WorldWideScience

Sample records for safety analysis techniques

  1. Infusing Reliability Techniques into Software Safety Analysis

    Science.gov (United States)

    Shi, Ying

    2015-01-01

    Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.

  2. Development of evaluation method for software safety analysis techniques

    International Nuclear Information System (INIS)

    Huang, H.; Tu, W.; Shih, C.; Chen, C.; Yang, W.; Yih, S.; Kuo, C.; Chen, M.

    2006-01-01

    Full text: Full text: Following the massive adoption of digital Instrumentation and Control (I and C) system for nuclear power plant (NPP), various Software Safety Analysis (SSA) techniques are used to evaluate the NPP safety for adopting appropriate digital I and C system, and then to reduce risk to acceptable level. However, each technique has its specific advantage and disadvantage. If the two or more techniques can be complementarily incorporated, the SSA combination would be more acceptable. As a result, if proper evaluation criteria are available, the analyst can then choose appropriate technique combination to perform analysis on the basis of resources. This research evaluated the applicable software safety analysis techniques nowadays, such as, Preliminary Hazard Analysis (PHA), Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA), Markov chain modeling, Dynamic Flowgraph Methodology (DFM), and simulation-based model analysis; and then determined indexes in view of their characteristics, which include dynamic capability, completeness, achievability, detail, signal/ noise ratio, complexity, and implementation cost. These indexes may help the decision makers and the software safety analysts to choose the best SSA combination arrange their own software safety plan. By this proposed method, the analysts can evaluate various SSA combinations for specific purpose. According to the case study results, the traditional PHA + FMEA + FTA (with failure rate) + Markov chain modeling (without transfer rate) combination is not competitive due to the dilemma for obtaining acceptable software failure rates. However, the systematic architecture of FTA and Markov chain modeling is still valuable for realizing the software fault structure. The system centric techniques, such as DFM and Simulation-based model analysis, show the advantage on dynamic capability, achievability, detail, signal/noise ratio. However, their disadvantage are the completeness complexity

  3. Software safety analysis techniques for developing safety critical software in the digital protection system of the LMR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Soo; Cheon, Se Woo; Kim, Chang Hoi; Sim, Yun Sub

    2001-02-01

    This report has described the software safety analysis techniques and the engineering guidelines for developing safety critical software to identify the state of the art in this field and to give the software safety engineer a trail map between the code and standards layer and the design methodology and documents layer. We have surveyed the management aspects of software safety activities during the software lifecycle in order to improve the safety. After identifying the conventional safety analysis techniques for systems, we have surveyed in details the software safety analysis techniques, software FMEA(Failure Mode and Effects Analysis), software HAZOP(Hazard and Operability Analysis), and software FTA(Fault Tree Analysis). We have also surveyed the state of the art in the software reliability assessment techniques. The most important results from the reliability techniques are not the specific probability numbers generated, but the insights into the risk importance of software features. To defend against potential common-mode failures, high quality, defense-in-depth, and diversity are considered to be key elements in digital I and C system design. To minimize the possibility of CMFs and thus increase the plant reliability, we have provided D-in-D and D analysis guidelines.

  4. Software safety analysis techniques for developing safety critical software in the digital protection system of the LMR

    International Nuclear Information System (INIS)

    Lee, Jang Soo; Cheon, Se Woo; Kim, Chang Hoi; Sim, Yun Sub

    2001-02-01

    This report has described the software safety analysis techniques and the engineering guidelines for developing safety critical software to identify the state of the art in this field and to give the software safety engineer a trail map between the code and standards layer and the design methodology and documents layer. We have surveyed the management aspects of software safety activities during the software lifecycle in order to improve the safety. After identifying the conventional safety analysis techniques for systems, we have surveyed in details the software safety analysis techniques, software FMEA(Failure Mode and Effects Analysis), software HAZOP(Hazard and Operability Analysis), and software FTA(Fault Tree Analysis). We have also surveyed the state of the art in the software reliability assessment techniques. The most important results from the reliability techniques are not the specific probability numbers generated, but the insights into the risk importance of software features. To defend against potential common-mode failures, high quality, defense-in-depth, and diversity are considered to be key elements in digital I and C system design. To minimize the possibility of CMFs and thus increase the plant reliability, we have provided D-in-D and D analysis guidelines

  5. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eom, H S; Kim, J H; Lee, J C; Choi, Y R; Moon, S S

    2000-12-01

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system.

  6. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    International Nuclear Information System (INIS)

    Eom, H.S.; Kim, J.H.; Lee, J.C.; Choi, Y.R.; Moon, S.S.

    2000-12-01

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system

  7. A Technique of Software Safety Analysis in the Design Phase for PLC Based Safety-Critical Systems

    International Nuclear Information System (INIS)

    Koo, Seo-Ryong; Kim, Chang-Hwoi

    2017-01-01

    The purpose of safety analysis, which is a method of identifying portions of a system that have the potential for unacceptable hazards, is firstly to encourage design changes that will reduce or eliminate hazards and, secondly, to conduct special analyses and tests that can provide increased confidence in especially vulnerable portions of the system. For the design and implementation phase of the PLC based systems, we proposed a technique for software design specification and analysis, and this technique enables us to generate software design specifications (SDSs) in nuclear fields. For the safety analysis in the design phase, we used architecture design blocks of NuFDS to represent the architecture of the software. On the basis of the architecture design specification, we can directly generate the fault tree and then use the fault tree for qualitative analysis. Therefore, we proposed a technique of fault tree synthesis, along with a universal fault tree template for the architecture modules of nuclear software. Through our proposed fault tree synthesis in this work, users can use the architecture specification of the NuFDS approach to intuitively compose fault trees that help analyze the safety design features of software.

  8. New quantitative safety standards: different techniques, different results?

    International Nuclear Information System (INIS)

    Rouvroye, J.L.; Brombacher, A.C.

    1999-01-01

    Safety Instrumented Systems (SIS) are used in the process industry to perform safety functions. Many factors can influence the safety of a SIS like system layout, diagnostics, testing and repair. In standards like the German DIN no quantitative analysis is demanded (DIN V 19250 Grundlegende Sicherheitsbetrachtungen fuer MSR-Schutzeinrichtungen, Berlin, 1994; DIN/VDE 0801 Grundsaetze fuer Rechner in Systemen mit Sicherheitsaufgaben, Berlin, 1990). The analysis according to these standards is based on expert opinion and qualitative analysis techniques. New standards like the IEC 61508 (IEC 61508 Functional safety of electrical/electronic/programmable electronic safety-related systems, IEC, Geneve, 1997) and the ISA-S84.01 (ISA-S84.01.1996 Application of Safety Instrumented Systems for the Process Industries, Instrument Society of America, Research Triangle Park, 1996) require quantitative risk analysis but do not prescribe how to perform the analysis. Earlier publications of the authors (Rouvroye et al., Uncertainty in safety, new techniques for the assessment and optimisation of safety in process industry, D W. Pyatt (ed), SERA-Vol. 4, Safety engineering and risk analysis, ASME, New York 1995; Rouvroye et al., A comparison study of qualitative and quantitative analysis techniques for the assessment of safety in industry, P.C. Cacciabue, I.A. Papazoglou (eds), Proceedings PSAM III conference, Crete, Greece, June 1996) have shown that different analysis techniques cover different aspects of system behaviour. This paper shows by means of a case study, that different (quantitative) analysis techniques may lead to different results. The consequence is that the application of the standards to practical systems will not always lead to unambiguous results. The authors therefore propose a technique to overcome this major disadvantage

  9. Development of safety analysis and constraint detection techniques for process interaction errors

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Chin-Feng, E-mail: csfanc@saturn.yzu.edu.tw [Computer Science and Engineering Dept., Yuan-Ze University, Taiwan (China); Tsai, Shang-Lin; Tseng, Wan-Hui [Computer Science and Engineering Dept., Yuan-Ze University, Taiwan (China)

    2011-02-15

    Among the new failure modes introduced by computer into safety systems, the process interaction error is the most unpredictable and complicated failure mode, which may cause disastrous consequences. This paper presents safety analysis and constraint detection techniques for process interaction errors among hardware, software, and human processes. Among interaction errors, the most dreadful ones are those that involve run-time misinterpretation from a logic process. We call them the 'semantic interaction errors'. Such abnormal interaction is not adequately emphasized in current research. In our static analysis, we provide a fault tree template focusing on semantic interaction errors by checking conflicting pre-conditions and post-conditions among interacting processes. Thus, far-fetched, but highly risky, interaction scenarios involve interpretation errors can be identified. For run-time monitoring, a range of constraint types is proposed for checking abnormal signs at run time. We extend current constraints to a broader relational level and a global level, considering process/device dependencies and physical conservation rules in order to detect process interaction errors. The proposed techniques can reduce abnormal interactions; they can also be used to assist in safety-case construction.

  10. Development of safety analysis and constraint detection techniques for process interaction errors

    International Nuclear Information System (INIS)

    Fan, Chin-Feng; Tsai, Shang-Lin; Tseng, Wan-Hui

    2011-01-01

    Among the new failure modes introduced by computer into safety systems, the process interaction error is the most unpredictable and complicated failure mode, which may cause disastrous consequences. This paper presents safety analysis and constraint detection techniques for process interaction errors among hardware, software, and human processes. Among interaction errors, the most dreadful ones are those that involve run-time misinterpretation from a logic process. We call them the 'semantic interaction errors'. Such abnormal interaction is not adequately emphasized in current research. In our static analysis, we provide a fault tree template focusing on semantic interaction errors by checking conflicting pre-conditions and post-conditions among interacting processes. Thus, far-fetched, but highly risky, interaction scenarios involve interpretation errors can be identified. For run-time monitoring, a range of constraint types is proposed for checking abnormal signs at run time. We extend current constraints to a broader relational level and a global level, considering process/device dependencies and physical conservation rules in order to detect process interaction errors. The proposed techniques can reduce abnormal interactions; they can also be used to assist in safety-case construction.

  11. Fault Tree Analysis with Temporal Gates and Model Checking Technique for Qualitative System Safety Analysis

    International Nuclear Information System (INIS)

    Koh, Kwang Yong; Seong, Poong Hyun

    2010-01-01

    Fault tree analysis (FTA) has suffered from several drawbacks such that it uses only static gates and hence can not capture dynamic behaviors of the complex system precisely, and it is in lack of rigorous semantics, and reasoning process which is to check whether basic events really cause top events is done manually and hence very labor-intensive and time-consuming for the complex systems while it has been one of the most widely used safety analysis technique in nuclear industry. Although several attempts have been made to overcome this problem, they can not still do absolute or actual time modeling because they adapt relative time concept and can capture only sequential behaviors of the system. In this work, to resolve the problems, FTA and model checking are integrated to provide formal, automated and qualitative assistance to informal and/or quantitative safety analysis. Our approach proposes to build a formal model of the system together with fault trees. We introduce several temporal gates based on timed computational tree logic (TCTL) to capture absolute time behaviors of the system and to give concrete semantics to fault tree gates to reduce errors during the analysis, and use model checking technique to automate the reasoning process of FTA

  12. Evaluation of explicit finite-difference techniques for LMFBR safety analysis

    International Nuclear Information System (INIS)

    Bernstein, D.; Golden, R.D.; Gross, M.B.; Hofmann, R.

    1976-01-01

    In the past few years, the use of explicit finite-difference (EFD) and finite-element computer programs for reactor safety calculations has steadily increased. One of the major areas of application has been for the analysis of hypothetical core disruptive accidents in liquid metal fast breeder reactors. Most of these EFD codes were derived to varying degrees from the same roots, but the codes are large and have progressed rapidly, so there may be substantial differences among them in spite of a common ancestry. When this fact is coupled with the complexity of HCDA calculations, it is not possible to assure that independent calculations of an HCDA will produce substantially the same results. Given the extreme importance of nuclear safety, it is essential to be sure that HCDA analyses are correct, and additional code validation is therefore desirable. A comparative evaluation of HCDA computational techniques is being performed under an ERDA-sponsored program called APRICOT (Analysis of PRImary COntainment Transients). The philosophy, calculations, and preliminary results from this program are described in this paper

  13. Uncertainty in safety : new techniques for the assessment and optimisation of safety in process industry

    NARCIS (Netherlands)

    Rouvroye, J.L.; Nieuwenhuizen, J.K.; Brombacher, A.C.; Stavrianidis, P.; Spiker, R.Th.E.; Pyatt, D.W.

    1995-01-01

    At this moment there is no standardised method for the assessment for safety in the process industry. Many companies and institutes use qualitative techniques for safety analysis while other companies and institutes use quantitative techniques. The authors of this paper will compare different

  14. A study of software safety analysis system for safety-critical software

    International Nuclear Information System (INIS)

    Chang, H. S.; Shin, H. K.; Chang, Y. W.; Jung, J. C.; Kim, J. H.; Han, H. H.; Son, H. S.

    2004-01-01

    The core factors and requirements for the safety-critical software traced and the methodology adopted in each stage of software life cycle are presented. In concept phase, Failure Modes and Effects Analysis (FMEA) for the system has been performed. The feasibility evaluation of selected safety parameter was performed and Preliminary Hazards Analysis list was prepared using HAZOP(Hazard and Operability) technique. And the check list for management control has been produced via walk-through technique. Based on the evaluation of the check list, activities to be performed in requirement phase have been determined. In the design phase, hazard analysis has been performed to check the safety capability of the system with regard to safety software algorithm using Fault Tree Analysis (FTA). In the test phase, the test items based on FMEA have been checked for fitness guided by an accident scenario. The pressurizer low pressure trip algorithm has been selected to apply FTA method to software safety analysis as a sample. By applying CASE tool, the requirements traceability of safety critical system has been enhanced during all of software life cycle phases

  15. Software safety hazard analysis

    International Nuclear Information System (INIS)

    Lawrence, J.D.

    1996-02-01

    Techniques for analyzing the safety and reliability of analog-based electronic protection systems that serve to mitigate hazards in process control systems have been developed over many years, and are reasonably well understood. An example is the protection system in a nuclear power plant. The extension of these techniques to systems which include digital computers is not well developed, and there is little consensus among software engineering experts and safety experts on how to analyze such systems. One possible technique is to extend hazard analysis to include digital computer-based systems. Software is frequently overlooked during system hazard analyses, but this is unacceptable when the software is in control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully cover the software. A method for performing software hazard analysis is proposed in this paper

  16. Choice and complexation of techniques and tools for assessment of NPP I and C systems safety

    International Nuclear Information System (INIS)

    Illiashenko, Oleg; Babeshko, Eugene

    2011-01-01

    There are a lot of techniques to analyze and assess reliability and safety of NPP Instrumentation and Control (I and C) systems (e.g. FMEA - Failure Modes and Effects Analysis and its modifications, FTA - Fault Tree Analysis, HAZOP - Hazard and Operability Analysis, RBD - Reliability Block Diagram, Markov Models, etc.) and quantity of tools based on these techniques is constantly increasing. Known ways of safety assessment, as well as problems of their choice and complexation are analyzed. Objective of the paper is the development of general 'technique of techniques choosing' and tool for support of such technique. The following criteria are used for analysis and comparison and their features are described: compliance to normative documents; experience of application in industry; methods used for assessment of system NPP I and C safety; tool architecture/framework; reporting; vendor support, etc. Comparative analysis results of existing T and T - Tools and Techniques for safety analysis are presented in matrix form ('Tools-Criterion') with example. Features of complexation of different safety assessment techniques (FMECA, FTA, RBD, Markov Models) are described. The proposed technique is implemented as special tool for decision-making. The proposed technique was used for development of RPC Radiy company standard CS 66. This guide contains requirements and procedures of FMECA analysis of developed and produced NPP I and C systems based on RADIY platform. (author)

  17. Nucelar reactor seismic safety analysis techniques

    International Nuclear Information System (INIS)

    Cummings, G.E.; Wells, J.E.; Lewis, L.C.

    1979-04-01

    In order to provide insights into the seismic safety requirements for nuclear power plants, a probabilistic based systems model and computational procedure have been developed. This model and computational procedure will be used to identify where data and modeling uncertainties need to be decreased by studying the effect of these uncertainties on the probability of radioactive release and the probability of failure of various structures, systems, and components. From the estimates of failure and release probabilities and their uncertainties the most sensitive steps in the seismic methodologies can be identified. In addition, the procedure will measure the uncertainty due to random occurrences, e.g. seismic event probabilities, material property variability, etc. The paper discusses the elements of this systems model and computational procedure, the event-tree/fault-tree development, and the statistical techniques to be employed

  18. A formal safety analysis for PLC software-based safety critical system using Z

    International Nuclear Information System (INIS)

    Koh, Jung Soo; Seong, Poong Hyun

    1997-01-01

    This paper describes a formal safety analysis technique which is demonstrated by performing empirical formal safety analysis with the case study of beamline hutch door Interlock system that is developed by using PLC (Programmable Logic Controller) systems at the Pohang Accelerator Laboratory. In order to perform formed safety analysis, we have built the Z formal specifications representation from user requirement written in ambiguous natural language and target PLC ladder logic, respectively. We have also studied the effective method to express typical PLC timer component by using specific Z formal notation which is supported by temporal history. We present a formal proof technique specifying and verifying that the hazardous states are not introduced into ladder logic in the PLC-based safety critical system

  19. Safety analysis in support of regulatory decision marking

    International Nuclear Information System (INIS)

    Pomier Baez, L.; Troncoso Fleitas, M.; Valhuerdi Debesa, C.; Valle Cepero, R.; Hernandez, J.L.

    1996-01-01

    Features of different safety analysis techniques by means of calculation thermohydraulic a probabilistic and severe accidents used in the safety assessment, as well as the development of these techniques in Cuba and their use in support of regulatory decision making are presented

  20. The Use of Coupled Code Technique for Best Estimate Safety Analysis of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Bousbia Salah, A.; D'Auria, F.

    2006-01-01

    Issues connected with the thermal-hydraulics and neutronics of nuclear plants still challenge the design, safety and the operation of Light Water nuclear Reactors (LWR). The lack of full understanding of complex mechanisms related to the interaction between these issues imposed the adoption of conservative safety limits. Those safety margins put restrictions on the optimal exploitation of the plants and consequently reduced economic profit of the plant. In the light of the sustained development in computer technology, the possibilities of code capabilities have been enlarged substantially. Consequently, advanced safety evaluations and design optimizations that were not possible few years ago can now be performed. In fact, during the last decades Best Estimate (BE) neutronic and thermal-hydraulic calculations were so far carried out following rather parallel paths with only few interactions between them. Nowadays, it becomes possible to switch to new generation of computational tools, namely, Coupled Code technique. The application of such method is mandatory for the analysis of accident conditions where strong coupling between the core neutronics and the primary circuit thermal-hydraulics, and more especially when asymmetrical processes take place in the core leading to local space-dependent power generation. Through the current study, a demonstration of the maturity level achieved in the calculation of 3-D core performance during complex accident scenarios in NPPs is emphasized. Typical applications are outlined and discussed showing the main features and limitations of this technique. (author)

  1. A formal safety analysis for PLC software-based safety critical system using Z

    International Nuclear Information System (INIS)

    Koh, Jung Soo

    1997-02-01

    This paper describes a formal safety analysis technique which is demonstrated by performing empirical formal safety analysis with the case study of beamline hutch door Interlock system that is developed by using PLC (Programmable Logic Controller) systems at the Pohang Accelerator Laboratory. In order to perform formal safety analysis, we have built the Z formal specifications representation from user requirement written in ambiguous natural language and target PLC ladder logic, respectively. We have also studied the effective method to express typical PLC timer component by using specific Z formal notation which is supported by temporal history. We present a formal proof technique specifying and verifying that the hazardous states are not introduced into ladder logic in the PLC-based safety critical system. And also, we have found that some errors or mismatches in user requirement and final implemented PLC ladder logic while analyzing the process of the consistency and completeness of Z translated formal specifications. In the case of relatively small systems like Beamline hutch door interlock system, a formal safety analysis including explicit proof is highly recommended so that the safety of PLC-based critical system may be enhanced and guaranteed. It also provides a helpful benefits enough to comprehend user requirement expressed by ambiguous natural language

  2. Fault tree synthesis for software design analysis of PLC based safety-critical systems

    International Nuclear Information System (INIS)

    Koo, S. R.; Cho, C. H.; Seong, P. H.

    2006-01-01

    As a software verification and validation should be performed for the development of PLC based safety-critical systems, a software safety analysis is also considered in line with entire software life cycle. In this paper, we propose a technique of software safety analysis in the design phase. Among various software hazard analysis techniques, fault tree analysis is most widely used for the safety analysis of nuclear power plant systems. Fault tree analysis also has the most intuitive notation and makes both qualitative and quantitative analyses possible. To analyze the design phase more effectively, we propose a technique of fault tree synthesis, along with a universal fault tree template for the architecture modules of nuclear software. Consequently, we can analyze the safety of software on the basis of fault tree synthesis. (authors)

  3. From Safety Analysis to Formal Specification

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark; Ravn, Anders P.; Stavridou, Victoria

    1998-01-01

    Software for safety critical systems must deal with the hazards identified bysafety analysis. This paper investigates, how the results of onesafety analysis technique, fault trees, are interpreted as software safetyrequirements to be used in the program design process. We propose thatfault tree...... analysis and program development use the samesystem model. This model is formalized in areal-time, interval logic, based on a conventional dynamic systems modelwith state evolving over time. Fault trees are interpreted astemporal formulas, and it is shown how such formulas can be usedfor deriving safety...

  4. Safety management: a few techniques and their application

    International Nuclear Information System (INIS)

    Soundararajan, S.

    2016-01-01

    Industrial safety practice has grown in its stature tremendously since the age of industrial revolution. A number of modern techniques are available to strengthen design safety features, to review operational safety, and to critically appraise and upgrade practices of occupational safety and health management. This talk focuses on three prominent yet simple techniques and their usefulness in the overall safety management of a workplace. Any industrial set-up undergoes different stages in its life cycle-conceptual design, actual design, construction, fabrication and installation, commissioning, operation, shutdown/re-start up and decommissioning. Checklist procedure is a safety tool that can be applied at any of these stages. Thus it is a quite useful technique in safety management and accident prevention. It can serve as a form of approval from one step to another in the course of any routine or specific task. Safety Audit or Safety Review is a critical safety management appraisal tool. It gives a reasonable indication of how well a company's safety programme works, how hazards are recognised, how well employees are motivated and so on. It gives a clear picture about where a company stands as far as framing and implementation of its SHE policy is concerned. Each of the above tools is complementing each other and required to be applied at appropriate juncture in sustaining good safety management system at the workplace

  5. Multivariate time series analysis of SafetyNet data. SafetyNet, Building the European Road Safety Observatory, Workpackage 7, Deliverable 7.7.

    NARCIS (Netherlands)

    Commandeur, J.J.F. Bijleveld, F.D. & Bergel, R.

    2009-01-01

    This deliverable provides an application of theories and methods documented in Deliverables 7.4 and 7.5 of work package 7 of the SafetyNet project. In this deliverable, use of select analysis techniques is demonstrated through real world road safety analysis problems, using aggregate data which may

  6. Safety balance: Analysis of safety systems

    International Nuclear Information System (INIS)

    Delage, M.; Giroux, C.

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses

  7. Applications of probabilistic risk analysis in nuclear criticality safety design

    International Nuclear Information System (INIS)

    Chang, J.K.

    1992-01-01

    Many documents have been prepared that try to define the scope of the criticality analysis and that suggest adding probabilistic risk analysis (PRA) to the deterministic safety analysis. The report of the US Department of Energy (DOE) AL 5481.1B suggested that an accident is credible if the occurrence probability is >1 x 10 -6 /yr. The draft DOE 5480 safety analysis report suggested that safety analyses should include the application of methods such as deterministic safety analysis, risk assessment, reliability engineering, common-cause failure analysis, human reliability analysis, and human factor safety analysis techniques. The US Nuclear Regulatory Commission (NRC) report NRC SG830.110 suggested that major safety analysis methods should include but not be limited to risk assessment, reliability engineering, and human factor safety analysis. All of these suggestions have recommended including PRA in the traditional criticality analysis

  8. Swimming pool reactor reliability and safety analysis

    International Nuclear Information System (INIS)

    Li Zhaohuan

    1997-01-01

    A reliability and safety analysis of Swimming Pool Reactor in China Institute of Atomic Energy is done by use of event/fault tree technique. The paper briefly describes the analysis model, analysis code and main results. Meanwhile it also describes the impact of unassigned operation status on safety, the estimation of effectiveness of defense tactics in maintenance against common cause failure, the effectiveness of recovering actions on the system reliability, the comparison of occurrence frequencies of the core damage by use of generic and specific data

  9. Safety margins in deterministic safety analysis

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    The concept of safety margins has acquired certain prominence in the attempts to demonstrate quantitatively the level of the nuclear power plant safety by means of deterministic analysis, especially when considering impacts from plant ageing and discovery issues. A number of international or industry publications exist that discuss various applications and interpretations of safety margins. The objective of this presentation is to bring together and examine in some detail, from the regulatory point of view, the safety margins that relate to deterministic safety analysis. In this paper, definitions of various safety margins are presented and discussed along with the regulatory expectations for them. Interrelationships of analysis input and output parameters with corresponding limits are explored. It is shown that the overall safety margin is composed of several components each having different origins and potential uses; in particular, margins associated with analysis output parameters are contrasted with margins linked to the analysis input. While these are separate, it is possible to influence output margins through the analysis input, and analysis method. Preserving safety margins is tantamount to maintaining safety. At the same time, efficiency of operation requires optimization of safety margins taking into account various technical and regulatory considerations. For this, basic definitions and rules for safety margins must be first established. (author)

  10. Safety analysis fundamentals

    International Nuclear Information System (INIS)

    Wright, A.C.D.

    2002-01-01

    This paper discusses the safety analysis fundamentals in reactor design. This study includes safety analysis done to show consequences of postulated accidents are acceptable. Safety analysis is also used to set design of special safety systems and includes design assist analysis to support conceptual design. safety analysis is necessary for licensing a reactor, to maintain an operating license, support changes in plant operations

  11. Radiation safety in industrial applications of nuclear techniques

    International Nuclear Information System (INIS)

    Lam, E.S.

    1981-01-01

    The hazards associated with the use of industrial equipment is one of the undesirable by-products of advanced technology. The use of nuclear techniques is a good example. Due to the usefulness of such techniques, one may accept the risks involved if they can be brought down to manageable levels. Most of the nuclear techniques in use in industries in Malaysia require only minimal safety precautions as they make use of only small amounts of radioactive material. However, some large sources are also being used and safety precautions have to be strictly enforced. The management plays a critical role in these industries. The requirements for radiation safety include the monitoring of workers and work areas, the medical surveillance of workers and the provision of barriers and other safety precautions. The management should also look to the training of the workers and be prepared for any emergencies that may arise. (author)

  12. Radiation safety in industrial applications of nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lam, E S [Ministry of Health, Kuala Lumpur (Malaysia)

    1981-01-01

    The hazards associated with the use of industrial equipment is one of the undesirable by-products of advanced technology. The use of nuclear techniques is a good example. Due to the usefulness of such techniques, one may accept the risks involved if they can be brought down to manageable levels. Most of the nuclear techniques in use in industries in Malaysia require only minimal safety precautions as they make use of only small amounts of radioactive material. However, some large sources are also being used and safety precautions have to be strictly enforced. The management plays a critical role in these industries. The requirements for radiation safety include the monitoring of workers and work areas, the medical surveillance of workers and the provision of barriers and other safety precautions. The management should also look to the training of the workers and be prepared for any emergencies that may arise.

  13. Random safety auditing, root cause analysis, failure mode and effects analysis.

    Science.gov (United States)

    Ursprung, Robert; Gray, James

    2010-03-01

    Improving quality and safety in health care is a major concern for health care providers, the general public, and policy makers. Errors and quality issues are leading causes of morbidity and mortality across the health care industry. There is evidence that patients in the neonatal intensive care unit (NICU) are at high risk for serious medical errors. To facilitate compliance with safe practices, many institutions have established quality-assurance monitoring procedures. Three techniques that have been found useful in the health care setting are failure mode and effects analysis, root cause analysis, and random safety auditing. When used together, these techniques are effective tools for system analysis and redesign focused on providing safe delivery of care in the complex NICU system. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Short course on system safety analysis

    International Nuclear Information System (INIS)

    Sudmann, R.H.

    1992-01-01

    This course provides and introduction to methods generally used in safety analysis and accident investigation. It is a non-mathematical approach, directed toward a casual user. The participant will learn techniques allowing them to dissect a system or incident in order identify real or potential safety problems. These techniques will be applied to analyze events which have occurred within DOE facilities. As a manager or staff person with general oversight responsibilities, the participant should gain an awareness of the big picture and not just ''dig for facts.'' This can be accomplished by being alert and responsive to the atmosphere and condition of the plant; mood and impression of the worker and the behavioral climate. The techniques taught in the course can be used to identify critical areas or indicators. These indicators will signal problems before the ''facts'' will. Analysis techniques taught are used to gauge the breadth of the ''forest'' and not necessarily to identify the trees. For this course includes a technical background with experience in a chemical processing operations and a knowledge of basic chemistry and engineering is desirable. The course should help in a present or future assignment in an oversight role

  15. Safety prediction technique for nuclear power plants

    International Nuclear Information System (INIS)

    Henry, C.D. III; Anderson, R.T.

    1985-01-01

    This paper presents a safety prediction technique (SPT) developed by Reliability Technology Associates (RTA) for nuclear power plants. It is based on a technique applied by RTA to assess the flight safety of US Air Force aircraft. The purpose of SPT is to provide a computerized technique for objective measurement of the effect on nuclear plant safety of component failure or procedural, software, or human error. A quantification is determined, called criticality, which is proportional to the probability that a given component or procedural-human action will cause the plant to operate in a hazardous mode. A hazardous mode is characterized by the fact that there has been a failure/error and the plant, its operating crew, and the public are exposed to danger. Whether the event results in an accident, an incident, or merely the exposure to danger is dependent on the skill and reaction of the operating crew as well as external influences. There are three major uses of SPT: (a) to predict unsafe situations so that corrective action can be taken before accidents occur, (b) to quantify the impact of equipment malfunction or procedural, software, or human error on safety and thereby establish priorities for proposed modifications, and (c) to provide a means of evaluating proposed changes for their impact on safety prior to implementation and to provide a method of tracking implemented changes

  16. A proposal for performing software safety hazard analysis

    International Nuclear Information System (INIS)

    Lawrence, J.D.; Gallagher, J.M.

    1997-01-01

    Techniques for analyzing the safety and reliability of analog-based electronic protection systems that serve to mitigate hazards in process control systems have been developed over many years, and are reasonably understood. An example is the protection system in a nuclear power plant. The extension of these techniques to systems which include digital computers is not well developed, and there is little consensus among software engineering experts and safety experts on how to analyze such systems. One possible technique is to extend hazard analysis to include digital computer-based systems. Software is frequently overlooked during system hazard analyses, but this is unacceptable when the software is in control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully cover the software. A method for performing software hazard analysis is proposed in this paper. The method concentrates on finding hazards during the early stages of the software life cycle, using an extension of HAZOP

  17. Analysis on safety production in coal mines Henan Province

    Institute of Scientific and Technical Information of China (English)

    KONG Liu-an; ZHANG Wen-yong

    2006-01-01

    Based on the rigorous situation of safety production in coal mines, the paper analyzed the statistical data of recent accidents indexes in Henan's coal mines. Using investigation and comparison analysis methods, a specified analysis on mining conditions, technical facility level, safety input and vocational quality of workers in Henan's coal mines was conducted. The result indicates that there have been existing such main safety production problems as weak safety management, low-level facilities, inadequate safety input and poor vocational quality and so on. Finally it proposes such reference solutions as to establish and perfect coal mining supervision and management system, to increase safety investment into techniques and facilities and to strengthen workers' safety education and introduction of more high-level professional talents.

  18. Effect of STOP technique on safety climate in a construction company.

    Science.gov (United States)

    Darvishi, Ebrahim; Maleki, Afshin; Dehestaniathar, Saeed; Ebrahemzadih, Mehrzad

    2015-01-01

    Safety programs are a core part of safety management in workplaces that can reduce incidents and injuries. The aim of this study was to investigate the influence of Safety Training Observation Program (STOP) technique as a behavior modification program on safety climate in a construction company. This cross-sectional study was carried out on workers of the Petrochemical Construction Company, western Iran. In order to improve safety climate, an unsafe behavior modification program entitled STOP was launched among workers of project during 12 months from April 2013 and April 2014. The STOP technique effectiveness in creating a positive safety climate was evaluated using the Safety Climate Assessment Toolkit. 76.78% of total behaviors were unsafe. 54.76% of total unsafe acts/ at-risk behaviors were related to the fall hazard. The most cause of unsafe behaviors was associated with habit and unavailability of safety equipment. After 12 month of continuous implementation the STOP technique, 55.8% of unsafe behaviors reduced among workers. The average score of safety climate evaluated using of the Toolkit, before and after the implementation of the STOP technique was 5.77 and 7.24, respectively. The STOP technique can be considered as effective approach for eliminating at-risk behavior, reinforcing safe work practices, and creating a positive safety climate in order to reduction incidents/injuries.

  19. TU-EF-BRD-02: Indicators and Technique Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Carlone, M. [Princess Margaret Hospital (Canada)

    2015-06-15

    Research related to quality and safety has been a staple of medical physics academic activities for a long time. From very early on, medical physicists have developed new radiation measurement equipment and analysis techniques, created ever increasingly accurate dose calculation models, and have vastly improved imaging, planning, and delivery techniques. These and other areas of interest have improved the quality and safety of radiotherapy for our patients. With the advent of TG-100, quality and safety is an area that will garner even more research interest in the future. As medical physicists pursue quality and safety research in greater numbers, it is worthwhile to consider what actually constitutes research on quality and safety. For example, should the development of algorithms for real-time EPID-based in-vivo dosimetry be defined as “quality and safety” research? How about the clinical implementation of such as system? Surely the application of failure modes and effects analysis to a clinical process would be considered quality and safety research, but is this type of research that should be included in the medical physics peer-reviewed literature? The answers to such questions are of critical importance to set researchers in a direction that will provide the greatest benefit to our field and the patients we serve. The purpose of this symposium is to consider what constitutes research in the arena of quality and safety and differentiate it from other research directions. The key distinction here is developing the tool itself (e.g. algorithms for EPID dosimetry) vs. studying the impact of the tool with some quantitative metric. Only the latter would I call quality and safety research. Issues of ‘basic’ versus ‘applied’ quality and safety research will be covered as well as how the research results should be structured to provide increasing levels of support that a quality and safety intervention is effective and sustainable. Examples from existing

  20. TU-EF-BRD-02: Indicators and Technique Analysis

    International Nuclear Information System (INIS)

    Carlone, M.

    2015-01-01

    Research related to quality and safety has been a staple of medical physics academic activities for a long time. From very early on, medical physicists have developed new radiation measurement equipment and analysis techniques, created ever increasingly accurate dose calculation models, and have vastly improved imaging, planning, and delivery techniques. These and other areas of interest have improved the quality and safety of radiotherapy for our patients. With the advent of TG-100, quality and safety is an area that will garner even more research interest in the future. As medical physicists pursue quality and safety research in greater numbers, it is worthwhile to consider what actually constitutes research on quality and safety. For example, should the development of algorithms for real-time EPID-based in-vivo dosimetry be defined as “quality and safety” research? How about the clinical implementation of such as system? Surely the application of failure modes and effects analysis to a clinical process would be considered quality and safety research, but is this type of research that should be included in the medical physics peer-reviewed literature? The answers to such questions are of critical importance to set researchers in a direction that will provide the greatest benefit to our field and the patients we serve. The purpose of this symposium is to consider what constitutes research in the arena of quality and safety and differentiate it from other research directions. The key distinction here is developing the tool itself (e.g. algorithms for EPID dosimetry) vs. studying the impact of the tool with some quantitative metric. Only the latter would I call quality and safety research. Issues of ‘basic’ versus ‘applied’ quality and safety research will be covered as well as how the research results should be structured to provide increasing levels of support that a quality and safety intervention is effective and sustainable. Examples from existing

  1. Guidelines for nuclear reactor equipments safety-analysis

    International Nuclear Information System (INIS)

    1978-01-01

    The safety analysis in approving the applications for nuclear reactor constructions (or alterations) is performed by the Committee on Examination of Reactor Safety in accordance with various guidelines prescribed by the Atomic Energy Commission. In addition, the above Committee set forth its own regulations for the safety analysis on common problems among various types of nuclear reactors. This book has collected and edited those guidelines and regulations. It has two parts: Part I includes the guidelines issued to date by the Atomic Energy Commission: and Part II - regulations of the Committee. Part I has collected 8 categories of guidelines which relate to following matters: nuclear reactor sites analysis guidelines and standards for their applications; standard exposure dose of plutonium; nuclear ship operation guidelines; safety design analysis guidelines for light-water type, electricity generating nuclear reactor equipments; safety evaluation guidelines for emergency reactor core cooling system of light-water type power reactors; guidelines for exposure dose target values around light-water type electricity generating nuclear reactor equipments, and guidelines for evaluation of above target values; and meteorological guidelines for the safety analysis of electricity generating nuclear reactor equipments. Part II includes regulations of the Committee concerning - the fuel assembly used in boiling-water type and in pressurized-water type reactors; techniques of reactor core heat designs, etc. in boiling-water reactors; and others

  2. Reliability analysis of Angra I safety systems

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Soto, J.B.; Maciel, C.C.; Gibelli, S.M.O.; Fleming, P.V.; Arrieta, L.A.

    1980-07-01

    An extensive reliability analysis of some safety systems of Angra I, are presented. The fault tree technique, which has been successfully used in most reliability studies of nuclear safety systems performed to date is employed. Results of a quantitative determination of the unvailability of the accumulator and the containment spray injection systems are presented. These results are also compared to those reported in WASH-1400. (E.G.) [pt

  3. Reliability Analysis Techniques for Communication Networks in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, T. J.; Jang, S. C.; Kang, H. G.; Kim, M. C.; Eom, H. S.; Lee, H. J.

    2006-09-01

    The objectives of this project is to investigate and study existing reliability analysis techniques for communication networks in order to develop reliability analysis models for nuclear power plant's safety-critical networks. It is necessary to make a comprehensive survey of current methodologies for communication network reliability. Major outputs of this study are design characteristics of safety-critical communication networks, efficient algorithms for quantifying reliability of communication networks, and preliminary models for assessing reliability of safety-critical communication networks

  4. Software Safety Analysis of Digital Protection System Requirements Using a Qualitative Formal Method

    International Nuclear Information System (INIS)

    Lee, Jang-Soo; Kwon, Kee-Choon; Cha, Sung-Deok

    2004-01-01

    The safety analysis of requirements is a key problem area in the development of software for the digital protection systems of a nuclear power plant. When specifying requirements for software of the digital protection systems and conducting safety analysis, engineers find that requirements are often known only in qualitative terms and that existing fault-tree analysis techniques provide little guidance on formulating and evaluating potential failure modes. A framework for the requirements engineering process is proposed that consists of a qualitative method for requirements specification, called the qualitative formal method (QFM), and a safety analysis method for the requirements based on causality information, called the causal requirements safety analysis (CRSA). CRSA is a technique that qualitatively evaluates causal relationships between software faults and physical hazards. This technique, extending the qualitative formal method process and utilizing information captured in the state trajectory, provides specific guidelines on how to identify failure modes and the relationship among them. The QFM and CRSA processes are described using shutdown system 2 of the Wolsong nuclear power plants as the digital protection system example

  5. Risk prediction, safety analysis and quantitative probability methods - a caveat

    International Nuclear Information System (INIS)

    Critchley, O.H.

    1976-01-01

    Views are expressed on the use of quantitative techniques for the determination of value judgements in nuclear safety assessments, hazard evaluation, and risk prediction. Caution is urged when attempts are made to quantify value judgements in the field of nuclear safety. Criteria are given the meaningful application of reliability methods but doubts are expressed about their application to safety analysis, risk prediction and design guidances for experimental or prototype plant. Doubts are also expressed about some concomitant methods of population dose evaluation. The complexities of new designs of nuclear power plants make the problem of safety assessment more difficult but some possible approaches are suggested as alternatives to the quantitative techniques criticized. (U.K.)

  6. Economic Techniques of Occupational Health and Safety Management

    Science.gov (United States)

    Sidorov, Aleksandr I.; Beregovaya, Irina B.; Khanzhina, Olga A.

    2016-10-01

    The article deals with the issues on economic techniques of occupational health and safety management. Authors’ definition of safety management is given. It is represented as a task-oriented process to identify, establish and maintain such a state of work environment in which there are no possible effects of hazardous and harmful factors, or their influence does not go beyond certain limits. It was noted that management techniques that are the part of the control mechanism, are divided into administrative, organizational and administrative, social and psychological and economic. The economic management techniques are proposed to be classified depending on the management subject, management object, in relation to an enterprise environment, depending on a control action. Technoeconomic study, feasibility study, planning, financial incentives, preferential crediting of enterprises, pricing, profit sharing and equity, preferential tax treatment for enterprises, economic regulations and standards setting have been distinguished as economic techniques.

  7. Linking Safety Analysis to Safety Requirements

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark

    Software for safety critical systems must deal with the hazards identified by safety analysistechniques: Fault trees, event trees,and cause consequence diagrams can be interpreted as safety requirements and used in the design activity. We propose that the safety analysis and the system design use...

  8. Safety analysis for research reactors

    International Nuclear Information System (INIS)

    2008-01-01

    The aim of safety analysis for research reactors is to establish and confirm the design basis for items important to safety using appropriate analytical tools. The design, manufacture, construction and commissioning should be integrated with the safety analysis to ensure that the design intent has been incorporated into the as-built reactor. Safety analysis assesses the performance of the reactor against a broad range of operating conditions, postulated initiating events and other circumstances, in order to obtain a complete understanding of how the reactor is expected to perform in these situations. Safety analysis demonstrates that the reactor can be kept within the safety operating regimes established by the designer and approved by the regulatory body. This analysis can also be used as appropriate in the development of operating procedures, periodic testing and inspection programmes, proposals for modifications and experiments and emergency planning. The IAEA Safety Requirements publication on the Safety of Research Reactors states that the scope of safety analysis is required to include analysis of event sequences and evaluation of the consequences of the postulated initiating events and comparison of the results of the analysis with radiological acceptance criteria and design limits. This Safety Report elaborates on the requirements established in IAEA Safety Standards Series No. NS-R-4 on the Safety of Research Reactors, and the guidance given in IAEA Safety Series No. 35-G1, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, providing detailed discussion and examples of related topics. Guidance is given in this report for carrying out safety analyses of research reactors, based on current international good practices. The report covers all the various steps required for a safety analysis; that is, selection of initiating events and acceptance criteria, rules and conventions, types of safety analysis, selection of

  9. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

  10. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    International Nuclear Information System (INIS)

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included

  11. Model extension and improvement for simulator-based software safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.-W. [Department of Engineering and System Science, National Tsing Hua University (NTHU), 101 Section 2 Kuang Fu Road, Hsinchu, Taiwan (China) and Institute of Nuclear Energy Research (INER), No. 1000 Wenhua Road, Chiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China)]. E-mail: hwhwang@iner.gov.tw; Shih Chunkuan [Department of Engineering and System Science, National Tsing Hua University (NTHU), 101 Section 2 Kuang Fu Road, Hsinchu, Taiwan (China); Yih Swu [Department of Computer Science and Information Engineering, Ching Yun University, 229 Chien-Hsin Road, Jung-Li, Taoyuan County 320, Taiwan (China); Chen, M.-H. [Institute of Nuclear Energy Research (INER), No. 1000Wenhua Road, Chiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Lin, J.-M. [Taiwan Power Company (TPC), 242 Roosevelt Road, Section 3, Taipei 100, Taiwan (China)

    2007-05-15

    One of the major concerns when employing digital I and C system in nuclear power plant is digital system may introduce new failure mode, which differs with previous analog I and C system. Various techniques are under developing to analyze the hazard originated from software faults in digital systems. Preliminary hazard analysis, failure modes and effects analysis, and fault tree analysis are the most extensive used techniques. However, these techniques are static analysis methods, cannot perform dynamic analysis and the interactions among systems. This research utilizes 'simulator/plant model testing' technique classified in (IEEE Std 7-4.3.2-2003, 2003. IEEE Standard for Digital Computers in Safety Systems of Nuclear Power Generating Stations) to identify hazards which might be induced by nuclear I and C software defects. The recirculation flow system, control rod system, feedwater system, steam line model, dynamic power-core flow map, and related control systems of PCTran-ABWR model were successfully extended and improved. The benchmark against ABWR SAR proves this modified model is capable to accomplish dynamic system level software safety analysis and better than the static methods. This improved plant simulation can then further be applied to hazard analysis for operator/digital I and C interface interaction failure study, and the hardware-in-the-loop fault injection study.

  12. SACS2: Dynamic and Formal Safety Analysis Method for Complex Safety Critical System

    International Nuclear Information System (INIS)

    Koh, Kwang Yong; Seong, Poong Hyun

    2009-01-01

    Fault tree analysis (FTA) is one of the most widely used safety analysis technique in the development of safety critical systems. However, over the years, several drawbacks of the conventional FTA have become apparent. One major drawback is that conventional FTA uses only static gates and hence can not capture dynamic behaviors of the complex system precisely. Although several attempts such as dynamic fault tree (DFT), PANDORA, formal fault tree (FFT) and so on, have been made to overcome this problem, they can not still do absolute or actual time modeling because they adapt relative time concept and can capture only sequential behaviors of the system. Second drawback of conventional FTA is its lack of rigorous semantics. Because it is informal in nature, safety analysis results heavily depend on an analyst's ability and are error-prone. Finally reasoning process which is to check whether basic events really cause top events is done manually and hence very labor-intensive and timeconsuming for the complex systems. In this paper, we propose a new safety analysis method for complex safety critical system in qualitative manner. We introduce several temporal gates based on timed computational tree logic (TCTL) which can represent quantitative notion of time. Then, we translate the information of the fault trees into UPPAAL query language and the reasoning process is automatically done by UPPAAL which is the model checker for time critical system

  13. Support analysis for safety analysis development for CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Bedreaga, L.; Florescu, Gh.; Apostol, M.; Nitoi, M.

    2004-01-01

    Probabilistic Safety Assessment analysis (PSA) is a technique used to assess the safety of a nuclear power plant. Assessments of the nuclear plant systems/components from safety point of view consist in accomplishment of a lot of support analyses that are the base for the main analysis, in order to evaluate the impact of occurrences of abnormal states for these systems. Evaluation of initiating events frequency and components failure rate is based on underlying probabilistic theory and mathematic statistics. Some of these analyses are detailed analyses and are known very well in PSA. There are also some analyses, named support analyses for PSA, which are very important but less applicable because they involve a huge human effort and hardware facilities to accomplish. The usual methods applicable in PSA such as input data extracted from the specific documentation (operation procedures, testing procedures, maintenance procedures and so on) or conservative evaluation provide a high level of uncertainty for both input and output data. The paper describes support analysis required to improve the certainty level in evaluation of reliability parameters and also in the final results (either risk, reliability or safety assessment). (author)

  14. Integrating model checking with HiP-HOPS in model-based safety analysis

    International Nuclear Information System (INIS)

    Sharvia, Septavera; Papadopoulos, Yiannis

    2015-01-01

    The ability to perform an effective and robust safety analysis on the design of modern safety–critical systems is crucial. Model-based safety analysis (MBSA) has been introduced in recent years to support the assessment of complex system design by focusing on the system model as the central artefact, and by automating the synthesis and analysis of failure-extended models. Model checking and failure logic synthesis and analysis (FLSA) are two prominent MBSA paradigms. Extensive research has placed emphasis on the development of these techniques, but discussion on their integration remains limited. In this paper, we propose a technique in which model checking and Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) – an advanced FLSA technique – can be applied synergistically with benefit for the MBSA process. The application of the technique is illustrated through an example of a brake-by-wire system. - Highlights: • We propose technique to integrate HiP-HOPS and model checking. • State machines can be systematically constructed from HiP-HOPS. • The strengths of different MBSA techniques are combined. • Demonstrated through modeling and analysis of brake-by-wire system. • Root cause analysis is automated and system dynamic behaviors analyzed and verified

  15. PHOTOGRAMMETRIC TECHNIQUES FOR ROAD SURFACE ANALYSIS

    Directory of Open Access Journals (Sweden)

    V. A. Knyaz

    2016-06-01

    Full Text Available The quality and condition of a road surface is of great importance for convenience and safety of driving. So the investigations of the behaviour of road materials in laboratory conditions and monitoring of existing roads are widely fulfilled for controlling a geometric parameters and detecting defects in the road surface. Photogrammetry as accurate non-contact measuring method provides powerful means for solving different tasks in road surface reconstruction and analysis. The range of dimensions concerned in road surface analysis can have great variation from tenths of millimetre to hundreds meters and more. So a set of techniques is needed to meet all requirements of road parameters estimation. Two photogrammetric techniques for road surface analysis are presented: for accurate measuring of road pavement and for road surface reconstruction based on imagery obtained from unmanned aerial vehicle. The first technique uses photogrammetric system based on structured light for fast and accurate surface 3D reconstruction and it allows analysing the characteristics of road texture and monitoring the pavement behaviour. The second technique provides dense 3D model road suitable for road macro parameters estimation.

  16. Improvement and verification of fast reactor safety analysis techniques

    International Nuclear Information System (INIS)

    Jackson, J.F.

    1975-01-01

    An initial analysis of the KIWI-TNT experiment using the VENUS-II disassembly code has been completed. The calculated fission energy release agreed with the experimental value to within about 3 percent. An initial model for analyzing the SNAPTRAN-2 core disassembly experiment was also developed along with an appropriate equation-of-state. The first phase of the VENUS-II/PAD comparison study was completed through the issuing of a preliminary report describing the results. A new technique to calculate a P-V-work curve as a function of the degree of core expansion following a disassembly excursion has been developed. The technique provides results that are consistent with the ANL oxide-fuel equation-of-state in VENUS-II. Evaluation and check-out of this new model are currently in progress

  17. An Integrated Approach of Model checking and Temporal Fault Tree for System Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kwang Yong; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-10-15

    Digitalization of instruments and control systems in nuclear power plants offers the potential to improve plant safety and reliability through features such as increased hardware reliability and stability, and improved failure detection capability. It however makes the systems and their safety analysis more complex. Originally, safety analysis was applied to hardware system components and formal methods mainly to software. For software-controlled or digitalized systems, it is necessary to integrate both. Fault tree analysis (FTA) which has been one of the most widely used safety analysis technique in nuclear industry suffers from several drawbacks as described in. In this work, to resolve the problems, FTA and model checking are integrated to provide formal, automated and qualitative assistance to informal and/or quantitative safety analysis. Our approach proposes to build a formal model of the system together with fault trees. We introduce several temporal gates based on timed computational tree logic (TCTL) to capture absolute time behaviors of the system and to give concrete semantics to fault tree gates to reduce errors during the analysis, and use model checking technique to automate the reasoning process of FTA.

  18. Light-water reactor safety analysis codes

    International Nuclear Information System (INIS)

    Jackson, J.F.; Ransom, V.H.; Ybarrondo, L.J.; Liles, D.R.

    1980-01-01

    A brief review of the evolution of light-water reactor safety analysis codes is presented. Included is a summary comparison of the technical capabilities of major system codes. Three recent codes are described in more detail to serve as examples of currently used techniques. Example comparisons between calculated results using these codes and experimental data are given. Finally, a brief evaluation of current code capability and future development trends is presented

  19. Safety analysis methodologies for radioactive waste repositories in shallow ground

    International Nuclear Information System (INIS)

    1984-01-01

    The report is part of the IAEA Safety Series and is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of shallow ground radioactive waste repositories. It discusses approaches that are applicable for safety analysis of a shallow ground repository. The methodologies, analysis techniques and models described are pertinent to the task of predicting the long-term performance of a shallow ground disposal system. They may be used during the processes of selection, confirmation and licensing of new sites and disposal systems or to evaluate the long-term consequences in the post-sealing phase of existing operating or inactive sites. The analysis may point out need for remedial action, or provide information to be used in deciding on the duration of surveillance. Safety analysis both general in nature and specific to a certain repository, site or design concept, are discussed, with emphasis on deterministic and probabilistic studies

  20. Using of BEPU methodology in a final safety analysis report

    International Nuclear Information System (INIS)

    Menzel, Francine; Sabundjian, Gaiane; D'auria, Francesco; Madeira, Alzira A.

    2015-01-01

    The Nuclear Reactor Safety (NRS) has been established since the discovery of nuclear fission, and the occurrence of accidents in Nuclear Power Plants worldwide has contributed for its improvement. The Final Safety Analysis Report (FSAR) must contain complete information concerning safety of the plant and plant site, and must be seen as a compendium of NRS. The FSAR integrates both the licensing requirements and the analytical techniques. The analytical techniques can be applied by using a realistic approach, addressing the uncertainties of the results. This work aims to show an overview of the main analytical techniques that can be applied with a Best Estimated Plus Uncertainty (BEPU) methodology, which is 'the best one can do', as well as the ALARA (As Low As Reasonably Achievable) principle. Moreover, the paper intends to demonstrate the background of the licensing process through the main licensing requirements. (author)

  1. Using of BEPU methodology in a final safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Francine; Sabundjian, Gaiane, E-mail: fmenzel@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); D' auria, Francesco, E-mail: f.dauria@ing.unipi.it [Universita degli Studi di Pisa, Gruppo di Ricerca Nucleare San Piero a Grado (GRNSPG), Pisa (Italy); Madeira, Alzira A., E-mail: alzira@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The Nuclear Reactor Safety (NRS) has been established since the discovery of nuclear fission, and the occurrence of accidents in Nuclear Power Plants worldwide has contributed for its improvement. The Final Safety Analysis Report (FSAR) must contain complete information concerning safety of the plant and plant site, and must be seen as a compendium of NRS. The FSAR integrates both the licensing requirements and the analytical techniques. The analytical techniques can be applied by using a realistic approach, addressing the uncertainties of the results. This work aims to show an overview of the main analytical techniques that can be applied with a Best Estimated Plus Uncertainty (BEPU) methodology, which is 'the best one can do', as well as the ALARA (As Low As Reasonably Achievable) principle. Moreover, the paper intends to demonstrate the background of the licensing process through the main licensing requirements. (author)

  2. Time Based Workload Analysis Method for Safety-Related Operator Actions in Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eung Se [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-05-15

    During the design basis event, the safety system performs safety functions to mitigate the event. The most of safety system is actuated by automatic system however, there are operator manual actions that are needed for the plant safety. These operator actions are classified as important human actions in human factors engineering design. The human factors engineering analysis and evaluation is needed for these important human actions to assure that operator successfully perform their tasks for plant safety and operational goals. The work load analysis is one of the required analysis for the important human actions.

