped into six general categories: (1) establishment of the purpose, objectives and scope of the safety process; (2) establishment of charters defining the roles of the various participants; (3) provision of adequate resources; (4) provision of timely peer-reviewed information to support the safety program; (5) establishment of general ground rules for the safety review; and (6) agreement on the kinds of information to be provided from the safety review process

  9. Characteristic of Adaptability - one of basic categories of the social aspect of sustainable housing construction

    Science.gov (United States)

    Orłowski, Z.; Radziejowska, A.; Orłowski, M.

    2017-10-01

    In the article the authors consider one of the basic aspects of sustainable construction regarding the social utility of a building. According to standard PN-EN 16309+A1:2014-12 during evaluating the social aspect should be assessed six categories: accessibility, adaptability, comfort and health, neighborhood, maintenance, safety and security. The authors present the evaluation criteria witch should be taken into account in the assessment of the second of them. Adaptability has been divided into three categories: The buidling’s ability to accomodate the change of user requirements, The buidling’s ability to accomodate technical changes, The buidling’s ability to accomodate the change of use. Each subcategory has been further elaborated by the criteria for which authors present proposal for the scale of assessments. The authors present a part of a work to construct a method for assessing the social characteristics of the residential buildings.

  10. Lab-on-a-Chip Pathogen Sensors for Food Safety

    Directory of Open Access Journals (Sweden)

    Bumsang Kim

    2012-08-01

    Full Text Available There have been a number of cases of foodborne illness among humans that are caused by pathogens such as Escherichia coli O157:H7, Salmonella typhimurium, etc. The current practices to detect such pathogenic agents are cell culturing, immunoassays, or polymerase chain reactions (PCRs. These methods are essentially laboratory-based methods that are not at all real-time and thus unavailable for early-monitoring of such pathogens. They are also very difficult to implement in the field. Lab-on-a-chip biosensors, however, have a strong potential to be used in the field since they can be miniaturized and automated; they are also potentially fast and very sensitive. These lab-on-a-chip biosensors can detect pathogens in farms, packaging/processing facilities, delivery/distribution systems, and at the consumer level. There are still several issues to be resolved before applying these lab-on-a-chip sensors to field applications, including the pre-treatment of a sample, proper storage of reagents, full integration into a battery-powered system, and demonstration of very high sensitivity, which are addressed in this review article. Several different types of lab-on-a-chip biosensors, including immunoassay- and PCR-based, have been developed and tested for detecting foodborne pathogens. Their assay performance, including detection limit and assay time, are also summarized. Finally, the use of optical fibers or optical waveguide is discussed as a means to improve the portability and sensitivity of lab-on-a-chip pathogen sensors.

  11. THE CATEGORY OF COUNTABILITY IN THE CROATIAN LANGUAGE

    Directory of Open Access Journals (Sweden)

    Marija Znika

    2005-01-01

    Full Text Available This paper considers the category of countability as a category established on the lexical meaning of nouns. The lexical meaning of nouns can be dually structured, in a unit and mass forms, relative to the opposition one ≠ many. The category of countability has its content and expression. The content of the category of countability consists of the feature [± countable], and its marker [+ countable] and [- countable]. A noun is countable if its content can be conceived as a unit opposed to mass (table, apple. A noun is uncoutable if its content cannot be perceived as a unit that could be opposed to mass (water, sugar. The expression of the category of countability depends on its content. In the Croatian language the category of countability has its expression in the grammatical category of number and its grammems: singular and plural. These two grammems are formally, and frequently accentually, distinctive from the majority of nouns. The analysis focuses on the meaning of nouns, while their expression is considered as a possible indicator of semantic relationships the category of countability is based on. The paper analyses pluralia tantum and singularia tantum, and their different status countability-wise. It points out the possibility of semantic recategorization of nouns and thus demonstrates a dynamic quality of the category of countability. It also analyses the process of appelativisation (eponomisation of personal names, and the process of appelative deappelativisation. It shows the relationship between the category of countability and the category of definiteness, when definiteness is expressed by an adjectival aspect.

  12. A New Miniaturized Inkjet Printed Solid State Electrolyte Sensor for Applications in Life Support Systems - First Results

    Science.gov (United States)

    Hill, Christine; Stefanos Fasoulas, -; Eberhart, Martin; Berndt, Felix

    New generations of integrated closed loop systems will combine life support systems (incl. biological components) and energy systems such as fuel cell and electrolysis systems. Those systems and their test beds also contain complex safety sensor monitoring systems. Especially in fuel cells and electrolysis systems, the hydrogen and oxygen flows and exchange into other areas due to diffusion processes or leaks need to be monitored. Knowledge of predominant gas concentrations at all times is essential to avoid explosive gas mixtures. Solid state electrolyte sensors are promising for use as safety sensors. They have already been developed and produced at various institutes, but the power consumption for heating an existing solid state electrolyte sensor element still lies between 1 to 1.5 W and the operational readiness still takes about 20 to 30 s. This is partially due to the current manufacturing process for the solid state electrolyte sensor elements that is based on screen printing technology. However this technology has strong limitations in flexibility of the layout and re-designs. It is therefore suitable for mass production, but not for a flexible development and the production of specific individual sensors, e.g. for space applications. Moreover a disadvantage is the relatively high material consumption, especially in combination with the sensors need of expensive noble metal and ceramic pastes, which leads to a high sensor unit price. The Inkjet technology however opens up completely new possibilities in terms of dimensions, geometries, structures, morphologies and materials of sensors. This new approach is capable of printing finer high-resolution layers without the necessity of meshes or masks for patterning. Using the Inkjet technology a design change is possible at any time on the CAD screen. Moreover the ink is only deposited where it is needed. Custom made sensors, as they are currently demanded in space sensor applications, are thus realized simply

  13. Robotic and Sensor Technologies for Mobility in Older People.

    Science.gov (United States)

    Penteridis, Lazaros; D'Onofrio, Grazia; Sancarlo, Daniele; Giuliani, Francesco; Ricciardi, Francesco; Cavallo, Filippo; Greco, Antonio; Trochidis, Ilias; Gkiokas, Alexander

    2017-10-01

    Maintaining independent mobility is fundamental to independent living and to the quality of life of older people. Robotic and sensor technologies may offer a lot of potential and can make a significant difference in the lives of older people and to their primary caregivers. The aim of this study was to provide a presentation of the methods that are used up till now for analysis and evaluation of human mobility utilizing sensor technologies and to give the state of the art in robotic platforms for supporting older people with mobility limitations. The literature was reviewed and systematic reviews of cohort studies and other authoritative reports were identified. The selection criteria included (1) patients with age ≥60 years; (2) patients with unstable gait, with or without recurrent falls; (3) patients with slow movements, short strides, and little trunk movement; (4) sensor technologies that are currently used for mobility evaluation; and (5) robotic technologies that can serve as a supporting companion for older people with mobility limitations. One hundred eighty-one studies published up until February 2017 were identified, of which 36 were included. Two categories of research were identified from the review regarding the robot and sensor technologies: (1) sensor technologies for mobility analysis and (2) robots for supporting older people with mobility limitations. Potential for robotic and sensor technologies can be taken advantage of for evaluation and support at home for elder persons with mobility limitations in an automated way without the need of the physical presence of any medical personnel, reducing the stress of caregivers.

  14. Model based, sensor directed remediation of underground storage tanks

    International Nuclear Information System (INIS)

    Christensen, B.; Drotning, W.; Thunborg, S.

    1991-01-01

    Sensor rich, intelligent robots which function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories is performing experimental investigations into the application of intelligent robot control technology to the problem of removing waste stored tanks. This paper describes the experimental environment employed at Saudi with particular attention to the computing and software control environment. Intelligent system control is achieved though the integration of extensive geometric and kinematic world models with real-time sensor based control. All operator interactions with the system are validate all operator commands before execution to provide a safe operation. Sensing is used to add information to the robot system's world model and to allow sensor based sensor control during selected operations. The results of a first Critical Feature Test are reported and the potential for applying advanced intelligent control concepts to the removal of waste in storage tanks is discussed

  15. SUSTAIN: a network model of category learning.

    Science.gov (United States)

    Love, Bradley C; Medin, Douglas L; Gureckis, Todd M

    2004-04-01

    SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a model of how humans learn categories from examples. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g., it is told that a bat is a mammal instead of a bird), SUSTAIN recruits an additional cluster to represent the surprising event. Newly recruited clusters are available to explain future events and can themselves evolve into prototypes-attractors-rules. SUSTAIN's discovery of category substructure is affected not only by the structure of the world but by the nature of the learning task and the learner's goals. SUSTAIN successfully extends category learning models to studies of inference learning, unsupervised learning, category construction, and contexts in which identification learning is faster than classification learning.

  16. High Temperature Capacitive Pressure Sensor Employing a SiC Based Ring Oscillator

    Science.gov (United States)

    Meredith, Roger D.; Neudeck, Philip G.; Ponchak, George E.; Beheim, Glenn M.; Scardelletti, Maximilian; Jordan, Jennifer L.; Chen, Liang-Yu; Spry, David J.; Krawowski, Michael J.; Hunter, Gary W.

    2011-01-01

    In an effort to develop harsh environment electronic and sensor technologies for aircraft engine safety and monitoring, we have used capacitive-based pressure sensors to shift the frequency of a SiC-electronics-based oscillator to produce a pressure-indicating signal that can be readily transmitted, e.g. wirelessly, to a receiver located in a more benign environment. Our efforts target 500 C, a temperature well above normal operating conditions of commercial circuits but within areas of interest in aerospace engines, deep mining applications and for future missions to the Venus atmosphere. This paper reports for the first time a ring oscillator circuit integrated with a capacitive pressure sensor, both operating at 500 C. This demonstration represents a significant step towards a wireless pressure sensor that can operate at 500 C and confirms the viability of 500 C electronic sensor systems.

  17. Application of monte-carlo method in definition of key categories of most radioactive polluted soil

    Energy Technology Data Exchange (ETDEWEB)

    Mahmudov, H M; Valibeyova, G; Jafarov, Y D; Musaeva, Sh Z [Institute of Radiation Problems, Azerbaijan National Academy of Sciences, Baku (Azerbaijan); others, and

    2006-10-15

    Full text: The principle of analysis by Monte Carlo method consists of a choice of random variables of coefficients of an exposition doze capasites of radiation and data on activity within the boundaries of their individual density of frequency distribution of exposition doses capacities.The analysis using Monte Carlo method is useful for realization of sensitivity analysis of measured capacity amount of an exposition dose in order to define the major factors causing uncertainly in reports.Reception of such conceptions can be valuable for definition of key categories of radiation polluted soil and establishment of priorities to use resources for enhancement of the report.Relative uncertainly of radiation polluted soil categories determined with the help of the analysis by Monte Carlo method in case of their availability can be applied using more significant divergence between average value and a confidential limit in case when borders of resources available for preparation and to prepare possible estimations for the most significant categories of sources.Usage of the notion {sup u}ncertainty{sup i}n reports also allows to set threshold value for a key category of sources, if it necessary, for exact reflection of 90 per cent uncertainty in reports.According to radiation safety norms level of radiation backgrounds exceeding 33 mkR/hour is considered dangerous.By calculated Monte Carlo method much more dangerous sites and sites frequently imposed to disposals and utilization were chosen from analyzed samples of polluted soil.

  18. Application of monte-carlo method in definition of key categories of most radioactive polluted soil

    International Nuclear Information System (INIS)

    Mahmudov, H.M; Valibeyova, G.; Jafarov, Y.D; Musaeva, Sh.Z

    2006-01-01

    Full text: The principle of analysis by Monte Carlo method consists of a choice of random variables of coefficients of an exposition doze capasites of radiation and data on activity within the boundaries of their individual density of frequency distribution of exposition doses capacities.The analysis using Monte Carlo method is useful for realization of sensitivity analysis of measured capacity amount of an exposition dose in order to define the major factors causing uncertainly in reports.Reception of such conceptions can be valuable for definition of key categories of radiation polluted soil and establishment of priorities to use resources for enhancement of the report.Relative uncertainly of radiation polluted soil categories determined with the help of the analysis by Monte Carlo method in case of their availability can be applied using more significant divergence between average value and a confidential limit in case when borders of resources available for preparation and to prepare possible estimations for the most significant categories of sources.Usage of the notion u ncertainty i n reports also allows to set threshold value for a key category of sources, if it necessary, for exact reflection of 90 per cent uncertainty in reports.According to radiation safety norms level of radiation backgrounds exceeding 33 mkR/hour is considered dangerous.By calculated Monte Carlo method much more dangerous sites and sites frequently imposed to disposals and utilization were chosen from analyzed samples of polluted soil.

  19. CHURCH, Category, and Speciation

    Directory of Open Access Journals (Sweden)

    Rinderknecht Jakob Karl

    2018-01-01

    Full Text Available The Roman Catholic definition of “church”, especially as applied to groups of Protestant Christians, creates a number of well-known difficulties. The similarly complex category, “species,” provides a model for applying this term so as to neither lose the centrality of certain examples nor draw a hard boundary to rule out border cases. In this way, it can help us to more adequately apply the complex ecclesiology of the Second Vatican Council. This article draws parallels between the understanding of speciation and categorization and the definition of Church since the council. In doing so, it applies the work of cognitive linguists, including George Lakoff, Zoltan Kovecses, Giles Fauconnier and Mark Turner on categorization. We tend to think of categories as containers into which we sort objects according to essential criteria. However, categories are actually built inductively by making associations between objects. This means that natural categories, including species, are more porous than we assume, but nevertheless bear real meaning about the natural world. Taxonomists dispute the border between “zebras” and “wild asses,” but this distinction arises out of genetic and evolutionary reality; it is not merely arbitrary. Genetic descriptions of species has also led recently to the conviction that there are four species of giraffe, not one. This engagement will ground a vantage point from which the Council‘s complex ecclesiology can be more easily described so as to authentically integrate its noncompetitive vision vis-a-vis other Christians with its sense of the unique place held by Catholic Church.

  20. Cost-benefit functions for the allocation of security sensors for air contaminants

    International Nuclear Information System (INIS)

    Lambert, James H.; Farrington, Mark W.

    2007-01-01

    In this paper, we study various functional forms of the cost-benefit function in a context of risk analysis and multi-objective decision-making for the allocation of hazard protection. An approach of benefit-cost analysis under uncertainty is used. The study identifies measures of hazard intensity and population exposure as well as additional parameters that influence assessments of benefits and costs. Parameter uncertainties are propagated by numerical interval analysis. Several tiers of the uncertainty of the benefit-to-cost ratio are generated to compare hazard intensity and population exposure in multi-objective tradeoff analysis. We develop an example application with the allocation of chemical, biological, and radiological air contaminant sensors throughout a region. The sensors provide local protection to non-identical sectors of the population that are exposed to non-identical intensities of the hazard. The results illuminate the significance of the cost-benefit function for the allocation of sensors. The paper has implications for anti-terrorism, disaster preparedness, transportation safety, and other areas of public safety

  1. Quasi-coherent Hecke category and Demazure descent

    DEFF Research Database (Denmark)

    Arkhipov, Sergey; Kanstrup, Tina

    2015-01-01

    Let G be a reductive algebraic group with a Borel subgroup B. We define the quasi-coherent Hecke category for the pair (G,B). For any regular Noetherian G- scheme X we construct a monoidal action of the Hecke category on the derived category of B-equivariant quasi-coherent sheaves on X. Using the...

  2. Homological algebra in -abelian categories

    Indian Academy of Sciences (India)

    Deren Luo

    2017-08-16

    Aug 16, 2017 ... Homological algebra in n-abelian categories. 627. We recall the Comparison lemma, together with its dual, plays a central role in the sequel. Lemma 2.1 [13, Comparison lemma 2.1]. Let C be an additive category and X ∈ Ch. ≥0(C) a complex such that for all k ≥ 0the morphism dk+1. X is a weak cokernel ...

  3. Visual object recognition and category-specificity

    DEFF Research Database (Denmark)

    Gerlach, Christian

    This thesis is based on seven published papers. The majority of the papers address two topics in visual object recognition: (i) category-effects at pre-semantic stages, and (ii) the integration of visual elements into elaborate shape descriptions corresponding to whole objects or large object parts...... (shape configuration). In the early writings these two topics were examined more or less independently. In later works, findings concerning category-effects and shape configuration merge into an integrated model, termed RACE, advanced to explain category-effects arising at pre-semantic stages in visual...... in visual long-term memory. In the thesis it is described how this simple model can account for a wide range of findings on category-specificity in both patients with brain damage and normal subjects. Finally, two hypotheses regarding the neural substrates of the model's components - and how activation...

