WorldWideScience

Sample records for safety analyses performed

  1. Chapter No.4. Safety analyses

    International Nuclear Information System (INIS)

    2002-01-01

    In 2001 the activity in the field of safety analyses was focused on verification of the safety analyses reports for NPP V-2 Bohunice and NPP Mochovce concerning the new profiled fuel and probabilistic safety assessment study for NPP Mochovce. The calculation safety analyses were performed and expert reviews for the internal UJD needs were elaborated. An important part of work was performed also in solving of scientific and technical tasks appointed within bilateral projects of co-operation between UJD and its international partnership organisations as well as within international projects ordered and financed by the European Commission. All these activities served as an independent support for UJD in its deterministic and probabilistic safety assessment of nuclear installations. A special attention was paid to a review of probabilistic safety assessment study of level 1 for NPP Mochovce. The probabilistic safety analysis of NPP related to the full power operation was elaborated in the study and a contribution of the technical and operational improvements to the risk decreasing was quantified. A core damage frequency of the reactor was calculated and the dominant initiating events and accident sequences with the major contribution to the risk were determined. The target of the review was to determine the acceptance of the sources of input information, assumptions, models, data, analyses and obtained results, so that the probabilistic model could give a real picture of the NPP. The review of the study was performed in co-operation of UJD with the IAEA (IPSART mission) as well as with other external organisations, which were not involved in the elaboration of the reviewed document and probabilistic model of NPP. The review was made in accordance with the IAEA guidelines and methodical documents of UJD and US NRC. In the field of calculation safety analyses the UJD activity was focused on the analysis of an operational event, analyses of the selected accident scenarios

  2. Safety analyses for reprocessing and waste processing

    International Nuclear Information System (INIS)

    1983-03-01

    Presentation of an incident analysis of process steps of the RP, simplified considerations concerning safety, and safety analyses of the storage and solidification facilities of the RP. A release tree method is developed and tested. An incident analysis of process steps, the evaluation of the SRL-study and safety analyses of the storage and solidification facilities of the RP are performed in particular. (DG) [de

  3. Method of accounting for code safety valve setpoint drift in safety analyses

    International Nuclear Information System (INIS)

    Rousseau, K.R.; Bergeron, P.A.

    1989-01-01

    In performing the safety analyses for transients that result in a challenge to the reactor coolant system (RCS) pressure boundary, the general acceptance criterion is that the peak RCS pressure not exceed the American Society of Mechanical Engineers limit of 110% of the design pressure. Without crediting non-safety-grade pressure mitigating systems, protection from this limit is mainly provided by the primary and secondary code safety valves. In theory, the combination of relief capacity and setpoints for these valves is designed to provide this protection. Generally, banks of valves are set at varying setpoints staggered by 15- to 20-psid increments to minimize the number of valves that would open by an overpressure challenge. In practice, however, when these valves are removed and tested (typically during a refueling outage), setpoints are sometimes found to have drifted by >50 psid. This drift should be accounted for during the performance of the safety analysis. This paper describes analyses performed by Yankee Atomic Electric Company (YAEC) to account for setpoint drift in safety valves from testing. The results of these analyses are used to define safety valve operability or acceptance criteria

  4. The long-term safety and performance analyses of the surface disposal facility for the Belgian category a waste at Dessel

    Energy Technology Data Exchange (ETDEWEB)

    Cool, Wim; Vermarien, Elise; Wacquier, William [ONDRAF/NIRAS Avenue des Arts 14, BE-1210 Bruxelles (Belgium); Perko, Janez [SCK-CEN Boeretang 200, BE-2400 Mol (Belgium)

    2013-07-01

    ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, and its partners have developed long-term safety and performance analyses in the framework of the license application for a surface disposal facility for low level radioactive waste (category A waste) at Dessel, Belgium. This paper focusses on the methodology of the safety assessments and on key results from the application of this methodology. An overview is given (1) of the performance analyses for the containment safety function of the disposal system and (2) of the radiological impact analyses confirming that radiological impacts are below applicable reference values and constraints and leading to radiological criteria for the waste and the facility. In this discussion, multiple indicators for performance and safety are used to illustrate the multi-faceted nature of long-term performance and safety of the surface disposal. This contributes to the multiple lines of reasoning for confidence building that a positive decision to proceed to the next stage of construction is justified. (authors)

  5. Dry critical experiments and analyses performed in support of the Topaz-2 Safety Program

    International Nuclear Information System (INIS)

    Pelowitz, D.B.; Sapir, J.; Glushkov, E.S.; Ponomarev-Stepnoi, N.N.; Bubelev, V.G.; Kompanietz, G.B.; Krutov, A.M.; Polyakov, D.N.; Loynstev, V.A.

    1994-01-01

    In December 1991, the Strategic Defense Initiative Organization decided to investigate the possibility of launching a Russian Topaz-2 space nuclear power system. Functional safety requirements developed for the Topaz mission mandated that the reactor remain subcritical when flooded and immersed in water. Initial experiments and analyses performed in Russia and the United States indicated that the reactor could potentially become supercritical in several water- or sand-immersion scenarios. Consequently, a series of critical experiments was performed on the Narciss M-II facility at the Kurchatov Institute to measure the reactivity effects of water and sand immersion, to quantify the effectiveness of reactor modifications proposed to preclude criticality, and to benchmark the calculational methods and nuclear data used in the Topaz-2 safety analyses. In this paper we describe the Narciss M-II experimental configurations along with the associated calculational models and methods. We also present and compare the measured and calculated results for the dry experimental configurations

  6. Dry critical experiments and analyses performed in support of the TOPAZ-2 safety program

    International Nuclear Information System (INIS)

    Pelowitz, D.B.; Sapir, J.; Glushkov, E.S.; Ponomarev-Stepnoi, N.N.; Bubelev, V.G.; Kompanietz, G.B.; Krutov, A.M.; Polyakov, D.N.; Lobynstev, V.A.

    1995-01-01

    In December 1991, the Strategic Defense Initiative Organization decided to investigate the possibility of launching a Russian Topaz-2 space nuclear power system. Functional safety requirements developed for the Topaz mission mandated that the reactor remain subcritical when flooded and immersed in water. Initial experiments and analyses performed in Russia and the United States indicated that the reactor could potentially become supercritical in several water- or sand-immersion scenarios. Consequently, a series of critical experiments was performed on the Narciss M-II facility at the Kurchatov Institute to measure the reactivity effects of water and sand immersion, to quantify the effectiveness of reactor modifications proposed to preclude criticality, and to benchmark the calculational methods and nuclear data used in the Topaz-2 safety analyses. In this paper we describe the Narciss M-II experimental configurations along with the associated calculational models and methods. We also present and compare the measured and calculated results for the dry experimental configurations. copyright 1995 American Institute of Physics

  7. Safety KPIs - Monitoring of safety performance

    Directory of Open Access Journals (Sweden)

    Andrej Lališ

    2014-09-01

    Full Text Available This paper aims to provide brief overview of aviation safety development focusing on modern trends represented by implementation of Safety Key Performance Indicators. Even though aviation is perceived as safe means of transport, it is still struggling with its complexity given by long-term growth and robustness which it has reached today. Thus nowadays safety issues are much more complex and harder to handle than ever before. We are more and more concerned about organizational factors and control mechanisms which have potential to further increase level of aviation safety. Within this paper we will not only introduce the concept of Key Performance Indicators in area of aviation safety as an efficient control mechanism, but also analyse available legislation and documentation. Finally we will propose complex set of indicators which could be applied to Czech Air Navigation Service Provider.

  8. Accelerated safety analyses - structural analyses Phase I - structural sensitivity evaluation of single- and double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Becker, D.L.

    1994-11-01

    Accelerated Safety Analyses - Phase I (ASA-Phase I) have been conducted to assess the appropriateness of existing tank farm operational controls and/or limits as now stipulated in the Operational Safety Requirements (OSRs) and Operating Specification Documents, and to establish a technical basis for the waste tank operating safety envelope. Structural sensitivity analyses were performed to assess the response of the different waste tank configurations to variations in loading conditions, uncertainties in loading parameters, and uncertainties in material characteristics. Extensive documentation of the sensitivity analyses conducted and results obtained are provided in the detailed ASA-Phase I report, Structural Sensitivity Evaluation of Single- and Double-Shell Waste Tanks for Accelerated Safety Analysis - Phase I. This document provides a summary of the accelerated safety analyses sensitivity evaluations and the resulting findings

  9. Safety analyses of the nuclear-powered ship Mutsu with RETRAN

    International Nuclear Information System (INIS)

    Naruko, Y.; Ishida, T.; Tanaka, Y.; Futamura, Y.

    1982-01-01

    To provide a quantitative basis for the safety evaluation of the N.S. Mutsu, a number of safety analyses were performed in the course of reexamination. With respect to operational transient analyses, the RETRAN computer code was used to predict plant performances on the basis of postulated transient scenarios. The COBRA-IV computer code was also used to obtain a value of the minimum DNBR for each transient, which is necessary to predict detailed thermal-hydraulic performances in the core region of the reactor. In the present paper, the following three operational transients, which were calculated as a part of the safety analyses, are being dealt with: a complete loss of load without reactor scram; an excessive load increase incident, which is followed by a 30 percent stepwise load increase in the steam dump flow; and an accidental depressurization of the primary system, which is followed by a sudden full opening of the pressurizer spray valve. A Mutsu two-loop RETRAN model and simulation results were described. The results being compared with those of land-based PWRs, the characteristic features of the Mutsu reactor were presented and the safety of the plant under the operational transient conditions was confirmed

  10. Preliminary Results of Ancillary Safety Analyses Supporting TREAT LEU Conversion Activities

    Energy Technology Data Exchange (ETDEWEB)

    Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Fei, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Strons, P. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Papadias, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Kontogeorgakos, D. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Connaway, H. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Wright, A. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-10-01

    The Transient Reactor Test Facility (TREAT), located at Idaho National Laboratory (INL), is a test facility designed to evaluate the performance of reactor fuels and materials under transient accident conditions. The facility, an air-cooled, graphite-moderated reactor designed to utilize fuel containing high-enriched uranium (HEU), has been in non-operational standby status since 1994. Currently, in support of the missions of the Department of Energy (DOE) National Nuclear Security Administration (NNSA) Material Management and Minimization (M3) Reactor Conversion Program, a new core design is being developed for TREAT that will utilize low-enriched uranium (LEU). The primary objective of this conversion effort is to design an LEU core that is capable of meeting the performance characteristics of the existing HEU core. Minimal, if any, changes are anticipated for the supporting systems (e.g. reactor trip system, filtration/cooling system, etc.); therefore, the LEU core must also be able to function with the existing supporting systems, and must also satisfy acceptable safety limits. In support of the LEU conversion effort, a range of ancillary safety analyses are required to evaluate the LEU core operation relative to that of the existing facility. These analyses cover neutronics, shielding, and thermal hydraulic topics that have been identified as having the potential to have reduced safety margins due to conversion to LEU fuel, or are required to support the required safety analyses documentation. The majority of these ancillary tasks have been identified in [1] and [2]. The purpose of this report is to document the ancillary safety analyses that have been performed at Argonne National Laboratory during the early stages of the LEU design effort, and to describe ongoing and anticipated analyses. For all analyses presented in this report, methodologies are utilized that are consistent with, or improved from, those used in analyses for the HEU Final Safety Analysis

  11. Periodic safety analyses; Les essais periodiques

    Energy Technology Data Exchange (ETDEWEB)

    Gouffon, A; Zermizoglou, R

    1990-12-01

    The IAEA Safety Guide 50-SG-S8 devoted to 'Safety Aspects of Foundations of Nuclear Power Plants' indicates that operator of a NPP should establish a program for inspection of safe operation during construction, start-up and service life of the plant for obtaining data needed for estimating the life time of structures and components. At the same time the program should ensure that the safety margins are appropriate. Periodic safety analysis are an important part of the safety inspection program. Periodic safety reports is a method for testing the whole system or a part of the safety system following the precise criteria. Periodic safety analyses are not meant for qualification of the plant components. Separate analyses are devoted to: start-up, qualification of components and materials, and aging. All these analyses are described in this presentation. The last chapter describes the experience obtained for PWR-900 and PWR-1300 units from 1986-1989.

  12. Development of the evaluation methods in reactor safety analyses and core characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In order to support the safety reviews by NRA on reactor safety design including the phenomena with multiple failures, the computer codes are developed and the safety evaluations with analyses are performed in the areas of thermal hydraulics and core characteristics evaluation. In the code preparation of safety analyses, the TRACE and RELAP5 code were prepared to conduct the safety analyses of LOCA and beyond design basis accidents with multiple failures. In the core physics code preparation, the functions of sensitivity and uncertainty analysis were incorporated in the lattice physics code CASMO-4. The verification of improved CASMO-4 /SIMULATE-3 was continued by using core physics data. (author)

  13. A concurrent diagnosis of microbiological food safety output and food safety management system performance: Cases from meat processing industries

    NARCIS (Netherlands)

    Luning, P.A.; Jacxsens, L.; Rovira, J.; Oses Gomez, S.; Uyttendaele, M.; Marcelis, W.J.

    2011-01-01

    Stakeholder requirements force companies to analyse their food safety management system (FSMS) performance to improve food safety. Performance is commonly analysed by checking compliance against preset requirements via audits/inspections, or actual food safety (FS) output is analysed by

  14. Response surface use in safety analyses

    International Nuclear Information System (INIS)

    Prosek, A.

    1999-01-01

    When thousands of complex computer code runs related to nuclear safety are needed for statistical analysis, the response surface is used to replace the computer code. The main purpose of the study was to develop and demonstrate a tool called optimal statistical estimator (OSE) intended for response surface generation of complex and non-linear phenomena. The performance of optimal statistical estimator was tested by the results of 59 different RELAP5/MOD3.2 code calculations of the small-break loss-of-coolant accident in a two loop pressurized water reactor. The results showed that OSE adequately predicted the response surface for the peak cladding temperature. Some good characteristic of the OSE like monotonic function between two neighbor points and independence on the number of output parameters suggest that OSE can be used for response surface generation of any safety or system parameter in the thermal-hydraulic safety analyses.(author)

  15. Evaluation of periodic safety status analyses

    International Nuclear Information System (INIS)

    Faber, C.; Staub, G.

    1997-01-01

    In order to carry out the evaluation of safety status analyses by the safety assessor within the periodical safety reviews of nuclear power plants safety goal oriented requirements have been formulated together with complementary evaluation criteria. Their application in an inter-disciplinary coopertion covering the subject areas involved facilitates a complete safety goal oriented assessment of the plant status. The procedure is outlined briefly by an example for the safety goal 'reactivity control' for BWRs. (orig.) [de

  16. Regulatory support activities of JNES by thermal-hydraulic and safety analyses

    International Nuclear Information System (INIS)

    Kasahara, Fumio

    2008-01-01

    Current status and some related topics on regulatory support activities of Japan Nuclear Energy Safety Organization (JNES) by thermal-hydraulic and safety analyses are reported. The safety of nuclear facilities is secured primarily by plant owners and operators. However, the regulatory body NISA (Nuclear and Industrial Safety Agency) has conducted a strict regulation to confirm the adequacy of the site condition as well as the basic and detailed design. The JNES has been conducting independent analyses from applicants (audit analyses, etc.) by direction of NISA and supporting its review. In addition to the audit analysis, thermal-hydraulic and safety analyses are used in such areas as analytical evaluation for investigation of causes of accidents and troubles, level 2 PSA for risk informed regulation, etc. Recent activities of audit analyses are for the application of Tsuruga 3 and 4 (APWR), the spent fuel storage facility for the establishment, and the LMFBR Monju for the core change. For the trouble event evaluation, the criticality accident analysis of Sika1 was carried out and the evaluation of effectiveness of accident management (AM) measure for Tomari 3 (PWR) and Monju was performed. The analytical codes for these evaluations are continuously revised by reflecting the state-of-art technical information and validated using the information provided by the data from JAEA, OECD project, etc. (author)

  17. An Empirical Analysis of Human Performance and Nuclear Safety Culture

    International Nuclear Information System (INIS)

    Jeffrey Joe; Larry G. Blackwood

    2006-01-01

    The purpose of this analysis, which was conducted for the US Nuclear Regulatory Commission (NRC), was to test whether an empirical connection exists between human performance and nuclear power plant safety culture. This was accomplished through analyzing the relationship between a measure of human performance and a plant's Safety Conscious Work Environment (SCWE). SCWE is an important component of safety culture the NRC has developed, but it is not synonymous with it. SCWE is an environment in which employees are encouraged to raise safety concerns both to their own management and to the NRC without fear of harassment, intimidation, retaliation, or discrimination. Because the relationship between human performance and allegations is intuitively reciprocal and both relationship directions need exploration, two series of analyses were performed. First, human performance data could be indicative of safety culture, so regression analyses were performed using human performance data to predict SCWE. It also is likely that safety culture contributes to human performance issues at a plant, so a second set of regressions were performed using allegations to predict HFIS results

  18. Safety balance: Analysis of safety systems; Bilans de surete: analyse par les organismes de surete

    Energy Technology Data Exchange (ETDEWEB)

    Delage, M; Giroux, C

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses.

  19. Thermal hydraulic reactor safety analyses and experiments

    International Nuclear Information System (INIS)

    Holmstroem, H.; Eerikaeinen, L.; Kervinen, T.; Kilpi, K.; Mattila, L.; Miettinen, J.; Yrjoelae, V.

    1989-04-01

    The report introduces the results of the thermal hydraulic reactor safety research performed in the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) during the years 1972-1987. Also practical applications i.e. analyses for the safety authorities and power companies are presented. The emphasis is on description of the state-of-the-art know how. The report describes VTT's most important computer codes, both those of foreign origin and those developed at VTT, and their assessment work, VTT's own experimental research, as well as international experimental projects and other forms of cooperation VTT has participated in. Appendix 8 contains a comprehensive list of the most important publications and technical reports produced. They present the content and results of the research in detail.(orig.)

  20. Is road safety management linked to road safety performance?

    Science.gov (United States)

    Papadimitriou, Eleonora; Yannis, George

    2013-10-01

    This research aims to explore the relationship between road safety management and road safety performance at country level. For that purpose, an appropriate theoretical framework is selected, namely the 'SUNflower' pyramid, which describes road safety management systems in terms of a five-level hierarchy: (i) structure and culture, (ii) programmes and measures, (iii) 'intermediate' outcomes'--safety performance indicators (SPIs), (iv) final outcomes--fatalities and injuries, and (v) social costs. For each layer of the pyramid, a composite indicator is implemented, on the basis of data for 30 European countries. Especially as regards road safety management indicators, these are estimated on the basis of Categorical Principal Component Analysis upon the responses of a dedicated road safety management questionnaire, jointly created and dispatched by the ETSC/PIN group and the 'DaCoTA' research project. Then, quasi-Poisson models and Beta regression models are developed for linking road safety management indicators and other indicators (i.e. background characteristics, SPIs) with road safety performance. In this context, different indicators of road safety performance are explored: mortality and fatality rates, percentage reduction in fatalities over a given period, a composite indicator of road safety final outcomes, and a composite indicator of 'intermediate' outcomes (SPIs). The results of the analyses suggest that road safety management can be described on the basis of three composite indicators: "vision and strategy", "budget, evaluation and reporting", and "measurement of road user attitudes and behaviours". Moreover, no direct statistical relationship could be established between road safety management indicators and final outcomes. However, a statistical relationship was found between road safety management and 'intermediate' outcomes, which were in turn found to affect 'final' outcomes, confirming the SUNflower approach on the consecutive effect of each layer

  1. Architecture Level Safety Analyses for Safety-Critical Systems

    Directory of Open Access Journals (Sweden)

    K. S. Kushal

    2017-01-01

    Full Text Available The dependency of complex embedded Safety-Critical Systems across Avionics and Aerospace domains on their underlying software and hardware components has gradually increased with progression in time. Such application domain systems are developed based on a complex integrated architecture, which is modular in nature. Engineering practices assured with system safety standards to manage the failure, faulty, and unsafe operational conditions are very much necessary. System safety analyses involve the analysis of complex software architecture of the system, a major aspect in leading to fatal consequences in the behaviour of Safety-Critical Systems, and provide high reliability and dependability factors during their development. In this paper, we propose an architecture fault modeling and the safety analyses approach that will aid in identifying and eliminating the design flaws. The formal foundations of SAE Architecture Analysis & Design Language (AADL augmented with the Error Model Annex (EMV are discussed. The fault propagation, failure behaviour, and the composite behaviour of the design flaws/failures are considered for architecture safety analysis. The illustration of the proposed approach is validated by implementing the Speed Control Unit of Power-Boat Autopilot (PBA system. The Error Model Annex (EMV is guided with the pattern of consideration and inclusion of probable failure scenarios and propagation of fault conditions in the Speed Control Unit of Power-Boat Autopilot (PBA. This helps in validating the system architecture with the detection of the error event in the model and its impact in the operational environment. This also provides an insight of the certification impact that these exceptional conditions pose at various criticality levels and design assurance levels and its implications in verifying and validating the designs.

  2. European passive plant program preliminary safety analyses to support system design

    International Nuclear Information System (INIS)

    Saiu, Gianfranco; Barucca, Luciana; King, K.J.

    1999-01-01

    In 1994, a group of European Utilities, together with Westinghouse and its Industrial Partner GENESI (an Italian consortium including ANSALDO and FIAT), initiated a program designated EPP (European Passive Plant) to evaluate Westinghouse Passive Nuclear Plant Technology for application in Europe. In the Phase 1 of the European Passive Plant Program which was completed in 1996, a 1000 MWe passive plant reference design (EP1000) was established which conforms to the European Utility Requirements (EUR) and is expected to meet the European Safety Authorities requirements. Phase 2 of the program was initiated in 1997 with the objective of developing the Nuclear Island design details and performing supporting analyses to start development of Safety Case Report (SCR) for submittal to European Licensing Authorities. The first part of Phase 2, 'Design Definition' phase (Phase 2A) was completed at the end of 1998, the main efforts being design definition of key systems and structures, development of the Nuclear Island layout, and performing preliminary safety analyses to support design efforts. Incorporation of the EUR has been a key design requirement for the EP1000 form the beginning of the program. Detailed design solutions to meet the EUR have been defined and the safety approach has also been developed based on the EUR guidelines. The present paper describes the EP1000 approach to safety analysis and, in particular, to the Design Extension Conditions that, according to the EUR, represent the preferred method for giving consideration to the Complex Sequences and Severe Accidents at the design stage without including them in the design bases conditions. Preliminary results of some DEC analyses and an overview of the probabilistic safety assessment (PSA) are also presented. (author)

  3. The role of CFD computer analyses in hydrogen safety management

    International Nuclear Information System (INIS)

    Komen, E.M.J; Visser, D.C; Roelofs, F.; Te Lintelo, J.G.T

    2014-01-01

    The risks of hydrogen release and combustion during a severe accident in a light water reactor have attracted considerable attention after the Fukushima accident in Japan. Reliable computer analyses are needed for the optimal design of hydrogen mitigation systems, like e.g. passive autocatalytic recombiners (PARs), and for the assessment of the associated residual risk of hydrogen combustion. Traditionally, so-called Lumped Parameter (LP) computer codes are being used for these purposes. In the last decade, significant progress has been made in the development, validation, and application of more detailed, three-dimensional Computational Fluid Dynamics (CFD) simulations for hydrogen safety analyses. The objective of the current paper is to address the following questions: - When are CFD computer analyses needed complementary to the traditional LP code analyses for hydrogen safety management? - What is the validation status of the CFD computer code for hydrogen distribution, mitigation, and combustion analyses? - Can CFD computer analyses nowadays be executed in practical and reliable way for full scale containments? The validation status and reliability of CFD code simulations will be illustrated by validation analyses performed for experiments executed in the PANDA, THAI, and ENACCEF facilities. (authors)

  4. Safety systems I/C equipment reliability analyses of the Kozloduy NPP units 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Halev, G; Christov, N [Risk Engineering Ltd., Sofia (Bulgaria)

    1996-12-31

    The purpose of the analysis is to assess the safety systems I/C equipment reliability. The assessment includes: quantification of the safety systems unavailability due to component failures; definition of the minimal cut sets leading to the analysed safety systems failure; quantification of the I/C equipment importance measures of the dominant contribution components. The safety systems I/C equipment reliability has been analysed using PSAPACK (a code for probabilistic safety assessment). Fault trees for the following safety systems of the Kozloduy-3 and Kozloduy-4 reactors have been constructed: neutron flow control equipment, reactor protection system, main coolant pumps, pressurizer safety valves `Sempell`, steam dump systems, spray system, low pressure injection system, emergency feeding water system, essential service water system. THree separate reports have been issued containing the performed analyses and results. 1 ref.

  5. Swiss-Slovak cooperation program: a training strategy for safety analyses

    International Nuclear Information System (INIS)

    Husarcek, J.