  3. Time Based Workload Analysis Method for Safety-Related Operator Actions in Safety Analysis

    International Nuclear Information System (INIS)

    Kim, Yun Goo; Oh, Eung Se

    2016-01-01

    During the design basis event, the safety system performs safety functions to mitigate the event. The most of safety system is actuated by automatic system however, there are operator manual actions that are needed for the plant safety. These operator actions are classified as important human actions in human factors engineering design. The human factors engineering analysis and evaluation is needed for these important human actions to assure that operator successfully perform their tasks for plant safety and operational goals. The work load analysis is one of the required analysis for the important human actions.

  4. Development of safety evaluation methods and analysis codes applied to the safety regulations for the design and construction stage of fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The purposes of this study are to develop the safety evaluation methods and analysis codes needed in the design and construction stage of fast breeder reactor (FBR). In JFY 2012, the following results are obtained. As for the development of safety evaluation methods needed in the safety examination conducted for the reactor establishment permission, development of the analysis codes, such as core damage analysis code, were carried out following the planned schedule. As for the development of the safety evaluation method needed for the risk informed safety regulation, the quantification technique of the event tree using the Continuous Markov chain Monte Carlo method (CMMC method) were studied. (author)

  5. Comprehensive method of common-mode failure analysis for LMFBR safety systems

    International Nuclear Information System (INIS)

    Unione, A.J.; Ritzman, R.L.; Erdmann, R.C.

    1976-01-01

    A technique is demonstrated which allows the systematic treatment of common-mode failures of safety system performance. The technique uses log analysis in the form of fault and success trees to qualitatively assess the sources of common-mode failure and quantitatively estimate the contribution to the overall risk of system failure. The analysis is applied to the secondary control rod system of an early sized LMFBR

  6. Development of a systematic methodology to select hazard analysis techniques for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Reis, Sergio Carneiro dos; Costa, Antonio Carlos Lopes da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mails: vasconv@cdtn.br; reissc@cdtn.br; aclc@cdtn.br; Jordao, Elizabete [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica]. E-mail: bete@feq.unicamp.br

    2008-07-01

    In order to comply with licensing requirements of regulatory bodies risk assessments of nuclear facilities should be carried out. In Brazil, such assessments are part of the Safety Analysis Reports, required by CNEN (Brazilian Nuclear Energy Commission), and of the Risk Analysis Studies, required by the competent environmental bodies. A risk assessment generally includes the identification of the hazards and accident sequences that can occur, as well as the estimation of the frequencies and effects of these unwanted events on the plant, people, and environment. The hazard identification and analysis are also particularly important when implementing an Integrated Safety, Health, and Environment Management System following ISO 14001, BS 8800 and OHSAS 18001 standards. Among the myriad of tools that help the process of hazard analysis can be highlighted: CCA (Cause- Consequence Analysis); CL (Checklist Analysis); ETA (Event Tree Analysis); FMEA (Failure Mode and Effects Analysis); FMECA (Failure Mode, Effects and Criticality Analysis); FTA (Fault Tree Analysis); HAZOP (Hazard and Operability Study); HRA (Human Reliability Analysis); Pareto Analysis; PHA (Preliminary Hazard Analysis); RR (Relative Ranking); SR (Safety Review); WI (What-If); and WI/CL (What-If/Checklist Analysis). The choice of a particular technique or a combination of techniques depends on many factors like motivation of the analysis, available data, complexity of the process being analyzed, expertise available on hazard analysis, and initial perception of the involved risks. This paper presents a systematic methodology to select the most suitable set of tools to conduct the hazard analysis, taking into account the mentioned involved factors. Considering that non-reactor nuclear facilities are, to a large extent, chemical processing plants, the developed approach can also be applied to analysis of chemical and petrochemical plants. The selected hazard analysis techniques can support cost

  7. Development of a systematic methodology to select hazard analysis techniques for nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Reis, Sergio Carneiro dos; Costa, Antonio Carlos Lopes da; Jordao, Elizabete

    2008-01-01

    In order to comply with licensing requirements of regulatory bodies risk assessments of nuclear facilities should be carried out. In Brazil, such assessments are part of the Safety Analysis Reports, required by CNEN (Brazilian Nuclear Energy Commission), and of the Risk Analysis Studies, required by the competent environmental bodies. A risk assessment generally includes the identification of the hazards and accident sequences that can occur, as well as the estimation of the frequencies and effects of these unwanted events on the plant, people, and environment. The hazard identification and analysis are also particularly important when implementing an Integrated Safety, Health, and Environment Management System following ISO 14001, BS 8800 and OHSAS 18001 standards. Among the myriad of tools that help the process of hazard analysis can be highlighted: CCA (Cause- Consequence Analysis); CL (Checklist Analysis); ETA (Event Tree Analysis); FMEA (Failure Mode and Effects Analysis); FMECA (Failure Mode, Effects and Criticality Analysis); FTA (Fault Tree Analysis); HAZOP (Hazard and Operability Study); HRA (Human Reliability Analysis); Pareto Analysis; PHA (Preliminary Hazard Analysis); RR (Relative Ranking); SR (Safety Review); WI (What-If); and WI/CL (What-If/Checklist Analysis). The choice of a particular technique or a combination of techniques depends on many factors like motivation of the analysis, available data, complexity of the process being analyzed, expertise available on hazard analysis, and initial perception of the involved risks. This paper presents a systematic methodology to select the most suitable set of tools to conduct the hazard analysis, taking into account the mentioned involved factors. Considering that non-reactor nuclear facilities are, to a large extent, chemical processing plants, the developed approach can also be applied to analysis of chemical and petrochemical plants. The selected hazard analysis techniques can support cost

  8. Alternative method of highway traffic safety analysis for developing countries using delphi technique and Bayesian network.

    Science.gov (United States)

    Mbakwe, Anthony C; Saka, Anthony A; Choi, Keechoo; Lee, Young-Jae

    2016-08-01

    Highway traffic accidents all over the world result in more than 1.3 million fatalities annually. An alarming number of these fatalities occurs in developing countries. There are many risk factors that are associated with frequent accidents, heavy loss of lives, and property damage in developing countries. Unfortunately, poor record keeping practices are very difficult obstacle to overcome in striving to obtain a near accurate casualty and safety data. In light of the fact that there are numerous accident causes, any attempts to curb the escalating death and injury rates in developing countries must include the identification of the primary accident causes. This paper, therefore, seeks to show that the Delphi Technique is a suitable alternative method that can be exploited in generating highway traffic accident data through which the major accident causes can be identified. In order to authenticate the technique used, Korea, a country that underwent similar problems when it was in its early stages of development in addition to the availability of excellent highway safety records in its database, is chosen and utilized for this purpose. Validation of the methodology confirms the technique is suitable for application in developing countries. Furthermore, the Delphi Technique, in combination with the Bayesian Network Model, is utilized in modeling highway traffic accidents and forecasting accident rates in the countries of research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Exploratory Nuclear Reactor Safety Analysis and Visualization via Integrated Topological and Geometric Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Maljovec, Dan [Univ. of Utah, Salt Lake City, UT (United States); Wang, Bei [Univ. of Utah, Salt Lake City, UT (United States); Pascucci, Valerio [Univ. of Utah, Salt Lake City, UT (United States); Bremer, Peer-Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pernice, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nourgaliev, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-10-01

    A recent trend in the nuclear power engineering field is the implementation of heavily computational and time consuming algorithms and codes for both design and safety analysis. In particular, the new generation of system analysis codes aim to embrace several phenomena such as thermo-hydraulic, structural behavior, and system dynamics, as well as uncertainty quantification and sensitivity analyses. The use of dynamic probabilistic risk assessment (PRA) methodologies allows a systematic approach to uncertainty quantification. Dynamic methodologies in PRA account for possible coupling between triggered or stochastic events through explicit consideration of the time element in system evolution, often through the use of dynamic system models (simulators). They are usually needed when the system has more than one failure mode, control loops, and/or hardware/process/software/human interaction. Dynamic methodologies are also capable of modeling the consequences of epistemic and aleatory uncertainties. The Monte-Carlo (MC) and the Dynamic Event Tree (DET) approaches belong to this new class of dynamic PRA methodologies. The major challenges in using MC and DET methodologies (as well as other dynamic methodologies) are the heavier computational and memory requirements compared to the classical ET analysis. This is due to the fact that each branch generated can contain time evolutions of a large number of variables (about 50,000 data channels are typically present in RELAP) and a large number of scenarios can be generated from a single initiating event (possibly on the order of hundreds or even thousands). Such large amounts of information are usually very difficult to organize in order to identify the main trends in scenario evolutions and the main risk contributors for each initiating event. This report aims to improve Dynamic PRA methodologies by tackling the two challenges mentioned above using: 1) adaptive sampling techniques to reduce computational cost of the analysis

  10. Computational methods for nuclear criticality safety analysis

    International Nuclear Information System (INIS)

    Maragni, M.G.

    1992-01-01

    Nuclear criticality safety analyses require the utilization of methods which have been tested and verified against benchmarks results. In this work, criticality calculations based on the KENO-IV and MCNP codes are studied aiming the qualification of these methods at the IPEN-CNEN/SP and COPESP. The utilization of variance reduction techniques is important to reduce the computer execution time, and several of them are analysed. As practical example of the above methods, a criticality safety analysis for the storage tubes for irradiated fuel elements from the IEA-R1 research has been carried out. This analysis showed that the MCNP code is more adequate for problems with complex geometries, and the KENO-IV code shows conservative results when it is not used the generalized geometry option. (author)

  11. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this Safety Guide is to provide harmonized guidance to designers, operators, regulators and providers of technical support on deterministic safety analysis for nuclear power plants. It provides information on the utilization of the results of such analysis for safety and reliability improvements. The Safety Guide addresses conservative, best estimate and uncertainty evaluation approaches to deterministic safety analysis and is applicable to current and future designs. Contents: 1. Introduction; 2. Grouping of initiating events and associated transients relating to plant states; 3. Deterministic safety analysis and acceptance criteria; 4. Conservative deterministic safety analysis; 5. Best estimate plus uncertainty analysis; 6. Verification and validation of computer codes; 7. Relation of deterministic safety analysis to engineering aspects of safety and probabilistic safety analysis; 8. Application of deterministic safety analysis; 9. Source term evaluation for operational states and accident conditions; References

  12. K Basin safety analysis

    International Nuclear Information System (INIS)

    Porten, D.R.; Crowe, R.D.

    1994-01-01

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall

  13. Safety analysis for 'Fugen'

    International Nuclear Information System (INIS)

    1997-10-01

    The improvement of safety in nuclear power stations is an important proposition. Therefore also as to the safety evaluation, it is important to comprehensively and systematically execute it by referring to the operational experience and the new knowledge which is important for the safety throughout the period of use as well as before the construction and the start of operation of nuclear power stations. In this report, the results when the safety analysis for ''Fugen'' was carried out by referring to the newest technical knowledge are described. As the result, it was able to be confirmed that the safety of ''Fugen'' has been secured by the inherent safety and the facilities which were designed for securing the safety. The basic way of thinking on the safety analysis including the guidelines to be conformed to is mentioned. As to the abnormal transient change in operation and accidents, their definition, the events to be evaluated and the standards for judgement are reported. The matters which were taken in consideration at the time of the analysis are shown. The computation programs used for the analysis were REACT, HEATUP, LAYMON, FATRAC, SENHOR, LOTRAC, FLOOD and CONPOL. The analyses of the abnormal transient change in operation and accidents are reported on the causes, countermeasures, protective functions and results. (K.I.)

  14. Advances in methods and applications of reliability and safety analysis

    International Nuclear Information System (INIS)

    Fieandt, J.; Hossi, H.; Laakso, K.; Lyytikaeinen, A.; Niemelae, I.; Pulkkinen, U.; Pulli, T.

    1986-01-01

    The know-how of the reliability and safety design and analysis techniques of Vtt has been established over several years in analyzing the reliability in the Finnish nuclear power plants Loviisa and Olkiluoto. This experience has been later on applied and developed to be used in the process industry, conventional power industry, automation and electronics. VTT develops and transfers methods and tools for reliability and safety analysis to the private and public sectors. The technology transfer takes place in joint development projects with potential users. Several computer-aided methods, such as RELVEC for reliability modelling and analysis, have been developed. The tool developed are today used by major Finnish companies in the fields of automation, nuclear power, shipbuilding and electronics. Development of computer-aided and other methods needed in analysis of operating experience, reliability or safety is further going on in a number of research and development projects

  15. New quantitative safety standards : Different techniques, different results?

    NARCIS (Netherlands)

    Rouvroye, J.L.; Brombacher, A.C.; Lydersen, S.; Hansen, G.K.; Sandtor, H.

    1998-01-01

    Safety Instrumented Systems (SIS) are used in the process industry to perform safety functions. Many parameters can influence the safety of a SIS like system layout, diagnostics, testing and repair. In standards like the German DIN [DIN19250, DIN0801] no quantitative analysis was demanded. The

  16. Uncertainty and sensitivity analysis in a Probabilistic Safety Analysis level-1

    International Nuclear Information System (INIS)

    Nunez Mc Leod, Jorge E.; Rivera, Selva S.

    1996-01-01

    A methodology for sensitivity and uncertainty analysis, applicable to a Probabilistic Safety Assessment Level I has been presented. The work contents are: correct association of distributions to parameters, importance and qualification of expert opinions, generations of samples according to sample sizes, and study of the relationships among system variables and systems response. A series of statistical-mathematical techniques are recommended along the development of the analysis methodology, as well as different graphical visualization for the control of the study. (author)

  17. Organic Tanks Safety Program: Advanced organic analysis FY 1996 progress report

    International Nuclear Information System (INIS)

    1996-09-01

    Major focus during the first part of FY96 was to evaluate using organic functional group concentrations to screen for energetics. Fourier transform infrared and Raman spectroscopy would be useful screening tools for determining C-H and COO- organic content in tank wastes analyzed in a hot cell. These techniques would be used for identifying tanks of potential safety concern that may require further analysis. Samples from Tanks 241-C-106 and -C-204 were analyzed; the major organic in C-106 was B2EHPA and in C-204 was TBP. Analyses of simulated wastes were also performed for the Waste Aging Studies Task; organics formed as a result of degradation were identified, and the original starting components were monitored quantitatively. Sample analysis is not routine and required considerable methods adaptation and optimization. Several techniques have been evaluated for directly analyzing chelator and chelator fragments in tank wastes: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and liquid chromatography with ultraviolet detection using Cu complexation. Although not directly funded by the Tanks Safety Program, the success of these techniques have implications for both the Flammable Gas and Organic Tanks Safety Programs

  18. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    2000-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of two main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents. Main achievements in 1999 are reported

  19. Analysis respons to the implementation of nuclear installations safety culture using AHP-TOPSIS

    Science.gov (United States)

    Situmorang, J.; Kuntoro, I.; Santoso, S.; Subekti, M.; Sunaryo, G. R.

    2018-02-01

    An analysis of responses to the implementation of nuclear installations safety culture has been done using AHP (Analitic Hierarchy Process) - TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). Safety culture is considered as collective commitments of the decision-making level, management level, and individual level. Thus each level will provide a subjective perspective as an alternative approach to implementation. Furthermore safety culture is considered by the statement of five characteristics which in more detail form consist of 37 attributes, and therefore can be expressed as multi-attribute state. Those characteristics and or attributes will be a criterion and its value is difficult to determine. Those criteria of course, will determine and strongly influence the implementation of the corresponding safety culture. To determine the pattern and magnitude of the influence is done by using a TOPSIS that is based on decision matrix approach and is composed of alternatives and criteria. The weight of each criterion is determined by AHP technique. The data used are data collected through questionnaires at the workshop on safety and health in 2015. .Reliability test of data gives Cronbah Alpha value of 95.5% which according to the criteria is stated reliable. Validity test using bivariate correlation analysis technique between each attribute give Pearson correlation for all attribute is significant at level 0,01. Using confirmatory factor analysis gives Kaise-Meyer-Olkin of sampling Adequacy (KMO) is 0.719 and it is greater than the acceptance criterion 0.5 as well as the 0.000 significance level much smaller than 0.05 and stated that further analysis could be performed. As a result of the analysis it is found that responses from the level of decision maker (second echelon) dominate the best order preference rank to be the best solution in strengthening the nuclear installation safety culture, except for the first characteristics, safety is a

  20. Reliability analysis of PLC safety equipment

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.; Kim, J. Y. [Chungnam Nat. Univ., Daejeon (Korea, Republic of)

    2006-06-15

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system.

  1. Reliability analysis of PLC safety equipment

    International Nuclear Information System (INIS)

    Yu, J.; Kim, J. Y.

    2006-06-01

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system

  2. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    International Nuclear Information System (INIS)

    Rodovsky, T.J.

    2010-01-01

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3. The final hazard categorization for the deactivated 340 Waste Handling Facility (340 Facility) is presented in this document. This hazard categorization was prepared in accordance with DOE-STD-1 027-92, Change Notice 1, Hazard Categorization and Accident Analysis Techniques for Compliance with Doe Order 5480.23, Nuclear Safety Analysis Reports. The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category (HC) 3. Routine nuclear waste receiving, storage, handling, and shipping operations at the 340 Facility have been deactivated, however, the facility contains a small amount of radioactive liquid and/or dry saltcake in two underground vault tanks. A seismic event and hydrogen deflagration were selected as bounding accidents. The generation of hydrogen in the vault tanks without active ventilation was determined to achieve a steady state volume of 0.33%, which is significantly less than the lower flammability limit of 4%. Therefore, a hydrogen deflagration is not possible in these tanks. The unmitigated release from a seismic event was used to categorize the facility consistent with the process defined in Nuclear Safety Technical Position (NSTP) 2002-2. The final sum-of-fractions calculation concluded that the facility is less than HC 3. The analysis did not identify any required engineered controls or design features. The Administrative Controls that were derived from the analysis are: (1) radiological inventory control, (2) facility change control, and (3) Safety Management Programs (SMPs). The facility configuration and radiological inventory shall be controlled to ensure that the assumptions in the analysis remain valid. The facility commitment to SMPs protects the integrity of the facility and environment by ensuring training, emergency response, and radiation protection. The full scale

  3. Reactor safety analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    Risk assessments of nuclear installations require accurate safety and reliability analyses to estimate the consequences of accidental events and their probability of occurrence. The objective of the work performed in this field at the Belgian Nuclear Research Centre SCK-CEN is to develop expertise in probabilistic and deterministic reactor safety analysis. The four main activities of the research project on reactor safety analysis are: (1) the development of software for the reliable analysis of large systems; (2) the development of an expert system for the aid to diagnosis; (3) the development and the application of a probabilistic reactor-dynamics method, and (4) to participate in the international PHEBUS-FP programme for severe accidents. Progress in research during 1997 is described

  4. Project for the completion of a probabilistic safety analysis of an industrial irradiation

    International Nuclear Information System (INIS)

    Ferro, R.; Troncoso, M.

    1995-01-01

    The probabilistic safety analysis is a very valuable instrument in safety studies of facilities with potential risk for the personnel, population and environment. One of the possible field of use of PSA techniques in the safety studies for industrial irradiation where serious accidents have occurred. For this reason a project has been undertaken to carry out the PSA in the Irradiation Plant of Research Institute of the Food Industry, which complements the safety studies of this facility

  5. Technique for unit testing of safety software verification and validation

    International Nuclear Information System (INIS)

    Li Duo; Zhang Liangju; Feng Junting

    2008-01-01

    The key issue arising from digitalization of the reactor protection system for nuclear power plant is how to carry out verification and validation (V and V), to demonstrate and confirm the software that performs reactor safety functions is safe and reliable. One of the most important processes for software V and V is unit testing, which verifies and validates the software coding based on concept design for consistency, correctness and completeness during software development. The paper shows a preliminary study on the technique for unit testing of safety software V and V, focusing on such aspects as how to confirm test completeness, how to establish test platform, how to develop test cases and how to carry out unit testing. The technique discussed here was successfully used in the work of unit testing on safety software of a digital reactor protection system. (authors)

  6. WE-G-BRA-07: Analyzing the Safety Implications of a Brachytherapy Process Improvement Project Utilizing a Novel System-Theory-Based Hazard-Analysis Technique

    International Nuclear Information System (INIS)

    Tang, A; Samost, A; Viswanathan, A; Cormack, R; Damato, A

    2015-01-01

    Purpose: To investigate the hazards in cervical-cancer HDR brachytherapy using a novel hazard-analysis technique, System Theoretic Process Analysis (STPA). The applicability and benefit of STPA to the field of radiation oncology is demonstrated. Methods: We analyzed the tandem and ring HDR procedure through observations, discussions with physicists and physicians, and the use of a previously developed process map. Controllers and their respective control actions were identified and arranged into a hierarchical control model of the system, modeling the workflow from applicator insertion through initiating treatment delivery. We then used the STPA process to identify potentially unsafe control actions. Scenarios were then generated from the identified unsafe control actions and used to develop recommendations for system safety constraints. Results: 10 controllers were identified and included in the final model. From these controllers 32 potentially unsafe control actions were identified, leading to more than 120 potential accident scenarios, including both clinical errors (e.g., using outdated imaging studies for planning), and managerial-based incidents (e.g., unsafe equipment, budget, or staffing decisions). Constraints identified from those scenarios include common themes, such as the need for appropriate feedback to give the controllers an adequate mental model to maintain safe boundaries of operations. As an example, one finding was that the likelihood of the potential accident scenario of the applicator breaking during insertion might be reduced by establishing a feedback loop of equipment-usage metrics and equipment-failure reports to the management controller. Conclusion: The utility of STPA in analyzing system hazards in a clinical brachytherapy system was demonstrated. This technique, rooted in system theory, identified scenarios both technical/clinical and managerial in nature. These results suggest that STPA can be successfully used to analyze safety in

  7. WE-G-BRA-07: Analyzing the Safety Implications of a Brachytherapy Process Improvement Project Utilizing a Novel System-Theory-Based Hazard-Analysis Technique

    Energy Technology Data Exchange (ETDEWEB)

    Tang, A; Samost, A [Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Viswanathan, A; Cormack, R; Damato, A [Dana-Farber Cancer Institute - Brigham and Women’s Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: To investigate the hazards in cervical-cancer HDR brachytherapy using a novel hazard-analysis technique, System Theoretic Process Analysis (STPA). The applicability and benefit of STPA to the field of radiation oncology is demonstrated. Methods: We analyzed the tandem and ring HDR procedure through observations, discussions with physicists and physicians, and the use of a previously developed process map. Controllers and their respective control actions were identified and arranged into a hierarchical control model of the system, modeling the workflow from applicator insertion through initiating treatment delivery. We then used the STPA process to identify potentially unsafe control actions. Scenarios were then generated from the identified unsafe control actions and used to develop recommendations for system safety constraints. Results: 10 controllers were identified and included in the final model. From these controllers 32 potentially unsafe control actions were identified, leading to more than 120 potential accident scenarios, including both clinical errors (e.g., using outdated imaging studies for planning), and managerial-based incidents (e.g., unsafe equipment, budget, or staffing decisions). Constraints identified from those scenarios include common themes, such as the need for appropriate feedback to give the controllers an adequate mental model to maintain safe boundaries of operations. As an example, one finding was that the likelihood of the potential accident scenario of the applicator breaking during insertion might be reduced by establishing a feedback loop of equipment-usage metrics and equipment-failure reports to the management controller. Conclusion: The utility of STPA in analyzing system hazards in a clinical brachytherapy system was demonstrated. This technique, rooted in system theory, identified scenarios both technical/clinical and managerial in nature. These results suggest that STPA can be successfully used to analyze safety in

  8. Periodic safety review of the HTR-10 safety analysis

    International Nuclear Information System (INIS)

    Chen Fubing; Zheng Yanhua; Shi Lei; Li Fu

    2015-01-01

    Designed by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University, the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) is the first modular High Temperature Gas-cooled Reactor (HTGR) in China. According to the nuclear safety regulations of China, the periodic safety review (PSR) of the HTR-10 was initiated by INET after approved by the National Nuclear Safety Administration (NNSA) of China. Safety analysis of the HTR-10 is one of the key safety factors of the PSR. In this paper, the main contents in the review of safety analysis are summarized; meanwhile, the internal evaluation on the review results is presented by INET. (authors)

  9. Hazard Analysis and Safety Requirements for Small Drone Operations: To What Extent Do Popular Drones Embed Safety?

    Science.gov (United States)

    Plioutsias, Anastasios; Karanikas, Nektarios; Chatzimihailidou, Maria Mikela

    2018-03-01

    Currently, published risk analyses for drones refer mainly to commercial systems, use data from civil aviation, and are based on probabilistic approaches without suggesting an inclusive list of hazards and respective requirements. Within this context, this article presents: (1) a set of safety requirements generated from the application of the systems theoretic process analysis (STPA) technique on a generic small drone system; (2) a gap analysis between the set of safety requirements and the ones met by 19 popular drone models; (3) the extent of the differences between those models, their manufacturers, and the countries of origin; and (4) the association of drone prices with the extent they meet the requirements derived by STPA. The application of STPA resulted in 70 safety requirements distributed across the authority, manufacturer, end user, or drone automation levels. A gap analysis showed high dissimilarities regarding the extent to which the 19 drones meet the same safety requirements. Statistical results suggested a positive correlation between drone prices and the extent that the 19 drones studied herein met the safety requirements generated by STPA, and significant differences were identified among the manufacturers. This work complements the existing risk assessment frameworks for small drones, and contributes to the establishment of a commonly endorsed international risk analysis framework. Such a framework will support the development of a holistic and methodologically justified standardization scheme for small drone flights. © 2017 Society for Risk Analysis.

  10. Non-Destructive Techniques in the Tacis and Phare Nuclear Safety Programmes

    International Nuclear Information System (INIS)

    Bieth, Michel

    2002-01-01

    Decisions regarding the verification of design plant lifetime and potential license renewal periods involve a determination of the component and circuit condition. In Service Inspection of key reactor components becomes a crucial consideration for continued safe plant operation. The determination of the equipment properties by Non Destructive Techniques during periodic intervals is an important aspect of the assessment of fitness-for-service and safe operation of nuclear power plants The Tacis and Phare were established since 1991 by the European Union as support mechanisms through which projects could be identified and addressed satisfactorily. In Nuclear Safety, the countries mainly concerned are Russia, Ukraine, Armenia, and Kazakhstan for the Tacis programme, and Bulgaria, Czech Republic, Hungary, Slovak Republic, Lithuania, Romania and Slovenia for the Phare programme. The Tacis and Phare programs concerning the Nuclear Power Plants consist of: - On Site Assistance and Operational Safety, - Design Safety, - Regulatory Authorities, - Waste management, and are focused on reactor safety issues, contributing to the improvement in the safety of East European reactors and providing technology and safety culture transfer. The main parts of these programmes are related to the On-Site Assistance and to the Design Safety of VVER and RBMK Nuclear power plants where Non Destructive Techniques for In Service Inspection of the primary circuit components are addressed. (authors)

  11. Safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Selvatici, E.

    1981-01-01

    A study about the safety analysis of nuclear power plant, giving emphasis to how and why to do is presented. The utilization of the safety analysis aiming to perform the licensing requirements is discussed, and an example of the Angra 2 and 3 safety analysis is shown. Some presented tendency of the safety analysis are presented and examples are shown.(E.G.) [pt

  12. Line-Scan Hyperspectral Imaging Techniques for Food Safety and Quality Applications

    Directory of Open Access Journals (Sweden)

    Jianwei Qin

    2017-01-01

    Full Text Available Hyperspectral imaging technologies in the food and agricultural area have been evolving rapidly over the past 15 years owing to tremendous interest from both academic and industrial fields. Line-scan hyperspectral imaging is a major method that has been intensively researched and developed using different physical principles (e.g., reflectance, transmittance, fluorescence, Raman, and spatially resolved spectroscopy and wavelength regions (e.g., visible (VIS, near infrared (NIR, and short-wavelength infrared (SWIR. Line-scan hyperspectral imaging systems are mainly developed and used for surface inspection of food and agricultural products using area or line light sources. Some of these systems can also be configured to conduct spatially resolved spectroscopy measurements for internal or subsurface food inspection using point light sources. This paper reviews line-scan hyperspectral imaging techniques, with introduction, demonstration, and summarization of existing and emerging techniques for food and agricultural applications. The main topics include related spectroscopy techniques, line-scan measurement methods, hardware components and systems, system calibration methods, and spectral and image analysis techniques. Applications in food safety and quality are also presented to reveal current practices and future trends of line-scan hyperspectral imaging techniques.

  13. Assessment of multi-version NPP I and C systems safety. Metric-based approach, technique and tool

    International Nuclear Information System (INIS)

    Kharchenko, Vyacheslav; Volkovoy, Andrey; Bakhmach, Eugenii; Siora, Alexander; Duzhyi, Vyacheslav

    2011-01-01

    The challenges related to problem of assessment of actual diversity level and evaluation of diversity-oriented NPP I and C systems safety are analyzed. There are risks of inaccurate assessment and problems of insufficient decreasing probability of CCFs. CCF probability of safety-critical systems may be essentially decreased due to application of several different types of diversity (multi-diversity). Different diversity types of FPGA-based NPP I and C systems, general approach and stages of diversity and safety assessment as a whole are described. Objectives of the report are: (a) analysis of the challenges caused by use of diversity approach in NPP I and C systems in context of FPGA and other modern technologies application; (b) development of multi-version NPP I and C systems assessment technique and tool based on check-list and metric-oriented approach; (c) case-study of the technique: assessment of multi-version FPGA-based NPP I and C developed by use of Radiy TM Platform. (author)

  14. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Science.gov (United States)

    2010-01-01

    ...; (iv) Potential accident sequences caused by process deviations or other events internal to the... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process... this safety program; namely, process safety information, integrated safety analysis, and management...

  15. The practical implementation of integrated safety management for nuclear safety analysis and fire hazards analysis documentation

    International Nuclear Information System (INIS)

    COLLOPY, M.T.

    1999-01-01

    In 1995 Mr. Joseph DiNunno of the Defense Nuclear Facilities Safety Board issued an approach to describe the concept of an integrated safety management program which incorporates hazard and safety analysis to address a multitude of hazards affecting the public, worker, property, and the environment. Since then the U S . Department of Energy (DOE) has adopted a policy to systematically integrate safety into management and work practices at all levels so that missions can be completed while protecting the public, worker, and the environment. While the DOE and its contractors possessed a variety of processes for analyzing fire hazards at a facility, activity, and job; the outcome and assumptions of these processes have not always been consistent for similar types of hazards within the safety analysis and the fire hazard analysis. Although the safety analysis and the fire hazard analysis are driven by different DOE Orders and requirements, these analyses should not be entirely independent and their preparation should be integrated to ensure consistency of assumptions, consequences, design considerations, and other controls. Under the DOE policy to implement an integrated safety management system, identification of hazards must be evaluated and agreed upon to ensure that the public. the workers. and the environment are protected from adverse consequences. The DOE program and contractor management need a uniform, up-to-date reference with which to plan. budget, and manage nuclear programs. It is crucial that DOE understand the hazards and risks necessarily to authorize the work needed to be performed. If integrated safety management is not incorporated into the preparation of the safety analysis and the fire hazard analysis, inconsistencies between assumptions, consequences, design considerations, and controls may occur that affect safety. Furthermore, confusion created by inconsistencies may occur in the DOE process to grant authorization of the work. In accordance with

  16. IAEA Review for Gap Analysis of Safety Analysis Capability

    International Nuclear Information System (INIS)

    Basic, Ivica; Kim, Manwoong; Huges, Peter; Lim, B-K; D'Auria, Francesco; Louis, Vidard Michael

    2014-01-01

    The IAEA Asian Nuclear Safety Network (ANSN) was launched in 2002 in the framework of the Extra Budgetary Programme (EBP) on the Safety of Nuclear Installations in the South East Asia, Pacific and Far East Countries. The main objective is to strengthen and expand human and advanced Information Technology (IT) network to pool, analyse and share nuclear safety knowledge and practical experience for peaceful uses in this region. Under the ANSN framework, a technical group on Safety Analysis (SATG) was established in 2004 aimed to providing a forum for the exchange of experience in the following areas of safety analysis: · To provide a forum for an exchange of experience in the area of safety analysis, · To maintain and improve the knowledge on safety analysis method, · To enhance the utilization of computer codes, · To pool and analyse the issues related with safety analysis of research reactor, and · To facilitate mutual interested on safety analysis among member countries. A sustainable and successful nuclear energy programme requires a strong technical infrastructure, including a workforce made up of highly specialized and well-educated professionals. A significant portion of this technical capacity must be dedicated to safety- especially to safety analysis- as only then can it serve as the basis for making the right decisions during the planning, licensing, construction and operation of new nuclear facilities. In this regard, the IAEA has provided ANSN member countries with comprehensive training opportunities for capacity building in safety analysis. Nevertheless, the SATG recognizes that it is difficult to achieve harmonization in this area among all member countries because of their different competency levels. Therefore, it is necessary to quickly identify the most obvious gaps in safety analysis capability and then to use existing resources to begin to fill those gaps. The goal of this Expert Mission (EM) for gap finding service is to facilitate

  17. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of four main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents, the development of an expert system for the aid to diagnosis; the development and application of a probabilistic reactor dynamics method. Main achievements in 1999 are reported

  18. Meeting on risk and monitoring analysis techniques for food safety - RLA/5/060/ARCAL Project (ARCAL CXXVIII): sampling plans and introduction to chemical risk assessment in food innocuousness

    International Nuclear Information System (INIS)

    2013-03-01

    Some of the Latinoamerican countries such us Bolivia, Colombia, Uruguay and Venezuela participant in the meeting gave an exposition about the risk analysis and monitoring techniques in food safety in their countyries. With the aim to study components of risk analysis, food innocuousness, evaluation and chemical dangers, toxicity, exposure, change of paradigms in the global food system, data sources, study in animals and in vitro, sensitivity analysis, risk assessment in health it carried out the meeting

  19. STAMP model and its application prospect in DCS safety analysis of nuclear power plant

    International Nuclear Information System (INIS)

    Yang Xiaohua; Liu Jie; Liu Zhaohui; Liu Hua; Yu Tonglan

    2013-01-01

    The application of DCS (Digit Control System) is a certain trend for the development of nuclear power. DCS not only improves the control capability of nuclear power system, but also increases the complexity of the system. Traditional safety analysis techniques based on event-chain model are facing challenges. In order to improve the safety performance of nuclear power DCS, the latest research achievement in the field of safety engineering should be focused, studied and applied into nuclear power safety. This paper introduces a new safety analysis model named STAMP (Systems-Theoretic Accident Modeling and Processes) based on the system theory, analyzes its advantages and disadvantages compared with the traditional ones, and explains the basic steps of STPA (STAMP-Based Hazard Analysis) technology. Finally, according to the application status of STAMP at home and abroad, it prospects the development of STAMP in China's nuclear power safety. (authors)

  20. Systems engineered health and safety criteria for safety analysis reports

    International Nuclear Information System (INIS)

    Beitel, G.A.; Morcos, N.

    1993-01-01

    The world of safety analysis is filled with ambiguous words: codes and standards, consequences and risks, hazard and accident, and health and safety. These words have been subject to disparate interpretations by safety analysis report (SAR) writers, readers, and users. open-quotes Principal health and safety criteriaclose quotes has been one of the most frequently misused phrases; rarely is it used consistently or effectively. This paper offers an easily understood definition for open-quotes principal health and safety criteriaclose quotes and uses systems engineering to convert an otherwise mysterious topic into the primary means of producing an integrated SAR. This paper is based on SARs being written for environmental restoration and waste management activities for the U.S. Department of Energy (DOE). Requirements for these SARs are prescribed in DOE Order 5480-23, open-quotes Nuclear Safety Analysis Reports.close quotes

  1. Development of an auditable safety analysis in support of a radiological facility classification

    International Nuclear Information System (INIS)

    Kinney, M.D.; Young, B.

    1995-01-01

    In recent years, U.S. Department of Energy (DOE) facilities commonly have been classified as reactor, non-reactor nuclear, or nuclear facilities. Safety analysis documentation was prepared for these facilities, with few exceptions, using the requirements in either DOE Order 5481.1B, Safety Analysis and Review System; or DOE Order 5480.23, Nuclear Safety Analysis Reports. Traditionally, this has been accomplished by development of an extensive Safety Analysis Report (SAR), which identifies hazards, assesses risks of facility operation, describes and analyzes adequacy of measures taken to control hazards, and evaluates potential accidents and their associated risks. This process is complicated by analysis of secondary hazards and adequacy of backup (redundant) systems. The traditional SAR process is advantageous for DOE facilities with appreciable hazards or operational risks. SAR preparation for a low-risk facility or process can be cost-prohibitive and quite challenging because conventional safety analysis protocols may not readily be applied to a low-risk facility. The DOE Office of Environmental Restoration and Waste Management recognized this potential disadvantage and issued an EM limited technical standard, No. 5502-94, Hazard Baseline Documentation. This standard can be used for developing documentation for a facility classified as radiological, including preparation of an auditable (defensible) safety analysis. In support of the radiological facility classification process, the Uranium Mill Tailings Remedial Action (UMTRA) Project has developed an auditable safety analysis document based upon the postulation criteria and hazards analysis techniques defined in DOE Order 5480.23

  2. Ignalina Safety Analysis Group

    International Nuclear Information System (INIS)

    Ushpuras, E.

    1995-01-01

    The article describes the fields of activities of Ignalina NPP Safety Analysis Group (ISAG) in the Lithuanian Energy Institute and overview the main achievements gained since the group establishment in 1992. The group is working under the following guidelines: in-depth analysis of the fundamental physical processes of RBMK-1500 reactors; collection, systematization and verification of the design and operational data; simulation and analysis of potential accident consequences; analysis of thermohydraulic and neutronic characteristics of the plant; provision of technical and scientific consultations to VATESI, Governmental authorities, and also international institutions, participating in various projects aiming at Ignalina NPP safety enhancement. The ISAG is performing broad scientific co-operation programs with both Eastern and Western scientific groups, supplying engineering assistance for Ignalina NPP. ISAG is also participating in the joint Lithuanian - Swedish - Russian project - Barselina, the first Probabilistic Safety Assessment (PSA) study of Ignalina NPP. The work is underway together with Maryland University (USA) for assessment of the accident confinement system for a range of breaks in the primary circuit. At present the ISAG personnel is also involved in the project under the grant from the Nuclear Safety Account, administered by the European Bank for reconstruction and development for the preparation and review of an in-depth safety assessment of the Ignalina plant

  3. Preliminary safety analysis methodology for the SMART

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoo Hwan; Chung, Y. J.; Kim, H. C.; Sim, S. K.; Lee, W. J.; Chung, B. D.; Song, J. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This technical report was prepared for a preliminary safety analysis methodology of the 330MWt SMART (System-integrated Modular Advanced ReacTor) which has been developed by Korea Atomic Energy Research Institute (KAERI) and funded by the Ministry of Science and Technology (MOST) since July 1996. This preliminary safety analysis methodology has been used to identify an envelope for the safety of the SMART conceptual design. As the SMART design evolves, further validated final safety analysis methodology will be developed. Current licensing safety analysis methodology of the Westinghouse and KSNPP PWRs operating and under development in Korea as well as the Russian licensing safety analysis methodology for the integral reactors have been reviewed and compared to develop the preliminary SMART safety analysis methodology. SMART design characteristics and safety systems have been reviewed against licensing practices of the PWRs operating or KNGR (Korean Next Generation Reactor) under construction in Korea. Detailed safety analysis methodology has been developed for the potential SMART limiting events of main steam line break, main feedwater pipe break, loss of reactor coolant flow, CEA withdrawal, primary to secondary pipe break and the small break loss of coolant accident. SMART preliminary safety analysis methodology will be further developed and validated in parallel with the safety analysis codes as the SMART design further evolves. Validated safety analysis methodology will be submitted to MOST as a Topical Report for a review of the SMART licensing safety analysis methodology. Thus, it is recommended for the nuclear regulatory authority to establish regulatory guides and criteria for the integral reactor. 22 refs., 18 figs., 16 tabs. (Author)

  4. Transient analysis for resolving safety issues

    International Nuclear Information System (INIS)

    Chao, J.; Layman, W.

    1987-01-01

    The Nuclear Safety Analysis Center (NSAC) has a Generic Safety Analysis Program to help resolve high priority generic safety issues. This paper describes several high priority safety issues considered at NSAC and how they were resolved by transient analysis using thermal hydraulics and neutronics codes. These issues are pressurized thermal shock (PTS), anticipated transients without scram (ATWS), steam generator tube rupture (SGTR), and reactivity transients in light of the Chernobyl accident

  5. Applying importance-performance analysis to patient safety culture.

    Science.gov (United States)

    Lee, Yii-Ching; Wu, Hsin-Hung; Hsieh, Wan-Lin; Weng, Shao-Jen; Hsieh, Liang-Po; Huang, Chih-Hsuan

    2015-01-01

    The Sexton et al.'s (2006) safety attitudes questionnaire (SAQ) has been widely used to assess staff's attitudes towards patient safety in healthcare organizations. However, to date there have been few studies that discuss the perceptions of patient safety both from hospital staff and upper management. The purpose of this paper is to improve and to develop better strategies regarding patient safety in healthcare organizations. The Chinese version of SAQ based on the Taiwan Joint Commission on Hospital Accreditation is used to evaluate the perceptions of hospital staff. The current study then lies in applying importance-performance analysis technique to identify the major strengths and weaknesses of the safety culture. The results show that teamwork climate, safety climate, job satisfaction, stress recognition and working conditions are major strengths and should be maintained in order to provide a better patient safety culture. On the contrary, perceptions of management and hospital handoffs and transitions are important weaknesses and should be improved immediately. Research limitations/implications - The research is restricted in generalizability. The assessment of hospital staff in patient safety culture is physicians and registered nurses. It would be interesting to further evaluate other staff's (e.g. technicians, pharmacists and others) opinions regarding patient safety culture in the hospital. Few studies have clearly evaluated the perceptions of healthcare organization management regarding patient safety culture. Healthcare managers enable to take more effective actions to improve the level of patient safety by investigating key characteristics (either strengths or weaknesses) that healthcare organizations should focus on.

  6. Technical Support to an Operating PWR vis-a-vis Safety Analysis

    International Nuclear Information System (INIS)

    Gul, Subhan; Khan, M.; Chughtai, M. Kamran

    2011-01-01

    Currently a PWR of 300 MWe capacity CHASNUPP-I is in operation since the year 2000. Technical support being provided includes in-core fuel management and corresponding safety analysis for the reshuffled core for the next cycle. Currently calculation and analysis were performed for Cycle 6 to achieve the safe and economical loading pattern. The technique used is designated as out in mode (modified). In this technique, most of the fresh fuel assemblies are not directly located at the periphery of the core, but near the boundary. This technique has the advantage that without using burnable absorber we can design a low leakage core with extended cycle and maximum batch averaged burnup. (author)

  7. Safety Analysis for Power Reactor Protection System

    International Nuclear Information System (INIS)

    Eisawy, E.A.; Sallam, H.

    2012-01-01

    The main function of a Reactor Protection System (RPS) is to safely shutdown the reactor and prevents the release of radioactive materials. The purpose of this paper is to present a technique and its application for used in the analysis of safety system of the Nuclear Power Plant (NPP). A more advanced technique has been presented to accurately study such problems as the plant availability assessments and Technical Specifications evaluations that are becoming increasingly important. The paper provides the Markov model for the Reactor Protection System of the NPP and presents results of model evaluations for two testing policies in technical specifications. The quantification of the Markov model provides the probability values that the system will occupy each of the possible states as a function of time.

  8. Recent progress in safety-related applications of reactor noise analysis

    International Nuclear Information System (INIS)

    Hirota, Jitsuya; Shinohara, Yoshikuni; Saito, Keiichi

    1982-01-01

    Recent progress in safety-related applications of reactor noise analysis is reviewed, mainly referring to various papers presented at the Third Specialists' Meeting on Reactor Noise (SMORN-III) held in Tokyo in 1981. Advances in application of autoregressive model, coherence analysis and pattern recognition technique are significant since SMORN-II in 1977. Development of reactor diagnosis systems based on noise analysis is in progress. Practical experiences in the safety-related applications to power plants are being accumulated. Advances in quantitative monitoring of vibration of internal structures in PWR and diagnosis of core stability and control system characteristics in BWR are notable. Acoustic methods are also improved to detect sodium boiling in LMFBR. The Reactor Noise Analysis Benchmark Test performed by Japan in connection with SMORN-III is successful so that it is possible to proceed to the second stage of the benchmark test. (author)

  9. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    International Nuclear Information System (INIS)

    1995-09-01

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: sm-bullet Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) sm-bullet Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as open-quotes lowclose quotes hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with open-quotes moderateclose quotes or open-quotes highclose quotes hazard classifications

  10. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: {sm_bullet} Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) {sm_bullet} Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as {open_quotes}low{close_quotes} hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with {open_quotes}moderate{close_quotes} or {open_quotes}high{close_quotes} hazard classifications.

  11. Techniques and applications of the human reliability analysis in nuclear facilities

    International Nuclear Information System (INIS)

    Pinto, Fausto C.

    1995-01-01

    The analysis and prediction of the man-machine interaction are the objectives of human reliability analysis. In this work is presented in a manner that could be used by experts in the field of Probabilistic Safety Assessment, considering primarily the aspects of human errors. The Technique of Human Error Rate Prediction (THERP) is used in large scale to obtain data on human error. Applications of this technique are presented, as well as aspects of the state-of-art and of research and development of this particular field of work, where the construction of a reliable data bank is considered essential. In this work is also developed an application of the THERP for the TRIGA Mark 1 IPR R-1 Reactor of the Centro de Desenvolvimento de Tecnologia Nuclear, Brazilian research institute of nuclear technology. The results indicate that some changes must be made in the emergency procedures of the reactor, in order to achieve a higher level of safety

  12. An effective technique for the software requirements analysis of NPP safety-critical systems, based on software inspection, requirements traceability, and formal specification

    International Nuclear Information System (INIS)

    Koo, Seo Ryong; Seong, Poong Hyun; Yoo, Junbeom; Cha, Sung Deok; Yoo, Yeong Jae

    2005-01-01

    A thorough requirements analysis is indispensable for developing and implementing safety-critical software systems such as nuclear power plant (NPP) software systems because a single error in the requirements can generate serious software faults. However, it is very difficult to completely analyze system requirements. In this paper, an effective technique for the software requirements analysis is suggested. For requirements verification and validation (V and V) tasks, our technique uses software inspection, requirement traceability, and formal specification with structural decomposition. Software inspection and requirements traceability analysis are widely considered the most effective software V and V methods. Although formal methods are also considered an effective V and V activity, they are difficult to use properly in the nuclear fields as well as in other fields because of their mathematical nature. In this work, we propose an integrated environment (IE) approach for requirements, which is an integrated approach that enables easy inspection by combining requirement traceability and effective use of a formal method. The paper also introduces computer-aided tools for supporting IE approach for requirements. Called the nuclear software inspection support and requirements traceability (NuSISRT), the tool incorporates software inspection, requirement traceability, and formal specification capabilities. We designed the NuSISRT to partially automate software inspection and analysis of requirement traceability. In addition, for the formal specification and analysis, we used the formal requirements specification and analysis tool for nuclear engineering (NuSRS)

  13. Safety analysis of autonomous excavator functionality

    International Nuclear Information System (INIS)

    Seward, D.; Pace, C.; Morrey, R.; Sommerville, I.

    2000-01-01

    This paper presents an account of carrying out a hazard analysis to define the safety requirements for an autonomous robotic excavator. The work is also relevant to the growing generic class of heavy automated mobile machinery. An overview of the excavator design is provided and the concept of a safety manager is introduced. The safety manager is an autonomous module responsible for all aspects of system operational safety, and is central to the control system's architecture. Each stage of the hazard analysis is described, i.e. system model creation, hazard definition and hazard analysis. Analysis at an early stage of the design process, and on a system that interfaces directly to an unstructured environment, exposes certain issues relevant to the application of current hazard analysis methods. The approach taken in the analysis is described. Finally, it is explained how the results of the hazard analysis have influenced system design, in particular, safety manager specifications. Conclusions are then drawn about the applicability of hazard analysis of requirements in general, and suggestions are made as to how the approach can be taken further

  14. Solid waste burial grounds interim safety analysis

    International Nuclear Information System (INIS)

    Saito, G.H.

    1994-01-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment

  15. Solid waste burial grounds interim safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  16. Research on the improvement of nuclear safety

    International Nuclear Information System (INIS)

    Yoo, Keon Joong; Kim, Dong Soo; Kim, Hui Dong; Park, Chang Kyu

    1993-06-01

    To improve the nuclear safety, this project is divided into three areas which are the development of safety analysis technology, the development of severe accident analysis technology and the development of integrated safety assessment technology. 1. The development of safety analysis technology. The present research aims at the development of necessary technologies for nuclear safety analysis in Korea. Establishment of the safety analysis technologies enables to reduce the expenditure both by eliminating excessive conservatisms incorporated in nuclear reactor design and by increasing safety margins in operation. It also contributes to improving plant safety through realistic analyses of the Emergency Operating Procedures (EOP). 2. The development of severe accident analysis technology. By the computer codes (MELCOR and CONTAIN), the in-vessel and the ex-vessel severe accident phenomena are simulated. 3. The development of integrated safety assessment technology. In the development of integrated safety assessment techniques, the included research areas are the improvement of PSA computer codes, the basic study on the methodology for human reliability analysis (HRA) and common cause failure (CCF). For the development of the level 2 PSA computer code, the basic research for the interface between level 1 and 2 PSA, the methodology for the treatment of containment event tree are performed. Also the new technologies such as artificial intelligence, object-oriented programming techniques are used for the improvement of computer code and the assessment techniques

  17. Computational Methods for Sensitivity and Uncertainty Analysis in Criticality Safety

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Childs, R.L.; Rearden, B.T.

    1999-01-01

    Interest in the sensitivity methods that were developed and widely used in the 1970s (the FORSS methodology at ORNL among others) has increased recently as a result of potential use in the area of criticality safety data validation procedures to define computational bias, uncertainties and area(s) of applicability. Functional forms of the resulting sensitivity coefficients can be used as formal parameters in the determination of applicability of benchmark experiments to their corresponding industrial application areas. In order for these techniques to be generally useful to the criticality safety practitioner, the procedures governing their use had to be updated and simplified. This paper will describe the resulting sensitivity analysis tools that have been generated for potential use by the criticality safety community

  18. Safety analysis procedures for PHWR

    International Nuclear Information System (INIS)

    Min, Byung Joo; Kim, Hyoung Tae; Yoo, Kun Joong

    2004-03-01

    The methodology of safety analyses for CANDU reactors in Canada, a vendor country, uses a combination of best-estimate physical models and conservative input parameters so as to minimize the uncertainty of the plant behavior predictions. As using the conservative input parameters, the results of the safety analyses are assured the regulatory requirements such as the public dose, the integrity of fuel and fuel channel, the integrity of containment and reactor structures, etc. However, there is not the comprehensive and systematic procedures for safety analyses for CANDU reactors in Korea. In this regard, the development of the safety analyses procedures for CANDU reactors is being conducted not only to establish the safety analyses system, but also to enhance the quality assurance of the safety assessment. In the first phase of this study, the general procedures of the deterministic safety analyses are developed. The general safety procedures are covered the specification of the initial event, selection of the methodology and accident sequences, computer codes, safety analysis procedures, verification of errors and uncertainties, etc. Finally, These general procedures of the safety analyses are applied to the Large Break Loss Of Coolant Accident (LBLOCA) in Final Safety Analysis Report (FSAR) for Wolsong units 2, 3, 4

  19. Comparison of safety margins for leak-before-break assessment of 500 MWe PHWR straight pipes: using contemporary techniques

    International Nuclear Information System (INIS)

    Rastogi, Rohit; Bhasin, Vivek; Kushwaha, H.S.

    1998-01-01

    The Leak Before Break (LBB) analysis of Primary Heat Transport (PHT) Piping of 500 MWe Indian PHWR is being performed using different well established techniques like R6 method (Nuclear Electric UK) and J-Tearing based methods (USNRC). These methods show that PHT piping has required safety margins and can be qualified for LBB. These analysis also showed that the piping has high fracture toughness and plastic collapse is the dominant mode of failure. To enhance the confidence in the results obtained from the above methods, further studies were done on the PHT piping. Procedures which predicted margins against plastic collapse were used. The analysis procedures used were Modified Limit Load Method, MPA Method (both from Germany), Moments Method (from Italy) and the Z-Factor method given in ASME Boiler and Pressure Vessel Code. The safety margins obtained from these analysis satisfied the LBB requirements. A table was generated which compared the safety margins obtained using all the above mentioned procedures. This report presents the results of this study. (author)

  20. On statistical inference in time series analysis of the evolution of road safety.

    Science.gov (United States)

    Commandeur, Jacques J F; Bijleveld, Frits D; Bergel-Hayat, Ruth; Antoniou, Constantinos; Yannis, George; Papadimitriou, Eleonora

    2013-11-01

    Data collected for building a road safety observatory usually include observations made sequentially through time. Examples of such data, called time series data, include annual (or monthly) number of road traffic accidents, traffic fatalities or vehicle kilometers driven in a country, as well as the corresponding values of safety performance indicators (e.g., data on speeding, seat belt use, alcohol use, etc.). Some commonly used statistical techniques imply assumptions that are often violated by the special properties of time series data, namely serial dependency among disturbances associated with the observations. The first objective of this paper is to demonstrate the impact of such violations to the applicability of standard methods of statistical inference, which leads to an under or overestimation of the standard error and consequently may produce erroneous inferences. Moreover, having established the adverse consequences of ignoring serial dependency issues, the paper aims to describe rigorous statistical techniques used to overcome them. In particular, appropriate time series analysis techniques of varying complexity are employed to describe the development over time, relating the accident-occurrences to explanatory factors such as exposure measures or safety performance indicators, and forecasting the development into the near future. Traditional regression models (whether they are linear, generalized linear or nonlinear) are shown not to naturally capture the inherent dependencies in time series data. Dedicated time series analysis techniques, such as the ARMA-type and DRAG approaches are discussed next, followed by structural time series models, which are a subclass of state space methods. The paper concludes with general recommendations and practice guidelines for the use of time series models in road safety research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. ESSAA: Embedded system safety analysis assistant

    Science.gov (United States)

    Wallace, Peter; Holzer, Joseph; Guarro, Sergio; Hyatt, Larry

    1987-01-01

    The Embedded System Safety Analysis Assistant (ESSAA) is a knowledge-based tool that can assist in identifying disaster scenarios. Imbedded software issues hazardous control commands to the surrounding hardware. ESSAA is intended to work from outputs to inputs, as a complement to simulation and verification methods. Rather than treating the software in isolation, it examines the context in which the software is to be deployed. Given a specified disasterous outcome, ESSAA works from a qualitative, abstract model of the complete system to infer sets of environmental conditions and/or failures that could cause a disasterous outcome. The scenarios can then be examined in depth for plausibility using existing techniques.