  4. Design and implementation of smart sensor nodes for wireless disaster monitoring systems

    Science.gov (United States)

    Chen, Yih-Fan; Wu, Wen-Jong; Chen, Chun-Kuang; Wen, Chih-Min; Jin, Ming-Hui; Gau, Chung-Yun; Chang, Chih-Chie; Lee, Chih-Kung

    2004-07-01

    A newly developed smart sensor node that can monitor the safety of temporary structures such as scaffolds at construction sites is detailed in this paper. The design methodology and its trade-offs, as well as its influence on the optimization of sensor networks, is examined. The potential impact on civil engineering construction sites, environmental and natural disaster pre-warning issues, etc., all of which are foundations of smart sensor nodes and corresponding smart sensor networks, is also presented. To minimize the power requirements in order to achieve a true wireless system both in terms of signal and power, a sensor node was designed by adopting an 8051-based micro-controller, an ISM band RF transceiver, and an auto-balanced strain gage signal conditioner. With the built-in RF transceiver, all measurement data can be transmitted to a local control center for data integrity, security, central monitoring, and full-scale analysis. As a battery is the only well-established power source and there is a strong desire to eliminate the need to install bulky power lines, this system designed includes a battery-powered core with optimal power efficiency. To further extend the service life of the built-in power source, a power control algorithm has been embedded in the microcontroller of each sensor node. The entire system has been verified by experimental tests on full-scale scaffold monitoring. The results show that this system provides a practical method to monitor the structure safety in real time and possesses the potential of reducing maintenance costs significantly. The design of the sensor node, central control station, and the integration of several kinds of wireless communication protocol, all of which are successfully integrated to demonstrate the capabilities of this newly developed system, are detailed. Potential impact to the network topology is briefly examined as well.

  5. Kuranishi spaces as a 2-category

    OpenAIRE

    Joyce, Dominic

    2015-01-01

    This is a survey of the author's in-progress book arXiv:1409.6908. 'Kuranishi spaces' were introduced in the work of Fukaya, Oh, Ohta and Ono in symplectic geometry (see e.g. arXiv:1503.07631), as the geometric structure on moduli spaces of $J$-holomorphic curves. We propose a new definition of Kuranishi space, which has the nice property that they form a 2-category $\\bf Kur$. Thus the homotopy category Ho$({\\bf Kur})$ is an ordinary category of Kuranishi spaces. Any Fukaya-Oh-Ohta-Ono (FOOO)...

  6. On the Safety of Machine Learning: Cyber-Physical Systems, Decision Sciences, and Data Products.

    Science.gov (United States)

    Varshney, Kush R; Alemzadeh, Homa

    2017-09-01

    Machine learning algorithms increasingly influence our decisions and interact with us in all parts of our daily lives. Therefore, just as we consider the safety of power plants, highways, and a variety of other engineered socio-technical systems, we must also take into account the safety of systems involving machine learning. Heretofore, the definition of safety has not been formalized in a machine learning context. In this article, we do so by defining machine learning safety in terms of risk, epistemic uncertainty, and the harm incurred by unwanted outcomes. We then use this definition to examine safety in all sorts of applications in cyber-physical systems, decision sciences, and data products. We find that the foundational principle of modern statistical machine learning, empirical risk minimization, is not always a sufficient objective. We discuss how four different categories of strategies for achieving safety in engineering, including inherently safe design, safety reserves, safe fail, and procedural safeguards can be mapped to a machine learning context. We then discuss example techniques that can be adopted in each category, such as considering interpretability and causality of predictive models, objective functions beyond expected prediction accuracy, human involvement for labeling difficult or rare examples, and user experience design of software and open data.

  7. Sensors for advanced driver assistance systems; Sensoren fuer Fahrerassistenzsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Ritschel, W.; Wixforth, T. [Hella KGaA Hueck und Co., Lippstadt (Germany)

    2004-07-01

    Essential safety applications and those aimed at driver convenience (blind spot surveillance, stop and go, pre-crash, parking assistant) can be effected in vehicles with the aid of radar sensors. The radar sensors used can be differentiated in terms of the bandwidth required (narrow band or ultra-wide band) and in terms of the modulation of the transmission signal (pulse modulation or CW). Ultra-wide band systems at the moment are not eligible for admission and do not conform with the present regulations in the European Union. The sensors currently being developed at hella for production use are characterized by the fact that they cover the primary applications in motor vehicles. In these cases the transmission signals radiated lie within the valid limits currently approved within the European Union. (orig.)

  8. Algorithm for Wireless Sensor Networks Based on Grid Management

    Directory of Open Access Journals (Sweden)

    Geng Zhang

    2014-05-01

    Full Text Available This paper analyzes the key issues for wireless sensor network trust model and describes a method to build a wireless sensor network, such as the definition of trust for wireless sensor networks, computing and credibility of trust model application. And for the problem that nodes are vulnerable to attack, this paper proposed a grid-based trust algorithm by deep exploration trust model within the framework of credit management. Algorithm for node reliability screening and rotation schedule to cover parallel manner based on the implementation of the nodes within the area covered by trust. And analyze the results of the size of trust threshold has great influence on the safety and quality of coverage throughout the coverage area. The simulation tests the validity and correctness of the algorithm.

  9. Shape configuration and category-specificity

    DEFF Research Database (Denmark)

    Gerlach, Christian; Law, I; Paulson, Olaf B.

    2006-01-01

    and fragmented drawings. We also examined whether fragmentation had different impact on the recognition of natural objects and artefacts and found that recognition of artefacts was more affected by fragmentation than recognition of natural objects. Thus, the usual finding of an advantage for artefacts...... in difficult object decision tasks, which is also found in the present experiments with outlines, is reversed when the stimuli are fragmented. This interaction between category (natural versus artefacts) and stimulus type (outlines versus fragmented forms) is in accordance with predictions derived from...... a recent account of category-specificity and lends support to the notion that category-specific impairments can occur for both natural objects and artefacts following damage to pre-semantic stages in visual object recognition. The implications of the present findings are discussed in relation to theories...

  10. Technology roadmap for development of SiC sensors at plasma processes laboratory

    Directory of Open Access Journals (Sweden)

    Mariana Amorim Fraga

    2010-08-01

    Full Text Available Recognizing the need to consolidate the research and development (R&D activities in microelectronics fields in a strategic manner, the Plasma Processes Laboratory of the Technological Institute of Aeronautics (LPP-ITA has established a technology roadmap to serve as a guide for activities related to development of sensors based on silicon carbide (SiC thin films. These sensors have also potential interest to the aerospace field due to their ability to operate in harsh environment such as high temperatures and intense radiation. In the present paper, this roadmap is described and presented in four main sections: i introduction, ii what we have already done in the past, iii what we are doing in this moment, and iv our targets up to 2015. The critical technological issues were evaluated for different categories: SiC deposition techniques, SiC processing techniques for sensors fabrication and sensors characterization. This roadmap also presents a shared vision of how R&D activities in microelectronics should develop over the next five years in our laboratory.

  11. Rancang Bangun Sistem Pengukur Kecepatan Kendaraan Menggunakan Sensor Magnetik

    Directory of Open Access Journals (Sweden)

    Aris Ramdhani

    2017-06-01

    Full Text Available Data kecepatan kendaran di jalan raya sangat berpengaruh bagi keamanan dan keselamatan pengguna jalan raya. Kemajuan tekhnologi sensor sangat membantu dalam mengukur kecepatan kendaraan dengan otomatis. Metode yang umum dipakai ialah metode dengan menggunakan dua buah rangkaian sensor yang sudah diatur pada jarak tertentu. Sensor digunakan sebagai pendeteksi keberadaan kendaraan. Data kecepatan kendaraan didapatkan dengan mencari selang waktu yang dibutuhkan kendaraan melaju dari sensor pertama menuju sensor kedua. Saat kendaraan melaju melewati sensor maka sinyal keluaran sensor menjadi acuan perhitungan waktu start dan stop. Berbagai jenis sensor yang sudah digunakan ialah sensor LDR, sensor ultrasonic, sensor laser, sensor loop induktif dan sensor kamera. Setiap sensor yang sudah dipergunakan memiliki berbagai jenis kekurangan dalam mendeteksi kendaraan pada jalan raya. Oleh karena itu penulis memunculkan ide baru dengan menggunakan sensor magnetik yang memiliki faktor gangguan eksternal yang rendah. Sensor magnetik yang digunakan ialah sensor Giant MagnetoResistance (GMR. Perancangan sistem pengukur kecepatan kendaraan yang penulis lakukan berupa sebuah prototype. Hasil pengujian sistem pengukur kecepatan kendaraan menggunakan sensor magnetik GMR menunjukan respon yang bagus saat pengujian dilakukan pada jarak 30cm dan 70cm antara dua buah sensor GMR. Data speed of vehicles on the highway are very influential to the security and safety of users of the highway. Advances in sensor technology is very helpful in measuring the speed of vehicles with automatic. A common method used is the method by using two sensor circuit which is set at a certain distance. The sensor is used as a detector for the exixtance of the vehicle. Vehicle speed data obtained by finding the time required vehicles drove from the first sensor to the second sensor. When the vehicle drove past the sensor, the sensor output signal to be a reference calculation start and stop

  12. Environmental restoration and decontamination and decommissioning safety documentation

    International Nuclear Information System (INIS)

    Hansen, J.L.; Frauenholz, L.H.; Kerr, N.R.

    1993-01-01

    This document presents recommendations of a working group designated by the Environmental Restoration and Remediation (ER) and Decontamination and Decommissioning (D ampersand D) subcommittees of the Westinghouse M ampersand O (Management and Operation) Nuclear Facility Safety Committee. A commonalty of approach to safety documentation specific to ER and D ampersand D activities was developed and is summarized below. Allowance for interpretative tolerance and documentation flexibility appropriate to the activity, graded for hazard category, duration, and complexity, was a primary consideration in development of this guidance

  13. Thin film system with integrated load and temperature sensors for the technical application in deep drawing process

    Science.gov (United States)

    Biehl, Saskia; Paetsch, Nancy; Meyer-Kornblum, Eike

    2017-05-01

    In these days industry 4.0 resounded throughout the land and means the fourth industrial revolution. The industry has to tackle the task of a flexible and customer-oriented production. Therefor the need of sensor systems for the measurement of temperature and load, the two most important categories in production, is rising. For getting the real specification during the production process the integration of sensor elements in high load regions of machinery is very important. Thus wear resistant thin film sensor systems directly applied onto the surface of plant components are in development. These multilayer systems combine excellent wear resistance with sensory behaviour. The sensor data will lead to a deeper process understanding, to optimization of simulation tools, to reduction of rejects and to an improvement of flexibility in production.

  14. Diagnostic Categories in Autobiographical Accounts of Illness.

    Science.gov (United States)

    Kelly, Michael P

    2015-01-01

    Working within frameworks drawn from the writings of Immanuel Kant, Alfred Schutz, and Kenneth Burke, this article examines the role that diagnostic categories play in autobiographical accounts of illness, with a special focus on chronic disease. Four lay diagnostic categories, each with different connections to formal medical diagnostic categories, serve as typifications to make sense of the way the lifeworld changes over the course of chronic illness. These diagnostic categories are used in conjunction with another set of typifications: lay epidemiologies, lay etiologies, lay prognostics, and lay therapeutics. Together these serve to construct and reconstruct the self at the center of the lifeworld. Embedded within the lay diagnostic categories are narratives of progression, regression, or stability, forms of typification derived from literary and storytelling genres. These narratives are developed by the self in autobiographical accounts of illness.

  15. Refractory metal component technology for in-core sensor design

    International Nuclear Information System (INIS)

    Cannon, C.P.

    1986-02-01

    Within recent years, an increasing concern over reactor safety has prompted tests that characterize reactor core environments during transient conditions. Such tests include the Loss-of-Fluid-Tests (Idaho National Engineering Lab (INEL)), Severe Fuel Damage Tests (INEL), Core Debris Rubble Tests (Sandia National Laboratories (SNL)), and similar tests performed by foreign nations. The in-core sensors for these tests require refractory metal components to be compatible with electrical insulator materials as well as materials comprising highly corrosive service mediums. This paper presents the refractory metal technology utilized to provide basic sensor designs in the above mentioned reactor tests

  16. Elements of safety and non proliferation

    International Nuclear Information System (INIS)

    Jalouneix, Jean; Aurelle, Jacques; Funk, Pierre; Ladsous, David; Bon Nguyen, Romuald; Goue, Georges; Lefevre, Odile

    2015-01-01

    This book on nuclear safety and non proliferation is based on knowledge and expertise of the IRSN. The first chapter addresses the safety of nuclear materials, of their installations and of their transportations. It proposes some contextual elements, presents the general guidelines of the French nuclear safety arrangement, the approach to take risks into account, the involved governmental and public bodies, the legal framework, and the protection and control arrangement (in terms of planning of safety-related activities, in terms of operator obligations, in terms of exercises and management crisis). The second part addresses the safety of radioactive sources: context (peculiarity, losses and thefts), international framework (source categories, Euratom directive), and the French organisation. The third chapter addresses nuclear non proliferation: historical background (creation and role of the IAEA and of the EAEC, definitions), principle of statements, inspection process, and French organisation (legal framework, governmental bodies, the IRSN). The last chapter addresses the issue of chemical non proliferation: historical background, international context (Convention on chemical weapons, organisation for their ban), and the French organisation

  17. Operadic categories and duoidal Deligne's conjecture

    Czech Academy of Sciences Publication Activity Database

    Batanin, M.; Markl, Martin

    2015-01-01

    Roč. 285, 5 November (2015), s. 1630-1687 ISSN 0001-8708 Institutional support: RVO:67985840 Keywords : operadic category * duoidal category * Deligne's conjecture Subject RIV: BA - General Mathematics Impact factor: 1.405, year: 2015 http://www.sciencedirect.com/science/article/pii/S0001870815002467

  18. An introduction to the language of category theory

    CERN Document Server

    Roman, Steven

    2017-01-01

    This textbook provides an introduction to elementary category theory, with the aim of making what can be a confusing and sometimes overwhelming subject more accessible. In writing about this challenging subject, the author has brought to bear all of the experience he has gained in authoring over 30 books in university-level mathematics. The goal of this book is to present the five major ideas of category theory: categories, functors, natural transformations, universality, and adjoints in as friendly and relaxed a manner as possible while at the same time not sacrificing rigor. These topics are developed in a straightforward, step-by-step manner and are accompanied by numerous examples and exercises, most of which are drawn from abstract algebra. The first chapter of the book introduces the definitions of category and functor and discusses diagrams, duality, initial and terminal objects, special types of morphisms, and some special types of categories, particularly comma categories and hom-set categories. Chap...

  19. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    Science.gov (United States)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  20. In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors

    Directory of Open Access Journals (Sweden)

    Pei-Chi Chen

    2011-10-01

    Full Text Available Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA, notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS process for monitoring temperature in situ.

  1. Classification versus inference learning contrasted with real-world categories.

    Science.gov (United States)

    Jones, Erin L; Ross, Brian H

    2011-07-01

    Categories are learned and used in a variety of ways, but the research focus has been on classification learning. Recent work contrasting classification with inference learning of categories found important later differences in category performance. However, theoretical accounts differ on whether this is due to an inherent difference between the tasks or to the implementation decisions. The inherent-difference explanation argues that inference learners focus on the internal structure of the categories--what each category is like--while classification learners focus on diagnostic information to predict category membership. In two experiments, using real-world categories and controlling for earlier methodological differences, inference learners learned more about what each category was like than did classification learners, as evidenced by higher performance on a novel classification test. These results suggest that there is an inherent difference between learning new categories by classifying an item versus inferring a feature.