    2000-01-01

    During the 1996-1999 period, a new training strategy for safety analyses was implemented at the Slovak Nuclear Regulatory Authority (UJD) within the Swiss-Slovak cooperation programme in nuclear safety (SWISSLOVAK). The SWISSLOVAK project involved the recruitment, training, and integration of the newly established team into UJD's organizational structure. The training strategy consisted primarily of the following two elements: a) Probabilistic Safety Analysis (PSA) applications (regulatory review and technical evaluation of Level-1/Level-2 PSAs; PSA-based operational events analysis, PSA applications to assessment of Technical Specifications; and PSA-based hardware and/or procedure modifications) and b) Deterministic accident analyses (analysis of accidents and regulatory review of licensee Safety Analysis Reports; analysis of severe accidents/radiological releases and the potential impact of the containment and engineered safety systems, including the development of technical bases for emergency response planning; and application of deterministic methods for evaluation of accident management strategies/procedure modifications). The paper discusses the specific aspects of the training strategy performed at UJD in both the probabilistic and deterministic areas. The integration of team into UJD's organizational structure is described and examples of contributions of the team to UJD's statutory responsibilities are provided. (author)

  6. Criticality safety analyses in SKODA JS a.s

    International Nuclear Information System (INIS)

    Mikolas, P.; Svarny, J.

    1999-01-01

    This paper describes criticality safety analyses of spent fuel systems for storage and transport of spent fuel performed in SKODA JS s.r.o.. Analyses were performed for different systems both at NPP site including originally designed spent fuel pool with a large pitch between assemblies without any special absorbing material, high density spent fuel pool with an additional absorption by boron steel, depository rack for fresh fuel assemblies with a very large pitch between fuel assemblies, a container for transport of fresh fuel into the reactor pool and a cask for transport and storage of spent fuel and container for final storage depository. required subcriticality has been proven taking into account all possible unfavourable conditions, uncertainties etc. In two cases, burnup credit methodology is expected to be used. (Authors)

  7. Review of accident analyses performed at Mochovce NPP

    International Nuclear Information System (INIS)

    Siko, D.

    2000-01-01

    In this paper the review of accident analysis performed in NPP Mochovce V-1 is presented. The scope of these safety measures was defined and development in the T SSM for NPP Mochovce Nuclear Safety Improvements Report' issued in July 1995. The main objectives of these safety measures were the followings: (a) to establish the criteria for selection and classification of accidental events, as well as defining the list of initiating events to be analysed. Accident classification to the individual groups must be performed in accordance with RG 1.70 and IAEA recommendations 'Guidelines for Accidental Analysis of WWER NPP' (IAEA-EBR-WWER-01) to select boundary cases to be calculated from the scope of initiating events; (b ) to elaborate the accident analysis methodology that also includes acceptance criteria for their result evaluation, initial and boundary conditions, assumption related with the application of the single failure criteria, requirements on the analysis quality, used computer codes, as well as NPP models and input data for the accident analysis; (c) to perform the accident analysis for the Pre-operational Safety Report (POSAR); (d) to provide a synthetic report addressing the validity range of codes models and correlations, the assessment against relevant tests results, the evidence of the user qualification, the modernisation and nodding scheme for the plant and the justification of used computer codes. Analyses results showed that all acceptance criteria were met with satisfactory margin and design of the NPP Mochovce is accurate. (author)

  8. RETRAN safety analyses of the nuclear-powered ship Mutsu

    International Nuclear Information System (INIS)

    Yoshinori, N.; Ishida, T.; Tanaka, Y.; Yoshiaki, F.

    1983-01-01

    A number of operational transient analyses of the nuclear-powered ship Mutsu have been performed in response to Japanese nuclear safety regulatory concerns. The RETRAN and COBRA-IV computer codes were used to provide a quantitative basis for the safety evaluation of the plant. This evaluation includes a complete loss of load without reactor scram, an excessive load increase incident, and an accidental depressurization of the primary system. The minimum departure from nucleate boiling ratio remained in excess of 1.53 for these three transients. Hence, the integrity of the core was shown to be maintained during these transients. Comparing the transient behaviors with those of land-based pressurized water reactors, the characteristic features of the Mutsu reactor were presented and the safety of the plant under the operational transient conditions was confirmed

  9. Analysing context-dependent deviations in interacting with safety-critical systems

    International Nuclear Information System (INIS)

    Paterno, Fabio; Santoro, Carmen

    2006-01-01

    Mobile technology is penetrating many areas of human life. This implies that the context of use can vary in many respects. We present a method that aims to support designers in managing the complex design space when considering applications with varying contexts and help them to identify solutions that support users in performing their activities while preserving usability and safety. The method is a novel combination of an analysis of both potential deviations in task performance and most suitable information representations based on distributed cognition. The originality of the contribution is in providing a conceptual tool for better understanding the impact of context of use on user interaction in safety-critical domains. In order to present our approach we provide an example in which the implications of introducing new support through mobile devices in a safety-critical system are identified and analysed in terms of potential hazards

  10. Safety performance indicators used by the Russian Safety Regulatory Authority in its practical activities on nuclear power plant safety regulation

    International Nuclear Information System (INIS)

    Khazanov, A.L.

    2005-01-01

    The Sixth Department of the Nuclear, Industrial and Environmental Regulatory Authority of Russia, Scientific and Engineering Centre for Nuclear and Radiation Safety process, analyse and use the information on nuclear power plants (NPPs) operational experience or NPPs safety improvement. Safety performance indicators (SPIs), derived from processing of information on operational violations and analysis of annual NPP Safety Reports, are used as tools to determination of trends towards changing of characteristics of operational safety, to assess the effectiveness of corrective measures, to monitor and evaluate the current operational safety level of NPPs, to regulate NPP safety. This report includes a list of the basic SPIs, those used by the Russian safety regulatory authority in regulatory activity. Some of them are absent in list of IAEA-TECDOC-1141 ('Operational safety performance indicators for nuclear power plants'). (author)

  11. Plant safety and performance indicators for regulatory use

    International Nuclear Information System (INIS)

    Ferjancic, M.; Nemec, T.; Cimesa, S.

    2004-01-01

    Slovenian Nuclear Safety Administration (SNSA) supervises nuclear and radiological safety of Krsko NPP. This SNSA supervision is performed through inspections, safety evaluations of plant modifications and event analyses as well as with the safety and performance indicators (SPI) which are a valuable data source for plant safety monitoring. In the past SNSA relied on the SPI provided by Krsko NPP and did not have a set of SPI which would be more appropriate for regulatory use. In 2003 SNSA started with preparation of a new set of SPI which would be more suitable for performing the regulatory oversight of the plant. New internal SNSA procedure which is under preparation will define use and evaluation of SPI and will include definitions for the proposed set of SPI. According to the evaluation of SPI values in comparison with the limiting values and/or trending, the procedure will define SNSA response and actions. (author)

  12. The impact of safety analyses on the design of the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Koppenaal, T.J.; Yee, A.K.; Reisdorf, J.B.; Hall, B.W.

    1993-04-01

    Accident analyses are being performed to evaluate and document the safety of the Hanford Waste Vitrification Plant (HWVP). The safety of the HWVP is assessed by evaluating worst-case accident scenarios and determining the dose to offsite and onsite receptors. Air dispersion modeling is done with the GENII computer code. Three accidents are summarized in this paper, and their effects on the safety and the design of the HWVP are demonstrated

  13. Concepts and examples of safety analyses for radioactive waste repositories in continental geological formations

    International Nuclear Information System (INIS)

    1983-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of underground radioactive waste repositories. It is a companion to a general introductory document on the subject ''Safety Assessment for the Underground Disposal of Radioactive Wastes'', IAEA Safety Series No. 56, 1981, and reference to this earlier document will facilitate the reader's understanding of the present report. Since examples of safety analyses are summarized here, it is hoped that this document will contribute to providing a basis for a common understanding among authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing technical information, this document is also intended to stimulate further international discussion. The purposes of this report are: a) to identify the factors to be taken into account in radiological safety analyses of deep geological repositories, indicating as far as possible their relative importance during the various phases of system development; b) to show how these factors have been analysed in various safety assessment studies; and c) to comment on the merits of the selected and alternative approaches

  14. Concepts and examples of safety analyses for radioactive waste repositories in continental geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of underground radioactive waste repositories. It is a companion to a general introductory document on the subject ''Safety Assessment for the Underground Disposal of Radioactive Wastes'', IAEA Safety Series No. 56, 1981, and reference to this earlier document will facilitate the reader's understanding of the present report. Since examples of safety analyses are summarized here, it is hoped that this document will contribute to providing a basis for a common understanding among authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing technical information, this document is also intended to stimulate further international discussion. The purposes of this report are: a) to identify the factors to be taken into account in radiological safety analyses of deep geological repositories, indicating as far as possible their relative importance during the various phases of system development; b) to show how these factors have been analysed in various safety assessment studies; and c) to comment on the merits of the selected and alternative approaches.

  15. Safety and deterministic failure analyses in high-beta D-D tokamak reactors

    International Nuclear Information System (INIS)

    Selcow, E.C.

    1984-01-01

    Safety and deterministic failure analyses were performed to compare major component failure characteristics for different high-beta D-D tokamak reactors. The primary focus was on evaluating damage to the reactor facility. The analyses also considered potential hazards to the general public and operational personnel. Parametric designs of high-beta D-D tokamak reactors were developed, using WILDCAT as the reference. The size, and toroidal field strength were reduced, and the fusion power increased in an independent manner. These changes were expected to improve the economics of D-D tokamaks. Issues examined using these designs were radiation induced failurs, radiation safety, first wall failure from plasma disruptions, and toroidal field magnet coil failure

  16. Safety performance of preliminary KALIMER conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Hahn Dohee; Kim Kyoungdoo; Kwon Youngmin; Chang Wonpyo; Suk Soodong [Korea atomic Energy Resarch Inst., Taejon (Korea)

    1999-07-01

    The Korea Atomic Energy Research Institute (KAERI) is developing KALIMER (Korea Advanced Liquid Metal Reactor), which is a sodium cooled, 150 MWe pool-type reactor. The safety design of KALIMER emphasizes accident prevention by using passive processes, which can be accomplished by the safety design objectives including the utilization of inherent safety features. In order to assess the effectiveness of the inherent safety features in achieving the safety design objectives, a preliminary evaluation of ATWS performance for the KALIMER design has been performed with SSC-K code, which is a modified version of SSC-L code. KAERI's modification of the code includes development of reactivity feedback models for the core and a pool model for KALIMER reactor vessel. This paper describes the models for control rod driveline expansion, gas expansion module and the thermal hydraulic model for reactor pool and the results of preliminary analyses for unprotected loss of flow and loss o heat sink. (author)

  17. Safety performance of preliminary KALIMER conceptual design

    International Nuclear Information System (INIS)

    Hahn Dohee; Kim Kyoungdoo; Kwon Youngmin; Chang Wonpyo; Suk Soodong

    1999-01-01

    The Korea Atomic Energy Research Institute (KAERI) is developing KALIMER (Korea Advanced Liquid Metal Reactor), which is a sodium cooled, 150 MWe pool-type reactor. The safety design of KALIMER emphasizes accident prevention by using passive processes, which can be accomplished by the safety design objectives including the utilization of inherent safety features. In order to assess the effectiveness of the inherent safety features in achieving the safety design objectives, a preliminary evaluation of ATWS performance for the KALIMER design has been performed with SSC-K code, which is a modified version of SSC-L code. KAERI's modification of the code includes development of reactivity feedback models for the core and a pool model for KALIMER reactor vessel. This paper describes the models for control rod driveline expansion, gas expansion module and the thermal hydraulic model for reactor pool and the results of preliminary analyses for unprotected loss of flow and loss o heat sink. (author)

  18. Use of safety management practices for improving project performance.

    Science.gov (United States)

    Cheng, Eddie W L; Kelly, Stephen; Ryan, Neal

    2015-01-01

    Although site safety has long been a key research topic in the construction field, there is a lack of literature studying safety management practices (SMPs). The current research, therefore, aims to test the effect of SMPs on project performance. An empirical study was conducted in Hong Kong and the data collected were analysed with multiple regression analysis. Results suggest that 3 of the 15 SMPs, which were 'safety committee at project/site level', 'written safety policy', and 'safety training scheme' explained the variance in project performance significantly. Discussion about the impact of these three SMPs on construction was provided. Assuring safe construction should be an integral part of a construction project plan.

  19. Implementing partnerships in nonreactor facility safety analyses

    International Nuclear Information System (INIS)

    Courtney, J.C.; Perry, W.H.; Phipps, R.D.

    1996-01-01

    Faculty and students from LSU have been participating in nuclear safety analyses and radiation protection projects at ANL-W at INEL since 1973. A mutually beneficial relationship has evolved that has resulted in generation of safety-related studies acceptable to Argonne and DOE, NRC, and state regulatory groups. Most of the safety projects have involved the Hot Fuel Examination Facility or the Fuel Conditioning Facility; both are hot cells that receive spent fuel from EBR-II. A table shows some of the major projects at ANL-W that involved LSU students and faculty

  20. Experience of RIA safety analyses performance for NPP Temelin core arranged with TVSA-T fuel assemblies

    International Nuclear Information System (INIS)

    Kryukov, S.A.; Lizorkin, M.P.

    2010-01-01

    The contents of the presentation are as follows: 1. Definition of categories for initiating events; 2. Acceptance criteria for safety assessment; 3. Main aspects of safety assessment methodology; 4. Main stages of calculation analysis; 5. Interface with other parts of the core design; 6. Codes used for calculation; 6.1 Main performances of code package TIGR-1; 6.2 Main performances of code BIPR-7A; 7. TIGR-1 accounting of design margins in calculation of fuel rod powers; 8. Peculiar features of Instrumentation and Control System for Temelin NPP; 9. Calculations; 10. Checklist of margin data important for reload safety assessment. (P.A.)

  1. Safety analyses for high-temperature reactors

    International Nuclear Information System (INIS)

    Mueller, A.

    1978-01-01

    The safety evaluation of HTRs may be based on the three methods presented here: The licensing procedure, the probabilistic risk analysis, and the damage extent analysis. Thereby all safety aspects - from normal operation to the extreme (hypothetical) accidents - of the HTR are covered. The analyses within the licensing procedure of the HTR-1160 have shown that for normal operation and for the design basis accidents the radiation exposures remain clearly below the maximum permissible levels as prescribed by the radiation protection ordinance, so that no real hazard for the population will avise from them. (orig./RW) [de

  2. Passive safety injection experiments and analyses (PAHKO)

    International Nuclear Information System (INIS)

    Tuunanen, J.

    1998-01-01

    PAHKO project involved experiments on the PACTEL facility and computer simulations of selected experiments. The experiments focused on the performance of Passive Safety Injection Systems (PSIS) of Advanced Light Water Reactors (ALWRs) in Small Break Loss-Of-Coolant Accident (SBLOCA) conditions. The PSIS consisted of a Core Make-up Tank (CMT) and two pipelines (Pressure Balancing Line, PBL, and Injection Line, IL). The examined PSIS worked efficiently in SBLOCAs although the flow through the PSIS stopped temporarily if the break was very small and the hot water filled the CMT. The experiments demonstrated the importance of the flow distributor in the CMT to limit rapid condensation. The project included validation of three thermal-hydraulic computer codes (APROS, CATHARE and RELAP5). The analyses showed the codes are capable to simulate the overall behaviour of the transients. The detailed analyses of the results showed some models in the codes still need improvements. Especially, further development of models for thermal stratification, condensation and natural circulation flow with small driving forces would be necessary for accurate simulation of the PSIS phenomena. (orig.)

  3. Safety design analyses of Korea Advanced Liquid Metal Reactor

    International Nuclear Information System (INIS)

    Suk, S.D.; Park, C.K.

    2000-01-01

    The national long-term R and D program updated in 1997 requires Korea Atomic Energy Research Institute (KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self consistent design meeting a set of the major safety design requirements for accident prevention. Some of current emphasis include those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve supporting R and D programs of substance. This paper summarizes some of the results of engineering and design analyses performed for the safety of KALIMER. (author)

  4. Scoping analyses for the safety injection system configuration for Korean next generation reactor

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Song, Jin Ho; Park, Jong Kyoon

    1996-01-01

    Scoping analyses for the Safety Injection System (SIS) configuration for Korean Next Generation Reactor (KNGR) are performed in this study. The KNGR SIS consists of four mechanically separated hydraulic trains. Each hydraulic train consisting of a High Pressure Safety Injection (HPSI) pump and a Safety Injection Tank (SIT) is connected to the Direct Vessel Injection (DVI) nozzle located above the elevation of cold leg and thus injects water into the upper portion of reactor vessel annulus. Also, the KNGR is going to adopt the advanced design feature of passive fluidic device which will be installed in the discharge line of SIT to allow more effective use of borated water during the transient of large break LOCA. To determine the feasible configuration and capacity of SIT and HPSl pump with the elimination of the Low Pressure Safety Injection (LPSI) pump for KNGR, licensing design basis evaluations are performed for the limiting large break LOCA. The study shows that the DVI injection with the fluidic device SlT enhances the SIS performance by allowing more effective use of borated water for an extended period of time during the large break LOCA

  5. Determination of Safety Performance Grade of NPP Using Integrated Safety Performance Assessment (ISPA) Program

    International Nuclear Information System (INIS)

    Chung, Dae Wook

    2011-01-01

    Since the beginning of 2000, the safety regulation of nuclear power plant (NPP) has been challenged to be conducted more reasonable, effective and efficient way using risk and performance information. In the United States, USNRC established Reactor Oversight Process (ROP) in 2000 for improving the effectiveness of safety regulation of operating NPPs. The main idea of ROP is to classify the NPPs into 5 categories based on the results of safety performance assessment and to conduct graded regulatory programs according to categorization, which might be interpreted as 'Graded Regulation'. However, the classification of safety performance categories is highly comprehensive and sensitive process so that safety performance assessment program should be prepared in integrated, objective and quantitative manner. Furthermore, the results of assessment should characterize and categorize the actual level of safety performance of specific NPP, integrating all the substantial elements for assessing the safety performance. In consideration of particular regulatory environment in Korea, the integrated safety performance assessment (ISPA) program is being under development for the use in the determination of safety performance grade (SPG) of a NPP. The ISPA program consists of 6 individual assessment programs (4 quantitative and 2 qualitative) which cover the overall safety performance of NPP. Some of the assessment programs which are already implemented are used directly or modified for incorporating risk aspects. The others which are not existing regulatory programs are newly developed. Eventually, all the assessment results from individual assessment programs are produced and integrated to determine the safety performance grade of a specific NPP

  6. Building patient safety in intensive care nursing : Patient safety culture, team performance and simulation-based training

    OpenAIRE

    Ballangrud, Randi

    2013-01-01

    Aim: The overall aim of the thesis was to investigate patient safety culture, team performance and the use of simulation-based team training for building patient safety in intensive care nursing. Methods: Quantitative and qualitative methods were used. In Study I, 220 RNs from ten ICUs responded to a patient safety culture questionnaire analysed with statistics. Studies II-IV were based on an evaluation of a simulation-based team training programme. Studies II-III included 53 RNs from seven I...

  7. SCALE Graphical Developments for Improved Criticality Safety Analyses

    International Nuclear Information System (INIS)

    Barnett, D.L.; Bowman, S.M.; Horwedel, J.E.; Petrie, L.M.

    1999-01-01

    New computer graphic developments at Oak Ridge National Ridge National Laboratory (ORNL) are being used to provide visualization of criticality safety models and calculational results as well as tools for criticality safety analysis input preparation. The purpose of this paper is to present the status of current development efforts to continue to enhance the SCALE (Standardized Computer Analyses for Licensing Evaluations) computer software system. Applications for criticality safety analysis in the areas of 3-D model visualization, input preparation and execution via a graphical user interface (GUI), and two-dimensional (2-D) plotting of results are discussed

  8. Requirements on the provisional safety analyses and technical comparison of safety measures

    International Nuclear Information System (INIS)

    2010-04-01

    The concept of a Geological Underground Repository (SGT) was adopted by the Swiss Federal Council on April 2 nd , 2008. It fixes the goals and the safety technical criteria as well as the procedures for the choice of the site for an underground repository. Those responsible for waste management evaluate possible site regions according to the present status of geological knowledge and based on the safety criteria defined in SGT as well as on technical feasibility. In a first step, they propose geological repository sites for high level (HAA) and for low and intermediate level (SMA) radioactive wastes and justify their choice in a report delivered to the Swiss Federal Office of Energy. The Swiss Federal Council reviews the choices presented and, in the case of positive evaluation, approves them and considers them as an initial orientation. In a second step, based on the possible sites according to step 1, the waste management institution responsible has to reduce the repositories chosen for HAA and SMA by taking into account safety aspects, technical feasibility as well as space planning and socio-economical aspects. In making this choice, safety aspects have the highest priority. The criteria used for the evaluation in the first step have to be defined using provisional quantitative safety analyses. On the basis of the whole appraisal, including space planning and socio-economical aspects, those responsible for waste management propose at least two repository sites for HAA- and SMA-waste. Their selection is then reviewed by the authorities and, in the case of a positive assesment, the selection is taken as an intermediate result. The remaining sites are further studied to examine site choice and the delivery of a request for a design license. If necessary, the requested geological knowledge has to be confirmed by new investigations. Based on the results of the choosing process and a positive evaluation by the safety authorities, the Swiss Federal Council has to

  9. Supporting Fernald Site Closure with Integrated Health and Safety Plans as Documented Safety Analyses

    International Nuclear Information System (INIS)

    Kohler, S.; Brown, T.; Fisk, P.; Krach, F.; Klein, B.

    2004-01-01

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D and D) of over 200 structures, including eight major nuclear production plants. There is one of twelve nuclear facilities still remaining (Silos containing uranium ore residues) with its own safety basis documentation. This paper presents the status of the FCP's safety basis documentation program, illustrating that all of the former nuclear facilities and activities have now replaced. Basis of Interim Operations (BIOs) with I-HASPs as their safety basis during the closure process

  10. Safety performance indicators program

    International Nuclear Information System (INIS)

    Vidal, Patricia G.

    2004-01-01

    In 1997 the Nuclear Regulatory Authority (ARN) initiated a program to define and implement a Safety Performance Indicators System for the two operating nuclear power plants, Atucha I and Embalse. The objective of the program was to incorporate a set of safety performance indicators to be used as a new regulatory tool providing an additional view of the operational performance of the nuclear power plants, improving the ability to detect degradation on safety related areas. A set of twenty-four safety performance indicators was developed and improved throughout pilot implementation initiated in July 1998. This paper summarises the program development, the main criteria applied in each stage and the results obtained. (author)

  11. Safety analyses for sodium-cooled fast reactors with pelletized and sphere-pac oxide fuels within the FP-7 European project PELGRIMM - 15386

    International Nuclear Information System (INIS)

    Maschek, W.; Andriolo, L.; Matzerath-Boccaccini, C.; Delage, F.; Parisi, C.; Del Nevo, A.; Abbate, G.; Schmitt, D.

    2015-01-01

    The European FP-7 project PELGRIMM addresses the development of Minor-Actinide (MA) bearing oxide fuel for Sodium-cooled Fast Reactors. Optionally, both MA homogeneous recycling and heterogeneous recycling is investigated with pellet and sphere-pac fuel. A first safety assessment of sphere-pac fuelled cores should be given in the Work Package 4 of the project. This assessment is in continuity with the former FP-7 CP-ESFR project. Within the CP-ESFR project the CONF2 core design has been developed characterized by a core with a large upper sodium plenum to reduce the coolant void worth. This optimized core has been chosen for the safety analyses in PELGRIMM. The task within the PELGRIMM project is thus a safety assessment of the CONF2 core loaded either with pellets or with sphere-pac fuel. The investigations started with the design of the CONF2 core with sphere-pac fuel and the determination of core safety parameters and burn-up behavior. The neutronic analyses have been performed with the MCNPX code. Variants of the CONF2 core contain up to 4% Am in the fuel. The results revealed an extended void worth (core + upper plenum) for an Am free core of 1 up to 3 dollars for the 4% Am core. Thermal-hydraulic design analyses have been performed by RELAP5-3D. The accident simulations should be performed by different codes, some of which focus on the initiation phase of the accident, as SAS4A, BELLA and the MAT5DYN code, whereas the SIMMER-III code will also deal with the later accident phases and a potential whole core melting. The codes had to be adapted to the specifics of the sphere-pac fuel, in particular to the thermal conductivity and gap conditions. Analyses showed that the safety assessment has to take into account two main phases. Starting up the core, the green fuel shows a reduced fuel thermal conductivity. After restructuring within a couple of hours, the thermal conductivity recovers and the fuel temperature decreases. The main objective of the safety analyses

  12. Process hazards analysis (PrHA) program, bridging accident analyses and operational safety

    International Nuclear Information System (INIS)

    Richardson, J.A.; McKernan, S.A.; Vigil, M.J.