  2. Safety evaluations required in the safety regulations for Monju and the validity confirmation of safety evaluation methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The purposes of this study are to perform the safety evaluations of the fast breeder reactor 'Monju' and to confirm the validity of the safety evaluation methods. In JFY 2012, the following results were obtained. As for the development of safety evaluation methods needed in the safety examination achieved for the reactor establishment permission, development of the analysis codes, such as a core damage analysis code, were carried out according to the plan. As for the development of the safety evaluation method needed for the risk informed safety regulation, the quantification technique of the event tree using the Continuous Markov chain Monte Carlo method (CMMC method) were studied. (author)

  3. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1982-01-01

    This paper describes a fault tree analysis package that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and project delays. The package operates interactively, allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis, system data can be derived automatically from a generic data bank. As the analysis proceeds, improved estimates of critical failure rates and test and maintenance schedules can be inserted. The technique is applied to the reliability analysis of the recently upgraded HIFAR Containment Isolation System. (author)

  4. Measurement techniques and safety culture in radiation protection -reflections after 37 years of occupation with measuring instruments

    International Nuclear Information System (INIS)

    Maushart, R.

    1994-01-01

    Safety Culture in radiation use and radiation protection implies primarily knowledge and competence of the decision makers. As the measuring techniques are basic for practical radiation protection, only such person can be called competent who has sufficient expertise on measuring techniques, and is able to evaluate its application and results. Safety Culture also implies the readiness to expose errors, and to learn from them. ''Believing in infallibility'' excludes Safety Culture. Therefore, correctly applied measuring technique contributes to recognize weak points early. How far it is used consciously and actively to prevent undesirable developments and exceeding of limits, can be considered outright as a yardstick for a high-ranking safety culture. Safety Culture as a whole, however, needs more than more measuring techniques. It requires its own and adequate Measurement Culture, presupposing also motivation and determination to measure. Therefore, education, training, knowledge and consciousness of safety of the people who are responsible for measurements are decisive for successful radiation protection. (orig.) [de

  5. RISMC Advanced Safety Analysis Project Plan – FY 2015 - FY 2019

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngblood, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    In this report, a project plan is developed, focused on industry applications, using Risk-Informed Safety Margin Characterization (RISMC) tools and methods applied to realistic, relevant, and current interest issues to the operating nuclear fleet. RISMC focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. This set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. The proposed plan will focus on application of the RISMC toolkit, in particular, solving realistic problems of important current issues to the nuclear industry, in collaboration with plant owners and operators to demonstrate the usefulness of these tools in decision making.

  6. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  7. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    International Nuclear Information System (INIS)

    E.N. Lindner

    2004-01-01

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  8. Safety balance: Analysis of safety systems; Bilans de surete: analyse par les organismes de surete

    Energy Technology Data Exchange (ETDEWEB)

    Delage, M; Giroux, C

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses.

  9. SIMMER as a safety analysis tool

    International Nuclear Information System (INIS)

    Smith, L.L.; Bell, C.R.; Bohl, W.R.; Bott, T.F.; Dearing, J.F.; Luck, L.B.

    1982-01-01

    SIMMER has been used for numerous applications in fast reactor safety, encompassing both accident and experiment analysis. Recent analyses of transition-phase behavior in potential core disruptive accidents have integrated SIMMER testing with the accident analysis. Results of both the accident analysis and the verification effort are presented as a comprehensive safety analysis program

  10. Information System Hazard Analysis: A Method for Identifying Technology-induced Latent Errors for Safety.

    Science.gov (United States)

    Weber, Jens H; Mason-Blakley, Fieran; Price, Morgan

    2015-01-01

    Many health information and communication technologies (ICT) are safety-critical; moreover, reports of technology-induced adverse events related to them are plentiful in the literature. Despite repeated criticism and calls to action, recent data collected by the Institute of Medicine (IOM) and other organization do not indicate significant improvements with respect to the safety of health ICT systems. A large part of the industry still operates on a reactive "break & patch" model; the application of pro-active, systematic hazard analysis methods for engineering ICT that produce "safe by design" products is sparse. This paper applies one such method: Information System Hazard Analysis (ISHA). ISHA adapts and combines hazard analysis techniques from other safety-critical domains and customizes them for ICT. We provide an overview of the steps involved in ISHA and describe.

  11. Safety assurance logic techniques for evaluation of accident prevention and mitigation

    International Nuclear Information System (INIS)

    McWethy, L.M.; Hagan, J.W.

    1976-01-01

    Safety assurance methods have been developed and applied in reactor safety assessments of FFTF. These methods promote visibility of the total safety provided by the plant, both in prevention of off-normal or accident conditions as well as provision of various features which terminate conditions within acceptable bounds if such conditions should occur. One of the primary techniques applied in safety assurance is the development of safety assurance diagrams. These diagrams explicitly identify the multiple lines of defense which prevent accident progression. The diagrams graphically demonstrate the defense-in-depth provided by the plant for each postulated occurrence. Lines of defense are shown against ever having an occurrence in the first place; thus giving appropriate emphasis on accident prevention, and visibility to the designer's role in promoting this level of safety. These diagrams, or accident process trees, also show graphically the various paths of postulated accident progression to their logical termination. Evaluation of the importance and strength of each line-of-defense assures fulfillment of the safety objectives of the overall plant system

  12. Process hazards analysis (PrHA) program, bridging accident analyses and operational safety

    International Nuclear Information System (INIS)

    Richardson, J.A.; McKernan, S.A.; Vigil, M.J.

    2003-01-01

    safety are incorporated so the worker can readily identify the safety parameters of the their work. System safety tools such as Preliminary Hazard Analysis, What-If Analysis, Hazard and Operability Analysis as well as other techniques as necessary provide the groundwork for both determining bounding conditions for facility safety, operational safety, and day-to-clay worker safety.

  13. Software analysis by simulation for nuclear plant availability and safety goals

    International Nuclear Information System (INIS)

    Lapassat, A.M.; Segalard, J.; Salichon, M.; Le Meur, M.; Boulc'h, J.

    1988-01-01

    The microprocessors utilisation for monitoring protection and safety of nuclear reactor has become reality in the eighties. The authorities responsible for reactor safety systems have considered the necessity of the correct functioning of reactor control systems. The problems take off, when analysis of software, has led us in a first time to develop a completely software tool of verification and validation of programs and specifications. The CEA (French Atomic Energie Commission) responsible of reliable distributed techniques of nuclear plant discusses in this paper the software test and simulation tools used to analyse real-time software. The tool O.S.T. make part of a big program of help for the conception and the evaluation for the systems' fault tolerance which the European ESPRIT SMART no. 1609 (System Measurement and Architecture Technique) will be the kernel [fr

  14. Safety management in NPPs using an evolutionary algorithm technique

    International Nuclear Information System (INIS)

    Mishra, Alok; Patwardhan, Anand; Verma, A.K.

    2007-01-01

    The general goal of safety management in Nuclear Power Plants (NPPs) is to make requirements and activities more risk effective and less costly. The technical specification and maintenance (TS and M) activities in a plant are associated with controlling risk or with satisfying requirements, and are candidates to be evaluated for their resource effectiveness in risk-informed applications. Accordingly, the risk-based analysis of technical specification (RBTS) is being considered in evaluating current TS. The multi-objective optimization of the TS and M requirements of a NPP based on risk and cost, gives the pareto-optimal solutions, from which the utility can pick its decision variables suiting its interest. In this paper, a multi-objective evolutionary algorithm technique has been used to make a trade-off between risk and cost both at the system level and at the plant level for loss of coolant accident (LOCA) and main steam line break (MSLB) as initiating events

  15. Development of safety analysis technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Suk K.; Song, J. H.; Chung, Y. J. and others

    1999-03-01

    Inherent safety features and safety system characteristics of the SMART integral reactor are investigated in this study. Performance and safety of the SMART conceptual design have been evaluated and confirmed through the performance and safety analyses using safety analysis system codes as well as a preliminary performance and safety analysis methodology. SMART design base events and their acceptance criteria are identified to develop a preliminary PIRT for the SMART integral reactor. Using the preliminary PIRT, a set of experimental program for the thermal hydraulic separate effect tests and the integral effect tests was developed for the thermal hydraulic model development and the system code validation. Safety characteristics as well as the safety issues of the integral reactor has been identified during the study, which will be used to resolve the safety issues and guide the regulatory criteria for the integral reactor. The results of the performance and safety analyses performed during the study were used to feedback for the SMART conceptual design. The performance and safety analysis code systems as well as the preliminary safety analysis methodology developed in this study will be validated as the SMART design evolves. The performance and safety analysis technology developed during the study will be utilized for the SMART basic design development. (author)

  16. Computer aided safety analysis 1989

    International Nuclear Information System (INIS)

    1990-04-01

    The meeting was conducted in a workshop style, to encourage involvement of all participants during the discussions. Forty-five (45) experts from 19 countries, plus 22 experts from the GDR participated in the meeting. A list of participants can be found at the end of this volume. Forty-two (42) papers were presented and discussed during the meeting. Additionally an open discussion was held on the possible directions of the IAEA programme on Computer Aided Safety Analysis. A summary of the conclusions of these discussions is presented in the publication. The remainder of this proceedings volume comprises the transcript of selected technical papers (22) presented in the meeting. It is the intention of the IAEA that the publication of these proceedings will extend the benefits of the discussions held during the meeting to a larger audience throughout the world. The Technical Committee/Workshop on Computer Aided Safety Analysis was organized by the IAEA in cooperation with the National Board for Safety and Radiological Protection (SAAS) of the German Democratic Republic in Berlin. The purpose of the meeting was to provide an opportunity for discussions on experiences in the use of computer codes used for safety analysis of nuclear power plants. In particular it was intended to provide a forum for exchange of information among experts using computer codes for safety analysis under the Technical Cooperation Programme on Safety of WWER Type Reactors (RER/9/004) and other experts throughout the world. A separate abstract was prepared for each of the 22 selected papers. Refs, figs tabs and pictures

  17. Reliability analysis of large scaled structures by optimization technique

    International Nuclear Information System (INIS)

    Ishikawa, N.; Mihara, T.; Iizuka, M.

    1987-01-01

    This paper presents a reliability analysis based on the optimization technique using PNET (Probabilistic Network Evaluation Technique) method for the highly redundant structures having a large number of collapse modes. This approach makes the best use of the merit of the optimization technique in which the idea of PNET method is used. The analytical process involves the minimization of safety index of the representative mode, subjected to satisfaction of the mechanism condition and of the positive external work. The procedure entails the sequential performance of a series of the NLP (Nonlinear Programming) problems, where the correlation condition as the idea of PNET method pertaining to the representative mode is taken as an additional constraint to the next analysis. Upon succeeding iterations, the final analysis is achieved when a collapse probability at the subsequent mode is extremely less than the value at the 1st mode. The approximate collapse probability of the structure is defined as the sum of the collapse probabilities of the representative modes classified by the extent of correlation. Then, in order to confirm the validity of the proposed method, the conventional Monte Carlo simulation is also revised by using the collapse load analysis. Finally, two fairly large structures were analyzed to illustrate the scope and application of the approach. (orig./HP)

  18. Subseabed disposal safety analysis

    International Nuclear Information System (INIS)

    Koplick, C.M.; Kabele, T.J.

    1982-01-01

    This report summarizes the status of work performed by Analytic Sciences Corporation (TASC) in FY'81 on subseabed disposal safety analysis. Safety analysis for subseabed disposal is divided into two phases: pre-emplacement which includes all transportation, handling, and emplacement activities; and long-term (post-emplacement), which is concerned with the potential hazard after waste is safely emplaced. Details of TASC work in these two areas are provided in two technical reports. The work to date, while preliminary, supports the technical and environmental feasibility of subseabed disposal of HLW

  19. 14 CFR 33.75 - Safety analysis.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Safety analysis. 33.75 Section 33.75... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.75 Safety analysis. (a... consequences of all failures that can reasonably be expected to occur. This analysis will take into account, if...

  20. 14 CFR 35.15 - Safety analysis.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Safety analysis. 35.15 Section 35.15... STANDARDS: PROPELLERS Design and Construction § 35.15 Safety analysis. (a)(1) The applicant must analyze the.... This analysis will take into account, if applicable: (i) The propeller system in a typical installation...

  1. Safety analysis of spent fuel packaging

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi; Taniuchi, Hiroaki; Tai, Hideto

    1987-01-01

    Many types of spent fuel packagings have been manufactured and been used for transport of spent fuels discharged from nuclear power plant. These spent fuel packagings need to be assesed thoroughly about safety transportation because spent fuels loaded into the packaging have high radioactivity and generation of heat. This paper explains the outline of safety analysis of a packaging, Safety analysis is performed for structural, thermal, containment, shielding and criticality factors, and MARC-CDC, TRUMP, ORIGEN, QAD, ANISN, KENO, etc computer codes are used for such analysis. (author)

  2. Statistical considerations on safety analysis

    International Nuclear Information System (INIS)

    Pal, L.; Makai, M.

    2004-01-01

    The authors have investigated the statistical methods applied to safety analysis of nuclear reactors and arrived at alarming conclusions: a series of calculations with the generally appreciated safety code ATHLET were carried out to ascertain the stability of the results against input uncertainties in a simple experimental situation. Scrutinizing those calculations, we came to the conclusion that the ATHLET results may exhibit chaotic behavior. A further conclusion is that the technological limits are incorrectly set when the output variables are correlated. Another formerly unnoticed conclusion of the previous ATHLET calculations that certain innocent looking parameters (like wall roughness factor, the number of bubbles per unit volume, the number of droplets per unit volume) can influence considerably such output parameters as water levels. The authors are concerned with the statistical foundation of present day safety analysis practices and can only hope that their own misjudgment will be dispelled. Until then, the authors suggest applying correct statistical methods in safety analysis even if it makes the analysis more expensive. It would be desirable to continue exploring the role of internal parameters (wall roughness factor, steam-water surface in thermal hydraulics codes, homogenization methods in neutronics codes) in system safety codes and to study their effects on the analysis. In the validation and verification process of a code one carries out a series of computations. The input data are not precisely determined because measured data have an error, calculated data are often obtained from a more or less accurate model. Some users of large codes are content with comparing the nominal output obtained from the nominal input, whereas all the possible inputs should be taken into account when judging safety. At the same time, any statement concerning safety must be aleatory, and its merit can be judged only when the probability is known with which the

  3. Effect Analysis of Digital I and C Systems on Plant Safety based on Fault-Tree Analysis

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Jung, Wondea

    2014-01-01

    Deterioration and an inadequate supply of components of analog I and C systems have led to inefficient and costly maintenance. Moreover, since the fast evolution of digital technology has enabled more reliable functions to be designed for NPP safety, the transition from analog to digital has been accelerated. Owing to the distinguishable characteristics of digital I and C systems, a reliability analysis of digital systems has become an important element of a probabilistic safety assessment (PSA). Digital I and C systems have unique characteristics such as fault-tolerant techniques and software. However, these features have not been properly considered yet in most NPP PSA models. The effect of digital I and C systems should be evaluated by comparing them to that of analog I and C systems. Before installing a digital I and C system, even though it is expected that the plant safety can be improved through the advantageous features of digital I and C systems, it should be validated whether the total NPP safety is better than analog systems or is the same at least. In this work, the fault-tree (FT) technique, which is most widely used in a PSA, was used to compare the effects of analog and digital I and C systems. From a case study, the results of plant safety were compared. In this work, the effect of a digital RPS was evaluated by comparing it to that of an analog RPS based on the FT models. In the evaluation results, it was observed that digital RPS has a positive effect on reducing the system unavailability. The analysis results can be used for the development of a guide for evaluating digital I and C systems and reliability requirements

  4. Software FMEA analysis for safety-related application software

    International Nuclear Information System (INIS)

    Park, Gee-Yong; Kim, Dong Hoon; Lee, Dong Young

    2014-01-01

    Highlights: • We develop a modified FMEA analysis suited for applying to software architecture. • A template for failure modes on a specific software language is established. • A detailed-level software FMEA analysis on nuclear safety software is presented. - Abstract: A method of a software safety analysis is described in this paper for safety-related application software. The target software system is a software code installed at an Automatic Test and Interface Processor (ATIP) in a digital reactor protection system (DRPS). For the ATIP software safety analysis, at first, an overall safety or hazard analysis is performed over the software architecture and modules, and then a detailed safety analysis based on the software FMEA (Failure Modes and Effect Analysis) method is applied to the ATIP program. For an efficient analysis, the software FMEA analysis is carried out based on the so-called failure-mode template extracted from the function blocks used in the function block diagram (FBD) for the ATIP software. The software safety analysis by the software FMEA analysis, being applied to the ATIP software code, which has been integrated and passed through a very rigorous system test procedure, is proven to be able to provide very valuable results (i.e., software defects) that could not be identified during various system tests

  5. Safety analysis of an expert reactor protection system in nuclear power plants

    International Nuclear Information System (INIS)

    El-Kafas, A.A.

    1997-01-01

    The purpose of the dissertation is to develop real time expert reactor protection system (ERPS) for operational safety of pressurized water reactor nuclear power plant. The system is developed to diagnose plant failures and for identification plant transients (with and without scram). For this erps, probabilistic safety analysis techniques are used to check the availability and priority of the recommended safety system in case of plant accidents. The real - time information during transients and accidents can be obtained to assess the operator in his decision - making. Also, the ERPS is able to give advice for the reactor operator to take the appropriate corrective action during abnormal situations. 5-15 figs., 42 refs

  6. Gas-cooled reactor safety and accident analysis

    International Nuclear Information System (INIS)

    1985-12-01

    The Specialists' Meeting on Gas-Cooled Reactor Safety and Accident Analysis was convened by the International Atomic Energy Agency in Oak Ridge on the invitation of the Department of Energy in Washington, USA. The meeting was hosted by the Oak Ridge National Laboratory. The purpose of the meeting was to provide an opportunity to compare and discuss results of safety and accident analysis of gas-cooled reactors under development, construction or in operation, to review their lay-out, design, and their operational performance, and to identify areas in which additional research and development are needed. The meeting emphasized the high safety margins of gas-cooled reactors and gave particular attention to the inherent safety features of small reactor units. The meeting was subdivided into four technical sessions: Safety and Related Experience with Operating Gas-Cooled Reactors (4 papers); Risk and Safety Analysis (11 papers); Accident Analysis (9 papers); Miscellaneous Related Topics (5 papers). A separate abstract was prepared for each of these papers

  7. Safety analysis - current and future regulatory challenges

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, T., E-mail: Terry.Jamieson@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2015-07-01

    'Full text:' The current and future regulatory challenges associated with deterministic safety analysis are reviewed, including: 1. The CNSC's and safety control areas. 2. Traditional safety analysis approach. 3. Experience gained and impact. 4. Current analysis and regulatory approaches. 5. Current status. 6. Complexity and challenges In particular, the technical, regulatory and strategic aspects of these challenges are discussed. (author)

  8. Safety analysis - current and future regulatory challenges

    International Nuclear Information System (INIS)

    Jamieson, T.

    2015-01-01

    'Full text:' The current and future regulatory challenges associated with deterministic safety analysis are reviewed, including: 1. The CNSC's and safety control areas. 2. Traditional safety analysis approach. 3. Experience gained and impact. 4. Current analysis and regulatory approaches. 5. Current status. 6. Complexity and challenges In particular, the technical, regulatory and strategic aspects of these challenges are discussed. (author)

  9. Development of safety analysis technology for LMR

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kwon, Y. M.; Kim, K. D.

    2000-05-01

    The analysis methodologies as well as the analysis computer code system for the transient, HCDA, and containment performance analyses, which are required for KALIMER safety analyses, have been developed. The SSC-K code has been developed based on SSC-L which is an analysis code for loop type LMR, by improving models necessary for the KALIMER system analysis, and additional models have been added to the code. In addition, HCDA analysis model has been developed and the containment performance analysis code has been also improved. The preliminary basis for the safety analysis has been established, and the preliminary safety analyses for the key design features have been performed. In addition, a state-of-art analysis for LMR PSA and overseas safety and licensing requirements have been reviewed. The design database for the systematic management of the design documents as well as design processes has been established as well

  10. Development of safety analysis technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kwon, Y. M.; Kim, K. D. [and others

    2000-05-01

    The analysis methodologies as well as the analysis computer code system for the transient, HCDA, and containment performance analyses, which are required for KALIMER safety analyses, have been developed. The SSC-K code has been developed based on SSC-L which is an analysis code for loop type LMR, by improving models necessary for the KALIMER system analysis, and additional models have been added to the code. In addition, HCDA analysis model has been developed and the containment performance analysis code has been also improved. The preliminary basis for the safety analysis has been established, and the preliminary safety analyses for the key design features have been performed. In addition, a state-of-art analysis for LMR PSA and overseas safety and licensing requirements have been reviewed. The design database for the systematic management of the design documents as well as design processes has been established as well.

  11. Risk analysis and safety rationale

    International Nuclear Information System (INIS)

    Bengtsson, G.

    1989-01-01

    Decision making with respect to safety is becoming more and more complex. The risk involved must be taken into account together with numerous other factors such as the benefits, the uncertainties and the public perception. Can the decision maker be aided by some kind of system, general rules of thumb, or broader perspective on similar decisions? This question has been addressed in a joint Nordic project relating to nuclear power. Modern techniques for risk assessment and management have been studied, and parallels drawn to such areas as offshore safety and management of toxic chemicals in the environment. The report summarises the finding of 5 major technical reports which have been published in the NORD-series. The topics includes developments, uncertainties and limitations in probabilistic safety assessments, negligible risks, risk-cost trade-offs, optimisation of nuclear safety and radiation protection, and the role of risks in the decision making process. (author) 84 refs

  12. Safety analysis reports - new strategies

    International Nuclear Information System (INIS)

    Booth, J.A.

    1994-01-01

    Within the past year there have been many external changes in the requirements of safety analysis reports. Now there is emphasis on open-quotes graded approachesclose quotes depending on the Hazard Classification of the project. The Energy Facility Contractors Group (EFCOG) has a Safety Analysis Working Group. The results of this group for the past year are discussed as well as the implications for EG ampersand G. New strategies include ideas for incorporating the graded approach, auditable safety documents, additional guidance for Hazard Classification per DOE-STD-1027-92. The emphasis in the paper is on those projects whose hazard classification is category three or less

  13. Safety analysis, risk assessment, and risk acceptance criteria

    International Nuclear Information System (INIS)

    Jamali, K.

    1997-01-01

    This paper discusses a number of topics that relate safety analysis as documented in the Department of Energy (DOE) safety analysis reports (SARs), probabilistic risk assessments (PRA) as characterized primarily in the context of the techniques that have assumed some level of formality in commercial nuclear power plant applications, and risk acceptance criteria as an outgrowth of PRA applications. DOE SARs of interest are those that are prepared for DOE facilities under DOE Order 5480.23 and the implementing guidance in DOE STD-3009-94. It must be noted that the primary area of application for DOE STD-3009 is existing DOE facilities and that certain modifications of the STD-3009 approach are necessary in SARs for new facilities. Moreover, it is the hazard analysis (HA) and accident analysis (AA) portions of these SARs that are relevant to the present discussions. Although PRAs can be qualitative in nature, PRA as used in this paper refers more generally to all quantitative risk assessments and their underlying methods. HA as used in this paper refers more generally to all qualitative risk assessments and their underlying methods that have been in use in hazardous facilities other than nuclear power plants. This discussion includes both quantitative and qualitative risk assessment methods. PRA has been used, improved, developed, and refined since the Reactor Safety Study (WASH-1400) was published in 1975 by the Nuclear Regulatory Commission (NRC). Much debate has ensued since WASH-1400 on exactly what the role of PRA should be in plant design, reactor licensing, 'ensuring' plant and process safety, and a large number of other decisions that must be made for potentially hazardous activities. Of particular interest in this area is whether the risks quantified using PRA should be compared with numerical risk acceptance criteria (RACs) to determine whether a facility is 'safe.' Use of RACs requires quantitative estimates of consequence frequency and magnitude

  14. Deep Borehole Disposal Safety Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Tillman, Jack Bruce [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.

  15. National Waste Repository Novi Han operational safety analysis report. Safety assessment methodology

    International Nuclear Information System (INIS)

    2003-01-01

    The scope of the safety assessment (SA), presented includes: waste management functions (acceptance, conditioning, storage, disposal), inventory (current and expected in the future), hazards (radiological and non-radiological) and normal and accidental modes. The stages in the development of the SA are: criteria selection, information collection, safety analysis and safety assessment documentation. After the review the facilities functions and the national and international requirements, the criteria for safety level assessment are set. As a result from the 2nd stage actual parameters of the facility, necessary for safety analysis are obtained.The methodology is selected on the base of the comparability of the results with the results of previous safety assessments and existing standards and requirements. The procedure and requirements for scenarios selection are described. A radiological hazard categorisation of the facilities is presented. Qualitative hazards and operability analysis is applied. The resulting list of events are subjected to procedure for prioritization by method of 'criticality analysis', so the estimation of the risk is given for each event. The events that fall into category of risk on the boundary of acceptability or are unacceptable are subjected to the next steps of the analysis. As a result the lists with scenarios for PSA and possible design scenarios are established. PSA logical modeling and quantitative calculations of accident sequences are presented

  16. Development of several data bases related to reactor safety research including probabilistic safety assessment and incident analysis at JAERI

    International Nuclear Information System (INIS)

    Kobayashi, Kensuke; Oikawa, Tetsukuni; Watanabe, Norio; Izumi, Fumio; Higuchi, Suminori

    1986-01-01

    Presented are several databases developed at JAERI for reactor safety research including probabilistic safety assessment and incident analysis. First described are the recent developments of the databases such as 1) the component failure rate database, 2) the OECD/NEA/IRS information retrieval system, 3) the nuclear power plant database and so on. Then several issues are discussed referring mostly to the operation of the database (data input and transcoding) and to the retrieval and utilization of the information. Finally, emphasis is given to the increasing role which artifitial intelligence techniques such as natural language treatment and expert systems may play in improving the future capabilities of the databases. (author)

  17. A safety analysis of food waste-derived animal feeds from three typical conversion techniques in China.

    Science.gov (United States)

    Chen, Ting; Jin, Yiying; Shen, Dongsheng

    2015-11-01

    This study was based on the food waste to animal feed demonstration projects in China. A safety analysis of animal feeds from three typical treatment processes (i.e., fermentation, heat treatment, and coupled hydrothermal treatment and fermentation) was presented. The following factors are considered in this study: nutritive values characterized by organoleptic properties and general nutritional indices; the presence of bovine- and sheep-derived materials; microbiological indices for Salmonella, total coliform (TC), total aerobic plate counts (TAC), molds and yeast (MY), Staphylococcus Aureus (SA), and Listeria; chemical contaminant indices for hazardous trace elements such as Cr, Cd, and As; and nitrite and organic contaminants such as aflatoxin B1 (AFB1) and hexachlorocyclohexane (HCH). The present study reveals that the feeds from all three conversion processes showed balanced nutritional content and retained a certain feed value. The microbiological indices and the chemical contaminant indices for HCH, dichlorodiphenyltrichloroethane (DDT), nitrite, and mercury all met pertinent feed standards; however, the presence of bovine- and sheep-derived materials and a few chemical contaminants such as Pb were close to or might exceed the legislation permitted values in animal feeding. From the view of treatment techniques, all feed retained part of the nutritional values of the food waste after the conversion processes. Controlled heat treatment can guarantee the inactivation of bacterial pathogens, but none of the three techniques can guarantee the absence of cattle- and sheep-derived materials and acceptable levels of certain contaminants. The results obtained in this research and the feedstuffs legislation related to animal feed indicated that food waste-derived feed could be considered an adequate alternative to be used in animal diets, while the feeding action should be changed with the different qualities of the products, such as restrictions on the application

  18. Probabilistic safety analysis of transportation of spent fuel

    International Nuclear Information System (INIS)

    Subramaniam, Chitra

    1999-11-01

    The report presents the results of the study carried out to estimate the accident risk involved in the transport of spent fuel from Rajasthan Atomic Power Station near Kota to the fuel reprocessing plant at Tarapur. The technique of probabilistic safety analysis is used. The fuel considered is the Indian pressurised heavy water reactor fuel with a minimum cooling period of 485 days. The spent fuel is transported in a cuboidal, naturally-cooled shipping cask over a distance of 822 km by rail. The Indian rail accident statistics are used to estimate the basic rail accident frequency. The possible ways in which a release of radioactive material can occur from the spent fuel cask are identified by the fault tree analysis technique. The release sequences identified are classified into eight accident severity categories, and release fractions are assigned to each. The consequences resulting from the release are estimated by the computer code RADTRAN 4. Results of the risk analysis indicate that the accident risk values are very low and hence acceptable. Parametric studies show that the risk would continue to be small even if the controlling parameters were to simultaneously take extreme adverse values. (author)

  19. An Analysis of Trainers' Perspectives within an Ecological Framework: Factors that Influence Mine Safety Training Processes

    Directory of Open Access Journals (Sweden)

    Emily J. Haas

    2014-09-01

    Conclusion: This study offers a new technique to identify limitations in safety training systems and processes. The analysis suggests that training should be developed and disseminated with consideration of various levels—individual, interpersonal, organizational, and community—to promote skills. If factors identified within and between levels are addressed, it may be easier to sustain mineworker competencies that are established during safety training.

  20. NPP Temelin safety analysis reports and PSA status

    International Nuclear Information System (INIS)

    Mlady, O.

    1999-01-01

    To enhance the safety level of Temelin NPP, recommendations of the international reviews were implemented into the design as well as into organization of the plant construction and preparation for operation. The safety assessment of these design changes has been integrated and reflected in the Safety Analysis Reports, which follow the internationally accepted guidelines. All safety analyses within Safety Analysis Reports were repeated carefully considering technical improvements and replacements to complement preliminary safety documentation. These analyses were performed by advanced western computer codes to the depth and in the structure required by western standards. The Temelin NPP followed a systematic approach in the functional design of the Reactor Protection System and related safety analyses. Modifications of reactor protection system increase defense in depth and facilitate demonstrating that LOCA and radiological limits are met for non-LOCA events. The rigorous safety analysis methodology provides assurance that LOCA and radiological limits are met. Established and accepted safety analysis methodology and accepted criteria were applied to Temelin NPP meeting US NRC and Czech Republic requirements. IAEA guidelines and recommendations

  1. System safety engineering analysis handbook

    Science.gov (United States)

    Ijams, T. E.

    1972-01-01

    The basic requirements and guidelines for the preparation of System Safety Engineering Analysis are presented. The philosophy of System Safety and the various analytic methods available to the engineering profession are discussed. A text-book description of each of the methods is included.

  2. Current status of safety analysis report for ANPP

    International Nuclear Information System (INIS)

    Amirjanyan, A.

    1999-01-01

    Current situation concerning Armenian NPP safety analysis report is considered within the frame of accepted safety practice. Licensing procedure is being developed. Technical support group was established in the Armenian Nuclear Regulatory Authority (ANRA). The task of the group is to study modern methods of NPP in depth safety analysis for technical assistance for the ANRA, and perform independent safety assessments. ANRA will be obliged to demand assistance from various foreign organisations for preparation of different parts of the Safety Analysis Report like determination though certain parts can be prepared in Armenia

  3. NKS/SOS-1 seminar on safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, K. [Risoe National Lab., Roskilde (Denmark); Anderson, K. [Karinta-Konsult (Sweden); Pulkkinen, U. [VTT Automation (Finland)

    2001-05-01

    The report describes presentations and discussions at a seminar held at Risoe on March 22-23, 2000. The title of the seminar was NKS/SOS-1 - Safety Analysis. It dealt with issues of relevance for the safety analysis for the entire nuclear safety field (notably reactors and nuclear waste repositories). Such issues were: objectives of safety analysis, risk criteria, decision analysis, expert judgement and risk communication. In addition, one talk dealt with criteria for chemical industries in Europe. The seminar clearly showed that the concept of risk is multidimensional, which makes clarity and transparency essential elements in risk communication, and that there are issues of common concern between different applications, such as how to deal with different kinds of uncertainty and expert judgement. (au)

  4. HANFORD SAFETY ANALYSIS & RISK ASSESSMENT HANDBOOK (SARAH)

    Energy Technology Data Exchange (ETDEWEB)

    EVANS, C B

    2004-12-21

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S&M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard.

  5. Analytical techniques for wine analysis: An African perspective; a review

    International Nuclear Information System (INIS)

    Villiers, André de; Alberts, Phillipus; Tredoux, Andreas G.J.; Nieuwoudt, Hélène H.

    2012-01-01

    Highlights: ► Analytical techniques developed for grape and wine analysis in Africa are reviewed. ► The utility of infrared spectroscopic methods is demonstrated. ► An overview of separation of wine constituents by GC, HPLC, CE is presented. ► Novel LC and GC sample preparation methods for LC and GC are presented. ► Emerging methods for grape and wine analysis in Africa are discussed. - Abstract: Analytical chemistry is playing an ever-increasingly important role in the global wine industry. Chemical analysis of wine is essential in ensuring product safety and conformity to regulatory laws governing the international market, as well as understanding the fundamental aspects of grape and wine production to improve manufacturing processes. Within this field, advanced instrumental analysis methods have been exploited more extensively in recent years. Important advances in instrumental analytical techniques have also found application in the wine industry. This review aims to highlight the most important developments in the field of instrumental wine and grape analysis in the African context. The focus of this overview is specifically on the application of advanced instrumental techniques, including spectroscopic and chromatographic methods. Recent developments in wine and grape analysis and their application in the African context are highlighted, and future trends are discussed in terms of their potential contribution to the industry.

  6. Analytical techniques for wine analysis: An African perspective; a review

    Energy Technology Data Exchange (ETDEWEB)

    Villiers, Andre de, E-mail: ajdevill@sun.ac.za [Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch (South Africa); Alberts, Phillipus [Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch (South Africa); Tredoux, Andreas G.J.; Nieuwoudt, Helene H. [Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch (South Africa)

    2012-06-12

    Highlights: Black-Right-Pointing-Pointer Analytical techniques developed for grape and wine analysis in Africa are reviewed. Black-Right-Pointing-Pointer The utility of infrared spectroscopic methods is demonstrated. Black-Right-Pointing-Pointer An overview of separation of wine constituents by GC, HPLC, CE is presented. Black-Right-Pointing-Pointer Novel LC and GC sample preparation methods for LC and GC are presented. Black-Right-Pointing-Pointer Emerging methods for grape and wine analysis in Africa are discussed. - Abstract: Analytical chemistry is playing an ever-increasingly important role in the global wine industry. Chemical analysis of wine is essential in ensuring product safety and conformity to regulatory laws governing the international market, as well as understanding the fundamental aspects of grape and wine production to improve manufacturing processes. Within this field, advanced instrumental analysis methods have been exploited more extensively in recent years. Important advances in instrumental analytical techniques have also found application in the wine industry. This review aims to highlight the most important developments in the field of instrumental wine and grape analysis in the African context. The focus of this overview is specifically on the application of advanced instrumental techniques, including spectroscopic and chromatographic methods. Recent developments in wine and grape analysis and their application in the African context are highlighted, and future trends are discussed in terms of their potential contribution to the industry.

  7. Safety analysis reports. Current status (third key report)

    International Nuclear Information System (INIS)

    1999-01-01

    A review of Ukrainian regulations and laws concerned with Nuclear power and radiation safety is presented with an overview of the requirements for the Safety Analysis Report Contents. Status of Safety Analysis Reports (SAR) is listed for each particular Ukrainian NPP including SAR development schedules. Organisational scheme of SAR development works includes: general technical co-ordination on Safety Analysis Report development; list of leading organisations and utilization of technical support within international projects

  8. Exploring Machine Learning Techniques Using Patient Interactions in Online Health Forums to Classify Drug Safety

    Science.gov (United States)

    Chee, Brant Wah Kwong

    2011-01-01

    This dissertation explores the use of personal health messages collected from online message forums to predict drug safety using natural language processing and machine learning techniques. Drug safety is defined as any drug with an active safety alert from the US Food and Drug Administration (FDA). It is believed that this is the first…

  9. An integrated framework for cost- benefit analysis in road safety projects using AHP method

    Directory of Open Access Journals (Sweden)

    Mahsa Mohamadian

    2011-10-01

    Full Text Available Cost benefit analysis (CBA is a useful tool for investment decision-making from economic point of view. When the decision involves conflicting goals, the multi-attribute analysis approach is more capable; because there are some social and environmental criteria that cannot be valued or monetized by cost benefit analysis. The complex nature of decision-making in road safety normally makes it difficult to reach a single alternative solution that can satisfy all decision-making problems. Generally, the application of multi-attribute analysis in road sector is promising; however, the applications are in preliminary stage. Some multi-attribute analysis techniques, such as analytic hierarchy process (AHP have been widely used in practice. This paper presents an integrated framework with CBA and AHP methods to select proper alternative in road safety projects. The proposed model of this paper is implemented for a case study of improving a road to reduce the accidents in Iran. The framework is used as an aid to cost benefit tool in road safety projects.

  10. Expressing best practices in (risk) analysis and testing of safety-critical systems using patterns

    DEFF Research Database (Denmark)

    Herzner, Wolfgang; Sieverding, Sven; Kacimi, Omar

    2014-01-01

    The continuing pervasion of our society with safety-critical cyber-physical systems not only demands for adequate (risk) analysis, testing and verification techniques, it also generates growing experience on their use, which can be considered as important as the tools themselves for their efficient...

  11. Fault Tree Analysis for Safety/Security Verification in Aviation Software

    Directory of Open Access Journals (Sweden)

    Andrew J. Kornecki

    2013-01-01

    Full Text Available The Next Generation Air Traffic Management system (NextGen is a blueprint of the future National Airspace System. Supporting NextGen is a nation-wide Aviation Simulation Network (ASN, which allows integration of a variety of real-time simulations to facilitate development and validation of the NextGen software by simulating a wide range of operational scenarios. The ASN system is an environment, including both simulated and human-in-the-loop real-life components (pilots and air traffic controllers. Real Time Distributed Simulation (RTDS developed at Embry Riddle Aeronautical University, a suite of applications providing low and medium fidelity en-route simulation capabilities, is one of the simulations contributing to the ASN. To support the interconnectivity with the ASN, we designed and implemented a dedicated gateway acting as an intermediary, providing logic for two-way communication and transfer messages between RTDS and ASN and storage for the exchanged data. It has been necessary to develop and analyze safety/security requirements for the gateway software based on analysis of system assets, hazards, threats and attacks related to ultimate real-life future implementation. Due to the nature of the system, the focus was placed on communication security and the related safety of the impacted aircraft in the simulation scenario. To support development of safety/security requirements, a well-established fault tree analysis technique was used. This fault tree model-based analysis, supported by a commercial tool, was a foundation to propose mitigations assuring the gateway system safety and security. 

  12. Validation test case generation based on safety analysis ontology

    International Nuclear Information System (INIS)

    Fan, Chin-Feng; Wang, Wen-Shing

    2012-01-01

    Highlights: ► Current practice in validation test case generation for nuclear system is mainly ad hoc. ► This study designs a systematic approach to generate validation test cases from a Safety Analysis Report. ► It is based on a domain-specific ontology. ► Test coverage criteria have been defined and satisfied. ► A computerized toolset has been implemented to assist the proposed approach. - Abstract: Validation tests in the current nuclear industry practice are typically performed in an ad hoc fashion. This study presents a systematic and objective method of generating validation test cases from a Safety Analysis Report (SAR). A domain-specific ontology was designed and used to mark up a SAR; relevant information was then extracted from the marked-up document for use in automatically generating validation test cases that satisfy the proposed test coverage criteria; namely, single parameter coverage, use case coverage, abnormal condition coverage, and scenario coverage. The novelty of this technique is its systematic rather than ad hoc test case generation from a SAR to achieve high test coverage.

  13. Status of Ignalina's safety analysis reports

    International Nuclear Information System (INIS)

    Uspuras, E.

    1999-01-01

    Ignalina NPP is unique among RBMK type reactors in the scope and comprehensiveness of international studies which have been performed to verify its design parameters and analyze risk levels. International assistance took several forms, a very valuable mod of assistance utilized the knowledge of international experts in extensive international studies whose purpose was: collection, systematization and verification of plant design data; analysis of risk levels; recommendations leading to improvements in the safety lave; transfer of state of the art analytical methodology to Lithuanian specialists. The major large scale international studies include: probabilistic risk analysis; extensive international study meant to provide comprehensive overview of plant status with special emphasis on safety aspects; an extensive review of the Safety Analysis Report by an independent group of international experts. In spite of the safety improvements and analyses which have been performed at the Ignalina NPP, much remains to be done in the nearest future

  14. Hot Cell Facility (HCF) Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  15. Approach to uncertainty evaluation for safety analysis

    International Nuclear Information System (INIS)

    Ogura, Katsunori

    2005-01-01

    Nuclear power plant safety used to be verified and confirmed through accident simulations using computer codes generally because it is very difficult to perform integrated experiments or tests for the verification and validation of the plant safety due to radioactive consequence, cost, and scaling to the actual plant. Traditionally the plant safety had been secured owing to the sufficient safety margin through the conservative assumptions and models to be applied to those simulations. Meanwhile the best-estimate analysis based on the realistic assumptions and models in support of the accumulated insights could be performed recently, inducing the reduction of safety margin in the analysis results and the increase of necessity to evaluate the reliability or uncertainty of the analysis results. This paper introduces an approach to evaluate the uncertainty of accident simulation and its results. (Note: This research had been done not in the Japan Nuclear Energy Safety Organization but in the Tokyo Institute of Technology.) (author)

  16. Hot Cell Facility (HCF) Safety Analysis Report

    International Nuclear Information System (INIS)

    MITCHELL, GERRY W.; LONGLEY, SUSAN W.; PHILBIN, JEFFREY S.; MAHN, JEFFREY A.; BERRY, DONALD T.; SCHWERS, NORMAN F.; VANDERBEEK, THOMAS E.; NAEGELI, ROBERT E.

    2000-01-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR

  17. Manpower analysis in transportation safety. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.S.; Bowden, H.M.; Colford, C.A.; DeFilipps, P.J.; Dennis, J.D.; Ehlert, A.K.; Popkin, H.A.; Schrader, G.F.; Smith, Q.N.

    1977-05-01

    The project described provides a manpower review of national, state and local needs for safety skills, and projects future manning levels for transportation safety personnel in both the public and private sectors. Survey information revealed that there are currently approximately 121,000 persons employed directly in transportation safety occupations within the air carrier, highway and traffic safety, motor carrier, pipeline, rail carrier, and marine carrier transportation industry groups. The projected need for 1980 is over 145,000 of which over 80 percent will be in highway safety. An analysis of transportation tasks is included, and shows ten general categories about which the majority of safety activities are focused. A skills analysis shows a generally high level of educational background and several years of experience are required for most transportation safety jobs. An overall review of safety programs in the transportation industry is included, together with chapters on the individual transportation modes.

  18. Safety analysis of a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shimazu, Akira; Morimoto, Toshio

    1975-01-01

    In recent years, in order to satisfy the social requirements of environment and safety and also to cope with the current energy stringency, the installation of safe nuclear power plants is indispensable. Herein, safety analysis and evaluation to confirm quantitatively the safety design of a nuclear power plant become more and more important. The safety analysis and its methods for a high temperature gas-cooled reactor are described, with emphasis placed on the practices by Fuji Electric Manufacturing Co. Fundamental rule of securing plant safety ; safety analysis in normal operation regarding plant dynamic characteristics and radioactivity evaluation ; and safety analysis at the time of accidents regarding plant response to the accidents and radioactivity evaluation are explained. (Mori, K.)

  19. Safety analysis SFR 1. Long-term safety

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the regulatory

  20. Safety analysis SFR 1. Long-term safety

    International Nuclear Information System (INIS)

    2008-12-01

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the regulatory

  1. Safety analysis SFR 1. Long-term safety

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the

  2. Uncertainty and sensitivity analysis on probabilistic safety assessment of an experimental facility

    International Nuclear Information System (INIS)

    Burgazzi, L.

    2000-01-01

    The aim of this work is to perform an uncertainty and sensitivity analysis on the probabilistic safety assessment of the International Fusion Materials Irradiation Facility (IFMIF), in order to assess the effect on the final risk values of the uncertainties associated with the generic data used for the initiating events and component reliability and to identify the key quantities contributing to this uncertainty. The analysis is conducted on the expected frequency calculated for the accident sequences, defined through the event tree (ET) modeling. This is in order to increment credit to the ET model quantification, to calculate frequency distributions for the occurrence of events and, consequently, to assess if sequences have been correctly selected on the probability standpoint and finally to verify the fulfillment of the safety conditions. Uncertainty and sensitivity analysis are performed using respectively Monte Carlo sampling and an importance parameter technique. (author)

  3. Nuclear safety: operational aspects. 3. Hazard Analysis of Passive Systems

    International Nuclear Information System (INIS)

    Burgazzi, Luciano

    2001-01-01

    Interest has been aroused in recent years regarding the reliability assessment of passive systems being developed by suppliers, industries, utilities, and research organizations that aim at plant safety improvement and substantial simplification in its implementation. The approach to passive systems reliability assessment entails first a detailed system and safety analysis, and failure mode and effect analysis (FMEA) methodology has been chosen to perform the safety analysis at the system level. The FMEA technique allows identification of all potential failure modes in a system to evaluate their effects on the system and to classify them according to their severity; this technique identifies the reliability-critical areas in the system where modifications to the design are required to reduce the probability of failure. The present study concerns passive systems designed for decay heat removal relying on natural circulation that foresee, for the most part, a condenser immersed in a cooling pool. This is to identify and rank by importance the potential hazards related to passive-system equipment and operation that may critically affect the safety or availability of the plant. More specifically, the content of the paper analyzes the isolation condenser (IC) system foreseen for advanced boiling water reactors for removal of excess sensible and core decay heat by natural circulation during isolation transients. This FMEA analysis is the initial step to be accomplished as support for the development of a methodology aimed at the reliability assessment of thermal-hydraulic passive safety systems, providing important input to more detailed quantitative studies employing, for instance, event trees and fault trees or other reliability/availability models. Main purposes of the work are to identify important accident initiators, find out the possible consequences on the plant deriving from component failures, individuate possible causes, identify mitigating features and

  4. Incorporation of advanced accident analysis methodology into safety analysis reports

    International Nuclear Information System (INIS)

    2003-05-01

    The IAEA Safety Guide on Safety Assessment and Verification defines that the aim of the safety analysis should be by means of appropriate analytical tools to establish and confirm the design basis for the items important to safety, and to ensure that the overall plant design is capable of meeting the prescribed and acceptable limits for radiation doses and releases for each plant condition category. Practical guidance on how to perform accident analyses of nuclear power plants (NPPs) is provided by the IAEA Safety Report on Accident Analysis for Nuclear Power Plants. The safety analyses are performed both in the form of deterministic and probabilistic analyses for NPPs. It is customary to refer to deterministic safety analyses as accident analyses. This report discusses the aspects of using the advanced accident analysis methods to carry out accident analyses in order to introduce them into the Safety Analysis Reports (SARs). In relation to the SAR, purposes of deterministic safety analysis can be further specified as (1) to demonstrate compliance with specific regulatory acceptance criteria; (2) to complement other analyses and evaluations in defining a complete set of design and operating requirements; (3) to identify and quantify limiting safety system set points and limiting conditions for operation to be used in the NPP limits and conditions; (4) to justify appropriateness of the technical solutions employed in the fulfillment of predetermined safety requirements. The essential parts of accident analyses are performed by applying sophisticated computer code packages, which have been specifically developed for this purpose. These code packages include mainly thermal-hydraulic system codes and reactor dynamics codes meant for the transient and accident analyses. There are also specific codes such as those for the containment thermal-hydraulics, for the radiological consequences and for severe accident analyses. In some cases, codes of a more general nature such

  5. Software safety analysis practice in installation phase

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. W.; Chen, M. H.; Shyu, S. S., E-mail: hwhwang@iner.gov.t [Institute of Nuclear Energy Research, No. 1000 Wenhua Road, Chiaan Village, Longtan Township, 32546 Taoyuan County, Taiwan (China)

    2010-10-15

    This work performed a software safety analysis in the installation phase of the Lung men nuclear power plant in Taiwan, under the cooperation of Institute of Nuclear Energy Research and Tpc. The US Nuclear Regulatory Commission requests licensee to perform software safety analysis and software verification and validation in each phase of software development life cycle with Branch Technical Position 7-14. In this work, 37 safety grade digital instrumentation and control systems were analyzed by failure mode and effects analysis, which is suggested by IEEE standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The failure mode and effects analysis showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (Author)

  6. Software safety analysis practice in installation phase

    International Nuclear Information System (INIS)

    Huang, H. W.; Chen, M. H.; Shyu, S. S.

    2010-10-01

    This work performed a software safety analysis in the installation phase of the Lung men nuclear power plant in Taiwan, under the cooperation of Institute of Nuclear Energy Research and Tpc. The US Nuclear Regulatory Commission requests licensee to perform software safety analysis and software verification and validation in each phase of software development life cycle with Branch Technical Position 7-14. In this work, 37 safety grade digital instrumentation and control systems were analyzed by failure mode and effects analysis, which is suggested by IEEE standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The failure mode and effects analysis showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (Author)

  7. Preliminary Integrated Safety Analysis Status Report

    International Nuclear Information System (INIS)

    Gwyn, D.

    2001-01-01

    This report provides the status of the potential Monitored Geologic Repository (MGR) Integrated Safety Analysis (EA) by identifying the initial work scope scheduled for completion during the ISA development period, the schedules associated with the tasks identified, safety analysis issues encountered, and a summary of accomplishments during the reporting period. This status covers the period from October 1, 2000 through March 30, 2001

  8. Comparison of safety measures with a multicriteria decision aiding technique

    International Nuclear Information System (INIS)

    Lombard, J.

    1985-01-01

    Attributes such as political, social and psychological factors have to be taken into account for the decision-making process. Multiattribute decision-aiding techniques are used to cope with this multidimensionality of the risk management process. A simple example will be given to illustrate how such method can be helpful for the selection of proper safety measures in a rational way. (orig./HP) [de

  9. Exploring the potential of data mining techniques for the analysis of accident patterns

    DEFF Research Database (Denmark)

    Prato, Carlo Giacomo; Bekhor, Shlomo; Galtzur, Ayelet

    2010-01-01

    Research in road safety faces major challenges: individuation of the most significant determinants of traffic accidents, recognition of the most recurrent accident patterns, and allocation of resources necessary to address the most relevant issues. This paper intends to comprehend which data mining...... and association rules) data mining techniques are implemented for the analysis of traffic accidents occurred in Israel between 2001 and 2004. Results show that descriptive techniques are useful to classify the large amount of analyzed accidents, even though introduce problems with respect to the clear...... importance of input and intermediate neurons, and the relative importance of hundreds of association rules. Further research should investigate whether limiting the analysis to fatal accidents would simplify the task of data mining techniques in recognizing accident patterns without the “noise” probably...

  10. Annual plan of research on safety techniques against low level radioactive wastes, 1984-1988

    International Nuclear Information System (INIS)

    1984-01-01

    The establishment of the countermeasures for treating and disposing radioactive wastes has become an important subject for promoting the utilization of atomic energy. Especially as to low level radioactive wastes, the cumulative quantity has reached about 460,000 in terms of 200 l drums as of the end of March, 1983, and accompanying the development of the utilization of atomic energy, its rapid increase is expected. So far, as for the disposal of low level radioactive wastes, the research and development and the preparation of safety criteria and safety evaluation techniques have been carried out, following the basic policy of the Atomic Energy Commission to execute land disposal and ocean disposal in combination, first to make the test disposal after preliminary safety evaluation, and to shift to the full scale disposal based on the results. The annual plan was decided on July 22, 1983, and the first revision was carried out this time, therefore, it is reported here. The basic policy of establishing this annual plan, and the annual plan for safety technique research are described. (Kako, I.)

  11. An overview-probabilistic safety analysis for research reactors

    International Nuclear Information System (INIS)

    Liu Jinlin; Peng Changhong

    2015-01-01

    For long-term application, Probabilistic Safety Analysis (PSA) has proved to be a valuable tool for improving the safety and reliability of power reactors. In China, 'Nuclear safety and radioactive pollution prevention 'Twelfth Five Year Plan' and the 2020 vision' raises clearly that: to develop probabilistic safety analysis and aging evaluation for research reactors. Comparing with the power reactors, it reveals some specific features in research reactors: lower operating power, lower coolant temperature and pressure, etc. However, the core configurations may be changed very often and human actions play an important safety role in research reactors due to its specific experimental requirement. As a result, there is a necessary to conduct the PSA analysis of research reactors. This paper discusses the special characteristics related to the structure and operation and the methods to develop the PSA of research reactors, including initiating event analysis, event tree analysis, fault tree analysis, dependent failure analysis, human reliability analysis and quantification as well as the experimental and external event evaluation through the investigation of various research reactors and their PSAs home and abroad, to provide the current situation and features of research reactors PSAs. (author)

  12. Ignalina Safety Analysis Group's report for the year 1998

    International Nuclear Information System (INIS)

    Uspuras, E.; Augutis, J.; Bubelis, E.; Cesna, B.; Kaliatka, A.

    1999-02-01

    Results of Ignalina NPP Safety Analysis Group's research are presented. The main fields of group's activities in 1998 were following: safety analysis of reactor's cooling system, safety analysis of accident localization system, investigation of the problem graphite - fuel channel, reactor core modelling, assistance to the regulatory body VATESI in drafting regulations and reviewing safety reports presented by Ignalina NPP during the process of licensing of unit 1

  13. Operating plant safety analysis needs

    International Nuclear Information System (INIS)

    Young, M.Y.; Love, D.S.

    1992-01-01

    The primary objective for nuclear power station owners is to operate and manage their plants safely. However, there is also a need to provide economical electric power, which requires that the unit be operated as efficiently as possible, consistent with the safety requirements. The objectives cited above can be achieved through the identification and use of available margins inherent in the plant design. As a result of conservative licensing and analytical approaches taken in the past, many of these margins may be found in the safety analysis limits within which plants currently operate. Improvements in the accuracy of the safety analysis, and a more realistic treatment of plant initial and boundary conditions, can make this margin available for a variety of uses which enhance plant performance, help to reduce O and M costs, and may help to extend licensed operation. Opportunities for improvement exist in several areas in the accident analysis normally performed for Chapter 15 of the FSAR. For example, recent modifications to the ECCS rule, 10CFR50.46 and Appendix K, allow use of margins previously unavailable in the analysis of the Loss of Coolant Accident (LOCA). To take advantage of this regulatory change, new methods are being developed to analyze both the large and small break loss of coolant accident (LOCA). As this margin is used, enhancements in the analysis of other transients will become necessary. The paper discusses accident analysis methods, future development needs, and analysis margin utilization in specific accident scenarios

  14. Computer codes for safety analysis

    International Nuclear Information System (INIS)

    Holland, D.F.

    1986-11-01

    Computer codes for fusion safety analysis have been under development in the United States for about a decade. This paper will discuss five codes that are currently under development by the Fusion Safety Program. The purpose and capability of each code will be presented, a sample given, followed by a discussion of the present status and future development plans

  15. Removing unreasonable conservatisms in DOE safety analysis

    International Nuclear Information System (INIS)

    BISHOP, G.E.

    1999-01-01

    While nuclear safety analyses must always be conservative, invoking excessive conservatisms does not provide additional margins of safety. Rather, beyond a fairly narrow point, conservatisms skew a facility's true safety envelope by exaggerating risks and creating unreasonable bounds on what is required for safety. The conservatism has itself become unreasonable. A thorough review of the assumptions and methodologies contained in a facility's safety analysis can provide substantial reward, reducing both construction and operational costs without compromising actual safety

  16. HANFORD SAFETY ANALYSIS and RISK ASSESSMENT HANDBOOK (SARAH)

    International Nuclear Information System (INIS)

    EVANS, C.B.