  2. Indicators of safety culture - selection and utilization of leading safety performance indicators

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Teemu; Pietikaeinen, Elina (VTT, Technical Research Centre of Finland (Finland))

    2010-03-15

    Safety indicators play a role in providing information on organizational performance, motivating people to work on safety and increasing organizational potential for safety. The aim of this report is to provide an overview on leading safety indicators in the domain of nuclear safety. The report explains the distinction between lead and lag indicators and proposes a framework of three types of safety performance indicators - feedback, monitor and drive indicators. Finally the report provides guidance for nuclear energy organizations for selecting and interpreting safety indicators. It proposes the use of safety culture as a leading safety performance indicator and offers an example list of potential indicators in all three categories. The report concludes that monitor and drive indicators are so called lead indicators. Drive indicators are chosen priority areas of organizational safety activity. They are based on the underlying safety model and potential safety activities and safety policy derived from it. Drive indicators influence control measures that manage the socio technical system; change, maintain, reinforce, or reduce something. Monitor indicators provide a view on the dynamics of the system in question; the activities taking place, abilities, skills and motivation of the personnel, routines and practices - the organizational potential for safety. They also monitor the efficacy of the control measures that are used to manage the socio technical system. Typically the safety performance indicators that are used are lagging (feedback) indicators that measure the outcomes of the socio technical system. Besides feedback indicators, organizations should also acknowledge the important role of monitor and drive indicators in managing safety. The selection and use of safety performance indicators is always based on an understanding (a model) of the socio technical system and safety. The safety model defines what risks are perceived. It is important that the safety

  3. Indicators of safety culture - selection and utilization of leading safety performance indicators

    International Nuclear Information System (INIS)

    Reiman, Teemu; Pietikaeinen, Elina

    2010-03-01

    Safety indicators play a role in providing information on organizational performance, motivating people to work on safety and increasing organizational potential for safety. The aim of this report is to provide an overview on leading safety indicators in the domain of nuclear safety. The report explains the distinction between lead and lag indicators and proposes a framework of three types of safety performance indicators - feedback, monitor and drive indicators. Finally the report provides guidance for nuclear energy organizations for selecting and interpreting safety indicators. It proposes the use of safety culture as a leading safety performance indicator and offers an example list of potential indicators in all three categories. The report concludes that monitor and drive indicators are so called lead indicators. Drive indicators are chosen priority areas of organizational safety activity. They are based on the underlying safety model and potential safety activities and safety policy derived from it. Drive indicators influence control measures that manage the socio technical system; change, maintain, reinforce, or reduce something. Monitor indicators provide a view on the dynamics of the system in question; the activities taking place, abilities, skills and motivation of the personnel, routines and practices - the organizational potential for safety. They also monitor the efficacy of the control measures that are used to manage the socio technical system. Typically the safety performance indicators that are used are lagging (feedback) indicators that measure the outcomes of the socio technical system. Besides feedback indicators, organizations should also acknowledge the important role of monitor and drive indicators in managing safety. The selection and use of safety performance indicators is always based on an understanding (a model) of the socio technical system and safety. The safety model defines what risks are perceived. It is important that the safety

  4. Connections between realcompactifications in various categories ...

    African Journals Online (AJOL)

    The author gives a detailed analysis of the relation between the theories of realcompactications and compactications in the category of ditopological texture spaces and in the categories of bitopological spaces and topological spaces. Keywords: Bitopology, texture, ditopology, Stone-Čech compactication, Hewitt real- ...

  5. Integral Sensor Fault Detection and Isolation for Railway Traction Drive.

    Science.gov (United States)

    Garramiola, Fernando; Del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka

    2018-05-13

    Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive.

  6. A New, Adaptable, Optical High-Resolution 3-Axis Sensor

    Directory of Open Access Journals (Sweden)

    Niels Buchhold

    2017-01-01

    Full Text Available This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD. The downstream microcontroller’s software identifies the geometric shape’s center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels, the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user’s range of motion (stroke and force. This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability.

  7. Category mistakes: A barrier to effective environmental management.

    Science.gov (United States)

    Wallace, Ken J; Jago, Mark

    2017-09-01

    How entities, the things that exist, are defined and categorised affects all aspects of environmental management including technical descriptions, quantitative analyses, participatory processes, planning, and decisions. Consequently, ambiguous definitions and wrongly assigning entities to categories, referred to as category mistakes, are barriers to effective management. Confusion caused by treating the term 'biodiversity' variously as the property of an area, the biota of an area, and a preferred end state (a value) - quite different categories of entities - is one example. To overcome such difficulties, we develop and define four entity categories - elements, processes, properties, and values - and two derived categories - states and systems. We argue that adoption of these categories and definitions will significantly improve environmental communication and analysis, and thus strengthen planning and decision-making. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Engineering nanomaterials-based biosensors for food safety detection.

    Science.gov (United States)

    Lv, Man; Liu, Yang; Geng, Jinhui; Kou, Xiaohong; Xin, Zhihong; Yang, Dayong

    2018-05-30

    Food safety always remains a grand global challenge to human health, especially in developing countries. To solve food safety pertained problems, numerous strategies have been developed to detect biological and chemical contaminants in food. Among these approaches, nanomaterials-based biosensors provide opportunity to realize rapid, sensitive, efficient and portable detection, overcoming the restrictions and limitations of traditional methods such as complicated sample pretreatment, long detection time, and relying on expensive instruments and well-trained personnel. In this review article, we provide a cross-disciplinary perspective to review the progress of nanomaterials-based biosensors for the detection of food contaminants. The review article is organized by the category of food contaminants including pathogens/toxins, heavy metals, pesticides, veterinary drugs and illegal additives. In each category of food contaminant, the biosensing strategies are summarized including optical, colorimetric, fluorescent, electrochemical, and immune- biosensors; the relevant analytes, nanomaterials and biosensors are analyzed comprehensively. Future perspectives and challenges are also discussed briefly. We envision that our review could bridge the gap between the fields of food science and nanotechnology, providing implications for the scientists or engineers in both areas to collaborate and promote the development of nanomaterials-based biosensors for food safety detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. SVANET: A smart vehicular ad hoc network for efficient data transmission with wireless sensors.

    Science.gov (United States)

    Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin

    2014-11-25

    Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET) architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency.

  10. Efficacy and safety of LCZ696 (sacubitril-valsartan) according to age: insights from PARADIGM-HF

    Science.gov (United States)

    Jhund, Pardeep S.; Fu, Michael; Bayram, Edmundo; Chen, Chen-Huan; Negrusz-Kawecka, Marta; Rosenthal, Arvo; Desai, Akshay S.; Lefkowitz, Martin P.; Rizkala, Adel R.; Rouleau, Jean L.; Shi, Victor C.; Solomon, Scott D.; Swedberg, Karl; Zile, Michael R.; McMurray, John J.V.; Packer, Milton

    2015-01-01

    Background The age at which heart failure develops varies widely between countries and drug tolerance and outcomes also vary by age. We have examined the efficacy and safety of LCZ696 according to age in the Prospective comparison of angiotensin receptor neprilysin inhibitor with angiotensin converting enzyme inhibitor to Determine Impact on Global Mortality and Morbidity in Heart Failure trial (PARADIGM-HF). Methods In PARADIGM-HF, 8399 patients aged 18–96 years and in New York Heart Association functional class II–IV with an LVEF ≤40% were randomized to either enalapril or LCZ696. We examined the pre-specified efficacy and safety outcomes according to age category (years): <55 (n = 1624), 55–64 (n = 2655), 65–74 (n = 2557), and ≥75 (n = 1563). Findings The rate (per 100 patient-years) of the primary outcome of cardiovascular (CV) death or heart failure hospitalization (HFH) increased from 13.4 to 14.8 across the age categories. The LCZ696:enalapril hazard ratio (HR) was <1.0 in all categories (P for interaction between age category and treatment = 0.94) with an overall HR of 0.80 (0.73, 0.87), P < 0.001. The findings for HFH were similar for CV and all-cause mortality and the age category by treatment interactions were not significant. The pre-specified safety outcomes of hypotension, renal impairment and hyperkalaemia increased in both treatment groups with age, although the differences between treatment (more hypotension but less renal impairment and hyperkalaemia with LCZ696) were consistent across age categories. Interpretation LCZ696 was more beneficial than enalapril across the spectrum of age in PARADIGM-HF with a favourable benefit–risk profile in all age groups. PMID:26231885

  11. Color descriptors for object category recognition

    NARCIS (Netherlands)

    van de Sande, K.E.A.; Gevers, T.; Snoek, C.G.M.

    2008-01-01

    Category recognition is important to access visual information on the level of objects. A common approach is to compute image descriptors first and then to apply machine learning to achieve category recognition from annotated examples. As a consequence, the choice of image descriptors is of great

  12. Words can slow down category learning.

    Science.gov (United States)

    Brojde, Chandra L; Porter, Chelsea; Colunga, Eliana

    2011-08-01

    Words have been shown to influence many cognitive tasks, including category learning. Most demonstrations of these effects have focused on instances in which words facilitate performance. One possibility is that words augment representations, predicting an across the-board benefit of words during category learning. We propose that words shift attention to dimensions that have been historically predictive in similar contexts. Under this account, there should be cases in which words are detrimental to performance. The results from two experiments show that words impair learning of object categories under some conditions. Experiment 1 shows that words hurt performance when learning to categorize by texture. Experiment 2 shows that words also hurt when learning to categorize by brightness, leading to selectively attending to shape when both shape and hue could be used to correctly categorize stimuli. We suggest that both the positive and negative effects of words have developmental origins in the history of word usage while learning categories. [corrected

  13. Observation versus classification in supervised category learning.

    Science.gov (United States)

    Levering, Kimery R; Kurtz, Kenneth J

    2015-02-01

    The traditional supervised classification paradigm encourages learners to acquire only the knowledge needed to predict category membership (a discriminative approach). An alternative that aligns with important aspects of real-world concept formation is learning with a broader focus to acquire knowledge of the internal structure of each category (a generative approach). Our work addresses the impact of a particular component of the traditional classification task: the guess-and-correct cycle. We compare classification learning to a supervised observational learning task in which learners are shown labeled examples but make no classification response. The goals of this work sit at two levels: (1) testing for differences in the nature of the category representations that arise from two basic learning modes; and (2) evaluating the generative/discriminative continuum as a theoretical tool for understand learning modes and their outcomes. Specifically, we view the guess-and-correct cycle as consistent with a more discriminative approach and therefore expected it to lead to narrower category knowledge. Across two experiments, the observational mode led to greater sensitivity to distributional properties of features and correlations between features. We conclude that a relatively subtle procedural difference in supervised category learning substantially impacts what learners come to know about the categories. The results demonstrate the value of the generative/discriminative continuum as a tool for advancing the psychology of category learning and also provide a valuable constraint for formal models and associated theories.

  14. Safety Cultures in Water-Based Outdoor Activities in Denmark

    DEFF Research Database (Denmark)

    Andkjær, Søren; Arvidsen, Jan

    2015-01-01

    In this paper, we report on the study Safe in Nature (Tryg i naturen) in which the aim was to analyze and discuss risk and safety related to outdoor recreation in the coastal regions of Denmark. A cultural perspective is applied to risk management and the safety cultures related to three selected...... water-based outdoor activities: small boat fishing, sea kayaking, and kite surfing. The theoretical framework used was cultural analysis and the methodological approach was mixed methods using case studies with survey and qualitative interviews. The study indicates that safety is a complex matter...... and that safety culture can be understood as the sum and interaction among six categories. The safety culture is closely related to the activity and differs widely among activities. We suggest a broad perspective be taken on risk management wherein risk and safety can be managed at different levels. Small boat...

  15. Social categories as markers of intrinsic interpersonal obligations.

    Science.gov (United States)

    Rhodes, Marjorie; Chalik, Lisa

    2013-06-01

    Social categorization is an early-developing feature of human social cognition, yet the role that social categories play in children's understanding of and predictions about human behavior has been unclear. In the studies reported here, we tested whether a foundational functional role of social categories is to mark people as intrinsically obligated to one another (e.g., obligated to protect rather than harm). In three studies, children (aged 3-9, N = 124) viewed only within-category harm as violating intrinsic obligations; in contrast, they viewed between-category harm as violating extrinsic obligations defined by explicit rules. These data indicate that children view social categories as marking patterns of intrinsic interpersonal obligations, suggesting that a key function of social categories is to support inferences about how people will relate to members of their own and other groups.

  16. Improvement in Sensitivity of an Inductive Oil Palm Fruit Sensor

    Directory of Open Access Journals (Sweden)

    Norhisam Misron

    2014-02-01

    Full Text Available Among palm oil millers, the ripeness of oil palm Fresh Fruit Bunch (FFB is determined through visual inspection. To increase the productivity of the millers, many researchers have proposed with a new detection method to replace the conventional one. The sensitivity of such a sensor plays a crucial role in determining the effectiveness of the method. In our preliminary study a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunches is proposed. The design of the proposed air coil sensor based on an inductive sensor is further investigated to improve its sensitivity. This paper investigates the results pertaining to the effects of the air coil structure of an oil palm fruit sensor, taking consideration of the used copper wire diameter ranging from 0.10 mm to 0.18 mm with 60 turns. The flat-type shape of air coil was used on twenty samples of fruitlets from two categories, namely ripe and unripe. Samples are tested with frequencies ranging from 20 Hz to 120 MHz. The sensitivity of the sensor between air to fruitlet samples increases as the coil diameter increases. As for the sensitivity differences between ripe and unripe samples, the 5 mm air coil length with the 0.12 mm coil diameter provides the highest percentage difference between samples and it is amongst the highest deviation value between samples. The result from this study is important to improve the sensitivity of the inductive oil palm fruit sensor mainly with regards to the design of the air coil structure. The efficiency of the sensor to determine the maturity of the oil palm FFB and the ripening process of the fruitlet could further be enhanced.

  17. The application of the psychological contract to workplace safety.

    Science.gov (United States)

    Walker, Arlene; Hutton, Dorothy M

    2006-01-01

    Psychological contracts of safety are conceptualized as the beliefs of individuals about reciprocal safety obligations inferred from implicit or explicit promises. Although the literature on psychological contracts is growing, the existence of psychological contracts in relation to safety has not been established. The research sought to identify psychological contracts in the conversations of employees about safety, by demonstrating reciprocity in relation to employer and employee safety obligations. The identified safety obligations were used to develop a measure of psychological contracts of safety. The participants were 131 employees attending safety training sessions in retail and manufacturing organizations. Non-participant observation was used to collect the data during safety training sessions. Content analysis was used to analyze the data. Categories for coding were established through identification of language markers that demonstrated contingencies or other implied obligations. Direct evidence of reciprocity between employer safety obligations and employee safety obligations was found in statements from the participants demonstrating psychological contracts. A comprehensive list of perceived employer and employee safety obligations was compiled and developed into a measure of psychological contracts of safety. A small sample of 33 safety personnel was used to validate the safety obligations. CONCLUSIONS AND IMPACT ON INDUSTRY: Implications of these findings for safety and psychological contract research are discussed.

  18. Development of electrochemical sensor for the determination of toxic gases

    International Nuclear Information System (INIS)

    Ahmed, R.

    1997-01-01

    Monitoring release of flue and toxic gases and vapours of volatile organic toxic substances into the atmosphere is one of the most important problems in environmental pollution control studies particularly in industrial installations in order to avoid poisoning and other health hazards. In industrial areas continuous monitoring of toxic gases and vapours is required for the safety of workers and for this purpose different types of sensors and available such as thermal sensors mass sensors, biosensors, optical sensors and electrochemical sensors. Among all of these sensors electrochemical sensors are most cost-effective, accurate and very good for continuous monitoring. They can be categorized into potentiometric, conductometric, amperometric and voltammetric sensors. Applications of different types of electrochemical sensors are briefly reviewed. Development of polymer membrane and conducting polymers are most important for fabrication of electrochemical sensors, which can analyse up to twenty two gases and vapours simultaneously. Some of the commercially used electrochemical sensors are described. For the determination of hydrogen sulfide an electrochemical sensor was developed. Teflon based conduction polymer membrane was treated with some electrolytes and then silver metal was deposited on one side of the membrane. Metal part side was exposed to gases and the other side was deposited on one side of the membrane metal part side was exposed to gasses and the other side was connected with two electrodes including reference and counter electrodes, whereas metal part acted as working electrode. This system can also me used for the analysis of their gases like SO/sub 2/ etc; because they react at different potentials with the metal to generate the signals. (author)

  19. Sensor concentrator unit for the Continuous Automated Vault Inventory System

    Energy Technology Data Exchange (ETDEWEB)

    Nodine, R.N.; Lenarduzzi, R.

    1997-06-01

    The purpose of this document is to describe the use and operation of the sensor concentrator in the Continuous Automated Vault Inventory System (CAVIS). The CAVIS electronically verifies the presence of items of stored special nuclear material (SNM). US Department of Energy orders require that stored SNM be inventoried periodically to provide assurance that the material is secure. Currently this inventory is a highly manual activity, requiring personnel to enter the storage vaults. Using a CAVIS allows the frequency of physical inventories to be significantly reduced, resulting in substantial cost savings, increased security, and improved safety. The electronic inventory of stored SNM requires two different types of sensors for each item. The two sensors measure different parameters of the item, usually weight and gamma rays. A CAVIS is constructed using four basic system components: sensors, sensor concentrators, a data collection unit, and a database/user interface unit. One sensor concentrator supports the inventory of up to 20 items (40 sensors) and continuously takes readings from the item sensors. On request the sensor concentrator outputs the most recent sensor readings to the data collection unit. The information transfer takes place over a RS485 communications link. The data collection unit supports from 1 to 120 sensor concentrators (1 to 2,400 items) and is referred to as the Sensor Polling and Configuration System (SPCS). The SPCS is connected by a secure Transmission Control Protocol/Internet Protocol (TCP/IP) network to the database/user interface unit, which is referred to as the Graphical Facility Information Center (GraFIC). A CAVIS containing more than 2,400 items is supported by connecting additional SPCS units to the GraFIC.