    2003-01-01

    Recently the Final Safety Analysis Report (FSAR) for the Plutonium Facility at Los Alamos National Laboratory, Technical Area 55 (TA-55) was revised and submitted to the US. Department of Energy (DOE). As a part of this effort, over seventy Process Hazards Analyses (PrHAs) were written and/or revised over the six years prior to the FSAR revision. TA-55 is a research, development, and production nuclear facility that primarily supports US. defense and space programs. Nuclear fuels and material research; material recovery, refining and analyses; and the casting, machining and fabrication of plutonium components are some of the activities conducted at TA-35. These operations involve a wide variety of industrial, chemical and nuclear hazards. Operational personnel along with safety analysts work as a team to prepare the PrHA. PrHAs describe the process; identi fy the hazards; and analyze hazards including determining hazard scenarios, their likelihood, and consequences. In addition, the interaction of the process to facility systems, structures and operational specific protective features are part of the PrHA. This information is rolled-up to determine bounding accidents and mitigating systems and structures. Further detailed accident analysis is performed for the bounding accidents and included in the FSAR. The FSAR is part of the Documented Safety Analysis (DSA) that defines the safety envelope for all facility operations in order to protect the worker, the public, and the environment. The DSA is in compliance with the US. Code of Federal Regulations, 10 CFR 830, Nuclear Safety Management and is approved by DOE. The DSA sets forth the bounding conditions necessary for the safe operation for the facility and is essentially a 'license to operate.' Safely of day-to-day operations is based on Hazard Control Plans (HCPs). Hazards are initially identified in the PrI-IA for the specific operation and act as input to the HCP. Specific protective features important to worker

  13. Safety analyses for an in-pile SCWR fuel qualification test loop

    Energy Technology Data Exchange (ETDEWEB)

    Schulenberg, T.; Raque, M. [Karlsruhe Inst. of Tech., Karlsruhe (Germany)

    2014-07-01

    As a nuclear facility cooled with supercritical water has never been built nor operated in the past, the planned SCWR fuel qualification test will give the first experience with supercritical water-cooled nuclear systems in general. With a fuel inventory of almost 1 kg of UO{sub 2} with almost 20% enrichment, the supercritical pressure test section inside a low pressure, pool type research reactor needs to be cooled properly even in case of a number of postulated design basis accidents. Depressurization systems and emergency cooling systems will need to be designed with similar reliability as for a prototype reactor to ensure the integrity of barriers retaining the radioactive material. The paper reports about the safety concept and summarizes the safety analyses which have been performed in this context. (author)

  14. Towards an Industrial Application of Statistical Uncertainty Analysis Methods to Multi-physical Modelling and Safety Analyses

    International Nuclear Information System (INIS)

    Zhang, Jinzhao; Segurado, Jacobo; Schneidesch, Christophe

    2013-01-01

    Since 1980's, Tractebel Engineering (TE) has being developed and applied a multi-physical modelling and safety analyses capability, based on a code package consisting of the best estimate 3D neutronic (PANTHER), system thermal hydraulic (RELAP5), core sub-channel thermal hydraulic (COBRA-3C), and fuel thermal mechanic (FRAPCON/FRAPTRAN) codes. A series of methodologies have been developed to perform and to license the reactor safety analysis and core reload design, based on the deterministic bounding approach. Following the recent trends in research and development as well as in industrial applications, TE has been working since 2010 towards the application of the statistical sensitivity and uncertainty analysis methods to the multi-physical modelling and licensing safety analyses. In this paper, the TE multi-physical modelling and safety analyses capability is first described, followed by the proposed TE best estimate plus statistical uncertainty analysis method (BESUAM). The chosen statistical sensitivity and uncertainty analysis methods (non-parametric order statistic method or bootstrap) and tool (DAKOTA) are then presented, followed by some preliminary results of their applications to FRAPCON/FRAPTRAN simulation of OECD RIA fuel rod codes benchmark and RELAP5/MOD3.3 simulation of THTF tests. (authors)

  15. Performance standards of road safety management

    Directory of Open Access Journals (Sweden)

    Čabarkapa Milenko R.

    2016-01-01

    Full Text Available Road safety management controlling means the process of finding out the information whether the road safety is improving in a measure to achieve the objectives. The process of control consists of three basic elements: definition of performances and standards, measurement of current performances and comparison with the set standards, and improvement of current performances, if they deviate from the set standards. The performance standards of road safety management system are focused on a performances measurement, in terms of their design and characteristics, in order to support the performances improvement of road safety system and thus, ultimately, improve the road safety. Defining the performance standards of road safety management system, except that determines the design of the system for performances measurement, directly sets requirements whose fulfillment will produce a road safety improvement. The road safety management system, based on the performance standards of road safety, with a focus on results, will produce the continuous improvement of road safety, achieving the long-term 'vision zero', the philosophy of road safety, that human life and health take priority over mobility and other traffic objectives of the road traffic.

  16. Safety analyses of the electrical systems on VVER NPP

    International Nuclear Information System (INIS)

    Andel, J.

    2004-01-01

    Energoprojekt Praha has been the main entity responsible for the section on 'Electrical Systems' in the safety reports of the Temelin, Dukovany and Mochovce nuclear power plants. The section comprises 2 main chapters, viz. Offsite Power System (issues of electrical energy production in main generators and the link to the offsite transmission grid) and Onsite Power Systems (AC and DC auxiliary system, both normal and safety related). In the chapter on the off-site system, attention is paid to the analysis of transmission capacity of the 400 kV lines, analysis of transient stability, multiple fault analyses, and probabilistic analyses of the grid and NPP power system reliability. In the chapter on the on-site system, attention is paid to the power balances of the electrical sources and switchboards set for various operational and accident modes, checks of loading and function of service and backup sources, short circuit current calculations, analyses of electrical protections, and analyses of the function and sizing of emergency sources (DG sets and UPS systems). (P.A.)

  17. Safety assessment, safety performance indicators at the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Baji, C.; Vamos, G.; Toth, J.

    2001-01-01

    The Paks Nuclear Power Plant has been using different methods of safety assessment (event analysis, self-assessment, probabilistic safety analysis), including performance indicators characterizing both operational and safety performance since the early years of operation of the plant. Regarding the safety performance, the indicators include safety system performance, number of scrams, release of radioactive materials, number of safety significant events, industrial safety indicator, etc. The Paks NPP also reports a set of ten indicators to WANO Performance Indicator Programme which, among others, include safety related indicators as well. However, a more systematic approach to structuring and trending safety indicators is needed so that they can contribute to the enhancement of the operational safety. A more comprehensive set of indicators and a systematic evaluation process was introduced in 1996. The performance indicators framework proposed by the IAEA was adapted to Paks in this year to further improve the process. Safety culture assessment and characterizing safety culture is part of the assessment process. (author)

  18. The RISMC approach to perform advanced PRA analyses - 15332

    International Nuclear Information System (INIS)

    Mandelli, D.; Smith, C.; Riley, T.; Nielsen, J.; Alfonsi, A.; Rabiti, C.; Cogliati, J.

    2015-01-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power up-rates. In order to evaluate the impact of these two factors on the safety of the plant, the RISMC (Risk Informed Safety Margin Characterization) Pathway aims to develop simulation-based tools and methods to assess risks for existing nuclear power plants in order to optimize safety. This pathway, by developing new methods, is extending the state-of-the-practice methods that have been traditionally based on logic structures such as Event-Trees and Fault-Trees. These static types of models mimic system response in an inductive and deductive way respectively, yet are restrictive in the ways they can represent spatial and temporal constructs. RISMC analyses are performed by using a combination of thermal-hydraulic codes and a stochastic analysis tool (RAVEN)currently under development at the Idaho National Laboratory. This paper presents a case study in order to show the capabilities of the RISMC methodology to assess impact of power up-rate of a boiling water reactor system during a station blackout accident scenario. We employ the system simulator code, RELAP5-3D, coupled with RAVEN which perform the stochastic analysis. Our analysis is in fact performed by: 1) sampling values of a set of parameters from the uncertainty space of interest, 2) simulating the system behavior for that specific set of parameter values and 3) analyzing the set of simulation runs. Results obtained give a detailed investigation of the issues associated with a plant power up-rate including the effects of station blackout accident scenarios. We are able to quantify how the timing of specific events was impacted by a higher nominal reactor core power. Such safety insights can provide useful information to the decision makers to perform risk informed margins management

  19. Reliability and safety analyses under fuzziness

    International Nuclear Information System (INIS)

    Onisawa, T.; Kacprzyk, J.

    1995-01-01

    Fuzzy theory, for example possibility theory, is compatible with probability theory. What is shown so far is that probability theory needs not be replaced by fuzzy theory, but rather that the former works much better in applications if it is combined with the latter. In fact, it is said that there are two essential uncertainties in the field of reliability and safety analyses: One is a probabilistic uncertainty which is more relevant for mechanical systems and the natural environment, and the other is fuzziness (imprecision) caused by the existence of human beings in systems. The classical probability theory alone is therefore not sufficient to deal with uncertainties in humanistic system. In such a context this collection of works will put a milestone in the arguments of probability theory and fuzzy theory. This volume covers fault analysis, life time analysis, reliability, quality control, safety analysis and risk analysis. (orig./DG). 106 figs

  20. Scientific Approach for Optimising Performance, Health and Safety in High-Altitude Observatories

    Science.gov (United States)

    Böcker, Michael; Vogy, Joachim; Nolle-Gösser, Tanja

    2008-09-01

    The ESO coordinated study “Optimising Performance, Health and Safety in High-Altitude Observatories” is based on a psychological approach using a questionnaire for data collection and assessment of high-altitude effects. During 2007 and 2008, data from 28 staff and visitors involved in APEX and ALMA were collected and analysed and the first results of the study are summarised. While there is a lot of information about biomedical changes at high altitude, relatively few studies have focussed on psychological changes, for example with respect to performance of mental tasks, safety consciousness and emotions. Both, biomedical and psychological changes are relevant factors in occupational safety and health. The results of the questionnaire on safety, health and performance issues demonstrate that the working conditions at high altitude are less detrimental than expected.

  1. Key performance outcomes of patient safety curricula: root cause analysis, failure mode and effects analysis, and structured communications skills.

    Science.gov (United States)

    Fassett, William E

    2011-10-10

    As colleges and schools of pharmacy develop core courses related to patient safety, course-level outcomes will need to include both knowledge and performance measures. Three key performance outcomes for patient safety coursework, measured at the course level, are the ability to perform root cause analyses and healthcare failure mode effects analyses, and the ability to generate effective safety communications using structured formats such as the Situation-Background-Assessment-Recommendation (SBAR) situational briefing model. Each of these skills is widely used in patient safety work and competence in their use is essential for a pharmacist's ability to contribute as a member of a patient safety team.

  2. Use of the deterministic safety analyses in support to the NPP Krsko modification

    International Nuclear Information System (INIS)

    Feretic, D.; Cavlina, N.; Debrecin, N.; Grgic, D.; Bajs, T.; Spalj, S.

    2004-01-01

    The ultimate goal of the safety analysis is to verify that Nuclear Power Plant (NPP) meets safety and operational requirements. To this aim it is necessary to demonstrate that plant safety has not been deteriorated in the case of the modifications to the plant Systems, Structures and Components (SSC) or changes to the plant procedures. In addition, safety analyses are needed in the case of reassessment of an existing plant. The reasons for reassessment may be different, e.g. due to the changes in the methodology and assumptions used in the original design, if the original design basis or acceptance criteria may no longer be adequate, if the safety analysis tools used may have been superseded by more sophisticated methods or if the original design basis may no longer be met. The operation of the NPP Krsko has experienced numerous changes from the original design for the majority of the reasons that have been mentioned before. On the other side, the application of the large best-estimate thermalhydraulic codes has evolved to the wide spread support in the operation of the NPP: compliance with the regulatory goals, support to the PSA studies, analysis of the operational transients, plant modifications studies, equipment qualification, training of the operators, preparation of the operating procedures, etc. This trend has been followed at the Faculty of Electrical Engineering Zagreb (FER) and applied to the on-going needs due to the modifications and changes at NPP Krsko. In this paper, an overview of the deterministic safety analyses performed at FER in the support to the NPP Krsko modifications and changes is presented.(author)

  3. Validation of risk-based performance indicators: Safety system function trends

    International Nuclear Information System (INIS)

    Boccio, J.L.; Vesely, W.E.; Azarm, M.A.; Carbonaro, J.F.; Usher, J.L.; Oden, N.

    1989-10-01

    This report describes and applies a process for validating a model for a risk-based performance indicator. The purpose of the risk-based indicator evaluated, Safety System Function Trend (SSFT), is to monitor the unavailability of selected safety systems. Interim validation of this indicator is based on three aspects: a theoretical basis, an empirical basis relying on statistical correlations, and case studies employing 25 plant years of historical data collected from five plants for a number of safety systems. Results using the SSFT model are encouraging. Application of the model through case studies dealing with the performance of important safety systems shows that statistically significant trends in, and levels of, system performance can be discerned which thereby can provide leading indications of degrading and/or improving performances. Methods for developing system performance tolerance bounds are discussed and applied to aid in the interpretation of the trends in this risk-based indicator. Some additional characteristics of the SSFT indicator, learned through the data-collection efforts and subsequent data analyses performed, are also discussed. The usefulness and practicality of other data sources for validation purposes are explored. Further validation of this indicator is noted. Also, additional research is underway in developing a more detailed estimator of system unavailability. 9 refs., 18 figs., 5 tabs

  4. Nuclear power plants: Results of recent safety analyses

    International Nuclear Information System (INIS)

    Steinmetz, E.

    1987-01-01

    The contributions deal with the problems posed by low radiation doses, with the information currently available from analyses of the Chernobyl reactor accident, and with risk assessments in connection with nuclear power plant accidents. Other points of interest include latest results on fission product release from reactor core or reactor building, advanced atmospheric dispersion models for incident and accident analyses, reliability studies on safety systems, and assessment of fire hazard in nuclear installations. The various contributions are found as separate entries in the database. (DG) [de

  5. Radiation physics and shielding codes and analyses applied to design-assist and safety analyses of CANDUR and ACRTM reactors

    International Nuclear Information System (INIS)

    Aydogdu, K.; Boss, C. R.

    2006-01-01

    This paper discusses the radiation physics and shielding codes and analyses applied in the design of CANDU and ACR reactors. The focus is on the types of analyses undertaken rather than the inputs supplied to the engineering disciplines. Nevertheless, the discussion does show how these analyses contribute to the engineering design. Analyses in radiation physics and shielding can be categorized as either design-assist or safety and licensing (accident) analyses. Many of the analyses undertaken are designated 'design-assist' where the analyses are used to generate recommendations that directly influence plant design. These recommendations are directed at mitigating or reducing the radiation hazard of the nuclear power plant with engineered systems and components. Thus the analyses serve a primary safety function by ensuring the plant can be operated with acceptable radiation hazards to the workers and public. In addition to this role of design assist, radiation physics and shielding codes are also deployed in safety and licensing assessments of the consequences of radioactive releases of gaseous and liquid effluents during normal operation and gaseous effluents following accidents. In the latter category, the final consequences of accident sequences, expressed in terms of radiation dose to members of the public, and inputs to accident analysis, e.g., decay heat in fuel following a loss-of-coolant accident, are also calculated. Another role of the analyses is to demonstrate that the design of the plant satisfies the principle of ALARA (as low as reasonably achievable) radiation doses. This principle is applied throughout the design process to minimize worker and public doses. The principle of ALARA is an inherent part of all design-assist recommendations and safety and licensing assessments. The main focus of an ALARA exercise at the design stage is to minimize the radiation hazards at the source. This exploits material selection and impurity specifications and relies

  6. Food safety performance indicators to benchmark food safety output of food safety management systems.

    Science.gov (United States)

    Jacxsens, L; Uyttendaele, M; Devlieghere, F; Rovira, J; Gomez, S Oses; Luning, P A

    2010-07-31

    There is a need to measure the food safety performance in the agri-food chain without performing actual microbiological analysis. A food safety performance diagnosis, based on seven indicators and corresponding assessment grids have been developed and validated in nine European food businesses. Validation was conducted on the basis of an extensive microbiological assessment scheme (MAS). The assumption behind the food safety performance diagnosis is that food businesses which evaluate the performance of their food safety management system in a more structured way and according to very strict and specific criteria will have a better insight in their actual microbiological food safety performance, because food safety problems will be more systematically detected. The diagnosis can be a useful tool to have a first indication about the microbiological performance of a food safety management system present in a food business. Moreover, the diagnosis can be used in quantitative studies to get insight in the effect of interventions on sector or governmental level. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Reviewing real-time performance of nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Preckshot, G.G.

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems

  8. Reviewing real-time performance of nuclear reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Preckshot, G.G. [Lawrence Livermore National Lab., CA (United States)

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  9. Safety demonstration analyses for severe accident of fresh nuclear fuel transport packages at JAERI

    International Nuclear Information System (INIS)

    Yamada, K.; Watanabe, K.; Nomura, Y.; Okuno, H.; Miyoshi, Y.

    2004-01-01

    It is expected in the near future that more and more fresh nuclear fuel will be transported in a variety of transport packages to cope with increasing demand from nuclear fuel cycle facilities. Accordingly, safety demonstration analyses of these methods are planned and conducted at JAERI under contract with the Ministry of Economy, Trade and Industry of Japan. These analyses are conducted part of a four year plan from 2001 to 2004 to verify integrity of packaging against leakage of radioactive material in the case of a severe accident envisioned to occur during transportation, for the purpose of gaining public acceptance of such nuclear fuel activities. In order to create the accident scenarios, actual transportation routes were surveyed, accident or incident records were tracked, international radioactive material transport regulations such as IAEA rules were investigated and, thus, accident conditions leading to mechanical damage and thermal failure were selected for inclusion in the scenario. As a result, the worst-case conditions of run-off-the-road accidents were incorporated, where there is impact against a concrete or asphalt surface. Fire accidents were assumed to occur after collision with a tank truck carrying lots of inflammable material or destruction by fire after collision inside a tunnel. The impact analyses were performed by using three-dimensional elements according to the general purpose impact analysis code LS-DYNA. Leak-tightness of the package was maintained even in the severe impact accident scenario. In addition, the thermal analyses were performed by using two-dimensional elements according to the general purpose finite element method computer code ABAQUS. As a result of these analyses, the integrity of the inside packaging component was found to be sufficient to maintain a leak-tight state, confirming its safety

  10. Evaluation of operating experience for early recognition of deteriorating safety performance

    International Nuclear Information System (INIS)

    Beckmerhagen, I.A.; Berg, H.P.

    2004-01-01

    One of the most difficult challenges facing nuclear power plants is to recognize the early signs of degrading safety performance before regulatory requirements are imposed or serious incidents or accidents occur. Today, the nuclear industry is striving for collecting more information on occurrences that could improve the operational safety performance. To achieve this, the reporting threshold has been lowered from incidents to anomalies with minor or no impact to safety. Industry experience (also outside nuclear industry) has shown that these are typical issues which should be considered when looking for such early warning signs. Therefore, it is important that nuclear power plant operators have the capability to trend, analyse and recognize early warning signs of deteriorating performance. It is necessary that plant operators are sensitive to these warning signs which may not be immediately evident. Reviewing operating experience is one of the main tasks for plant operators in their daily activities. Therefore, self assessment should be at the centre of any operational safety performance programme. One way of applying a self assessment program is through the following four basic elements: operational data, events, safety basis, and related experience. This approach will be described in the paper in more details. (authors)

  11. Safety and performance assessment of geologic disposal systems for nuclear wastes

    International Nuclear Information System (INIS)

    Peltonen, E.

    1987-01-01

    This thesis presents a methodology for the safety and performance assesment of final disposal of nuclear wastes into crystalline bedrock. The applicability of radiation protection objectives is discussed, as well as the goals of the assessment in the various repository system development phases. Due consideration is given to the description of the pertinent analysis methods and to the comprehensive model system. The methodology has been applied to assess the acceptability of the basic disposal concepts and to study the possibilities for the optimization of protection. Furthermore, performance of different components in the multiple barrier disposal systems is estimated. The waste types dealt with are low- and intermediate-level waste as well as high-level spent nuclear fuel from a nuclear power plant. In addition, an option of high-level vitrified waste from reprocessing of spent fuel is taken into account. On the basis of the various analyses carried out it can be concluded that the disposal of different nuclear wastes in the Finnish bedrock in properly designed repositories meets the radiation protection objectives with good confidence. In addition, the studies indicate that the safety margins are considerable. This is due to the fact that the overall performance of the multiple barrier disposal systems analysed is not sensitive to possible unfavourable changes in barrier properties. From the optimization of protection point of view it can be concluded that there is no need to develop more effective repository designs than those analysed in this thesis. In fact, the results indicate that the most sophisticated designs have already gone beyond an optimal level of safety

  12. Quality assurance requirements for the computer software and safety analyses

    International Nuclear Information System (INIS)

    Husarecek, J.

    1992-01-01

    The requirements are given as placed on the development, procurement, maintenance, and application of software for the creation or processing of data during the design, construction, operation, repair, maintenance and safety-related upgrading of nuclear power plants. The verification and validation processes are highlighted, and the requirements put on the software documentation are outlined. The general quality assurance principles applied to safety analyses are characterized. (J.B.). 1 ref

  13. Indicators of safety culture - selection and utilization of leading safety performance indicators

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Teemu; Pietikaeinen, Elina (VTT, Technical Research Centre of Finland (Finland))

    2010-03-15

    Safety indicators play a role in providing information on organizational performance, motivating people to work on safety and increasing organizational potential for safety. The aim of this report is to provide an overview on leading safety indicators in the domain of nuclear safety. The report explains the distinction between lead and lag indicators and proposes a framework of three types of safety performance indicators - feedback, monitor and drive indicators. Finally the report provides guidance for nuclear energy organizations for selecting and interpreting safety indicators. It proposes the use of safety culture as a leading safety performance indicator and offers an example list of potential indicators in all three categories. The report concludes that monitor and drive indicators are so called lead indicators. Drive indicators are chosen priority areas of organizational safety activity. They are based on the underlying safety model and potential safety activities and safety policy derived from it. Drive indicators influence control measures that manage the socio technical system; change, maintain, reinforce, or reduce something. Monitor indicators provide a view on the dynamics of the system in question; the activities taking place, abilities, skills and motivation of the personnel, routines and practices - the organizational potential for safety. They also monitor the efficacy of the control measures that are used to manage the socio technical system. Typically the safety performance indicators that are used are lagging (feedback) indicators that measure the outcomes of the socio technical system. Besides feedback indicators, organizations should also acknowledge the important role of monitor and drive indicators in managing safety. The selection and use of safety performance indicators is always based on an understanding (a model) of the socio technical system and safety. The safety model defines what risks are perceived. It is important that the safety

  14. Indicators of safety culture - selection and utilization of leading safety performance indicators

    International Nuclear Information System (INIS)

    Reiman, Teemu; Pietikaeinen, Elina

    2010-03-01

    Safety indicators play a role in providing information on organizational performance, motivating people to work on safety and increasing organizational potential for safety. The aim of this report is to provide an overview on leading safety indicators in the domain of nuclear safety. The report explains the distinction between lead and lag indicators and proposes a framework of three types of safety performance indicators - feedback, monitor and drive indicators. Finally the report provides guidance for nuclear energy organizations for selecting and interpreting safety indicators. It proposes the use of safety culture as a leading safety performance indicator and offers an example list of potential indicators in all three categories. The report concludes that monitor and drive indicators are so called lead indicators. Drive indicators are chosen priority areas of organizational safety activity. They are based on the underlying safety model and potential safety activities and safety policy derived from it. Drive indicators influence control measures that manage the socio technical system; change, maintain, reinforce, or reduce something. Monitor indicators provide a view on the dynamics of the system in question; the activities taking place, abilities, skills and motivation of the personnel, routines and practices - the organizational potential for safety. They also monitor the efficacy of the control measures that are used to manage the socio technical system. Typically the safety performance indicators that are used are lagging (feedback) indicators that measure the outcomes of the socio technical system. Besides feedback indicators, organizations should also acknowledge the important role of monitor and drive indicators in managing safety. The selection and use of safety performance indicators is always based on an understanding (a model) of the socio technical system and safety. The safety model defines what risks are perceived. It is important that the safety

  15. C4P cross-section libraries for safety analyses with SIMMER and related studies

    International Nuclear Information System (INIS)

    Rineiski, A.; Sinitsa, V.; Gabrielli, F.; Maschek, W.

    2011-01-01

    A code and data system, C 4 P, is under development at KIT. It includes fine-group master libraries and tools for generating problem-oriented cross-section libraries, primarily for safety studies with the SIMMER code and related analyses. In the paper, the 560-group master library and problem oriented 40-group and 72-group cross-section libraries, for thermal and fast systems, respectively, are described and their performances are investigated. (author)

  16. Development of safety performance indicators for HANARO

    International Nuclear Information System (INIS)

    Wu, Jong-Sup; Jung, Hoan-Sung; Ahn, Guk-Hoon; Lee, Kye-Hong; Lim, In-Cheol

    2007-01-01

    The nuclear facilities need an extensive basis for ensuring their safety. An operating organization should conduct its operation and utilization important to the safety in accordance with approved procedures and regulations. The general aims of a management system for nuclear facilities are to improve the safety performance through a planning, control and supervision of safety related activities and to foster a strong safety culture. The effectiveness of a management system can be monitored and measured to confirm the ability of its processes to achieve the intended safety performance by an assessment of the operational performance. The Operational Safety Performance Indicators, also known as SPI, help an organization define and measure a progress with regard to safety activity goals. The elements of a SPI are quantifiable measurements that reflect the critical success factors of an organizational safety. Since 1995, efforts have been directed towards the elaboration of a framework for the establishment of an operational safety performance indicator program in nuclear power plants (NPP). IAEA-TECDOC-1141, 'Operational safety performance indicators for NPP' attempted to provide a frame work for an identification of performance indicators which have a relationship to the desired safety attributes, and therefore, to a safe plant operation. Three key attributes of a smooth operation, an operation with a low risk, and an operation with a positive safety attitude, were recommended, which are associated with a safe operation. Because these attributes cannot be directly measured, an indicator structure is expanded further until a level of easily quantifiable or directly measurable indicators is identified. The intention of this approach is to use quantitative information provided by the specific indicators and to analyze performance trends relative to established goals. The safety activities in HANARO have been continuously conducted to enhance its safe operation. HANARO

  17. Critical review of safety performance metrics

    NARCIS (Netherlands)

    Karanikas, Nektarios

    2016-01-01

    Various tools for safety performance measurement have been introduced in order to fulfil the need for safety monitoring in organisations, which is tightly related to their overall performance and achievement of their business goals. Such tools include accident rates, benchmarking, safety culture and

  18. Development of safety performance indicators of regulatory interest (SAFPER) in Pakistan

    International Nuclear Information System (INIS)

    Khatoon, Abida

    2002-01-01

    enhanced only if meaningful goals and targets are established); - analysis of overall plant performance; - safety culture indicator (qualitative indicator). Some of the indicators, like Sudden outages, unavailability of Safety Systems, Collective Radiation Exposure, Station Effluents, are analysed under Operating Performance parameter of KANUPP Report for the period 1994-1998. As observed from the findings by DNSRP inspectors and corrective actions taken by KANUPP during regulatory inspections and the trend analysis of the safety performance indicators for Workers Radiation Safety it can be concluded that the Regulatory Body in Pakistan is performing its responsibility in an effective manner with the co-operation of the Management of the Utility. It is concluded that the general trend observed during this study is expected from an old plant like KANUPP. The encouraging aspect which matters for the Regulators is the trend observed for the radiation dose internal to external ratio for the period 1994 to 1998. This ratio has started decreasing now after doing some maintenance work. Another important parameter of safety concern is the number of forced outages which have been decreasing from 1994 to 1998. Kanupp is facing operational problems mainly due to its Ageing and some other maintenance activities. These conditions can cause safety concerns that, if not appropriately addressed, would require the licensee to shut down the plant. This deficiency will be rectified to a large extent when the effort to produce a revised full scope PSAR is complete, and a new license issued. (author)

  19. Sensitivity and uncertainty analyses applied to criticality safety validation. Volume 2

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Hopper, C.M.; Parks, C.V.