    2004-01-01

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S and M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard

  17. Frame-based safety analysis approach for decision-based errors

    International Nuclear Information System (INIS)

    Fan, Chin-Feng; Yihb, Swu

    1997-01-01

    A frame-based approach is proposed to analyze decision-based errors made by automatic controllers or human operators due to erroneous reference frames. An integrated framework, Two Frame Model (TFM), is first proposed to model the dynamic interaction between the physical process and the decision-making process. Two important issues, consistency and competing processes, are raised. Consistency between the physical and logic frames makes a TFM-based system work properly. Loss of consistency refers to the failure mode that the logic frame does not accurately reflect the state of the controlled processes. Once such failure occurs, hazards may arise. Among potential hazards, the competing effect between the controller and the controlled process is the most severe one, which may jeopardize a defense-in-depth design. When the logic and physical frames are inconsistent, conventional safety analysis techniques are inadequate. We propose Frame-based Fault Tree; Analysis (FFTA) and Frame-based Event Tree Analysis (FETA) under TFM to deduce the context for decision errors and to separately generate the evolution of the logical frame as opposed to that of the physical frame. This multi-dimensional analysis approach, different from the conventional correctness-centred approach, provides a panoramic view in scenario generation. Case studies using the proposed techniques are also given to demonstrate their usage and feasibility

  18. Safety assessment of research reactors and preparation of the safety analysis report

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide presents guidelines, approved by international consensus, for the preparation, review and assessment of safety documentation for research reactors such as the Safety Analysis Report. While the Guide is most applicable to research reactors in the design and construction stage, it is also recommended for use during relicensing or reassessment of existing reactors

  19. Application of Software Safety Analysis Methods

    International Nuclear Information System (INIS)

    Park, G. Y.; Hur, S.; Cheon, S. W.; Kim, D. H.; Lee, D. Y.; Kwon, K. C.; Lee, S. J.; Koo, Y. H.

    2009-01-01

    A fully digitalized reactor protection system, which is called the IDiPS-RPS, was developed through the KNICS project. The IDiPS-RPS has four redundant and separated channels. Each channel is mainly composed of a group of bistable processors which redundantly compare process variables with their corresponding setpoints and a group of coincidence processors that generate a final trip signal when a trip condition is satisfied. Each channel also contains a test processor called the ATIP and a display and command processor called the COM. All the functions were implemented in software. During the development of the safety software, various software safety analysis methods were applied, in parallel to the verification and validation (V and V) activities, along the software development life cycle. The software safety analysis methods employed were the software hazard and operability (Software HAZOP) study, the software fault tree analysis (Software FTA), and the software failure modes and effects analysis (Software FMEA)

  20. Nuclear safety in Slovak Republic. Safety analysis reports for WWER 440 reactors

    International Nuclear Information System (INIS)

    Rohar, S.

    1999-01-01

    Implementation of nuclear power program is connected to establishment of regulatory body for safe regulation of siting, construction, operation and decommissioning of nuclear installations. Licensing being one of the most important regulatory surveillance activity is based on independent regulatory review and assessment of information on nuclear safety for particular nuclear facility. Documents required to be submitted to the regulatory body by the licensee in Slovakia for the review and assessment usually named Safety Analysis Report (SAR) are presented in detail in this paper. Current status of Safety Analysis Reports for Bohunice V-1, Bohunice V-2 and Mochovce NPP is shown

  1. Probabilistic safety analysis of DC power supply requirements for nuclear power plants. Technical report

    International Nuclear Information System (INIS)

    Baranowsky, P.W.; Kolaczkowski, A.M.; Fedele, M.A.

    1981-04-01

    A probabilistic safety assessment was performed as part of the Nuclear Regulatory Commission generic safety task A-30, Adequacy of Safety Related DC Power Supplies. Event and fault tree analysis techniques were used to determine the relative contribution of DC power related accident sequences to the total core damage probability due to shutdown cooling failures. It was found that a potentially large DC power contribution could be substantially reduced by augmenting the minimum design and operational requirements. Recommendations included (1) requiring DC power divisional independence, (2) improved test, maintenance, and surveillance, and (3) requiring core cooling capability be maintained following the loss of one DC power bus and a single failure in another system

  2. Analysis of the impact of correlated benchmark experiments on the validation of codes for criticality safety analysis

    International Nuclear Information System (INIS)

    Bock, M.; Stuke, M.; Behler, M.

    2013-01-01

    The validation of a code for criticality safety analysis requires the recalculation of benchmark experiments. The selected benchmark experiments are chosen such that they have properties similar to the application case that has to be assessed. A common source of benchmark experiments is the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments' (ICSBEP Handbook) compiled by the 'International Criticality Safety Benchmark Evaluation Project' (ICSBEP). In order to take full advantage of the information provided by the individual benchmark descriptions for the application case, the recommended procedure is to perform an uncertainty analysis. The latter is based on the uncertainties of experimental results included in most of the benchmark descriptions. They can be performed by means of the Monte Carlo sampling technique. The consideration of uncertainties is also being introduced in the supplementary sheet of DIN 25478 'Application of computer codes in the assessment of criticality safety'. However, for a correct treatment of uncertainties taking into account the individual uncertainties of the benchmark experiments is insufficient. In addition, correlations between benchmark experiments have to be handled correctly. For example, these correlations can arise due to different cases of a benchmark experiment sharing the same components like fuel pins or fissile solutions. Thus, manufacturing tolerances of these components (e.g. diameter of the fuel pellets) have to be considered in a consistent manner in all cases of the benchmark experiment. At the 2012 meeting of the Expert Group on 'Uncertainty Analysis for Criticality Safety Assessment' (UACSA) of the OECD/NEA a benchmark proposal was outlined that aimed for the determination of the impact on benchmark correlations on the estimation of the computational bias of the neutron multiplication factor (k eff ). The analysis presented here is based on this proposal. (orig.)

  3. A 'Toolbox' Equivalent Process for Safety Analysis Software

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Eng, Tony

    2004-01-01

    Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2002-1 (Quality Assurance for Safety-Related Software) identified a number of quality assurance issues on the use of software in Department of Energy (DOE) facilities for analyzing hazards, and designing and operating controls that prevent or mitigate potential accidents. The development and maintenance of a collection, or 'toolbox', of multiple-site use, standard solution, Software Quality Assurance (SQA)-compliant safety software is one of the major improvements identified in the associated DOE Implementation Plan (IP). The DOE safety analysis toolbox will contain a set of appropriately quality-assured, configuration-controlled, safety analysis codes, recognized for DOE-broad, safety basis applications. Currently, six widely applied safety analysis computer codes have been designated for toolbox consideration. While the toolbox concept considerably reduces SQA burdens among DOE users of these codes, many users of unique, single-purpose, or single-site software may still have sufficient technical justification to continue use of their computer code of choice, but are thwarted by the multiple-site condition on toolbox candidate software. The process discussed here provides a roadmap for an equivalency argument, i.e., establishing satisfactory SQA credentials for single-site software that can be deemed ''toolbox-equivalent''. The process is based on the model established to meet IP Commitment 4.2.1.2: Establish SQA criteria for the safety analysis ''toolbox'' codes. Implementing criteria that establish the set of prescriptive SQA requirements are based on implementation plan/procedures from the Savannah River Site, also incorporating aspects of those from the Waste Isolation Pilot Plant (SNL component) and the Yucca Mountain Project. The major requirements are met with evidence of a software quality assurance plan, software requirements and design documentation, user's instructions, test report, a

  4. Business of Nuclear Safety Analysis Office, Nuclear Technology Test Center

    International Nuclear Information System (INIS)

    Hayakawa, Masahiko

    1981-01-01

    The Nuclear Technology Test Center established the Nuclear Safety Analysis Office to execute newly the works concerning nuclear safety analysis in addition to the works related to the proving tests of nuclear machinery and equipments. The regulations for the Nuclear Safety Analysis Office concerning its organization, business and others were specially decided, and it started the business formally in August, 1980. It is a most important subject to secure the safety of nuclear facilities in nuclear fuel cycle as the premise of developing atomic energy. In Japan, the strict regulation of safety is executed by the government at each stage of the installation, construction, operation and maintenance of nuclear facilities, based on the responsibility for the security of installers themselves. The Nuclear Safety Analysis Office was established as the special organ to help the safety examination related to the installation of nuclear power stations and others by the government. It improves and puts in order the safety analysis codes required for the cross checking in the safety examination, and carries out safety analysis calculation. It is operated by the cooperation of the Science and Technology Agency and the Agency of Natural Resources and Energy. The purpose of establishment, the operation and the business of the Nuclear Safety Analysis Office, the plan of improving and putting in order of analysis codes, and the state of the similar organs in foreign countries are described. (Kako, I.)

  5. Establishment of Safety Analysis System and Technology for CANDU Reactors

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Rhee, B. W.; Min, B. J.; Kim, H. T.; Kim, W. Y.; Yoon, C.; Chun, J. S.; Cho, M. S.; Jeong, J. Y.; Kang, H. S.

    2007-06-01

    The following 4 research items have been studied to establish a CANDU safety analysis system and to develop the relevant elementary technology for CANDU reactors. First, to improve and validate the CANDU design and operational safety analysis codes, the CANDU physics cell code WIMS-CANDU was improved, and validated, and an analysis of the moderator subcooling and pressure tube integrity has been performed for the large break LOCAs without ECCS. Also a CATHENA model and a CFD model for a post-blowdown fuel channel analysis have been developed and validated against two high temperature thermal-chemical experiments, CS28-1 and 2. Second, to improve the integrated operating system of the CANDU safety analysis codes, an extension has been made to them to include the core and fuel accident analyses, and a web-based CANDU database, CANTHIS version 2.0 was completed. Third, to assess the applicability of the ACR-7 safety analysis methodology to CANDU-6 the ACR-7 safety analysis methods were reviewed and the safety analysis methods of ACR-7 applicable to CANDU-6 were recommended. Last, to supplement and improve the existing CANDU safety analysis procedures, detailed analysis procedures have been prepared for individual accident scenarios. The results of this study can be used to resolve the CANDU safety issues, to improve the current design and operational safety analysis codes, and to technically support the Wolsong site to resolve their problems

  6. Uncertainty and sensitivity analysis methodology in a level-I PSA (Probabilistic Safety Assessment)

    International Nuclear Information System (INIS)

    Nunez McLeod, J.E.; Rivera, S.S.

    1997-01-01

    This work presents a methodology for sensitivity and uncertainty analysis, applicable to a probabilistic safety assessment level I. The work contents are: correct association of distributions to parameters, importance and qualification of expert opinions, generations of samples according to sample sizes, and study of the relationships among system variables and system response. A series of statistical-mathematical techniques are recommended along the development of the analysis methodology, as well different graphical visualization for the control of the study. (author) [es

  7. Selection of safety officers in an indian construction organization by using grey relational analysis

    Directory of Open Access Journals (Sweden)

    Sunku Venkata Siva Rajaprasad

    2018-03-01

    Full Text Available Stakeholders are responsible for implementing the occupational health and safety provisions in an organization. Irrespective of organization, the role of safety department is purely advisory as it coordinates with all the departments, and this is crucial to improve the performance. Selection of safety officer is vital job for any organization; it should not only be based on qualifications of the applicant, the incumbent should also have sufficient exposure in implementing proactive measures. The process of selection is complex and choosing the right safety professional is a vital decision. The safety performance of an organization relies on the systems being implemented by the safety officer. Application of multi criteria decision-making tools is helpful as a selection process. The present study proposes the grey relational analysis(GRA for selection of the safety officers in an Indian construction organization. This selection method considers fourteen criteria appropriate to the organization and has ranked the results. The data was also analyzed by using technique for order Preference by Similarity to an Ideal solution (TOPSIS and results of both the methods are strongly correlated

  8. Tree Simulation Techniques for Integrated Safety Assessment

    International Nuclear Information System (INIS)

    Melendez Asensio, E.; Izquierdo Rocha, J.M.; Sanchez Perez, M.; Hortal Reymundo, J.; Perez Mulas, A.

    1999-01-01

    techniques are: (a) An unifying theory that should (i) establish the relationship among different approaches and, in particular, be able to demonstrate the standard safety assessment approach as a particular case, (ii) identify implicit assumptions in present practice and (iii) establish a sound scientific reference for an ideal treatment in order to judge the relative importance of implicit and explicit assumptions. In addition, the theoretical developments help to identify the type of applications where the new developments will be a necessary requirement. (b) The capability for simulation of trees. By this we mean the techniques required to be able to efficiently simulate all branches. Historically algorithms able to do this were already implemented in earlier pioneering work for discrete number of branches while stochastic branching requires Montecarlo techniques. (c) The capability to incorporate new types of branching, particularly operator actions. This paper shortly reviews these aspects and justifies in that frame our particular development, denoted here as Integrated Safety Assessment methodology. In this method, the dynamics of the event is followed by transient simulation in tree form, building a Setpoint or Deterministic Dynamic Event Tree (DDET). When a setpoint that should trigger the actuation of a protection is crossed, the tree is opened in branches corresponding to different functioning states of the protection device and each branch followed by the engineering simulator. One of these states is the nominal state, which, in the PSAs, is Associated to the success criterion of the system

  9. Establishment of Safety Analysis System and Technology for CANDU Reactors

    International Nuclear Information System (INIS)

    Min, Byung Joo; Kim, W. Y.; Kim, H. T.; Rhee, B. W.; Yoon, C.; Kang, H. S.; Yoo, K. J.

    2005-03-01

    To improve the CANDU design/operation safety analysis codes and the CANDU safety analysis methodology, the following works have been done. From the development of the lattice codes (WIMS/CANDU), the lattice model simulates the real core lattice geometry and the effect of the pressure tube creep to the core lattice parameter has been evaluated. From the development of the 3-dimensional thermal-hydraulic analysis model of the moderator behavior (CFX4-CAMO), validation of the model against STERN Lab experiment has been executed. The butterfly-shaped grid structure and the 3-dimensional flow resistance model for porous media were developed and applied to the moderator analysis for Wolsong units 2/3/4. The single fuel channel analysis codes for blowdown and post-blowdown were unified by CATHENA. The 3-dimensional fuel channel analysis model (CFX-CACH) has been developed for validation of CATHENA fuel channel analysis model. The interlinking analysis system (CANVAS) of the thermal-hydraulic safety analysis codes for the primary heat transport system and containment system has been executed. The database system of core physics and thermal-hydraulics experimental data for safety analysis has been established on the URL: http://CANTHIS.kaeri.re.kr. For documentation and Standardization of the general safety analysis procedure, the general safety analysis procedure is developed and applied to a large break LOCA. The present research results can be utilized for establishment of the independent safety analysis technology and acquisition of the optimal safety analysis technology

  10. Ignalina NPP Safety Analysis: Models and Results

    International Nuclear Information System (INIS)

    Uspuras, E.

    1999-01-01

    Research directions, linked to safety assessment of the Ignalina NPP, of the scientific safety analysis group are presented: Thermal-hydraulic analysis of accidents and operational transients; Thermal-hydraulic assessment of Ignalina NPP Accident Localization System and other compartments; Structural analysis of plant components, piping and other parts of Main Circulation Circuit; Assessment of RBMK-1500 reactor core and other. Models and main works carried out last year are described. (author)

  11. Reload safety analysis automation tools

    International Nuclear Information System (INIS)

    Havlůj, F.; Hejzlar, J.; Vočka, R.

    2013-01-01

    Performing core physics calculations for the sake of reload safety analysis is a very demanding and time consuming process. This process generally begins with the preparation of libraries for the core physics code using a lattice code. The next step involves creating a very large set of calculations with the core physics code. Lastly, the results of the calculations must be interpreted, correctly applying uncertainties and checking whether applicable limits are satisfied. Such a procedure requires three specialized experts. One must understand the lattice code in order to correctly calculate and interpret its results. The next expert must have a good understanding of the physics code in order to create libraries from the lattice code results and to correctly define all the calculations involved. The third expert must have a deep knowledge of the power plant and the reload safety analysis procedure in order to verify, that all the necessary calculations were performed. Such a procedure involves many steps and is very time consuming. At ÚJV Řež, a.s., we have developed a set of tools which can be used to automate and simplify the whole process of performing reload safety analysis. Our application QUADRIGA automates lattice code calculations for library preparation. It removes user interaction with the lattice code and reduces his task to defining fuel pin types, enrichments, assembly maps and operational parameters all through a very nice and user-friendly GUI. The second part in reload safety analysis calculations is done by CycleKit, a code which is linked with our core physics code ANDREA. Through CycleKit large sets of calculations with complicated interdependencies can be performed using simple and convenient notation. CycleKit automates the interaction with ANDREA, organizes all the calculations, collects the results, performs limit verification and displays the output in clickable html format. Using this set of tools for reload safety analysis simplifies

  12. Software safety analysis application in installation phase

    International Nuclear Information System (INIS)

    Huang, H. W.; Yih, S.; Wang, L. H.; Liao, B. C.; Lin, J. M.; Kao, T. M.

    2010-01-01

    This work performed a software safety analysis (SSA) in the installation phase of the Lungmen nuclear power plant (LMNPP) in Taiwan, under the cooperation of INER and TPC. The US Nuclear Regulatory Commission (USNRC) requests licensee to perform software safety analysis (SSA) and software verification and validation (SV and V) in each phase of software development life cycle with Branch Technical Position (BTP) 7-14. In this work, 37 safety grade digital instrumentation and control (I and C) systems were analyzed by Failure Mode and Effects Analysis (FMEA), which is suggested by IEEE Standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The FMEA showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (authors)

  13. Research Progress on Pesticide Residue Analysis Techniques in Agro-products

    Directory of Open Access Journals (Sweden)

    HE Ze-ying

    2016-07-01

    Full Text Available There are constant occurrences of acute pesticide poisoning among consumers and pesticide residue violations in agro-products import/export trading. Pesticide residue analysis is the important way to protect the food safety and the interest of import/export enterprises. There has been a rapid development in pesticide residue analysis techniques in recent years. In this review, the research progress in the past five years were discussed in the respects of samples preparation and instrument determination. The application, modification and development of the QuEChERS method in samples preparation and the application of tandem mass spectrometry and high resolution mass spectrometry were reviewed. And the implications for the future of the field were discussed.

  14. Status of SPACE Safety Analysis Code Development

    International Nuclear Information System (INIS)

    Lee, Dong Hyuk; Yang, Chang Keun; Kim, Se Yun; Ha, Sang Jun

    2009-01-01

    In 2006, the Korean the Korean nuclear industry started developing a thermal-hydraulic analysis code for safety analysis of PWR(Pressurized Water Reactor). The new code is named as SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). The SPACE code can solve two-fluid, three-field governing equations in one dimensional or three dimensional geometry. The SPACE code has many component models required for modeling a PWR, such as reactor coolant pump, safety injection tank, etc. The programming language used in the new code is C++, for new generation of engineers who are more comfortable with C/C++ than old FORTRAN language. This paper describes general characteristics of SPACE code and current status of SPACE code development

  15. Systems Analysis of NASA Aviation Safety Program: Final Report

    Science.gov (United States)

    Jones, Sharon M.; Reveley, Mary S.; Withrow, Colleen A.; Evans, Joni K.; Barr, Lawrence; Leone, Karen

    2013-01-01

    A three-month study (February to April 2010) of the NASA Aviation Safety (AvSafe) program was conducted. This study comprised three components: (1) a statistical analysis of currently available civilian subsonic aircraft data from the National Transportation Safety Board (NTSB), the Federal Aviation Administration (FAA), and the Aviation Safety Information Analysis and Sharing (ASIAS) system to identify any significant or overlooked aviation safety issues; (2) a high-level qualitative identification of future safety risks, with an assessment of the potential impact of the NASA AvSafe research on the National Airspace System (NAS) based on these risks; and (3) a detailed, top-down analysis of the NASA AvSafe program using an established and peer-reviewed systems analysis methodology. The statistical analysis identified the top aviation "tall poles" based on NTSB accident and FAA incident data from 1997 to 2006. A separate examination of medical helicopter accidents in the United States was also conducted. Multiple external sources were used to develop a compilation of ten "tall poles" in future safety issues/risks. The top-down analysis of the AvSafe was conducted by using a modification of the Gibson methodology. Of the 17 challenging safety issues that were identified, 11 were directly addressed by the AvSafe program research portfolio.

  16. The selection of probabilistic safety assessment techniques for non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    Vail, J.

    1992-01-01

    Historically, the probabilistic safety assessment (PSA) methodology of choice is the well known event tree/fault tree inductive technique. For reactor facilities is has stood the test of time. Some non-reactor nuclear facilities have found inductive methodologies difficult to apply. The stand-alone fault tree deductive technique has been used effectively to analyze risk in nuclear chemical processing facilities and waste handling facilities. The selection between the two choices suggest benefits from use of the deductive method for non-reactor facilities

  17. Status of generic actions items and safety analysis system of PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Min, Byung Joo

    2001-05-01

    This report described the review results of a GAIs(Generic Action Item) currently issued on safety analysis of PHWR(Pressurized Heavy Water Reactor) and the research activities and positions to solve the GAIs in each country which possess PHWRs. eviewing the Final Safety Analysis Report for Wolsong-2/3/4 Units, the safety analysis methodology, classification for accident scenarios, safety analysis codes, their interface, etc.. were described. From the present review report, it is intended to establish the CANDU safety analysis system by providing the better understandings and development plans for the safety analysis of PHWR. esults.

  18. Utilization of the safety functional analysis techniques to optimize the separation requirements in case of fire

    International Nuclear Information System (INIS)

    Alvarez, L.M.

    1983-01-01

    The present philosophy for the fire protection of the safe shutdown capability in nuclear power plants is based on the separation of the safety-related systems in different fire areas in such a way that the redundant systems are not subject to damage from a single fire risk. The purpose ofthis paper is to show the experience gained in the application of a symmetric method of analysis to minimize the number of fire barriers being compatible with the regulatory requirements and with capability of achieving and maintaining the safe plant shutdown in the event of a fire. As a conclusion of the analysis, the separation criteria for the divisions involved in the safe plant shutdown are obtained

  19. 2005 dossier: granite. Tome: safety analysis of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of the geologic disposal of high-level and long-lived (HLLL) radioactive wastes in granite formations. Content: 1 - safety approach: context and general goal, references, design approach by safety functions, safety approach during the construction-exploitation-observation-closure phase, safety analysis during the post-closure phase; 2 - general description: HLLL wastes, granitic environment, general structure of the architecture of a disposal facility; 3 - safety functions and disposal design: general context, safety functions of the long-term disposal, design dispositions retained to answer the functions; 4 - operational safety: people's protection, radiological risks during exploitation, risk analysis in accident situation; 5 - qualitative safety analysis: methodology, main results of the analysis of the features, events and processes (FEP) database; 6 - disposal efficiency evaluation during post-closure phase: calculation models, calculation tools used for the modeling of radionuclides transport, calculation results and main lessons. (J.S.)

  20. Archetypes for Organisational Safety

    Science.gov (United States)

    Marais, Karen; Leveson, Nancy G.

    2003-01-01

    We propose a framework using system dynamics to model the dynamic behavior of organizations in accident analysis. Most current accident analysis techniques are event-based and do not adequately capture the dynamic complexity and non-linear interactions that characterize accidents in complex systems. In this paper we propose a set of system safety archetypes that model common safety culture flaws in organizations, i.e., the dynamic behaviour of organizations that often leads to accidents. As accident analysis and investigation tools, the archetypes can be used to develop dynamic models that describe the systemic and organizational factors contributing to the accident. The archetypes help clarify why safety-related decisions do not always result in the desired behavior, and how independent decisions in different parts of the organization can combine to impact safety.

  1. Integrated framework for dynamic safety analysis

    International Nuclear Information System (INIS)

    Kim, Tae Wan; Karanki, Durga R.

    2012-01-01

    In the conventional PSA (Probabilistic Safety Assessment), detailed plant simulations by independent thermal hydraulic (TH) codes are used in the development of accident sequence models. Typical accidents in a NPP involve complex interactions among process, safety systems, and operator actions. As independent TH codes do not have the models of operator actions and full safety systems, they cannot literally simulate the integrated and dynamic interactions of process, safety systems, and operator responses. Offline simulation with pre decided states and time delays may not model the accident sequences properly. Moreover, when stochastic variability in responses of accident models is considered, defining all the combinations for simulations will be cumbersome task. To overcome some of these limitations of conventional safety analysis approach, TH models are coupled with the stochastic models in the dynamic event tree (DET) framework, which provides flexibility to model the integrated response due to better communication as all the accident elements are in the same model. The advantages of this framework also include: Realistic modeling in dynamic scenarios, comprehensive results, integrated approach (both deterministic and probabilistic models), and support for HRA (Human Reliability Analysis)

  2. Applications of noise analysis to nuclear safety

    International Nuclear Information System (INIS)

    Aguilar Martinez, Omar

    2000-01-01

    Noise Analysis techniques (analysis of the fluctuation of physical parameters) have been successfully applied to the operational vigilance of the technical equipment that plays a decisive role in the production cycle of a very complex industry. Although fluctuation measurements in nuclear installations started almost at the start of the nuclear era (see works by Feynman and Rossi on the development of neutron methodology), only recently have neutron noise diagnostic applications begun to be a part of the standard procedures for the performance of some modern nuclear installations. Following the relevant technical advances made in information sciences and analogical electronics, measuring the fluctuation of physical parameters has become a very effective tool for detecting, guarding and following up possible defects in a nuclear system. As the processing techniques for the fluctuation of a nuclear reactor's physical-neutron parameters have evolved (temporal and frequency analysis, multi-parameter self -regression analysis, etc.), the applications of the theory of non-lineal dynamics and chaos theory have progressed by focusing on the problem from another perspective. This work reports on those nuclear applications of noise analysis that increase nuclear safety in all types of nuclear facilities and that have been carried out by the author over the last decade, such as: -Void Force Critical Set Applications (Zero Power Reactor Applications, Central Institute of Physical Research, Budapest, Hungary); -Research Reactor Applications (Triga Mark III Reactor, National Institute of Nuclear Research, ININ, Mexico); -Power Reactor Applications in a Nuclear Power Plant (First Circuit of Block II, Paks Nuclear Center, Hungary); -Second Loop applications in a Nuclear Power Plant (Block I Paks Nuclear Center, Hungary; Block II Kalinin Nuclear Center, Russia); -Shield System Applications for the Transport of Radioisotopes (Nuclear Technology Center, Havana, Cuba) New trends in

  3. OASIS: An automotive analysis and safety engineering instrument

    International Nuclear Information System (INIS)

    Mader, Roland; Armengaud, Eric; Grießnig, Gerhard; Kreiner, Christian; Steger, Christian; Weiß, Reinhold

    2013-01-01

    In this paper, we describe a novel software tool named OASIS (AutOmotive Analysis and Safety EngIneering InStrument). OASIS supports automotive safety engineering with features allowing the creation of consistent and complete work products and to simplify and automate workflow steps from early analysis through system development to software development. More precisely, it provides support for (a) model creation and reuse, (b) analysis and documentation and (c) configuration and code generation. We present OASIS as a part of a tool chain supporting the application of a safety engineering workflow aligned with the automotive safety standard ISO 26262. In particular, we focus on OASIS' (1) support for property checking and model correction as well as its (2) support for fault tree generation and FMEA (Failure Modes and Effects Analysis) table generation. Finally, based on the case study of hybrid electric vehicle development, we demonstrate that (1) and (2) are able to strongly support FTA (Fault Tree Analysis) and FMEA

  4. PWR core safety analysis with 3-dimensional methods

    International Nuclear Information System (INIS)

    Gensler, A.; Kühnel, K.; Kuch, S.

    2015-01-01

    Highlights: • An overview of AREVA’s safety analysis codes their coupling is provided. • The validation base and licensing applications of these codes are summarized. • Coupled codes and methods provide improved margins and non-conservative results. • Examples for REA and inadvertent opening of the pressurizer safety valve are given. - Abstract: The main focus of safety analysis is to demonstrate the required safety level of the reactor core. Because of the demanding requirements, the quality of the safety analysis strongly affects the confidence in the operational safety of a reactor. To ensure the highest quality, it is essential that the methodology consists of appropriate analysis tools, an extensive validation base, and last but not least highly educated engineers applying the methodology. The sophisticated 3-dimensional core models applied by AREVA ensure that all physical effects relevant for safety are treated and the results are reliable and conservative. Presently AREVA employs SCIENCE, CASMO/NEMO and CASCADE-3D for pressurized water reactors. These codes are currently being consolidated into the next generation 3D code system ARCADIA®. AREVA continuously extends the validation base, including measurement campaigns in test facilities and comparisons of the predictions of steady state and transient measured data gathered from plants during many years of operation. Thus, the core models provide reliable and comprehensive results for a wide range of applications. For the application of these powerful tools, AREVA is taking benefit of its interdisciplinary know-how and international teamwork. Experienced engineers of different technical backgrounds are working together to ensure an appropriate interpretation of the calculation results, uncertainty analysis, along with continuously maintaining and enhancing the quality of the analysis methodologies. In this paper, an overview of AREVA’s broad application experience as well as the broad validation

  5. Safety analysis of the UTSI-CFFF superconducting magnet

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Smith, R.P.; VanderArend, P.C.; Hsu, Y.H.

    1979-01-01

    In designing a large superconducting magnet such as the UTSI-CFFF dipole, great attention must be devoted to the safety of the magnet and personnel. The conductor for the UTSI-CFFF magnet incorporates much copper stabilizer, which both insures its cryostability, and contributes to the magnet safety. The quench analysis and the cryostat fault condition analysis are presented. Two analyses of exposed turns follow; the first shows that gas cooling protects uncovered turns; the second, that the cryostat pressure relief system protects them. Finally the failure mode and safety analysis is presented

  6. Reliability Analysis for Safety Grade PLC(POSAFE-Q)

    International Nuclear Information System (INIS)

    Choi, Kyung Chul; Song, Seung Whan; Park, Gang Min; Hwang, Sung Jae

    2012-01-01

    Safety Grade PLC(Programmable Logic Controller), POSAFE-Q, was developed recently in accordance with nuclear regulatory and requirements. In this paper, describe reliability analysis for digital safety grade PLC (especially POSAFE-Q). Reliability analysis scope is Prediction, Calculation of MTBF (Mean Time Between Failure), FMEA (Failure Mode Effect Analysis), PFD (Probability of Failure on Demand). (author)

  7. Status of safety analysis reports

    Energy Technology Data Exchange (ETDEWEB)

    Cserhati, A

    1999-06-01

    The safety regulation connected to both of the Atomic Acts from 1980 and 1996 requires preparation of the Preliminary Safety Analysis Report (PSAR) as well as Final SAR (FSAR). In this respect the licensing procedure for the construction and commissioning of Paks NPP did not formally deviate from the standards applied in developed countries; this is particularly true if comparison is made with the standards applied for commissioning NPPs in the second half of the seventies. By the time the overall development of internationally accepted safety standards and some existing deficiencies of earlier SAR made necessary a general reassessment of the plant safety (AGNES project). The carried out PSR for Paks-1 and 2 also added a valuable contribution to the SAR content, however a formal update of SAR is not made yet. A Hungarian nuclear authority decree from 1997 obligates the licensee to prepare and submit a major upgrade of FSAR until the mid of 2000, after finishing the PSR for Paks-3 and 4. From this date a periodic update of FSAR is required every year. The operational license renewal affects only the PSR but not the FSAR updating. The new Nuclear Safety Code outlines the contents of PSAR and FSAR, based on US NRC Reg. Guide 1. 70. Rev. 3. Hungary by now can fulfill the upgrading of SAR without major external technical or financial help. The AGNES project covered the safety analysis chapters of SAR. It was financed mainly by the country. In the project there have been involved in limited cases as performers the VTT (Finland), Belgatom (Belgium), GRS (Germany), etc., the IVO (Finland) fulfilled tasks of an independent reviewer for safety analysis. The AGNES had certain interconnection with the similar IAEA RER safety reassessment project for WWER-440/213. The PSR for Paks-1 and 2 have been carried out by the Paks staff from the resources of the plant. During the evaluation of several parts of Paks-3 and 4 PSR documentation the authority intends to use certain

  8. Status of safety analysis reports

    International Nuclear Information System (INIS)

    Cserhati, A.

    1999-01-01

    The safety regulation connected to both of the Atomic Acts from 1980 and 1996 requires preparation of the Preliminary Safety Analysis Report (PSAR) as well as Final SAR (FSAR). In this respect the licensing procedure for the construction and commissioning of Paks NPP did not formally deviate from the standards applied in developed countries; this is particularly true if comparison is made with the standards applied for commissioning NPPs in the second half of the seventies. By the time the overall development of internationally accepted safety standards and some existing deficiencies of earlier SAR made necessary a general reassessment of the plant safety (AGNES project). The carried out PSR for Paks-1 and 2 also added a valuable contribution to the SAR content, however a formal update of SAR is not made yet. A Hungarian nuclear authority decree from 1997 obligates the licensee to prepare and submit a major upgrade of FSAR until the mid of 2000, after finishing the PSR for Paks-3 and 4. From this date a periodic update of FSAR is required every year. The operational license renewal affects only the PSR but not the FSAR updating. The new Nuclear Safety Code outlines the contents of PSAR and FSAR, based on US NRC Reg. Guide 1. 70. Rev. 3. Hungary by now can fulfill the upgrading of SAR without major external technical or financial help. The AGNES project covered the safety analysis chapters of SAR. It was financed mainly by the country. In the project there have been involved in limited cases as performers the VTT (Finland), Belgatom (Belgium), GRS (Germany), etc., the IVO (Finland) fulfilled tasks of an independent reviewer for safety analysis. The AGNES had certain interconnection with the similar IAEA RER safety reassessment project for WWER-440/213. The PSR for Paks-1 and 2 have been carried out by the Paks staff from the resources of the plant. During the evaluation of several parts of Paks-3 and 4 PSR documentation the authority intends to use certain

  9. Safety analysis of the nuclear chemistry Building 151

    International Nuclear Information System (INIS)

    Kvam, D.

    1984-01-01

    This report summarizes the results of a safety analysis that was done on Building 151. The report outlines the methodology, the analysis, and the findings that led to the low hazard classification. No further safety evaluation is indicated at this time. 5 tables

  10. DESIGN PACKAGE 1E SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    M. Salem

    1995-06-23

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1E, Surface Facilities, (for a list of design items included in the package 1E system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1E structures/systems/components(S/S/Cs) in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions.

  11. The influence of sodium fires on LMFBRs safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Justin, F [DSN/Centre de Fontenay-aux-Roses, Fontenay-aux-Roses (France)

    1979-03-01

    In a sodium cooled reactor, sodium fires are accidental conditions to be taken into account in safety analysis. For the various sodium categories, fire conditions, associated risks, safety analysis objectives and detailed corresponding issues are indicated, An experimental research program can be deduced from these considerations. This report covers the following: safety analysis methodology; primary sodium fires; secondary sodium fires; auxiliary sodium fires, and related experimental research programs.

  12. The influence of sodium fires on LMFBRs safety analysis

    International Nuclear Information System (INIS)

    Justin, F.

    1979-01-01

    In a sodium cooled reactor, sodium fires are accidental conditions to be taken into account in safety analysis. For the various sodium categories, fire conditions, associated risks, safety analysis objectives and detailed corresponding issues are indicated, An experimental research program can be deduced from these considerations. This report covers the following: safety analysis methodology; primary sodium fires; secondary sodium fires; auxiliary sodium fires, and related experimental research programs

  13. Meta-analysis of surgical safety checklist effects on teamwork, communication, morbidity, mortality, and safety.

    Science.gov (United States)

    Lyons, Vanessa E; Popejoy, Lori L

    2014-02-01

    The purpose of this study is to examine the effectiveness of surgical safety checklists on teamwork, communication, morbidity, mortality, and compliance with safety measures through meta-analysis. Four meta-analyses were conducted on 19 studies that met the inclusion criteria. The effect size of checklists on teamwork and communication was 1.180 (p = .003), on morbidity and mortality was 0.123 (p = .003) and 0.088 (p = .001), respectively, and on compliance with safety measures was 0.268 (p teamwork and communication, reduce morbidity and mortality, and improve compliance with safety measures. This meta-analysis is limited in its generalizability based on the limited number of studies and the inclusion of only published research. Future research is needed to examine possible moderating variables for the effects of surgical safety checklists.

  14. Reliability analysis of software based safety functions

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1993-05-01

    The methods applicable in the reliability analysis of software based safety functions are described in the report. Although the safety functions also include other components, the main emphasis in the report is on the reliability analysis of software. The check list type qualitative reliability analysis methods, such as failure mode and effects analysis (FMEA), are described, as well as the software fault tree analysis. The safety analysis based on the Petri nets is discussed. The most essential concepts and models of quantitative software reliability analysis are described. The most common software metrics and their combined use with software reliability models are discussed. The application of software reliability models in PSA is evaluated; it is observed that the recent software reliability models do not produce the estimates needed in PSA directly. As a result from the study some recommendations and conclusions are drawn. The need of formal methods in the analysis and development of software based systems, the applicability of qualitative reliability engineering methods in connection to PSA and the need to make more precise the requirements for software based systems and their analyses in the regulatory guides should be mentioned. (orig.). (46 refs., 13 figs., 1 tab.)

  15. Issues affecting advanced passive light-water reactor safety analysis

    International Nuclear Information System (INIS)

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented

  16. STARS software tool for analysis of reliability and safety

    International Nuclear Information System (INIS)

    Poucet, A.; Guagnini, E.

    1989-01-01

    This paper reports on the STARS (Software Tool for the Analysis of Reliability and Safety) project aims at developing an integrated set of Computer Aided Reliability Analysis tools for the various tasks involved in systems safety and reliability analysis including hazard identification, qualitative analysis, logic model construction and evaluation. The expert system technology offers the most promising perspective for developing a Computer Aided Reliability Analysis tool. Combined with graphics and analysis capabilities, it can provide a natural engineering oriented environment for computer assisted reliability and safety modelling and analysis. For hazard identification and fault tree construction, a frame/rule based expert system is used, in which the deductive (goal driven) reasoning and the heuristic, applied during manual fault tree construction, is modelled. Expert system can explain their reasoning so that the analyst can become aware of the why and the how results are being obtained. Hence, the learning aspect involved in manual reliability and safety analysis can be maintained and improved

  17. Safety analysis methodology for OPR 1000

    International Nuclear Information System (INIS)

    Hwang-Yong, Jun

    2005-01-01

    Full text: Korea Electric Power Research Institute (KEPRI) has been developing inhouse safety analysis methodology based on the delicate codes available to KEPRI to overcome the problems arising from currently used vendor oriented methodologies. For the Loss of Coolant Accident (LOCA) analysis, the KREM (KEPRI Realistic Evaluation Methodology) has been developed based on the RELAP-5 code. The methodology was approved for the Westinghouse 3-loop plants by the Korean regulatory organization and the project to extent the methodology to the Optimized Power Reactor 1000 (OPR1000) has been ongoing since 2001. Also, for the Non-LOCA analysis, the KNAP (Korea Non-LOCA Analysis Package) has been developed using the UNICORN-TM code system. To demonstrate the feasibility of these codes systems and methodologies, some typical cases of the design basis accidents mentioned in the final safety analysis report (FSAR) were analyzed. (author)

  18. Safety analysis for the use of new digital safety I and C systems

    International Nuclear Information System (INIS)

    Buehler, Cornelia

    2012-01-01

    Age-induced replacement or modernization of safety I and C systems by digital equipment technology has been one of the topical subjects in nuclear technology for more than a decade. Digital equipment technology in this case means microcontroller- or microprocessor-based systems which implement I and C functions in software (SW) and, on the other hand, systems with programmed hardware (HW) components, such as Application-specific Integrated Circuits (ASIC), Field Programmable Gate Arrays (FPGA) or Programmable Logic Devices (PLS), which can be developed only by means of sophisticated SW development environments. The switch to digital equipment technology is more than a mere change in equipment technology even though the I and C functions remain almost identical in most cases. The switch not only leads to a different approach in equipment qualification, but also requires new focal points in plant design when it comes to assessing plant design, and needs new or adapted methods of analysis and evaluation. The main reason lies in the greater possibilities of systematic errors caused mainly by software-based development, manufacture and maintenance. New and adapted methods of analysis and evaluation for I and C systems are presented and explained. It is safe to say that safety I and C technology in the highest category of requirements necessitates a very far reaching realignment in design and evaluation as well as the use of new analytical techniques. This meets the claim of an I and C technology fit for use, reliable and comparable to the technology it replaces. (orig.)

  19. Safety analysis of an expert reactor protection system in nuclear power plants

    International Nuclear Information System (INIS)

    EL-Kafas, A.E.A.E.

    1996-01-01

    the purpose of the dissertation is to develop a real time expert reactor protection system (ERPS) for operational safety of pressurized water reactor nuclear power plant. The system is developed to diagnose plant failures and for identification of plant transients (with and without scram). for this ERPS. probabilistic safety analysis techniques are used to check the availability and priority of the recommended safety system in case of plant accidents . the real- time information during transients and accidents can be obtained to asses the operator in his decision - making . Also, the ERPS is able to give advice for the reactor operator to take the appropriate corrective action during abnormal situations. The system model consists of the dynamic differential equations for reactor core, pressurizer, steam generator, turbine and generator, piping and plenums. The system of equations can be solved by appropriate codes also displayed directly from sensors of the plant. All scenarios of transients, accidents and fault tress for plant systems are learned to ERPS

  20. Cross-comparison of three surrogate safety methods to diagnose cyclist safety problems at intersections in Norway.

    Science.gov (United States)

    Laureshyn, Aliaksei; Goede, Maartje de; Saunier, Nicolas; Fyhri, Aslak

    2017-08-01

    Relying on accident records as the main data source for studying cyclists' safety has many drawbacks, such as high degree of under-reporting, the lack of accident details and particularly of information about the interaction processes that led to the accident. It is also an ethical problem as one has to wait for accidents to happen in order to make a statement about cyclists' (un-)safety. In this perspective, the use of surrogate safety measures based on actual observations in traffic is very promising. In this study we used video data from three intersections in Norway that were all independently analysed using three methods: the Swedish traffic conflict technique (Swedish TCT), the Dutch conflict technique (DOCTOR) and the probabilistic surrogate measures of safety (PSMS) technique developed in Canada. The first two methods are based on manual detection and counting of critical events in traffic (traffic conflicts), while the third considers probabilities of multiple trajectories for each interaction and delivers a density map of potential collision points per site. Due to extensive use of microscopic data, PSMS technique relies heavily on automated tracking of the road users in video. Across the three sites, the methods show similarities or are at least "compatible" with the accident records. The two conflict techniques agree quite well for the number, type and location of conflicts, but some differences with no obvious explanation are also found. PSMS reports many more safety-relevant interactions including less severe events. The location of the potential collision points is compatible with what the conflict techniques suggest, but the possibly significant share of false alarms due to inaccurate trajectories extracted from video complicates the comparison. The tested techniques still require enhancement, with respect to better adjustment to analysis of the situations involving cyclists (and vulnerable road users in general) and further validation. However, we

  1. Preliminary safety analysis of unscrammed events for KLFR

    International Nuclear Information System (INIS)

    Kim, S.J.; Ha, G.S.

    2005-01-01

    The report presents the design features of KLFR; Safety Analysis Code; steady-state calculation results and analysis results of unscrammed events. The calculations of the steady-state and unscrammed events have been performed for the conceptual design of KLFR using SSC-K code. UTOP event results in no fuel damage and no centre-line melting. The inherent safety features are demonstrated through the analysis of ULOHS event. Although the analysis of ULOF has much uncertainties in the pump design, the analysis results show the inherent safety characteristics. 6% flow of rated flow of natural circulation is formed in the case of ULOF. In the metallic fuel rod, the cladding temperature is somewhat high due to the low heat transfer coefficient of lead. ULOHS event should be considered in design of RVACS for long-term cooling

  2. MSSV Modeling for Wolsong-1 Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Bok Ja; Choi, Chul Jin; Kim, Seoung Rae [KEPCO EandC, Daejeon (Korea, Republic of)

    2010-10-15

    The main steam safety valves (MSSVs) are installed on the main steam line to prevent the overpressurization of the system. MSSVs are held in closed position by spring force and the valves pop open by internal force when the main steam pressure increases to open set pressure. If the overpressure condition is relieved, the valves begin to close. For the safety analysis of anticipated accident condition, the safety systems are modeled conservatively to simulate the accident condition more severe. MSSVs are also modeled conservatively for the analysis of over-pressurization accidents. In this paper, the pressure transient is analyzed at over-pressurization condition to evaluate the conservatism for MSSV models

  3. Economic consideration of nuclear safety and cost benefit analysis in nuclear safety regulation

    International Nuclear Information System (INIS)

    Choi, Y. S.; Choi, K. S.; Choi, K. W.; Song, I. J.; Park, D. K.

    2001-01-01

    For the optimization of nuclear safety regulation, understanding of economic aspects of it becomes increasingly important together with the technical approach used so far to secure nuclear safety. Relevant economic theories on private and public goods were reviewed to re-illuminate nuclear safety from the economic perspective. The characteristics of nuclear safety as a public good was reviewed and discussed in comparison with the car safety as a private safety good. It was shown that the change of social welfare resulted from the policy change induced can be calculated by the summation of compensating variation(CV) of individuals. It was shown that the value of nuclear safety could be determined in monetary term by this approach. The theoretical background and history of cost benefit analysis of nuclear safety regulation were presented and topics for future study were suggested

  4. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    International Nuclear Information System (INIS)

    Rao, Suman

    2007-01-01

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly

  5. The PEC reactor. Safety analysis: Detailed reports

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In the safety-analysis of the PEC Brasimone reactor (Italy), attention was focused on the role of plant-incident analysis during the design stage and the conclusions reached. The analysis regarded the following: thermohydraulic incidents at full power; incidents with the reactor shut down; reactivity incidents; core local faults; analysis of fuel-handling incidents; engineered safeguards and passive safety features; coolant leakage and sodium fires; research and development studies on the seismic behaviour of the PEC fast reactor; generalized sodium fire; severe accidents, accident sequences with shudown; reference accident. Both the theoretical and experimental analyses demonstrated the adequacy of the design of the PEC fast reactor, aimed at minimizing the consequences of a hypothetical disruptive core accident with mechanical energy release. It was shown that the containment barriers were sized correctly and that the residual heat from a disassembled core would be removed. The re-evaluation of the source term emphasized the conservative nature of the hypotheses assumed in the preliminary safety analysis for calculating the risk to the public.

  6. Analysis of ISO 26262 Compliant Techniques for the Automotive Domain

    NARCIS (Netherlands)

    M. S. Kannan; Y. Dajsuren (Yanjindulam); Y. Luo; I. Barosan

    2015-01-01

    htmlabstractThe ISO 26262 standard denes functional safety for automotive E/E systems. Since the publication of the rst edition of this standard in 2011, many dierent safety techniques complying to the ISO 26262 have been developed. However, it is not clear which parts and (sub-) phases of the

  7. Analysis of ISO 26262 compliant techniques for the automotive domain

    NARCIS (Netherlands)

    S., Manoj Kannan; Dajsuren, Y.; Luo, Y.; Barosan, I.; Antkiewicz, M.; Atlee, J.; Dingel, J.; S, R.

    2015-01-01

    The ISO 26262 standard defines functional safety for automotive E/E systems. Since the publication of the first edition of this standard in 2011, many different safety techniques complying to the ISO 26262 have been developed. However, it is not clear which parts and (sub-) phases of the standard

  8. Rad waste disposal safety analysis / Integrated safety assessment of a waste repository

    International Nuclear Information System (INIS)

    Jeong, Jongtae; Choi, Jongwon; Kang, Chulhyung

    2012-04-01

    We developed CYPRUS+and adopted PID and RES method for the development of scenario. Safety performance assessment program was developed using GoldSim for the safety assessment of disposal system for the disposal of spnet fuels and wastes resulting from the pyrpoprocessing. Biosphere model was developed and verified in cooperation with JAEA. The capability to evaluate post-closure performance and safety was added to the previously developed program. And, nuclide migration and release to the biosphere considering site characteristics was evaluated by using deterministic and probabilistic approach. Operational safety assessment for drop, fire, and earthquake was also statistically evaluated considering well-established input parameter distribution. Conservative assessment showed that dose rate is below the limit value of low- and intermediate-level repository. Gas generation mechanism within engineered barrier was defined and its influence on safety was evaluated. We made probabilistic safety assessment by obtaining the probability distribution functions of important input variables and also made a sensitivity analysis. The maximum annual dose rate was shown to be below the safety limit value of 10 mSv/yr. The structure and element of safety case was developed to increase reliability of safety assessment methodology for a deep geological repository. Finally, milestone for safety case development and implementation strategy for each safety case element was also proposed

  9. Demonstration of Emulator-Based Bayesian Calibration of Safety Analysis Codes: Theory and Formulation

    Directory of Open Access Journals (Sweden)

    Joseph P. Yurko

    2015-01-01

    Full Text Available System codes for simulation of safety performance of nuclear plants may contain parameters whose values are not known very accurately. New information from tests or operating experience is incorporated into safety codes by a process known as calibration, which reduces uncertainty in the output of the code and thereby improves its support for decision-making. The work reported here implements several improvements on classic calibration techniques afforded by modern analysis techniques. The key innovation has come from development of code surrogate model (or code emulator construction and prediction algorithms. Use of a fast emulator makes the calibration processes used here with Markov Chain Monte Carlo (MCMC sampling feasible. This work uses Gaussian Process (GP based emulators, which have been used previously to emulate computer codes in the nuclear field. The present work describes the formulation of an emulator that incorporates GPs into a factor analysis-type or pattern recognition-type model. This “function factorization” Gaussian Process (FFGP model allows overcoming limitations present in standard GP emulators, thereby improving both accuracy and speed of the emulator-based calibration process. Calibration of a friction-factor example using a Method of Manufactured Solution is performed to illustrate key properties of the FFGP based process.

  10. Adapting Cognitive Task Analysis to Investigate Clinical Decision Making and Medication Safety Incidents.

    Science.gov (United States)

    Russ, Alissa L; Militello, Laura G; Glassman, Peter A; Arthur, Karen J; Zillich, Alan J; Weiner, Michael

    2017-05-03

    Cognitive task analysis (CTA) can yield valuable insights into healthcare professionals' cognition and inform system design to promote safe, quality care. Our objective was to adapt CTA-the critical decision method, specifically-to investigate patient safety incidents, overcome barriers to implementing this method, and facilitate more widespread use of cognitive task analysis in healthcare. We adapted CTA to facilitate recruitment of healthcare professionals and developed a data collection tool to capture incidents as they occurred. We also leveraged the electronic health record (EHR) to expand data capture and used EHR-stimulated recall to aid reconstruction of safety incidents. We investigated 3 categories of medication-related incidents: adverse drug reactions, drug-drug interactions, and drug-disease interactions. Healthcare professionals submitted incidents, and a subset of incidents was selected for CTA. We analyzed several outcomes to characterize incident capture and completed CTA interviews. We captured 101 incidents. Eighty incidents (79%) met eligibility criteria. We completed 60 CTA interviews, 20 for each incident category. Capturing incidents before interviews allowed us to shorten the interview duration and reduced reliance on healthcare professionals' recall. Incorporating the EHR into CTA enriched data collection. The adapted CTA technique was successful in capturing specific categories of safety incidents. Our approach may be especially useful for investigating safety incidents that healthcare professionals "fix and forget." Our innovations to CTA are expected to expand the application of this method in healthcare and inform a wide range of studies on clinical decision making and patient safety.

  11. Cost benefit analysis of reactor safety systems

    International Nuclear Information System (INIS)

    Maurer, H.A.

    1984-01-01

    Cost/benefit analysis of reactor safety systems is a possibility appropriate to deal with reactor safety. The Commission of the European Communities supported a study on the cost-benefit or cost effectiveness of safety systems installed in modern PWR nuclear power plants. The following systems and their cooperation in emergency cases were in particular investigated in this study: the containment system (double containment), the leakage exhaust and control system, the annulus release exhaust system and the containment spray system. The benefit of a safety system is defined according to its contribution to the reduction of the radiological consequences for the environment after a LOCA. The analysis is so far performed in two different steps: the emergency core cooling system is considered to function properly, failure of the emergency core cooling system is assumed (with the possible consequence of core melt-down) and the results may demonstrate the evidence that striving for cost-effectiveness can produce a safer end result than the philosophy of safety at any cost. (orig.)

  12. Seismic margin analysis technique for nuclear power plant structures

    International Nuclear Information System (INIS)

    Seo, Jeong Moon; Choi, In Kil

    2001-04-01

    In general, the Seismic Probabilistic Risk Assessment (SPRA) and the Seismic Margin Assessment(SAM) are used for the evaluation of realistic seismic capacity of nuclear power plant structures. Seismic PRA is a systematic process to evaluate the seismic safety of nuclear power plant. In our country, SPRA has been used to perform the probabilistic safety assessment for the earthquake event. SMA is a simple and cost effective manner to quantify the seismic margin of individual structural elements. This study was performed to improve the reliability of SMA results and to confirm the assessment procedure. To achieve this goal, review for the current status of the techniques and procedures was performed. Two methodologies, CDFM (Conservative Deterministic Failure Margin) sponsored by NRC and FA (Fragility Analysis) sponsored by EPRI, were developed for the seismic margin review of NPP structures. FA method was originally developed for Seismic PRA. CDFM approach is more amenable to use by experienced design engineers including utility staff design engineers. In this study, detailed review on the procedures of CDFM and FA methodology was performed

  13. RISMC advanced safety analysis project plan: FY2015 - FY2019. Light Water Reactor Sustainability Program

    International Nuclear Information System (INIS)

    Szilard, Ronaldo H; Smith, Curtis L; Youngblood, Robert

    2014-01-01

    In this report, the Advanced Safety Analysis Program (ASAP) objectives and value proposition is described. ASAP focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. The set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. As part of the discussion, we have identified three sets of stakeholders, the nuclear industry, the Department of Energy (DOE), and associated oversight organizations. These three groups would benefit from ASAP in different ways. For example, within the DOE complex, the possible applications that are seen include the safety of experimental reactors, facility life extension, safety-by-design in future generation advanced reactors, and managing security for the storage of nuclear material. This report provides information in five areas: (1) A value proposition (@@@why is this important?@@@) that will make the case for stakeholder's use of the ASAP research and development (R&D) products; (2) An identification of likely end users and pathway to adoption of enhanced tools by the end-users; (3) A proposed set of practical and achievable @@use case@@@ demonstrations; (4) A proposed plan to address ASAP verification and validation (V&V) needs; and (5) A proposed schedule for the multi-year ASAP.

  14. Safety systems and safety analysis of the Qinshan phase III CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Cai Jianping; Shen Sen; Barkman, N.