  20. Sensor concentrator unit for the Continuous Automated Vault Inventory System

    International Nuclear Information System (INIS)

    Nodine, R.N.; Lenarduzzi, R.

    1997-06-01

    The purpose of this document is to describe the use and operation of the sensor concentrator in the Continuous Automated Vault Inventory System (CAVIS). The CAVIS electronically verifies the presence of items of stored special nuclear material (SNM). US Department of Energy orders require that stored SNM be inventoried periodically to provide assurance that the material is secure. Currently this inventory is a highly manual activity, requiring personnel to enter the storage vaults. Using a CAVIS allows the frequency of physical inventories to be significantly reduced, resulting in substantial cost savings, increased security, and improved safety. The electronic inventory of stored SNM requires two different types of sensors for each item. The two sensors measure different parameters of the item, usually weight and gamma rays. A CAVIS is constructed using four basic system components: sensors, sensor concentrators, a data collection unit, and a database/user interface unit. One sensor concentrator supports the inventory of up to 20 items (40 sensors) and continuously takes readings from the item sensors. On request the sensor concentrator outputs the most recent sensor readings to the data collection unit. The information transfer takes place over a RS485 communications link. The data collection unit supports from 1 to 120 sensor concentrators (1 to 2,400 items) and is referred to as the Sensor Polling and Configuration System (SPCS). The SPCS is connected by a secure Transmission Control Protocol/Internet Protocol (TCP/IP) network to the database/user interface unit, which is referred to as the Graphical Facility Information Center (GraFIC). A CAVIS containing more than 2,400 items is supported by connecting additional SPCS units to the GraFIC

  1. CRUQS: A Miniature Fine Sun Sensor for Nanosatellites

    Science.gov (United States)

    Heatwole, Scott; Snow, Carl; Santos, Luis

    2013-01-01

    A new miniature fine Sun sensor has been developed that uses a quadrant photodiode and housing to determine the Sun vector. Its size, mass, and power make it especially suited to small satellite applications, especially nanosatellites. Its accuracy is on the order of one arcminute, and it will enable new science in the area of nanosatellites. The motivation for this innovation was the need for high-performance Sun sensors in the nanosatellite category. The design idea comes out of the LISS (Lockheed Intermediate Sun Sensor) used by the sounding rocket program on their solar pointing ACS (Attitude Control System). This system uses photodiodes and a wall between them. The shadow cast by the Sun is used to determine the Sun angle. The new sensor takes this concept and miniaturizes it. A cruciform shaped housing and a surface-mount quadrant photodiode package allow for a two-axis fine Sun sensor to be packaged into a space approx.1.25xl x0.25 in. (approx.3.2x2.5x0.6 cm). The circuitry to read the photodiodes is a simple trans-impedance operational amplifier. This is much less complex than current small Sun sensors for nanosatellites that rely on photo-arrays and processing of images to determine the Sun center. The simplicity of the circuit allows for a low power draw as well. The sensor consists of housing with a cruciform machined in it. The cruciform walls are 0.5-mm thick and the center of the cruciform is situated over the center of the quadrant photodiode sensor. This allows for shadows to be cast on each of the four photodiodes based on the angle of the Sun. A simple operational amplifier circuit is used to read the output of the photodiodes as a voltage. The voltage output of each photodiode is summed based on rows and columns, and then the values of both rows or both columns are differenced and divided by the sum of the voltages for all four photodiodes. The value of both difference over sums for the rows and columns is compared to a table or a polynomial fit

  2. A Higher-Order Calculus for Categories

    DEFF Research Database (Denmark)

    Cáccamo, Mario José; Winskel, Glynn

    2001-01-01

    A calculus for a fragment of category theory is presented. The types in the language denote categories and the expressions functors. The judgements of the calculus systematise categorical arguments such as: an expression is functorial in its free variables; two expressions are naturally isomorphic...... in their free variables. There are special binders for limits and more general ends. The rules for limits and ends support an algebraic manipulation of universal constructions as opposed to a more traditional diagrammatic approach. Duality within the calculus and applications in proving continuity are discussed...... with examples. The calculus gives a basis for mechanising a theory of categories in a generic theorem prover like Isabelle....

  3. Sensor system for multi-point monitoring using bending loss of single mode optical fiber

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kim, Dae Hyun

    2015-01-01

    Applications of smart sensors have been extended to safety systems in the aerospace, transportation and civil engineering fields. In particular, structural health monitoring techniques using smart sensors have gradually become necessary and have been developed to prevent dangers to human life and damage to assets. Generally, smart sensors are based on electro-magnets and have several weaknesses, including electro-magnetic interference and distortion. Therefore, fiber optic sensors are an outstanding alternative to overcome the weaknesses of electro-magnetic sensors. However, they require expensive devices and complex systems. This paper proposes a new, affordable and simple sensor system that uses a single fiber to monitor pressures at multiple-points. Moreover, a prototype of the sensor system was manufactured and tested for a feasibility study. Based on the results of this experimental test, a relationship was carefully observed between the bend loss conditions and light-intensity. As a result, it was shown that impacts at multiple-points could be monitored.

  4. Towards a Uniform Metrological Assessment of Grating-Based Optical Fiber Sensors: From Refractometers to Biosensors.

    Science.gov (United States)

    Chiavaioli, Francesco; Gouveia, Carlos A J; Jorge, Pedro A S; Baldini, Francesco

    2017-06-21

    A metrological assessment of grating-based optical fiber sensors is proposed with the aim of providing an objective evaluation of the performance of this sensor category. Attention was focused on the most common parameters, used to describe the performance of both optical refractometers and biosensors, which encompassed sensitivity, with a distinction between volume or bulk sensitivity and surface sensitivity, resolution, response time, limit of detection, specificity (or selectivity), reusability (or regenerability) and some other parameters of generic interest, such as measurement uncertainty, accuracy, precision, stability, drift, repeatability and reproducibility. Clearly, the concepts discussed here can also be applied to any resonance-based sensor, thus providing the basis for an easier and direct performance comparison of a great number of sensors published in the literature up to now. In addition, common mistakes present in the literature made for the evaluation of sensor performance are highlighted, and lastly a uniform performance assessment is discussed and provided. Finally, some design strategies will be proposed to develop a grating-based optical fiber sensing scheme with improved performance.

  5. Taste sensor; Mikaku sensor

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K. [Kyushu University, Fukuoka (Japan)

    1998-03-05

    This paper introduces a taste sensor having a lipid/polymer membrane to work as a receptor of taste substances. The paper describes the following matters: this sensor uses a hollow polyvinyl chloride rod filled with KCl aqueous solution, and placed with silver and silver chloride wires, whose cross section is affixed with a lipid/polymer membrane as a lipid membrane electrode to identify taste from seven or eight kinds of response patterns of electric potential output from the lipid/polymer membrane; measurements of different substances presenting acidic taste, salty taste, bitter taste, sweet taste and flavor by using this sensor identified clearly each taste (similar response is shown to a similar taste even if the substances are different); different responses are indicated on different brands of beers; from the result of measuring a great variety of mineral waters, a possibility was suggested that this taste sensor could be used for water quality monitoring sensors; and application of this taste sensor may be expected as a maturation control sensor for Japanese sake (wine) and miso (bean paste) manufacturing. 2 figs., 1 tab.

  6. Development of techniques for fabrication of film probe sensor assembly

    International Nuclear Information System (INIS)

    Moorhead, A.J.

    1982-10-01

    Pulsed laser welding and brazing techniques were developed for fabrication of sensors designed to measure liquid film properties in out-of-reactor safety tests that simulate a loss-of-coolant accident in a pressurized-water nuclear reactor. These sensors were made possible by a unique ceramic-to-metal seal system based on a cermet insulator and a brazing filler metal, both developed at ORNL. This seal system was shown to resist steam to an exposure of at least 100 h at 700 0 C (1292 0 F) and to resist repetitive thermal transients of 300 0 C/s (540 0 F). Procedures were also developed for induction brazing the instrumentation cables to a stainless steel end cap and for laser welding this component to the brazed sensor body itself. Cable end seals and sensor bodies fabricated with these designs and techniques maintained excellent helium leaktightness ( -6 cm 3 /s) after 20 severe thermal shock tests from 500 0 C air into water at 80 0 C

  7. FINANCIAL CONTROL AS A CATEGORY

    Directory of Open Access Journals (Sweden)

    Andrey Yu. Volkov

    2014-01-01

    Full Text Available The article reveals the basics of “financial control” as a category. The main attention is concentrated on the “control” itself (asa term, multiplicity of interpretation of“financial control” term and its juristic-practical matching. The duality of financial control category is detected. The identity of terms “financial control” and “state financial control” is justified. The article also offers ways of development of financial control juristical regulation.

  8. The role of grammatical category information in spoken word retrieval.

    Science.gov (United States)

    Duràn, Carolina Palma; Pillon, Agnesa

    2011-01-01

    We investigated the role of lexical syntactic information such as grammatical gender and category in spoken word retrieval processes by using a blocking paradigm in picture and written word naming experiments. In Experiments 1, 3, and 4, we found that the naming of target words (nouns) from pictures or written words was faster when these target words were named within a list where only words from the same grammatical category had to be produced (homogeneous category list: all nouns) than when they had to be produced within a list comprising also words from another grammatical category (heterogeneous category list: nouns and verbs). On the other hand, we detected no significant facilitation effect when the target words had to be named within a homogeneous gender list (all masculine nouns) compared to a heterogeneous gender list (both masculine and feminine nouns). In Experiment 2, using the same blocking paradigm by manipulating the semantic category of the items, we found that naming latencies were significantly slower in the semantic category homogeneous in comparison with the semantic category heterogeneous condition. Thus semantic category homogeneity caused an interference, not a facilitation effect like grammatical category homogeneity. Finally, in Experiment 5, nouns in the heterogeneous category condition had to be named just after a verb (category-switching position) or a noun (same-category position). We found a facilitation effect of category homogeneity but no significant effect of position, which showed that the effect of category homogeneity found in Experiments 1, 3, and 4 was not due to a cost of switching between grammatical categories in the heterogeneous grammatical category list. These findings supported the hypothesis that grammatical category information impacts word retrieval processes in speech production, even when words are to be produced in isolation. They are discussed within the context of extant theories of lexical production.

  9. Nonlinear-Based MEMS Sensors and Active Switches for Gas and Acceleration Applications

    KAUST Repository

    Younis, Mohammad I.

    2016-11-25

    In this talk, we demonstrate the realization of smart sensors and actuators through the exploitation of principles of nonlinear dynamics at the micro scale. Specifically, we demonstrate combining sensing and actuation into a single device through what is called smart switches triggered by the detection of a desirable physical quantity. The concept aims to reduce the complexity of systems that rely on controllers and complex algorithms to realize on-demand trigger actions. In the first part of the talk, we discuss the category of switches triggered by the detection of gas. Toward this, electrostatically microbeams resonators are fabricated, then coated with highly absorbent polymers (MOFs), and afterward are exposed to gases. Such devices can be useful for instant alarming of toxic gases. In the second part, we demonstrate switches triggered by shock and acceleration. The concept is demonstrated on a millimeter-scale capacitive sensor. The sensor is tested using acceleration generated from shakers. Such devices can be used for the deployment of airbags in automobiles.

  10. Radiation safety standards

    International Nuclear Information System (INIS)

    1975-01-01

    This is a basic document with which all rules and regulations, etc., concerning protection from ionizing radiations of workers and the general population have to conform. Basic concepts, dimensions, units, and terms used in the area of radiation safety are defined. Radiation exposures are sorted out into three categories: A, to personnel; B, to individual members of the popul;tion; and C, to the general population. Critical organs, furthermore, comprise four groups, the first of them being applicable to the whole-body gonads and bone marrow. Category A maximum permissible dose (MPD) to first group critical organs is 5 rem/year; to second group, 15 rem/year; to thrid group, 3O rem/year; and to fourth group, 75 rem/year. These rate figures include doses from both external and internal radiation exposure. Quality factors needed in computing doses from various types of radiation are provided. Permissible planned exposure levels are specified and guidelines given for accidental exposures. A radiation accident is considered to have occurred if the relevant critical organ dose is 5 times the annual MPD for that organ. For individual members of the population (category B), annual somatic doses to first group critical organs shall not exceed 0,5 rem. Population exposure is controlled in terms of genetically significant dose, which shall not exceed 5 rem/30 years. (G.G.)

  11. Introduction to South Africa's safety classification

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyung Jun; Wu, Sang Ik; Yoon, Juh Yeon [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The safety functions of nuclear reactor facilities such as research reactors have to be maintained for all initiating events, incidents and accidents. From the position of licensee, it is a very important issue and design challenge to meet the licensing requirements for the final goal of proper safety functions from nuclear regulator. This paper intends to introduce and understand South Africa's licensing requirements and processing for safety classification of SSCs. South Africa's licensing requirements are shown in Table 1. Three categories A, B and C are categorized based on the occurrence frequency and the dose limitation of worker and public exposure. The Defense in Depth (DiD) and ALARA principle are forced to apply to a nuclear reactor facility design. Also, South Africa's safety and quality class compare with that of ANSI 51.1.

  12. Civilizational and ethical aspects of environmental safety

    Directory of Open Access Journals (Sweden)

    Marković Danilo Ž.

    2016-01-01

    Full Text Available These considerations of civilizational and ethical aspects of environmental safety start by a reference to the conceptual determination of this safety, and its foundation on a conception of the Planet Earth as a political and geological space, originating in the development of life forms. In this sense, the author understands the structures of the Earth's ecosystem, its unity, and the disruption of this unity with consequences for its survival and the survival of the human civilization itself. In the context of this approach, the author points to the need to preserve the environmental safety from the standpoint of equality and justice, stressing that justice is a legal category, especially when it is associated with the laws of nature, laws which are also associated with man as a natural being.

  13. TV MEDIA ANALYSIS FOR BANKING CATEGORY (2012)

    OpenAIRE

    Alexandra Elena POȘTOACĂ; Dorian – Laurențiu FLOREA

    2014-01-01

    This article represents a short overview of the media landscape for the banking category in Romania in 2012. Unlike the other categories (for example FMCG – fast moving consumer goods), the banking category is more complex because every bank can communicate for a wider range of products (credits, deposits, packages dedicated to students, pensioners and other types of banking products). In the first part of this paper, there will be presented some theoretical notions about media planning a...

  14. Effectiveness of pads and enclosures as safety interventions on consumer trampolines

    Science.gov (United States)

    Eager, David; Scarrott, Carl; Sushinsky, George

    2010-01-01

    Background Trampolines continue to be a major source of childhood injury. Objective To examine available data on trampoline injuries in order to determine the effectiveness of padding and enclosures. Design Trampoline injuries from the NEISS database from 2002 to 2007 were reclassified into five cause-categories, to examine evidence for injury trends. Setting The ASTM trampoline standard recommendations for safety padding were upgraded in 1999 and enclosures were introduced in 1997. This is the first study to examine the impact of these changes. Patients The sampling frame comprises patients with NEISS product code ‘consumer trampolines’ (1233). A systematic sample of 360 patients each year is taken. Interventions The prominent interventions recommended by the ASTM are netting enclosures to prevent falling off and safety padding to cover frames and springs. Main outcome measures Proportion of injuries within each cause-category and trend estimates. Results There was no evidence for a decline within the injury cause-categories that should be prevented by these interventions from 2002 to 2007. Conclusions If these interventions were effective the associated injury causes would be in decline. Instead they remain close to half of all trampoline injuries with no significant change over the period of the study. Follow-up studies are proposed to determine the reasons. Given the number of injuries involved it is recommended that steps be taken to ensure these safety interventions or their equivalents are in place, work properly and remain effective for the life of consumer trampolines. PMID:20570986

  15. Signal specific electric potential sensors for operation in noisy environments

    International Nuclear Information System (INIS)

    Beardsmore-Rust, S T; Prance, R J; Aydin, A; Prance, H; Harl, C J; Stiffell, P B

    2009-01-01

    Limitations on the performance of electric potential sensors are due to saturation caused by environmental electromagnetic noise. The work described involves tailoring the response of the sensors to reject the main components of the noise, thereby enhancing both the effective dynamic range and signal to noise. We show that by using real-time analogue signal processing it is possible to detect a human heartbeat at a distance of 40 cm from the front of a subject in an unshielded laboratory. This result has significant implications both for security sensing and biometric measurements in addition to the more obvious safety related applications.