    1999-01-01

    This report presents the application of sensitivity and uncertainty (S/U) analysis methodologies developed in Volume 1 to the code/data validation tasks of a criticality safety computational study. Sensitivity and uncertainty analysis methods were first developed for application to fast reactor studies in the 1970s. This work has revitalized and updated the existing S/U computational capabilities such that they can be used as prototypic modules of the SCALE code system, which contains criticality analysis tools currently in use by criticality safety practitioners. After complete development, simplified tools are expected to be released for general use. The methods for application of S/U and generalized linear-least-square methodology (GLLSM) tools to the criticality safety validation procedures were described in Volume 1 of this report. Volume 2 of this report presents the application of these procedures to the validation of criticality safety analyses supporting uranium operations where enrichments are greater than 5 wt %. Specifically, the traditional k eff trending analyses are compared with newly developed k eff trending procedures, utilizing the D and c k coefficients described in Volume 1. These newly developed procedures are applied to a family of postulated systems involving U(11)O 2 fuel, with H/X values ranging from 0--1,000. These analyses produced a series of guidance and recommendations for the general usage of these various techniques. Recommendations for future work are also detailed

  20. Safety and sensitivity analyses of a generic geologic disposal system for high-level radioactive waste

    International Nuclear Information System (INIS)

    Kimura, Hideo; Takahashi, Tomoyuki; Shima, Shigeki; Matsuzuru, Hideo

    1994-11-01

    This report describes safety and sensitivity analyses of a generic geologic disposal system for HLW, using a GSRW code and an automated sensitivity analysis methodology based on the Differential Algebra. An exposure scenario considered here is based on a normal evolution scenario which excludes events attributable to probabilistic alterations in the environment. The results of sensitivity analyses indicate that parameters related to a homogeneous rock surrounding a disposal facility have higher sensitivities to the output analyzed here than those of a fractured zone and engineered barriers. The sensitivity analysis methodology provides technical information which might be bases for the optimization of design of the disposal facility. Safety analyses were performed on the reference disposal system which involve HLW in amounts corresponding to 16,000 MTU of spent fuels. The individual dose equivalent due to the exposure pathway ingesting drinking water was calculated using both the conservative and realistic values of geochemical parameters. In both cases, the committed dose equivalent evaluated here is the order of 10 -7 Sv, and thus geologic disposal of HLW may be feasible if the disposal conditions assumed here remain unchanged throughout the periods assessed here. (author)

  1. Reentry safety for the Topaz II Space Reactor: Issues and analyses

    International Nuclear Information System (INIS)

    Connell, L.W.; Trost, L.C.

    1994-03-01

    This report documents the reentry safety analyses conducted for the TOPAZ II Nuclear Electric Propulsion Space Test Program (NEPSTP). Scoping calculations were performed on the reentry aerothermal breakup and ground footprint of reactor core debris. The calculations were used to assess the risks associated with radiologically cold reentry accidents and to determine if constraints should be placed on the core configuration for such accidents. Three risk factors were considered: inadvertent criticality upon reentry impact, atmospheric dispersal of U-235 fuel, and the Special Nuclear Material Safeguards risks. Results indicate that the risks associated with cold reentry are very low regardless of the core configuration. Core configuration constraints were therefore not established for radiologically cold reentry accidents

  2. Best Estimate plus Uncertainty (BEPU) Analyses in the IAEA Safety Standards

    International Nuclear Information System (INIS)

    Dusic, Milorad; )

    2013-01-01

    The Safety Standards Series establishes an essential basis for safety and represents the broadest international consensus. Safety Standards Series publications are categorized into: Safety Fundamental (Present the overall objectives, concepts and principles of protection and safety, they are the policy documents of the safety standards), Safety Requirements (Establish requirements that must be met to ensure the protection and safety of people and the environment, both now and in the future), and Safety Guides (Provide guidance, in the form of more detailed actions, conditions or procedures that can be used to comply with the Requirements). The incorporation of more detailed requirements, in accordance with national practice, may still be necessary. There should be only one set of international safety standards. Each safety standard will be reviewed by the relevant committee or by the commission every five years. Best Estimate plus Uncertainty (BEPU) Analyses are approached in the following IAEA Safety Standards: - Safety Requirements SSR 2/1 - Safety of NPPs, Design (Revision of NS-R-1); - General Safety Requirement GSR Part 4: Safety Assessment for Facilities and Activities; - Safety Guide SSG-2 Deterministic Safety Analysis for Nuclear Power Plants. NUSSC suggested that new safety guides should be accompanied by documents like TECDOCs or Safety Reports describing in detail their recommendations where appropriate. Special review is currently underway to identify needs for revision in the light of the Fukushima accident. Revision will concern, first, the Safety Requirements, and then, the Selected Safety Guides

  3. Operational safety performance indicator system at the Dukovany Nuclear Power Plant - Experience with indicator aggregation

    International Nuclear Information System (INIS)

    Mandula, J.

    2001-01-01

    The operational safety performance indicators serve as an important tool of performance monitoring and management at the Dukovany NPP. A software-supported system has been developed, which has included: data collection, central data storage, graphic output production and periodical report generation. Analyses of performance indicator trends together with evaluation in respect of annually updated target values and acceptance criteria are used for operational safety reviews forming an integral part of continual self-assessment process. This contribution has been focused on experience obtained during development of the operational safety assessment model using indicator aggregation. It summarises problems that had to be paid specific attention in the development process. Thanks to their solution, the model has become a synoptic monitor and a useful tool for operational safety assessment. (author)

  4. Food safety performance indicators to benchmark food safety output of food safety management systems

    NARCIS (Netherlands)

    Jacxsens, L.; Uyttendaele, M.; Devlieghere, F.; Rovira, J.; Oses Gomez, S.; Luning, P.A.

    2010-01-01

    There is a need to measure the food safety performance in the agri-food chain without performing actual microbiological analysis. A food safety performance diagnosis, based on seven indicators and corresponding assessment grids have been developed and validated in nine European food businesses.

  5. Indicators to monitor NPP operational safety performance

    International Nuclear Information System (INIS)

    Gomez-Cobo, Ana

    2002-01-01

    Since December 1995 the IAEA activities on safety performance indicators focused on the elaboration of a framework for the establishment of an operational safety performance indicator programme. The development of this framework began with the consideration of the concept of NPP operational safety performance and the identification of operational safety attributes. For each operational safety attribute, overall indicators, envisioned as providing an overall evaluation of relevant aspects of safety performance, were established. Associated with each overall indicator is a level of strategic indicators intended to provide a bridge from overall to specific indicators. Finally each strategic indicator was supported by a set of specific indicators, which represent quantifiable measures of performance. The programme development was enhanced by pilot plant studies, conducted over a 15 month period from January 1998 to March 1999. The result of all this work is compiled in the IAEA-TECDOC-1141, to be published shortly. This paper presents a summary of this IAEA TECDOC. It describes the operational safety performance indicator framework proposed and discusses the results of and lessons learned from the pilot studies. Despite the efforts described, it is clear that additional research is still necessary in areas such as plant-specific adaptation of proposed frameworks in order to suit individual data collection systems and plant characteristics, indicator selection, indicator definition, goal setting, action thresholds, analysis of trends, indicator display systems, analysis of overall safety performance (i.e., aggregation or combination of indicators), safety culture indicators, qualitative indicators, and use of additional indicators to address issues such as industrial safety attitude and performance, staff welfare, and environmental compliance. This is the rationale for a new IAEA Coordinated Research Project on 'Development and application of indicators to monitor NPP

  6. Swiss regulatory use of databanks for nuclear power plant life management, surveillance and safety analyses

    International Nuclear Information System (INIS)

    Tipping, Ph.; Beutler, R.; Schoen, G.; Noeggerath, J.

    2002-01-01

    Full text: As operational time is accumulated, the overall safety and performance of nuclear power plants (NPPs) will tend to be characterised by those areas in which structures, systems and components (SSCs) have not performed as well, or as reliably, as expected. The reasons for non-availability of equipment in NPPs due to SSC material malfunction or unsatisfactory performance, leading to events or even accidents, are varied and they must be analysed in order to obtain the root causes. Once the root causes are identified, corresponding measures can be applied in order to improve reliability and therefore safety. The root cause information obtained, if brought into user-friendly databanks (DBs), can be used to follow NPP performance trends, to check whether a repair or replacement has been effective, to focus regulatory attention and NPP surveillance on known weak-spots and to serve as an advance indicator where potential problems may arise. Using the DBs, similar occurrences of failures or problems in other NPPs can be identified and generic issues recognised early on and preventative action taken. The following describes the Swiss Federal Nuclear Safety Inspectorate's (HSK) DB concepts for keeping track of NPP safety and lifetime management issues. Typical sources of data for the Inspectorate's DBs are, for example, the IAEA/NEA Incident Reporting System (IRS) reports, US-NRC Generic Letters, the Swiss NPP's own reports (monthly, annual and normal outage) and, more importantly, the document that these NPPs must issue to the Inspectorate whenever a reportable event takes place. Specifically, the reporting of events in the NPPs is laid down in the Inspectorate's Guideline (R-15 'Reporting Guideline Concerning The Operation of Nuclear Power Plants'). In this Guideline, reportable events are defined and the criteria for assessing the degree of importance or impact on nuclear safety are given. In this manner, a standard and consistent approach to data collection is

  7. Transformational leadership and safety performance among nurses: the mediating role of knowledge-related job characteristics.

    Science.gov (United States)

    Lievens, Ilse; Vlerick, Peter

    2014-03-01

    To report the impact of transformational leadership on two dimensions of nurses' safety performance (i.e. safety compliance and safety participation) and to study the mediating role of knowledge-related job characteristics in this relationship. Safety performance refers to the behaviours that employees exhibit to adhere to safety guidelines and to promote health and safety at their workplace. Nurses' safety performance is a major challenge for healthcare settings, urging the need to identify the key determinants and psychological mechanisms that influence it. A cross-sectional survey study. The study was carried out in September 2010 in a large Belgian hospital. We used self-administered questionnaires; 152 nurses participated. The hypotheses were tested using hierarchical regression analyses. In line with our first hypothesis, the results show that transformational leadership exerted a significant positive impact on both dimensions of nurses' safety performance. This positive relation was mediated by knowledge-related job characteristics, supporting our second hypothesis. Head nurses' transformational leadership can enhance nurses' compliance with and participation in safety. Furthermore, transformational head nurses are able to influence the perception that their nurses have about the kind and amount of knowledge in their job, which can also lead to increases in both dimensions of nurses' safety performance. This study therefore demonstrates the key impact that transformational head nurses have, both directly and indirectly, on the safety performance of their nurses. © 2013 John Wiley & Sons Ltd.

  8. Safety performance indicators for the road network.

    NARCIS (Netherlands)

    Weijermars, W. Gitelman, V. Papadimitriou, E. Lima De & Azevedo, C.

    2010-01-01

    Within the 6th FP European project SafetyNet, a team has worked on the development of Safety Performance Indicators (SPIs) on seven road safety related areas. These SPIs reflect the operational conditions of the road traffic system that influence the system's safety performance. SPIs were developed

  9. Nursing home safety: does financial performance matter?

    Science.gov (United States)

    Oetjen, Reid M; Zhao, Mei; Liu, Darren; Carretta, Henry J

    2011-01-01

    This study examines the relationship between financial performance and selected safety measures of nursing homes in the State of Florida. We used descriptive analysis on a total sample of 1,197. Safety information was from the Online Survey, Certification and Reporting (OSCAR) data of 2003 to 2005, while the financial performance measures were from the Medicare cost reports of 2002 to 2004. Finally, we examined the most frequently cited deficiencies as well as the relationship between financial performance and quality indicators. Nursing homes in the bottom quartile of financial performance perform poorly on most resident-safety measures of care; however, nursing homes in the top two financial categories also experienced a higher number of deficiencies. Nursing homes in the next to lowest quartile of financial performance category best perform on most of these safety measures. The results reinforce the need to monitor nursing home quality and resident safety in US nursing homes, especially among facilities with poor overall financial performance.

  10. Prospective safety performance evaluation on construction sites.

    Science.gov (United States)

    Wu, Xianguo; Liu, Qian; Zhang, Limao; Skibniewski, Miroslaw J; Wang, Yanhong

    2015-05-01

    This paper presents a systematic Structural Equation Modeling (SEM) based approach for Prospective Safety Performance Evaluation (PSPE) on construction sites, with causal relationships and interactions between enablers and the goals of PSPE taken into account. According to a sample of 450 valid questionnaire surveys from 30 Chinese construction enterprises, a SEM model with 26 items included for PSPE in the context of Chinese construction industry is established and then verified through the goodness-of-fit test. Three typical types of construction enterprises, namely the state-owned enterprise, private enterprise and Sino-foreign joint venture, are selected as samples to measure the level of safety performance given the enterprise scale, ownership and business strategy are different. Results provide a full understanding of safety performance practice in the construction industry, and indicate that the level of overall safety performance situation on working sites is rated at least a level of III (Fair) or above. This phenomenon can be explained that the construction industry has gradually matured with the norms, and construction enterprises should improve the level of safety performance as not to be eliminated from the government-led construction industry. The differences existing in the safety performance practice regarding different construction enterprise categories are compared and analyzed according to evaluation results. This research provides insights into cause-effect relationships among safety performance factors and goals, which, in turn, can facilitate the improvement of high safety performance in the construction industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Code development and analyses within the area of transmutation and safety

    International Nuclear Information System (INIS)

    Maschek, W.

    2002-01-01

    A strong code development is going on to meet various demands resulting from the development of dedicated reactors for transmutation and incineration. Code development is concerned with safety codes and general codes needed for assessing scenarios and transmutation strategies. Analyses concentrate on various ADS systems with solid and liquid molten salt fuels. Analyses deal with ADS Demo Plant (5th FP EU) and transmuters with advanced fuels

  12. Thermal and stress analyses of meltdown cups for LMFBR safety experiments using SLSF in-reactor loops

    International Nuclear Information System (INIS)

    Blomquist, C.A.; Pierce, R.D.; Pedersen, D.R.; Ariman, T.

    1977-01-01

    The test trains for the Sodium Loop Safety Facility (SLSF) in-reactor experiments, which simulate hypothetical LMFBR accidents, have a meltdown cup to protect the primary containment from the effects of molten materials. Thermal and stress analyses were performed on the cup which is designed to contain 3.6 kg of molten fuel and 2.4 kg of molten steel. Thermal analyses were performed with the Argonne-modified version fo the general heat transfer code THTB, based on the instantaneous addition of 3200 0 K molten fuel with a decay heat of 9 W/gm and 1920 0 K molten steel. These analyses have shown that the cup will adequately cool the molten materials. The stress analysis showed that the Inconel vessel would not fail from the pressure loading, it was also shown that brittle fracture of the tungsten liner from thermal gradients is unlikely. Therefore, the melt-down cup meets the structural design requirements. (Auth.)

  13. Selected problems and results of the transient event and reliability analyses for the German safety study

    International Nuclear Information System (INIS)

    Hoertner, H.

    1977-01-01

    For the investigation of the risk of nuclear power plants loss-of-coolant accidents and transients have to be analyzed. The different functions of the engineered safety features installed to cope with transients are explained. The event tree analysis is carried out for the important transient 'loss of normal onsite power'. Preliminary results of the reliability analyses performed for quantitative evaluation of this event tree are shown. (orig.) [de

  14. Integration of safety culture in transient analyses for nuclear power plants

    International Nuclear Information System (INIS)

    Stosic, Zoran V.; Stoll, Uwe

    2009-01-01

    In the nuclear field Safety Culture is the arrangement of attitudes and characteristics in individuals and organisations which determines first and foremost that nuclear power plant safety issues receive adequate attention due to their outstanding significance. It differs from general Corporate Culture via its concept of core hazards and the potentially large effects associated with the release of radioactivity. One can talk about positive and negative Safety Cultures. A positive Safety Culture assumes that the whole is more than the sum of the parts. The different parts interact to increase the overall effectiveness. In a negative Safety Culture the opposite is the case, with the action of some individuals restricted by the cynicism of others. Some examples of issues that contribute to a negative safety culture are: non-adherence to the established instructions and procedures, unclear definition of responsibilities, disinterest and inattentiveness, overestimation of own capabilities and arrogance, unclear rules, and mistrust between involved organisations. In addition to differentiation and importance of Safety Culture, necessary commitment levels, safety management framework, the paper discusses integration of Safety Culture in transient analyses of nuclear power plants. In this course the commitment to Safety Culture is defined as: a good Safety Culture depends on the continuous commitment and fulfilment of all involved organizations, persons and processes without any exception. (author)

  15. Achieving reasonable conservatism in nuclear safety analyses

    International Nuclear Information System (INIS)

    Jamali, Kamiar

    2015-01-01

    In the absence of methods that explicitly account for uncertainties, seeking reasonable conservatism in nuclear safety analyses can quickly lead to extreme conservatism. The rate of divergence to extreme conservatism is often beyond the expert analysts’ intuitive feeling, but can be demonstrated mathematically. Too much conservatism in addressing the safety of nuclear facilities is not beneficial to society. Using certain properties of lognormal distributions for representation of input parameter uncertainties, example calculations for the risk and consequence of a fictitious facility accident scenario are presented. Results show that there are large differences between the calculated 95th percentiles and the extreme bounding values derived from using all input variables at their upper-bound estimates. Showing the relationship of the mean values to the key parameters of the output distributions, the paper concludes that the mean is the ideal candidate for representation of the value of an uncertain parameter. The mean value is proposed as the metric that is consistent with the concept of reasonable conservatism in nuclear safety analysis, because its value increases towards higher percentiles of the underlying positively skewed distribution with increasing levels of uncertainty. Insensitivity of the results to the actual underlying distributions is briefly demonstrated. - Highlights: • Multiple conservative assumptions can quickly diverge into extreme conservatism. • Mathematics and attractive properties provide basis for wide use of lognormal distribution. • Mean values are ideal candidates for representation of parameter uncertainties. • Mean values are proposed as reasonably conservative estimates of parameter uncertainties

  16. Development of safety performance indicators in Japan

    International Nuclear Information System (INIS)

    Ohashi, H.; Tamao, S.; Tanaka, J.; Sawayama, T.

    2001-01-01

    For the purpose of safety regulations of operating nuclear power stations in Japan, the regulatory authorities utilize two types of regulations. One is the direct regulation, such as periodical inspection to inspect the function and performance of equipment important to safety, and the other is the audit type regulation such as preservation inspection to audit the compliance with the safety preservation rules. As performance indicators are expected to be an effective tool to evaluate the activities by audit type regulations, NUPEC is studying a comprehensive set of operational performance indicators to meet the effective evaluation method for the safety preservation activities in the audit type regulations under the frame of current safety regulation system. The study includes the establishment of comprehensive operational performance indicators applicable in Japan, the effective application of performance indicators to the current Japanese regulation, the clarification of the applicable scope of utilization, the possibility of applying the performance indicators. This report describes the present status of our performance indicator studies. After the completion of these studies the regulatory authorities will evaluate if and how the new set of comprehensive performance indicators could be introduced to Japanese regulatory scheme. (author)

  17. Safety performance indicators. Topical issues paper no. 5

    International Nuclear Information System (INIS)

    Dahlgren, K.; Lederman, L.; Szikszai, T.; Palomo, J.

    2001-01-01

    Since its creation the nuclear industry has been struggling with the question of how safe is safe enough. Safety is a common goal to all involved in the design, operation and regulation of a nuclear installation. As a concept safety is not easy to define. However, there is a general understanding of what attributes a nuclear power plant should have in order to operate safely. The challenge lies in measuring the attributes. The new competitive open electricity market, in many countries throughout the world, is increasing the economic pressure on operators to lower operating costs without jeopardizing safety. Challenges are occurring at a rate that is unprecedented in the nuclear industry: competitiveness; downsizing; ageing; policy changes; reorganization; restructuring; mergers; globalization; and takeovers demand increasing attention to the management of safety. There are various means to measure safety performance, some of which are more qualitative in nature and others which through quantitative measures provide the means by which to evaluate performance trends with clear ties to safety. According to their use, indicators are generally considered in two groups: leading or proactive and lagging or reactive indicators. Leading indicators are most useful as a precursor to safety degradation for early management reaction. Lagging indicators are most commonly used to drive plant performance, to monitor and for benchmarking against similar plants. The actual values of the indicators are not intended to be direct measures of safety, although safety performance can be inferred from the results achieved. Each plant needs to determine which indicators best serve its needs. Selected indicators should not be static, but should be adapted to the conditions and performance of the plant, considering the cost-benefit of maintaining each individual indicator. It should be recognized that while indicators provide valuable information in the effective management of plant safety

  18. Survey and evaluation of inherent safety characteristics and passive safety systems for use in probabilistic safety analyses

    International Nuclear Information System (INIS)

    Wetzel, N.; Scharfe, A.

    1998-01-01

    The present report examines the possibilities and limits of a probabilistic safety analysis to evaluate passive safety systems and inherent safety characteristics. The inherent safety characteristics are based on physical principles, that together with the safety system lead to no damage. A probabilistic evaluation of the inherent safety characteristic is not made. An inventory of passive safety systems of accomplished nuclear power plant types in the Federal Republic of Germany was drawn up. The evaluation of the passive safety system in the analysis of the accomplished nuclear power plant types was examined. The analysis showed that the passive manner of working was always assumed to be successful. A probabilistic evaluation was not performed. The unavailability of the passive safety system was determined by the failure of active components which are necessary in order to activate the passive safety system. To evaluate the passive safety features in new concepts of nuclear power plants the AP600 from Westinghouse, the SBWR from General Electric and the SWR 600 from Siemens, were selected. Under these three reactor concepts, the SWR 600 is specially attractive because the safety features need no energy sources and instrumentation in this concept. First approaches for the assessment of the reliability of passively operating systems are summarized. Generally it can be established that the core melt frequency for the passive concepts AP600 and SBWR is advantageous in comparison to the probabilistic objectives from the European Pressurized Water Reactor (EPR). Under the passive concepts is the SWR 600 particularly interesting. In this concept the passive systems need no energy sources and instrumentation, and has active operational systems and active safety equipment. Siemens argues that with this concept the frequency of a core melt will be two orders of magnitude lower than for the conventional reactors. (orig.) [de

  19. Safety analysis of MOX fuels by fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    Performance of plutonium rick mixed oxide fuels specified for the Reduced-Moderation Water Reactor (RMWR) has been analysed by modified fuel performance code. Thermodynamic properties of these fuels up to 120 GWd/t burnup have not been measured and estimated using existing uranium fuel models. Fission product release, pressure rise inside fuel rods and mechanical loads of fuel cans due to internal pressure have been preliminarily assessed based on assumed axial power distribution history, which show the integrity of fuel performance. Detailed evaluation of fuel-cladding interactions due to thermal expansion or swelling of fuel pellets due to high burnup will be required for safety analysis of mixed oxide fuels. Thermal conductivity and swelling of plutonium rich mixed oxide fuels shall be taken into consideration. (T. Tanaka)

  20. Nuclear power performance and safety. V.3. Safety and international co-operation

    International Nuclear Information System (INIS)

    1988-01-01

    The International Conference on Nuclear Power Performance and Safety, organized by the International Atomic Energy Agency, was held at the Austria Centre Vienna (ACV) in Vienna, Austria, from 28 September to 2 October 1987. The objective of the Conference was to promote an exchange of worldwide information on the current trends in the performance and safety of nuclear power and its fuel cycle, and to take a forward look at the expectations and objectives for the 1990s. This objective was accomplished through presentation and discussion of about 200 papers at the Conference. Almost 500 participants and observers from 40 countries and 12 organizations discussed three major questions which were posed as the focus of this Conference: (1) What are the current trends and major issues with regard to performance and safety of nuclear power, the nuclear fuel cycle and radioactive waste management? (2) What steps are being taken or need to be taken to resolve outstanding issues in order to improve the performance of nuclear power with assured safety? (3) What performance objectives and achievements can be anticipated for the 1990s? All presentations of this Conference were divided into six volumes. This is Volume 3 which is devoted to the problems of safety and international cooperation. All presentations of Volume 3 were divided into four sessions as follows: the need for safety in nuclear power programmes (4 papers); international cooperation in nuclear safety (6 papers); technical aspects in plant safety (7 papers); approaches to safety (3 papers). A separate abstract was prepared for each of these 20 papers. Refs, figs and tabs

  1. Scanning electron microscopic analyses of Ferrocyanide tank wastes for the Ferrocyanide safety program

    International Nuclear Information System (INIS)

    Callaway, W.S.