    1999-01-01

    The author introduces the Canadian nuclear reactor safety philosophy and the Qinshan Phase III CANDU NPP safety systems and safety analysis, which are designed and performed according to this philosophy. The concept of 'defence-in-depth' is a key element of the Canadian nuclear reactor safety philosophy. The design concepts of redundancy, diversity, separation, equipment qualification, quality assurance, and use of appropriate design codes and standards are adopted in the design. Four special safety systems as well as a set of reliable safety support systems are incorporated in the design of Qinshan phase III CANDU for accident mitigation. The assessment results for safety systems performance show that the fundamental safety criteria for public dose, and integrity of fuel, channels and the reactor building, are satisfied

  15. Software system safety

    Science.gov (United States)

    Uber, James G.

    1988-01-01

    Software itself is not hazardous, but since software and hardware share common interfaces there is an opportunity for software to create hazards. Further, these software systems are complex, and proven methods for the design, analysis, and measurement of software safety are not yet available. Some past software failures, future NASA software trends, software engineering methods, and tools and techniques for various software safety analyses are reviewed. Recommendations to NASA are made based on this review.

  16. Safety evaluation and bacterial community of kung-som using PCR-DGGE technique

    Directory of Open Access Journals (Sweden)

    Sutanate Saelao

    2016-08-01

    Full Text Available This study evaluates the safety of kung-som which was distributed in local markets and using PCR-DGGE technique to identify microflora in kung-som. Lactic acid bacteria (LAB were found at counts of more than 7 log CFU g-1 in all samples and the total viable counts were about 5-8 log CFU g-1 . Bacillus cereus and yeasts were detected at around 2 log CFU g-1 and 5-6log CFU g-1, respectively. For DGGE analysis, LAB and coagulase negative staphylococci (CNS bacteria dominated over other microorganisms. The sequencing of the DNA bands from DGGE gels corresponding to kung-som samples showed the presence of LAB as the major microflora in the products, namely: Lactobacillus farciminis, Lactobacillus plantarum, Lactococcus garvieae, Tetragenococcus halophilus and Weissella thailandensis. In addition, Staphylococcus carnosus was detected in kung-som as minor microflora. These dominant strains would allow the development of defined starter cultures for improving the quality of kung-som.

  17. An Analysis of Trainers' Perspectives within an Ecological Framework: Factors that Influence Mine Safety Training Processes.

    Science.gov (United States)

    Haas, Emily J; Hoebbel, Cassandra L; Rost, Kristen A

    2014-09-01

    Satisfactory completion of mine safety training is a prerequisite for being hired and for continued employment in the coal industry. Although training includes content to develop skills in a variety of mineworker competencies, research and recommendations continue to specify that specific limitations in the self-escape portion of training still exist and that mineworkers need to be better prepared to respond to emergencies that could occur in their mine. Ecological models are often used to inform the development of health promotion programs but have not been widely applied to occupational health and safety training programs. Nine mine safety trainers participated in in-depth semi-structured interviews. A theoretical analysis of the interviews was completed via an ecological lens. Each level of the social ecological model was used to examine factors that could be addressed both during and after mine safety training. The analysis suggests that problems surrounding communication and collaboration, leadership development, and responsibility and accountability at different levels within the mining industry contribute to deficiencies in mineworkers' mastery and maintenance of skills. This study offers a new technique to identify limitations in safety training systems and processes. The analysis suggests that training should be developed and disseminated with consideration of various levels-individual, interpersonal, organizational, and community-to promote skills. If factors identified within and between levels are addressed, it may be easier to sustain mineworker competencies that are established during safety training.

  18. Challenges on innovations of newly-developed safety analysis codes

    International Nuclear Information System (INIS)

    Yang, Yanhua; Zhang, Hao

    2016-01-01

    With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.

  19. Challenges on innovations of newly-developed safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yanhua [Shanghai Jiao Tong Univ. (China). School of Nuclear Science and Engineering; Zhang, Hao [State Nuclear Power Software Development Center, Beijing (China). Beijing Future Science and Technology City

    2016-05-15

    With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.

  20. Safety Analysis Report for Ignalina NPP

    International Nuclear Information System (INIS)

    Negrivoda, G.

    1997-01-01

    In December 1994 an agreement was signed between the European Bank for Reconstruction and Development and the Republic of Lithuania for the grant of 32.86 MECU for the safety Improvement at Ignalina NPP. One of the conditions for the provision of the grant, was a requirement for an in-depth analysis of the safety level at Ignalina NPP in the scope and according to the standards acceptable for a western nuclear power plant, and to publish a Safety Analysis Report (SAR). The report should investigate and analyze any factor that could limit a safe operation of the plant, and provide recommendations for actual safety improvements. According to the agreement, Lithuania had to finalize the SAR until 31 December, 1995. The bank has also organized and financed investigation of safety at Ignalina NPP and preparation of the SAR. EBRD made an agreement with Sweden's Vattenfall, which subcontracted well-known companies from Canada, USA, Germany, etc., and also the Russian Research and Development Institute of Power Engineering (NIKIET), reactor designer of Ignalina NPP. The SAR is a very comprehensive document and contains about 8000 pages of text, diagrams and tables. The main findings of the SAR are provided in the article. A large number of discrepancies with modern rules and western practices was detected, but they were not proved to be serious enough to require reactors shutdown. Based on the recommendations of the SAR Ignalina NPP has worked out Safety Improvement Program No. 2 (SIP-2), which is planned for three years and will cost 486 MLT. (author)

  1. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Suman [Risk Analyst (India)]. E-mail: sumanashokrao@yahoo.co.in

    2007-04-11

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly.

  2. Construction safety and waste management an economic analysis

    CERN Document Server

    Li, Rita Yi Man

    2015-01-01

    This monograph presents an analysis of construction safety problems and on-site safety measures from an economist’s point of view. The book includes examples from both emerging countries, e.g. China and India, and developed countries, e.g. Australia and Hong Kong. Moreover, the author covers an analysis on construction safety knowledge sharing by means of updatable mobile technology such as apps in Androids and iOS platform mobile devices. The target audience comprises primarily researchers and experts in the field but the book may also be beneficial for graduate students.

  3. Using Addenda in Documented Safety Analysis Reports

    International Nuclear Information System (INIS)

    Swanson, D.S.; Thieme, M.A.

    2003-01-01

    This paper discusses the use of addenda to the Radioactive Waste Management Complex (RWMC) Documented Safety Analysis (DSA) located at the Idaho National Engineering and Environmental Laboratory (INEEL). Addenda were prepared for several systems and processes at the facility that lacked adequate descriptive information and hazard analysis in the DSA. They were also prepared for several new activities involving unreviewed safety questions (USQs). Ten addenda to the RWMC DSA have been prepared since the last annual update

  4. System safety analysis of an autonomous mobile robot

    International Nuclear Information System (INIS)

    Bartos, R.J.

    1994-01-01

    Analysis of the safety of operating and maintaining the Stored Waste Autonomous Mobile Inspector (SWAMI) II in a hazardous environment at the Fernald Environmental Management Project (FEMP) was completed. The SWAMI II is a version of a commercial robot, the HelpMate trademark robot produced by the Transitions Research Corporation, which is being updated to incorporate the systems required for inspecting mixed toxic chemical and radioactive waste drums at the FEMP. It also has modified obstacle detection and collision avoidance subsystems. The robot will autonomously travel down the aisles in storage warehouses to record images of containers and collect other data which are transmitted to an inspector at a remote computer terminal. A previous study showed the SWAMI II has economic feasibility. The SWAMI II will more accurately locate radioactive contamination than human inspectors. This thesis includes a System Safety Hazard Analysis and a quantitative Fault Tree Analysis (FTA). The objectives of the analyses are to prevent potentially serious events and to derive a comprehensive set of safety requirements from which the safety of the SWAMI II and other autonomous mobile robots can be evaluated. The Computer-Aided Fault Tree Analysis (CAFTA copyright) software is utilized for the FTA. The FTA shows that more than 99% of the safety risk occurs during maintenance, and that when the derived safety requirements are implemented the rate of serious events is reduced to below one event per million operating hours. Training and procedures in SWAMI II operation and maintenance provide an added safety margin. This study will promote the safe use of the SWAMI II and other autonomous mobile robots in the emerging technology of mobile robotic inspection

  5. Participatory/problem-based methods and techniques for training in health and safety.

    Science.gov (United States)

    Rosskam, E

    2001-01-01

    More knowledgeable and trained people are needed in the area of occupational health, safety, and environment (OSHE) if work-related fatalities, accidents, and diseases are to be reduced. Established systems have been largely ineffective, with few employers taking voluntary measures to protect workers and the environment and too few labor inspectors available. Training techniques using participatory methods and a worker empowerment philosophy have proven value. There is demonstrated need for the use of education for action, promoting the involvement of workers in all levels of decision-making and problem-solving in the workplace. OSH risks particular to women s jobs are virtually unstudied and not addressed at policy levels in most countries. Trade unions and health and safety professionals need to demystify technical areas, empower workers, and encourage unions to dedicate special activities around women s jobs. Trained women are excellent motivators and transmitters of safety culture. Particular emphasis is given to train-the-trainer approaches.

  6. Preliminary Safety Analysis Report for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Motloch, C.G.; Bonney, R.F.; Levine, J.D.; Masson, L.S.; Commander, J.C.

    1995-04-01

    This Preliminary Safety Analysis Report (PSAR), includes an indication of the magnitude of facility hazards, complexity of facility operations, and the stage of the facility life-cycle. It presents the results of safety analyses, safety assurance programs, identified vulnerabilities, compensatory measures, and, in general, the rationale describing why the Tokamak Physics Experiment (TPX) can be safely operated. It discusses application of the graded approach to the TPX safety analysis, including the basis for using Department of Energy (DOE) Order 5480.23 and DOE-STD-3009-94 in the development of the PSAR

  7. Multispectral fluorescence imaging techniques for nondestructive food safety inspection

    Science.gov (United States)

    Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren

    2004-03-01

    The use of spectral sensing has gained acceptance as a rapid means for nondestructive inspection of postharvest food produce. Current technologies generally use color or a single wavelength camera technology. The applicability and sensitivity of these techniques can be expanded through the use of multiple wavelengths. Reflectance in the Vis/NIR is the prevalent spectral technique. Fluorescence, compared to reflectance, is regarded as a more sensitive technique due to its dynamic responses to subtle changes in biological entities. Our laboratory has been exploring fluorescence as a potential means for detection of quality and wholesomeness of food products. Applications of fluorescence sensing require an understanding of the spectral characteristics emanating from constituents and potential contaminants. A number of factors affecting fluorescence emission characteristics are discussed. Because of relatively low fluorescence quantum yield from biological samples, a system with a powerful pulse light source such as a laser coupled with a gated detection device is used to harvest fluorescence, in the presence of ambient light. Several fluorescence sensor platforms developed in our laboratory, including hyperspectral imaging, and laser-induced fluorescence (LIF) and steady-state fluorescence imaging systems with multispectral capabilities are presented. We demonstrate the potential uses of recently developed fluorescence imaging platforms in food safety inspection of apples contaminated with animal feces.

  8. Reliability analysis of diverse safety logic systems of fast breeder reactor

    International Nuclear Information System (INIS)

    Ravi Kumar, Bh.; Apte, P.R.; Srivani, L.; Ilango Sambasivan, S.; Swaminathan, P.

    2006-01-01

    Safety Logic for Fast Breeder Reactor (FBR) is designed to initiate safety action against Design Basis Events. Based on the outputs of various processing circuits, Safety logic system drives the control rods of the shutdown system. So, Safety Logic system is classified as safety critical system. Therefore, reliability analysis has to be performed. This paper discusses the Reliability analysis of Diverse Safety logic systems of FBRs. For this literature survey on safety critical systems, system reliability approach and standards to be followed like IEC-61508 are discussed in detail. For Programmable Logic device based systems, Hardware Description Languages (HDL) are used. So this paper also discusses the Verification and Validation for HDLs. Finally a case study for the Reliability analysis of Safety logic is discussed. (author)

  9. Safety Assessment of Two Hybrid Instrumentation Techniques in a Dental Student Endodontic Clinic: A Retrospective Study.

    Science.gov (United States)

    Coelho, Marcelo Santos; Card, Steven John; Tawil, Peter Zahi

    2017-03-01

    The aim of this study was to retrospectively assess the safety potential of a hybrid technique combining nickel-titanium (NiTi) reciprocating and rotary instruments by third- and fourth-year dental students in the predoctoral endodontics clinic at one U.S. dental school. For the study, 3,194 root canal treatments performed by 317 dental students from 2012 through 2015 were evaluated for incidence of ledge creation and instrument separation. The hybrid reciprocating and rotary technique (RRT) consisted of a glide path creation with stainless steel hand files up to size 15/02, a crown down preparation with a NiTi reciprocating instrument, and an apical preparation with NiTi rotary instruments. The control was a traditional rotary and hand technique (RHT) that consisted of the same glide path procedure followed by a crown down preparation with NiTi rotary instruments and an apical preparation with NiTi hand instruments. The results showed that the RHT technique presented a rate of ledge creation of 1.4% per root and the RRT technique was 0.5% per root (protary technique for root canal instrumentation by these dental students provided good safety. This hybrid technique offered a low rate of ledge creation along with no NiTi instrument separation.

  10. Uncertainty analysis for Ulysses safety evaluation report

    International Nuclear Information System (INIS)

    Frank, M.V.

    1991-01-01

    As part of the effort to review the Ulysses Final Safety Analysis Report and to understand the risk of plutonium release from the Ulysses spacecraft General Purpose Heat Source---Radioisotope Thermal Generator (GPHS-RTG), the Interagency Nuclear Safety Review Panel (INSRP) and the author performed an integrated, quantitative analysis of the uncertainties of the calculated risk of plutonium release from Ulysses. Using state-of-art probabilistic risk assessment technology, the uncertainty analysis accounted for both variability and uncertainty of the key parameters of the risk analysis. The results show that INSRP had high confidence that risk of fatal cancers from potential plutonium release associated with calculated launch and deployment accident scenarios is low

  11. COLD-SAT feasibility study safety analysis

    Science.gov (United States)

    Mchenry, Steven T.; Yost, James M.

    1991-01-01

    The Cryogenic On-orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite presents some unique safety issues. The feasibility study conducted at NASA-Lewis desired a systems safety program that would be involved from the initial design in order to eliminate and/or control the inherent hazards. Because of this, a hazards analysis method was needed that: (1) identified issues that needed to be addressed for a feasibility assessment; and (2) identified all potential hazards that would need to be controlled and/or eliminated during the detailed design phases. The developed analysis method is presented as well as the results generated for the COLD-SAT system.

  12. Guidance for preparation of safety analysis reports for nonreactor facilities and operations

    International Nuclear Information System (INIS)

    1992-01-01

    Department of Energy (DOE) Orders 5480.23, ''Nuclear Safety Analysis Reports,'' and 5481.1B, ''Safety Analysis and Review System'' require the preparation of appropriate safety analyses for each DOE operation and subsequent significant modifications including decommissioning, and independent review of each safety analysis. The purpose of this guide is to assist in the preparation and review of safety documentation for Oak Ridge Field Office (OR) nonreactor facilities and operation. Appendix A lists DOE Orders, NRC Regulatory Guides and other documents applicable to the preparation of safety analysis reports

  13. Safety analysis and risk assessment handbook

    International Nuclear Information System (INIS)

    Peterson, V.L.; Colwell, R.G.; Dickey, R.L.

    1997-01-01

    This Safety Analysis and Risk Assessment Handbook (SARAH) provides guidance to the safety analyst at the Rocky Flats Environmental Technology Site (RFETS) in the preparation of safety analyses and risk assessments. Although the older guidance (the Rocky Flats Risk Assessment Guide) continues to be used for updating the Final Safety Analysis Reports developed in the mid-1980s, this new guidance is used with all new authorization basis documents. With the mission change at RFETS came the need to establish new authorization basis documents for its facilities, whose functions had changed. The methodology and databases for performing the evaluations that support the new authorization basis documents had to be standardized, to avoid the use of different approaches and/or databases for similar accidents in different facilities. This handbook presents this new standardized approach. The handbook begins with a discussion of the requirements of the different types of authorization basis documents and how to choose the one appropriate for the facility to be evaluated. It then walks the analyst through the process of identifying all the potential hazards in the facility, classifying them, and choosing the ones that need to be analyzed further. It then discusses the methods for evaluating accident initiation and progression and covers the basic steps in a safety analysis, including consequence and frequency binning and risk ranking. The handbook lays out standardized approaches for determining the source terms of the various accidents (including airborne release fractions, leakpath factors, etc.), the atmospheric dispersion factors appropriate for Rocky Flats, and the methods for radiological and chemical consequence assessments. The radiological assessments use a radiological open-quotes templateclose quotes, a spreadsheet that incorporates the standard values of parameters, whereas the chemical assessments use the standard codes ARCHIE and ALOHA

  14. Engineered safeguards and passive safety features (safety analysis detailed report no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-15

    The Safety-Analysis Summary lists the reactor's safety aspects for passive and active prevention of severe accidents and mitigation of accident consequences, i.e., intrinsic and passive protections of the plant; intrinsic and passive protections of the core; inherent decay-heat removal systems; rapid-shutdown systems; four physical containment barriers. This report goes into further details regarding some of this aspects.

  15. Computer aided safety analysis

    International Nuclear Information System (INIS)

    1988-05-01

    The document reproduces 20 selected papers from the 38 papers presented at the Technical Committee/Workshop on Computer Aided Safety Analysis organized by the IAEA in co-operation with the Institute of Atomic Energy in Otwock-Swierk, Poland on 25-29 May 1987. A separate abstract was prepared for each of these 20 technical papers. Refs, figs and tabs

  16. Holistic safety analysis for advanced nuclear power plants

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.; Guimaraes, A.C.F.

    1992-01-01

    This paper reviews the basic methodology of safety analysis used in the ANGRA-I and ANGRA-II nuclear power plants, its weaknesses, the problems with public acceptance of the risks, the future of the nuclear energy in Brazil, as well as recommends a new methodology, HOLISTIC SAFETY ANALYSIS, to be used both in the design and licensing phases, for advanced reactors. (author)

  17. Special characteristics of the safety analysis of HWRs

    International Nuclear Information System (INIS)

    Kugler, G.

    1980-01-01

    Two lectures are presented in this report. The CANDU-PHW reactor is used as a model for discussion. The first lecture describes the distinctive features of the CANDU reactor, and how they impact on reactor safety. In the second lecture the Canadian safety philosophy, the safety design objective, and other selected topics on reactor safety analysis are discussed. The material in this report was selected with a view to assisting those not familiar with the CANDU heavy water reactor design in evaluating the distinctive safety aspects of these reactors. (orig./RW)

  18. SCALE 5: Powerful new criticality safety analysis tools

    International Nuclear Information System (INIS)

    Bowman, Stephen M.; Hollenbach, Daniel F.; Dehart, Mark D.; Rearden, Bradley T.; Gauld, Ian C.; Goluoglu, Sedat

    2003-01-01

    Version 5 of the SCALE computer software system developed at Oak Ridge National Laboratory, scheduled for release in December 2003, contains several significant new modules and sequences for criticality safety analysis and marks the most important update to SCALE in more than a decade. This paper highlights the capabilities of these new modules and sequences, including continuous energy flux spectra for processing multigroup problem-dependent cross sections; one- and three-dimensional sensitivity and uncertainty analyses for criticality safety evaluations; two-dimensional flexible mesh discrete ordinates code; automated burnup-credit analysis sequence; and one-dimensional material distribution optimization for criticality safety. (author)

  19. [Examination of safety improvement by failure record analysis that uses reliability engineering].

    Science.gov (United States)

    Kato, Kyoichi; Sato, Hisaya; Abe, Yoshihisa; Ishimori, Yoshiyuki; Hirano, Hiroshi; Higashimura, Kyoji; Amauchi, Hiroshi; Yanakita, Takashi; Kikuchi, Kei; Nakazawa, Yasuo

    2010-08-20

    How the maintenance checks of the medical treatment system, including start of work check and the ending check, was effective for preventive maintenance and the safety improvement was verified. In this research, date on the failure of devices in multiple facilities was collected, and the data of the trouble repair record was analyzed by the technique of reliability engineering. An analysis of data on the system (8 general systems, 6 Angio systems, 11 CT systems, 8 MRI systems, 8 RI systems, and the radiation therapy system 9) used in eight hospitals was performed. The data collection period assumed nine months from April to December 2008. Seven items were analyzed. (1) Mean time between failures (MTBF) (2) Mean time to repair (MTTR) (3) Mean down time (MDT) (4) Number found by check in morning (5) Failure generation time according to modality. The classification of the breakdowns per device, the incidence, and the tendency could be understood by introducing reliability engineering. Analysis, evaluation, and feedback on the failure generation history are useful to keep downtime to a minimum and to ensure safety.

  20. Human actions in the pre-operational probabilistic safety analysis of Juragua Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ferro, R.

    1995-01-01

    Human error is one of the main contributors to the biggest industrial disasters that the world has suffered in the last years. Safety probabilistic analysis techniques allow to consider, in the some study, the contribution of a facility's mechanical and human components safety, this guaranteeing a move integral assessment of these two factors although the PSA study of Juragua Nuclear Power Plant is carried out at a preoperational stage which causes important information limitations fos assessment of human reliability some considerations and suppositions in order to conduct treatment of human actions this stage were adopted. The present work describes the projected targets, approach applied and results obtained from the lakes of human reliability of this study

  1. A hazard and probabilistic safety analysis of a high-level waste transfer process

    International Nuclear Information System (INIS)

    Bott, T.F.; Sasser, M.K.

    1996-01-01

    This paper describes a safety analysis of a transfer process for high-level radioactive and toxic waste. The analysis began with a hazard assessment that used elements of What If, Checklist, Failure Modes and Effects Analysis, and Hazards and Operability Study (HAZOP) techniques to identify and rough-in accident sequences. Based on this preliminary analysis, the most significant accident sequences were developed further using event trees. Quantitative frequency estimates for the accident sequences were based on operational data taken from the historical record of the site where the process is performed. Several modeling challenges were encountered in the course of the study. These included linked initiating and accident progression events, fire propagation modeling, accounting for administrative control violations, and handling mission-phase effects

  2. Application of best estimate and uncertainty safety analysis methodology to loss of flow events at Ontario's Power Generation's Darlington Nuclear Generating Station

    International Nuclear Information System (INIS)

    Huget, R.G.; Lau, D.K.; Luxat, J.C.

    2001-01-01

    Ontario Power Generation (OPG) is currently developing a new safety analysis methodology based on best estimate and uncertainty (BEAU) analysis. The framework and elements of the new safety analysis methodology are defined. The evolution of safety analysis technology at OPG has been thoroughly documented. Over the years, the use of conservative limiting assumptions in OPG safety analyses has led to gradual erosion of predicted safety margins. The main purpose of the new methodology is to provide a more realistic quantification of safety margins within a probabilistic framework, using best estimate results, with an integrated accounting of the underlying uncertainties. Another objective of the new methodology is to provide a cost-effective means for on-going safety analysis support of OPG's nuclear generating stations. Discovery issues and plant aging effects require that the safety analyses be periodically revised and, in the past, the cost of reanalysis at OPG has been significant. As OPG enters the new competitive marketplace for electricity, there is a strong need to conduct safety analysis in a less cumbersome manner. This paper presents the results of the first licensing application of the new methodology in support of planned design modifications to the shutdown systems (SDSs) at Darlington Nuclear Generating Station (NGS). The design modifications restore dual trip parameter coverage over the full range of reactor power for certain postulated loss-of-flow (LOF) events. The application of BEAU analysis to the single heat transport pump trip event provides a realistic estimation of the safety margins for the primary and backup trip parameters. These margins are significantly larger than those predicted by conventional limit of the operating envelope (LOE) analysis techniques. (author)

  3. Preparing a Safety Analysis Report using the building block approach

    International Nuclear Information System (INIS)

    Herrington, C.C.

    1990-01-01

    The credibility of the applicant in a licensing proceeding is severely impacted by the quality of the license application, particularly the Safety Analysis Report. To ensure the highest possible credibility, the building block approach was devised to support the development of a quality Safety Analysis Report. The approach incorporates a comprehensive planning scheme that logically ties together all levels of the investigation and provides the direction necessary to prepare a superior Safety Analysis Report

  4. A Survey on Formal Verification Techniques for Safety-Critical Systems-on-Chip

    Directory of Open Access Journals (Sweden)

    Tomás Grimm

    2018-05-01

    Full Text Available The high degree of miniaturization in the electronics industry has been, for several years, a driver to push embedded systems to different fields and applications. One example is safety-critical systems, where the compactness in the form factor helps to reduce the costs and allows for the implementation of new techniques. The automotive industry is a great example of a safety-critical area with a great rise in the adoption of microelectronics. With it came the creation of the ISO 26262 standard with the goal of guaranteeing a high level of dependability in the designs. Other areas in the safety-critical applications domain have similar standards. However, these standards are mostly guidelines to make sure that designs reach the desired dependability level without explicit instructions. In the end, the success of the design to fulfill the standard is the result of a thorough verification process. Naturally, the goal of any verification team dealing with such important designs is complete coverage as well as standards conformity, but as these are complex hardware, complete functional verification is a difficult task. From the several techniques that exist to verify hardware, where each has its pros and cons, we studied six well-established in academia and in industry. We can divide them into two categories: simulation, which needs extremely large amounts of time, and formal verification, which needs unrealistic amounts of resources. Therefore, we conclude that a hybrid approach offers the best balance between simulation (time and formal verification (resources.

  5. Utilization of the MCNP-3A code for criticality safety analysis

    International Nuclear Information System (INIS)

    Maragni, M.G.; Moreira, J.M.L.

    1996-01-01

    In the last decade, Brazil started to operate facilities for processing and storing uranium in different forms. The necessity of criticality safety analysis appeared in the design phase of the uranium pilot process plants and also in the licensing of transportation and storage of fissile materials. The 2-MW research reactor and the Angra I power plant also required criticality safety assessments because their spent-fuel storage was approaching full-capacity utilization. The criticality safety analysis in Brazil has been based on KENO IV code calculations, which present some difficulties for correct geometry representation. The MCNP-3A code is not reported to be used frequently for criticality safety analysis in Brazil, but its good geometry representation makes it a possible tool for treating problems of complex geometry. A set of benchmark tests was performed to verify its applicability for criticality safety analysis in Brazil. This paper presents several benchmark tests aimed at selecting a set of options available in the MCNP-3A code that would be adequate for criticality safety analysis. The MCNP-3A code is also compared with the KENO-IV code regarding its performance for criticality safety analysis

  6. Comparison of global sensitivity analysis techniques and importance measures in PSA

    International Nuclear Information System (INIS)

    Borgonovo, E.; Apostolakis, G.E.; Tarantola, S.; Saltelli, A.

    2003-01-01

    This paper discusses application and results of global sensitivity analysis techniques to probabilistic safety assessment (PSA) models, and their comparison to importance measures. This comparison allows one to understand whether PSA elements that are important to the risk, as revealed by importance measures, are also important contributors to the model uncertainty, as revealed by global sensitivity analysis. We show that, due to epistemic dependence, uncertainty and global sensitivity analysis of PSA models must be performed at the parameter level. A difficulty arises, since standard codes produce the calculations at the basic event level. We discuss both the indirect comparison through importance measures computed for basic events, and the direct comparison performed using the differential importance measure and the Fussell-Vesely importance at the parameter level. Results are discussed for the large LLOCA sequence of the advanced test reactor PSA

  7. Safety analysis of tritium processing system based on PHA

    International Nuclear Information System (INIS)

    Fu Wanfa; Luo Deli; Tang Tao

    2012-01-01

    Safety analysis on primary confinement of tritium processing system for TBM was carried out with Preliminary Hazard Analysis. Firstly, the basic PHA process was given. Then the function and safe measures with multiple confinements about tritium system were described and analyzed briefly, dividing the two kinds of boundaries of tritium transferring through, that are multiple confinement systems division and fluid loops division. Analysis on tritium releasing is the key of PHA. Besides, PHA table about tritium releasing was put forward, the causes and harmful results being analyzed, and the safety measures were put forward also. On the basis of PHA, several kinds of typical accidents were supposed to be further analyzed. And 8 factors influencing the tritium safety were analyzed, laying the foundation of evaluating quantitatively the safety grade of various nuclear facilities. (authors)

  8. Hospital survey on patient safety culture: psychometric analysis on a Scottish sample.

    Science.gov (United States)

    Sarac, Cakil; Flin, Rhona; Mearns, Kathryn; Jackson, Jeanette

    2011-10-01

    To investigate the psychometric properties of the Hospital Survey on Patient Safety Culture on a Scottish NHS data set. The data were collected from 1969 clinical staff (estimated 22% response rate) from one acute hospital from each of seven Scottish Health boards. Using a split-half validation technique, the data were randomly split; an exploratory factor analysis was conducted on the calibration data set, and confirmatory factor analyses were conducted on the validation data set to investigate and check the original US model fit in a Scottish sample. Following the split-half validation technique, exploratory factor analysis results showed a 10-factor optimal measurement model. The confirmatory factor analyses were then performed to compare the model fit of two competing models (10-factor alternative model vs 12-factor original model). An S-B scaled χ(2) square difference test demonstrated that the original 12-factor model performed significantly better in a Scottish sample. Furthermore, reliability analyses of each component yielded satisfactory results. The mean scores on the climate dimensions in the Scottish sample were comparable with those found in other European countries. This study provided evidence that the original 12-factor structure of the Hospital Survey on Patient Safety Culture scale has been replicated in this Scottish sample. Therefore, no modifications are required to the original 12-factor model, which is suggested for use, since it would allow researchers the possibility of cross-national comparisons.

  9. Methodology for the application of probabilistic safety assessment techniques (PSA) to the cobalt-therapy units in Cuba

    International Nuclear Information System (INIS)

    Vilaragut Llanes, J.J.; Ferro Fernandez, R.; Troncoso Fleitas, M.; Lozano Lima, B.; Fuente Puch, A. de la; Perez Reyes, Y.; Dumenigo Gonzalez, C.

    2001-01-01

    The applications of PSA techniques in the nuclear power plants during the last two decades and the positive results obtained for decision making in relation with safety, as a complement to deterministic methods, have increased their use in the rest of the nuclear applications. At present a large set of documents from international institutions can be found summarizing the investigations carried out in this field and promoting their use in radioactive facilities. Although still without a mandatory character, the new regulations on radiological safety also promote the complete or partial application of the PSA techniques in the safety assessment of the radiological practices. Also the IAEA, through various programs in which Cuba has been inserted, is taking a group of actions so that the nuclear community will encourage the application of the probabilistic risk methods for the evaluations and decision making with respect to safety. However, the fact that in no radioactive installation has a complete PSA study been carried out, makes that certain methodological aspects require to be improved and modified for the application of these techniques. This work presents the main elements for the use of PSA in the evaluation of the safety of cobalt-therapy units in Cuba. Also presented, as part of the results of the first stage of the Study, are the Guidelines that are being applied in a Research Contract with the Agency by the authors themselves, who belong to the CNSN, together with other specialists from the Cuban Ministry of Public Health. (author) [es

  10. A Study of Time Response for Safety-Related Operator Actions in Non-LOCA Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Seok; Lee, Sang Seob; Park, Min Soo; Lee, Gyu Cheon; Kim, Shin Whan [KEPCO E and C Company, Daejeon (Korea, Republic of)

    2014-10-15

    The classification of initiating events for safety analysis report (SAR) chapter 15 is categorized into moderate frequency events (MF), infrequent events (IF), and limiting faults (LF) depending on the frequency of its occurrence. For the non-LOCA safety analysis with the purpose to get construction or operation license, however, it is assumed that the operator response action to mitigate the events starts at 30 minutes after the initiation of the transient regardless of the event categorization. Such an assumption of corresponding operator response time may have over conservatism with the MF and IF events and results in a decrease in the safety margin compared to its acceptance criteria. In this paper, the plant conditions (PC) are categorized with the definitions in SAR 15 and ANS 51.1. Then, the consequence of response for safety-related operator action time is determined based on the PC in ANSI 58.8. The operator response time for safety analysis regarding PC are reviewed and suggested. The clarifying alarm response procedure would be required for the guideline to reduce the operator response time when the alarms indicate the occurrence of the transient.

  11. Analysis and analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Batuecas Rodriguez, T [Department of Chemistry and Isotopes, Junta de Energia Nuclear, Madrid (Spain)

    1967-01-01

    The technology associated with the use of organic coolants in nuclear reactors depends to a large extent on the determination and control of their physical and chemical properties, and particularly on the viability, speed, sensitivity, precision and accuracy (depending on the intended usage) of the methods employed in detection and analytical determination. This has led to the study and development of numerous techniques, some specially designed for the extreme conditions involved in working with the types of product in question and others adapted from existing techniques. In the specific case of polyphenyl and hydropolyphenyl mixtures, which have been the principal subjects of study to date and offer greatest promise, the analytical problems are broadly as follows: Composition of initial product or virgin coolant composition of macro components and amounts of organic and inorganic impurities; Coolant during and after operation. Determination of gases and organic compounds produced by pyrolysis and radiolysis (degradation and polymerization products); Control of systems for purifying and regenerating the coolant after use. Dissolved pressurization gases; Detection of intermediate products during decomposition; these are generally very unstable (free radicals); Degree of fouling and film formation. Tests to determine potential formation of films; Corrosion of structural elements and canning materials; Health and safety. Toxicity, inflammability and impurities that can be activated. Although some of the above problems are closely interrelated and entail similar techniques, they vary as to degree of difficulty. Another question is the difficulty of distinguishing clearly between techniques for determining physical and physico-chemical properties, on one hand, and analytical techniques on the other. Any classification is therefore somewhat arbitrary (for example, in the case of dosimetry and techniques for determining mean molecular weights or electrical conductivity

  12. Development of safety analysis technology for LMR

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kwon, Y. M.; Suk, S. D.

    2002-05-01

    In the present study, the KALIMER safety analysis has been made for the transients considered in the design concept, hypothetical core disruptive accident (HCDA), and containment performance with the establishment of the design basis. Such analyses have not been possible without the computer code improvement, and the experience attained during this research period must have greatly contributed to the achievement of the self reliance in the domestic technology establishment on the safety analysis areas of the conceptual design. The safety analysis codes have been improved to extend their applicable ranges for detailed conceptual design, and a basic computer code system has been established for HCDA analysis. A code-to-code comparison analysis has been performed as a part of code verification attempt, and the leading edge technology of JNC also has been brought for the technology upgrade. In addition, the research and development on the area of the database establishment has been made for the efficient and systematic project implementation of the conceptual design, through performances on the development of a project scheduling management, integration of the individually developed technology, establishment of the product database, and so on, taking into account coupling of the activities conducted in each specific area

  13. Preclosure Safety Analysis Guide

    International Nuclear Information System (INIS)

    D.D. Orvis

    2003-01-01

    A preclosure safety analysis (PSA) is a required element of the License Application (LA) for the high- level radioactive waste repository at Yucca Mountain. This guide provides analysts and other Yucca Mountain Repository Project (the Project) personnel with standardized methods for developing and documenting the PSA. The definition of the PSA is provided in 10 CFR 63.2, while more specific requirements for the PSA are provided in 10 CFR 63.112, as described in Sections 1.2 and 2. The PSA requirements described in 10 CFR Part 63 were developed as risk-informed performance-based regulations. These requirements must be met for the LA. The PSA addresses the safety of the Geologic Repository Operations Area (GROA) for the preclosure period (the time up to permanent closure) in accordance with the radiological performance objectives of 10 CFR 63.111. Performance objectives for the repository after permanent closure (described in 10 CFR 63.113) are not mentioned in the requirements for the PSA and they are not considered in this guide. The LA will be comprised of two phases: the LA for construction authorization (CA) and the LA amendment to receive and possess (R and P) high-level radioactive waste (HLW). PSA methods must support the safety analyses that will be based on the differing degrees of design detail in the two phases. The methods described herein combine elements of probabilistic risk assessment (PRA) and deterministic analyses that comprise a risk-informed performance-based safety analysis. This revision to the PSA guide was prepared for the following objectives: (1) To correct factual and typographical errors. (2) To provide additional material suggested from reviews by the Project, the U.S. Department of Energy (DOE), and U.S. Nuclear Regulatory Commission (NRC) Staffs. (3) To update material in accordance with approaches and/or strategies adopted by the Project. In addition, a principal objective for the planned revision was to ensure that the methods and

  14. Surface analysis the principal techniques

    CERN Document Server

    Vickerman, John C

    2009-01-01

    This completely updated and revised second edition of Surface Analysis: The Principal Techniques, deals with the characterisation and understanding of the outer layers of substrates, how they react, look and function which are all of interest to surface scientists. Within this comprehensive text, experts in each analysis area introduce the theory and practice of the principal techniques that have shown themselves to be effective in both basic research and in applied surface analysis. Examples of analysis are provided to facilitate the understanding of this topic and to show readers how they c

  15. Recent development in mass spectrometry and its hyphenated techniques for the analysis of medicinal plants.

    Science.gov (United States)

    Zhu, Ming-Zhi; Chen, Gui-Lin; Wu, Jian-Lin; Li, Na; Liu, Zhong-Hua; Guo, Ming-Quan

    2018-04-23

    Medicinal plants are gaining increasing attention worldwide due to their empirical therapeutic efficacy and being a huge natural compound pool for new drug discovery and development. The efficacy, safety and quality of medicinal plants are the main concerns, which are highly dependent on the comprehensive analysis of chemical components in the medicinal plants. With the advances in mass spectrometry (MS) techniques, comprehensive analysis and fast identification of complex phytochemical components have become feasible, and may meet the needs, for the analysis of medicinal plants. Our aim is to provide an overview on the latest developments in MS and its hyphenated technique and their applications for the comprehensive analysis of medicinal plants. Application of various MS and its hyphenated techniques for the analysis of medicinal plants, including but not limited to one-dimensional chromatography, multiple-dimensional chromatography coupled to MS, ambient ionisation MS, and mass spectral database, have been reviewed and compared in this work. Recent advancs in MS and its hyphenated techniques have made MS one of the most powerful tools for the analysis of complex extracts from medicinal plants due to its excellent separation and identification ability, high sensitivity and resolution, and wide detection dynamic range. To achieve high-throughput or multi-dimensional analysis of medicinal plants, the state-of-the-art MS and its hyphenated techniques have played, and will continue to play a great role in being the major platform for their further research in order to obtain insight into both their empirical therapeutic efficacy and quality control. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Analysis of high burnup fuel safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development.

  17. Analysis of high burnup fuel safety issues

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development

  18. A Methods and procedures to apply probabilistic safety Assessment (PSA) techniques to the cobalt-therapy process. Cuban experience

    International Nuclear Information System (INIS)

    Vilaragut Llanes, J.J.; Ferro Fernandez, R.; Lozano Lima, B; De la Fuente Puch, A.; Dumenigo Gonzalez, C.; Troncoso Fleitas, M.; Perez Reyes, Y.

    2003-01-01

    This paper presents the results of the Probabilistic Safety Analysis (PSA) to the Cobalt Therapy Process, which was performed as part of the International Atomic Energy Agency's Coordinated Research Project (CRP) to Investigate Appropriate Methods and Procedures to Apply Probabilistic Safety Assessment (PSA) Techniques to Large Radiation Sources. The primary methodological tools used in the analysis were Failure Modes and Effects Analysis (FMEA), Event Trees and Fault Trees. These tools were used to evaluate occupational, public and medical exposures during cobalt therapy treatment. The emphasis of the study was on the radiological protection of patients. During the course of the PSA, several findings were analysed concerning the cobalt treatment process. In relation with the Undesired Events Probabilities, the lowest exposures probabilities correspond to the public exposures during the treatment process (Z21); around 10-10 per year, being the workers exposures (Z11); around 10-4 per year. Regarding to the patient, the Z33 probabilities prevail (not desired dose to normal tissue) and Z34 (not irradiated portion to target volume). Patient accidental exposures are also classified in terms of the extent to which the error is likely to affect individual treatments, individual patients, or all the patients treated on a specific unit. Sensitivity analyses were realised to determine the influence of certain tasks or critical stages on the results. As a conclusion the study establishes that the PSA techniques may effectively and reasonably determine the risk associated to the cobalt-therapy treatment process, though there are some weaknesses in its methodological application for this kind of study requiring further research. These weaknesses are due to the fact that the traditional PSA has been mainly applied to complex hardware systems designed to operate with a high automation level, whilst the cobalt therapy treatment is a relatively simple hardware system with a

  19. LOCA analysis of SCWR-M with passive safety system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.J., E-mail: xiaojingliu@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China); Fu, S.W. [Navy University of Engineering, Wuhan, Hubei (China); Xu, Z.H. [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China); Yang, Y.H. [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China); Cheng, X. [Institute of Fusion and Nuclear Technology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe (Germany)

    2013-06-15

    Highlights: • Application of the ATHLET-SC code to the trans-critical analysis for SCWR. • Development of a passive safety system for SCWR-M. • Analysis of hot/cold leg LOCA behaviour with different break size. • Introduction of some mitigation measures for SCWR-M -- Abstract: A new SCWR conceptual design (mixed spectrum supercritical water cooled reactor: SCWR-M) is proposed by Shanghai Jiao Tong University (SJTU). R and D activities covering core design, safety system design and code development of SCWR-M are launched at SJTU. Safety system design and analysis is one of the key tasks during the development of SCWR-M. Considering the current advanced reactor design, a new passive safety system for SCWR-M including isolation cooling system (ICS), accumulator injection system (ACC), gravity driven cooling system (GDCS) and automatic depressurization system (ADS) is proposed. Based on the modified and preliminarily assessed system code ATHLET-SC, loss of coolant accident (LOCA) analysis for hot and cold leg is performed in this paper. Three different break sizes are analyzed to clarify the hot and cold LOCA characteristics of the SCWR-M. The influence of the break location and break size on the safety performance of SCWR-M is also concluded. Several measures to induce the core coolant flow and to mitigate core heating up are also discussed. The results achieved so far demonstrate the feasibility of the proposed passive safety system to keep the SCWR-M core at safety condition during loss of coolant accident.

  20. PA activity by using nuclear power plant safety demonstration and analysis

    International Nuclear Information System (INIS)

    Tsuchiya, Mitsuo; Kamimae, Rie

    1999-01-01

    INS/NUPEC presents one of Public acceptance (PA) methods for nuclear power in Japan, 'PA activity by using Nuclear Power Plant Safety Demonstration and Analysis', by using one of videos which is explained and analyzed accident events (Loss of Coolant Accident). Safety regulations of The National Government are strictly implemented in licensing at each of basic design and detailed design. To support safety regulation activities conducted by the National Government, INS/NLTPEC continuously implement Safety demonstration and analysis. With safety demonstration and analysis, made by assuming some abnormal conditions, what impacts could be produced by the assumed conditions are forecast based on specific design data on a given nuclear power plants. When analysis results compared with relevant decision criteria, the safety of nuclear power plants is confirmed. The decision criteria are designed to help judge if or not safety design of nuclear power plants is properly made. The decision criteria are set in the safety examination guidelines by taking sufficient safety allowance based on the latest technical knowledge obtained from a wide range of tests and safety studies. Safety demonstration and analysis is made by taking the procedure which are summarized in this presentation. In Japan, various PA (Public Acceptance) pamphlets and videos on nuclear energy have been published. But many of them focused on such topics as necessity or importance of nuclear energy, basic principles of nuclear power generation, etc., and a few described safety evaluation particularly of abnormal and accident events in accordance with the regulatory requirements. In this background, INS/NUPEC has been making efforts to prepare PA pamphlets and videos to explain the safety of nuclear power plants, to be simple and concrete enough, using various analytical computations for abnormal and accident events. In results, PA activity of INS/NUPEC is evaluated highly by the people

  1. Developing Digital Image Techniques with Low-Cost Unmanned Mobile to Monitor the Safety of Dam and Affiliated Structure

    Science.gov (United States)

    Sung, Wen-Pei; Shih, Ming-Hsiang

    2016-04-01

    Global warming phenomena are increasingly serious, the El Niño and La Niña continue to occur repeatedly, causing the irregular drought and flood problem repeatedly. Mountain form of Taiwan is steep and storage ability of rainwater is insufficient to supply the livelihood of people and usage of industry which need to rely on rainwater reservoir. Thus, to ensure the water supply and self-reliance energy supply, one of ways to keep water resource is to build reservoir. Nevertheless, Taiwan is located on Pacific seismic belt; additionally, geological conditions are not fine, over-developed in the hills lead to more natural disasters in the future. Thus, strong shakes and typhoons which caused a degree of severe landslides around dam lead to reduce catchment of dam to result in affecting the safety of dam. Otherwise, the cracks and rusts in dam, induced by the defects of material, bad construction and seismic excitation respectively, thus, the mechanics phenomena of dam and its affiliated structures with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of dam. This research is aimed at the safety evaluation technique of dam and its affiliated structures to develop three dimensional digital image correlation techniques for monitoring the safety of dam and its affiliated structures. Namely, developing the unmanned mobile on two axis of digital image correlation method is to detect the digital images from geometric scanning techniques for dam structure. This developed technique combined with Unmanned Aerial Vehicle (UAV) to develop the near filed scanning and monitoring techniques for local deformation and cracks on dam and its affiliated structures.

  2. Waste Isolation Pilot Plant Safety Analysis Report

    International Nuclear Information System (INIS)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions'' (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.'' This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment

  3. Waste Isolation Pilot Plant Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  4. Posttest analysis of the FFTF inherent safety tests

    International Nuclear Information System (INIS)

    Padilla, A. Jr.; Claybrook, S.W.

    1987-01-01

    Inherent safety tests were performed during 1986 in the 400-MW (thermal) Fast Flux Test Facility (FFTF) reactor to demonstrate the effectiveness of an inherent shutdown device called the gas expansion module (GEM). The GEM device provided a strong negative reactivity feedback during loss-of-flow conditions by increasing the neutron leakage as a result of an expanding gas bubble. The best-estimate pretest calculations for these tests were performed using the IANUS plant analysis code (Westinghouse Electric Corporation proprietary code) and the MELT/SIEX3 core analysis code. These two codes were also used to perform the required operational safety analyses for the FFTF reactor and plant. Although it was intended to also use the SASSYS systems (core and plant) analysis code, the calibration of the SASSYS code for FFTF core and plant analysis was not completed in time to perform pretest analyses. The purpose of this paper is to present the results of the posttest analysis of the 1986 FFTF inherent safety tests using the SASSYS code

  5. Technical safety Organisations (TSO) contribute to European Nuclear Safety; Les organismes techniques de surete (TSO) au service de la surete nucleaire europeenne

    Energy Technology Data Exchange (ETDEWEB)

    Repussard, J. [Institut de radioprotection et de surete nucleaire - IRSN, 92 - Clarmart (France)

    2010-11-15

    Nuclear safety and radiation protection rely on science to achieve high level prevention objectives, through the analysis of safety files proposed by the licensees. The necessary expertise needs to be exercised so as to ensure adequate independence from nuclear operators, appropriate implementation of state of the art knowledge, and a broad spectrum of analysis, adequately ranking the positive and negative points of the safety files. The absence of a Europe-wide nuclear safety regime is extremely costly for an industry which has to cope with a highly competitive and open international environment, but has to comply with fragmented national regulatory systems. Harmonization is therefore critical, but such a goal is difficult to achieve. Only a gradual policy, made up of planned steps in each of the three key dimensions of the problem (energy policy at EU level, regulatory harmonization, consolidation of Europe-wide technical expertise capability) can be successful to achieve the required integration on the basis of the highest safety levels. TSO's contribute to this consolidation, with the support of the EC, in the fields of research (EURATOM-Programmes), of experience feedback analysis (European Clearinghouse), of training and knowledge management (European Training and Tutoring Institute, EUROSAFE). The TSO's network, ETSON, is becoming a formal organisation, able to enter into formal dialogue with EU institutions. However, nuclear safety nevertheless remains a world wide issue, requiring intensive international cooperation, including on TSO issues. (author)

  6. SNF fuel retrieval sub project safety analysis document

    International Nuclear Information System (INIS)

    BERGMANN, D.W.

    1999-01-01

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed

  7. SNF fuel retrieval sub project safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    BERGMANN, D.W.

    1999-02-24

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

  8. Network meta-analysis: a technique to gather evidence from direct and indirect comparisons

    Science.gov (United States)

    2017-01-01

    Systematic reviews and pairwise meta-analyses of randomized controlled trials, at the intersection of clinical medicine, epidemiology and statistics, are positioned at the top of evidence-based practice hierarchy. These are important tools to base drugs approval, clinical protocols and guidelines formulation and for decision-making. However, this traditional technique only partially yield information that clinicians, patients and policy-makers need to make informed decisions, since it usually compares only two interventions at the time. In the market, regardless the clinical condition under evaluation, usually many interventions are available and few of them have been studied in head-to-head studies. This scenario precludes conclusions to be drawn from comparisons of all interventions profile (e.g. efficacy and safety). The recent development and introduction of a new technique – usually referred as network meta-analysis, indirect meta-analysis, multiple or mixed treatment comparisons – has allowed the estimation of metrics for all possible comparisons in the same model, simultaneously gathering direct and indirect evidence. Over the last years this statistical tool has matured as technique with models available for all types of raw data, producing different pooled effect measures, using both Frequentist and Bayesian frameworks, with different software packages. However, the conduction, report and interpretation of network meta-analysis still poses multiple challenges that should be carefully considered, especially because this technique inherits all assumptions from pairwise meta-analysis but with increased complexity. Thus, we aim to provide a basic explanation of network meta-analysis conduction, highlighting its risks and benefits for evidence-based practice, including information on statistical methods evolution, assumptions and steps for performing the analysis. PMID:28503228

  9. Development and improvement of safety analysis code for geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In order to confirm the long-term safety concerning geological disposal, probabilistic safety assessment code and other analysis codes, which can evaluate possibility of each event and influence on engineered barrier and natural barrier by the event, were introduced. We confirmed basic functions of those codes and studied the relation between those functions and FEP/PID which should be taken into consideration in safety assessment. We are planning to develop 'Nuclide Migration Assessment System' for the purpose of realizing improvement in efficiency of assessment work, human error prevention for analysis, and quality assurance of the analysis environment and analysis work for safety assessment by using it. As the first step, we defined the system requirements and decided the system composition and functions which should be mounted in them based on those requirements. (author)

  10. Safety analysis of control rod drive computers

    International Nuclear Information System (INIS)

    Ehrenberger, W.; Rauch, G.; Schmeil, U.; Maertz, J.; Mainka, E.U.; Nordland, O.; Gloee, G.

    1985-01-01

    The analysis of the most significant user programmes revealed no errors in these programmes. The evaluation of approximately 82 cumulated years of operation demonstrated that the operating system of the control rod positioning processor has a reliability that is sufficiently good for the tasks this computer has to fulfil. Computers can be used for safety relevant tasks. The experience gained with the control rod positioning processor confirms that computers are not less reliable than conventional instrumentation and control system for comparable tasks. The examination and evaluation of computers for safety relevant tasks can be done with programme analysis or statistical evaluation of the operating experience. Programme analysis is recommended for seldom used and well structured programmes. For programmes with a long, cumulated operating time a statistical evaluation is more advisable. The effort for examination and evaluation is not greater than the corresponding effort for conventional instrumentation and control systems. This project has also revealed that, where it is technologically sensible, process controlling computers or microprocessors can be qualified for safety relevant tasks without undue effort. (orig./HP) [de

  11. Safety evaluation report of the Waste Isolation Pilot Plant safety analysis report: Contact-handled transuranic waste disposal operations

    International Nuclear Information System (INIS)

    1997-02-01

    DOE 5480.23, Nuclear Safety Analysis Reports, requires that the US Department of Energy conduct an independent, defensible, review in order to approve a Safety Analysis Report (SAR). That review and the SAR approval basis is documented in this formal Safety Evaluation Report (SER). This SER documents the DOE's review of the Waste Isolation Pilot Plant SAR and provides the Carlsbad Area Office Manager, the WIPP SAR approval authority, with the basis for approving the safety document. It concludes that the safety basis documented in the WIPP SAR is comprehensive, correct, and commensurate with hazards associated with planned waste disposal operations

  12. Safety analysis of the existing 850 Firing Facility

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 850 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but one of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exception was explosives, which was classified as a moderate hazard per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public

  13. Safety analysis of the existing 851 Firing Facility

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 851 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but two of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exceptions were the linear accelerator and explosives, which were classified as moderate hazards per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public

  14. The development of an audit technique to assess the quality of safety barrier management

    International Nuclear Information System (INIS)

    Guldenmund, Frank; Hale, Andrew; Goossens, Louis; Betten, Jeroen; Duijm, Nijs Jan

    2006-01-01

    This paper describes the development of a management model to control barriers devised to prevent major hazard scenarios. Additionally, an audit technique is explained that assesses the quality of such a management system. The final purpose of the audit technique is to quantify those aspects of the management system that have a direct impact on the reliability and effectiveness of the barriers and, hence, the probability of the scenarios involved. First, an outline of the management model is given and its elements are explained. Then, the development of the audit technique is described. Because the audit technique uses actual major hazard scenarios and barriers within these as its focus, the technique achieves a concreteness and clarity that many other techniques often lack. However, this strength is also its limitation, since the full safety management system is not covered with the technique. Finally, some preliminary experiences obtained from several test sites are compiled and discussed

  15. The development of an audit technique to assess the quality of safety barrier management

    Energy Technology Data Exchange (ETDEWEB)

    Guldenmund, Frank [Safety Science Group, Delft University of Technology (Netherlands)]. E-mail: f.w.guldenmund@tbm.tudelft.nl; Hale, Andrew [Safety Science Group, Delft University of Technology (Netherlands); Goossens, Louis [Safety Science Group, Delft University of Technology (Netherlands); Betten, Jeroen [Safety Science Group, Delft University of Technology (Netherlands); Duijm, Nijs Jan [Riso National Laboratory (Denmark)

    2006-03-31

    This paper describes the development of a management model to control barriers devised to prevent major hazard scenarios. Additionally, an audit technique is explained that assesses the quality of such a management system. The final purpose of the audit technique is to quantify those aspects of the management system that have a direct impact on the reliability and effectiveness of the barriers and, hence, the probability of the scenarios involved. First, an outline of the management model is given and its elements are explained. Then, the development of the audit technique is described. Because the audit technique uses actual major hazard scenarios and barriers within these as its focus, the technique achieves a concreteness and clarity that many other techniques often lack. However, this strength is also its limitation, since the full safety management system is not covered with the technique. Finally, some preliminary experiences obtained from several test sites are compiled and discussed.

  16. Time series modeling in traffic safety research.

    Science.gov (United States)

    Lavrenz, Steven M; Vlahogianni, Eleni I; Gkritza, Konstantina; Ke, Yue

    2018-08-01

    The use of statistical models for analyzing traffic safety (crash) data has been well-established. However, time series techniques have traditionally been underrepresented in the corresponding literature, due to challenges in data collection, along with a limited knowledge of proper methodology. In recent years, new types of high-resolution traffic safety data, especially in measuring driver behavior, have made time series modeling techniques an increasingly salient topic of study. Yet there remains a dearth of information to guide analysts in their use. This paper provides an overview of the state of the art in using time series models in traffic safety research, and discusses some of the fundamental techniques and considerations in classic time series modeling. It also presents ongoing and future opportunities for expanding the use of time series models, and explores newer modeling techniques, including computational intelligence models, which hold promise in effectively handling ever-larger data sets. The information contained herein is meant to guide safety researchers in understanding this broad area of transportation data analysis, and provide a framework for understanding safety trends that can influence policy-making. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Software Dependability and Safety Evaluations ESA's Initiative

    Science.gov (United States)

    Hernek, M.