  16. Signal specific electric potential sensors for operation in noisy environments

    Energy Technology Data Exchange (ETDEWEB)

    Beardsmore-Rust, S T; Prance, R J; Aydin, A; Prance, H; Harl, C J; Stiffell, P B, E-mail: r.j.prance@sussex.ac.u [Centre for Physical Electronics and Quantum Technology, Department of Engineering and Design, University of Sussex, Falmer, Brighton, BN1 9QT (United Kingdom)

    2009-07-01

    Limitations on the performance of electric potential sensors are due to saturation caused by environmental electromagnetic noise. The work described involves tailoring the response of the sensors to reject the main components of the noise, thereby enhancing both the effective dynamic range and signal to noise. We show that by using real-time analogue signal processing it is possible to detect a human heartbeat at a distance of 40 cm from the front of a subject in an unshielded laboratory. This result has significant implications both for security sensing and biometric measurements in addition to the more obvious safety related applications.

  17. Sensitivity-Enhanced Wearable Active Voiceprint Sensor Based on Cellular Polypropylene Piezoelectret.

    Science.gov (United States)

    Li, Wenbo; Zhao, Sheng; Wu, Nan; Zhong, Junwen; Wang, Bo; Lin, Shizhe; Chen, Shuwen; Yuan, Fang; Jiang, Hulin; Xiao, Yongjun; Hu, Bin; Zhou, Jun

    2017-07-19

    Wearable active sensors have extensive applications in mobile biosensing and human-machine interaction but require good flexibility, high sensitivity, excellent stability, and self-powered feature. In this work, cellular polypropylene (PP) piezoelectret was chosen as the core material of a sensitivity-enhanced wearable active voiceprint sensor (SWAVS) to realize voiceprint recognition. By virtue of the dipole orientation control method, the air layers in the piezoelectret were efficiently utilized, and the current sensitivity was enhanced (from 1.98 pA/Hz to 5.81 pA/Hz at 115 dB). The SWAVS exhibited the superiorities of high sensitivity, accurate frequency response, and excellent stability. The voiceprint recognition system could make correct reactions to human voices by judging both the password and speaker. This study presented a voiceprint sensor with potential applications in noncontact biometric recognition and safety guarantee systems, promoting the progress of wearable sensor networks.

  18. Photonic-Crystal-Based Thin Film Sensor for Detecting Volatile Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyung Kwan; Park, Jung Yul [Sogang Univ., Seoul (Korea, Republic of)

    2016-03-15

    Early detection of toxic gases, such as volatile organic compounds (VOCs), is important for safety and environmental protection. However, the conventional detection methods require long-term measurement times and expensive equipment. In this study, we propose a thin-film-type chemical sensor for VOCs, which consists of self assembled monosize nanoparticles for 3-D photonic crystal structures and polydimthylsiloxane (PDMS) film. It is operated without any external power source, is truly portable, and has a fast response time. The structure color of the sensor changes when it is exposed to VOCs, because VOCs induce a swelling of the PDMS. Therefore, using this principle of color change, we can create a thin-film sensor for immediate detection of various types of VOCs. The proposed device evidences that a fast response time of just seconds, along with a clear color change, are successfully observed when the sensor is exposed to gas-phase VOCs.

  19. Water Vapor Sensors Go Sky-High to Assure Aircraft Safety

    Science.gov (United States)

    2006-01-01

    JPL used a special tunable diode laser, which NASA scientists could tune to different wavelengths, like a radio being tuned to different frequencies, to accurately target specific molecules and detect small traces of gas. This tunable diode laser was designed to emit near-infrared light at wavelengths absorbed by the gas or gases being detected. The light energy being absorbed by the target gas is related to the molecules present. This is usually measured in parts per million or parts per billion. Multiple measurements are made every second, making the system quick to respond to variations in the target gas. NASA scientists developed this technology as part of the 1999 Mars Polar Lander mission to explore the possibility of life-giving elements on Mars. NASA has since used the tunable diode laser-based gas sensor on aircraft and on balloons to successfully study weather and climate, global warming, emissions from aircraft, and numerous other areas where chemical gas analysis is needed. SpectraSensors, Inc., was formed in 1999 as a spinoff company of JPL, to commercialize tunable diode laser-based analyzers for industrial gas-sensing applications (Spinoff 2000). Now, the San Dimas, California-based firm has come back to the market with a new product featuring the NASA-developed instrument for atmospheric monitoring. This instrument is now helping aircraft avoid hazardous weather conditions and enabling the National Weather Service to provide more accurate weather forecasts.

  20. 47 CFR 36.126 - Circuit equipment-Category 4.

    Science.gov (United States)

    2010-10-01

    ... separating property associated with special services, circuit equipment included in Categories 4.12 (other... Equipment Excluding Wideband—Category 4.13—The cost of Circuit Equipment associated with exchange line plant... 47 Telecommunication 2 2010-10-01 2010-10-01 false Circuit equipment-Category 4. 36.126 Section 36...

  1. The Design of Tools for Sketching Sensor-Based Interaction

    DEFF Research Database (Denmark)

    Brynskov, Martin; Lunding, Rasmus; Vestergaard, Lasse Steenbock

    2012-01-01

    In this paper we motivate, present, and give an initial evaluation of DUL Radio, a small wireless toolkit for sketching sensor-based interaction. In the motivation, we discuss the purpose of this specific platform, which aims to balance ease-of-use (learning, setup, initialization), size, speed......, flexibility and cost, aimed at wearable and ultra-mobile prototyping where fast reaction is needed (e.g. in controlling sound), and we discuss the general issues facing this category of embodied interaction design tools. We then present the platform in more detail, both regarding hard- ware and software....... In the brief evaluation, we present our initial experiences with the platform both in design projects and in teaching. We conclude that DUL Radio does seem to be a relatively easy-to-use tool for sketching sensor-based interaction compared to other solutions, but that there are many ways to improve it. Target...

  2. Wireless sensor networks principles, design and applications

    CERN Document Server

    Yang, Shuang-Hua

    2014-01-01

    Wireless Sensor Networks presents the latest practical solutions to the design issues presented in wireless-sensor-network-based systems. Novel features of the text, distributed throughout, include workable solutions, demonstration systems and case studies of the design and application of wireless sensor networks (WSNs) based on the first-hand research and development experience of the author, and the chapters on real applications: building fire safety protection; smart home automation; and logistics resource management. Case studies and applications illustrate the practical perspectives of: ·         sensor node design; ·         embedded software design; ·         routing algorithms; ·         sink node positioning; ·         co-existence with other wireless systems; ·         data fusion; ·         security; ·         indoor location tracking; ·         integrating with radio-frequency identification; and ·         In...

  3. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications.

    Science.gov (United States)

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco

    2017-02-14

    This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO₂ concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.

  4. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications

    Directory of Open Access Journals (Sweden)

    Diego Antolín

    2017-02-01

    Full Text Available This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN communications protocol, which as a first approach measures CO2 concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.

  5. FOOD SAFETY IN CATERING INDUSTRY

    Directory of Open Access Journals (Sweden)

    P. Cattaneo

    2009-03-01

    Full Text Available Catering industry plays a very important role in public health management, because about 30% of total daily meals are consumed in catering industry (restaurants, bar. In this work food safety was evaluated in 20 catering centres throughout microbiological analyses of different categories of meals. Results demonstrate that there was an important decrease of microbial contamination between 2006 and 2007, no pathogens were found in 217 samples examined: this was obtained by improving voluntary controls.

  6. 16 CFR 1211.13 - Inherent force activated secondary door sensors.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Inherent force activated secondary door sensors. 1211.13 Section 1211.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... across the door so that the axis is perpendicular to the plane of the door. See Figure 6 of this part...

  7. A Novel Energy Efficient Topology Control Scheme Based on a Coverage-Preserving and Sleep Scheduling Model for Sensor Networks.

    Science.gov (United States)

    Shi, Binbin; Wei, Wei; Wang, Yihuai; Shu, Wanneng

    2016-10-14

    In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS) based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical data, and then all nodes in each grid of the target area can be classified into several categories. Secondly, the redundancy degree of a node is calculated according to its sensing area being covered by the neighboring sensors. Finally, a centralized approximation algorithm based on the partition of the target area is designed to obtain the approximate minimum set of nodes, which can retain the sufficient coverage of the target region and ensure the connectivity of the network at the same time. The simulation results show that the proposed CPCSS can balance the energy consumption and optimize the coverage performance of the sensor network.

  8. On-line testing of response time and calibration of temperature and pressure sensors in nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    1995-01-01

    Periodic calibrations and response time measurements are necessary for temperature and pressure sensors in the safety systems of nuclear power plants. Conventional measurement methods require the test to be performed at the sensor location or involve removing the sensor from the process and performing the tests in a laboratory or on the bench. The conventional methods are time consuming and have the potential of causing wear and tear on the equipment, can expose the test personnel to radiation and other harsh environments, and increase the length of the plant outage. Also, the conventional methods do not account for the installation effects which may have an influence on sensor performance. On-line testing methods alleviate these problems by providing remote sensor response time and calibration capabilities. For temperature sensors such as Resistance Temperature Detectors (RTDs) and thermocouples, an on-line test method called the Loop Current Step Response (LCSR) technique has been developed, and for pressure transmitters, an on-line method called noise analysis which was available for reactor diagnostics was validated for response time testing applications. Both the LCSR and noise analysis tests are performed periodically in U.S. nuclear power plants to meet the plant technical specification requirements for response time testing of safety-related sensors. Automated testing of the calibration of both temperature and pressure sensors can be accomplished through an on-line monitoring system installed in the plant. The system monitors the DC output of the sensors over the fuel cycle to determine if any calibration drift has occurred. Changes in calibration can be detected using signal averaging and intercomparison methods and analytical redundancy techniques. (author)

  9. Asynchronous Sensor fuSion for Improved Safety of air Traffic (ASSIST), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI proposes to develop, implement and test a collision detection system for unmanned aerial vehicles (UAV), referred to as the Asynchronous Sensor fuSion for...

  10. Wireless coexistence and interference test method for low-power wireless sensor networks

    NARCIS (Netherlands)

    Serra, R.; Nabi, Majid

    2015-01-01

    Wireless sensor networks (WSNs) are being increasingly introduced for critical applications such as safety, security and health. One the main characteristic requirements of such networks are that they should function with relative low power. Therefore the wireless links are more vulnerable.

  11. Just in Time DSA-The Hanford Nuclear Safety Basis Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Olinger, S. J.; Buhl, A. R.

    2002-02-26

    The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safety Basis Requirements (the Rule) in January 2001 imposed the requirement that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSA that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: compliance with the Rule; a ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD&D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD&D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex.

  12. Just in Time DSA-The Hanford Nuclear Safety Basis Strategy

    International Nuclear Information System (INIS)

    Olinger, S. J.; Buhl, A. R.

    2002-01-01

    The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safety Basis Requirements (the Rule) in January 2001 imposed the requirement that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSA that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: compliance with the Rule; a ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD and D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD and D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex

  13. A wireless laser displacement sensor node for structural health monitoring.

    Science.gov (United States)

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  14. A Wireless Laser Displacement Sensor Node for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Se Woon Choi

    2013-09-01

    Full Text Available This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM. The proposed measurement system consists of a laser displacement sensor (LDS and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  15. Mere exposure alters category learning of novel objects

    Directory of Open Access Journals (Sweden)

    Jonathan R Folstein

    2010-08-01

    Full Text Available We investigated how mere exposure to complex objects with correlated or uncorrelated object features affects later category learning of new objects not seen during exposure. Correlations among pre-exposed object dimensions influenced later category learning. Unlike other published studies, the collection of pre-exposed objects provided no information regarding the categories to be learned, ruling out unsupervised or incidental category learning during pre-exposure. Instead, results are interpreted with respect to statistical learning mechanisms, providing one of the first demonstrations of how statistical learning can influence visual object learning.

  16. Mere exposure alters category learning of novel objects.

    Science.gov (United States)

    Folstein, Jonathan R; Gauthier, Isabel; Palmeri, Thomas J

    2010-01-01

    We investigated how mere exposure to complex objects with correlated or uncorrelated object features affects later category learning of new objects not seen during exposure. Correlations among pre-exposed object dimensions influenced later category learning. Unlike other published studies, the collection of pre-exposed objects provided no information regarding the categories to be learned, ruling out unsupervised or incidental category learning during pre-exposure. Instead, results are interpreted with respect to statistical learning mechanisms, providing one of the first demonstrations of how statistical learning can influence visual object learning.

  17. Categorical perception of color: evidence from secondary category boundary

    Directory of Open Access Journals (Sweden)

    Al-rasheed AS

    2015-11-01

    Full Text Available Abdulrahman Saud Al-rasheed Department of Psychology, King Saud University, Riyadh, Kingdom of Saudi Arabia Abstract: Despite a plethora of behavioral research exploring the phenomenon of color categorical perception (CP known as "better discrimination between pair of colors stimuli from different categories and pair of colors stimuli from the same category even when the stimulus differences between the pairs of stimuli are equal", most of the evidence for the CP of color was derived from Roman or top-to-down script readers and very rarely from right-to-left script readers in primary category. To date, no studies of color CP have been conducted on right-to-left script readers in secondary category boundary to support this theory. Three experiments have been conducted: Experiments 1 and 2 established the Arabic blue–purple secondary category boundary, and Experiment 3 tested the CP of color in the blue–purple category boundary. Sixty participants (30 men and 30 women took part in this study. All spoke Arabic as their first language, and all were undergraduate or postgraduate students at King Saud University. Their ages ranged from 18–35 years with a mean age of 21.9 years (SD =5.2. The result indicated that for Experiments 1 and 2, it appeared that the Arabic blue–purple category boundary was approximately 10PB and it is in the same location as for English. For Experiment 3, reaction times in the between-categories condition were significantly faster than those in the within-category condition; this suggested that CP of color was shown in the Arabic's blue–purple secondary category boundary. Keywords: categorical perception, CP of color, categorization, blue–purple category boundary, secondary category boundary

  18. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System

    Directory of Open Access Journals (Sweden)

    Hyundo Choi

    2018-02-01

    Full Text Available In this paper, we propose a compact force sensor system for a hip-mounted exoskeleton for seniors with difficulties in walking due to muscle weakness. It senses and monitors the delivered force and power of the exoskeleton for motion control and taking urgent safety action. Two FSR (force-sensitive resistors sensors are used to measure the assistance force when the user is walking. The sensor system directly measures the interaction force between the exoskeleton and the lower limb of the user instead of a previously reported force-sensing method, which estimated the hip assistance force from the current of the motor and lookup tables. Furthermore, the sensor system has the advantage of generating torque in the walking-assistant actuator based on directly measuring the hip-assistance force. Thus, the gait-assistance exoskeleton system can control the delivered power and torque to the user. The force sensing structure is designed to decouple the force caused by hip motion from other directional forces to the sensor so as to only measure that force. We confirmed that the hip-assistance force could be measured with the proposed prototype compact force sensor attached to a thigh frame through an experiment with a real system.

  19. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.

    Science.gov (United States)

    Choi, Hyundo; Seo, Keehong; Hyung, Seungyong; Shim, Youngbo; Lim, Soo-Chul

    2018-02-13

    In this paper, we propose a compact force sensor system for a hip-mounted exoskeleton for seniors with difficulties in walking due to muscle weakness. It senses and monitors the delivered force and power of the exoskeleton for motion control and taking urgent safety action. Two FSR (force-sensitive resistors) sensors are used to measure the assistance force when the user is walking. The sensor system directly measures the interaction force between the exoskeleton and the lower limb of the user instead of a previously reported force-sensing method, which estimated the hip assistance force from the current of the motor and lookup tables. Furthermore, the sensor system has the advantage of generating torque in the walking-assistant actuator based on directly measuring the hip-assistance force. Thus, the gait-assistance exoskeleton system can control the delivered power and torque to the user. The force sensing structure is designed to decouple the force caused by hip motion from other directional forces to the sensor so as to only measure that force. We confirmed that the hip-assistance force could be measured with the proposed prototype compact force sensor attached to a thigh frame through an experiment with a real system.

  20. Extensive review of fish embryo acute toxicities for the prediction of GHS acute systemic toxicity categories.

    Science.gov (United States)

    Scholz, Stefan; Ortmann, Julia; Klüver, Nils; Léonard, Marc

    2014-08-01

    Distribution and marketing of chemicals require appropriate labelling of health, physical and environmental hazards according to the United Nations global harmonisation system (GHS). Labelling for (human) acute toxicity categories is based on experimental findings usually obtained by oral, dermal or inhalative exposure of rodents. There is a strong societal demand for replacing animal experiments conducted for safety assessment of chemicals. Fish embryos are considered as alternative to animal testing and are proposed as predictive model both for environmental and human health effects. Therefore, we tested whether LC50s of the fish embryo acute toxicity test would allow effectively predicting of acute mammalian toxicity categories. A database of published fish embryo LC50 containing 641 compounds was established. For these compounds corresponding rat oral LD50 were identified resulting in 364 compounds for which both fish embryo LC50 and rat LD50 was available. Only a weak correlation of fish embryo LC50 and rat oral LD50 was obtained. Fish embryos were also not able to effectively predict GHS oral acute toxicity categories. We concluded that due to fundamental exposure protocol differences (single oral dose versus water-borne exposure) a reverse dosimetry approach is needed to explore the predictive capacity of fish embryos. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Consumer Product Category Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Chemical and Product Categories database (CPCat) catalogs the use of over 40,000 chemicals and their presence in different consumer products. The chemical use...