    1995-09-01

    This is Fiscal Year 1995 Annual Report on the progress of activities relating to the application of scanning electron microscopy in addressing the Ferrocyanide Safety Issue associated with Hanford Site high-level radioactive waste tanks. The status of the FY 1995 activities directed towards establishing facilities capable of providing SEM based micro-characterization of ferrocyanide tank wastes is described. A summary of key events in the SEM task over FY 1995 and target activities in FY 1996 are presented. A brief overview of the potential applications of computer controlled SEM analytical data in light of analyses of ferrocyanide simulants performed by an independent contractor is also presented

  2. A proposal for performing software safety hazard analysis

    International Nuclear Information System (INIS)

    Lawrence, J.D.; Gallagher, J.M.

    1997-01-01

    Techniques for analyzing the safety and reliability of analog-based electronic protection systems that serve to mitigate hazards in process control systems have been developed over many years, and are reasonably understood. An example is the protection system in a nuclear power plant. The extension of these techniques to systems which include digital computers is not well developed, and there is little consensus among software engineering experts and safety experts on how to analyze such systems. One possible technique is to extend hazard analysis to include digital computer-based systems. Software is frequently overlooked during system hazard analyses, but this is unacceptable when the software is in control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully cover the software. A method for performing software hazard analysis is proposed in this paper. The method concentrates on finding hazards during the early stages of the software life cycle, using an extension of HAZOP

  3. NPP Krsko periodic safety review. Safety assessment and analyses

    International Nuclear Information System (INIS)

    Basic, I.; Spiler, J.; Thaulez, F.

    2002-01-01

    Definition of a PSR (Periodic Safety Review) project is a comprehensive safety review of a plant after ten years of operation. The objective is a verification by means of a comprehensive review using current methods that the plant remains safe when judged against current safety objectives and practices and that adequate arrangements are in place to maintain plant safety. The overall goals of the NEK PSR Program are defined in compliance with the basic role of a PSR and the current practice typical for most of the countries in EU. This practice is described in the related guides and good practice documents issued by international organizations. The overall goals of the NEK PSR are formulated as follows: to demonstrate that the plant is as safe as originally intended; to evaluate the actual plant status with respect to aging and wear-out identifying any structures, systems or components that could limit the life of the plant in the foreseeable future, and to identify appropriate corrective actions, where needed; to compare current level of safety in the light of modern standards and knowledge, and to identify where improvements would be beneficial for minimizing deviations at justifiable costs. The Krsko PSR will address the following safety factors: Operational Experience, Safety Assessment, EQ and Aging Management, Safety Culture, Emergency Planning, Environmental Impact and Radioactive Waste.(author)

  4. ATHENA/INTRA analyses for ITER, NSSR-2

    International Nuclear Information System (INIS)

    Shen, Kecheng; Eriksson, John; Sjoeberg, A.

    1999-02-01

    The present report is a summary report including thermal-hydraulic analyses made at Studsvik Eco and Safety AB for the ITER NSSR-2 safety documentation. The objective of the analyses was to reveal the safety characteristics of various heat transfer systems at specified operating conditions and to indicate the conditions for which there were obvious risks of jeopardising the structural integrity of the coolant systems. In the latter case also some analyses were made to indicate conceivable mitigating measures for maintaining the integrity.The analyses were primarily concerned with the First Wall and Divertor heat transfer systems. Several enveloping transients were analysed with associated specific flow and heat load boundary conditions. The analyses were performed with the ATHENA and INTRA codes

  5. ATHENA/INTRA analyses for ITER, NSSR-2

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Kecheng; Eriksson, John; Sjoeberg, A

    1999-02-01

    The present report is a summary report including thermal-hydraulic analyses made at Studsvik Eco and Safety AB for the ITER NSSR-2 safety documentation. The objective of the analyses was to reveal the safety characteristics of various heat transfer systems at specified operating conditions and to indicate the conditions for which there were obvious risks of jeopardising the structural integrity of the coolant systems. In the latter case also some analyses were made to indicate conceivable mitigating measures for maintaining the integrity.The analyses were primarily concerned with the First Wall and Divertor heat transfer systems. Several enveloping transients were analysed with associated specific flow and heat load boundary conditions. The analyses were performed with the ATHENA and INTRA codes 8 refs, 14 figs, 15 tabs

  6. Use of probabilistic safety analyses in severe accident management

    International Nuclear Information System (INIS)

    Neogy, P.; Lehner, J.

    1991-01-01

    An important consideration in the development and assessment of severe accident management strategies is that while the strategies are often built on the knowledge base of Probabilistic Safety Analyses (PSA), they must be interpretable and meaningful in terms of the control room indicators. In the following, the relationships between PSA and severe accident management are explored using ex-vessel accident management at a PWR ice-condenser plant as an example. 2 refs., 1 fig., 3 tabs

  7. The Role of Leadership in Safety Performance and Results

    Science.gov (United States)

    Caravello, Halina E.

    Employee injury rates in U.S. land-based operations in the energy industry are 2 to 3 times higher relative to other regions in the world. Although a rich literature exists on drivers of safety performance, no previous studies investigated factors influencing this elevated rate. Leadership has been identified as a key contributor to safety outcomes and this grounded theory study drew upon the full range leadership model, situational leadership, and leader-member exchange theories for the conceptual framework. Leadership aspects influencing safety performance were investigated through guided interviews of 27 study participants; data analyses included open and axial coding, and constant comparisons identified higher-level categories. Selective coding integrated categories into the theoretical framework that developed the idealized, transformational leader traits motivating safe behaviors of leading by example, expressing care and concern for employees' well-being, celebrating successes, and communicating the importance of safety (other elements included visibility and commitment). Employee and supervisor participants reported similar views on the idealized leader traits, but low levels of these qualities may be driving elevated injury rates. Identifying these key elements provides the foundation to creating strategies and action plans enabling energy sector companies to prevent employee injuries and fatalities in an industry where tens of thousands of employees are subjected to significant hazards and elevated risks. Creating safer workplaces for U.S. employees by enhancing leaders' skills, building knowledge, and improving behaviors will improve the employees' and their families' lives by reducing the pain and suffering resulting from injuries and fatalities.

  8. Drug Safety Monitoring in Children: Performance of Signal Detection Algorithms and Impact of Age Stratification

    NARCIS (Netherlands)

    O.U. Osokogu (Osemeke); C. Dodd (Caitlin); A.C. Pacurariu (Alexandra C.); F. Kaguelidou (Florentia); D.M. Weibel (Daniel); M.C.J.M. Sturkenboom (Miriam)

    2016-01-01

    textabstractIntroduction: Spontaneous reports of suspected adverse drug reactions (ADRs) can be analyzed to yield additional drug safety evidence for the pediatric population. Signal detection algorithms (SDAs) are required for these analyses; however, the performance of SDAs in the pediatric

  9. Safety analyses for NHR-200

    Energy Technology Data Exchange (ETDEWEB)

    Jincai, Li; Zuying, Gao; Baocheng, Xu; Junxiao, He [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The NHR-200 is a commercial 200-MW District Heating Reactor developed in China. It is designed on the basis of design, construction and four-year operating experience of the 5MW Experimental Heating Reactor (NHR-5). It has special safety features which are briefly described in this paper. Accident classification and safety criteria are also explained. Some typical and serious accidents are studied theoretically, and their results are detailed in this paper. They demonstrate the excellent safety characteristics of HR-200. (author). 4 refs, 9 figs, 1 tab.

  10. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation

    International Nuclear Information System (INIS)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This manual covers an array of modules written for the SCALE package, consisting of drivers, system libraries, cross section and materials properties libraries, input/output routines, storage modules, and help files

  11. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This manual covers an array of modules written for the SCALE package, consisting of drivers, system libraries, cross section and materials properties libraries, input/output routines, storage modules, and help files.

  12. Analysing supercritical water reactor's (SCWR's) special safety systems using probabilistic tools

    International Nuclear Information System (INIS)

    Ituen, I.; Novog, D.R.

    2011-01-01

    The next generation of reactors, termed Generation IV, has very attractive features -- its superior safety characteristics, high thermal efficiency, and fuel cycle sustainability. A key element of the Generation IV designs is the improvement in safety, which in turn requires improvements in safety system performance and reliability, as well as a reduction in initiating event frequencies. This study compares the response of the systems important to safety in the CANDU-Supercritical Water Reactor to those of the generic CANDU under a main steamline break accident and loss of forced circulation events -- to quantify the improvements in safety for the pre-conceptual CANDU SCWR design. Probabilistic safety analysis is the tool used in this study to test the behavior of the pre- conceptual design during these events. (author)

  13. Communication's Role in Safety Management and Performance for the Road Safety Practices

    OpenAIRE

    Salim Keffane (s)

    2014-01-01

    Communication among organizations could play an important role in increasing road safety. To get in-depth knowledge of its role, this study measured managers' and employees' perceptions of the communication's role on six safety management and performance criteria for road safety practices by conducting a survey using a questionnaire among 165 employees and 135 managers. Path analysis using AMOS-19 software shows that some of the safety management road safety practices have high correlation wi...

  14. Performance of dynamic safety barriers-Structuring, modelling and visualization

    OpenAIRE

    Wikdahl, Olga

    2014-01-01

    The main objective of this master thesis is to discuss performance of dynamic safety barriers. A comprehensive literature review is performed in order to get understanding what dynamic safety barrier is. Three different concepts of dynamic safety barriers based on various meanings of dynamic were derived from the literature review: - dynamic safety barriers related to motion or physical force - dynamic safety barriers as updated barriers from dynamic risk analysis - dynamic safety ...

  15. Human performance analysis in the frame of probabilistic safety assessment of research reactors

    International Nuclear Information System (INIS)

    Farcasiu, Mita; Nitoi, Mirela; Apostol, Minodora; Turcu, I.; Florescu, Gh.

    2005-01-01

    Full text: The analysis of operating experience has identified the importance of human performance in reliability and safety of research reactors. In Probabilistic Safety Assessment (PSA) of nuclear facilities, human performance analysis (HPA) is used in order to estimate human error contribution to the failure of system components or functions. HPA is a qualitative and quantitative analysis of human actions identified for error-likely situations or accident-prone situations. Qualitative analysis is used to identify all man-machine interfaces that can lead to an accident, types of human interactions which may mitigate or exacerbate the accident, types of human errors and performance shaping factors. Quantitative analysis is used to develop estimates of human error probability as effects of human performance in reliability and safety. The goal of this paper is to accomplish a HPA in the PSA frame for research reactors. Human error probabilities estimated as results of human actions analysis could be included in system event tree and/or system fault tree. The achieved sensitivity analyses determine human performance sensibility at systematically variations both for dependencies level between human actions and for operator stress level. The necessary information was obtained from operating experience of research reactor TRIGA from INR Pitesti. The required data were obtained from generic data bases. (authors)

  16. Incorporating Traffic Control and Safety Hardware Performance Functions into Risk-based Highway Safety Analysis

    Directory of Open Access Journals (Sweden)

    Zongzhi Li

    2017-04-01

    Full Text Available Traffic control and safety hardware such as traffic signs, lighting, signals, pavement markings, guardrails, barriers, and crash cushions form an important and inseparable part of highway infrastructure affecting safety performance. Significant progress has been made in recent decades to develop safety performance functions and crash modification factors for site-specific crash predictions. However, the existing models and methods lack rigorous treatments of safety impacts of time-deteriorating conditions of traffic control and safety hardware. This study introduces a refined method for computing the Safety Index (SI as a means of crash predictions for a highway segment that incorporates traffic control and safety hardware performance functions into the analysis. The proposed method is applied in a computation experiment using five-year data on nearly two hundred rural and urban highway segments. The root-mean square error (RMSE, Chi-square, Spearman’s rank correlation, and Mann-Whitney U tests are employed for validation.

  17. Occupational safety of different industrial sectors in Khartoum State, Sudan. Part 1: Safety performance evaluation.

    Science.gov (United States)

    Zaki, Gehan R; El-Marakby, Fadia A; H Deign El-Nor, Yasser; Nofal, Faten H; Zakaria, Adel M

    2012-12-01

    Safety performance evaluation enables decision makers improve safety acts. In Sudan, accident records, statistics, and safety performance were not evaluated before maintenance of accident records became mandatory in 2005. This study aimed at evaluating and comparing safety performance by accident records among different cities and industrial sectors in Khartoum state, Sudan, during the period from 2005 to 2007. This was a retrospective study, the sample in which represented all industrial enterprises in Khartoum state employing 50 workers or more. All industrial accident records of the Ministry of Manpower and Health and those of different enterprises during the period from 2005 to 2007 were reviewed. The safety performance indicators used within this study were the frequency-severity index (FSI) and fatal and disabling accident frequency rates (DAFR). In Khartoum city, the FSI [0.10 (0.17)] was lower than that in Bahari [0.11 (0.21)] and Omdurman [0.84 (0.34)]. It was the maximum in the chemical sector [0.33 (0.64)] and minimum in the metallurgic sector [0.09 (0.19)]. The highest DAFR was observed in Omdurman [5.6 (3.5)] and in the chemical sector [2.5 (4.0)]. The fatal accident frequency rate in the mechanical and electrical engineering industry was the highest [0.0 (0.69)]. Male workers who were older, divorced, and had lower levels of education had the lowest safety performance indicators. The safety performance of the industrial enterprises in Khartoum city was the best. The safety performance in the chemical sector was the worst with regard to FSI and DAFR. The age, sex, and educational level of injured workers greatly affect safety performance.

  18. The roles of emotional intelligence, interpersonal skill, and transformational leadership on improving construction safety performance

    Directory of Open Access Journals (Sweden)

    Riza Yosia Sunindijo

    2013-09-01

    Full Text Available Due to the characteristics of the constructionindustry, human skills are essential for working with and through others inmanaging safety. Research has shown that emotional intelligence, interpersonalskill, and transformational leadership are human skill components that generatesuperior performance in today’s workplace. The aim of this research is toinvestigate the influence of project management personnel’s human skills on theimplementation of safety management tasks and development of safety climate inconstruction projects. The structural equation modelling (SEM method wasapplied to analyse the quantitative data collected and establishinterrelationship among the research variables. The results indicate thatemotional intelligence is a key factor for developing interpersonal skill andtransformational leadership, and for implementing safety management tasks whichleads to the development of safety climate. This research also found thatinterpersonal skill is needed for becoming transformational leaders whocontribute to the development of safety climate.

  19. Probabilistic evaluation of scenarios in long-term safety analyses. Results of the project ISIBEL; Probabilistische Bewertung von Szenarien in Langzeitsicherheitsanalysen. Ergebnisse des Vorhabens ISIBEL

    Energy Technology Data Exchange (ETDEWEB)

    Buhmann, Dieter; Becker, Dirk-Alexander; Laggiard, Eduardo; Ruebel, Andre; Spiessl, Sabine; Wolf, Jens

    2016-07-15

    In the frame of the project ISIBEL deterministic analyses on the radiological consequences of several possible developments of the final repository were performed (VSG: preliminary safety analysis of the site Gorleben). The report describes the probabilistic evaluation of the VSG scenarios using uncertainty and sensitivity analyses. It was shown that probabilistic analyses are important to evaluate the influence of uncertainties. The transfer of the selected scenarios in computational cases and the used modeling parameters are discussed.

  20. Site-Specific Analyses for Demonstrating Compliance with 10 CFR 61 Performance Objectives - 12179

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, C.J.; Esh, D.W.; Yadav, P.; Carrera, A.G. [U.S. Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States)

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) is proposing to amend its regulations at 10 CFR Part 61 to require low-level radioactive waste disposal facilities to conduct site-specific analyses to demonstrate compliance with the performance objectives in Subpart C. The amendments would require licensees to conduct site-specific analyses for protection of the public and inadvertent intruders as well as analyses for long-lived waste. The amendments would ensure protection of public health and safety, while providing flexibility to demonstrate compliance with the performance objectives, for current and potential future waste streams. NRC staff intends to submit proposed rule language and associated regulatory basis to the Commission for its approval in early 2012. The NRC staff also intends to develop associated guidance to accompany any proposed amendments. The guidance is intended to supplement existing low-level radioactive waste guidance on issues pertinent to conducting site-specific analyses to demonstrate compliance with the performance objectives. The guidance will facilitate implementation of the proposed amendments by licensees and assist competent regulatory authorities in reviewing the site-specific analyses. Specifically, the guidance provides staff recommendations on general considerations for the site-specific analyses, modeling issues for assessments to demonstrate compliance with the performance objectives including the performance assessment, intruder assessment, stability assessment, and analyses for long-lived waste. This paper describes the technical basis for changes to the rule language and the proposed guidance associated with implementation of the rule language. The NRC staff, per Commission direction, intends to propose amendments to 10 CFR Part 61 to require licensees to conduct site-specific analyses to demonstrate compliance with performance objectives for the protection of public health and the environment. The amendments would require a

  1. Thermal Safety Analyses for the Production of Plutonium-238 at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, Christopher J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hobbs, Randy W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maldonado, G. Ivan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    There has been a considerable effort over the previous few years to demonstrate and optimize the production of plutonium-238 (238Pu) at the High Flux Isotope Reactor (HFIR). This effort has involved resources from multiple divisions and facilities at the Oak Ridge National Laboratory (ORNL) to demonstrate the fabrication, irradiation, and chemical processing of targets containing neptunium-237 (237Np) dioxide (NpO2)/aluminum (Al) cermet pellets. A critical preliminary step to irradiation at the HFIR is to demonstrate the safety of the target under irradiation via documented experiment safety analyses. The steady-state thermal safety analyses of the target are simulated in a finite element model with the COMSOL Multiphysics code that determines, among other crucial parameters, the limiting maximum temperature in the target. Safety analysis efforts for this model discussed in the present report include: (1) initial modeling of single and reduced-length pellet capsules in order to generate an experimental knowledge base that incorporate initial non-linear contact heat transfer and fission gas equations, (2) modeling efforts for prototypical designs of partially loaded and fully loaded targets using limited available knowledge of fabrication and irradiation characteristics, and (3) the most recent and comprehensive modeling effort of a fully coupled thermo-mechanical approach over the entire fully loaded target domain incorporating burn-up dependent irradiation behavior and measured target and pellet properties, hereafter referred to as the production model. These models are used to conservatively determine several important steady-state parameters including target stresses and temperatures, the limiting condition of which is the maximum temperature with respect to the melting point. The single pellet model results provide a basis for the safety of the irradiations, followed by parametric analyses in the initial prototypical designs

  2. Job Demands-Control-Support model and employee safety performance.

    Science.gov (United States)

    Turner, Nick; Stride, Chris B; Carter, Angela J; McCaughey, Deirdre; Carroll, Anthony E

    2012-03-01

    The aim of this study was to explore whether work characteristics (job demands, job control, social support) comprising Karasek and Theorell's (1990) Job Demands-Control-Support framework predict employee safety performance (safety compliance and safety participation; Neal and Griffin, 2006). We used cross-sectional data of self-reported work characteristics and employee safety performance from 280 healthcare staff (doctors, nurses, and administrative staff) from Emergency Departments of seven hospitals in the United Kingdom. We analyzed these data using a structural equation model that simultaneously regressed safety compliance and safety participation on the main effects of each of the aforementioned work characteristics, their two-way interactions, and the three-way interaction among them, while controlling for demographic, occupational, and organizational characteristics. Social support was positively related to safety compliance, and both job control and the two-way interaction between job control and social support were positively related to safety participation. How work design is related to employee safety performance remains an important area for research and provides insight into how organizations can improve workplace safety. The current findings emphasize the importance of the co-worker in promoting both safety compliance and safety participation. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  3. Operational safety performance of Slovak NPPs in 2005

    International Nuclear Information System (INIS)

    Tomek, J.

    2006-01-01

    In this presentation author presents operational safety performance of Slovak NPPs in 2005. Operation of Slovak NPPs in 2005 was safe and reliable, with: - high level of performance low risk; - minimal impact on the personnel, environment and public; - positive attitude to safety.

  4. Assessing the validity of road safety evaluation studies by analysing causal chains.

    Science.gov (United States)

    Elvik, Rune

    2003-09-01

    This paper discusses how the validity of road safety evaluation studies can be assessed by analysing causal chains. A causal chain denotes the path through which a road safety measure influences the number of accidents. Two cases are examined. One involves chemical de-icing of roads (salting). The intended causal chain of this measure is: spread of salt --> removal of snow and ice from the road surface --> improved friction --> shorter stopping distance --> fewer accidents. A Norwegian study that evaluated the effects of salting on accident rate provides information that describes this causal chain. This information indicates that the study overestimated the effect of salting on accident rate, and suggests that this estimate is influenced by confounding variables the study did not control for. The other case involves a traffic club for children. The intended causal chain in this study was: join the club --> improve knowledge --> improve behaviour --> reduce accident rate. In this case, results are rather messy, which suggests that the observed difference in accident rate between members and non-members of the traffic club is not primarily attributable to membership in the club. The two cases show that by analysing causal chains, one may uncover confounding factors that were not adequately controlled in a study. Lack of control for confounding factors remains the most serious threat to the validity of road safety evaluation studies.

  5. Safety climate in OHSAS 18001-certified organisations: antecedents and consequences of safety behaviour.

    Science.gov (United States)

    Fernández-Muñiz, Beatriz; Montes-Peón, José Manuel; Vázquez-Ordás, Camilo José

    2012-03-01

    The occupational health and safety standard OHSAS 18001 has gained considerable acceptance worldwide, and firms from diverse sectors and of varying sizes have implemented it. Despite this, very few studies have analysed safety management or the safety climate in OHSAS 18001-certified organisations. The current work aims to analyse the safety climate in these organisations, identify its dimensions, and propose and test a structural equation model that will help determine the antecedents and consequences of employees' safety behaviour. For this purpose, the authors carry out an empirical study using a sample of 131 OHSAS 18001-certified organisations located in Spain. The results show that management's commitment, and particularly communication, have an effect on safety behaviour and on safety performance, employee satisfaction, and firm competitiveness. These findings are particularly important for management since they provide evidence about the factors that should be encouraged to reduce risks and improve performance in this type of organisation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Safety analyses of potential exposure in medical irradiation plants by Fuzzy Fault Tree

    International Nuclear Information System (INIS)

    Casamirra, Maddalena; Castiglia, Francesco; Giardina, Mariarosa; Tomarchio, Elio

    2008-01-01

    The results of Fuzzy Fault Tree (FFT) analyses of various accidental scenarios, which involve the operators in potential exposures inside an High Dose Rate (HDR) remote after-loading systems for use in brachytherapy, are reported. To carry out fault tree analyses by means of fuzzy probabilities, the TREEZZY2 computer code is used. Moreover, the HEART (Human Error Assessment and Reduction Technique) model, properly modified on the basis of the fuzzy approach, has been employed to assess the impact of performances haping and error-promoting factors in the context of the accidental events. The assessment of potential dose values for some identified accidental scenarios allows to consider, for a particular event, a fuzzy uncertainty range in potential dose estimate. The availability of lower and upper limits allows evaluating the possibility of optimization of the installation from the point of view of radiation protection. The adequacy of the training and information program for staff and patients (and their family members) and the effectiveness of behavioural rules and safety procedures were tested. Some recommendations on procedures and equipment to reduce the risk of radiological exposure are also provided. (author)

  7. Application of geostatistical methods to long-term safety analyses for radioactive waste repositories

    International Nuclear Information System (INIS)

    Roehlig, K.J.

    2001-01-01

    Long-term safety analyses are an important part of the design and optimisation process as well as of the licensing procedure for final repositories for radioactive waste in deep geological formations. For selected scenarios describing possible evolutions of the repository system in the post-closure phase, quantitative consequence analyses are performed. Due to the complexity of the phenomena of concern and the large timeframes under consideration, several types of uncertainties have to be taken into account. The modelling work for the far-field (geosphere) surrounding or overlaying the repository is based on model calculations concerning the groundwater movement and the resulting migration of radionuclides which possibly will be released from the repository. In contrast to engineered systems, the geosphere shows a strong spatial variability of facies, materials and material properties. The paper presented here describes the first steps towards a quantitative approach for an uncertainty assessment taking into account this variability. Due to the availability of a large amount of data and information of several types, the Gorleben site (Germany) has been used for a case study in order to demonstrate the method. (orig.)

  8. Safety culture and learning from incidents: the role of incident reporting and causal analyses

    International Nuclear Information System (INIS)

    Wilpert, B.