    ESA has allocated funds for an initiative to evaluate Dependability and Safety methods of Software. The objectives of this initiative are; · More extensive validation of Safety and Dependability techniques for Software · Provide valuable results to improve the quality of the Software thus promoting the application of Dependability and Safety methods and techniques. ESA space systems are being developed according to defined PA requirement specifications. These requirements may be implemented through various design concepts, e.g. redundancy, diversity etc. varying from project to project. Analysis methods (FMECA. FTA, HA, etc) are frequently used during requirements analysis and design activities to assure the correct implementation of system PA requirements. The criticality level of failures, functions and systems is determined and by doing that the critical sub-systems are identified, on which dependability and safety techniques are to be applied during development. Proper performance of the software development requires the development of a technical specification for the products at the beginning of the life cycle. Such technical specification comprises both functional and non-functional requirements. These non-functional requirements address characteristics of the product such as quality, dependability, safety and maintainability. Software in space systems is more and more used in critical functions. Also the trend towards more frequent use of COTS and reusable components pose new difficulties in terms of assuring reliable and safe systems. Because of this, its dependability and safety must be carefully analysed. ESA identified and documented techniques, methods and procedures to ensure that software dependability and safety requirements are specified and taken into account during the design and development of a software system and to verify/validate that the implemented software systems comply with these requirements [R1].

  18. 30 CFR 250.802 - Design, installation, and operation of surface production-safety systems.

    Science.gov (United States)

    2010-07-01

    ... Analysis Checklists are included in API RP 14C you must utilize the analysis technique and documentation... device requirements for pipelines are under § 250.1004. (c) Specification for surface safety valves (SSV..., Recommended Practice for Installation, Maintenance, and Repair of Surface Safety Valves and Underwater Safety...

  19. Statistical margin to DNB safety analysis approach for LOFT

    International Nuclear Information System (INIS)

    Atkinson, S.A.

    1982-01-01

    A method was developed and used for LOFT thermal safety analysis to estimate the statistical margin to DNB for the hot rod, and to base safety analysis on desired DNB probability limits. This method is an advanced approach using response surface analysis methods, a very efficient experimental design, and a 2nd-order response surface equation with a 2nd-order error propagation analysis to define the MDNBR probability density function. Calculations for limiting transients were used in the response surface analysis thereby including transient interactions and trip uncertainties in the MDNBR probability density

  20. Tolerability of risk, safety assessment principles and their implications for probabilistic safety analysis

    International Nuclear Information System (INIS)

    Ewing, D.J.F.; Campbell, J.F.

    1994-01-01

    This paper gives a regulatory view of probabilistic safety assessment as seen by the Nuclear Installations Inspectorate (NII) and in the light of the general regulatory risk aims set out in the Health and Safety Executive's (HSE) The tolerability of risk from nuclear power stations (TOR) and in Safety assessment principles for nuclear plants (SAPs), prepared by NII on behalf of the HSE. Both of these publications were revised and republished in 1992. This paper describes the SAPs, together with the historical background, the motivation for review, the effects of the Sizewell and Hinkley Point C public inquiries, changes since the original versions, comparison with international standards and use in assessment. For new plant, probabilistic safety analysis (PSA) is seen as an essential tool in balancing the safety of the design and in demonstrating compliance with TOR and the SAPs. (Author)

  1. Development of regulatory technology for thermal-hydraulic safety analysis

    International Nuclear Information System (INIS)

    Bang, Young Seok; Lee, S. H.; Ryu, Y. H.

    2001-02-01

    The present study aims to develop the regulation capability in thermal-hydraulic safety analysis which was required for the reasonable safety regulation in the current NPP, the next generation reactors, and the future-type reactors. The fourth fiscal year of the first phase of the research was focused on the following research topics: Investigation on the current status of the thermal-hydraulic safety analysis technology outside and inside of the country; Review on the improved features of the thermal-hydraulic safety analysis regulatory audit code, RELAP5/MOD3; Assessments of code with LOFT L9-3 ATWS experiment and LSTF SB-SG-10 multiple SGTR experiment; Application of the RELAP5/CANDU code to analyses of SLB and LBLOCA and evaluation of its effect on safety; Application of the code to IAEA PHWR ISP analysis; Assessments of RELAP5 and TRAC with UPTF downcomer injection test and Analysis of LBLOCA with RELAP5 for the performance evaluation of KNGR DVI; Setup of a coupled 3-D kinetics and thermal-hydraulics and application it to a reactivity accident analysis; and Extension of database and improvement of plant input decks. For supporting the resolution of safety issues, loss of RHR event during midloop operation was analyzed for Kori Unit 3, issues on high burnup fuel were reviewed and performance of FRAPCON-3 assessed. Also MSLB was analyzed to figure out the sensitivity of downcomer temperature supporting the PTS risk evaluation of Kori Unit 1. Thermal stratification in pipe was analyzed using the method proposed. And a method predicting the thermal-hydraulic performance of IRWST of KNGR was explored. The PWR ECCS performance criteria was issued as a MOST Article 200-19.and a regulatory guide on evaluation methodology was improved to cover concerns raised from the related licensing review process

  2. Operational safety analysis status of Novi Han repository

    International Nuclear Information System (INIS)

    Boiadjiev, A.

    2000-01-01

    This article presents the status of the safety studies and activities related to Novi Han repository. The case of this facility is such that no clear boundary exists between post-closure safety assessment and operational safety assessment. The major findings of these activities are given. The Safety Analysis Report (SAR) for Novi Han repository is developed by Risk Engineering Ltd. under a contract with the Committee on the Use of Atomic Energy for Peaceful Purposes. The general structure and main conclusions and recommendations of the SAR are presented. (author)

  3. Safety analysis and evaluation methodology for fusion systems

    International Nuclear Information System (INIS)

    Fujii-e, Y.; Kozawa, Y.; Namba, C.

    1987-03-01

    Fusion systems which are under development as future energy systems have reached a stage that the break even is expected to be realized in the near future. It is desirable to demonstrate that fusion systems are well acceptable to the societal environment. There are three crucial viewpoints to measure the acceptability, that is, technological feasibility, economy and safety. These three points have close interrelation. The safety problem is more important since three large scale tokamaks, JET, TFTR and JT-60, start experiment, and tritium will be introduced into some of them as the fusion fuel. It is desirable to establish a methodology to resolve the safety-related issues in harmony with the technological evolution. The promising fusion system toward reactors is not yet settled. This study has the objective to develop and adequate methodology which promotes the safety design of general fusion systems and to present a basis for proposing the R and D themes and establishing the data base. A framework of the methodology, the understanding and modeling of fusion systems, the principle of ensuring safety, the safety analysis based on the function and the application of the methodology are discussed. As the result of this study, the methodology for the safety analysis and evaluation of fusion systems was developed. New idea and approach were presented in the course of the methodology development. (Kako, I.)

  4. Soil analysis. Modern instrumental technique

    International Nuclear Information System (INIS)

    Smith, K.A.

    1993-01-01

    This book covers traditional methods of analysis and specialist monographs on individual instrumental techniques, which are usually not written with soil or plant analysis specifically in mind. The principles of the techniques are combined with discussions of sample preparation and matrix problems, and critical reviews of applications in soil science and related disciplines. Individual chapters are processed separately for inclusion in the appropriate data bases

  5. Gap Analysis Approach for Construction Safety Program Improvement

    Directory of Open Access Journals (Sweden)

    Thanet Aksorn

    2007-06-01

    Full Text Available To improve construction site safety, emphasis has been placed on the implementation of safety programs. In order to successfully gain from safety programs, factors that affect their improvement need to be studied. Sixteen critical success factors of safety programs were identified from safety literature, and these were validated by safety experts. This study was undertaken by surveying 70 respondents from medium- and large-scale construction projects. It explored the importance and the actual status of critical success factors (CSFs. Gap analysis was used to examine the differences between the importance of these CSFs and their actual status. This study found that the most critical problems characterized by the largest gaps were management support, appropriate supervision, sufficient resource allocation, teamwork, and effective enforcement. Raising these priority factors to satisfactory levels would lead to successful safety programs, thereby minimizing accidents.

  6. Incorporating Traffic Control and Safety Hardware Performance Functions into Risk-based Highway Safety Analysis

    Directory of Open Access Journals (Sweden)

    Zongzhi Li

    2017-04-01

    Full Text Available Traffic control and safety hardware such as traffic signs, lighting, signals, pavement markings, guardrails, barriers, and crash cushions form an important and inseparable part of highway infrastructure affecting safety performance. Significant progress has been made in recent decades to develop safety performance functions and crash modification factors for site-specific crash predictions. However, the existing models and methods lack rigorous treatments of safety impacts of time-deteriorating conditions of traffic control and safety hardware. This study introduces a refined method for computing the Safety Index (SI as a means of crash predictions for a highway segment that incorporates traffic control and safety hardware performance functions into the analysis. The proposed method is applied in a computation experiment using five-year data on nearly two hundred rural and urban highway segments. The root-mean square error (RMSE, Chi-square, Spearman’s rank correlation, and Mann-Whitney U tests are employed for validation.

  7. Quantitative Safety and Security Analysis from a Communication Perspective

    Directory of Open Access Journals (Sweden)

    Boris Malinowsky

    2015-12-01

    Full Text Available This paper introduces and exemplifies a trade-off analysis of safety and security properties in distributed systems. The aim is to support analysis for real-time communication and authentication building blocks in a wireless communication scenario. By embedding an authentication scheme into a real-time communication protocol for safety-critical scenarios, we can rely on the protocol’s individual safety and security properties. The resulting communication protocol satisfies selected safety and security properties for deployment in safety-critical use-case scenarios with security requirements. We look at handover situations in a IEEE 802.11 wireless setup between mobile nodes and access points. The trade-offs involve application-layer data goodput, probability of completed handovers, and effect on usable protocol slots, to quantify the impact of security from a lower-layer communication perspective on the communication protocols. The results are obtained using the network simulator ns-3.

  8. Safety analysis and review system: a Department of Energy safety assurance tool

    International Nuclear Information System (INIS)

    Rosenthal, H.B.

    1981-01-01

    The concept of the Safety Analysis and Review System is not new. It has been used within the Department and its predecessor agencies, Atomic Energy Commission (AEC) and Energy Research and Development Administration (ERDA), for over 20 years. To minimize the risks from nuclear reactor and power plants, the AEC developed a process to support management authorization of each operation through identification and analysis of potential hazards and the measures taken to control them. As the agency evolved from AEC through ERDA to the Department of Energy, its responsibilities were broadened to cover a diversity of technologies, including those associated with the development of fossil, solar, and geothermal energy. Because the safety analysis process had proved effective in a technology of high potential hazard, the Department investigated the applicability of the process to the other technologies. This paper describes the system and discusses how it is implemented within the Department

  9. Upgrading the safety toolkit: Initiatives of the accident analysis subgroup

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Chung, D.Y.

    1999-01-01

    Since its inception, the Accident Analysis Subgroup (AAS) of the Energy Facility Contractors Group (EFCOG) has been a leading organization promoting development and application of appropriate methodologies for safety analysis of US Department of Energy (DOE) installations. The AAS, one of seven chartered by the EFCOG Safety Analysis Working Group, has performed an oversight function and provided direction to several technical groups. These efforts have been instrumental toward formal evaluation of computer models, improving the pedigree on high-use computer models, and development of the user-friendly Accident Analysis Guidebook (AAG). All of these improvements have improved the analytical toolkit for best complying with DOE orders and standards shaping safety analysis reports (SARs) and related documentation. Major support for these objectives has been through DOE/DP-45

  10. 3D analysis methods - Study and seminar[BWR safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Daaviittila, A [Valtion Teknillinen Tutkimuskeskus (Finland)

    2003-10-01

    The first part of the report results from a study that was performed as a Nordic co-operation activity with active participation from Studsvik Scandpower and Westinghouse Atom in Sweden, and VTT in Finland. The purpose of the study was to identify and investigate the effects rising from using the 3D transient com-puter codes in BWR safety analysis, and their influence on the transient analysis methodology. One of the main questions involves the critical power ratio (CPR) calculation methodology. The present way, where the CPR calculation is per-formed with a separate hot channel calculation, can be artificially conservative. In the investigated cases, no dramatic minimum CPR effect coming from the 3D calculation is apparent. Some cases show some decrease in the transient change of minimum CPR with the 3D calculation, which confirms the general thinking that the 1D calculation is conservative. On the other hand, the observed effect on neutron flux behaviour is quite large. In a slower transient the 3D effect might be stronger. The second part of the report is a summary of a related seminar that was held on the 3D analysis methods. The seminar was sponsored by the Reactor Safety part (NKS-R) of the Nordic Nuclear Safety Research Programme (NKS). (au)

  11. Analysis approach for common cause failure on non-safety digital control system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eungse [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    The effects of common cause failure (CCF) on safety digital instrumentation and control (I and C) system had been considered in defense in depth and diversity coping analysis with safety analysis method. For the non-safety system, single failure had been considered for safety analysis. IEEE Std. 603-1991, Clause 5.6.3.1(2), 'Isolation' states that no credible failure on the non-safety side of an isolation device shall prevent any portion of a safety system from meeting its minimum performance requirements during and following any design basis event requiring that safety function. The software CCF is one of the credible failure on the non-safety side. In advanced digital I and C system, same hardware component is used for different control system and the defect in manufacture or common external event can generate CCF. Moreover, the non-safety I and C system uses complex software for its various function and software quality assurance for the development process is less severe than safety software for the cost effective design. Therefore the potential defects in software cannot be ignored and the effect of software CCF on non-safety I and C system is needed to be evaluated. This paper proposes the general process and considerations for the analysis of CCF on non-safety I and C system.

  12. Safety culture: analysis of the causal relationships between its key dimensions.

    Science.gov (United States)

    Fernández-Muñiz, Beatriz; Montes-Peón, José Manuel; Vázquez-Ordás, Camilo José

    2007-01-01

    Several fields are showing increasing interest in safety culture as a means of reducing accidents in the workplace. The literature shows that safety culture is a multidimensional concept. However, considerable confusion surrounds this concept, about which little consensus has been reached. This study proposes a model for a positive safety culture and tests this on a sample of 455 Spanish companies, using the structural equation modeling statistical technique. Results show the important role of managers in the promotion of employees' safe behavior, both directly, through their attitudes and behaviors, and indirectly, by developing a safety management system. This paper identifies the key dimensions of safety culture. In addition, a measurement scale for the safety management system is validated. This will assist organizations in defining areas where they need to progress if they wish to improve their safety. Also, we stress that managers need to be wholly committed to and personally involved in safety activities, thereby conveying the importance the firm attaches to these issues.

  13. Safety analysis and synthesis using fuzzy sets and evidential reasoning

    International Nuclear Information System (INIS)

    Wang, J.; Yang, J.B.; Sen, P.

    1995-01-01

    This paper presents a new methodology for safety analysis and synthesis of a complex engineering system with a structure that is capable of being decomposed into a hierarchy of levels. In this methodology, fuzzy set theory is used to describe each failure event and an evidential reasoning approach is then employed to synthesise the information thus produced to assess the safety of the whole system. Three basic parameters--failure likelihood, consequence severity and failure consequence probability, are used to analyse a failure event. These three parameters are described by linguistic variables which are characterised by a membership function to the defined categories. As safety can also be clearly described by linguistic variables referred to as the safety expressions, the obtained fuzzy safety score can be mapped back to the safety expressions which are characterised by membership functions over the same categories. This mapping results in the identification of the safety of each failure event in terms of the degree to which the fuzzy safety score belongs to each of the safety expressions. Such degrees represent the uncertainty in safety evaluations and can be synthesised using an evidential reasoning approach so that the safety of the whole system can be evaluated in terms of these safety expressions. Finally, a practical engineering example is presented to demonstrate the proposed safety analysis and synthesis methodology

  14. Nuclear safety chains

    International Nuclear Information System (INIS)

    Robbins, M.C.; Eames, G.F.; Mayell, J.R.

    1981-01-01

    An original scheme has been developed for expressing the complex interrelationships associated with the engineered safeguards provided for a nuclear power station. This management tool, based upon network diagrams called Nuclear Safety Chains, looks at the function required of a particular item of safety plant, defines all of the vital supplies and support features necessary for successful operation, and expresses them in visual form, to facilitate analysis and optimisation for operations and maintenance staff. The safety chains are confined to manual schemes at present, although they are designed to be compatible with modern computer techniques. Their usefulness with any routine maintenance planning application on high technology plant is already being appreciated. (author)

  15. Bayesian-network-based safety risk analysis in construction projects

    International Nuclear Information System (INIS)

    Zhang, Limao; Wu, Xianguo; Skibniewski, Miroslaw J.; Zhong, Jingbing; Lu, Yujie

    2014-01-01

    This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical

  16. Galileo and Ulysses missions safety analysis and launch readiness status

    International Nuclear Information System (INIS)

    Cork, M.J.; Turi, J.A.

    1989-01-01

    The Galileo spacecraft will explore the Jupiter system and Ulysses will fly by Jupiter en route to a polar orbit of the sun. Both spacecraft are powered by general purpose heat source radioisotope thermoelectric generators (RTGs). As a result of the Challenger accident and subsequent mission reprogramming, the Galileo and Ulysses missions' safety analysis had to be repeated. In addition to presenting an overview of the safety analysis status for the missions, this paper presents a brief review of the missions' objectives and design approaches, RTG design characteristics and development history, and a description of the safety analysis process. (author)

  17. Safety re-assessment of AECL test and research reactors

    International Nuclear Information System (INIS)

    Winfield, D.J.

    1990-01-01

    Atomic Energy of Canada Limited currently has four operating engineering test/research reactors of various sizes and ages; a new isotope-production reactor Maple-X10, under construction at Chalk River Nuclear Laboratories (CRNL), and a heating demonstration reactor, SDR, undergoing high-power commissioning at Whiteshell Nuclear Research Establishment (WNRE). The company is also performing design studies of small reactors for hot water and electricity production. The older reactors are ZED-2, PTR, NRX, and NRU; these range in age from 42 years (NRX) to 29 years (ZED-2). Since 1984, limited-scope safety re-assessments have been underway on three of these reactors (ZED-2, NRX AND NRU). ZED-2 and PTR are operated by the Reactor Physics Branch; all other reactors are operated by the respective site Reactor Operations Branches. For the older reactors the original safety reports produced were entirely deterministic in nature and based on the design-basis accident concept. The limited scope safety re-assessments for these older reactors, carried out over the past 5 years, have comprised both quantitative probabilistic safety-assessment techniques, such as event tree and fault analysis, and/or qualitative techniques, such as failure mode and effect analysis. The technique used for an individual assessment was dependent upon the specific scope required. This paper discusses the types of analyses carried out, specific insights/recommendations resulting from the analysis, and the plan for future analysis. In addition, during the last four years safety assessments have been carried out on the new isotope-, heat-, and electricity-producing reactors, as part of the safety design review, commissioning and licensing activities

  18. Application of functional analysis techniques to supervisory systems

    International Nuclear Information System (INIS)

    Lambert, Manuel; Riera, Bernard; Martel, Gregory

    1999-01-01

    The aim of this paper is to apply firstly two interesting functional analysis techniques for the design of supervisory systems for complex processes, and secondly to discuss the strength and the weaknesses of each of them. Two functional analysis techniques have been applied, SADT (Structured Analysis and Design Technique) and FAST (Functional Analysis System Technique) on a process, an example of a Water Supply Process Control (WSPC) system. These techniques allow a functional description of industrial processes. The paper briefly discusses the functions of a supervisory system and some advantages of the application of functional analysis for the design of a 'human' centered supervisory system. Then the basic principles of the two techniques applied on the WSPC system are presented. Finally, the different results obtained from the two techniques are discussed

  19. A root cause analysis project in a medication safety course.

    Science.gov (United States)

    Schafer, Jason J

    2012-08-10

    To develop, implement, and evaluate team-based root cause analysis projects as part of a required medication safety course for second-year pharmacy students. Lectures, in-class activities, and out-of-class reading assignments were used to develop students' medication safety skills and introduce them to the culture of medication safety. Students applied these skills within teams by evaluating cases of medication errors using root cause analyses. Teams also developed error prevention strategies and formally presented their findings. Student performance was assessed using a medication errors evaluation rubric. Of the 211 students who completed the course, the majority performed well on root cause analysis assignments and rated them favorably on course evaluations. Medication error evaluation and prevention was successfully introduced in a medication safety course using team-based root cause analysis projects.

  20. Determination of Initial Conditions for the Safety Analysis by Random Sampling of Operating Parameters

    International Nuclear Information System (INIS)

    Jeong, Hae-Yong; Park, Moon-Ghu

    2015-01-01

    In most existing evaluation methodologies, which follow a conservative approach, the most conservative initial conditions are searched for each transient scenario through tremendous assessment for wide operating windows or limiting conditions for operation (LCO) allowed by the operating guidelines. In this procedure, a user effect could be involved and a remarkable time and human resources are consumed. In the present study, we investigated a more effective statistical method for the selection of the most conservative initial condition by the use of random sampling of operating parameters affecting the initial conditions. A method for the determination of initial conditions based on random sampling of plant design parameters is proposed. This method is expected to be applied for the selection of the most conservative initial plant conditions in the safety analysis using a conservative evaluation methodology. In the method, it is suggested that the initial conditions of reactor coolant flow rate, pressurizer level, pressurizer pressure, and SG level are adjusted by controlling the pump rated flow, setpoints of PLCS, PPCS, and FWCS, respectively. The proposed technique is expected to contribute to eliminate the human factors introduced in the conventional safety analysis procedure and also to reduce the human resources invested in the safety evaluation of nuclear power plants

  1. Establishment of joint application system of safety analysis codes between Korea and Vietnam

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Kim, Kyung Doo; Park, Cheol; Bae, Sung Won; Baek, Won Pil; Song, Cheol hwa; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu; Lee, Chang Sup

    2011-04-01

    The following KAERI-VAEI collaboration works have been performed during the 2 year project ('09.4∼'11.4). 1) On the job training of Vietnam code users(1st training for 4 VAEI staff-3 months. 2nd training for 3 VAEI staff- 3 month), 2) Lecture of nuclear safety analysis (30 hrs basic course and 30 hrs advanced course), 3) Review of safety analysis method (IAEA safety concept and requirements), 4) Collaborative assessment of safety analysis code MARS (13 conceptual problem, 2 separate effect test problem, 1 integral effect test problem), 5) Input deck preparation of standard PWR (Preparation of APR1400 input deck and safety analysis of DBA). VAEI staffs have been familiarized to Korean PWR safety assessment technology through the collaboration assessment work using a computer code developed in Korea. The lectures for Vietnamese research will be contributed to the utilization and cultivation of Korean safety technology. The collaborated assessment works will be used for the establishment of MARS based safety analysis system which is independent from US safety assessment system

  2. Establishment of joint application system of safety analysis codes between Korea and Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bub Dong; Kim, Kyung Doo; Park, Cheol; Bae, Sung Won; Baek, Won Pil; Song, Cheol hwa; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu; Lee, Chang Sup [KAERI, Daejeon (Korea, Republic of)

    2011-04-15

    The following KAERI-VAEI collaboration works have been performed during the 2 year project ('09.4{approx}'11.4). 1) On the job training of Vietnam code users(1st training for 4 VAEI staff-3 months. 2nd training for 3 VAEI staff- 3 month), 2) Lecture of nuclear safety analysis (30 hrs basic course and 30 hrs advanced course), 3) Review of safety analysis method (IAEA safety concept and requirements), 4) Collaborative assessment of safety analysis code MARS (13 conceptual problem, 2 separate effect test problem, 1 integral effect test problem), 5) Input deck preparation of standard PWR (Preparation of APR1400 input deck and safety analysis of DBA). VAEI staffs have been familiarized to Korean PWR safety assessment technology through the collaboration assessment work using a computer code developed in Korea. The lectures for Vietnamese research will be contributed to the utilization and cultivation of Korean safety technology. The collaborated assessment works will be used for the establishment of MARS based safety analysis system which is independent from US safety assessment system

  3. A risk-informed perspective on deterministic safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Wan, P.T.

    2009-01-01

    In this work, the deterministic safety analysis (DSA) approach to nuclear safety is examined from a risk-informed perspective. One objective of safety analysis of a nuclear power plant is to demonstrate via analysis that the risks to the public from events or accidents that are within the design basis of the power plant are within acceptable levels with a high degree of assurance. This nuclear safety analysis objective can be translated into two requirements on the risk estimates of design basis events or accidents: the nominal risk estimate to the public must be shown to be within acceptable levels, and the uncertainty in the risk estimates must be shown to be small on an absolute or relative basis. The DSA approach combined with the defense-in-depth (DID) principle is a simplified safety analysis approach that attempts to achieve the above safety analysis objective in the face of potentially large uncertainties in the risk estimates of a nuclear power plant by treating the various uncertainty contributors using a stylized conservative binary (yes-no) approach, and applying multiple overlapping physical barriers and defense levels to protect against the release of radioactivity from the reactor. It is shown that by focusing on the consequence aspect of risk, the previous two nuclear safety analysis requirements on risk can be satisfied with the DSA-DID approach to nuclear safety. It is also shown the use of multiple overlapping physical barriers and defense levels in the traditional DSA-DID approach to nuclear safety is risk-informed in the sense that it provides a consistently high level of confidence in the validity of the safety analysis results for various design basis events or accidents with a wide range of frequency of occurrence. It is hoped that by providing a linkage between the consequence analysis approach in DSA with a risk-informed perspective, greater understanding of the limitation and capability of the DSA approach is obtained. (author)

  4. The deconstruction of safety arguments through adversarial counter-argument

    International Nuclear Information System (INIS)

    Armstrong, James M.; Paynter, Stephen E.

    2007-01-01

    The project Deconstructive Evaluation of Risk In Dependability Arguments and Safety Cases (DERIDASC) has recently experimented with techniques borrowed from literary theory as safety case analysis techniques [Armstrong. Danger: Derrida at work. Interdiscipl Sci Rev 2003;28(2):83-94. ; Armstrong J, Paynter S. Safe systems: construction, destruction, and deconstruction. In: Redmill F, Anderson T, editors. Proceedings of the 11th safety critical systems symposium, Bristol, UK. Berlin: Springer; 2003. p. 62-76. ISBN:1-85233-696-X. ]. This paper introduces our high-level framework for 'deconstructing' safety arguments. Our approach is quite general and should be applicable to different types of safety argumentation framework. As one example, we outline how the approach would work in the context of the Goal Structure Notation (GSN)

  5. Safety of GM crops: compositional analysis.

    Science.gov (United States)

    Brune, Philip D; Culler, Angela Hendrickson; Ridley, William P; Walker, Kate

    2013-09-04

    The compositional analysis of genetically modified (GM) crops has continued to be an important part of the overall evaluation in the safety assessment program for these materials. The variety and complexity of genetically engineered traits and modes of action that will be used in GM crops in the near future, as well as our expanded knowledge of compositional variability and factors that can affect composition, raise questions about compositional analysis and how it should be applied to evaluate the safety of traits. The International Life Sciences Institute (ILSI), a nonprofit foundation whose mission is to provide science that improves public health and well-being by fostering collaboration among experts from academia, government, and industry, convened a workshop in September 2012 to examine these and related questions, and a series of papers has been assembled to describe the outcomes of that meeting.

  6. Multi-dimensional Code Development for Safety Analysis of LMR

    International Nuclear Information System (INIS)

    Ha, K. S.; Jeong, H. Y.; Kwon, Y. M.; Lee, Y. B.

    2006-08-01

    A liquid metal reactor loaded a metallic fuel has the inherent safety mechanism due to the several negative reactivity feedback. Although this feature demonstrated through experiments in the EBR-II, any of the computer programs until now did not exactly analyze it because of the complexity of the reactivity feedback mechanism. A multi-dimensional detail program was developed through the International Nuclear Energy Research Initiative(INERI) from 2003 to 2005. This report includes the numerical coupling the multi-dimensional program and SSC-K code which is used to the safety analysis of liquid metal reactors in KAERI. The coupled code has been proved by comparing the analysis results using the code with the results using SAS-SASSYS code of ANL for the UTOP, ULOF, and ULOHS applied to the safety analysis for KALIMER-150

  7. Job safety and awareness analysis of safety implementation among electrical workers in airport service company

    Directory of Open Access Journals (Sweden)

    Putra Perdana Suteja

    2018-01-01

    Full Text Available Electrical is a fundamental process in the company that has high risk and responsibility especially in public service company such as an airport. Hence, the company that operates activities in the airport has to identify and control the safety activities of workers. On the safety implementation, the lack of workers’ awareness is fundamental aspects to the safety failure. Therefore, this study aimed to analyse the safety awareness and identify risk in the electrical workplace. Safety awareness questionnaires are distributed to ten workers in order to analyse their awareness. Job safety analysis method used to identify the risk in the electrical workplace. The preliminary study stated that workers were not aware of personal protective equipment usage so that the awareness and behavioural need to be analysed. The result is the hazard was found such as electrical shock and noise for various intensity in the workplace. While electrical workers were aware of safety implementation but less of safety behaviour. Furthermore, the recommendation can be implemented are the implementation of behaviour-based safety (BBS, 5S implementation and accident report list.

  8. A Framework for Assessment of Aviation Safety Technology Portfolios

    Science.gov (United States)

    Jones, Sharon M.; Reveley, Mary S.

    2014-01-01

    The programs within NASA's Aeronautics Research Mission Directorate (ARMD) conduct research and development to improve the national air transportation system so that Americans can travel as safely as possible. NASA aviation safety systems analysis personnel support various levels of ARMD management in their fulfillment of system analysis and technology prioritization as defined in the agency's program and project requirements. This paper provides a framework for the assessment of aviation safety research and technology portfolios that includes metrics such as projected impact on current and future safety, technical development risk and implementation risk. The paper also contains methods for presenting portfolio analysis and aviation safety Bayesian Belief Network (BBN) output results to management using bubble charts and quantitative decision analysis techniques.

  9. Survey of immunoassay techniques for biological analysis

    International Nuclear Information System (INIS)

    Burtis, C.A.

    1986-10-01

    Immunoassay is a very specific, sensitive, and widely applicable analytical technique. Recent advances in genetic engineering have led to the development of monoclonal antibodies which further improves the specificity of immunoassays. Originally, radioisotopes were used to label the antigens and antibodies used in immunoassays. However, in the last decade, numerous types of immunoassays have been developed which utilize enzymes and fluorescent dyes as labels. Given the technical, safety, health, and disposal problems associated with using radioisotopes, immunoassays that utilize the enzyme and fluorescent labels are rapidly replacing those using radioisotope labels. These newer techniques are as sensitive, are easily automated, have stable reagents, and do not have a disposal problem. 6 refs., 1 fig., 2 tabs

  10. Operation safety of complex industrial systems

    International Nuclear Information System (INIS)

    Zwingelstein, G.

    1999-01-01

    Zero fault or zero risk is an unreachable goal in industrial activities like nuclear activities. However, methods and techniques exist to reduce the risks to the lowest possible and acceptable level. The operation safety consists in the recognition, evaluation, prediction, measurement and mastery of technological and human faults. This paper analyses each of these points successively: 1 - evolution of operation safety; 2 - definitions and basic concepts: failure, missions and functions of a system and of its components, basic concepts and operation safety; 3 - forecasting analysis of operation safety: reliability data, data-banks, precautions for the use of experience feedback data; realization of an operation safety study: management of operation safety, quality assurance, critical review and audit of operation safety studies; 6 - conclusions. (J.S.)

  11. Analysis Method of Common Cause Failure on Non-safety Digital Control System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eun Gse [KHNP, Daejeon (Korea, Republic of)

    2014-08-15

    The effects of common cause failure on safety digital instrumentation and control system had been considered in defense in depth analysis with safety analysis method. However, the effects of common cause failure on non-safety digital instrumentation and control system also should be evaluated. The common cause failure can be included in credible failure on the non-safety system. In the I and C architecture of nuclear power plant, many design feature has been applied for the functional integrity of control system. One of that is segmentation. Segmentation defenses the propagation of faults in the I and C architecture. Some of effects from common cause failure also can be limited by segmentation. Therefore, in this paper there are two type of failure mode, one is failures in one control group which is segmented, and the other is failures in multiple control group because that the segmentation cannot defense all effects from common cause failure. For each type, the worst failure scenario is needed to be determined, so the analysis method has been proposed in this paper. The evaluation can be qualitative when there is sufficient justification that the effects are bounded in previous safety analysis. When it is not bounded in previous safety analysis, additional analysis should be done with conservative assumptions method of previous safety analysis or best estimation method with realistic assumptions.

  12. Applicability of trends in nuclear safety analysis to space nuclear power systems

    International Nuclear Information System (INIS)

    Bari, R.A.

    1992-01-01

    A survey is presented of some current trends in nuclear safety analysis that may be relevant to space nuclear power systems. This includes: lessons learned from operating power reactor safety and licensing; approaches to the safety design of advanced and novel reactors and facilities; the roles of risk assessment, extremely unlikely accidents, safety goals/targets; and risk-benefit analysis and communication

  13. Human reliability analysis methods for probabilistic safety assessment

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-11-01

    Human reliability analysis (HRA) of a probabilistic safety assessment (PSA) includes identifying human actions from safety point of view, modelling the most important of them in PSA models, and assessing their probabilities. As manifested by many incidents and studies, human actions may have both positive and negative effect on safety and economy. Human reliability analysis is one of the areas of probabilistic safety assessment (PSA) that has direct applications outside the nuclear industry. The thesis focuses upon developments in human reliability analysis methods and data. The aim is to support PSA by extending the applicability of HRA. The thesis consists of six publications and a summary. The summary includes general considerations and a discussion about human actions in the nuclear power plant (NPP) environment. A condensed discussion about the results of the attached publications is then given, including new development in methods and data. At the end of the summary part, the contribution of the publications to good practice in HRA is presented. In the publications, studies based on the collection of data on maintenance-related failures, simulator runs and expert judgement are presented in order to extend the human reliability analysis database. Furthermore, methodological frameworks are presented to perform a comprehensive HRA, including shutdown conditions, to study reliability of decision making, and to study the effects of wrong human actions. In the last publication, an interdisciplinary approach to analysing human decision making is presented. The publications also include practical applications of the presented methodological frameworks. (orig.)

  14. Nuclear criticality safety analysis for the traveller PWR fuel shipping package

    Energy Technology Data Exchange (ETDEWEB)

    Vescovi, P.J.; Kent, N.A.; Casado, C.A. [Westinghouse Electric Co., LLC, Columbia, SC (United States)]|[ENUSA Industrias Avanzadas SA, Madrid (Spain)

    2004-07-01

    The Traveller PWR fresh fuel shipping package represents a radical departure from conventional PWR fuel package designs. Two immediately noticeable features of the Traveller are that it carries a single fuel assembly instead of two as do other package designs, and that it has built-in moderator, which forms part of the flux-trap system. The criticality safety case shows that the Traveller satisfies both U.S. and IAEA licensing requirements, and demonstrates that the package remains acceptably subcritical under normal conditions and hypothetical accident conditions of transport. This paper looks at the modeling techniques that were used to analyze the several accident scenarios that were considered, including: Lattice pitch expansion; Lattice pitch expansion along the fuel assembly length; Preferential flooding (selective flooding of different cavities); Differential flooding (varying water levels inside different cavities); Partial flooding (varying water density); Axial rod displacement; o Sensitivity studies of variable foam densities and boron content in packaging; Analysis for carrying loose rods in a rodbox; The criticality safety case for the Traveller proved to be a successful cooperative effort between ENUSA and Westinghouse.

  15. Nuclear criticality safety analysis for the traveller PWR fuel shipping package

    International Nuclear Information System (INIS)

    Vescovi, P.J.; Kent, N.A.; Casado, C.A.

    2004-01-01

    The Traveller PWR fresh fuel shipping package represents a radical departure from conventional PWR fuel package designs. Two immediately noticeable features of the Traveller are that it carries a single fuel assembly instead of two as do other package designs, and that it has built-in moderator, which forms part of the flux-trap system. The criticality safety case shows that the Traveller satisfies both U.S. and IAEA licensing requirements, and demonstrates that the package remains acceptably subcritical under normal conditions and hypothetical accident conditions of transport. This paper looks at the modeling techniques that were used to analyze the several accident scenarios that were considered, including: Lattice pitch expansion; Lattice pitch expansion along the fuel assembly length; Preferential flooding (selective flooding of different cavities); Differential flooding (varying water levels inside different cavities); Partial flooding (varying water density); Axial rod displacement; o Sensitivity studies of variable foam densities and boron content in packaging; Analysis for carrying loose rods in a rodbox; The criticality safety case for the Traveller proved to be a successful cooperative effort between ENUSA and Westinghouse

  16. Analysis of tank safety with propane-butane on LPG distribution station

    Directory of Open Access Journals (Sweden)

    Krzysiak Zbigniew

    2017-12-01

    Full Text Available An analysis of the risk of failure in the safety valve – tank with propane-butane (LPG system has been conducted. An uncontrolled outflow of liquid LPG, caused by a failure of the above mentioned system has been considered as a threat. The main research goal of the study is the hazardous analysis of propane-butane gas outflow for the safety valve – LPG tank system. The additional goal is the development of an useful method to fast identify the hazard of a mismatched safety valve. The results of the research analysis have confirmed that safety valves are basic protection of the installation (tank against failures that can lead to loss of life, material damage and further undesired costs of their unreliability. That is why a new, professional computer program has been created that allows for the selection of safety valves or for the verification of a safety valve selection in installations where any technical or technological changes have been made.

  17. Assessing safety risk in electricity distribution processes using ET & BA improved technique and its ranking by VIKOR and TOPSIS models in fuzzy environment

    OpenAIRE

    S. Rahmani; M. Omidvari

    2016-01-01

    Introduction: Electrical industries are among high risk industries. The present study aimed to assess safety risk in electricity distribution processes using  ET&BA technique and also to compare with both VIKOR & TOPSIS methods in fuzzy environments.   Material and Methods: The present research is a descriptive study and ET&BA worksheet is the main data collection tool. Both Fuzzy TOPSIS and Fuzzy VIKOR methods were used for the worksheet analysis.   Result: Findi...

  18. Westinghouse Hanford Company safety analysis reports and technical safety requirements upgrade program

    International Nuclear Information System (INIS)

    Busche, D.M.

    1995-09-01

    During Fiscal Year 1992, the US Department of Energy, Richland Operations Office (RL) separately transmitted the following US Department of Energy (DOE) Orders to Westinghouse Hanford Company (WHC) for compliance: DOE 5480.21, ''Unreviewed Safety Questions,'' DOE 5480.22, ''Technical Safety Requirements,'' and DOE 5480.23, ''Nuclear Safety Analysis Reports.'' WHC has proceeded with its impact assessment and implementation process for the Orders. The Orders are closely-related and contain some requirements that are either identical, similar, or logically-related. Consequently, WHC has developed a strategy calling for an integrated implementation of the three Orders. The strategy is comprised of three primary objectives, namely: Obtain DOE approval of a single list of DOE-owned and WHC-managed Nuclear Facilities, Establish and/or upgrade the ''Safety Basis'' for each Nuclear Facility, and Establish a functional Unreviewed Safety Question (USQ) process to govern the management and preservation of the Safety Basis for each Nuclear Facility. WHC has developed policy-revision and facility-specific implementation plans to accomplish near-term tasks associated with the above strategic objectives. This plan, which as originally submitted in August 1993 and approved, provided an interpretation of the new DOE Nuclear Facility definition and an initial list of WHC-managed Nuclear Facilities. For each current existing Nuclear Facility, existing Safety Basis documents are identified and the plan/status is provided for the ISB. Plans for upgrading SARs and developing TSRs will be provided after issuance of the corresponding Rules

  19. Safety: Science and technique in social problems

    International Nuclear Information System (INIS)

    Smit, W.A.

    1982-01-01

    The author describes in a simple and clearly written Dutch text the relationship between scientific and technical knowledge and the social problems concerning the safety of nuclear energy. He begins with the cooling system of reactors and the safety aspects of the associated pumps. He uses this example to illustrate that the quantative determination of failure risks need not necessarily be relevant for judging the acceptance of the risk but is always relevant as a method of judging the effect of technical improvements on safety values. The author then considers the radiological effects of the operation of a nuclear plant by presenting the doses of radioactivity released if a reactor is operating normally, if there are technical problems and in the case of accidents. The corresponding biological effects on man are also presented and in an appendix the radiological consequences of reactor accidents are considered in some detail. He describes a number of models used in such calculations - for metereological distribution, dosimetry for internal radiation, cancer induction - to illustrate the margins of uncertainty in the predictions. According to the author safety aspects should not just be seen as a purely technical problem, starting with the fact that nuclear energy is desirable and then ensuring that all required safety regulations are met. Safety aspects are a social problem and should be considered by first discussing whether nuclear energy is acceptable, taking into consideration such consequences as the effects of possible accidents and the long term effects of reactor operation. (C.F.)

  20. Qualitative safety analysis in accelerator based systems

    International Nuclear Information System (INIS)

    Sarkar, P.K.; Chowdhury, Lekha M.

    2006-01-01

    In recent developments connected to high energy and high current accelerators, the accelerator driven systems (ADS) and the Radioactive Ion Beam (RIB) facilities come in the forefront of application. For medical and industrial applications high current accelerators often need to be located in populated areas. These facilities pose significant radiological hazard during their operation and accidental situations. We have done a qualitative evaluation of radiological safety analysis using the probabilistic safety analysis (PSA) methods for accelerator-based systems. The major contribution to hazard comes from a target rupture scenario in both ADS and RIB facilities. Other significant contributors to hazard in the facilities are also discussed using fault tree and event tree methodologies. (author)

  1. Human Resources Readiness as TSO for Deterministic Safety Analysis on the First NPP in Indonesia

    International Nuclear Information System (INIS)

    Sony Tjahyani, D. T.

    2010-01-01

    In government regulation no. 43 year 2006 it is mentioned that preliminary safety analysis report and final safety analysis report are one of requirements which should be applied in construction and operation licensing for commercial power reactor (NPPs). The purpose of safety analysis report is to confirm the adequacy and efficiency of provisions within the defence in depth of nuclear reactor. Deterministic analysis is used on the safety analysis report. One of the TSO task is to evaluate this report based on request of operator or regulatory body. This paper discusses about human resources readiness as TSO for deterministic safety analysis on the first NPP in Indonesia. The assessment is done by comparing the analysis step on SS-23 and SS-30 with human resources status of BATAN currently. The assessment results showed that human resources for deterministic safety analysis are ready as TSO especially to review preliminary safety analysis report and to revise final safety analysis report in licensing on the first NPP in Indonesia. Otherwise, to prepare the safety analysis report is still needed many competency human resources. (author)

  2. Safety Analysis Of Actinide Recycled Fast Power Reactor

    International Nuclear Information System (INIS)

    Taufik, Mohammad

    2001-01-01

    Simulation for safety analysis of actinide recycled fast power reactor has been performed. The objective is to know reactor response about ULOF and ULOF and UTOP simultaneous accident. From parameter result such reactivity feedback, power, temperature, and cooled flow rate can conclusion that reactor have inherent safety system, which can back to new Equilibrium State

  3. Most significant preliminary results of the probabilistic safety analysis on the Juragua nuclear power plant

    International Nuclear Information System (INIS)

    Perdomo, Manuel

    1995-01-01

    Since 1990 the Group for PSA Development and Applications (GDA/APS) is working on the Level-1 PSA for the Juragua-1 NPP, as a part of an IAEA Technical Assistance Project. The main objective of this study, which is still under way, is to assess, in a preliminary way, the Reactor design safety to find its potential 'weak points' at the construction stage, using a eneric data base. At the same time, the study allows the PSA team to familiarize with the plant design and analysis techniques for the future operational PSA of the plant. This paper presents the most significant preliminary results of the study, which reveal some advantages of the safety characteristics of the plant design in comparison with the homologous VVER-440 reactors and some areas, where including slight modifications would improve the plant safety, considering the level of detail at which the study is carried out. (author). 13 refs, 1 fig, 2 tabs

  4. Probabilistic safety analysis procedures guide

    International Nuclear Information System (INIS)

    Papazoglou, I.A.; Bari, R.A.; Buslik, A.J.

    1984-01-01

    A procedures guide for the performance of probabilistic safety assessment has been prepared for interim use in the Nuclear Regulatory Commission programs. The probabilistic safety assessment studies performed are intended to produce probabilistic predictive models that can be used and extended by the utilities and by NRC to sharpen the focus of inquiries into a range of tissues affecting reactor safety. This guide addresses the determination of the probability (per year) of core damage resulting from accident initiators internal to the plant and from loss of offsite electric power. The scope includes analyses of problem-solving (cognitive) human errors, a determination of importance of the various core damage accident sequences, and an explicit treatment and display of uncertainties for the key accident sequences. Ultimately, the guide will be augmented to include the plant-specific analysis of in-plant processes (i.e., containment performance) and the risk associated with external accident initiators, as consensus is developed regarding suitable methodologies in these areas. This guide provides the structure of a probabilistic safety study to be performed, and indicates what products of the study are essential for regulatory decision making. Methodology is treated in the guide only to the extent necessary to indicate the range of methods which is acceptable; ample reference is given to alternative methodologies which may be utilized in the performance of the study

  5. Evaluation of safety assessment methodologies in Rocky Flats Risk Assessment Guide (1985) and Building 707 Final Safety Analysis Report (1987)

    International Nuclear Information System (INIS)

    Walsh, B.; Fisher, C.; Zigler, G.; Clark, R.A.

    1990-01-01

    FSARs. Rockwell International, as operating contractor at the Rocky Flats plant, conducted a safety analysis program during the 1980s. That effort resulted in Final Safety Analysis Reports (FSARs) for several buildings, one of them being the Building 707 Final Safety Analysis Report, June 87 (707FSAR) and a Plant Safety Analysis Report. Rocky Flats Risk Assessment Guide, March 1985 (RFRAG85) documents the methodologies that were used for those FSARs. Resources available for preparation of those Rocky Flats FSARs were very limited. After addressing the more pressing safety issues, some of which are described below, the present contractor (EG ampersand G) intends to conduct a program of upgrading the FSARs. This report presents the results of a review of the methodologies described in RFRAG85 and 707FSAR and contains suggestions that might be incorporated into the methodology for the FSAR upgrade effort

  6. Survey of systems safety analysis methods and their application to nuclear waste management systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Winegardner, W.K.; Gallucci, R.H.V.

    1981-11-01

    This report reviews system safety analysis methods and examines their application to nuclear waste management systems. The safety analysis methods examined include expert opinion, maximum credible accident approach, design basis accidents approach, hazard indices, preliminary hazards analysis, failure modes and effects analysis, fault trees, event trees, cause-consequence diagrams, G0 methodology, Markov modeling, and a general category of consequence analysis models. Previous and ongoing studies on the safety of waste management systems are discussed along with their limitations and potential improvements. The major safety methods and waste management safety related studies are surveyed. This survey provides information on what safety methods are available, what waste management safety areas have been analyzed, and what are potential areas for future study

  7. Survey of systems safety analysis methods and their application to nuclear waste management systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelto, P.J.; Winegardner, W.K.; Gallucci, R.H.V.

    1981-11-01

    This report reviews system safety analysis methods and examines their application to nuclear waste management systems. The safety analysis methods examined include expert opinion, maximum credible accident approach, design basis accidents approach, hazard indices, preliminary hazards analysis, failure modes and effects analysis, fault trees, event trees, cause-consequence diagrams, G0 methodology, Markov modeling, and a general category of consequence analysis models. Previous and ongoing studies on the safety of waste management systems are discussed along with their limitations and potential improvements. The major safety methods and waste management safety related studies are surveyed. This survey provides information on what safety methods are available, what waste management safety areas have been analyzed, and what are potential areas for future study.

  8. Criticality safety analysis for plutonium dissolver using silver mediated electrolytic oxidation method

    International Nuclear Information System (INIS)

    Umeda, Miki; Sugikawa, Susumu; Nakamura, Kazuhito; Egashira, Tetsurou

    1998-08-01

    Design and construction of a plutonium dissolver using silver mediated electrolytic oxidation method are promoted in NUCEF. Criticality safety analysis for the plutonium dissolver is described in this report. The electrolytic plutonium dissolver consists of connection pipes and three pots for MOX powder supply, circulation and electrolysis. The criticality control for the dissolver is made by geometrically safe shape with mass limitation. Monte Carlo code KENO-IV using MGCL-137 library based on ENDF/B-IV was used for the criticality safety analysis for the plutonium dissolver. Considering the required size for construction and criticality safety, diameter of pot and distance between two pots were determined. On this condition, the criticality safety analysis for the plutonium dissolver with connection pipes was carried out. As the result of the criticality safety analysis, an effective neutron multiplication factor keff of 0.91 was obtained and the criticality safety of the plutonium dissolver was confirmed on the basis of criteria of ≤0.95. (author)

  9. K West integrated water treatment system subproject safety analysis document

    International Nuclear Information System (INIS)

    SEMMENS, L.S.

    1999-01-01

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System

  10. K West integrated water treatment system subproject safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  11. Safety analysis of disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Vieno, T.

    1994-04-01

    The spent fuel from the Olkiluoto NPP (TVO I and II) is planned to be disposed of in a repository to be constructed at a depth of about 500 meters in the crystalline bedrock. The thesis is dealing with the safety analysis of the disposal. The main topics presented in the thesis are: (1) The amount of radioactive properties of the spent fuel, (2) The canister design and the planned disposal concept, (3) The results of the preliminary site investigations, (4) Discussion of the multi-barrier principle, (5) The general principles and methodology of the TVO-92 safety analysis, (6) Groundwater flow analysis, (7) Durability and behaviour of the canister, (8) Biosphere analysis and reference scenario, and (9) The sensitivity and uncertainty analyses. (246 refs., 75 figs., 44 tabs.)

  12. Safety margins of operating reactors. Analysis of uncertainties and implications for decision making

    International Nuclear Information System (INIS)

    2003-01-01

    Maintaining safety in the design and operation of nuclear power plants (NPPs) is a very important task under the conditions of a challenging environment, affected by the deregulated electricity market and implementation of risk informed regulations. In Member States, advanced computer codes are widely used as safety analysis tools in the framework of licensing of new NPP projects, safety upgrading programmes of existing NPPs, periodic safety reviews, renewal of operating licences, use of the safety margins for reactor power uprating, better utilization of nuclear fuel and higher operational flexibility, for justification of lifetime extensions, development of new emergency operating procedures, analysis of operational events, and development of accident management programmes. The issue of inadequate quality of safety analysis is becoming important due to a general tendency to use advanced tools for better establishment and utilization of safety margins, while the existence of such margins assure that NPPs operate safely in all modes of operation and at all times. The most important safety margins relate to physical barriers against release of radioactive material, such as fuel matrix and fuel cladding, reactor coolant system boundary, and the containment. Typically, safety margins are determined with use of computational tools for safety analysis. Advanced best estimate computer codes are suggested e.g. in the IAEA Safety Guide on Safety Assessment and Verification for Nuclear Power Plants to be used for current safety analysis. Such computer codes require their careful application to avoid unjustified reduction in robustness of the reactor safety. The issue of uncertainties in safety analyses and their impact on evaluation of safety margins is addressed in a number of IAEA guidance documents, in particular in the Safety Report on Accident Analysis for Nuclear Power Plants. It is also discussed in various technical meetings and workshops devoted to this area. The

  13. Risk based maintenance to increase safety and decrease costs

    International Nuclear Information System (INIS)

    Phillips, J.H.

    2000-01-01

    Risk-Based techniques have been developed for commercial nuclear power plants for the last eight years by a team working through the ASME Center for Research and Technology Development (CRTD). System boundaries and success criteria is defined using the Probabilistic Risk Analysis or Probabilistic Safety Analysis developed to meet the Individual Plant Evaluation. Final ranking of components is by a plant expert panel similar to the one developed for the Maintenance Rule. Components are identified as being high risk-significant or low risk-significant. Maintenance and resources are focused on those components that have the highest risk-significance. The techniques have been developed and applied at a number of plants. Results from the first risk-based inspection pilot plant indicates safety due to pipe failure can be doubled while the inspection reduced to about 80% when compared with current inspection programs. Pilot studies on risk-based testing indicate that about 60% of pumps and 25 to 30% of valves in plants are high safety-significant The reduction in inspection and testing reduces the person-rem exposure and resulting in further increases in safety. These techniques have been documented in publications by the ASME CRTD which are referenced. (author)

  14. Prototype application of best estimate and uncertainty safety analysis methodology to large LOCA analysis

    International Nuclear Information System (INIS)

    Luxat, J.C.; Huget, R.G.

    2001-01-01

    Development of a methodology to perform best estimate and uncertainty nuclear safety analysis has been underway at Ontario Power Generation for the past two and one half years. A key driver for the methodology development, and one of the major challenges faced, is the need to re-establish demonstrated safety margins that have progressively been undermined through excessive and compounding conservatism in deterministic analyses. The major focus of the prototyping applications was to quantify the safety margins that exist at the probable range of high power operating conditions, rather than the highly improbable operating states associated with Limit of the Envelope (LOE) assumptions. In LOE, all parameters of significance to the consequences of a postulated accident are assumed to simultaneously deviate to their limiting values. Another equally important objective of the prototyping was to demonstrate the feasibility of conducting safety analysis as an incremental analysis activity, as opposed to a major re-analysis activity. The prototype analysis solely employed prior analyses of Bruce B large break LOCA events - no new computer simulations were undertaken. This is a significant and novel feature of the prototyping work. This methodology framework has been applied to a postulated large break LOCA in a Bruce generating unit on a prototype basis. This paper presents results of the application. (author)

  15. Aging techniques and qualified life for safety system components

    International Nuclear Information System (INIS)

    Weaver, W.W.

    1980-01-01

    Presently, the qualified life objective for Class IE safety system components in nuclear power plants is somewhat of a subjective engineering judgment. When the desired qualified life is ascertained, there are other choices that must be made (which may be influenced by the desired qualified life) such as selecting the aging procedure to use in the qualification process. Adding complexity to the situation is the fact that there are some limitations in aging techniques at the present time. This article presents (1) a discussion of the limitations in aging procedures, (2) the general philosophy of qualification, and (3) a proposed method for specifying a desired qualified life, which uses a probabilistic approach. The probabilistic approach proposed in item 3 can be applied to natural aging programs and eventually to accelerated aging once the present technical difficulties are overcome

  16. Lithium-thionyl chloride cell system safety hazard analysis

    Science.gov (United States)

    Dampier, F. W.