  2. Safety inspection guide, Mod III (a systematic approach to conducting a safety inspection)

    International Nuclear Information System (INIS)

    Davidson, J.E.

    1977-06-01

    This guide was developed as a comprehensive/systematic approach to the problem of performing a safety inspection. Five basic sections (categories) are considered in the guide: physical work place; machines/mechanical equipment; hazardous materials/processes/environments; energy sources; and management hazard . control factors. The basic concept is that one starts evaluating hazard potentials from the physical work place and continues considering other elements as they are added to the physical work place. This approach provides a better understanding of the interfaces of each section to the entire group. The guide is supported by an Area Safety Inspection Result form to record defects or conditions found, the evaluation (best estimate) of the urgency or priority for correcting deficiencies or areas of noncompliance, and the status of corrective action. Additionally, the guide serves as an educational tool in accident prevention for supervisors and employees

  3. Low-Power Smart Imagers for Vision-Enabled Sensor Networks

    CERN Document Server

    Fernández-Berni, Jorge; Rodríguez-Vázquez, Ángel

    2012-01-01

    This book presents a comprehensive, systematic approach to the development of vision system architectures that employ sensory-processing concurrency and parallel processing to meet the autonomy challenges posed by a variety of safety and surveillance applications.  Coverage includes a thorough analysis of resistive diffusion networks embedded within an image sensor array. This analysis supports a systematic approach to the design of spatial image filters and their implementation as vision chips in CMOS technology. The book also addresses system-level considerations pertaining to the embedding of these vision chips into vision-enabled wireless sensor networks.  Describes a system-level approach for designing of vision devices and  embedding them into vision-enabled, wireless sensor networks; Surveys state-of-the-art, vision-enabled WSN nodes; Includes details of specifications and challenges of vision-enabled WSNs; Explains architectures for low-energy CMOS vision chips with embedded, programmable spatial f...

  4. Towards an electronic dog nose: surface plasmon resonance immunosensor for security and safety.

    Science.gov (United States)

    Onodera, Takeshi; Toko, Kiyoshi

    2014-09-05

    This review describes an "electronic dog nose" based on a surface plasmon resonance (SPR) sensor and an antigen-antibody interaction for security and safety. We have concentrated on developing appropriate sensor surfaces for the SPR sensor for practical use. The review covers different surface fabrications, which all include variations of a self-assembled monolayer containing oligo(ethylene glycol), dendrimer, and hydrophilic polymer. We have carried out detection of explosives using the sensor surfaces. For the SPR sensor to detect explosives, the vapor or particles of the target substances have to be dissolved in a liquid. Therefore, we also review the development of sampling processes for explosives, and a protocol for the measurement of explosives on the SPR sensor in the field. Additionally, sensing elements, which have the potential to be applied for the electronic dog nose, are described.

  5. Towards an Electronic Dog Nose: Surface Plasmon Resonance Immunosensor for Security and Safety

    Directory of Open Access Journals (Sweden)

    Takeshi Onodera

    2014-09-01

    Full Text Available This review describes an “electronic dog nose” based on a surface plasmon resonance (SPR sensor and an antigen–antibody interaction for security and safety. We have concentrated on developing appropriate sensor surfaces for the SPR sensor for practical use. The review covers different surface fabrications, which all include variations of a self-assembled monolayer containing oligo(ethylene glycol, dendrimer, and hydrophilic polymer. We have carried out detection of explosives using the sensor surfaces. For the SPR sensor to detect explosives, the vapor or particles of the target substances have to be dissolved in a liquid. Therefore, we also review the development of sampling processes for explosives, and a protocol for the measurement of explosives on the SPR sensor in the field. Additionally, sensing elements, which have the potential to be applied for the electronic dog nose, are described.

  6. Advancing the framework for considering the effects of climate change on worker safety and health.

    Science.gov (United States)

    Schulte, P A; Bhattacharya, A; Butler, C R; Chun, H K; Jacklitsch, B; Jacobs, T; Kiefer, M; Lincoln, J; Pendergrass, S; Shire, J; Watson, J; Wagner, G R

    2016-11-01

    In 2009, a preliminary framework for how climate change could affect worker safety and health was described. That framework was based on a literature search from 1988-2008 that supported seven categories of climate-related occupational hazards: (1) increased ambient temperature; (2) air pollution; (3) ultraviolet radiation exposure; (4) extreme weather; (5) vector-borne diseases and expanded habitats; (6) industrial transitions and emerging industries; and (7) changes in the built environment. This article reviews the published literature from 2008-2014 in each of the seven categories. Additionally, three new topics related to occupational safety and health are considered: mental health effects, economic burden, and potential worker safety and health impacts associated with the nascent field of climate intervention (geoengineering). Beyond updating the literature, this article also identifies key priorities for action to better characterize and understand how occupational safety and health may be associated with climate change events and ensure that worker health and safety issues are anticipated, recognized, evaluated, and mitigated. These key priorities include research, surveillance, risk assessment, risk management, and policy development. Strong evidence indicates that climate change will continue to present occupational safety and health hazards, and this framework may be a useful tool for preventing adverse effects to workers.

  7. SVANET: A Smart Vehicular Ad Hoc Network for Efficient Data Transmission with Wireless Sensors

    Directory of Open Access Journals (Sweden)

    Prasan Kumar Sahoo

    2014-11-01

    Full Text Available Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency.

  8. Computational Aspects of Sensor Network Protocols (Distributed Sensor Network Simulator

    Directory of Open Access Journals (Sweden)

    Vasanth Iyer

    2009-08-01

    Full Text Available In this work, we model the sensor networks as an unsupervised learning and clustering process. We classify nodes according to its static distribution to form known class densities (CCPD. These densities are chosen from specific cross-layer features which maximizes lifetime of power-aware routing algorithms. To circumvent computational complexities of a power-ware communication STACK we introduce path-loss models at the nodes only for high density deployments. We study the cluster heads and formulate the data handling capacity for an expected deployment and use localized probability models to fuse the data with its side information before transmission. So each cluster head has a unique Pmax but not all cluster heads have the same measured value. In a lossless mode if there are no faults in the sensor network then we can show that the highest probability given by Pmax is ambiguous if its frequency is ≤ n/2 otherwise it can be determined by a local function. We further show that the event detection at the cluster heads can be modelled with a pattern 2m and m, the number of bits can be a correlated pattern of 2 bits and for a tight lower bound we use 3-bit Huffman codes which have entropy < 1. These local algorithms are further studied to optimize on power, fault detection and to maximize on the distributed routing algorithm used at the higher layers. From these bounds in large network, it is observed that the power dissipation is network size invariant. The performance of the routing algorithms solely based on success of finding healthy nodes in a large distribution. It is also observed that if the network size is kept constant and the density of the nodes is kept closer then the local pathloss model effects the performance of the routing algorithms. We also obtain the maximum intensity of transmitting nodes for a given category of routing algorithms for an outage constraint, i.e., the lifetime of sensor network.

  9. Health Information Technology in Healthcare Quality and Patient Safety: Literature Review.

    Science.gov (United States)

    Feldman, Sue S; Buchalter, Scott; Hayes, Leslie W

    2018-06-04

    The area of healthcare quality and patient safety is starting to use health information technology to prevent reportable events, identify them before they become issues, and act on events that are thought to be unavoidable. As healthcare organizations begin to explore the use of health information technology in this realm, it is often unclear where fiscal and human efforts should be focused. The purpose of this study was to provide a foundation for understanding where to focus health information technology fiscal and human resources as well as expectations for the use of health information technology in healthcare quality and patient safety. A literature review was conducted to identify peer-reviewed publications reporting on the actual use of health information technology in healthcare quality and patient safety. Inductive thematic analysis with open coding was used to categorize a total of 41 studies. Three pre-set categories were used: prevention, identification, and action. Three additional categories were formed through coding: challenges, outcomes, and location. This study identifies five main categories across seven study settings. A majority of the studies used health IT for identification and prevention of healthcare quality and patient safety issues. In this realm, alerts, clinical decision support, and customized health IT solutions were most often implemented. Implementation, interface design, and culture were most often noted as challenges. This study provides valuable information as organizations determine where they stand to get the most "bang for their buck" relative to health IT for quality and patient safety. Knowing what implementations are being effectivity used by other organizations helps with fiscal and human resource planning as well as managing expectations relative to cost, scope, and outcomes. The findings from this scan of the literature suggest that having organizational champion leaders that can shepherd implementation, impact culture

  10. Major structural response methods used in the seismic safety margins research program

    International Nuclear Information System (INIS)

    Chou, C.K.; Lo, T.; Vagliente, V.

    1979-01-01

    In order to evaluate the conservatisms in present nuclear power plant seismic safety requirements, a probabilistic based systems model is being developed. This model will also be used to develop improved requirements. In Phase I of the Seismic Safety Margins Research Program (SSMRP), this methodology will be developed for a specific nuclear power plant and used to perform probabilistic sensitivity studies to gain engineering insights into seismic safety requirements. Random variables in the structural response analysis area, or parameters which cause uncertainty in the response, are discussed and classified into three categories; i.e., material properties, structural dynamic characteristics and related modeling techniques, and analytical methods. The sensitivity studies are grouped into two categories; deterministic and probabilistic. In a system analysis, transfer functions in simple form are needed since there are too many responses which have to be calculated in a Monte Carlo simulation to use the usual straightforward calculation approach. Therefore, the development of these simple transfer functions is one of the important tasks in SSMRP. Simplified as well as classical transfer functions are discussed

  11. Safety of superconducting fusion magnets: twelve problem areas

    International Nuclear Information System (INIS)

    Turner, L.R.

    1979-05-01

    Twelve problem areas of superconducting magnets for fusion reaction are described. These are: Quench Detection and Energy Dump, Stationary Normal Region of Conductor, Current Leads, Electrical Arcing, Electrical Shorts, Conductor Joints, Forces from Unequal Currents, Eddy Current Effects, Cryostat Rupture, Vacuum Failure, Fringing Field and Instrumentation for Safety. Each is described under the five categories: Identification and Definition, Possible Safety Effects, Current Practice, Adequacy of Current Practice for Fusion Magnets and Areas Requiring Further Analytical and Experimental Study. Priorities among these areas are suggested; application is made to the Large Coil Project at Oak Ridge National Laboratory

  12. Multidimensional measurement by using 3-D PMD sensors

    Directory of Open Access Journals (Sweden)

    T. Ringbeck

    2007-06-01

    Full Text Available Optical Time-of-Flight measurement gives the possibility to enhance 2-D sensors by adding a third dimension using the PMD principle. Various applications in the automotive (e.g. pedestrian safety, industrial, robotics and multimedia fields require robust three-dimensional data (Schwarte et al., 2000. These applications, however, all have different requirements in terms of resolution, speed, distance and target characteristics. PMDTechnologies has developed 3-D sensors based on standard CMOS processes that can provide an optimized solution for a wide field of applications combined with high integration and cost-effective production. These sensors are realized in various layout formats from single pixel solutions for basic applications to low, middle and high resolution matrices for applications requiring more detailed data. Pixel pitches ranging from 10 micrometer up to a 300 micrometer or larger can be realized and give the opportunity to optimize the sensor chip depending on the application.

    One aspect of all optical sensors based on a time-of-flight principle is the necessity of handling background illumination. This can be achieved by various techniques, such as optical filters and active circuits on chip. The sensors' usage of the in-pixel so-called SBI-circuitry (suppression of background illumination makes it even possible to overcome the effects of bright ambient light. This paper focuses on this technical requirement. In Sect. 2 we will roughly describe the basic operation principle of PMD sensors. The technical challenges related to the system characteristics of an active optical ranging technique are described in Sect. 3, technical solutions and measurement results are then presented in Sect. 4. We finish this work with an overview of actual PMD sensors and their key parameters (Sect. 5 and some concluding remarks in Sect. 6.

  13. When does fading enhance perceptual category learning?

    Science.gov (United States)

    Pashler, Harold; Mozer, Michael C

    2013-07-01

    Training that uses exaggerated versions of a stimulus discrimination (fading) has sometimes been found to enhance category learning, mostly in studies involving animals and impaired populations. However, little is known about whether and when fading facilitates learning for typical individuals. This issue was explored in 7 experiments. In Experiments 1 and 2, observers discriminated stimuli based on a single sensory continuum (time duration and line length, respectively). Adaptive fading dramatically improved performance in training (unsurprisingly) but did not enhance learning as assessed in a final test. The same was true for nonadaptive linear fading (Experiment 3). However, when variation in length (predicting category membership) was embedded among other (category-irrelevant) variation, fading dramatically enhanced not only performance in training but also learning as assessed in a final test (Experiments 4 and 5). Fading also helped learners to acquire a color saturation discrimination amid category-irrelevant variation in hue and brightness, although this learning proved transitory after feedback was withdrawn (Experiment 7). Theoretical implications are discussed, and we argue that fading should have practical utility in naturalistic category learning tasks, which involve extremely high dimensional stimuli and many irrelevant dimensions. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  14. Numerical evaluation for a five-sensor probe method to measure the interfacial area concentration under the bubble fluctuation condition

    International Nuclear Information System (INIS)

    Euh, D. J.; Yun, B. J.; Song, C. H.

    2003-01-01

    Interfacial area concentration is an important parameter in the two phase flow models. Currently, two types of probe methods, double-sensor and four-sensor, are widely used to measure the interfacial area concentration. In this study, a configuration of five-sensor probe sensor tips and a measuring method for the interfacial area concentration by using the probe are proposed to improve the performance of the previous probe methods. The five-sensor probe method proposed in this study is essentially based on the four-sensor probe method but improves it by adapting one more sensor. The passing types of the interfaces through the sensors are categorized into four and independent methods are applied to the interfaces belonging to each category. This method has an advantage such that a more systematic approach for missing bubbles can be made when compared with the classical four sensor probe method. To verify the applicability of the five-sensor probe method, numerical tests are performed with consideration of the bubble lateral movement. The effects of bubble size and intensity of the bubble lateral motion on the measurement of the interfacial area concentration are also investigated. The bubble parameters related to the bubble fluctuation and interface geometry are determined by the Monte Carlo approach

  15. Fitness to drive measures for chronic user of ICADTS category III drugs; ‘do not drive’. Advise them do drive if they are fit for it.

    NARCIS (Netherlands)

    Dijksterhuis, Chris; Veldstra, Janet; de Waard, Dick; Brookhuis, Karel

    2014-01-01

    The International Council on Alcohol, Drugs, and Traffic Safety (ICADTS) classifies the impairing properties of medicinal drugs on driving performance into one of three categories; presumed safe (I), moderate adverse effects (II), and potentially dangerous (III). In the Netherlands for example, the

  16. Categories of relations as models of quantum theory

    Directory of Open Access Journals (Sweden)

    Chris Heunen

    2015-11-01

    Full Text Available Categories of relations over a regular category form a family of models of quantum theory. Using regular logic, many properties of relations over sets lift to these models, including the correspondence between Frobenius structures and internal groupoids. Over compact Hausdorff spaces, this lifting gives continuous symmetric encryption. Over a regular Mal'cev category, this correspondence gives a characterization of categories of completely positive maps, enabling the formulation of quantum features. These models are closer to Hilbert spaces than relations over sets in several respects: Heisenberg uncertainty, impossibility of broadcasting, and behavedness of rank one morphisms.

  17. Effects of normal aging on calibration and response time of nuclear plant RTDs and pressure sensors

    International Nuclear Information System (INIS)

    Hashemian, H.L.; Riner, J.L.

    1993-01-01

    Resistance temperature detectors (RTDs) and pressure, level, and flow transmitters provide a majority of the vital signals for the control and safety of nuclear power plants. Therefore, it is crucial to ensure that the performance of these sensors are maintained at an acceptable level while the plant is operating. Since aging has the potential to cause performance degradation in RTDs and pressure transmitters, several research projects have been sponsored by the US Nuclear Regulatory Commission (NRC) to study the aging characteristics of these sensors and ensure that adequate test methods and test frequencies are followed by the nuclear industry to ensure safety. The details of these projects are summarized in this paper

  18. Detecting Blind Spot By Using Ultrasonic Sensor

    Directory of Open Access Journals (Sweden)

    T. S. Ajay

    2015-08-01

    Full Text Available Safety remains a top concern for automobile industries and new-car shoppers. Detection of Blind Spots is a major concern for safety issues. So automobiles have been constantly updating their products with new technologies to detect blind spots so that they can add more safety to the vehicle and also reduce the road accidents. Almost 1.5 million people die in road accidents each year. Blind spot of an automobile is the region of the vehicle which cannot be observed properly while looking either through side or rear mirror view. To meet the above requirements this paper describes detecting blind spot by using ultrasonic sensor and controlling the direction of car by automatic steering. The technology embedded in the system is capable of automatically steer the vehicle away from an obstacle if the system determines that a collision is impending or if the vehicle is in the vicinity of our car.