    1994-01-01

    Nuclear industry more than any other industrial branch has developed and used predictive risk analysis as a method of feedforward control of safety and reliability. Systematic evaluation of operating experience, statistical documentation of component failures, systematic documentation and analysis of incidents are important complementary elements of feedback control: we are dealing here with adjustment and learning from experience, in particular from past incidents. Using preliminary findings from ongoing research at the Research Center Systems Safety at the Berlin University of Technology the contribution discusses preconditions for an effective use of lessons to be learnt from closely matched incident reporting and in depth analyses of causal chains leading to incidents. Such conditions are especially standardized documentation, reporting and analyzing methods of incidents; structured information flows and feedback loops; abstaining from culpability search; mutual trust of employees and management; willingness of all concerned to continually evaluate and optimize the established learning system. Thus, incident related reporting and causal analyses contribute to safety culture, which is seen to emerge from tightly coupled organizational measures and respective change in attitudes and behaviour. (author) 2 figs., 7 refs

  9. Benchmarking Global Food Safety Performances: The Era of Risk Intelligence.

    Science.gov (United States)

    Valleé, Jean-Charles Le; Charlebois, Sylvain

    2015-10-01

    Food safety data segmentation and limitations hamper the world's ability to select, build up, monitor, and evaluate food safety performance. Currently, there is no metric that captures the entire food safety system, and performance data are not collected strategically on a global scale. Therefore, food safety benchmarking is essential not only to help monitor ongoing performance but also to inform continued food safety system design, adoption, and implementation toward more efficient and effective food safety preparedness, responsiveness, and accountability. This comparative study identifies and evaluates common elements among global food safety systems. It provides an overall world ranking of food safety performance for 17 Organisation for Economic Co-Operation and Development (OECD) countries, illustrated by 10 indicators organized across three food safety risk governance domains: risk assessment (chemical risks, microbial risks, and national reporting on food consumption), risk management (national food safety capacities, food recalls, food traceability, and radionuclides standards), and risk communication (allergenic risks, labeling, and public trust). Results show all countries have very high food safety standards, but Canada and Ireland, followed by France, earned excellent grades relative to their peers. However, any subsequent global ranking study should consider the development of survey instruments to gather adequate and comparable national evidence on food safety.

  10. Impact of Performance Obstacles on Intensive Care Nurses‘ Workload, Perceived Quality and Safety of Care, and Quality of Working Life

    Science.gov (United States)

    Gurses, Ayse P; Carayon, Pascale; Wall, Melanie

    2009-01-01

    Objectives To study the impact of performance obstacles on intensive care nurses‘ workload, quality and safety of care, and quality of working life (QWL). Performance obstacles are factors that hinder nurses‘ capacity to perform their job and that are closely associated with their immediate work system. Data Sources/Study Setting Data were collected from 265 nurses in 17 intensive care units (ICUs) between February and August 2004 via a structured questionnaire, yielding a response rate of 80 percent. Study Design A cross-sectional study design was used. Data were analyzed by correlation analyses and structural equation modeling. Principal Findings Performance obstacles were found to affect perceived quality and safety of care and QWL of ICU nurses. Workload mediated the impact of performance obstacles with the exception of equipment-related issues on perceived quality and safety of care as well as QWL. Conclusions Performance obstacles in ICUs are a major determinant of nursing workload, perceived quality and safety of care, and QWL. In general, performance obstacles increase nursing workload, which in turn negatively affect perceived quality and safety of care and QWL. Redesigning the ICU work system to reduce performance obstacles may improve nurses‘ work. PMID:19207589

  11. Traceability of Software Safety Requirements in Legacy Safety Critical Systems

    Science.gov (United States)

    Hill, Janice L.

    2007-01-01

    How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?

  12. PWR plant transient analyses using TRAC-PF1

    International Nuclear Information System (INIS)

    Ireland, J.R.; Boyack, B.E.

    1984-01-01

    This paper describes some of the pressurized water reactor (PWR) transient analyses performed at Los Alamos for the US Nuclear Regulatory Commission using the Transient Reactor Analysis Code (TRAC-PF1). Many of the transient analyses performed directly address current PWR safety issues. Included in this paper are examples of two safety issues addressed by TRAC-PF1. These examples are pressurized thermal shock (PTS) and feed-and-bleed cooling for Oconee-1. The calculations performed were plant specific in that details of both the primary and secondary sides were modeled in addition to models of the plant integrated control systems. The results of these analyses show that for these two transients, the reactor cores remained covered and cooled at all times posing no real threat to the reactor system nor to the public

  13. Development of safety analysis technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Suk K.; Song, J. H.; Chung, Y. J. and others

    1999-03-01

    Inherent safety features and safety system characteristics of the SMART integral reactor are investigated in this study. Performance and safety of the SMART conceptual design have been evaluated and confirmed through the performance and safety analyses using safety analysis system codes as well as a preliminary performance and safety analysis methodology. SMART design base events and their acceptance criteria are identified to develop a preliminary PIRT for the SMART integral reactor. Using the preliminary PIRT, a set of experimental program for the thermal hydraulic separate effect tests and the integral effect tests was developed for the thermal hydraulic model development and the system code validation. Safety characteristics as well as the safety issues of the integral reactor has been identified during the study, which will be used to resolve the safety issues and guide the regulatory criteria for the integral reactor. The results of the performance and safety analyses performed during the study were used to feedback for the SMART conceptual design. The performance and safety analysis code systems as well as the preliminary safety analysis methodology developed in this study will be validated as the SMART design evolves. The performance and safety analysis technology developed during the study will be utilized for the SMART basic design development. (author)

  14. Multilevel Safety Climate and Safety Performance in the Construction Industry: Development and Validation of a Top-Down Mechanism

    Directory of Open Access Journals (Sweden)

    Ran Gao

    2016-11-01

    Full Text Available The character of construction projects exposes front-line workers to dangers and accidents. Safety climate has been confirmed to be a predictor of safety performance in the construction industry. This study aims to explore the underlying mechanisms of the relationship between multilevel safety climate and safety performance. An integrated model was developed to study how particular safety climate factors of one level affect those of other levels, and then affect safety performance from the top down. A questionnaire survey was administered on six construction sites in Vietnam. A total of 1030 valid questionnaires were collected from this survey. Approximately half of the data were used to conduct exploratory factor analysis (EFA and the remaining data were submitted to structural equation modeling (SEM. Top management commitment (TMC and supervisors’ expectation (SE were identified as factors to represent organizational safety climate (OSC and supervisor safety climate (SSC, respectively, and coworkers’ caring and communication (CCC and coworkers’ role models (CRM were identified as factors to denote coworker safety climate (CSC. SEM results show that OSC factor is positively related to SSC factor and CSC factors significantly. SSC factor could partially mediate the relationship between OSC factor and CSC factors, as well as the relationship between OSC factor and safety performance. CSC factors partially mediate the relationship between OSC factor and safety performance, and the relationship between SSC factor and safety performance. The findings imply that a positive safety culture should be established both at the organizational level and the group level. Efforts from all top management, supervisors, and coworkers should be provided to improve safety performance in the construction industry.

  15. Multilevel Safety Climate and Safety Performance in the Construction Industry: Development and Validation of a Top-Down Mechanism.

    Science.gov (United States)

    Gao, Ran; Chan, Albert P C; Utama, Wahyudi P; Zahoor, Hafiz

    2016-11-08

    The character of construction projects exposes front-line workers to dangers and accidents. Safety climate has been confirmed to be a predictor of safety performance in the construction industry. This study aims to explore the underlying mechanisms of the relationship between multilevel safety climate and safety performance. An integrated model was developed to study how particular safety climate factors of one level affect those of other levels, and then affect safety performance from the top down. A questionnaire survey was administered on six construction sites in Vietnam. A total of 1030 valid questionnaires were collected from this survey. Approximately half of the data were used to conduct exploratory factor analysis (EFA) and the remaining data were submitted to structural equation modeling (SEM). Top management commitment (TMC) and supervisors' expectation (SE) were identified as factors to represent organizational safety climate (OSC) and supervisor safety climate (SSC), respectively, and coworkers' caring and communication (CCC) and coworkers' role models (CRM) were identified as factors to denote coworker safety climate (CSC). SEM results show that OSC factor is positively related to SSC factor and CSC factors significantly. SSC factor could partially mediate the relationship between OSC factor and CSC factors, as well as the relationship between OSC factor and safety performance. CSC factors partially mediate the relationship between OSC factor and safety performance, and the relationship between SSC factor and safety performance. The findings imply that a positive safety culture should be established both at the organizational level and the group level. Efforts from all top management, supervisors, and coworkers should be provided to improve safety performance in the construction industry.

  16. Performance scorecard for occupational safety and health management systems

    Directory of Open Access Journals (Sweden)

    Hernâni Veloso Neto

    2012-06-01

    Full Text Available The pro-active and systematic search for best performances should be the two assumptions of any management system, so safety and health management in organizations must also be guided by these same precepts. However, the scientific production evidences that the performance evaluation processes in safety and health continue to be guided, in their essence, by intermittency, reactivity and negativity, which are not consistent with the assumptions referenced above. Therefore, it is essential that health and safety at work management systems (HSW MS are structured from an active and positive viewpoint, focusing on continuous improvement. This implies considering performance evaluation processes that incorporate, on the one hand, monitoring, measuring and verification procedures, and on the other hand, structured matrixes of results that capture the key factors of success, by mobilizing both reactive and proactive indicators. One of the instruments that can fulfill these precepts of health and safety performance evaluation is the SafetyCard, a performance scorecard for HSW MS that we developed and will seek to outline and demonstrate over this paper.

  17. Improvement programme of safety performance indicators (SPIs) in Korea

    International Nuclear Information System (INIS)

    Lee, S.Y.

    2001-01-01

    KINS has developed and used Safety Performance Indicators (SPIs), which are count based and composed of 10 indicators in 8 areas, to monitor the trend of performance of NPPs in Korea since 1997. However, the limited usage of SPIs and the increasing worldwide interest on SPIs became the motivation of the SPI improvement programme in Korea. Korea is planning to establish plant performance evaluation programme through analysis of SPI and result of inspection. The SPI improvement programme is a part of the plant performance evaluation programme and includes study on performance evaluation areas, indicator categories, selection and development of indicators, redefinition of indicators and introduction of graphical display system. The selected performance evaluation areas are general performance, reactor safety and radiation safety. Each area will have categories as sub-areas and a total of six categories are selected. One or two indicators for each category are determined or will be developed to make a set of Safety Performance Indicators. Also, a graphic display system will be introduced to extend the usage of SPIs. (author)

  18. ACCIDENT ANALYSES & CONTROL OPTIONS IN SUPPORT OF THE SLUDGE WATER SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    WILLIAMS, J.C.

    2003-11-15

    This report documents the accident analyses and nuclear safety control options for use in Revision 7 of HNF-SD-WM-SAR-062, ''K Basins Safety Analysis Report'' and Revision 4 of HNF-SD-SNF-TSR-001, ''Technical Safety Requirements - 100 KE and 100 KW Fuel Storage Basins''. These documents will define the authorization basis for Sludge Water System (SWS) operations. This report follows the guidance of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', for calculating onsite and offsite consequences. The accident analysis summary is shown in Table ES-1 below. While this document describes and discusses potential control options to either mitigate or prevent the accidents discussed herein, it should be made clear that the final control selection for any accident is determined and presented in HNF-SD-WM-SAR-062.

  19. Lean Six-Sigma in Aviation Safety: An implementation guide for measuring aviation system’s safety performance

    OpenAIRE

    Panagopoulos, I.; Atkin, C.J.; Sikora, I.

    2016-01-01

    The paper introduces a conceptual framework that could improve the safety performance measurement process and ultimately the aviation system safety performance. The framework provides an implementation guide on how organisations could design and develop a proactive, measurement tool for assessing and measuring the Acceptable Level of Safety Performance (ALoSP) at sigma (σ) level, a statistical measurement unit. In fact, the methodology adapts and combines quality management tools, a leading i...

  20. Safety demonstration analyses at JAERI for severe accident during overland transport of fresh nuclear fuel

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Kitao, Kohichi; Karasawa, Kiyonori; Yamada, Kenji; Takahashi, Satoshi; Watanabe, Kohji; Okuno, Hiroshi; Miyoshi, Yoshinori

    2005-01-01

    It is expected in the near future that more and more fresh nuclear fuel will be transported in a variety of transport packages to cope with increasing demand from nuclear fuel cycle facilities. Accordingly, safety demonstration analyses are planned and conducted at JAERI under contract with the Ministry of Economy, Trade and Industry of Japan. These analyses are conducted in a four year plan from 2001 to 2004 to verify integrity of packaging against leakage of radioactive material in the case of a severe accident postulated to occur during transportation, for the purpose of gaining acceptance of such nuclear fuel activities. In order to create the accident scenarios, actual transportation routes were surveyed, accident or incident records were tracked, international radioactive material transport regulations such as IAEA rules were investigated and thus, accident conditions leading to mechanical damages and thermal failure were determined to characterize the scenarios. As a result, the worst-case conditions of run-off-the-road accidents were set up to define the impact against a concrete or asphalt surface. For fire accident scenarios to be set up, collisions were assumed to occur with an oil tanker carrying lots of inflammable material in open air, or with a commonly used two-ton-truck inside a tunnel without ventilation. Then the cask models were determined for these safety demonstration analyses to represent those commonly used for fresh nuclear fuel transported throughout Japan. Following the postulated accident scenarios, the mechanical damages were analyzed by using the general-purpose finite element code LS-DYNA with three-dimensional elements. It was found that leak tightness of the package be maintained even in the severe impact scenario. Then the thermal safety was analyzed by using the general-purpose finite element code ABAOUS with three-dimensional elements to describe cask geometry. As a result of the thermal analyses, the integrity of the containment

  1. Performance Testing Methodology for Safety-Critical Programmable Logic Controller

    International Nuclear Information System (INIS)

    Kim, Chang Ho; Oh, Do Young; Kim, Ji Hyeon; Kim, Sung Ho; Sohn, Se Do

    2009-01-01

    The Programmable Logic Controller (PLC) for use in Nuclear Power Plant safety-related applications is being developed and tested first time in Korea. This safety-related PLC is being developed with requirements of regulatory guideline and industry standards for safety system. To test that the quality of the developed PLC is sufficient to be used in safety critical system, document review and various product testings were performed over the development documents for S/W, H/W, and V/V. This paper provides the performance testing methodology and its effectiveness for PLC platform conducted by KOPEC

  2. Preliminary scoping safety analyses of the limiting design basis protected accidents for the Fast Flux Test Facility tritium production core

    International Nuclear Information System (INIS)

    Heard, F.J.

    1997-01-01

    The SAS4A/SASSYS-l computer code is used to perform a series of analyses for the limiting protected design basis transient events given a representative tritium and medical isotope production core design proposed for the Fast Flux Test Facility. The FFTF tritium and isotope production mission will require a different core loading which features higher enrichment fuel, tritium targets, and medical isotope production assemblies. Changes in several key core parameters, such as the Doppler coefficient and delayed neutron fraction will affect the transient response of the reactor. Both reactivity insertion and reduction of heat removal events were analyzed. The analysis methods and modeling assumptions are described. Results of the analyses and comparison against fuel pin performance criteria are presented to provide quantification that the plant protection system is adequate to maintain the necessary safety margins and assure cladding integrity

  3. Development of safety analysis technology for LMR

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kwon, Y. M.; Kim, K. D.

    2000-05-01

    The analysis methodologies as well as the analysis computer code system for the transient, HCDA, and containment performance analyses, which are required for KALIMER safety analyses, have been developed. The SSC-K code has been developed based on SSC-L which is an analysis code for loop type LMR, by improving models necessary for the KALIMER system analysis, and additional models have been added to the code. In addition, HCDA analysis model has been developed and the containment performance analysis code has been also improved. The preliminary basis for the safety analysis has been established, and the preliminary safety analyses for the key design features have been performed. In addition, a state-of-art analysis for LMR PSA and overseas safety and licensing requirements have been reviewed. The design database for the systematic management of the design documents as well as design processes has been established as well

  4. Development of safety analysis technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kwon, Y. M.; Kim, K. D. [and others

    2000-05-01

    The analysis methodologies as well as the analysis computer code system for the transient, HCDA, and containment performance analyses, which are required for KALIMER safety analyses, have been developed. The SSC-K code has been developed based on SSC-L which is an analysis code for loop type LMR, by improving models necessary for the KALIMER system analysis, and additional models have been added to the code. In addition, HCDA analysis model has been developed and the containment performance analysis code has been also improved. The preliminary basis for the safety analysis has been established, and the preliminary safety analyses for the key design features have been performed. In addition, a state-of-art analysis for LMR PSA and overseas safety and licensing requirements have been reviewed. The design database for the systematic management of the design documents as well as design processes has been established as well.

  5. Focus on safety : a comparative analysis of pipeline safety performance 2000-2002

    International Nuclear Information System (INIS)

    2004-01-01

    Canada's National Energy Board (NEB) is responsible for the promotion of safety, environmental protection and economic efficiency in the Canadian public interest in regulating the design, construction, operation and abandonment of interprovincial and international pipelines within Canada. This second annual report provides a review of the safety performance of oil and gas pipeline companies that are regulated by the NEB. The data used to prepare this report originates from two sources: incident reports submitted under the Onshore Pipeline Regulations, 1999, and from information voluntarily provided by pipeline companies under the Safety Performance Indicators (SPI) initiative. Data comparisons with external reference organizations were included. Six key indicators have been identified to provide comprehensive measures of safety performance for pipeline companies: fatalities, ruptures, injury frequencies, liquid releases, gas releases, and unauthorized activities on the right of way. The safety performance of the federally regulated pipeline industry within Canada was satisfactory during this reporting period (2000-2002). The contractor injury frequency rates reported in 2002 were lower than those reported in 2001, and exhibited more consistency with the levels reported in 2000. The NEB is of the opinion that the elevated number of liquid hydrocarbon spills reported in 2000 were a result of elevated construction levels. No fatalities were reported. There was an increase to three from two in the number of ruptures, due in large part to metal loss (corrosion) and cracking, and external interference (third party damage). The number of spills increased to 76 in 2002 from 55 in 2001, which appears to be more in line with industry averages. The volume of hydrocarbon liquid released in 2002 represented one third the volume released in 2001. refs., 5 tabs., 14 figs

  6. A review on the benchmarking concept in Malaysian construction safety performance

    Science.gov (United States)

    Ishak, Nurfadzillah; Azizan, Muhammad Azizi

    2018-02-01

    Construction industry is one of the major industries that propels Malaysia's economy in highly contributes to our nation's GDP growth, yet the high fatality rates on construction sites have caused concern among safety practitioners and the stakeholders. Hence, there is a need of benchmarking in performance of Malaysia's construction industry especially in terms of safety. This concept can create a fertile ground for ideas, but only in a receptive environment, organization that share good practices and compare their safety performance against other benefit most to establish improvement in safety culture. This research was conducted to study the awareness important, evaluate current practice and improvement, and also identify the constraint in implement of benchmarking on safety performance in our industry. Additionally, interviews with construction professionals were come out with different views on this concept. Comparison has been done to show the different understanding of benchmarking approach and how safety performance can be benchmarked. But, it's viewed as one mission, which to evaluate objectives identified through benchmarking that will improve the organization's safety performance. Finally, the expected result from this research is to help Malaysia's construction industry implement best practice in safety performance management through the concept of benchmarking.

  7. Comparative studies of CERCER and CERMET fuels for EFIT from the viewpoint of core performance and safety

    International Nuclear Information System (INIS)

    Chen, X.N.; Rineiski, A.; Maschek, W.; Liu, P.; Boccaccini, C.M.; Sobolev, V.; Delage, F.; Rimpault, G.

    2011-01-01

    The European Facility for Industrial Transmutation (EFIT) has been developed within the 6. EU Framework by the EUROTRANS Program, aiming at a generic conceptual design of an accelerator driven transmuter. This paper deals with assessments of EFIT cores with CERCER and CERMET fuels from the viewpoint of core performance and safety. The conclusive remarks can be drawn as follows. Because of its much better thermal conductivity, the CERMET core can be designed by using thicker pins, so that it has the same or even better transmutation performance compared to the CERCER core. Both CERCER and CERMET fuels fulfill safety requirements. Moreover the CERMET fuel has higher fuel safety margins than the CERCER one. Preliminary analyses show that the CERMET total core power can be further increased by 50% at least without exceeding fuel and clad temperature limits. (authors)

  8. Japanese standard method for safety evaluation using best estimate code based on uncertainty and scaling analyses with statistical approach

    International Nuclear Information System (INIS)

    Mizokami, Shinya; Hotta, Akitoshi; Kudo, Yoshiro; Yonehara, Tadashi; Watada, Masayuki; Sakaba, Hiroshi

    2009-01-01

    Current licensing practice in Japan consists of using conservative boundary and initial conditions(BIC), assumptions and analytical codes. The safety analyses for licensing purpose are inherently deterministic. Therefore, conservative BIC and assumptions, such as single failure, must be employed for the analyses. However, using conservative analytical codes are not considered essential. The standard committee of Atomic Energy Society of Japan(AESJ) has drawn up the standard for using best estimate codes for safety analyses in 2008 after three-years of discussions reflecting domestic and international recent findings. (author)

  9. Safety performance monitoring of autonomous marine systems

    International Nuclear Information System (INIS)

    Thieme, Christoph A.; Utne, Ingrid B.

    2017-01-01

    The marine environment is vast, harsh, and challenging. Unanticipated faults and events might lead to loss of vessels, transported goods, collected scientific data, and business reputation. Hence, systems have to be in place that monitor the safety performance of operation and indicate if it drifts into an intolerable safety level. This article proposes a process for developing safety indicators for the operation of autonomous marine systems (AMS). The condition of safety barriers and resilience engineering form the basis for the development of safety indicators, synthesizing and further adjusting the dual assurance and the resilience based early warning indicator (REWI) approaches. The article locates the process for developing safety indicators in the system life cycle emphasizing a timely implementation of the safety indicators. The resulting safety indicators reflect safety in AMS operation and can assist in planning of operations, in daily operational decision-making, and identification of improvements. Operation of an autonomous underwater vehicle (AUV) exemplifies the process for developing safety indicators and their implementation. The case study shows that the proposed process leads to a comprehensive set of safety indicators. It is expected that application of the resulting safety indicators consequently will contribute to safer operation of current and future AMS. - Highlights: • Process for developing safety indicators for autonomous marine systems. • Safety indicators based on safety barriers and resilience thinking. • Location of the development process in the system lifecycle. • Case study on AUV demonstrating applicability of the process.

  10. Safety balance: Analysis of safety systems

    International Nuclear Information System (INIS)

    Delage, M.; Giroux, C.

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses

  11. Cost/benefit analyses of reactor safety systems

    International Nuclear Information System (INIS)

    1988-01-01

    The study presents a methodology for quantitative assessment of the benefit yielded by the various engineered safety systems of a nuclear reactor containment from the standpoint of their capacity to protect the environment compared to their construction costs. The benefit is derived from an estimate of the possible damage from which the environment is protected, taking account of the probabilities of occurrence of malfunctions and accidents. For demonstration purposes, the methodology was applied to a 1 300-MWe PWR nuclear power station. The accident sequence considered was that of a major loss-of-coolant accident as investigated in detail in the German risk study. After determination of the benefits and cost/benefit ratio for the power plant and the containment systems as designed, the performance characteristics of three subsystems, the leakoff system, annulus exhaust air handling system and spray system, were varied. For this purpose, the parameters which describe these systems in the activity release programme were altered. The costs were simultaneously altered in order to take account of the performance divergences. By varying the performance of the individual sub-systems an optimization in design of these systems can be arrived at

  12. Mining Behavior Based Safety Data to Predict Safety Performance

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Joe

    2010-06-01

    The Idaho National Laboratory (INL) operates a behavior based safety program called Safety Observations Achieve Results (SOAR). This peer-to-peer observation program encourages employees to perform in-field observations of each other's work practices and habits (i.e., behaviors). The underlying premise of conducting these observations is that more serious accidents are prevented from occurring because lower level “at risk” behaviors are identified and corrected before they can propagate into culturally accepted “unsafe” behaviors that result in injuries or fatalities. Although the approach increases employee involvement in safety, the premise of the program has not been subject to sufficient empirical evaluation. The INL now has a significant amount of SOAR data on these lower level “at risk” behaviors. This paper describes the use of data mining techniques to analyze these data to determine whether they can predict if and when a more serious accident will occur.

  13. Performance and Vibration Analyses of Lift-Offset Helicopters

    Directory of Open Access Journals (Sweden)

    Jeong-In Go

    2017-01-01

    Full Text Available A validation study on the performance and vibration analyses of the XH-59A compound helicopter is conducted to establish techniques for the comprehensive analysis of lift-offset compound helicopters. This study considers the XH-59A lift-offset compound helicopter using a rigid coaxial rotor system as a verification model. CAMRAD II (Comprehensive Analytical Method of Rotorcraft Aerodynamics and Dynamics II, a comprehensive analysis code, is used as a tool for the performance, vibration, and loads analyses. A general free wake model, which is a more sophisticated wake model than other wake models, is used to obtain good results for the comprehensive analysis. Performance analyses of the XH-59A helicopter with and without auxiliary propulsion are conducted in various flight conditions. In addition, vibration analyses of the XH-59A compound helicopter configuration are conducted in the forward flight condition. The present comprehensive analysis results are in good agreement with the flight test and previous analyses. Therefore, techniques for the comprehensive analysis of lift-offset compound helicopters are appropriately established. Furthermore, the rotor lifts are calculated for the XH-59A lift-offset compound helicopter in the forward flight condition to investigate the airloads characteristics of the ABC™ (Advancing Blade Concept rotor.