    1985-03-01

    This system safety analysis for the lithium thionyl chloride cell is a critical review of the technical literature pertaining to cell safety and draws conclusions and makes recommendations based on this data. The thermodynamics and kinetics of the electrochemical reactions occurring during discharge are discussed with particular attention given to unstable SOCl2 reduction intermediates. Potentially hazardous reactions between the various cell components and discharge products or impurities that could occur during electrical or thermal abuse are described and the most hazardous conditions and reactions identified. Design factors influencing the safety of Li/SOCl2 cells, shipping and disposal methods and the toxicity of Li/SOCl2 battery components are additional safety issues that are also addressed.

  17. An intelligent hybrid system for surface coal mine safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lilic, N.; Obradovic, I.; Cvjetic, A. [University of Belgrade, Belgrade (Serbia)

    2010-06-15

    Analysis of safety in surface coal mines represents a very complex process. Published studies on mine safety analysis are usually based on research related to accidents statistics and hazard identification with risk assessment within the mining industry. Discussion in this paper is focused on the application of AI methods in the analysis of safety in mining environment. Complexity of the subject matter requires a high level of expert knowledge and great experience. The solution was found in the creation of a hybrid system PROTECTOR, whose knowledge base represents a formalization of the expert knowledge in the mine safety field. The main goal of the system is the estimation of mining environment as one of the significant components of general safety state in a mine. This global goal is subdivided into a hierarchical structure of subgoals where each subgoal can be viewed as the estimation of a set of parameters (gas, dust, climate, noise, vibration, illumination, geotechnical hazard) which determine the general mine safety state and category of hazard in mining environment. Both the hybrid nature of the system and the possibilities it offers are illustrated through a case study using field data related to an existing Serbian surface coal mine.

  18. Presurized water reactor safety approach and analysis. From conception to experience feedback

    International Nuclear Information System (INIS)

    Libmann, J.

    1987-04-01

    This report deals in ten chapters, with the following subjects: 1. Safety approach methods; 2. Study of accidents; 3. Safety analysis; 4. Study of internal aggressions or those involved by the site; 5. Consideration of complementary situations; 6. Three Mile Island accident; 7. Safety during operation and experience feedback; 8. An example of analysis: steam generator closure plug; 9. Probabilistic safety evaluation; 10. Chernobyl accident. 30 refs [fr

  19. An approach to review design bases and safety analysis of earlier generation atomic power plants; a case study of TAPS

    International Nuclear Information System (INIS)

    Malhotra, P.K.; Bajaj, S.S.

    2002-01-01

    The twin unit boiling water reactor (BWR) station at TAPS has completed 30 years of power operation and for further extending plant operating life, a fresh extensive exercise involving review of plant operating performance, aging management and review of design bases and safety analysis has been carried out. The review exercise resulted in assessment of acceptability of identified non-conformances and recommendation for compensatory measures in the form of design modification or plant operating procedures. The second part of the exercise is related to safety analysis, which is carried out in view of the plant modifications done and advances taken place in methodologies of analytical techniques. Chiefly, it involves LOCA analysis done for various break sizes at different locations and plant transient studies. It also includes the fatigue analysis of the reactor pressure vessel. The related review approach adopted is presented here

  20. Safety evaluation status report for the prototype license application safety analysis report

    International Nuclear Information System (INIS)

    1989-07-01

    The US Nuclear Regulatory Commission (NRC) staff and consultants reviewed a Prototype License Application Safety Analysis Report (PLASAR) submitted by the US Department of Energy (DOE) for the earth-mounded concrete bunker (EMCB) alternative method of low-level radioactive waste disposal. The NRC reviewers relied extensively on the Standard Review Plan (SRP), Rev.1 (NUREG-1200), to evaluate the acceptability of the information provided in the EMCB PLASAR. The NRC staff selected certain review areas in the PLASAR for development of safety evaluation report input to provide examples of safety assessments that are necessary as part of a licensing review. Because of the fictitious nature of the assumed disposal site, and the decision to limit the review to essentially first-round review status, the NRC staff report is labeled a ''Safety Evaluation Status Report'' (SESR). Appendix A comprises the NRC review comments and questions on the information that DOE submitted in the PLASAR. The NRC concentrated its review on the design and operations-related portions of the EMCB PLASAR

  1. Safety and reliability analysis based on nonprobabilistic methods

    International Nuclear Information System (INIS)

    Kozin, I.O.; Petersen, K.E.

    1996-01-01

    Imprecise probabilities, being developed during the last two decades, offer a considerably more general theory having many advantages which make it very promising for reliability and safety analysis. The objective of the paper is to argue that imprecise probabilities are more appropriate tool for reliability and safety analysis, that they allow to model the behavior of nuclear industry objects more comprehensively and give a possibility to solve some problems unsolved in the framework of conventional approach. Furthermore, some specific examples are given from which we can see the usefulness of the tool for solving some reliability tasks

  2. Use of safety analysis results to support process operation

    International Nuclear Information System (INIS)

    Karvonen, I.; Heino, P.

    1990-01-01

    Safety and risk analysis carried out during the design phase of a process plant produces useful knowledge about the behavior and the disturbances of the system. This knowledge, however, often remains to the designer though it would be of benefit to the operators and supervisors of the process plant, too. In Technical Research Centre of Finland a project has been started to plan and construct a prototype of an information system to make use of the analysis knowledge during the operation phase. The project belongs to a Nordic KRM project (Knowledge Based Risk Management System). The information system is planned to base on safety and risk analysis carried out during the design phase and completed with operational experience. The safety analysis includes knowledge about potential disturbances, their causes and consequences in the form of Hazard and Operability Study, faut trees and/or event trees. During the operation disturbances can however, occur, which are not included in the safety analysis, or the causes or consequences of which have been incompletely identified. Thus the information system must also have an interface for the documentation of the operational knowledge missing from the analysis results. The main tasks off the system when supporting the management of a disturbance are to identify it (or the most important of the coexistent ones) from the stored knowledge and to present it in a proper form (for example as a deviation graph). The information system may also be used to transfer knowledge from one shift to another and to train process personnel

  3. Performance and safety analysis of WP-cave concept

    International Nuclear Information System (INIS)

    Skagius, K.; Svemar, C.

    1989-08-01

    The report presents a performance safety, and cost analysis of the WP-cave, WPC, concept. In the performance analysis, questions specific to the WPC have been addressed which have been identified to require more detailed studies. Based on the outcome of this analysis, a safety analysis has been made which comprises of the modeling and calculation of radionuclide transport from the repository to the biosphere and the resulting dose exposure to man. The result of the safety analysis indicates that the present design of a WPC repository may give unacceptably high doses. By improving the properties of the bentonite/sand barrier such that the hydraulic conductivity is reduced, or by changing the short-lived steel canisters to more long-lived canisters, e.g. copper canisters, it is judged possible to achieve a sufficiently low level of dose exposure rates to man. The cost for a WPC repository of the studied design is significantly higher than for a KBS-3 repository considering the Swedish conditions and the Swedish amount of spent fuel. The major costs are connected to the excavation and backfilling of the bentonite/sand barrier. The potential for cost savings is high but it is not judged possible to account for savings in such a way that the WPC concept shows lower cost than the KBS-3 concept. (34 figs., 33 tabs., 29 refs.)

  4. Processing techniques for data from the Kuosheng Unit 1 shakedown safety-relief-valve tests

    International Nuclear Information System (INIS)

    McCauley, E.W.; Rompel, S.L.; Weaver, H.J.; Altenbach, T.J.

    1982-08-01

    This report describes techniques developed at the Lawrence Livermore National Laobratory, Livermore, CA for processing original data from the Taiwan Power Company's Kuosheng MKIII Unit 1 Safety Relief Valve Shakedown Tests conducted in April/May 1981. The computer codes used, TPSORT, TPPLOT, and TPPSD, form a special evaluation system for treating the data from its original packed binary form to ordered, calibrated ASCII transducer files and then to production of time-history plots, numerical output files, and spectral analyses. Using the data processing techniques described, a convenient means of independently examining and analyzing a unique data base for steam condensation phenomena in the MARKIII wetwell is described. The techniques developed for handling these data are applicable to the treatment of similar, but perhaps differently structured, experiment data sets

  5. Probabilistic safety analysis of earth retaining structures during earthquakes

    Science.gov (United States)

    Grivas, D. A.; Souflis, C.

    1982-07-01

    A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.

  6. Oak Ridge National Laboratory site data for safety-analysis report

    International Nuclear Information System (INIS)

    Fitzpatrick, F.C.

    1982-12-01

    The Oak Ridge National Laboratory site data contained herein were compiled in support of the United States Department of Energy (USDOE) Oak Ridge Operations Office Order OR 5481.1. That order sets forth assignment of responsibilities for safety analysis and review responsibilities and provides guidance relative to the content and format of safety analysis reports. The information presented in this document is intended for use by reference in individual safety analysis reports where applicable to support accident analyses or the establishment of design bases of significance to safety, and it is applicable only to Oak Ridge National Laboratory facilities in Bethel and Melton Valleys. This information includes broad descriptions of the site characteristics, radioactive waste handling and monitoring practices, and the organization and operating policies at Oak Ridge National Laboratory. The historical background of the Laboratory is discussed briefly and the overall physical situation of the facilities is described in the following paragraphs

  7. Oak Ridge National Laboratory site data for safety-analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, F.C.

    1982-12-01

    The Oak Ridge National Laboratory site data contained herein were compiled in support of the United States Department of Energy (USDOE) Oak Ridge Operations Office Order OR 5481.1. That order sets forth assignment of responsibilities for safety analysis and review responsibilities and provides guidance relative to the content and format of safety analysis reports. The information presented in this document is intended for use by reference in individual safety analysis reports where applicable to support accident analyses or the establishment of design bases of significance to safety, and it is applicable only to Oak Ridge National Laboratory facilities in Bethel and Melton Valleys. This information includes broad descriptions of the site characteristics, radioactive waste handling and monitoring practices, and the organization and operating policies at Oak Ridge National Laboratory. The historical background of the Laboratory is discussed briefly and the overall physical situation of the facilities is described in the following paragraphs.

  8. Fuel reprocessing: safety analysis of extraction cycles

    International Nuclear Information System (INIS)

    Dinh, B.; Mauborgne, B.; Baron, P.; Mercier, J.P.

    1991-01-01

    An essential part of the safety analysis related to the extraction cycles of reprocessing plants, is the analysis of their behaviour during steady-state and transient operations, by means of simulation codes. These codes are based on the chemical properties of the main species involved (distribution coefficient and kinetics) and the hydrodynamics inside the contactors (mixer-settlers and pulsed columns). These codes have been consolidated by comparison of calculations with experimental results. The safety analysis is essentially performed in two steps. The first step is a parametric sensitivity analysis of the chemical flowsheet operated: the effect of a misadjustment (flowrate of feed, solvent, etc) is evaluated by successive steady-state calculations. These calculations help the identification of the sensitive parameters for the risk of plutonium accumulation, while indicating the permissible level of misadjustment. These calculations also serve to identify the parameters which should be measured during plant operation. The second step is the study of transient regimes, for the most sensitive parameters related to plutonium accumulation risk. The aim is to confirm the conclusions of the first step and to check that the characteristic process parameters chosen effectively allow, the early and reliable detection of any drift towards a plutonium accumulating regime. The procedures to drive the process backwards to a specified convenient steady-state regime from a drifting-state are also verified. The identification of the sensitive parameters, the process status parameters and the process transient analysis, allow a good control of process operation. This procedure, applied to the first purification cycle of COGEMA's UP3-A La Hague plant has demonstrated the total safety of facility operations

  9. SAFETY ANALYSIS METHODOLOGY FOR AGED CANDU® 6 NUCLEAR REACTORS

    Directory of Open Access Journals (Sweden)

    WOLFGANG HARTMANN

    2013-10-01

    Full Text Available This paper deals with the Safety Analysis for CANDU® 6 nuclear reactors as affected by main Heat Transport System (HTS aging. Operational and aging related changes of the HTS throughout its lifetime may lead to restrictions in certain safety system settings and hence some restriction in performance under certain conditions. A step in confirming safe reactor operation is the tracking of relevant data and their corresponding interpretation by the use of appropriate thermalhydraulic analytic models. Safety analyses ranging from the assessment of safety limits associated with the prevention of intermittent fuel sheath dryout for a slow Loss of Regulation (LOR analysis and fission gas release after a fuel failure are summarized. Specifically for fission gas release, the thermalhydraulic analysis for a fresh core and an 11 Effective Full Power Years (EFPY aged core was summarized, leading to the most severe stagnation break sizes for the inlet feeder break and the channel failure time. Associated coolant conditions provide the input data for fuel analyses. Based on the thermalhydraulic data, the fission product inventory under normal operating conditions may be calculated for both fresh and aged cores, and the fission gas release may be evaluated during the transient. This analysis plays a major role in determining possible radiation doses to the public after postulated accidents have occurred.

  10. Bulk analysis using nuclear techniques

    International Nuclear Information System (INIS)

    Borsaru, M.; Holmes, R.J.; Mathew, P.J.

    1983-01-01

    Bulk analysis techniques developed for the mining industry are reviewed. Using penetrating neutron and #betta#-radiations, measurements are obtained directly from a large volume of sample (3-30 kg) #betta#-techniques were used to determine the grade of iron ore and to detect shale on conveyor belts. Thermal neutron irradiation was developed for the simultaneous determination of iron and aluminium in iron ore on a conveyor belt. Thermal-neutron activation analysis includes the determination of alumina in bauxite, and manganese and alumina in manganese ore. Fast neutron activation analysis is used to determine silicon in iron ores, and alumina and silica in bauxite. Fast and thermal neutron activation has been used to determine the soil in shredded sugar cane. (U.K.)

  11. Risk-based evaluation tool for safety-related maintenance involving scaffolding

    International Nuclear Information System (INIS)

    Stevens, C.; Azizi, M.; Massman, M.

    1988-01-01

    The US Nuclear Regulatory Commission (NRC) has expressed a general concern that transient materials in and around safety systems at nuclear power plants represent a seismic safety hazard to the plant, in particular, the uncontrolled use of scaffolding during maintenance activities. Currently, most plants perform a seismic safety analysis for all uses of scaffolding near safety-related equipment to determine appropriate tie-down locations, scaffolding reinforcements, etc. This is both time-consuming and, for the most part, unnecessary. A workable engineering solution based on risk analysis techniques has been developed and is being used at the Palo Verde nuclear generating station (PVNGS)

  12. Reliability analysis techniques in power plant design

    International Nuclear Information System (INIS)

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  13. Road safety risk evaluation and target setting using data envelopment analysis and its extensions.

    Science.gov (United States)

    Shen, Yongjun; Hermans, Elke; Brijs, Tom; Wets, Geert; Vanhoof, Koen

    2012-09-01

    Currently, comparison between countries in terms of their road safety performance is widely conducted in order to better understand one's own safety situation and to learn from those best-performing countries by indicating practical targets and formulating action programmes. In this respect, crash data such as the number of road fatalities and casualties are mostly investigated. However, the absolute numbers are not directly comparable between countries. Therefore, the concept of risk, which is defined as the ratio of road safety outcomes and some measure of exposure (e.g., the population size, the number of registered vehicles, or distance travelled), is often used in the context of benchmarking. Nevertheless, these risk indicators are not consistent in most cases. In other words, countries may have different evaluation results or ranking positions using different exposure information. In this study, data envelopment analysis (DEA) as a performance measurement technique is investigated to provide an overall perspective on a country's road safety situation, and further assess whether the road safety outcomes registered in a country correspond to the numbers that can be expected based on the level of exposure. In doing so, three model extensions are considered, which are the DEA based road safety model (DEA-RS), the cross-efficiency method, and the categorical DEA model. Using the measures of exposure to risk as the model's input and the number of road fatalities as output, an overall road safety efficiency score is computed for the 27 European Union (EU) countries based on the DEA-RS model, and the ranking of countries in accordance with their cross-efficiency scores is evaluated. Furthermore, after applying clustering analysis to group countries with inherent similarity in their practices, the categorical DEA-RS model is adopted to identify best-performing and underperforming countries in each cluster, as well as the reference sets or benchmarks for those

  14. Development of the Risk-Based Inspection Techniques and Pilot Plant Activities

    International Nuclear Information System (INIS)

    Phillips, J.H.

    1997-01-01

    Risk-based techniques have been developed for commercial nuclear power plants. System boundaries and success criteria is defined using the probabilistic risk analysis or probabilistic safety analysis developed to meet the individual plant evaluation. Final ranking of components is by a plant expert panel similar to the one developed for maintenance rule. Components are identified as being high risk-significant or low-risk significant. Maintenance and resources are focused on those components that have the highest risk-significance. The techniques have been developed and applied at a number of pilot plants. Results from the first risk-based inspection pilot plant indicates that safety due to pipe failure can be doubled while the inspection reduced to about 80% when compared with current inspection programs. The reduction in inspection reduces the person-rem exposure resulting in further increases in safety. These techniques have been documented in publication by the ASME CRTD

  15. Valuation of road safety effects in cost-benefit analysis.

    Science.gov (United States)

    Wijnen, Wim; Wesemann, Paul; de Blaeij, Arianne

    2009-11-01

    Cost-benefit analysis is a common method for evaluating the social economic impact of transport projects, and in many of these projects the saving of human lives is an issue. This implies, within the framework of cost-benefit analysis, that a monetary value should be attached to saving human lives. This paper discusses the 'Value of a Statistical Life' (VoSL), a concept that is often used for monetising safety effects, in the context of road safety. Firstly, the concept of 'willingness to pay' for road safety and its relation to the VoSL are explained. The VoSL approach will be compared to other approaches to monetise safety effects, in particular the human capital approach and 'quality adjusted life years'. Secondly, methods to estimate the VoSL and their applicability to road safety will be discussed. Thirdly, the paper reviews the VoSL estimates that have been found in scientific research and compares them with the values that are used in policy evaluations. Finally, a VoSL study in the Netherlands will be presented as a case study, and its applicability in policy evaluation will be illustrated.

  16. REVEAL - A tool for rule driven analysis of safety critical software

    International Nuclear Information System (INIS)

    Miedl, H.; Kersken, M.

    1998-01-01

    As the determination of ultrahigh reliability figures for safety critical software is hardly possible, national and international guidelines and standards give mainly requirements for the qualitative evaluation of software. An analysis whether all these requirements are fulfilled is time and effort consuming and prone to errors, if performed manually by analysts, and should instead be dedicated to tools as far as possible. There are many ''general-purpose'' software analysis tools, both static and dynamic, which help analyzing the source code. However, they are not designed to assess the adherence to specific requirements of guidelines and standards in the nuclear field. Against the background of the development of I and C systems in the nuclear field which are based on digital techniques and implemented in high level language, it is essential that the assessor or licenser has a tool with which he can automatically and uniformly qualify as many aspects as possible of the high level language software. For this purpose the software analysis tool REVEAL has been developed at ISTec and the Halden Reactor Project. (author)

  17. The use of case tools in OPG safety analysis code qualification

    International Nuclear Information System (INIS)

    Pascoe, J.; Cheung, A.; Westbye, C.

    2001-01-01

    Ontario Power Generation (OPG) is currently qualifying its critical safety analysis software. The software quality assurance (SQA) framework is described. Given the legacy nature of much of the safety analysis software the reverse engineering methodology has been adopted. The safety analysis suite of codes was developed over a period of many years to differing standards of quality and had sparse or incomplete documentation. Key elements of the reverse engineering process require recovery of design information from existing coding. This recovery, if performed manually, could represent an enormous effort. Driven by a need to maximize productivity and enhance the repeatability and objectivity of software qualification activities the decision was made to acquire or develop and implement Computer Aided Software Engineering (CASE) tools. This paper presents relevant background information on CASE tools and discusses how the OPG SQA requirements were used to assess the suitability of available CASE tools. Key findings from the application of CASE tools to the qualification of the OPG safety analysis software are discussed. (author)

  18. Preliminary safety analysis for key design features of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, D. H.; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, S. O.; Lee, Y. B.; Jeong, K. S

    2000-07-01

    KAERI is currently developing the conceptual design of a liquid metal reactor, KALIMER(Korea Advanced Liquid Metal Reactor) under the long-term nuclear R and D program. In this report, descriptions of the KALIMER safety design features and safety analyses results for selected ATWS accidents are presented. First, the basic approach to achieve the safety goal is introduced in chapter 1, and the safety evaluation procedure for the KALIMER design is described in chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events. In chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure design performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram(ATWS) have been performed to investigate the KALIMER system response to the events. They are categorized as bounding events(BEs) because of their low probability of occurrence. In chapter 4, the design of the KALIMER containment dome and the results of its performance analysis are presented. The designs of the existing LMR containment and the KALIMER containment dome have been compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core kinetics and hydraulic behavior during HCDA in chapter 5. Mathematical formulations have been developed in the framework of the modified bethe-tait method, and scoping analyses have been performed for the KALIMER core behavior during super-prompt critical excursions.

  19. Introduction to Safety Analysis Approach for Research Reactors

    International Nuclear Information System (INIS)

    Park, Suki

    2016-01-01

    The research reactors have a wide variety in terms of thermal powers, coolants, moderators, reflectors, fuels, reactor tanks and pools, flow direction in the core, and the operating pressure and temperature of the cooling system. Around 110 research reactors have a thermal power greater than 1 MW. This paper introduces a general approach to safety analysis for research reactors and deals with the experience of safety analysis on a 10 MW research reactor with an open-pool and open-tank reactor and a downward flow in the reactor core during normal operation. The general approach to safety analysis for research reactors is described and the design features of a typical open-pool and open-tank type reactor are discussed. The representative events expected in research reactors are investigated. The reactor responses and the thermal hydraulic behavior to the events are presented and discussed. From the minimum CHFR and the maximum fuel temperature calculated, it is ensured that the fuel is not damaged in the step insertion of reactivity by 1.8 mk and the failure of all primary pumps for the reactor with a 10 MW thermal power and downward core flow

  20. Nuclear analysis techniques and environmental sciences

    International Nuclear Information System (INIS)

    1997-10-01

    31 theses are collected in this book. It introduced molecular activation analysis micro-PIXE and micro-probe analysis, x-ray fluorescence analysis and accelerator mass spectrometry. The applications about these nuclear analysis techniques are presented and reviewed for environmental sciences

  1. Statistical evaluation of vibration analysis techniques

    Science.gov (United States)

    Milner, G. Martin; Miller, Patrice S.

    1987-01-01

    An evaluation methodology is presented for a selection of candidate vibration analysis techniques applicable to machinery representative of the environmental control and life support system of advanced spacecraft; illustrative results are given. Attention is given to the statistical analysis of small sample experiments, the quantification of detection performance for diverse techniques through the computation of probability of detection versus probability of false alarm, and the quantification of diagnostic performance.

  2. Safety Analysis for Enlargement of Allowance Band of Main Steam Safety Valve Opening Setpoint of Wolsong Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungmin [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Kim, Jonghyun; Cho, Cheonhwey [Atomic Creative Technology Co., Ltd., Daejeon (Korea, Republic of)

    2013-05-15

    The target events were selected to be the two most secondary system pressurization events - Loss of Class IV Power (LOCL4) and Loss of Condenser Vacuum (LOCV). In the actual analysis, an uncertainty of 1% was added to be conservative, so an allowance band of ±4% was used. A safety analysis was performed with CATHENA code to evaluate the safety of increasing the opening setpoint allowance band of MSSVs in WSNPP-1 The analysis results for both LOCL4 and LOCV confirm that the enlarged allowance would bring no harm to the safety of the plant from the viewpoint of fuel integrity and pressure boundary integrity. Therefore, the new allowance band of MSSVs will be incorporated into the Technical Specifications of WSNPP-1.

  3. Discussion on safety analysis approach for sodium fast reactors

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Choo, Yeon Joon; Suh, Nam Duk; Shin, Ahn Dong; Bae, Moo Hoon

    2012-01-01

    Utilization of nuclear energy is increasingly necessary not only because of the increasing energy consumption but also because of the controls on greenhouse emissions against global warming. To keep step with such demands, advanced reactors are now world widely under development with the aims of highly economical advances, and enhanced safety. Recently, further elaborating is encouraged on the research and development program for Generation IV (GEN IV) reactors, and in collaboration with other interested countries through the Generation IV International Forum (GIF). Sodium cooled Fast Reactor (SFR) is a strong contender amongst the GEN IV reactor concepts. Korea also takes part in that program and plans to construct demonstration reactor of SFR. SFR is under the development for a candidate of small modular reactors, for example, PRISM (Power Reactor Innovative Small Module). Understanding of safety analysis approach has also advanced by the demand of increasing comprehensive safety requirement. Reviewing the past development of the licensing and safety basis in the advanced reactors, such approaches seemed primarily not so satisfactory because the reference framework of licensing and safety analysis approach in the advanced reactors was always the one in water reactors. And, the framework is very plant specific one and thereby the advanced reactors and their frameworks don't look like a well assorted couple. Recently as a result of considerable advances in probabilistic safety assessment (PSA), risk informed approaches are increasingly applied together with some of the deterministic approaches like as the ones in water reactors. Technology neutral framework (TNF) can be said to be the utmost works of such risk informed approaches, even though an intensive assessment of the applicability has not been sufficiently accomplished. This study discusses the viable safety analysis approaches for the urgent application to the construction of pool type SFR. As discussed in

  4. Techniques for sensitivity analysis of SYVAC results

    International Nuclear Information System (INIS)

    Prust, J.O.

    1985-05-01

    Sensitivity analysis techniques may be required to examine the sensitivity of SYVAC model predictions to the input parameter values, the subjective probability distributions assigned to the input parameters and to the relationship between dose and the probability of fatal cancers plus serious hereditary disease in the first two generations of offspring of a member of the critical group. This report mainly considers techniques for determining the sensitivity of dose and risk to the variable input parameters. The performance of a sensitivity analysis technique may be improved by decomposing the model and data into subsets for analysis, making use of existing information on sensitivity and concentrating sampling in regions the parameter space that generates high doses or risks. A number of sensitivity analysis techniques are reviewed for their application to the SYVAC model including four techniques tested in an earlier study by CAP Scientific for the SYVAC project. This report recommends the development now of a method for evaluating the derivative of dose and parameter value and extending the Kruskal-Wallis technique to test for interactions between parameters. It is also recommended that the sensitivity of the output of each sub-model of SYVAC to input parameter values should be examined. (author)

  5. Techniques involving extreme environment, nondestructive techniques, computer methods in metals research, and data analysis

    International Nuclear Information System (INIS)

    Bunshah, R.F.

    1976-01-01

    A number of different techniques which range over several different aspects of materials research are covered in this volume. They are concerned with property evaluation of 4 0 K and below, surface characterization, coating techniques, techniques for the fabrication of composite materials, computer methods, data evaluation and analysis, statistical design of experiments and non-destructive test techniques. Topics covered in this part include internal friction measurements; nondestructive testing techniques; statistical design of experiments and regression analysis in metallurgical research; and measurement of surfaces of engineering materials

  6. Patient safety: break the silence.

    Science.gov (United States)

    Johnson, Hope L; Kimsey, Diane

    2012-05-01

    A culture of patient safety requires commitment and full participation from all staff members. In 2008, results of a culture of patient safety survey conducted in the perioperative division of the Lehigh Valley Health Network in Pennsylvania revealed a lack of patient-centered focus, teamwork, and positive communication. As a result, perioperative leaders assembled a multidisciplinary team that designed a safety training program focusing on Crew Resource Management, TeamSTEPPS, and communication techniques. The team used video vignettes and an audience response system to engage learners and promote participation. Topics included using preprocedural briefings and postprocedural debriefings, conflict resolution, and assertiveness techniques. Postcourse evaluations showed that the majority of respondents believed they were better able to question the decisions or actions of someone with more authority. The facility has experienced a marked decrease in the number of incidents requiring a root cause analysis since the program was conducted. Copyright © 2012 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  7. The development of technologies of safety analysis for LMR ('03)

    International Nuclear Information System (INIS)

    Lee, Y. B.; Suk, S. D.; Chang, W. P.; Kwon, Y. M.; Jeong, H. Y.; Ha, K. W.; Heo, S.

    2004-03-01

    The developmental objectives of the project, 'The development of safety analysis techniques in LMR', are the code development for the subchannel blockage analysis, the code development for the system transient analysis, the code development for the HCDA(Hypothetical Core Disruptive Accident) analysis, the preliminary safety analysis for KALIMER-600 equipped with the components of new concepts, and the establishment of data base. The purpose of the analysis for subchannel blockage in the subassembly of LMR is to represent quantitatively that the maximum damage due to the accident is within the safety criteria. The computational program should be developed to simulate the thermal hydraulic phenomena and to verify the safety of LMR for the accident. For the purpose, the hybrid scheme has been implemented into the MATRA-LMR code based on the upwind scheme to analyze the various flow fields occurred in the subchannel blockage accident. The turbulent mixing models using the CFX code were assessed to compute more precisely the heat transfer between subchannels. Through this assessment, empirical correction factors of 1.7 for the heat conduction, 0.006 for the turbulent mixing coefficient were obtained. The distributed resistance model instead of wire forcing function has been developed to represent the more exact flow field due to wire-wrap. Other models, such as heat conductor model and various turbulent mixing model, have been implemented into the MATRA-LMR. The ORNL THORS 19-Pin FFM-5B tests have been assessed to validate above new models using the improved MATRA-LMR. The results using MATRA-LMR were well agreed with the experimental data. The subchannel blockage accidents which assumed to be occurred at the three locations for the conceptual plant of KALIMER-600 have been analysed according to blockage size using the MATRA-LMR code. The results of calculations for the design basis events which 6 subchannels were blocked showed the margins of the 290 7.dog. C up to the

  8. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Baek, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hanson, A. L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cheng, L-Y [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cuadra, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-30

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.

  9. Safety analysis of the proposed Canadian geologic nuclear waste repository

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1977-01-01

    The Canadian program for development and qualification of a geologic repository for emplacement of high-level and long-lived, alpha-emitting waste from irradiated nuclear fuel has been inititiated and is in its initial development stage. Fieldwork programs to locate candidate sites with suitable geological characteristics have begun. Laboratory studies and development of models for use in safety analysis of the emplaced nuclear waste have been initiated. The immediate objective is to complete a simplified safety analysis of a model geologic repository by mid-1978. This analysis will be progressively updated and will form part of an environmental Assessment Report of a Model Fuel Center which will be issued in mid-1979. The long-term objectives are to develop advanced safety assessment models of a geologic repository which will be available by 1980

  10. Safety analysis report for packaging (onsite) steel drum

    International Nuclear Information System (INIS)

    McCormick, W.A.

    1998-01-01

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum

  11. Optimized inspection techniques and structural analysis in lifetime management

    International Nuclear Information System (INIS)

    Aguado, M.T.; Marcelles, I.

    1993-01-01

    Preservation of the option of extending the service lifetime of a nuclear power plant beyond its normal design lifetime requires correct remaining lifetime management from the very beginning of plant operation. The methodology used in plant remaining lifetime management is essentially based on the use of standard inspections, surveillance and monitoring programs and calculations, such as thermal-stress and fracture mechanics analysis. The inspection techniques should be continuously optimized, in order to be able to detect and dimension existing defects with the highest possible degree of accuracy. The information obtained during the inspection is combined with the historical data of the components: design, quality, operation, maintenance, and transients, and with the results of destructive testing, fracture mechanics and thermal fatigue analysis. These data are used to estimate the remaining lifetime of nuclear power plant components, systems and structures with the highest degree possible of accuracy. The use of this methodology allows component repairs and replacements to be reduced or avoided and increases the safety levels and availability of the nuclear power plant. Use of this strategy avoids the need for heavy investments at the end of the licensing period

  12. Use of safety analysis to site comfirmation procedure in case of hard rock repository

    International Nuclear Information System (INIS)

    Peltonen, E.K.

    1984-02-01

    The role of safety analysis in a confirmation procedure of a candidate disposal site of radioactive wastes is discussed. Items dealt with include principle reasons and practical goals of the use of safety analysis, methodology of safety analysis and assessment, as well as usefulness and adequacy of the present safety analysis. Safety analysis is a tool, which enables one to estimate quantitatively the possible radiological impacts from the disposal. The results can be compared with the criteria and the suitability conclusions drawn. Because of its systems analytical nature safety analysis is an effective method to reveal, what are the most important factors of the disposal system and the most critical site characteristics inside the lumped parameters often provided by the experimental site investigation methods. Furthermore it gives information on the accuracy needs of different site properties. This can be utilized to judge whether the quality and quantity of the measurements for the characterization are sufficient as well as to guide the further site investigations. A more practical discussion regarding the applicability of the use of safety analysis is presented by an example concerning the assessment of a Finnish candidate site for low- and intermediate-level radioactive waste repository. (author)

  13. LFR safety approach and main ELFR safety analysis results

    International Nuclear Information System (INIS)

    Bubelis, E.; Schikorr, M.; Frogheri, M.; Mansani, L.; Bandini, G.; Burgazzi, L.; Mikityuk, K.; Zhang, Y.; Lo Frano, R.; Forgione, N.

    2013-01-01

    LFR safety approach: → A global safety approach for the LFR reference plant has been assessed and the safety analyses methodology has been developed. → LFR follows the general guidelines of the Generation IV safety concept recommendations. Thus, improved safety and higher reliability are recognized as an essential priority. → The fundamental safety objectives and the Defence-in-Depth (DiD) approach, as described by IAEA Safety Guides, have been preserved. → The recommendations of the Risk and Safety Working Group (RSWG) of GEN-IV IF has been taken into account: • safety is to be “built-in” in the fundamental design rather than “added on”; • full implementation of the Defence-in-Depth principles in a manner that is demonstrably exhaustive, progressive, tolerant, forgiving and well-balanced; • “risk-informed” approach - deterministic approach complemented with a probabilistic one; • adoption of an integrated methodology that can be used to evaluate and document the safety of Gen IV nuclear systems - ISAM. In particular the OPT tool is the fundamental methodology used throughout the design process

  14. Idaho National Engineering Laboratory (INEL) Environmental Restoration Program (ERP), Baseline Safety Analysis File (BSAF). Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-20

    This document was prepared to take the place of a Safety Evaluation Report since the Baseline Safety Analysis File (BSAF)and associated Baseline Technical Safety Requirements (TSR) File do not meet the requirements of a complete safety analysis documentation. Its purpose is to present in summary form the background of how the BSAF and Baseline TSR originated and a description of the process by which it was produced and approved for use in the Environmental Restoration Program.The BSAF is a facility safety reference document for INEL environmental restoration activities including environmental remediation of inactive waste sites and decontamination and decommissioning (D&D) of surplus facilities. The BSAF contains safety bases common to environmental restoration activities and guidelines for performing and documenting safety analysis. The common safety bases can be incorporated by reference into the safety analysis documentation prepared for individual environmental restoration activities with justification and any necessary revisions. The safety analysis guidelines in BSAF provide an accepted method for hazard analysis; analysis of normal, abnormal, and accident conditions; human factors analysis; and derivation of TSRS. The BSAF safety bases and guidelines are graded for environmental restoration activities.

  15. Idaho National Engineering Laboratory (INEL) Environmental Restoration Program (ERP), Baseline Safety Analysis File (BSAF). Revision 1

    International Nuclear Information System (INIS)

    1994-01-01

    This document was prepared to take the place of a Safety Evaluation Report since the Baseline Safety Analysis File (BSAF)and associated Baseline Technical Safety Requirements (TSR) File do not meet the requirements of a complete safety analysis documentation. Its purpose is to present in summary form the background of how the BSAF and Baseline TSR originated and a description of the process by which it was produced and approved for use in the Environmental Restoration Program.The BSAF is a facility safety reference document for INEL environmental restoration activities including environmental remediation of inactive waste sites and decontamination and decommissioning (D ampersand D) of surplus facilities. The BSAF contains safety bases common to environmental restoration activities and guidelines for performing and documenting safety analysis. The common safety bases can be incorporated by reference into the safety analysis documentation prepared for individual environmental restoration activities with justification and any necessary revisions. The safety analysis guidelines in BSAF provide an accepted method for hazard analysis; analysis of normal, abnormal, and accident conditions; human factors analysis; and derivation of TSRS. The BSAF safety bases and guidelines are graded for environmental restoration activities

  16. Applications of Electromigration Techniques: Applications of Electromigration Techniques in Food Analysis

    Science.gov (United States)

    Wieczorek, Piotr; Ligor, Magdalena; Buszewski, Bogusław

    Electromigration techniques, including capillary electrophoresis (CE), are widely used for separation and identification of compounds present in food products. These techniques may also be considered as alternate and complementary with respect to commonly used analytical techniques, such as high-performance liquid chromatography (HPLC), or gas chromatography (GC). Applications of CE concern the determination of high-molecular compounds, like polyphenols, including flavonoids, pigments, vitamins, food additives (preservatives, antioxidants, sweeteners, artificial pigments) are presented. Also, the method developed for the determination of proteins and peptides composed of amino acids, which are basic components of food products, are studied. Other substances such as carbohydrates, nucleic acids, biogenic amines, natural toxins, and other contaminations including pesticides and antibiotics are discussed. The possibility of CE application in food control laboratories, where analysis of the composition of food and food products are conducted, is of great importance. CE technique may be used during the control of technological processes in the food industry and for the identification of numerous compounds present in food. Due to the numerous advantages of the CE technique it is successfully used in routine food analysis.

  17. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs

  18. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs.

  19. Safety through organizational learning

    International Nuclear Information System (INIS)

    Fahlbruch, B.; Miller, R.; Wilpert, B.

    1998-01-01

    Systems safety is a characteristic of a system enabling it to function under the required operating conditions with a minimum of losses and unforeseen damage to the system and its environment and without any systems breakdowns. The system is influenced by human factors as those factors which, in a general way, influence people in working with a technical system, i.e., people, technology, and organization. Different approaches to learning from events, and processes of event analysis in nuclear technology are presented. The theoretical basis of the 'Safety through Organizational Learning' event analysis technique is the sociotechnical event creation model, which postulates that events can be described as a chain of individual events arising from the joint action of factors contributing directly and indirectly. (orig.) [de

  20. Conception of a PWR simulator as a tool for safety analysis

    International Nuclear Information System (INIS)

    Lanore, J.M.; Bernard, P.; Romeyer Dherbey, J.; Bonnet, C.; Quilchini, P.

    1982-09-01

    A simulator can be a very useful tool for safety analysis to study accident sequences involving malfunctions of the systems and operator interventions. The main characteristics of the simulator SALAMANDRE (description of the systems, physical models, programming organization, control desk) have then been selected according tot he objectives of safety analysis

  1. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Science.gov (United States)

    2010-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; technical information in final safety analysis report. 52.157 Section 52.157 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES...

  2. Flow analysis techniques for phosphorus: an overview.

    Science.gov (United States)

    Estela, José Manuel; Cerdà, Víctor

    2005-04-15

    A bibliographical review on the implementation and the results obtained in the use of different flow analytical techniques for the determination of phosphorus is carried out. The sources, occurrence and importance of phosphorus together with several aspects regarding the analysis and terminology used in the determination of this element are briefly described. A classification as well as a brief description of the basis, advantages and disadvantages of the different existing flow techniques, namely; segmented flow analysis (SFA), flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA) and multipumped FIA (MPFIA) is also carried out. The most relevant manuscripts regarding the analysis of phosphorus by means of flow techniques are herein classified according to the detection instrumental technique used with the aim to facilitate their study and obtain an overall scope. Finally, the analytical characteristics of numerous flow-methods reported in the literature are provided in the form of a table and their applicability to samples with different matrixes, namely water samples (marine, river, estuarine, waste, industrial, drinking, etc.), soils leachates, plant leaves, toothpaste, detergents, foodstuffs (wine, orange juice, milk), biological samples, sugars, fertilizer, hydroponic solutions, soils extracts and cyanobacterial biofilms are tabulated.

  3. Deterministic and probabilistic approach to safety analysis

    International Nuclear Information System (INIS)

    Heuser, F.W.

    1980-01-01

    The examples discussed in this paper show that reliability analysis methods fairly well can be applied in order to interpret deterministic safety criteria in quantitative terms. For further improved extension of applied reliability analysis it has turned out that the influence of operational and control systems and of component protection devices should be considered with the aid of reliability analysis methods in detail. Of course, an extension of probabilistic analysis must be accompanied by further development of the methods and a broadening of the data base. (orig.)

  4. Safety Analysis Report - Packages, 9965, 9968, 9972-9975 Packages

    International Nuclear Information System (INIS)

    Van Alstine, M.N.

    1999-01-01

    This Safety Analysis Report for Packaging (SARP) documents the performance of the 9965 B, 9968 B, 9972 B(U), 9973 B(U), 9974 B(U), and 9975 B(U) packages in satisfying the regulatory safety requirements of the Code of Federal Regulations (CFR) 711 and the International Atomic Energy Agency (IAEA) Safety Series No. 6, Regulations for the Safe Transport of Radioactive Material, 1985 edition2. Results of the analysis and testing performed on the 9965 B, 9968 B, 9972 B(U), 9973 B(U), 9974 B(U), and 9975 B(U) packages are presented in this SARP, which was prepared in accordance with U.S. Department of energy (DOE) Order 5480.33 and in the format specified in the Nuclear Regulatory Commission (NRC) Regulatory Guides 7.94 and 7.10.5

  5. Safety analysis report - packages 9965, 9968, 9972-9975 packages

    International Nuclear Information System (INIS)

    Van Alstine, M.N.

    1997-10-01

    This Safety Analysis Report for Packaging (SARP) documents the performance of the 9965 B( ), 9968 B( ), 9972 B(U), 9973 B(U), 9974 B(U), and 9975 B(U) packages in satisfying the regulatory safety requirements of the Code of Federal Regulations (CFR) 10 CFR 71 and the International Atomic Energy Agency (IAEA) Safety Series No. 6, Regulations for the Safe Transport of Radioactive Material, 1985 edition. Results of the analysis and testing performed on the 9965 B(), 9968 B(), 9972 B(U), 9973 B(U), and 9975 B(U) packages are presented in this SARP, which was prepared in accordance with U.S. Department of Energy (DOE) Order 5480.3 and in the format specified in the Nuclear Regulatory Commission (NRC) Regulatory Guides 7.9 and 7.10

  6. Methods of checking general safety criteria in UML statechart specifications

    International Nuclear Information System (INIS)

    Pap, Zsigmond; Majzik, Istvan; Pataricza, Andras; Szegi, Andras

    2005-01-01

    This paper describes methods and tools for safety analysis of UML statechart specifications. A comprehensive set of general safety criteria including completeness and consistency is applied in automated analysis. Analysis techniques are based on OCL expressions, graph transformations and reachability analysis. Two canonical intermediate representations of the statechart specification are introduced. They are suitable for straightforward implementation of checker methods and for the support of the proof of the correctness and soundness of the applied analysis. One of them also serves as a basis of the metamodel of a variant of UML statecharts proposed for the specification of safety-critical control systems. The analysis is extended to object-oriented specifications. Examples illustrate the application of the checker methods implemented by an automated tool-set

  7. Evaluation and qualification of novel control techniques with safety requirements

    International Nuclear Information System (INIS)

    Gossner, S.; Wach, D.

    1985-01-01

    The paper discusses the questions related to the assessment and qualification of new I and C-systems. The tasks of nuclear power plant I and Cs as well as the efficiency of the new techniques are reflected. Problems with application of new I and Cs and the state of application in Germany and abroad are addressed. Starting from the essential differencies between conventional and new I and C-systems it is evaluated, if and in which way existing safety requirements can be met and to what extent new requirements need to be formulated. An overall concept has to be developed comprising the definition of graded requirement profiles for design and qualification. Associated qualification procedures and tools have to be adapted, developed and tuned upon each other. (orig./HP) [de

  8. Computational methods for criticality safety analysis within the scale system

    International Nuclear Information System (INIS)

    Parks, C.V.; Petrie, L.M.; Landers, N.F.; Bucholz, J.A.

    1986-01-01

    The criticality safety analysis capabilities within the SCALE system are centered around the Monte Carlo codes KENO IV and KENO V.a, which are both included in SCALE as functional modules. The XSDRNPM-S module is also an important tool within SCALE for obtaining multiplication factors for one-dimensional system models. This paper reviews the features and modeling capabilities of these codes along with their implementation within the Criticality Safety Analysis Sequences (CSAS) of SCALE. The CSAS modules provide automated cross-section processing and user-friendly input that allow criticality safety analyses to be done in an efficient and accurate manner. 14 refs., 2 figs., 3 tabs

  9. Standard model for the safety analysis report of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    1980-02-01

    This norm establishes the Standard Model for the Safety Analysis Report of Nuclear Fuel Reprocessing Plants, comprehending the presentation format, the detailing level of the minimum information required by the CNEN for evaluation the requests of Construction License or Operation Authorization, in accordance with the legislation in force. This regulation applies to the following basic reports: Preliminary Safety Analysis Report - PSAR, integrating part of the requirement of Construction License; and Final Safety Analysis Report (FSAR) which is the integrating part of the requirement for Operation Authorization

  10. AN OVERVIEW OF REDUCED ORDER MODELING TECHNIQUES FOR SAFETY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, D.; Alfonsi, A.; Talbot, P.; Wang, C.; Maljovec, D.; Smith, C.; Rabiti, C.; Cogliati, J.

    2016-10-01

    The RISMC project is developing new advanced simulation-based tools to perform Computational Risk Analysis (CRA) for the existing fleet of U.S. nuclear power plants (NPPs). These tools numerically model not only the thermal-hydraulic behavior of the reactors primary and secondary systems, but also external event temporal evolution and component/system ageing. Thus, this is not only a multi-physics problem being addressed, but also a multi-scale problem (both spatial, µm-mm-m, and temporal, seconds-hours-years). As part of the RISMC CRA approach, a large amount of computationally-expensive simulation runs may be required. An important aspect is that even though computational power is growing, the overall computational cost of a RISMC analysis using brute-force methods may be not viable for certain cases. A solution that is being evaluated to assist the computational issue is the use of reduced order modeling techniques. During the FY2015, we investigated and applied reduced order modeling techniques to decrease the RISMC analysis computational cost by decreasing the number of simulation runs; for this analysis improvement we used surrogate models instead of the actual simulation codes. This article focuses on the use of reduced order modeling techniques that can be applied to RISMC analyses in order to generate, analyze, and visualize data. In particular, we focus on surrogate models that approximate the simulation results but in a much faster time (microseconds instead of hours/days).

  11. Sources of Safety Data and Statistical Strategies for Design and Analysis: Clinical Trials.

    Science.gov (United States)

    Zink, Richard C; Marchenko, Olga; Sanchez-Kam, Matilde; Ma, Haijun; Jiang, Qi

    2018-03-01

    There has been an increased emphasis on the proactive and comprehensive evaluation of safety endpoints to ensure patient well-being throughout the medical product life cycle. In fact, depending on the severity of the underlying disease, it is important to plan for a comprehensive safety evaluation at the start of any development program. Statisticians should be intimately involved in this process and contribute their expertise to study design, safety data collection, analysis, reporting (including data visualization), and interpretation. In this manuscript, we review the challenges associated with the analysis of safety endpoints and describe the safety data that are available to influence the design and analysis of premarket clinical trials. We share our recommendations for the statistical and graphical methodologies necessary to appropriately analyze, report, and interpret safety outcomes, and we discuss the advantages and disadvantages of safety data obtained from clinical trials compared to other sources. Clinical trials are an important source of safety data that contribute to the totality of safety information available to generate evidence for regulators, sponsors, payers, physicians, and patients. This work is a result of the efforts of the American Statistical Association Biopharmaceutical Section Safety Working Group.

  12. Thermohydraulic and safety analysis on China advanced research reactor under station blackout accident

    International Nuclear Information System (INIS)

    Tian Wenxi; Qiu Suizheng; Su Guanghui; Jia Dounan; Liu Xingmin; Zhang Jianwei

    2007-01-01

    A thermohydraulic and safety analysis code-TSACC has been developed using Fortran90 language to evaluate the transient thermohydraulic behavior of the China advanced research reactor (CARR) under station blackout accident (SBA). For the development of TSACC, a series of corresponding mathematical and physical models were applied. Point reactor neutron kinetics model was adopted for solving the reactor power. All possible flow and heat transfer conditions under station blackout accident were considered and the optional correlations were supplied. The usual finite difference method was abandoned and the integral technique was adopted to evaluate the temperature field of the plate type fuel elements. A new simple and convenient equation was proposed for the resolution of the transient behaviors of the main pump instead of the complicated four-quadrant model. Gear method and Adams method were adopted alternately for a better solution to the stiff differential equations describing the dynamic behavior of the CARR. The computational result of TSACC showed the adequacy of the safety margin of CARR under SBA. For the purpose of Verification and Validation (V and V), the simulated results of TSACC were compared with those of RELAP5/MOD3 and a good agreement was obtained. The adoption of modular programming techniques enables TASCC to be applied to other reactors by easily modifying the corresponding function modules

  13. Final safety analysis report (FSAR) for waste receiving and processing (WRAP) facility

    International Nuclear Information System (INIS)

    Weidert, J.R.

    1997-01-01

    This safety analysis report provides a summary description of the WRAP Facility, focusing on significant safety-related characteristics of the location and facility design. This report demonstrates that adherence to the safety basis wi11 ensure necessary operational safety considerations have been addressed sufficiently and justifies the adequacy of the safety basis in protecting the health and safety of the public, workers, and the environment

  14. Safety of nuclear power reactors

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1982-01-01

    Safety is the major public issue to be resolved or accommodated if nuclear power is to have a future. Probabilistic Risk Analysis (PRA) of accidental releases of low-level radiation, the spread and activity of radiation in populated areas, and the impacts on public health from exposure evolved from the earlier Rasmussen Reactor Safety Study. Applications of the PRA technique have identified design peculiarities in specific reactors, thus increasing reactor safety and establishing a quide for evaluating reactor regulations. The Nuclear Regulatory Commission and reactor vendors must share with utilities the responsibility for reactor safety in the US and for providing reasonable assurance to the public. This entails persuasive public education and information that with safety a top priority, changes now being made in light water reactor hardware and operations will be adequate. 17 references, 2 figures, 2 tables

  15. ECO-TECHNIQUE OF SEWER RENOVATION USING COMPOSITE SHELLS: STRUCTURAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    B. Attaf

    2015-07-01

    Full Text Available An eco-technical renovation of the sewage system is developed in this paper; this technique involves incorporating into the existing sewer a series of jointed prefabricated sandwich or composite shells. The purpose of his study is to determine the structural shell deflection, the high displacement areas and to validate the non-failure criterion for each ply constituting the inner and outer laminate facings. The numerical results were obtained at low cost by using the finite element method. Studies have focused on structural analysis of a typical shell unit with an ovoid form (egg-shaped section when it is subjected, during annular space filling operation, to pressure forces generated by wet concrete. To ensure the safety of the composite shell structure, Tsai-Hill criterion function is applied and results are presented for the most stressed plies

  16. Techniques and tools for software qualification in KNICS

    International Nuclear Information System (INIS)

    Cha, Kyung H.; Lee, Yeong J.; Cheon, Se W.; Kim, Jang Y.; Lee, Jang S.; Kwon, Kee C.

    2004-01-01

    This paper describes techniques and tools for qualifying safety software in Korea Nuclear Instrumentation and Control System (KNICS). Safety software are developed and applied for a Reactor Protection System (RPS), an Engineered Safety Features and Component Control System (ESF-CCS), and a safety Programmable Logic Controller (PLC) in the KNICS. Requirements and design specifications of safety software are written by both natural language and formal specification languages. Statechart is used for formal specification of software of the ESF-CCS and the safety PLC while NuSCR is used for formal specification of them of the RPS. pSET (POSCON Software Engineering Tool) as a software development tool has been developed and utilized for the IEC61131-3 based PLC programming. The qualification of the safety software consists of software verification and validation (V and V) through software life cycle, software safety analysis, and software configuration management, software quality assurance, and COTS (Commercial-Off-The-Shelf) dedication. The criteria and requirements for qualifying the safety software have been established with them in Software Review Plan (SRP)/Branch Technical Positions (BTP)-14, IEEE Std. 7-4.3.2-1998, NUREG/CR-6463, IEEE Std. 1012-1998, and so on. Figure 1 summarizes qualification techniques and tools for the safety software

  17. Safety Analysis for Key Design Features of KALIMER-600 Design Concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Kwon, Y. M.; Kim, E. K.; Suk, S. D.; Chang, W. P.; Jeong, H. Y.; Ha, K. S

    2007-02-15

    This report contains the safety analyses of the KALIMER-600 conceptual design which KAERI has been developing under the Long-term Nuclear R and D Program. The analyses have been performed reflecting the design developments during the second year of the 4th design phase in the program. The specific presentations are the key design features with the safety principles for achieving the safety objectives, the event categorization and safety criteria, and results on the safety analyses for the DBAs and ATWS events, the containment performance, and the channel blockages. The safety analyses for both the DBAs and ATWS events have been performed using SSC-K version 1.3., and the results have shown the fulfillment of the safety criteria for DBAs with conservative assumptions. The safety margins as well as the inherent safety also have been confirmed for the ATWS events. For the containment performance analysis, ORIGEN-2.1 and CONTAIN-LMR have been used. In results, the structural integrity has been acceptable and the evaluated exposure dose rate has been complied with 10 CFR 100 and PAG limits. The analysis results for flow blockages of 6-subchannels, 24-subchannels, and 54- subchannels with the MATRA-LMR-FB code, have assured the integrity of subassemblies.

  18. Organizational Culture and Safety Performance in the Manufacturing Companies in Malaysia: A Conceptual Analysis

    OpenAIRE

    Ong Choon Hee; Lim Lee Ping

    2014-01-01

    The purpose of this paper is to provide a conceptual analysis of organizational culture and safety performance in the manufacturing companies in Malaysia. Our conceptual analysis suggests that manufacturing companies that adopt group culture or hierarchical culture are more likely to demonstrate safety compliance and safety participation. Manufacturing companies that adopt rational culture or developmental culture are less likely to demonstrate safety compliance and safety participation. Give...