  19. Road identification for its-integrated systems of automotive active safety

    Directory of Open Access Journals (Sweden)

    V. Ivanov

    2005-04-01

    Full Text Available The paper discusses several aspects of active safety control for automotive application. Particular emphasis is placed on the fuzzy logic determination of friction properties of a tyre-road contact. An example of vehicle control systems equipped with off-board sensors of road roughness, temperature, moisture and rain intensity demonstrates the implementation of this approach. The paper proposes conceptual solutions for preventive active safety control applied to vehicles which are integrated in an intelligent transportation system.

  20. Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis.

    Science.gov (United States)

    Alanazi, Adwan; Elleithy, Khaled

    2015-09-02

    Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) as a class of wireless sensor networks which pose additional challenges. The transmission of imaging and video data needs routing protocols with both energy efficiency and Quality of Service (QoS) characteristics in order to guarantee the efficient use of the sensor nodes and effective access to the collected data. Also, with integration of real time applications in Wireless Senor Networks (WSNs), the use of QoS routing protocols is not only becoming a significant topic, but is also gaining the attention of researchers. In designing an efficient QoS routing protocol, the reliability and guarantee of end-to-end delay are critical events while conserving energy. Thus, considerable research has been focused on designing energy efficient and robust QoS routing protocols. In this paper, we present a state of the art research work based on real-time QoS routing protocols for WMSNs that have already been proposed. This paper categorizes the real-time QoS routing protocols into probabilistic and deterministic protocols. In addition, both categories are classified into soft and hard real time protocols by highlighting the QoS issues including the limitations and features of each protocol. Furthermore, we have compared the performance of mobility-aware query based real-time QoS routing protocols from each category using Network Simulator-2 (NS2). This paper also focuses on the design challenges and future research directions as well as highlights the characteristics of each QoS routing protocol.

  1. Critical incidents related to cardiac arrests reported to the Danish Patient Safety Database

    DEFF Research Database (Denmark)

    Andersen, Peter Oluf; Maaløe, Rikke; Andersen, Henning Boje

    2010-01-01

    Background Critical incident reports can identify areas for improvement in resuscitation practice. The Danish Patient Safety Database is a mandatory reporting system and receives critical incident reports submitted by hospital personnel. The aim of this study is to identify, analyse and categorize...... critical incidents related to cardiac arrests reported to the Danish Patient Safety Database. Methods The search terms “cardiac arrest” and “resuscitation” were used to identify reports in the Danish Patient Safety Database. Identified critical incidents were then classified into categories. Results One...

  2. Uncovering Contrast Categories in Categorization with a Probabilistic Threshold Model

    Science.gov (United States)

    Verheyen, Steven; De Deyne, Simon; Dry, Matthew J.; Storms, Gert

    2011-01-01

    A contrast category effect on categorization occurs when the decision to apply a category term to an entity not only involves a comparison between the entity and the target category but is also influenced by a comparison of the entity with 1 or more alternative categories from the same domain as the target. Establishing a contrast category effect…

  3. Categorical perception of color: evidence from secondary category boundary

    Science.gov (United States)

    Al-rasheed, Abdulrahman Saud

    2015-01-01

    Despite a plethora of behavioral research exploring the phenomenon of color categorical perception (CP) known as “better discrimination between pair of colors stimuli from different categories and pair of colors stimuli from the same category even when the stimulus differences between the pairs of stimuli are equal”, most of the evidence for the CP of color was derived from Roman or top-to-down script readers and very rarely from right-to-left script readers in primary category. To date, no studies of color CP have been conducted on right-to-left script readers in secondary category boundary to support this theory. Three experiments have been conducted: Experiments 1 and 2 established the Arabic blue–purple secondary category boundary, and Experiment 3 tested the CP of color in the blue–purple category boundary. Sixty participants (30 men and 30 women) took part in this study. All spoke Arabic as their first language, and all were undergraduate or postgraduate students at King Saud University. Their ages ranged from 18–35 years with a mean age of 21.9 years (SD =5.2). The result indicated that for Experiments 1 and 2, it appeared that the Arabic blue–purple category boundary was approximately 10PB and it is in the same location as for English. For Experiment 3, reaction times in the between-categories condition were significantly faster than those in the within-category condition; this suggested that CP of color was shown in the Arabic’s blue–purple secondary category boundary. PMID:26648764

  4. Development of ceramic humidity sensor for the Korean next generation reactor

    International Nuclear Information System (INIS)

    Lee, Na Young; Hwang, Il Soon; Yoo, Han Ill; Song, Chang Rock; Park, Sang Duk; Yang, Jun Seog

    1997-01-01

    For the Korean Next Generation Reactor(KNGR) development, LBB is considered for the Main Steam Line(MSL) piping inside its containment to achieve cost and safety improvement. To apply LBB concept to MSL, leak sensors highly sensitive to humidity is required. In this paper, a ceramic material, MgCr 2 O 4 -TiO 2 has been developed as a humidity sensor for MSL applications. Experiments performed to characterize the electrical conductivity shows that the conductivity of MgCr 2 O 4 -TiO 2 responds sensitively to both temperature and humidity changes. At a constant temperature below 100 .deg. C, the conductivity increases as the relative humidity increases, which makes the sensor favorable for application to the outside of MSL insulation layer. But as temperature increases beyond 100 .deg. C, the sensor composition should be adjusted for the application to KNGR is to be made at temperature above 100 .deg. C

  5. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    International Nuclear Information System (INIS)

    1995-09-01

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: sm-bullet Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) sm-bullet Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as open-quotes lowclose quotes hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with open-quotes moderateclose quotes or open-quotes highclose quotes hazard classifications

  6. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: {sm_bullet} Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) {sm_bullet} Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as {open_quotes}low{close_quotes} hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with {open_quotes}moderate{close_quotes} or {open_quotes}high{close_quotes} hazard classifications.

  7. Human behavior understanding in networked sensing theory and applications of networks of sensors

    CERN Document Server

    Spagnolo, Paolo; Distante, Cosimo

    2014-01-01

    This unique text/reference provides a broad overview of both the technical challenges in sensor network development, and the real-world applications of distributed sensing. Important aspects of distributed computing in large-scale networked sensor systems are analyzed in the context of human behavior understanding, including such topics as systems design tools and techniques, in-network signals, and information processing. Additionally, the book examines a varied range of application scenarios, covering surveillance, indexing and retrieval, patient care, industrial safety, social and ambient

  8. An Analysis of Category Management of Service Contracts

    Science.gov (United States)

    2017-12-01

    comprised of four steps to guide future category management teams in analyzing data and applying Category Management principles through the use of...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT AN ANALYSIS OF CATEGORY MANAGEMENT OF SERVICE CONTRACTS December 2017...Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project

  9. Correspondence between Grammatical Categories and Grammatical Functions in Chinese.

    Science.gov (United States)

    Tan, Fu

    1993-01-01

    A correspondence is shown between grammatical categories and grammatical functions in Chinese. Some syntactic properties distinguish finite verbs from nonfinite verbs, nominals from other categories, and verbs from other categories. (Contains seven references.) (LB)

  10. Damage Detection Response Characteristics of Open Circuit Resonant (SansEC) Sensors

    Science.gov (United States)

    Dudley, Kenneth L.; Szatkowski, George N.; Smith, Laura J.; Koppen, Sandra V.; Ely, Jay J.; Nguyen, Truong X.; Wang, Chuantong; Ticatch, Larry A.; Mielnik, John J.

    2013-01-01

    The capability to assess the current or future state of the health of an aircraft to improve safety, availability, and reliability while reducing maintenance costs has been a continuous goal for decades. Many companies, commercial entities, and academic institutions have become interested in Integrated Vehicle Health Management (IVHM) and a growing effort of research into "smart" vehicle sensing systems has emerged. Methods to detect damage to aircraft materials and structures have historically relied on visual inspection during pre-flight or post-flight operations by flight and ground crews. More quantitative non-destructive investigations with various instruments and sensors have traditionally been performed when the aircraft is out of operational service during major scheduled maintenance. Through the use of reliable sensors coupled with data monitoring, data mining, and data analysis techniques, the health state of a vehicle can be detected in-situ. NASA Langley Research Center (LaRC) is developing a composite aircraft skin damage detection method and system based on open circuit SansEC (Sans Electric Connection) sensor technology. Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage structures, empennage structures, control surfaces and aircraft skins. SansEC sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect various types of damage in composite materials. The source cause of the in-service damage (lightning strike, impact damage, material fatigue, etc.) to the aircraft composite is not relevant. The sensor will detect damage independent of the cause

  11. Multimedia category preferences of working engineers

    Science.gov (United States)

    Baukal, Charles E.; Ausburn, Lynna J.

    2016-09-01

    Many have argued for the importance of continuing engineering education (CEE), but relatively few recommendations were found in the literature for how to use multimedia technologies to deliver it most effectively. The study reported here addressed this gap by investigating the multimedia category preferences of working engineers. Four categories of multimedia, with two types in each category, were studied: verbal (text and narration), static graphics (drawing and photograph), dynamic non-interactive graphics (animation and video), and dynamic interactive graphics (simulated virtual reality (VR) and photo-real VR). The results showed that working engineers strongly preferred text over narration and somewhat preferred drawing over photograph, animation over video, and simulated VR over photo-real VR. These results suggest that a variety of multimedia types should be used in the instructional design of CEE content.

  12. Biased Allocation of Faces to Social Categories

    NARCIS (Netherlands)

    Dotsch, R.; Wigboldus, D.H.J.; Knippenberg, A.F.M. van

    2011-01-01

    Three studies show that social categorization is biased at the level of category allocation. In all studies, participants categorized faces. In Studies 1 and 2, participants overallocated faces with criminal features-a stereotypical negative trait-to the stigmatized Moroccan category, especially if

  13. WALS: A sensor-based robotic system for handling nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Kimberly, H.; Wapman, W.

    1997-01-01

    An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system to enhance system safety, flexibility, and robustness and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and too release mechanisms were designed to prevent payload mishandling. An extensive failure modes and effects analysis (FMEA) of the automation system was developed as a safety design analysis tool

  14. Measuring safety climate in a nuclear power plant - an experience sharing

    International Nuclear Information System (INIS)

    Vincy, M.U.; Varshney, Aloke; Khot, Pankaj

    2016-01-01

    In this paper the author discusses the experience gained in safety climate measurement of an Indian nuclear power plant. Safety performance is increasingly part of an organization's sustainable development. Nuclear power stations are falling under the category 'high reliability' industries in the world as far as work safety is concerned. Both the research and the practical experience continually point to two underlying factors that drive safety outcomes: the quality of an organisation's leadership and the resulting culture. After years of development in safety technology and safety management system in the industry, management of nuclear industry world over has come to recognize that safety culture has to be addressed if high standards of health and safety are to be maintained. Therefore, nuclear industries in India have been carrying out measurement of safety climate for more than ten years. The objectives of the study are to examine people's values, attitude, perception, competencies, and patterns of behaviour that determine the commitment to, and effectiveness of health and safety management in the industry based on a questionnaires survey and their analysis

  15. Pattern-Induced Covert Category Learning in Songbirds.

    Science.gov (United States)

    Comins, Jordan A; Gentner, Timothy Q

    2015-07-20

    Language is uniquely human, but its acquisition may involve cognitive capacities shared with other species. During development, language experience alters speech sound (phoneme) categorization. Newborn infants distinguish the phonemes in all languages but by 10 months show adult-like greater sensitivity to native language phonemic contrasts than non-native contrasts. Distributional theories account for phonetic learning by positing that infants infer category boundaries from modal distributions of speech sounds along acoustic continua. For example, tokens of the sounds /b/ and /p/ cluster around different mean voice onset times. To disambiguate overlapping distributions, contextual theories propose that phonetic category learning is informed by higher-level patterns (e.g., words) in which phonemes normally occur. For example, the vowel sounds /Ι/ and /e/ can occupy similar perceptual spaces but can be distinguished in the context of "with" and "well." Both distributional and contextual cues appear to function in speech acquisition. Non-human species also benefit from distributional cues for category learning, but whether category learning benefits from contextual information in non-human animals is unknown. The use of higher-level patterns to guide lower-level category learning may reflect uniquely human capacities tied to language acquisition or more general learning abilities reflecting shared neurobiological mechanisms. Using songbirds, European starlings, we show that higher-level pattern learning covertly enhances categorization of the natural communication sounds. This observation mirrors the support for contextual theories of phonemic category learning in humans and demonstrates a general form of learning not unique to humans or language. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Survey of systems safety analysis methods and their application to nuclear waste management systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Winegardner, W.K.; Gallucci, R.H.V.

    1981-11-01

    This report reviews system safety analysis methods and examines their application to nuclear waste management systems. The safety analysis methods examined include expert opinion, maximum credible accident approach, design basis accidents approach, hazard indices, preliminary hazards analysis, failure modes and effects analysis, fault trees, event trees, cause-consequence diagrams, G0 methodology, Markov modeling, and a general category of consequence analysis models. Previous and ongoing studies on the safety of waste management systems are discussed along with their limitations and potential improvements. The major safety methods and waste management safety related studies are surveyed. This survey provides information on what safety methods are available, what waste management safety areas have been analyzed, and what are potential areas for future study

  17. Survey of systems safety analysis methods and their application to nuclear waste management systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelto, P.J.; Winegardner, W.K.; Gallucci, R.H.V.

    1981-11-01

    This report reviews system safety analysis methods and examines their application to nuclear waste management systems. The safety analysis methods examined include expert opinion, maximum credible accident approach, design basis accidents approach, hazard indices, preliminary hazards analysis, failure modes and effects analysis, fault trees, event trees, cause-consequence diagrams, G0 methodology, Markov modeling, and a general category of consequence analysis models. Previous and ongoing studies on the safety of waste management systems are discussed along with their limitations and potential improvements. The major safety methods and waste management safety related studies are surveyed. This survey provides information on what safety methods are available, what waste management safety areas have been analyzed, and what are potential areas for future study.

  18. Planar slim-edge pixel sensors for the ATLAS upgrades

    International Nuclear Information System (INIS)

    Altenheiner, S; Goessling, C; Jentzsch, J; Klingenberg, R; Lapsien, T; Rummler, A; Troska, G; Wittig, T; Muenstermann, D

    2012-01-01

    The ATLAS detector at CERN is a general-purpose experiment at the Large Hadron Collider (LHC). The ATLAS Pixel Detector is the innermost tracking detector of ATLAS and requires a sufficient level of hermeticity to achieve superb track reconstruction performance. The current planar n-type pixel sensors feature a pixel matrix of n + -implantations which is (on the opposite p-side) surrounded by so-called guard rings to reduce the high voltage stepwise towards the cutting edge and an additional safety margin. Because of the inactive region around the active area, the sensor modules have been shingled on top of each other's edge which limits the thermal performance and adds complexity in the present detector. The first upgrade phase of the ATLAS pixel detector will consist of the insertable b-layer (IBL), an additional b-layer which will be inserted into the present detector in 2013. Several changes in the sensor design with respect to the existing detector had to be applied to comply with the IBL's specifications and are described in detail. A key issue for the ATLAS upgrades is a flat arrangement of the sensors. To maintain the required level of hermeticity in the detector, the inactive sensor edges have to be reduced to minimize the dead space between the adjacent detector modules. Unirradiated and irradiated sensors with the IBL design have been operated in test beams to study the efficiency performance in the sensor edge region and it was found that the inactive edge width could be reduced from 1100 μm to less than 250 μm.

  19. A Bulk Microphysics Parameterization with Multiple Ice Precipitation Categories.

    Science.gov (United States)

    Straka, Jerry M.; Mansell, Edward R.

    2005-04-01

    A single-moment bulk microphysics scheme with multiple ice precipitation categories is described. It has 2 liquid hydrometeor categories (cloud droplets and rain) and 10 ice categories that are characterized by habit, size, and density—two ice crystal habits (column and plate), rimed cloud ice, snow (ice crystal aggregates), three categories of graupel with different densities and intercepts, frozen drops, small hail, and large hail. The concept of riming history is implemented for conversions among the graupel and frozen drops categories. The multiple precipitation ice categories allow a range of particle densities and fall velocities for simulating a variety of convective storms with minimal parameter tuning. The scheme is applied to two cases—an idealized continental multicell storm that demonstrates the ice precipitation process, and a small Florida maritime storm in which the warm rain process is important.