  14. Thermal hydraulic and safety analyses for Pakistan Research Reactor-1

    International Nuclear Information System (INIS)

    Bokhari, I.H.; Israr, M.; Pervez, S.

    1999-01-01

    Thermal hydraulic and safety analysis of Pakistan Research Reactor-1 (PARR-1) utilizing low enriched uranium (LEU) fuel have been performed using computer code PARET. The present core comprises of 29 standard and 5 control fuel elements. Results of the thermal hydraulic analysis show that the core can be operated at a steady-state power level of 10 MW for a flow rate of 950 m 3 /h, with sufficient safety margins against ONB (onset of nucleate boiling) and DNB (departure from nucleate boiling). Safety analysis has been carried out for various modes of reactivity insertions. The events studied include: start-up accident; accidental drop of a fuel element in the core; flooding of a beam tube with water; removal of an in-pile experiment during reactor operation etc. For each of these transients, time histories of reactor power, energy released and clad surface temperature etc. were calculated. The results indicate that the peak clad temperatures remain well below the clad melting temperature during these accidents. It is therefore concluded that the reactor can be safely operated at 10 MW without compromising safety. (author)

  15. Safety Analysis for Key Design Features of KALIMER-600 Design Concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Kwon, Y. M.; Kim, E. K.; Suk, S. D.; Chang, W. P.; Jeong, H. Y.; Ha, K. S

    2007-02-15

    This report contains the safety analyses of the KALIMER-600 conceptual design which KAERI has been developing under the Long-term Nuclear R and D Program. The analyses have been performed reflecting the design developments during the second year of the 4th design phase in the program. The specific presentations are the key design features with the safety principles for achieving the safety objectives, the event categorization and safety criteria, and results on the safety analyses for the DBAs and ATWS events, the containment performance, and the channel blockages. The safety analyses for both the DBAs and ATWS events have been performed using SSC-K version 1.3., and the results have shown the fulfillment of the safety criteria for DBAs with conservative assumptions. The safety margins as well as the inherent safety also have been confirmed for the ATWS events. For the containment performance analysis, ORIGEN-2.1 and CONTAIN-LMR have been used. In results, the structural integrity has been acceptable and the evaluated exposure dose rate has been complied with 10 CFR 100 and PAG limits. The analysis results for flow blockages of 6-subchannels, 24-subchannels, and 54- subchannels with the MATRA-LMR-FB code, have assured the integrity of subassemblies.

  16. Safety study application guide

    International Nuclear Information System (INIS)

    1993-07-01

    Martin Marietta Energy Systems, Inc., (Energy Systems) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Included are analyses of existing facilities done under the aegis of the Safety Analysis Report Upgrade Program, and analyses of new and modified facilities. A graded approach is used wherein the level of analysis and documentation for each facility is commensurate with the magnitude of the hazard(s), the complexity of the facility and the stage of the facility life cycle. Safety analysis reports (SARs) for hazard Category 1 and 2 facilities are usually detailed and extensive because these categories are associated with public health and safety risk. SARs for Category 3 are normally much less extensive because the risk to public health and safety is slight. At Energy Systems, safety studies are the name given to SARs for Category 3 (formerly open-quotes lowclose quotes) facilities. Safety studies are the appropriate instrument when on-site risks are limited to irreversible consequences to a few people, and off-site consequences are limited to reversible consequences to a few people. This application guide provides detailed instructions for performing safety studies that meet the requirements of DOE Orders 5480.22, open-quotes Technical Safety Requirements,close quotes and 5480.23, open-quotes Nuclear Safety Analysis Reports.close quotes A seven-chapter format has been adopted for safety studies. This format allows for discussion of all the items required by DOE Order 5480.23 and for the discussions to be readily traceable to the listing in the order. The chapter titles are: (1) Introduction and Summary, (2) Site, (3) Facility Description, (4) Safety Basis, (5) Hazardous Material Management, (6) Management, Organization, and Institutional Safety Provisions, and (7) Accident Analysis

  17. Evaluating Performance of Safety Management and Occupational Health Using Total Quality Safety Management Model (TQSM

    Directory of Open Access Journals (Sweden)

    E Mohammadfam

    2015-11-01

    Full Text Available Introduction: All organizations, whether public or private, necessitate performance evaluation systems in regard with growth, stability, and development in the competitive fields. One of the existing models for performance evaluation of occupational health and safety management is Total Quality Safety Management model (TQSM. Therefore, the present study aimed to evaluate performance of safety management and occupational health utilizing TQSM model. Methods: In this descriptive-analytic study, the population consisted of 16 individuals, including managers, supervisors, and members of technical protection and work health committee. Then the participants were asked to respond to TQSM questionnaire before and after the implementation of Occupational Health & Safety Advisory Services 18001 (OHSAS18001. Ultimately, the level of each program as well as the TQSM status were determined before and after the implementation of OHSAS18001. Results: The study results showed that the scores obtained by the company before OHSAS 18001’s implementation, was 43.7 out of 312. After implementing OHSAS 18001 in the company and receiving the related certificate, the total score of safety program that company could obtain was 127.12 out of 312 demonstrating a rise of 83.42 scores (26.8%. The paired t-test revealed that mean difference of TQSM scores before and after OHSAS 18001 implementation was proved to be significant (p> 0.05. Conclusion: The study findings demonstrated that TQSM can be regarded as an appropriate model in order to monitor the performance of safety management system and occupational health, since it possesses the ability to quantitatively evaluate the system performance.

  18. MELCOR 1.8.2 Analyses in Support of ITER's RPrS

    International Nuclear Information System (INIS)

    Brad J Merrill

    2008-01-01

    The International Thermonuclear Experimental Reactor (ITER) Program is performing accident analyses for ITER's 'Rapport Preliminaire de Surete' (Report Preliminary on Safety - RPrS) with a modified version of the MELCOR 1.8.2 code. The RPrS is an ITER safety document required in the ITER licensing process to obtain a 'Decret Autorisation de Construction' (a Decree Authorizing Construction - DAC) for the ITER device. This report documents the accident analyses performed by the US with the MELCOR 1.8.2 code in support of the ITER RPrS effort. This work was funded through an ITER Task Agreement for MELCOR Quality Assurance and Safety Analyses. Under this agreement, the US was tasked with performing analyses for three accident scenarios in the ITER facility. Contained within the text of this report are discussions that identify the cause of these accidents, descriptions of how these accidents are likely to proceed, the method used to analyze the consequences of these accidents, and discussions of the transient thermal hydraulic and radiological release results for these accidents

  19. Operational Safety Performance Indicators and Balanced Scorecard in HANARO

    International Nuclear Information System (INIS)

    Wu, Jong-Sup; Jung, Hoan-Sung; Ahn, Guk-Hoon; Lee, Kye-Hong; Lim, In-Cheol; Kim, Hark-Rho

    2007-01-01

    Research reactors need an extensive basis for ensuring their safety. The importance of a safety management in nuclear facilities and activities has been emphasized. The safety activities in HANARO have been continuously conducted to enhance its safe operation. Last year, HANARO prepared two indicator sets to measure and assess the safety status of the reactor's operation and utilization. One is Safety Performance Indicators (SPI) and the other is Balanced Scorecard (BSC). Through reviewing these indicators, we can obtain the following information; - Plant safety status - Safety parameter trends - Safety information, for example, reactor operation status and radiation safety HANARO will continuously pursue the trends of SPI and BSC

  20. Advanced handbook for accident analyses of German nuclear power plants; Weiterentwicklung eines Handbuches fuer Stoerfallanalysen deutscher Kernkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, Alexander; Broecker, Annette; Hartung, Juergen; Mayer, Gerhard; Pallas Moner, Guim

    2014-09-15

    The advanced handbook of safety analyses (HSA) comprises a comprehensive electronic collection of knowledge for the compilation and conduction of safety analyses in the area of reactor, plant and containment behaviour as well as results of existing safety analyses (performed by GRS in the past) with characteristic specifications and further background information. In addition, know-how from the analysis software development and validation process is presented and relevant rules and regulations with regard to safety demonstration are provided. The HSA comprehensively covers the topic thermo-hydraulic safety analyses (except natural hazards, man-made hazards and malicious acts) for German pressurized and boiling water reactors for power and non-power operational states. In principle, the structure of the HSA-content represents the analytical approach utilized by safety analyses and applying the knowledge from safety analyses to technical support services. On the basis of a multilevel preparation of information to the topics ''compilation of safety analyses'', ''compilation of data bases'', ''assessment of safety analyses'', ''performed safety analyses'', ''rules and regulation'' and ''ATHLET-validation'' the HSA addresses users with different background, allowing them to enter the HSA at different levels. Moreover, the HSA serves as a reference book, which is designed future-oriented, freely configurable related to the content, completely integrated into the GRS internal portal and prepared to be used by a growing user group.

  1. SGHWR fuel performance, safety and reliability

    International Nuclear Information System (INIS)

    Pickman, D.O.; Inglis, G.H.

    1977-01-01

    The design principles involved in fuel pins and elements need to take account of the sometimes conflicting requirements of performance, safety and reliability. The principal factors involved in this optimisation are discussed and it is shown from fuel irradiation experience in the Winfrith S.G.H.W.R. that the necessary bias toward safety has not resulted in a reliability level lower than that shown by other successful water reactor designs. Reliability has important economic implications and has to be paid for. By a detailed evaluation of S.G.H.W.R. fuel defects it is shown that very few defects can be shown to be related to design, rating or burn-up. This demonstrates that economic aspects have not over-ridden necessary criteria that must be met to achieve the desirable reliability level. It is possible that large-scale experience with S.G.H.W.R. fuel may eventually demonstrate that the balance is too much in favour of reliability and consideration may be given to whether design changes favouring economy could be achieved without compromising safety. The safety criteria applied to S.G.H.W.R. fuel are designed to avoid any possibility of a temperature runaway in any credible accident situation. The philosophy and supporting experimental work programme are outlined and the fuel design features which particularly contribute to maximising safety margins are outlined. Reference is made to new 60 pin fuel element to be used in the commercial S.G.H.W.R.'s and how it compares in design and performance aspects with the 36 pin element that has been used to date in the Winfrith S.G.H.W.R

  2. Analysing performance through value creation

    Directory of Open Access Journals (Sweden)

    Adrian TRIFAN

    2015-12-01

    Full Text Available This paper draws a parallel between measuring financial performance in 2 variants: the first one using data offered by accounting, which lays emphasis on maximizing profit, and the second one which aims to create value. The traditional approach to performance is based on some indicators from accounting data: ROI, ROE, EPS. The traditional management, based on analysing the data from accounting, has shown its limits, and a new approach is needed, based on creating value. The evaluation of value based performance tries to avoid the errors due to accounting data, by using other specific indicators: EVA, MVA, TSR, CVA. The main objective is shifted from maximizing the income to maximizing the value created for shareholders. The theoretical part is accompanied by a practical analysis regarding the creation of value and an analysis of the main indicators which evaluate this concept.

  3. The Aviation Performance Measuring System (APMS): An Integrated Suite of Tools for Measuring Performance and Safety

    Science.gov (United States)

    Statler, Irving C.; Connor, Mary M. (Technical Monitor)

    1998-01-01

    This is a report of work in progress. In it, I summarize the status of the research and development of the Aviation Performance Measuring System (APMS) for managing, processing, and analyzing digital flight-recorded data, The objectives of the NASA-FAA APMS research project are to establish a sound scientific and technological basis for flight-data analysis, to define an open and flexible architecture for flight-data analysis systems, and to articulate guidelines for a standardized database structure on which to continue to build future flight-data-analysis extensions. APMS offers to the air transport community an open, voluntary standard for flight-data-analysis software; a standard that will help to ensure suitable functionality and data interchangeability among competing software programs. APMS will develop and document the methodologies, algorithms, and procedures for data management and analyses to enable users to easily interpret the implications regarding safety and efficiency of operations. APMS does not entail the implementation of a nationwide flight-data-collection system. It is intended to provide technical tools to ease the large-scale implementation of flight-data analyses at both the air-carrier and the national-airspace levels in support of their Flight Operations and Quality Assurance (FOQA) Programs and Advanced Qualifications Programs (AQP). APMS cannot meet its objectives unless it develops tools that go substantially beyond the capabilities of the current commercially available software and supporting analytic methods that are mainly designed to count special events. These existing capabilities, while of proven value, were created primarily with the needs-of aircrews in mind. APMS tools must serve the needs of the government and air carriers, as well as aircrews, to fully support the FOQA and AQP programs. They must be able to derive knowledge not only through the analysis of single flights (special-event detection), but also through

  4. Road safety performance indicators for the interurban road network.

    NARCIS (Netherlands)

    Yannis, G. Weijermars, W.A.M. Gitelman, V. Vis, M. Chazirisa, A. Papadimitriou, E. & Lima Azevedo, C.

    2013-01-01

    Various road safety performance indicators (SPIs) have been proposed for different road safety research areas, mainly as regards driver behaviour (e.g. seat belt use, alcohol, drugs, etc.) and vehicles (e.g. passive safety); however, no SPIs for the road network and design have been developed. The

  5. The Nursing Performance Instrument: Exploratory and Confirmatory Factor Analyses in Registered Nurses.

    Science.gov (United States)

    Sagherian, Knar; Steege, Linsey M; Geiger-Brown, Jeanne; Harrington, Donna

    2018-04-01

    The optimal performance of nurses in healthcare settings plays a critical role in care quality and patient safety. Despite this importance, few measures are provided in the literature that evaluate nursing performance as an independent construct from competencies. The nine-item Nursing Performance Instrument (NPI) was developed to fill this gap. The aim of this study was to examine and confirm the underlying factor structure of the NPI in registered nurses. The design was cross-sectional, using secondary data collected between February 2008 and April 2009 for the "Fatigue in Nursing Survey" (N = 797). The sample was predominantly dayshift female nurses working in acute care settings. Using Mplus software, exploratory and confirmatory factor analyses were applied to the NPI data, which were divided into two equal subsamples. Multiple fit indices were used to evaluate the fit of the alternative models. The three-factor model was determined to fit the data adequately. The factors that were labeled as "physical/mental decrements," "consistent practice," and "behavioral change" were moderately to strongly intercorrelated, indicating good convergent validity. The reliability coefficients for the subscales were acceptable. The NPI consists of three latent constructs. This instrument has the potentialto be used as a self-monitoring instrument that addressesnurses' perceptions of performance while providing patient care.

  6. Performance Analysis of Multi Stage Safety Injection Tank

    International Nuclear Information System (INIS)

    Shin, Soo Jai; Kim, Young In; Bae, Youngmin; Kang, Han-Ok; Kim, Keung Koo

    2015-01-01

    In general the integral reactor has such characteristics, the integral reactor requires a high flow rate of coolant safety injection at the initial stage of the accident in which the core level is relatively fast decreased, A medium flow rate of coolant safety injection at the early and middle stages of the accident in which the coolant discharge flow rate is relatively large due to a high internal pressure of the reactor vessel, and a low flow rate of coolant safety injection is required at the middle and late stages of the accident in which the coolant discharge flow rate is greatly reduced due to a decreased pressure of the reactor vessel. It is noted that a high flow rate of the integral reactor is quite smaller compared to a flow rate required in the commercial loop type reactor. However, a nitrogen pressurized safety injection tank has been typically designed to quickly inject a high flow rate of coolant when the internal pressure of the reactor vessel is rapidly decreased, and a core makeup tank has been designed to safely inject at a single mode flow rate due to a gravitational head of water subsequent to making a pressure balance between the reactor vessel and core makeup tank. As a result, in order to compensate such a disadvantage, various type systems are used in a complicated manner in a reactor according to the required characteristic of safety injection during an accident. In the present study, we have investigated numerically the performance of the multi stage safety injection tank. A parameter study has performed to understand the characteristics of the multi stage safety injection tank. The performance of the multi stage safety injection tank has been investigated numerically. When an accident occurs, the coolant in the multi stage safety injection tank is injected into a reactor vessel by a gravitational head of water subsequent to making a pressure balance between the reactor and tank. At the early stages of the accident, the high flow rate of

  7. Performance Analysis of Multi Stage Safety Injection Tank

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Soo Jai; Kim, Young In; Bae, Youngmin; Kang, Han-Ok; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In general the integral reactor has such characteristics, the integral reactor requires a high flow rate of coolant safety injection at the initial stage of the accident in which the core level is relatively fast decreased, A medium flow rate of coolant safety injection at the early and middle stages of the accident in which the coolant discharge flow rate is relatively large due to a high internal pressure of the reactor vessel, and a low flow rate of coolant safety injection is required at the middle and late stages of the accident in which the coolant discharge flow rate is greatly reduced due to a decreased pressure of the reactor vessel. It is noted that a high flow rate of the integral reactor is quite smaller compared to a flow rate required in the commercial loop type reactor. However, a nitrogen pressurized safety injection tank has been typically designed to quickly inject a high flow rate of coolant when the internal pressure of the reactor vessel is rapidly decreased, and a core makeup tank has been designed to safely inject at a single mode flow rate due to a gravitational head of water subsequent to making a pressure balance between the reactor vessel and core makeup tank. As a result, in order to compensate such a disadvantage, various type systems are used in a complicated manner in a reactor according to the required characteristic of safety injection during an accident. In the present study, we have investigated numerically the performance of the multi stage safety injection tank. A parameter study has performed to understand the characteristics of the multi stage safety injection tank. The performance of the multi stage safety injection tank has been investigated numerically. When an accident occurs, the coolant in the multi stage safety injection tank is injected into a reactor vessel by a gravitational head of water subsequent to making a pressure balance between the reactor and tank. At the early stages of the accident, the high flow rate of

  8. Managing patient safety through NPSGs and employee performance.

    Science.gov (United States)

    Adair, Liberty

    2010-01-01

    Patient safety can only exist in a culture of patient safety, which implies it is a value perceived by all. Culture predicts safety outcomes and leadership predicts the culture. Leaders are obligated to continually mitigate hazard and take action consciously. Healthcare workers should focus on preventing and reporting mistakes with the National Patient Safety Goals (NPSGs) in mind. These include: accuracy of patient identification, effectiveness of communication among caregivers, improving safety of medications, reducing infections, reducing risk of falls, and encouraging patients to be involved in care. Poor performers and reckless behavior need to be mitigated. If employees recognize their roles in the process, feel empowered,and have appropriate tools, resources,and data to implement solutions, errors can be avoided and patient safety becomes paramount.

  9. Updated safety analysis of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Neill, E-mail: neill.taylor@iter.org [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Baker, Dennis; Ciattaglia, Sergio; Cortes, Pierre; Elbez-Uzan, Joelle; Iseli, Markus; Reyes, Susana; Rodriguez-Rodrigo, Lina; Rosanvallon, Sandrine; Topilski, Leonid [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2011-10-15

    An updated version of the ITER Preliminary Safety Report has been produced and submitted to the licensing authorities. It is revised and expanded in response to requests from the authorities after their review of an earlier version in 2008, to reflect enhancements in ITER safety provisions through design changes, to incorporate new and improved safety analyses and to take into account other ITER design evolution. The updated analyses show that changes to the Tokamak cooling water system design have enhanced confinement and reduced potential radiological releases as well as removing decay heat with very high reliability. New and updated accident scenario analyses, together with fire and explosion risk analyses, have shown that design provisions are sufficient to minimize the likelihood of accidents and reduce potential consequences to a very low level. Taken together, the improvements provided a stronger demonstration of the very good safety performance of the ITER design.

  10. Updated safety analysis of ITER

    International Nuclear Information System (INIS)

    Taylor, Neill; Baker, Dennis; Ciattaglia, Sergio; Cortes, Pierre; Elbez-Uzan, Joelle; Iseli, Markus; Reyes, Susana; Rodriguez-Rodrigo, Lina; Rosanvallon, Sandrine; Topilski, Leonid

    2011-01-01

    An updated version of the ITER Preliminary Safety Report has been produced and submitted to the licensing authorities. It is revised and expanded in response to requests from the authorities after their review of an earlier version in 2008, to reflect enhancements in ITER safety provisions through design changes, to incorporate new and improved safety analyses and to take into account other ITER design evolution. The updated analyses show that changes to the Tokamak cooling water system design have enhanced confinement and reduced potential radiological releases as well as removing decay heat with very high reliability. New and updated accident scenario analyses, together with fire and explosion risk analyses, have shown that design provisions are sufficient to minimize the likelihood of accidents and reduce potential consequences to a very low level. Taken together, the improvements provided a stronger demonstration of the very good safety performance of the ITER design.

  11. A road safety performance indicator for vehicle fleet compatibility.

    Science.gov (United States)

    Christoph, Michiel; Vis, Martijn Alexander; Rackliff, Lucy; Stipdonk, Henk

    2013-11-01

    This paper discusses the development and the application of a safety performance indicator which measures the intrinsic safety of a country's vehicle fleet related to fleet composition. The indicator takes into account both the 'relative severity' of individual collisions between different vehicle types, and the share of those vehicle types within a country's fleet. The relative severity is a measure for the personal damage that can be expected from a collision between two vehicles of any type, relative to that of a collision between passenger cars. It is shown how this number can be calculated using vehicle mass only. A sensitivity analysis is performed to study the dependence of the indicator on parameter values and basic assumptions made. The indicator is easy to apply and satisfies the requirements for appropriate safety performance indicators. It was developed in such a way that it specifically scores the intrinsic safety of a fleet due to its composition, without being influenced by other factors, like helmet wearing. For the sake of simplicity, and since the required data is available throughout Europe, the indicator was applied to the relative share of three of the main vehicle types: passenger cars, heavy goods vehicles and motorcycles. Using the vehicle fleet data from 13EU Member States and Norway, the indicator was used to rank the countries' safety performance. The UK was found to perform best in terms of its fleet composition (value is 1.07), while Greece has the worst performance with the highest indicator value (1.41). Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Operational safety performance indicators for nuclear power plants

    International Nuclear Information System (INIS)

    2000-05-01

    Since the late 1980s, the IAEA has been actively sponsoring work in the area of indicators to monitor nuclear power plant (NPP) operational safety performance. The early activities were mainly focused on exchanging ideas and good practices in the development and use of these indicators at nuclear power plants. Since 1995 efforts have been directed towards the elaboration of a framework for the establishment of an operational safety performance indicator programme. The result of this work, compiled in this publication, is intended to assist NPPs in developing and implementing a monitoring programme, without overlooking the critical aspects related to operational safety performance. The framework proposed in this report was presented at two IAEA workshops on operational safety performance indicators held in Ljubljana, Slovenia, in September 1998 and at the Daya Bay NPP, Szenzhen, China, in December 1998. During these two workshops, the participants discussed and brainstormed on the indicator framework presented. These working sessions provided very useful insights and ideas which where used for the enhancement of the framework proposed. The IAEA is acknowledging the support and contribution of all the participants in these two activities. The programme development was enhanced by pilot plant studies. Four plants from different countries with different designs participated in this study with the objective of testing the applicability, usefulness and viability of this approach

  13. Safety analyses for transient behavior of plasma and in-vessel components during plasma abnormal events in fusion reactor

    International Nuclear Information System (INIS)

    Honda, Takuro; Okazaki, Takashi; Bartels, H.W.; Uckan, N.A.; Seki, Yasushi.

    1997-01-01

    Safety analyses on plasma abnormal events have been performed using a hybrid code of a plasma dynamics model and a heat transfer model of in-vessel components. Several abnormal events, e.g., increase in fueling rate, were selected for the International Thermonuclear Experimental Reactor (ITER) and transient behavior of the plasma and the invessel components during the events was analyzed. The physics model for safety analysis was conservatively prepared. In most cases, the plasma is terminated by a disruption or it returns to the original operation point. When the energy confinement improves by a factor of 2.0 in the steady state, which is a hypothetical assumption under the present plasma data, the maximum fusion power reaches about 3.3 GW at about 3.6 s and the plasma is terminated due to a disruption. However, the results obtained in this study show the confinement boundary of ITER can be kept almost intact during the abnormal plasma transients, as long as the cooling system works normally. Several parametric studies are needed to comprehend the overpower transient including structure behavior, since many uncertainties are connected to the filed of the plasma physics. And, future work will need to discuss the burn control scenario considering confinement mode transition, system specifications, experimental plans and safety regulations, etc. to confirm the safety related to the plasma anomaly. (author)

  14. Reactivity initiated accident analyses for the safety assessment of upgraded JRR-3

    International Nuclear Information System (INIS)

    Harami, Taikan; Uemura, Mutsumi; Ohnishi, Nobuaki

    1984-08-01

    JRR-3, currently a heavy water moderated and cooled 10 MW reactor, is to be upgraded to a light water moderated and cooled, heavy water reflected 20 MW reactor. This report describes the analytical results of reactivity initiated accidents for the safety assessment of upgraded JRR-3. The following five cases have been selected for the assessment; (1) uncontrolled control rod withdrawal from zero power, (2) uncontrolled control rod withdrawal from full power, (3) removal of irradiation samples, (4) increase of primary coolant flow, (5) failure of heavy water tank. Parameter studies have been made for each of the above cases to cover possible uncertainties. All analyses have been made by a computer code EUREKA-2. The results show that the safety criteria for upgraded JRR-3 are all met and the adequacy of the design is confirmed. (author)

  15. Methodology development for statistical evaluation of reactor safety analyses

    International Nuclear Information System (INIS)

    Mazumdar, M.; Marshall, J.A.; Chay, S.C.; Gay, R.