  19. Food irradiation: A technique for preserving and improving the safety of food

    International Nuclear Information System (INIS)

    1988-01-01

    Processing of food with low levels of radiation has the potential to contribute to reducing both spoilage of food during storage - a particular problem in developing countries - and the high incidence of food-borne disease currently seen in all countries. Approval has been granted for the treatment of more than 30 products with radiation in over 30 countries but, in general, governments have been slow to authorize the use of this new technique. One reason for this slowness is a lack of understanding of what food irradiation entails. This book aims to increase understanding by providing information on the process of food irradiation in simple, non-technical language. It describes the effects that irradiation has on food, and the plant and equipment that are necessary to carry it out safely. The legislation and control mechanisms required to ensure the safety of food irradiation facilities are also discussed. Education is seen as the key to gaining the confidence of the consumers in the safety of irradiated food, and to promoting understanding of the benefits that irradiation can provide

  20. Food irradiation: A technique for preserving and improving the safety of food

    International Nuclear Information System (INIS)

    1992-01-01

    Processing of food with low levels of radiation has the potential to contribute to reducing both spoilage of food during storage - a particular problem in developing countries - and the high incidence of food-borne disease currently seen in all countries. Approval has been granted for the treatment of more than 30 products with radiation in over 30 countries but, in general , governments have been slow to authorize the use of this new technique. One reason for this slowness is a lack of understanding of what food irradiation entails. This book aims to increase understanding by providing information on the process of food irradiation in simple, non-technical language. It describes the effects that irradiation has on food , and the plant and equipment that are necessary to carry it out safely. The legislation and control mechanisms required to ensure the safety of food irradiation facilities are also discussed. Education is seen as the key to gaining the confidence of the consumers in the safety of irradiated food, and to promoting understanding of the benefits that irradiation can provide

  1. Safety analysis of accident localization system

    International Nuclear Information System (INIS)

    1999-01-01

    A complex safety analysis of accident localization system of Ignalina NPP was performed. Calculation results obtained, results of non-destruct ing testing and experimental data of reinforced concrete testing of buildings does not revealed deficiencies of buildings of accident localization system at unit 1 of Ignalina NPP. Calculations were performed using codes NEPTUNE, ALGOR, CONTAIN

  2. Comparative analysis of safety related site characteristics

    International Nuclear Information System (INIS)

    Andersson, Johan

    2010-12-01

    This document presents a comparative analysis of site characteristics related to long-term safety for the two candidate sites for a final repository for spent nuclear fuel in Forsmark (municipality of Oesthammar) and in Laxemar (municipality of Oskarshamn) from the point of view of site selection. The analyses are based on the updated site descriptions of Forsmark /SKB 2008a/ and Laxemar /SKB 2009a/, together with associated updated repository layouts and designs /SKB 2008b and SKB 2009b/. The basis for the comparison is thus two equally and thoroughly assessed sites. However, the analyses presented here are focussed on differences between the sites rather than evaluating them in absolute terms. The document serves as a basis for the site selection, from the perspective of long-term safety, in SKB's application for a final repository. A full evaluation of safety is made for a repository at the selected site in the safety assessment SR-Site /SKB 2011/, referred to as SR-Site main report in the following

  3. Comparative analysis of safety related site characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan (ed.)

    2010-12-15

    This document presents a comparative analysis of site characteristics related to long-term safety for the two candidate sites for a final repository for spent nuclear fuel in Forsmark (municipality of Oesthammar) and in Laxemar (municipality of Oskarshamn) from the point of view of site selection. The analyses are based on the updated site descriptions of Forsmark /SKB 2008a/ and Laxemar /SKB 2009a/, together with associated updated repository layouts and designs /SKB 2008b and SKB 2009b/. The basis for the comparison is thus two equally and thoroughly assessed sites. However, the analyses presented here are focussed on differences between the sites rather than evaluating them in absolute terms. The document serves as a basis for the site selection, from the perspective of long-term safety, in SKB's application for a final repository. A full evaluation of safety is made for a repository at the selected site in the safety assessment SR-Site /SKB 2011/, referred to as SR-Site main report in the following

  4. TV content analysis techniques and applications

    CERN Document Server

    Kompatsiaris, Yiannis

    2012-01-01

    The rapid advancement of digital multimedia technologies has not only revolutionized the production and distribution of audiovisual content, but also created the need to efficiently analyze TV programs to enable applications for content managers and consumers. Leaving no stone unturned, TV Content Analysis: Techniques and Applications provides a detailed exploration of TV program analysis techniques. Leading researchers and academics from around the world supply scientifically sound treatment of recent developments across the related subject areas--including systems, architectures, algorithms,

  5. Safety analysis report upgrade program at the Plutonium Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pan, P.Y.

    1993-01-01

    Plutonium research and development activities have resided at the Los Alamos National Laboratory (LANL) since 1943. The function of the Plutonium Facility (PF-4) has been to perform basic special nuclear materials research and development and to support national defense and energy programs. The original Final Safety Analysis Report (FSAR) for PF-4 was approved by DOE in 1978. This FSAR analyzed design-basis and bounding accidents. In 1986, DOE/AL published DOE/AL Order 5481.1B, ''Safety Analysis and Review System'', as a requirement for preparation and review of safety analyses. To meet the new DOE requirements, the Facilities Management Group of the Nuclear Material Technology Division submitted a draft FSAR to DOE for approval in April 1991. This draft FSAR analyzed the new configurations and used a limited-scope probabilistic risk analysis for accident analysis. During the DOE review of the draft FSAR, DOE Order 5480.23 ''Nuclear Safety Analysis Reports'', was promulgated and was later officially released in April 1992. The new order significantly expands the scope, preparation, and maintenance efforts beyond those required in DOE/AL Order 5481.1B by requiring: description of institutional and human-factor safety programs; clear definitions of all facility-specific safety commitments; more comprehensive and detailed hazard assessment; use of new safety analysis methods; and annual updates of FSARs. This paper describes the safety analysis report (SAR) upgrade program at the Plutonium Facility in LANL. The SAR upgrade program is established to meet the requirements in DOE Order 5480.23. Described in this paper are the SAR background, authorization basis for operations, hazard classification, and technical program elements

  6. Stratified source-sampling techniques for Monte Carlo eigenvalue analysis

    International Nuclear Information System (INIS)

    Mohamed, A.

    1998-01-01

    In 1995, at a conference on criticality safety, a special session was devoted to the Monte Carlo ''Eigenvalue of the World'' problem. Argonne presented a paper, at that session, in which the anomalies originally observed in that problem were reproduced in a much simplified model-problem configuration, and removed by a version of stratified source-sampling. In this paper, stratified source-sampling techniques are generalized and applied to three different Eigenvalue of the World configurations which take into account real-world statistical noise sources not included in the model problem, but which differ in the amount of neutronic coupling among the constituents of each configuration. It is concluded that, in Monte Carlo eigenvalue analysis of loosely-coupled arrays, the use of stratified source-sampling reduces the probability of encountering an anomalous result over that if conventional source-sampling methods are used. However, this gain in reliability is substantially less than that observed in the model-problem results

  7. 242-A evaporator safety analysis report

    International Nuclear Information System (INIS)

    CAMPBELL, T.A.

    1999-01-01

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR

  8. 242-A evaporator safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  9. Integrated program of using of Probabilistic Safety Analysis in Spain

    International Nuclear Information System (INIS)

    1998-01-01

    Since 25 June 1986, when the CSN (Nuclear Safety Conseil) approve the Integrated Program of Probabilistic Safety Analysis, this program has articulated the main activities of CSN. This document summarize the activities developed during these years and reviews the Integrated programme

  10. IMPLEMENTING CHANGES TO AN APPROVED AND IN-USE DOCUMENTED SAFETY ANALYSIS

    International Nuclear Information System (INIS)

    KING JP

    2008-01-01

    The Plutonium Finishing Plant (PFP) has refined a process to ensure a comprehensive and complete DSA/TSR change implementation. Successful Nuclear Facility Safety Basis implementation is essential to avoid creating a Potential Inadequacy in Safety Analysis (PISA) situation, or implementing a facility into a non-compliance that can result in a TSR violation. Once past initial implementation, additional changes to Documented Safety Analysis (DSA) and Technical Safety Requirements (TSRs) are often needed due to needed requirement clarifications, operating experience indicating that Conditions/Required Actions/Surveillance Requirements could be improved, changes in facility conditions, or changes in facility mission etc. An effective change implementation process is essential to ensuring compliance with 10 CFR 830.202(a), 'The contractor responsible for a hazard category 1,2, or 3 DOE nuclear facility must establish and maintain the safety basis for the facility'

  11. Safety analysis code SCTRAN development for SCWR and its application to CGNPC SCWR

    International Nuclear Information System (INIS)

    Wu, Pan; Gou, Junli; Shan, Jianqiang; Jiang, Yang; Yang, Jue; Zhang, Bo

    2013-01-01

    Highlights: ► A new safety analysis code named SCTRAN is developed for SCWRs. ► Capability of SCTRAN is verified by comparing with code APROS and RELAP5-3D. ► A new passive safety system is proposed for CGNPC SCWR and analyzed with SCTRAN. ► CGNPC SCWR is able to cope with two critical accidents for SCWRs, LOFA and LOCA. - Abstract: Design analysis is one of the main difficulties during the research and design of SCWRs. Currently, the development of safety analysis code for SCWR is still in its infancy all around the world, and very few computer codes could carry out the trans-critical calculations where significant changes in water properties would take place. In this paper, a safety analysis code SCTRAN for SCWRs has been developed based on code RETRAN-02, the best estimate code used for safety analysis of light water reactors. The ability of SCTRAN code to simulate transients where both supercritical and subcritical regimes are encountered has been verified by comparing with APROS and RELAP5-3D codes. Furthermore, the LOFA and LOCA transients for the CGNPC SCWR design were analyzed with SCTRAN code. The characteristics and performance of the passive safety systems applied to CGNPC SCWR were evaluated. The results show that: (1) The SCTRAN computer code developed in this study is capable to perform design analysis for SCWRs; (2) During LOFA and LOCA accidents in a CGNPC SCWR, the passive safety systems would significantly mitigate the consequences of these transients and enhance the inherent safety

  12. Annual activity report of Ignalina NPP Safety Analysis Group for 1996 year

    International Nuclear Information System (INIS)

    Ushpuras, E.; Augutis, J.; Bubelis, E.

    1997-03-01

    The main results of Ignalina NPP Safety Analysis Group (ISAG) investigations for 1996 are presented. ISAG is concentrating its research activities into four areas: the neutrons dynamics modelling, simulation of transient processes during loss of coolant accident, the reactor cooling systems modelling and the probabilistic safety assessment of accident confinement system. Ignalina Safety Analysis Report was prepared on the basis of these results. 37 refs., 9 tabs., 96 figs

  13. Development of safety analysis technology for integral reactor

    International Nuclear Information System (INIS)

    Kim, Hee Cheol; Kim, K. K.; Kim, S. H.

    2002-04-01

    The state-of-the-arts for the integral reactor was performed to investigate the safety features. The safety and performance of SMART were assessed using the technologies developed during the study. For this purpose, the computer code system and the analysis methodology were developed and the safety and performance analyses on SMART basic design were carried out for the design basis event and accident. The experimental facilities were designed for the core flow distribution test and the self-pressurizing pressurizer performance test. The tests on the 2-phase critical flow with non-condensable gas were completed and the results were used to assess the critical flow model. Probabilistic Safety Assessment(PSA) was carried out to evaluate the safety level and to optimize the design by identifying and remedying any weakness in the design. A joint study with KINS was carried out to promote licensing environment. The generic safety issues of integral reactors were identified and the solutions were formulated. The economic evaluation of the SMART desalination plant and the activities related to the process control were carried out in the scope of the study

  14. Human factors assessment in PRA using task analysis linked evaluation technique (TALENT)

    International Nuclear Information System (INIS)

    Wells, J.E.; Banks, W.W.

    1990-01-01

    Human error is a primary contributor to risk in complex high-reliability systems. A 1985 U.S. Nuclear Regulatory Commission (USNRC) study of licensee event reports (LERs) suggests that upwards of 65% of commercial nuclear system failures involve human error. Since then, the USNRC has initiated research to fully and properly integrate human errors into the probabilistic risk assessment (PRA) process. The resulting implementation procedure is known as the Task Analysis Linked Evaluation Technique (TALENT). As indicated, TALENT is a broad-based method for integrating human factors expertise into the PRA process. This process achieves results which: (1) provide more realistic estimates of the impact of human performance on nuclear power safety, (2) can be fully audited, (3) provide a firm technical base for equipment-centered and personnel-centered retrofit/redesign of plants enabling them to meet internally and externally imposed safety standards, and (4) yield human and hardware data capable of supporting inquiries into human performance issues that transcend the individual plant. The TALENT procedure is being field-tested to verify its effectiveness and utility. The objectives of the field-test are to examine (1) the operability of the process, (2) its acceptability to the users, and (3) its usefulness for achieving measurable improvements in the credibility of the analysis. The field-test will provide the information needed to enhance the TALENT process

  15. Development of vendor independent safety analysis capability for nuclear power plants in Taiwan

    International Nuclear Information System (INIS)

    Tang, J.-R.

    2001-01-01

    The Institute of Nuclear Energy Research (INER) and the Taiwan Power Company (TPC) have long-term cooperation to develop vendor independent safety analysis capability to provide support to nuclear power plants in Taiwan in many aspects. This paper presents some applications of this analysis capability, introduces the analysis methodology, and discusses the significance of vendor independent analysis capability now and future. The applications include a safety analysis of core shroud crack for Chinshan BWR/4 Unit 2, a parallel reload safety analysis of the first 18-month extended fuel cycle for Kuosheng BWR/6 Unit 2 Cycle 13, an analysis to support Technical Specification change for Maanshan three-loop PWR, and a design analysis to support the review of Preliminary Safety Analysis Report of Lungmen ABWR. In addition, some recent applications such as an analysis to support the review of BWR fuel bid for Chinshan and Kuosheng demonstrates the needs of further development of the analysis capability to support nuclear power plants in the 21 st century. (authors)

  16. Safety analysis of passing maneuvers using extreme value theory

    Directory of Open Access Journals (Sweden)

    Haneen Farah

    2017-04-01

    The results indicate that this is a promising approach for safety evaluation. On-going work of the authors will attempt to generalize this method to other safety measures related to passing maneuvers, test it for the detailed analysis of the effect of demographic factors on passing maneuvers' crash probability and for its usefulness in a traffic simulation environment.

  17. Safety assessment for Generation IV nuclear systems

    International Nuclear Information System (INIS)

    Leahy, T.J.

    2012-01-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Recent RSWG work has focused on the definition of an integrated safety assessment methodology (ISAM) for evaluating the safety of Generation IV systems. ISAM is an integrated 'tool-kit' consisting of 5 analytical techniques that are available and matched to appropriate stages of Generation IV system concept development: 1) qualitative safety features review - QSR, 2) phenomena identification and ranking table - PIRT, 3) objective provision tree - OPT, 4) deterministic and phenomenological analyses - DPA, and 5) probabilistic safety analysis - PSA. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time

  18. ACRR fuel storage racks criticality safety analysis

    International Nuclear Information System (INIS)

    Bodette, D.E.; Naegeli, R.E.

    1997-10-01

    This document presents the criticality safety analysis for a new fuel storage rack to support modification of the Annular Core Research Reactor for production of molybdenum-99 at Sandia National Laboratories, Technical Area V facilities. Criticality calculations with the MCNP code investigated various contingencies for the criticality control parameters. Important contingencies included mix of fuel element types stored, water density due to air bubbles or water level for the over-moderated racks, interaction with existing fuel storage racks and fuel storage holsters in the fuel storage pool, neutron absorption of planned rack design and materials, and criticality changes due to manufacturing tolerances or damage. Some limitations or restrictions on use of the new fuel storage rack for storage operations were developed through the criticality analysis and are required to meet the double contingency requirements of criticality safety. As shown in the analysis, this system will remain subcritical under all credible upset conditions. Administrative controls are necessary for loading, moving, and handling the storage rack as well as for control of operations around it. 21 refs., 16 figs., 4 tabs

  19. Planning Document for an NBSR Conversion Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Diamond D. J.; Baek J.; Hanson, A.L.; Cheng, L-Y.; Brown, N.; Cuadra, A.

    2013-09-25

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the National Bureau of Standards Reactor (NBSR). The NBSR is a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a planning document for the conversion Safety Analysis Report (SAR) that would be submitted to, and approved by, the Nuclear Regulatory Commission (NRC) before the reactor could be converted.This report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis herein is on the SAR chapters that require significant changes as a result of conversion, primarily Chapter 4, Reactor Description, and Chapter 13, Safety Analysis. The document provides information on the proposed design for the LEU fuel elements and identifies what information is still missing. This document is intended to assist ongoing fuel development efforts, and to provide a platform for the development of the final conversion SAR. This report contributes directly to the reactor conversion pillar of the GTRI program, but also acts as a boundary condition for the fuel development and fuel fabrication pillars.

  20. Perspectives on the development of next generation reactor systems safety analysis codes

    International Nuclear Information System (INIS)

    Zhang, H.

    2015-01-01

    tackle the deficiencies in the existing codes. 3) Software design of the next-generation codes needs to take into consideration of having the flexibility to add new models if necessary, as well as to allow for embedded uncertainty quantification, and capability of multi-physics coupling with other codes. 4) The next generation codes need proper verification and validation (V & V) before they can be used to plant applications. New approaches need to be developed to verify and validate complex multi-physics models with multiple time and length scales and advanced modeling techniques. 5) The next generation system analysis codes should be designed to be integrated into probabilistic evaluation to enable a risk-informed safety margin characterization (RISMC) process in order to optimize plant safety and performance by incorporating plant impacts, aging, and degradation processes into the safety analysis. (author)

  1. Perspectives on the development of next generation reactor systems safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H., E-mail: Hongbin.Zhang@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States)

    2015-07-01

    tackle the deficiencies in the existing codes. 3) Software design of the next-generation codes needs to take into consideration of having the flexibility to add new models if necessary, as well as to allow for embedded uncertainty quantification, and capability of multi-physics coupling with other codes. 4) The next generation codes need proper verification and validation (V & V) before they can be used to plant applications. New approaches need to be developed to verify and validate complex multi-physics models with multiple time and length scales and advanced modeling techniques. 5) The next generation system analysis codes should be designed to be integrated into probabilistic evaluation to enable a risk-informed safety margin characterization (RISMC) process in order to optimize plant safety and performance by incorporating plant impacts, aging, and degradation processes into the safety analysis. (author)

  2. Module Testing Techniques for Nuclear Safety Critical Software Using LDRA Testing Tool

    International Nuclear Information System (INIS)

    Moon, Kwon-Ki; Kim, Do-Yeon; Chang, Hoon-Seon; Chang, Young-Woo; Yun, Jae-Hee; Park, Jee-Duck; Kim, Jae-Hack

    2006-01-01

    The safety critical software in the I and C systems of nuclear power plants requires high functional integrity and reliability. To achieve those requirement goals, the safety critical software should be verified and tested according to related codes and standards through verification and validation (V and V) activities. The safety critical software testing is performed at various stages during the development of the software, and is generally classified as three major activities: module testing, system integration testing, and system validation testing. Module testing involves the evaluation of module level functions of hardware and software. System integration testing investigates the characteristics of a collection of modules and aims at establishing their correct interactions. System validation testing demonstrates that the complete system satisfies its functional requirements. In order to generate reliable software and reduce high maintenance cost, it is important that software testing is carried out at module level. Module testing for the nuclear safety critical software has rarely been performed by formal and proven testing tools because of its various constraints. LDRA testing tool is a widely used and proven tool set that provides powerful source code testing and analysis facilities for the V and V of general purpose software and safety critical software. Use of the tool set is indispensable where software is required to be reliable and as error-free as possible, and its use brings in substantial time and cost savings, and efficiency

  3. CCF analysis of high redundancy systems safety/relief valve data analysis and reference BWR application

    International Nuclear Information System (INIS)

    Mankamo, T.; Bjoere, S.; Olsson, Lena

    1992-12-01

    Dependent failure analysis and modeling were developed for high redundancy systems. The study included a comprehensive data analysis of safety and relief valves at the Finnish and Swedish BWR plants, resulting in improved understanding of Common Cause Failure mechanisms in these components. The reference application on the Forsmark 1/2 reactor relief system, constituting of twelve safety/relief lines and two regulating relief lines, covered different safety criteria cases of reactor depressurization and overpressure protection function, and failure to re close sequences. For the quantification of dependencies, the Alpha Factor Model, the Binomial Probability Model and the Common Load Model were compared for applicability in high redundancy systems

  4. AN EXPERIMENTAL STUDY OF THE EFFICACY AND SAFETY OF VARIOUS ENDOSCOPIC HEMOSTASIS TECHNIQUES

    Directory of Open Access Journals (Sweden)

    A. I. Cherepanin

    2014-01-01

    Full Text Available ABSTRACT. The treatment of bleeding peptic ulcers remains one of the pressing challenges in urgent surgery. Currently available endoscopic hemostasis modalities only partially meet the requirements of safety, efficiency and reliability, and therefore total and postoperative mortality rates are still high, both in our country, and around the world. The aim of the study was to identify the benefits and shortcomings of endoscopic radiofrequency energy exposure compared to standard hemostatic techniques used in the world practice to treat bleeding peptic ulcers. 

  5. System analysis of vehicle active safety problem

    Science.gov (United States)

    Buznikov, S. E.

    2018-02-01

    The problem of the road transport safety affects the vital interests of the most of the population and is characterized by a global level of significance. The system analysis of problem of creation of competitive active vehicle safety systems is presented as an interrelated complex of tasks of multi-criterion optimization and dynamic stabilization of the state variables of a controlled object. Solving them requires generation of all possible variants of technical solutions within the software and hardware domains and synthesis of the control, which is close to optimum. For implementing the task of the system analysis the Zwicky “morphological box” method is used. Creation of comprehensive active safety systems involves solution of the problem of preventing typical collisions. For solving it, a structured set of collisions is introduced with its elements being generated also using the Zwicky “morphological box” method. The obstacle speed, the longitudinal acceleration of the controlled object and the unpredictable changes in its movement direction due to certain faults, the road surface condition and the control errors are taken as structure variables that characterize the conditions of collisions. The conditions for preventing typical collisions are presented as inequalities for physical variables that define the state vector of the object and its dynamic limits.

  6. Final Safety Analysis Report (FSAR) for Building 332, Increment III

    Energy Technology Data Exchange (ETDEWEB)

    Odell, B. N.; Toy, Jr., A. J.

    1977-08-31

    This Final Safety Analysis Report (FSAR) supplements the Preliminary Safety Analysis Report (PSAR), dated January 18, 1974, for Building 332, Increment III of the Plutonium Materials Engineering Facility located at the Lawrence Livermore Laboratory (LLL). The FSAR, in conjunction with the PSAR, shows that the completed increment provides facilities for safely conducting the operations as described. These documents satisfy the requirements of ERDA Manual Appendix 6101, Annex C, dated April 8, 1971. The format and content of this FSAR complies with the basic requirements of the letter of request from ERDA San to LLL, dated March 10, 1972. Included as appendices in support of th FSAR are the Building 332 Operational Safety Procedure and the LLL Disaster Control Plan.

  7. Preliminary safety analysis report for the Waste Characterization Facility

    International Nuclear Information System (INIS)

    1994-10-01

    This safety analysis report outlines the safety concerns associated with the Waste Characterization Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are to: define and document a safety basis for the Waste Characterization Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume. 142 refs., 38 figs., 39 tabs

  8. Assessment of the factors with significant influence on safety culture

    International Nuclear Information System (INIS)

    Farcasiu, M.; Nitoi, M.

    2013-01-01

    In this paper, a qualitative and a quantitative evaluation of the factors with significant impact on safety culture were performed. These techniques were established and applied in accordance with IAEA standards. In order to show the applicability and opportunity of the methodology a specific case study was prepared: safety culture evaluation for INR Pitesti. The qualitative evaluation was performed using specific developed questionnaires. Through analysis of the completed questionnaires was established the development stage of safety culture at INR. The quantitative evaluation was performed using a guide to rate the influence factors. For each factor was identified the influence (negative or positive) and ranking score was estimated using scoring criteria. The results have emphasized safety culture stages. The paper demonstrates the fact that using both quantitative and qualitative assessment techniques, a practical value of the safety culture concept is given. (authors)

  9. TVO-92 safety analysis of spent fuel disposal

    International Nuclear Information System (INIS)

    Vieno, T.; Hautojaervi, A.; Koskinen, L.; Nordman, H.

    1993-08-01

    The spent fuel from the TVO I and TVO II reactors at the Olkiluoto nuclear power plant is planned to be disposed in a repository constructed at a depth of about 500 meters in crystalline bedrock. Teollisuuden Voima Oy (TVO) has carried out preliminary site investigations for spent fuel disposal between 1987 and 1992 at five areas in Finland (Olkiluoto, Kivetty, Romuvaara, Syyry and Veitsivaara). The Safety analysis of the disposal system is presented in the report. Spent fuel will be encapsulated in composite copper-steel canisters. The canister design (ACP canister) consists of an inner container of steel as a load-bearing element and an outer container of oxygen-free copper to provide a shield against corrosion. In the repository the canisters will be emplaced in vertical holes drilled in the floors of horizontal deposition tunnels. The annulus between the canister and the rock is filled with compacted bentonite. The results of the safety analysis attest that the planned disposal system fulfils the safety requirements. Suitable places for the repository can be found at each of the five investigation sites

  10. SALP (Sensitivity Analysis by List Processing), a computer assisted technique for binary systems reliability analysis

    International Nuclear Information System (INIS)

    Astolfi, M.; Mancini, G.; Volta, G.; Van Den Muyzenberg, C.L.; Contini, S.; Garribba, S.

    1978-01-01

    A computerized technique which allows the modelling by AND, OR, NOT binary trees, of various complex situations encountered in safety and reliability assessment, is described. By the use of list-processing, numerical and non-numerical types of information are used together. By proper marking of gates and primary events, stand-by systems, common cause failure and multiphase systems can be analyzed. The basic algorithms used in this technique are shown in detail. Application to a stand-by and multiphase system is then illustrated

  11. Use of computational fluid dynamics codes for safety analysis of nuclear reactor systems, including containment. Summary report of a technical meeting

    International Nuclear Information System (INIS)

    2003-11-01

    Safety analysis is an important tool for justifying the safety of nuclear power plants. Typically, this type of analysis is performed by means of system computer codes with one dimensional approximation for modelling real plant systems. However, in the nuclear area there are issues for which traditional treatment using one dimensional system codes is considered inadequate for modelling local flow and heat transfer phenomena. There is therefore increasing interest in the application of three dimensional computational fluid dynamics (CFD) codes as a supplement to or in combination with system codes. There are a number of both commercial (general purpose) CFD codes as well as special codes for nuclear safety applications available. With further progress in safety analysis techniques, the increasing use of CFD codes for nuclear applications is expected. At present, the main objective with respect to CFD codes is generally to improve confidence in the available analysis tools and to achieve a more reliable approach to safety relevant issues. An exchange of views and experience can facilitate and speed up progress in the implementation of this objective. Both the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA) believed that it would be advantageous to provide a forum for such an exchange. Therefore, within the framework of the Working Group on the Analysis and Management of Accidents of the NEA's Committee on the Safety of Nuclear Installations, the IAEA and the NEA agreed to jointly organize the Technical Meeting on the Use of Computational Fluid Dynamics Codes for Safety Analysis of Reactor Systems, including Containment. The meeting was held in Pisa, Italy, from 11 to 14 November 2002. The publication constitutes the report of the Technical Meeting. It includes short summaries of the presentations that were made and of the discussions as well as conclusions and

  12. Constrained principal component analysis and related techniques

    CERN Document Server

    Takane, Yoshio

    2013-01-01

    In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a subspace of minimal dimensionality that captures the largest variability in the data. How can regression analysis and PCA be combined in a beneficial way? Why and when is it a good idea to combine them? What kind of benefits are we getting from them? Addressing these questions, Constrained Principal Component Analysis and Related Techniques shows how constrained PCA (CPCA) offers a unified framework for these approaches.The book begins with four concre

  13. Time-series-analysis techniques applied to nuclear-material accounting

    International Nuclear Information System (INIS)

    Pike, D.H.; Morrison, G.W.; Downing, D.J.

    1982-05-01

    This document is designed to introduce the reader to the applications of Time Series Analysis techniques to Nuclear Material Accountability data. Time series analysis techniques are designed to extract information from a collection of random variables ordered by time by seeking to identify any trends, patterns, or other structure in the series. Since nuclear material accountability data is a time series, one can extract more information using time series analysis techniques than by using other statistical techniques. Specifically, the objective of this document is to examine the applicability of time series analysis techniques to enhance loss detection of special nuclear materials. An introductory section examines the current industry approach which utilizes inventory differences. The error structure of inventory differences is presented. Time series analysis techniques discussed include the Shewhart Control Chart, the Cumulative Summation of Inventory Differences Statistics (CUSUM) and the Kalman Filter and Linear Smoother

  14. The Oak Ridge Research Reactor: safety analysis: Volume 2, supplement 2

    International Nuclear Information System (INIS)

    Hurt, S.S.

    1986-11-01

    The Oak Ridge Research Reactor Safety Analysis was last updated via ORNL-4169, Vol. 2, Supplement 1, in May of 1978. Since that date, several changes have been effected through the change-memo system described below. While these changes have involved the cooling system, the electrical system, and the reactor instrumentation and controls, they have not, for the most part, presented new or unreviewed safety questions. However, some of the changes have been based on questions or recommendations stemming from safety reviews or from reactor events at other sites. This paper discusses those changes which were judged to be safety related and which include revisions to the syphon-break system and changes related to seismic considerations which were very recently completed. The maximum hypothetical accident postulated in the original safety analysis requires dynamic containment and filtered flow for compliance with 10CFR100 limits at the site boundary

  15. Efficient runner safety assessment during early design phase and root cause analysis

    International Nuclear Information System (INIS)

    Liang, Q W; Lais, S; Gentner, C; Braun, O

    2012-01-01

    Fatigue related problems in Francis turbines, especially high head Francis turbines, have been published several times in the last years. During operation the runner is exposed to various steady and unsteady hydraulic loads. Therefore the analysis of forced response of the runner structure requires a combined approach of fluid dynamics and structural dynamics. Due to the high complexity of the phenomena and due to the limitation of computer power, the numerical prediction was in the past too expensive and not feasible for the use as standard design tool. However, due to continuous improvement of the knowledge and the simulation tools such complex analysis has become part of the design procedure in ANDRITZ HYDRO. This article describes the application of most advanced analysis techniques in runner safety check (RSC), including steady state CFD analysis, transient CFD analysis considering rotor stator interaction (RSI), static FE analysis and modal analysis in water considering the added mass effect, in the early design phase. This procedure allows a very efficient interaction between the hydraulic designer and the mechanical designer during the design phase, such that a risk of failure can be detected and avoided in an early design stage.The RSC procedure can also be applied to a root cause analysis (RCA) both to find out the cause of failure and to quickly define a technical solution to meet the safety criteria. An efficient application to a RCA of cracks in a Francis runner is quoted in this article as an example. The results of the RCA are presented together with an efficient and inexpensive solution whose effectiveness could be proven again by applying the described RSC technics. It is shown that, with the RSC procedure developed and applied as standard procedure in ANDRITZ HYDRO such a failure is excluded in an early design phase. Moreover, the RSC procedure is compatible with different commercial and open source codes and can be easily adapted to apply for

  16. Efficient runner safety assessment during early design phase and root cause analysis

    Science.gov (United States)

    Liang, Q. W.; Lais, S.; Gentner, C.; Braun, O.

    2012-11-01

    Fatigue related problems in Francis turbines, especially high head Francis turbines, have been published several times in the last years. During operation the runner is exposed to various steady and unsteady hydraulic loads. Therefore the analysis of forced response of the runner structure requires a combined approach of fluid dynamics and structural dynamics. Due to the high complexity of the phenomena and due to the limitation of computer power, the numerical prediction was in the past too expensive and not feasible for the use as standard design tool. However, due to continuous improvement of the knowledge and the simulation tools such complex analysis has become part of the design procedure in ANDRITZ HYDRO. This article describes the application of most advanced analysis techniques in runner safety check (RSC), including steady state CFD analysis, transient CFD analysis considering rotor stator interaction (RSI), static FE analysis and modal analysis in water considering the added mass effect, in the early design phase. This procedure allows a very efficient interaction between the hydraulic designer and the mechanical designer during the design phase, such that a risk of failure can be detected and avoided in an early design stage.The RSC procedure can also be applied to a root cause analysis (RCA) both to find out the cause of failure and to quickly define a technical solution to meet the safety criteria. An efficient application to a RCA of cracks in a Francis runner is quoted in this article as an example. The results of the RCA are presented together with an efficient and inexpensive solution whose effectiveness could be proven again by applying the described RSC technics. It is shown that, with the RSC procedure developed and applied as standard procedure in ANDRITZ HYDRO such a failure is excluded in an early design phase. Moreover, the RSC procedure is compatible with different commercial and open source codes and can be easily adapted to apply for

  17. Mapping patient safety: a large-scale literature review using bibliometric visualisation techniques.

    Science.gov (United States)

    Rodrigues, S P; van Eck, N J; Waltman, L; Jansen, F W

    2014-03-13

    The amount of scientific literature available is often overwhelming, making it difficult for researchers to have a good overview of the literature and to see relations between different developments. Visualisation techniques based on bibliometric data are helpful in obtaining an overview of the literature on complex research topics, and have been applied here to the topic of patient safety (PS). On the basis of title words and citation relations, publications in the period 2000-2010 related to PS were identified in the Scopus bibliographic database. A visualisation of the most frequently cited PS publications was produced based on direct and indirect citation relations between publications. Terms were extracted from titles and abstracts of the publications, and a visualisation of the most important terms was created. The main PS-related topics studied in the literature were identified using a technique for clustering publications and terms. A total of 8480 publications were identified, of which the 1462 most frequently cited ones were included in the visualisation. The publications were clustered into 19 clusters, which were grouped into three categories: (1) magnitude of PS problems (42% of all included publications); (2) PS risk factors (31%) and (3) implementation of solutions (19%). In the visualisation of PS-related terms, five clusters were identified: (1) medication; (2) measuring harm; (3) PS culture; (4) physician; (5) training, education and communication. Both analysis at publication and term level indicate an increasing focus on risk factors. A bibliometric visualisation approach makes it possible to analyse large amounts of literature. This approach is very useful for improving one's understanding of a complex research topic such as PS and for suggesting new research directions or alternative research priorities. For PS research, the approach suggests that more research on implementing PS improvement initiatives might be needed.

  18. Mapping patient safety: a large-scale literature review using bibliometric visualisation techniques

    Science.gov (United States)

    Rodrigues, S P; van Eck, N J; Waltman, L; Jansen, F W

    2014-01-01

    Background The amount of scientific literature available is often overwhelming, making it difficult for researchers to have a good overview of the literature and to see relations between different developments. Visualisation techniques based on bibliometric data are helpful in obtaining an overview of the literature on complex research topics, and have been applied here to the topic of patient safety (PS). Methods On the basis of title words and citation relations, publications in the period 2000–2010 related to PS were identified in the Scopus bibliographic database. A visualisation of the most frequently cited PS publications was produced based on direct and indirect citation relations between publications. Terms were extracted from titles and abstracts of the publications, and a visualisation of the most important terms was created. The main PS-related topics studied in the literature were identified using a technique for clustering publications and terms. Results A total of 8480 publications were identified, of which the 1462 most frequently cited ones were included in the visualisation. The publications were clustered into 19 clusters, which were grouped into three categories: (1) magnitude of PS problems (42% of all included publications); (2) PS risk factors (31%) and (3) implementation of solutions (19%). In the visualisation of PS-related terms, five clusters were identified: (1) medication; (2) measuring harm; (3) PS culture; (4) physician; (5) training, education and communication. Both analysis at publication and term level indicate an increasing focus on risk factors. Conclusions A bibliometric visualisation approach makes it possible to analyse large amounts of literature. This approach is very useful for improving one's understanding of a complex research topic such as PS and for suggesting new research directions or alternative research priorities. For PS research, the approach suggests that more research on implementing PS improvement initiatives

  19. Enhancing Safety of Artificially Ventilated Patients Using Ambient Process Analysis.

    Science.gov (United States)

    Lins, Christian; Gerka, Alexander; Lüpkes, Christian; Röhrig, Rainer; Hein, Andreas

    2018-01-01

    In this paper, we present an approach for enhancing the safety of artificially ventilated patients using ambient process analysis. We propose to use an analysis system consisting of low-cost ambient sensors such as power sensor, RGB-D sensor, passage detector, and matrix infrared temperature sensor to reduce risks for artificially ventilated patients in both home and clinical environments. We describe the system concept and our implementation and show how the system can contribute to patient safety.

  20. Safety analysis of Ignalina NPP during shutdown conditions

    International Nuclear Information System (INIS)

    Kaliatka, A.; Uspuras, E.

    2000-01-01

    The accident analysis for the Ignalina NPP with RBMK-1500 reactors at normal operating conditions and at minimum controlled power level (during startup of the reactor) has been performed in the frame of the project I n-Depth Safety Assessment of the Ignalina NPP , which was completed in 1996. However, the plant conditions during the reactor shutdown differ from conditions during reactor operation at full power (equipment status in protection systems, set points for actuation of safety and protection systems, etc.). Results of RELAP5 simulation of two worst initiating events during reactor shutdown - Pressure Header rupture in case of steam reactor cooldown as well as Pressure Header rupture in case of water reactor cooldown are discussed in the paper. Results of analysis shown that reactor are reliably cooled in both cases. Further analysis for all range of initial events during reactor shutdown and at shutdown conditions is recommended. (author)

  1. Safety analysis report for packaging (onsite) Castor GSF cask

    International Nuclear Information System (INIS)

    Clements, E.P.

    1997-01-01

    The CASTOR GSF packaging was designed and fabricated to be a certified Type B(U) packaging and comply with the requirements of the International Atomic Energy Agency (IAEA) for transport of up to five sealed canisters of vitrified radioactive materials. This onsite Safety Analysis Report for Packaging (SARP) provides the analysis and evaluations necessary to demonstrate that the casks, with the canister payload, meet the intent of the Type B packaging regulations set forth in 10 CFR 71 and therefore meet the onsite transportation safety requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping

  2. Atlantic Richfield Hanford Company californium multiplier/delayed neutron counter safety analysis

    International Nuclear Information System (INIS)

    Zimmer, W.H.

    1976-08-01

    The Californium Multiplier (CFX) is a subcritical assembly of uranium surrounding 252 Cf spontaneously fissioning neutron sources; its function is to multiply the neutron flux to a level useful for activation analysis. This document summarizes the safety analysis aspects of the CFX, DNC, pneumatic transfer system, and instrumentation and to detail all the aspects of the total facility as a starting point for the ARHCO Safety Analysis Review. Recognized hazards and steps already taken to neutralize them are itemized

  3. Task Group on Safety Margins Action Plan (SMAP). Safety Margins Action Plan - Final Report

    International Nuclear Information System (INIS)

    Hrehor, Miroslav; Gavrilas, Mirela; Belac, Josef; Sairanen, Risto; Bruna, Giovanni; Reocreux, Michel; Touboul, Francoise; Krzykacz-Hausmann, B.; Park, Jong Seuk; Prosek, Andrej; Hortal, Javier; Sandervaag, Odbjoern; Zimmerman, Martin

    2007-01-01

    . Chapter 3 looks at techniques for the deterministic calculation of safety margins and discusses the complementary probabilistic risk assessment techniques needed to generalize safety margins beyond design basis accidents. Chapter 4 examines the definition of safety margin, which is noted to take different meanings in different fields. For example, in civil engineering and applications that deal with the load-strength interference concept, safety margin describes the distance between the means of the load and strength probability density functions with regard to the standard deviation in both. However, in the nuclear industry, the term safety margin evolved to describe the goal of assuring the existence of adequate safety margin in deterministic calculations. Specifically, safety margin refers to keeping the value of a given safety variable under a pre-established safety limit in design basis accidents. Implicitly, safety margin in the nuclear industry is the distance from the safety limit to onset of damage. The SMAP task group fulfilled its first objective by adopting a methodology for quantifying safety margins that merges the deterministic and probabilistic approaches. The methodology described in Chapter 5 is consistent with the definition of safety margin commonly used in the nuclear industry. The metrics of this methodology quantify the change in safety over a range of accident sequences that extend beyond the design bases. However, the methodology is not described in this report to a level that would meet guidance document requirements. This is in part because methods and techniques needed to quantify safety margins in a global manner are evolving, and thus specific guidance rendered at this time would shortly become obsolete. This report presents the framework in sufficient detail to serve as the basis of an analysis and, thus, this report meets the second objective established for the SMAP group. A proof-of-concept application to further aid potential applicants

  4. Lessons learned - development of the tritium facilities 5480.23 safety analysis report and technical safety requirements

    International Nuclear Information System (INIS)

    Cappucci, A.J. Jr.; Bowman, M.E.; Goff, L.

    1997-01-01

    A review was performed which identified open-quotes Lessons Learnedclose quotes from the development of the 5480.23 Tritium Safety Analysis Report (SAR) and the Technical Safety Requirements (TSR) for the Tritium Facilities (TF). The open-quotes Lessons Learnedclose quotes were based on an evaluation of the use of the SRS procedures, processes, and work practices which contributed to the success or lack thereof. This review also identified recommendations and suggestions for improving the development of SARs and TSRs at SRS. The 5480.23 SAR describes the site for the TF, the various process systems in the process buildings, a complete hazards and accident analysis of the most significant hazards affecting the nearby offsite population, and the selection of safety systems, structures, and components to protect both the public and site workers. It also provides descriptions of important programs and processes which add defense in depth to public and worker protection

  5. An analysis of electronic health record-related patient safety concerns

    Science.gov (United States)

    Meeks, Derek W; Smith, Michael W; Taylor, Lesley; Sittig, Dean F; Scott, Jean M; Singh, Hardeep

    2014-01-01

    Objective A recent Institute of Medicine report called for attention to safety issues related to electronic health records (EHRs). We analyzed EHR-related safety concerns reported within a large, integrated healthcare system. Methods The Informatics Patient Safety Office of the Veterans Health Administration (VA) maintains a non-punitive, voluntary reporting system to collect and investigate EHR-related safety concerns (ie, adverse events, potential events, and near misses). We analyzed completed investigations using an eight-dimension sociotechnical conceptual model that accounted for both technical and non-technical dimensions of safety. Using the framework analysis approach to qualitative data, we identified emergent and recurring safety concerns common to multiple reports. Results We extracted 100 consecutive, unique, closed investigations between August 2009 and May 2013 from 344 reported incidents. Seventy-four involved unsafe technology and 25 involved unsafe use of technology. A majority (70%) involved two or more model dimensions. Most often, non-technical dimensions such as workflow, policies, and personnel interacted in a complex fashion with technical dimensions such as software/hardware, content, and user interface to produce safety concerns. Most (94%) safety concerns related to either unmet data-display needs in the EHR (ie, displayed information available to the end user failed to reduce uncertainty or led to increased potential for patient harm), software upgrades or modifications, data transmission between components of the EHR, or ‘hidden dependencies’ within the EHR. Discussion EHR-related safety concerns involving both unsafe technology and unsafe use of technology persist long after ‘go-live’ and despite the sophisticated EHR infrastructure represented in our data source. Currently, few healthcare institutions have reporting and analysis capabilities similar to the VA. Conclusions Because EHR-related safety concerns have complex

  6. Preliminary safety analysis report for the TFTR

    International Nuclear Information System (INIS)

    Lind, K.E.; Levine, J.D.; Howe, H.J.

    A Preliminary Safety Analysis Report has been prepared for the Tokamak Fusion Test Reactor. No accident scenarios have been identified which would result in exposures to on-site personnel or the general public in excess of the guidelines defined for the project by DOE

  7. Safety design concept and analysis for the upgrading JRR-3

    International Nuclear Information System (INIS)

    Onishi, N.; Isshiki, M.; Takahashi, H.; Takayanagi, M.

    1990-01-01

    The Research Reactor No.3 (JRR-3) is under reconstruction for upgrading. This paper describes the safety design concepts of the architectural and engineering design, anticipated operational transients and accident conditions which are the postulated initiating events for the safety evaluation, and the safety criteria of the upgraded JRR-3. The safety criteria are defined taking into account those of Light Water Reactors and the characteristics of the research reactor. Using the example of the safety analysis, this paper describes analytical results of a reactivity insertion by removal of in-core irradiation samples, a pipeline break at the primary coolant loop and flow blockage to a coolant channel, which are the severest postulated initiating events of the JRR-3

  8. Qualitative uncertainty analysis in probabilistic safety assessment context

    International Nuclear Information System (INIS)

    Apostol, M.; Constantin, M; Turcu, I.

    2007-01-01

    In Probabilistic Safety Assessment (PSA) context, an uncertainty analysis is performed either to estimate the uncertainty in the final results (the risk to public health and safety) or to estimate the uncertainty in some intermediate quantities (the core damage frequency, the radionuclide release frequency or fatality frequency). The identification and evaluation of uncertainty are important tasks because they afford credit to the results and help in the decision-making process. Uncertainty analysis can be performed qualitatively or quantitatively. This paper performs a preliminary qualitative uncertainty analysis, by identification of major uncertainty in PSA level 1- level 2 interface and in the other two major procedural steps of a level 2 PSA i.e. the analysis of accident progression and of the containment and analysis of source term for severe accidents. One should mention that a level 2 PSA for a Nuclear Power Plant (NPP) involves the evaluation and quantification of the mechanisms, amount and probabilities of subsequent radioactive material releases from the containment. According to NUREG 1150, an important task in source term analysis is fission products transport analysis. The uncertainties related to the isotopes distribution in CANDU NPP primary circuit and isotopes' masses transferred in the containment, using SOPHAEROS module from ASTEC computer code will be also presented. (authors)

  9. Compendium of computer codes for the safety analysis of LMFBR's

    International Nuclear Information System (INIS)

    1975-06-01

    A high level of mathematical sophistication is required in the safety analysis of LMFBR's to adequately meet the demands for realism and confidence in all areas of accident consequence evaluation. The numerical solution procedures associated with these analyses are generally so complex and time consuming as to necessitate their programming into computer codes. These computer codes have become extremely powerful tools for safety analysis, combining unique advantages in accuracy, speed and cost. The number, diversity and complexity of LMFBR safety codes in the U. S. has grown rapidly in recent years. It is estimated that over 100 such codes exist in various stages of development throughout the country. It is inevitable that such a large assortment of codes will require rigorous cataloguing and abstracting to aid individuals in identifying what is available. It is the purpose of this compendium to provide such a service through the compilation of code summaries which describe and clarify the status of domestic LMFBR safety codes. (U.S.)

  10. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1980-01-01

    A fault tree analysis package is described that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage, and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and projects delays. The package operates interactively allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis system data can be derived automatically from a generic data bank. As the analysis procedes improved estimates of critical failure rates and test and maintenance schedules can be inserted. The computations are standard, - identification of minimal cut-sets, estimation of reliability parameters, and ranking of the effect of the individual component failure modes and system failure modes on these parameters. The user can vary the fault trees and data on-line, and print selected data for preferred systems in a form suitable for inclusion in safety reports. A case history is given - that of HIFAR containment isolation system. (author)

  11. Statistical analysis applied to safety culture self-assessment

    International Nuclear Information System (INIS)

    Macedo Soares, P.P.

    2002-01-01

    Interviews and opinion surveys are instruments used to assess the safety culture in an organization as part of the Safety Culture Enhancement Programme. Specific statistical tools are used to analyse the survey results. This paper presents an example of an opinion survey with the corresponding application of the statistical analysis and the conclusions obtained. Survey validation, Frequency statistics, Kolmogorov-Smirnov non-parametric test, Student (T-test) and ANOVA means comparison tests and LSD post-hoc multiple comparison test, are discussed. (author)

  12. Review of design criteria and safety analysis of safety class electric building for fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1998-02-01

    Steady state fuel test loop will be equipped in HANARO to obtain the development and betterment of advanced fuel and materials through the irradiation tests. HANARO fuel test loop was designed for CANDU and PWR fuel testing. Safety related system of Fuel Test Loop such as emergency cooling water system, component cooling water system, safety ventilation system, high energy line break mitigation system and remote control room was required 1E class electric supply to meet the safety operation in accordance with related code. Therefore, FTL electric building was designed to construction and install the related equipment based on seismic category I. The objective of this study is to review the design criteria and analysis the safety function of safety class electric building for fuel test loop, and this results will become guidance for the irradiation testing in future. (author). 10 refs., 6 tabs., 30 figs.

  13. SYSTEMS SAFETY ANALYSIS FOR FIRE EVENTS ASSOCIATED WITH THE ECRB CROSS DRIFT

    International Nuclear Information System (INIS)

    R. J. Garrett

    2001-01-01

    The purpose of this analysis is to systematically identify and evaluate fire hazards related to the Yucca Mountain Site Characterization Project (YMP) Enhanced Characterization of the Repository Block (ECRB) East-West Cross Drift (commonly referred to as the ECRB Cross-Drift). This analysis builds upon prior Exploratory Studies Facility (ESF) System Safety Analyses and incorporates Topopah Springs (TS) Main Drift fire scenarios and ECRB Cross-Drift fire scenarios. Accident scenarios involving the fires in the Main Drift and the ECRB Cross-Drift were previously evaluated in ''Topopah Springs Main Drift System Safety Analysis'' (CRWMS M and O 1995) and the ''Yucca Mountain Site Characterization Project East-West Drift System Safety Analysis'' (CRWMS M and O 1998). In addition to listing required mitigation/control features, this analysis identifies the potential need for procedures and training as part of defense-in-depth mitigation/control features. The inclusion of this information in the System Safety Analysis (SSA) is intended to assist the organization(s) (e.g., Construction, Environmental Safety and Health, Design) responsible for these aspects of the ECRB Cross-Drift in developing mitigation/control features for fire events, including Emergency Refuge Station(s). This SSA was prepared, in part, in response to Condition/Issue Identification and Reporting/Resolution System (CIRS) item 1966. The SSA is an integral part of the systems engineering process, whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach is used which incorporates operating experiences and recommendations from vendors, the constructor and the operating contractor. The risk assessment in this analysis characterizes the scenarios associated with fires in terms of relative risk and includes recommendations for mitigating all identified hazards. The priority for recommending and implementing mitigation control features is: (1) Incorporate

  14. Applying Failure Modes, Effects, And Criticality Analysis And Human Reliability Analysis Techniques To Improve Safety Design Of Work Process In Singapore Armed Forces

    Science.gov (United States)

    2016-09-01

    not completely avoidable. Therefore, every organization and workplace should have a safety program to minimize the occurrence of injuries. The...an instituted safety program that utilizes a generic risk assessment method involving the 5-M (Mission, Man, Machine, Medium and Management ) factor...not completely avoidable and will occur on the job. Therefore, every organization and workplace should have a safety program to minimize the

  15. Radiation safety

    International Nuclear Information System (INIS)

    Van Riessen, A.

    2002-01-01

    Full text: Experience has shown that modem, fully enclosed, XRF and XRD units are generally safe. This experience may lead to complacency and ultimately a lowering of standards which may lead to accidents. Maintaining awareness of radiation safety issues is thus an important role for all radiation safety officers. With the ongoing progress in technology, a greater number of radiation workers are more likely to use a range of instruments/techniques - eg portable XRF, neutron beam analysis, and synchrotron radiation analysis. The source for each of these types of analyses is different and necessitates an understanding of the associated dangers as well as use of specific radiation badges. The trend of 'suitcase science' is resulting in scientists receiving doses from a range of instruments and facilities with no coordinated approach to obtain an integrated dose reading for an individual. This aspect of radiation safety needs urgent attention. Within Australia a divide is springing up between those who work on Commonwealth property and those who work on State property. For example a university staff member may operate irradiating equipment on a University campus and then go to a CSIRO laboratory to operate similar equipment. While at the University State regulations apply and while at CSIRO Commonwealth regulations apply. Does this individual require two badges? Is there a need to obtain two licences? The application of two sets of regulations causes unnecessary confusion and increases the workload of radiation safety officers. Radiation safety officers need to introduce risk management strategies to ensure that both existing and new procedures result in risk minimisation. A component of this strategy includes ongoing education and revising of regulations. AXAA may choose to contribute to both of these activities as a service to its members as well as raising the level of radiation safety for all radiation workers. Copyright (2002) Australian X-ray Analytical

  16. Hazard Identification and Risk Assessment of Health and Safety Approach JSA (Job Safety Analysis) in Plantation Company

    Science.gov (United States)

    Sugarindra, Muchamad; Ragil Suryoputro, Muhammad; Tiya Novitasari, Adi

    2017-06-01

    Plantation company needed to identify hazard and perform risk assessment as an Identification of Hazard and Risk Assessment Crime and Safety which was approached by using JSA (Job Safety Analysis). The identification was aimed to identify the potential hazards that might be the risk of workplace accidents so that preventive action could be taken to minimize the accidents. The data was collected by direct observation to the workers concerned and the results were recorded on a Job Safety Analysis form. The data were as forklift operator, macerator worker, worker’s creeper, shredder worker, workers’ workshop, mechanical line worker, trolley cleaning workers and workers’ crepe decline. The result showed that shredder worker value was 30 and had the working level with extreme risk with the risk value range was above 20. So to minimize the accidents could provide Personal Protective Equipment (PPE) which were appropriate, information about health and safety, the company should have watched the activities of workers, and rewards for the workers who obey the rules that applied in the plantation.

  17. Reactor safety research and safety technology. Pt. 2

    International Nuclear Information System (INIS)

    Theenhaus, R.; Wolters, J.

    1987-01-01

    The state of HTR safety research work reached permits a comprehensive and reliable answer to be given to questions which have been raised by the reactor accident at Chernobyl, regarding HTR safety. Together with the probability safety analyses, the way to a safety concept suitable for an HTR is cleared; instructions are given for design optimisation with regard to safety technique and economy. The consequences of a graphite fire, the neutron physics design and the consequenes of the lack of a safety containment are briefly described. (DG) [de

  18. YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT EAST-WEST DRIFT SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    1999-06-08

    The purpose of this analysis is to systematically identify and evaluate hazards related to the design of the Yucca Mountain Project Exploratory Studies Facility (ESF) East-West Cross Drift. This analysis builds upon prior ESF System Safety Analyses and incorporates TS Main Drift scenarios, where applicable, into the East-West Drift scenarios. This System Safety Analysis (SSA) focuses on the personnel safety and health hazards associated with the engineered design of the East-West Drift. The analysis also evaluates other aspects of the East-West Drift, including purchased equipment (e.g., scientific mapping platform) or Systems/Structures/Components (SSCs) and out-of-tolerance conditions. In addition to recommending design mitigation features, the analysis identifies the potential need for procedures, training, or Job Safety Analyses (JSAs). The inclusion of this information in the SSA is intended to assist the organization(s) (e.g., constructor, Safety and Health, design) responsible for these aspects of the East-West Drift in evaluating personnel hazards and augment the information developed by these organizations. The SSA is an integral part of the systems engineering process, whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach is used which incorporates operating experiences and recommendations from vendors, the constructor and the operating contractor. The risk assessment in this analysis characterizes the scenarios associated with East-West Drift SSCs in terms of relative risk and includes recommendations for mitigating all identified hazards. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into SSC designs. (2) Add safety features and capabilities to existing designs. (3) Develop procedures and conduct training to increase worker awareness of potential hazards, reduce exposure to hazards, and inform personnel of the

  19. 10 CFR 52.79 - Contents of applications; technical information in final safety analysis report.

    Science.gov (United States)

    2010-01-01

    ...; technical information in final safety analysis report. (a) The application must contain a final safety... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; technical information in final safety analysis report. 52.79 Section 52.79 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES...

  20. Probabilistic safety analysis : a new nuclear power plants licensing method

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de.

    1982-04-01

    After a brief retrospect of the application of Probabilistic Safety Analysis in the nuclear field, the basic differences between the deterministic licensing method, currently in use, and the probabilistic method are explained. Next, the two main proposals (by the AIF and the ACRS) concerning the establishment of the so-called quantitative safety goals (or simply 'safety goals') are separately presented and afterwards compared in their most fundamental aspects. Finally, some recent applications and future possibilities are discussed. (Author) [pt