  20. Wireless Impedance Sensor with PZT-Interface for Prestress-Loss Monitoring in Prestressed Concrete Girder

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Lee, So Young; Kim, Jeong Tae

    2011-01-01

    Ensuring the designed prestress force is very important for the safety of prestressed concrete bridge. The loss of prestress force in tendon could significantly reduce load carrying capacity of the structure. In this study, an automated prestress-loss monitoring system for prestressed concrete girder using PZT-interface and wireless impedance sensor node is presented. The following approaches are carried out to achieve the objective. Firstly, wireless impedance sensor nodes are designed for automated impedance-based monitoring technique. The sensor node is mounted on the high-performance Imote2 sensor platform to fulfill high operating speed, low power requirement and large storage memory. Secondly, a smart PZT-interface designed for monitoring prestress force is described. A linear regression model is established to predict prestress-loss. Finally, a system of the PZT-interface interacted with the wireless sensor node is evaluated from a lab-scale tendon-anchorage connection of a prestressed concrete girder

  1. Augmented Teams -- Assembling Smart Sensors, Intelligent Networks and Humans into Agile Task Groups

    NARCIS (Netherlands)

    Neef, R.M.; Rijn, M. van; Marck, J.W.; Keus, D.

    2009-01-01

    Safety and security environments are full of networked devices. Despite ample research on sensor networks and network technology, there is little practical comprehensive work on how to incorporate such technologies effectively into human-centered teams. This paper discusses the challenge of

  2. Analysis of rare categories

    CERN Document Server

    He, Jingrui

    2012-01-01

    This book focuses on rare category analysis where the majority classes have smooth distributions and the minority classes exhibit the compactness property. It focuses on challenging cases where the support regions of the majority and minority classes overlap.

  3. 14 CFR 1206.701 - Categories of requesters.

    Science.gov (United States)

    2010-01-01

    ... are representatives of the news media. NASA shall provide documents to requesters in this category for... scientific institutions; representatives of the news media; and all other requesters. The Act prescribes specific levels of fees for each of these categories: (a) Commercial use requesters. When NASA receives a...

  4. A method for risk-informed safety significance categorization using the analytic hierarchy process and bayesian belief networks

    International Nuclear Information System (INIS)

    Ha, Jun Su; Seong, Poong Hyun

    2004-01-01

    A risk-informed safety significance categorization (RISSC) is to categorize structures, systems, or components (SSCs) of a nuclear power plant (NPP) into two or more groups, according to their safety significance using both probabilistic and deterministic insights. In the conventional methods for the RISSC, the SSCs are quantitatively categorized according to their importance measures for the initial categorization. The final decisions (categorizations) of SSCs, however, are qualitatively made by an expert panel through discussions and adjustments of opinions by using the probabilistic insights compiled in the initial categorization process and combining the probabilistic insights with the deterministic insights. Therefore, owing to the qualitative and linear decision-making process, the conventional methods have the demerits as follows: (1) they are very costly in terms of time and labor, (2) it is not easy to reach the final decision, when the opinions of the experts are in conflict and (3) they have an overlapping process due to the linear paradigm (the categorization is performed twice - first, by the engineers who propose the method, and second, by the expert panel). In this work, a method for RISSC using the analytic hierarchy process (AHP) and bayesian belief networks (BBN) is proposed to overcome the demerits of the conventional methods and to effectively arrive at a final decision (or categorization). By using the AHP and BBN, the expert panel takes part in the early stage of the categorization (that is, the quantification process) and the safety significance based on both probabilistic and deterministic insights is quantified. According to that safety significance, SSCs are quantitatively categorized into three categories such as high safety significant category (Hi), potentially safety significant category (Po), or low safety significant category (Lo). The proposed method was applied to the components such as CC-V073, CV-V530, and SI-V644 in Ulchin Unit

  5. The Additional Error of Inertial Sensors Induced by Hypersonic Flight Conditions.

    Science.gov (United States)

    Karachun, Volodimir; Mel'nick, Viktorij; Korobiichuk, Igor; Nowicki, Michał; Szewczyk, Roman; Kobzar, Svitlana

    2016-02-26

    The emergence of hypersonic technology pose a new challenge for inertial navigation sensors, widely used in aerospace industry. The main problems are: extremely high temperatures, vibration of the fuselage, penetrating acoustic radiation and shock N-waves. The nature of the additional errors of the gyroscopic inertial sensor with hydrostatic suspension components under operating conditions generated by forced precession of the movable part of the suspension due to diffraction phenomena in acoustic fields is explained. The cause of the disturbing moments in the form of the Coriolis inertia forces during the transition of the suspension surface into the category of impedance is revealed. The boundaries of occurrence of the features on the resonance wave match are described. The values of the "false" angular velocity as a result of the elastic-stress state of suspension in the acoustic fields are determined.

  6. Persuasive appeals in road safety communication campaigns: Theoretical frameworks and practical implications from the analysis of a decade of road safety campaign materials.

    Science.gov (United States)

    Guttman, Nurit

    2015-11-01

    Communication campaigns are employed as an important tool to promote road safety practices. Researchers maintain road safety communication campaigns are more effective when their persuasive appeals, which are central to their communicative strategy, are based on explicit theoretical frameworks. This study's main objectives were to develop a detailed categorization of persuasive appeals used in road safety communication campaigns that differentiate between appeals that appear to be similar but differ conceptually, and to indicate the advantages, limitations and ethical issues associated with each type, drawing on behavior change theories. Materials from over 300 campaigns were obtained from 41 countries, mainly using road safety organizations' websites. Drawing on the literature, five types of main approaches were identified, and the analysis yielded a more detailed categorizations of appeals within these general categories. The analysis points to advantages, limitations, ethical issues and challenges in using different types of appeals. The discussion summarizes challenges in designing persuasive-appeals for road safety communication campaigns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  8. Evaluation of safety test needs for the gas cooled breeder reactors

    International Nuclear Information System (INIS)

    Emon, D.E.; Buttemer, D.R.; Sevy, R.H.

    1976-01-01

    This paper deals with the process used in determining the safety test needs for the Gas Cooled Fast Breeder Reactor (GCFR), reports existing tentative conclusions, and indicates the direction that the process is taking at this time. The process is based upon two ideas: (1) that the safety information needs will be identified through risk analysis directly dependent on the various design features of the GCFR and (2) that the safety program will be determined by a safety review committee. The paper limits itself to presenting thoughts on the safety test needs directly associated with the GCFR core during severe beyond design basis accident situations involving the loss of coolable core geometry. Representative event sequence diagrams are reported for the three generic classes of accidents considered. The following categories of information are identified: safety information needs, safety tests required to fulfill these information needs, and the facilities required to perform the tests

  9. Just in Time DSA the Hanford Nuclear Safety Basis Strategy

    Energy Technology Data Exchange (ETDEWEB)

    JACKSON, M.W.

    2002-06-01

    The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford, Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safely Basis Requirements (the Rule) in January 2001 requires that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSAs that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long-term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: Compliance with the Rule; A ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and Consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD&D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD&D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex.

  10. Just in Time DSA the Hanford Nuclear Safety Basis Strategy

    International Nuclear Information System (INIS)

    JACKSON, M.W.

    2002-01-01

    The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford, Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safely Basis Requirements (the Rule) in January 2001 requires that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSAs that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long-term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: Compliance with the Rule; A ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and Consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD and D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD and D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex

  11. Mixed quantum states in higher categories

    Directory of Open Access Journals (Sweden)

    Chris Heunen

    2014-12-01

    Full Text Available There are two ways to describe the interaction between classical and quantum information categorically: one based on completely positive maps between Frobenius algebras, the other using symmetric monoidal 2-categories. This paper makes a first step towards combining the two. The integrated approach allows a unified description of quantum teleportation and classical encryption in a single 2-category, as well as a universal security proof applicable simultaneously to both scenarios.

  12. Commercial Aircraft Integrated Vehicle Health Management Study

    Science.gov (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon Monica; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.; Thomas, Megan A.

    2010-01-01

    Statistical data and literature from academia, industry, and other government agencies were reviewed and analyzed to establish requirements for fixture work in detection, diagnosis, prognosis, and mitigation for IVHM related hardware and software. Around 15 to 20 percent of commercial aircraft accidents between 1988 and 2003 involved inalftfnctions or failures of some aircraft system or component. Engine and landing gear failures/malfunctions dominate both accidents and incidents. The IVI vl Project research technologies were found to map to the Joint Planning and Development Office's National Research and Development Plan (RDP) as well as the Safety Working Group's National Aviation Safety Strategic. Plan (NASSP). Future directions in Aviation Technology as related to IVHlvl were identified by reviewing papers from three conferences across a five year time span. A total of twenty-one trend groups in propulsion, aeronautics and aircraft categories were compiled. Current and ftiture directions of IVHM related technologies were gathered and classified according to eight categories: measurement and inspection, sensors, sensor management, detection, component and subsystem monitoring, diagnosis, prognosis, and mitigation.

  13. Senior residents' perceived need of and preferences for "smart home" sensor technologies.

    Science.gov (United States)

    Demiris, George; Hensel, Brian K; Skubic, Marjorie; Rantz, Marilyn

    2008-01-01

    The goal of meeting the desire of older adults to remain independent in their home setting while controlling healthcare costs has led to the conceptualization of "smart homes." A smart home is a residence equipped with technology that enhances safety of residents and monitors their health conditions. The study aim is to assess older adults' perceptions of specific smart home technologies (i.e., a bed sensor, gait monitor, stove sensor, motion sensor, and video sensor). The study setting is TigerPlace, a retirement community designed according to the Aging in Place model. Focus group sessions with fourteen residents were conducted to assess perceived advantages and concerns associated with specific applications, and preferences for recipients of sensor-generated information pertaining to residents' activity levels, sleep patterns and potential emergencies. Sessions were audio-taped; tapes were transcribed, and a content analysis was performed. A total of fourteen older adults over the age of 65 participated in three focus group sessions Most applications were perceived as useful, and participants would agree to their installation in their own home. Preference for specific sensors related to sensors' appearance and residents' own level of frailty and perceived need. Specific concerns about privacy were raised. The findings indicate an overall positive attitude toward sensor technologies for nonobtrusive monitoring. Researchers and practitioners are called upon to address ethical and technical challenges in this emerging domain.

  14. Development of the safety PLC for plant protection system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hwoi; Lee, Dong Young [Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of)

    2005-11-15

    The safety PLC (POSAFE-Q) is developing in the Korea Nuclear Instrumentation and Control System (KNICS) R and D project. The PLC satisfies Safety Class 1E, Quality Class 1, and Seismic Category I. The software such as RTOS and firmware are developed according to safety critical software life cycle. Especially, the formal method is applied to design SRS (Software Requirement Spec.) and SDS (Software Design Specification.) for error-free. The developed software according to software life cycle is verified by independent software V and V team. The overall response time from an input to the outputs shall be 50ms or less. The prototype for the POSAFE-Q was developed and functional testing and equipment qualification tests have been underway.

  15. Patient safety and infection control: bases for curricular integration.

    Science.gov (United States)

    Silva, Andréa Mara Bernardes da; Bim, Lucas Lazarini; Bim, Felipe Lazarini; Sousa, Alvaro Francisco Lopes; Domingues, Pedro Castania Amadio; Nicolussi, Adriana Cristina; Andrade, Denise de

    2018-05-01

    To analyze curricular integration between teaching of patient safety and good infection prevention and control practices. Integrative review, designed to answer the question: "How does curricular integration of content about 'patient safety teaching' and content about 'infection prevention and control practices' occur in undergraduate courses in the health field?". The following databases were searched for primary studies: CINAHL, LILACS, ScienceDirect, Web of Science, Scopus, Europe PMC and MEDLINE. The final sample consisted of 13 studies. After content analysis, primary studies were grouped into two subject categories: "Innovative teaching practices" and "Curricular evaluation. Patient safety related to infection prevention and control practices is present in the curriculum of health undergraduate courses, but is not coordinated with other themes, is taught sporadically, and focuses mainly on hand hygiene.

  16. Identification of relevant ICF categories by patients in the acute hospital.

    Science.gov (United States)

    Grill, Eva; Huber, Erika Omega; Stucki, Gerold; Herceg, Malvina; Fialka-Moser, Veronika; Quittan, Michael

    To describe functioning and health of patients in the acute hospital and to identify the most common problems using the International Classification of Functioning, Disability and Health (ICF). Cross-sectional survey in a convenience sample of neurological, musculoskeletal and cardiopulmonary patients requiring rehabilitation in the acute hospital. The second level categories of the ICF were used to collect information on patients' problems. For the ICF components Body Functions, Body Structures and Activities and Participation absolute and relative frequencies of impairments/limitations in the study population were reported. For the component Environmental Factors absolute and relative frequencies of perceived barriers or facilitators were reported. The mean age in the sample was 57.6 years with a median age of 60.5, 49% of the patients were female. In 101 patients with neurological conditions, 115 ICF categories had a prevalence of 30% and more: 32 categories of Body Functions, 13 categories of Body Structures, 32 categories of Activities and Participation and 38 categories of Environmental Factors. In 105 patients with cardiopulmonary conditions, 80 categories had a prevalence of 30% and more: 36 categories of Body Functions, eight categories of Body Structures, 10 categories of Activities and Participation and 26 categories of Environmental Factors. In 90 patients with musculoskeletal conditions, 61 categories had a prevalence of 30% and more: 14 categories of Body Functions, five categories of Body Structures, 16 categories of Activities and Participation and 26 categories of Environmental Factors. This study is a first step towards the development of ICF Core Sets for patients in the acute hospital.

  17. 14 CFR 29.71 - Helicopter angle of glide: Category B.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...

  18. The Role of Leadership in Safety Performance and Results

    Science.gov (United States)

    Caravello, Halina E.

    Employee injury rates in U.S. land-based operations in the energy industry are 2 to 3 times higher relative to other regions in the world. Although a rich literature exists on drivers of safety performance, no previous studies investigated factors influencing this elevated rate. Leadership has been identified as a key contributor to safety outcomes and this grounded theory study drew upon the full range leadership model, situational leadership, and leader-member exchange theories for the conceptual framework. Leadership aspects influencing safety performance were investigated through guided interviews of 27 study participants; data analyses included open and axial coding, and constant comparisons identified higher-level categories. Selective coding integrated categories into the theoretical framework that developed the idealized, transformational leader traits motivating safe behaviors of leading by example, expressing care and concern for employees' well-being, celebrating successes, and communicating the importance of safety (other elements included visibility and commitment). Employee and supervisor participants reported similar views on the idealized leader traits, but low levels of these qualities may be driving elevated injury rates. Identifying these key elements provides the foundation to creating strategies and action plans enabling energy sector companies to prevent employee injuries and fatalities in an industry where tens of thousands of employees are subjected to significant hazards and elevated risks. Creating safer workplaces for U.S. employees by enhancing leaders' skills, building knowledge, and improving behaviors will improve the employees' and their families' lives by reducing the pain and suffering resulting from injuries and fatalities.

  19. Safety goals for future nuclear power plants

    International Nuclear Information System (INIS)

    Todreas, Neil E.

    2001-01-01

    This talk presents technology goals developed for Generation IV nuclear energy systems that can be made available to the market by 2030 or earlier. These goals are defined in the broad areas of sustainability, safety and reliability, and economics. Sustainability goals focus on fuel utilization, waste management, and proliferation resistance. Safety and reliability goals focus on safe and reliable operation, investment protection, and essentially eliminating the need for emergency response. Economics goals focus on competitive life cycle and energy production costs and financial risk. Future reactors fall in three categories - those which are: Certified or derivatives; Designed to a reasonable extent and based on available technology; In conceptual form only with potential to most fully satisfy the GENIV goals

  20. [Safety monitoring of cell-based medicinal products (CBMPs)].

    Science.gov (United States)

    Funk, Markus B; Frech, Marion; Spranger, Robert; Keller-Stanislawski, Brigitte

    2015-11-01

    Cell-based medicinal products (CBMPs), a category of advanced-therapy medicinal products (ATMPs), are authorised for the European market by the European Commission by means of the centralized marketing authorisation. By conforming to the German Medicinal Products Act (Sec. 4b AMG), national authorisation can be granted by the Paul-Ehrlich-Institut in Germany exclusively for ATMPs not based on a routine manufacturing procedure. In both procedures, quality, efficacy, and safety are evaluated and the risk-benefit balance is assessed. For the centralised procedure, mainly controlled clinical trial data must be submitted, whereas the requirements for national procedures could be modified corresponding to the stage of development of the ATMP. After marketing authorization, the marketing authorization/license holder is obligated to report all serious adverse reactions to the competent authority and to provide periodic safety update reports. If necessary, post-authorization safety studies could be imposed. On the basis of these regulatory measures, the safety of advanced therapies can be monitored and improved.