    1976-07-01

    In February 1975, Westinghouse Electric Corporation, under contract to Electric Power Research Institute, started a one-year program to develop methodology for statistical evaluation of nuclear-safety-related engineering analyses. The objectives of the program were to develop an understanding of the relative efficiencies of various computational methods which can be used to compute probability distributions of output variables due to input parameter uncertainties in analyses of design basis events for nuclear reactors and to develop methods for obtaining reasonably accurate estimates of these probability distributions at an economically feasible level. A series of tasks was set up to accomplish these objectives. Two of the tasks were to investigate the relative efficiencies and accuracies of various Monte Carlo and analytical techniques for obtaining such estimates for a simple thermal-hydraulic problem whose output variable of interest is given in a closed-form relationship of the input variables and to repeat the above study on a thermal-hydraulic problem in which the relationship between the predicted variable and the inputs is described by a short-running computer program. The purpose of the report presented is to document the results of the investigations completed under these tasks, giving the rationale for choices of techniques and problems, and to present interim conclusions

  16. Safety analysis report for packaging (onsite) transuranic performance demonstration program sample packaging

    International Nuclear Information System (INIS)

    Mccoy, J.C.

    1997-01-01

    The Transuranic Performance Demonstration Program (TPDP) sample packaging is used to transport highway route controlled quantities of weapons grade (WG) plutonium samples from the Plutonium Finishing Plant (PFP) to the Waste Receiving and Processing (WRAP) facility and back. The purpose of these shipments is to test the nondestructive assay equipment in the WRAP facility as part of the Nondestructive Waste Assay PDP. The PDP is part of the U. S. Department of Energy (DOE) National TRU Program managed by the U. S. Department of Energy, Carlsbad Area Office, Carlsbad, New Mexico. Details of this program are found in CAO-94-1045, Performance Demonstration Program Plan for Nondestructive Assay for the TRU Waste Characterization Program (CAO 1994); INEL-96/0129, Design of Benign Matrix Drums for the Non-Destructive Assay Performance Demonstration Program for the National TRU Program (INEL 1996a); and INEL-96/0245, Design of Phase 1 Radioactive Working Reference Materials for the Nondestructive Assay Performance Demonstration Program for the National TRU Program (INEL 1996b). Other program documentation is maintained by the national TRU program and each DOE site participating in the program. This safety analysis report for packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the TRU PDP sample packaging meets the onsite transportation safety requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for an onsite Transportation Hazard Indicator (THI) 2 packaging. This SARP, however, does not include evaluation of any operations within the PFP or WRAP facilities, including handling, maintenance, storage, or operating requirements, except as they apply directly to transportation between the gate of PFP and the gate of the WRAP facility. All other activities are subject to the requirements of the facility safety analysis reports (FSAR) of the PFP or WRAP facility and requirements of the PDP

  17. SAFETY PERFORMANCE OF SUBCONTRACTORS IN THE PALESTINIAN CONSTRUCTION INDUSTRY

    Directory of Open Access Journals (Sweden)

    Adnan Enshassi

    2008-06-01

    Full Text Available Subcontractors perform most of the construction works and their effect on industry are apparent in different activities of construction. Therefore, subcontractors need more attention from government and contractors union. The aim of this paper is to identify, evaluate, and rank factors that influence safety performance of subcontractors in the Gaza Strip (Palestine according to their relative importance. The study concluded that reported accident rates will decrease among subcontractors and their workers if new workers are trained well in the work site and they are informed about dangerous places, and if a workable safety plan is well preplanned. The results also showed that reported accident rates increased among subcontractors when using old, unsafe equipment and due to the complexity or difficulty in the construction sites features. Owners and general contractors need to stipulate strict clauses for safety in the contract for improving safety record of subcontractors. Construction workers must receive proper job related safety and health training with a safety logbook. It is recommended that the subcontractors and workers should attend continuing safety programs on regular basis as part of their perquisite to work in construction sites.

  18. Methods and Effects of Safety Enhancement in Korean PSR

    International Nuclear Information System (INIS)

    Kim, Young Gab; Park, Jong Woon

    2009-01-01

    Periodic Safety Review (PSR) is a comprehensive study on a nuclear power plant safety, taking into account aspects such as operational history, ageing, safety analyses and advances in code and standards since the time of construction. In Korea, PSRs have been performed for 20 units and have been effectively used to obtain an overall view of actual plant safety to determine reasonable and practical modifications that should be made in order to obtain a higher level of safety approaching that of modern plants. Among many safety enhancements achieved from Korean PSRs, new safety analyses are the important methods to confirm plant safety by increasing safety margin for specific safety issues. Methods and effects of safety enhancements applied in Korean PSRs are reviewed in this paper in light of new safety analyses to obtain additional safety margins

  19. Probabilistic safety criteria at the safety function/system level

    International Nuclear Information System (INIS)

    1989-09-01

    A Technical Committee Meeting was held in Vienna, Austria, from 26-30 January 1987. The objectives of the meeting were: to review the national developments of PSC at the level of safety functions/systems including future trends; to analyse basic principles, assumptions, and objectives; to compare numerical values and the rationale for choosing them; to compile the experience with use of such PSC; to analyse the role of uncertainties in particular regarding procedures for showing compliance. The general objective of establishing PSC at the level of safety functions/systems is to provide a pragmatic tool to evaluate plant safety which is placing emphasis on the prevention principle. Such criteria could thus lead to a better understanding of the importance to safety of the various functions which have to be performed to ensure the safety of the plant, and the engineering means of performing these functions. They would reflect the state-of-the-art in modern PSAs and could contribute to a balance in system design. This report, prepared by the participants of the meeting, reviews the current status and future trends in the field and should assist Member States in developing their national approaches. The draft of this document was also submitted to INSAG to be considered in its work to prepare a document on safety principles for nuclear power plants. Five papers presented at the meeting are also included in this publication. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  20. Safety And Transient Analyses For Full Core Conversion Of The Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong

    2011-01-01

    Preparing for full core conversion of Dalat Nuclear Research Reactor (DNRR), safety and transient analyses were carried out to confirm about ability to operate safely of proposed Low Enriched Uranium (LEU) working core. The initial LEU core consisting 92 LEU fuel assemblies and 12 Beryllium rods was analyzed under initiating events of uncontrolled withdrawal of a control rod, cooling pump failure, earthquake and fuel cladding fail. Working LEU core response were evaluated under these initial events based on RELAP/Mod3.2 computer code and other supported codes like ORIGEN, MCNP and MACCS2. Obtained results showed that safety of the reactor is maintained for all transients/accidents analyzed. (author)

  1. Evaluation of geological documents available for provisional safety analyses of potential sites for nuclear waste repositories - Are additional geological investigations needed?

    International Nuclear Information System (INIS)

    2010-10-01

    The procedure for selecting repository sites for all categories of radioactive waste in Switzerland is defined in the conceptual part of the Sectoral Plan for Deep Geological Repositories, which foresees a selection of sites in three stages. In Stage I, Nagra proposed geological siting regions based on criteria relating to safety and engineering feasibility. The Swiss Government (the Federal Council) is expected to decide on the siting proposals in 2011. The objective of Stage 2 is to prepare proposals for the location of the surface facilities within the planning perimeters defined by the Federal Council in its decision on Stage 1 and to identify potential sites. Nagra also has to carry out a provisional safety analysis for each site and a safety-based comparison of the sites. Based on this, and taking into account the results of the socio-economic-ecological impact studies, Nagra then has to propose at least two sites for each repository type to be carried through to Stage 3. The proposed sites will then be investigated in more detail in Stage 3 to ensure that the selection of the sites for the General Licence Applications is well founded. In order to realise the objectives of the upcoming Stage 2, the state of knowledge of the geological conditions at the sites has to be sufficient to perform the provisional safety analyses. Therefore, in preparation for Stage 2, the conceptual part of the Sectoral Plan requires Nagra to clarify the need for additional investigations aimed at providing input for the provisional safety analyses. The purpose of the present report is to document Nagra's technical-scientific assessment of this need. The focus is on evaluating the geological information based on processes and parameters that are relevant for safety and engineering feasibility. In evaluating the state of knowledge the key question is whether additional information could lead to a different decision regarding the selection of the sites to be carried through to Stage 3

  2. Nuclear safety analyses and core design calculations to convert the Texas A & M University Nuclear Science Center reactor to low enrichment uranium fuel. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Parish, T.A.

    1995-03-02

    This project involved performing the nuclear design and safety analyses needed to modify the license issued by the Nuclear Regulatory Commission to allow operation of the Texas A& M University Nuclear Science Center Reactor (NSCR) with a core containing low enrichment uranium (LEU) fuel. The specific type of LEU fuel to be considered was the TRIGA 20-20 fuel produced by General Atomic. Computer codes for the neutronic analyses were provided by Argonne National Laboratory (ANL) and the assistance of William Woodruff of ANL in helping the NSCR staff to learn the proper use of the codes is gratefully acknowledged. The codes applied in the LEU analyses were WIMSd4/m, DIF3D, NCTRIGA and PARET. These codes allowed full three dimensional, temperature and burnup dependent calculations modelling the NSCR core to be performed for the first time. In addition, temperature coefficients of reactivity and pulsing calculations were carried out in-house, whereas in the past this modelling had been performed at General Atomic. In order to benchmark the newly acquired codes, modelling of the current NSCR core with highly enriched uranium fuel was also carried out. Calculated results were compared to both earlier licensing calculations and experimental data and the new methods were found to achieve excellent agreement with both. Therefore, even if an LEU core is never loaded at the NSCR, this project has resulted in a significant improvement in the nuclear safety analysis capabilities established and maintained at the NSCR.

  3. Recognising safety critical events: can automatic video processing improve naturalistic data analyses?

    Science.gov (United States)

    Dozza, Marco; González, Nieves Pañeda

    2013-11-01

    New trends in research on traffic accidents include Naturalistic Driving Studies (NDS). NDS are based on large scale data collection of driver, vehicle, and environment information in real world. NDS data sets have proven to be extremely valuable for the analysis of safety critical events such as crashes and near crashes. However, finding safety critical events in NDS data is often difficult and time consuming. Safety critical events are currently identified using kinematic triggers, for instance searching for deceleration below a certain threshold signifying harsh braking. Due to the low sensitivity and specificity of this filtering procedure, manual review of video data is currently necessary to decide whether the events identified by the triggers are actually safety critical. Such reviewing procedure is based on subjective decisions, is expensive and time consuming, and often tedious for the analysts. Furthermore, since NDS data is exponentially growing over time, this reviewing procedure may not be viable anymore in the very near future. This study tested the hypothesis that automatic processing of driver video information could increase the correct classification of safety critical events from kinematic triggers in naturalistic driving data. Review of about 400 video sequences recorded from the events, collected by 100 Volvo cars in the euroFOT project, suggested that drivers' individual reaction may be the key to recognize safety critical events. In fact, whether an event is safety critical or not often depends on the individual driver. A few algorithms, able to automatically classify driver reaction from video data, have been compared. The results presented in this paper show that the state of the art subjective review procedures to identify safety critical events from NDS can benefit from automated objective video processing. In addition, this paper discusses the major challenges in making such video analysis viable for future NDS and new potential

  4. Safety performance evaluation using proactive indicators in a selected industry

    Directory of Open Access Journals (Sweden)

    Abolfazl Barkhordari

    2015-03-01

    Full Text Available Background & Objectives: Quality and effectiveness of safety systems are critical factors in achieving their goals. This study was aimed to represent a method for performance evaluation of safety systems by proactive indicators using different updated models in the field of safety which will be tested in a selected industry. Methods: This study is a cross-sectional study. Proactive indicators used in this study were: Unsafe acts rate, Safety Climate, Accident Proneness, and Near-miss incident rate. The number of in 1473 safety climate questionnaires and 543 Accident Proneness questionnaires was completed. Results: The minimum and maximum safety climate score were 56.88 and 58.2, respectively, and the minimum and maximum scores of Accident Proneness were 98.2 and 140.7, respectively. The maximum number of Near-miss incident rate were 408 and the minimum of that was 196. The maximum number of unsafe acts rate was 43.8 percent and the minimum of that was 27.2 percent. In nine dimensions of Safety climate the eighth dimension (personal perception of risk with the score of 4.07 has the lowest score and the fourth (laws and safety regulations dimension with 8.05 has the highest score. According to expert opinions, the most important indicator in the assessment of safety performance was unsafe acts rate, while near-miss incident rate was the least important one. Conclusion: The results of this survey reveal that using proactive (Prospective indicators could be an appropriate method in organizations safety performance evaluation.

  5. Indicators to monitor NPP safety performance. Working material

    International Nuclear Information System (INIS)

    1997-01-01

    Numerical indicators to monitor safety status and overall safety performance of nuclear power plants (NPPs) are used by operators and some regulators worldwide. During the last few years, the IAEA, through Technical Committee Meetings and Consultants' Meetings has worked on this area. This report presents a framework for nuclear power plant safety performance indicators that was developed during two consultant meetings held at the IAEA headquarters in Vienna in December 1995 and November 1996. Annex 2 on risk based indicators was prepared during a consultants' meeting held in Vienna in July 1996. An additional outcome from these activities, was the recommendation that the IAEA conduce pilot exercises at several nuclear power plants that might be interested to participate, in order to test the validity of the concept and its usefulness. 6 figs

  6. Core size effects on safety performances of LMRs

    Energy Technology Data Exchange (ETDEWEB)

    Na, Byung Chan; Hahn, Do Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    An oxide fuel small size core (1200 MWt) was analyzed in comparison with a large size core (3600 MWt) in order to evaluate the size effects on transient safety performances of liquid-metal reactors (LMRs). In the first part of the study, main static safety parameters (i.e., Doppler coefficient, sodium void effect, etc.) of the two cores were characterized, and the second part of the study was focused on the dynamic behavior of the cores in two representative transient events: the unprotected loss-of-flow (ULOF) and the unprotected transient overpower (UTOP). Margins to fuel melting and sodium boiling have been evaluated for these representative transients. Results show that the small core has a generally better or equivalent level of safety performances during these events. 6 refs., 4 figs., 2 tabs. (Author)

  7. Core size effects on safety performances of LMRs

    Energy Technology Data Exchange (ETDEWEB)

    Na, Byung Chan; Hahn, Do Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    An oxide fuel small size core (1200 MWt) was analyzed in comparison with a large size core (3600 MWt) in order to evaluate the size effects on transient safety performances of liquid-metal reactors (LMRs). In the first part of the study, main static safety parameters (i.e., Doppler coefficient, sodium void effect, etc.) of the two cores were characterized, and the second part of the study was focused on the dynamic behavior of the cores in two representative transient events: the unprotected loss-of-flow (ULOF) and the unprotected transient overpower (UTOP). Margins to fuel melting and sodium boiling have been evaluated for these representative transients. Results show that the small core has a generally better or equivalent level of safety performances during these events. 6 refs., 4 figs., 2 tabs. (Author)

  8. The spin project: safety and performance indicators in different time frames

    International Nuclear Information System (INIS)

    Storck, R.; Becker, D.A.

    2002-01-01

    Safety and performance indicators have been under discussion for many years in several countries and international organisations. If those indicators refer to the long term safety of the total disposal system, they are often called safety indicators. If they refer to the performance of subsystems or the total system from a more technical point of view, they are sometimes called performance indicators. The need for indicators other than dose rates derives e.g. from the long time frames involved in safety assessments of waste disposal systems and the increasing uncertainty in dose rate calculations over time due to uncertainty in evolution of the surface environment and of behaviour of man. Before introducing additional indicators into a safety case of a potential repository site, the applicability and usefulness of different indicators have to be investigated and evaluated. The systematic analysis and testing of safety and performance indicators for use in different time horizons after closure of the disposal facility is the task of the SPIN project. This is done by re-calculating four recent studies concerning repository projects in granite formations. (authors)

  9. The role of risk assessment and safety analysis in integrated safety assessments

    International Nuclear Information System (INIS)

    Niall, R.; Hunt, M.; Wierman, T.E.

    1990-01-01

    To ensure that the design and operation of both nuclear and non- nuclear hazardous facilities is acceptable, and meets all societal safety expectations, a rigorous deterministic and probabilistic assessment is necessary. An approach is introduced, founded on the concept of an ''Integrated Safety Assessment.'' It merges the commonly performed safety and risk analyses and uses them in concert to provide decision makers with the necessary depth of understanding to achieve ''adequacy.'' 3 refs., 1 fig

  10. Plasma-safety assessment model and safety analyses of ITER

    International Nuclear Information System (INIS)

    Honda, T.; Okazaki, T.; Bartels, H.-H.; Uckan, N.A.; Sugihara, M.; Seki, Y.

    2001-01-01

    A plasma-safety assessment model has been provided on the basis of the plasma physics database of the International Thermonuclear Experimental Reactor (ITER) to analyze events including plasma behavior. The model was implemented in a safety analysis code (SAFALY), which consists of a 0-D dynamic plasma model and a 1-D thermal behavior model of the in-vessel components. Unusual plasma events of ITER, e.g., overfueling, were calculated using the code and plasma burning is found to be self-bounded by operation limits or passively shut down due to impurity ingress from overheated divertor targets. Sudden transition of divertor plasma might lead to failure of the divertor target because of a sharp increase of the heat flux. However, the effects of the aggravating failure can be safely handled by the confinement boundaries. (author)

  11. Multi-person and multi-attribute design evaluations using evidential reasoning based on subjective safety and cost analyses

    International Nuclear Information System (INIS)

    Wang, J.; Yang, J.B.; Sen, P.

    1996-01-01

    This paper presents an approach for ranking proposed design options based on subjective safety and cost analyses. Hierarchical system safety analysis is carried out using fuzzy sets and evidential reasoning. This involves safety modelling by fuzzy sets at the bottom level of a hierarchy and safety synthesis by evidential reasoning at higher levels. Fuzzy sets are also used to model the cost incurred for each design option. An evidential reasoning approach is then employed to synthesise the estimates of safety and cost, which are made by multiple designers. The developed approach is capable of dealing with problems of multiple designers, multiple attributes and multiple design options to select the best design. Finally, a practical engineering example is presented to demonstrate the proposed multi-person and multi-attribute design selection approach

  12. Benchmarking road safety performance: Identifying a meaningful reference (best-in-class).

    Science.gov (United States)

    Chen, Faan; Wu, Jiaorong; Chen, Xiaohong; Wang, Jianjun; Wang, Di

    2016-01-01

    For road safety improvement, comparing and benchmarking performance are widely advocated as the emerging and preferred approaches. However, there is currently no universally agreed upon approach for the process of road safety benchmarking, and performing the practice successfully is by no means easy. This is especially true for the two core activities of which: (1) developing a set of road safety performance indicators (SPIs) and combining them into a composite index; and (2) identifying a meaningful reference (best-in-class), one which has already obtained outstanding road safety practices. To this end, a scientific technique that can combine the multi-dimensional safety performance indicators (SPIs) into an overall index, and subsequently can identify the 'best-in-class' is urgently required. In this paper, the Entropy-embedded RSR (Rank-sum ratio), an innovative, scientific and systematic methodology is investigated with the aim of conducting the above two core tasks in an integrative and concise procedure, more specifically in a 'one-stop' way. Using a combination of results from other methods (e.g. the SUNflower approach) and other measures (e.g. Human Development Index) as a relevant reference, a given set of European countries are robustly ranked and grouped into several classes based on the composite Road Safety Index. Within each class the 'best-in-class' is then identified. By benchmarking road safety performance, the results serve to promote best practice, encourage the adoption of successful road safety strategies and measures and, more importantly, inspire the kind of political leadership needed to create a road transport system that maximizes safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. 2011 Annual Criticality Safety Program Performance Summary

    Energy Technology Data Exchange (ETDEWEB)

    Andrea Hoffman

    2011-12-01

    The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The

  14. Introduction of Autonomous Vehicles: Roundabouts Design and Safety Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Aleksandra Deluka Tibljaš

    2018-04-01

    Full Text Available Driving experiences provided by the introduction of new vehicle technologies are directly impacting the criteria for road network design. New criteria should be taken into consideration by designers, researchers and car owners in order to assure traffic safety in changed conditions that will appear with, for example, introduction of Autonomous Vehicles (AVs in everyday traffic. In this paper, roundabout safety level is analysed on the originally developed microsimulation model in circumstances where different numbers of AVs vehicles are mixed with Conventional Vehicles (CVs. Field data about speed and traffic volumes from existing roundabouts in Croatia were used for development of the model. The simulations done with the Surrogate Safety Assessment Model (SSAM give some relevant highlights on how the introduction of AVs could change both operational and safety parameters at roundabouts. To further explore the effects on safety of roundabouts with the introduction of different shares of AVs, hypothetical safety treatments could be tested to explore whether their effects may change, leading to the estimation of a new set of Crash Modification Factors.

  15. The safety performance management system: A tool for diagnosis, intervention and measurement

    International Nuclear Information System (INIS)

    Haber, S.B.; Shurberg, D.A.

    2002-01-01

    Many organizations depend on human performance to avoid incidents involving significant adverse consequences. Such organizations are typically termed high reliability organizations (HROs). While heavy emphasis has been placed on designing system hardware and software to intercept and mitigate events that could cause adverse consequences, dealing with the design of the human component has proven to be more complicated. Examination of various safety-related incidents makes it clear that human performance, and in particular organizational processes, plays a dominant role. The human errors are of various origins and are typically part of larger organizational processes that encourage unsafe acts that ultimately produce system failures. It is generally postulated that without an effective organizational safety culture, a safe working environment is impossible. While many different perspectives exist from which safety issues might be addressed, a method that allows the quantitative measurement of organizational processes deemed to impact overall safety performance is considered useful to understand the potential for future inadequate safety performance. This paper describes the Safety Performance Management System, a method useful for diagnosis, subsequent intervention and follow-on measurement. Implications for use of this method are presented and the concluding discussion includes insights regarding the general application of the method to improved facility safety performance. (author)

  16. The influence of organisational and management factors on safety performance in NNPPS. Rand D project

    International Nuclear Information System (INIS)

    Cal, C. de la; Gil, B.; Sola, R.; Vaquero, C.; Garces, M. I.

    2002-01-01

    The direct influence of organisational and managerial factors on safety performance in nuclear power plants has been widely proved by two findings, the analysis of their operating experience and the differences in safety levels reached by similar installations. Specially, the study of majors accidents such as TMI-2 and Chernobyl have demonstrated that the technical deficiencies are not the only root causes, but there are a whole set of human, organisational, managerial and social factors which are the origin from most of these deficiencies. In recent years, this fact is emphasised with the nuclear industry involved a process of change. The deregulation of the electricity market, which has increased the economic pressures to the companies and has driven in many cases to restructures in ownership (mergers, acquisitions), downsizing processes and outsourcing parts of the work, jointly with the development of information technologies and computer networks and with a change in the regulatory and social climates are some of the nre factors affecting the performance of nuclear power plants that have addressed, even more, to the need of re-viewing and assessing the impact of organisational aspects on their safe performance. There have been international efforts to analyse the influence of organisational factors in the safety of nuclear power plants following different approaches. Research institutions, utilities and regulatory bodies. individually or in co-operation, have tried to develop practical tools for taking into account the organisation. According to these international efforts the Association of Spanish Utilities, UNESA, and the Spanish Nuclear Regulatory Body, CSN, have included in 1998, for the first time in their Co-ordinated Plan for Research, an innovative five years R and D project entitled Development of methods to evaluate and model the impact of organisation on nuclear poer plants safety whose main objectives are to analyse the impact of organisation and

  17. RELAP5 analyses and support of Oconee-1 PTS studies

    International Nuclear Information System (INIS)

    Charlton, T.R.

    1983-01-01

    The integrity of a reactor vessel during a severe overcooling transient with primary system pressurization is a current safety concern and has been identified as an Unresolved Safety Issue(USI) A-49 by the US Nuclear Regulatory Commission (NRC). Resolution of USI A-49, denoted as Pressurized Thermal Shock (PTS), is being examined by the US NRC sponsored PTS integration study. In support of this study, the Idaho National Engineering Laboratory (INEL) has performed RELAP5/MOD1.5 thermal-hydraulic analyses of selected overcooling transients. These transient analyses were performed for the Oconee-1 pressurized water reactor (PWR), which is Babcock and Wilcox designed nuclear steam supply system

  18. Can Leader–Member Exchange Contribute to Safety Performance in An Italian Warehouse?

    Directory of Open Access Journals (Sweden)

    Marco G. Mariani

    2017-05-01

    Full Text Available Introduction: The research considers safety climate in a warehouse and wants to analyze the Leader–Member Exchange (LMX role in respect to safety performance. Griffin and Neal’s safety model was adopted and Leader-Member Exchange was inserted as moderator in the relationships between safety climate and proximal antecedents (motivation and knowledge of safety performance constructs (compliance and participation.Materials and Methods: Survey data were collected from a sample of 133 full-time employees in an Italian warehouse. The statistical framework of Hayes (2013 was adopted for moderated mediation analysis.Results: Proximal antecedents partially mediated the relationship between Safety climate and safety participation, but not safety compliance. Moreover, the results from the moderation analysis showed that the Leader–Member Exchange moderated the influence of safety climate on proximal antecedents and the mediation exist only at the higher level of LMX.Conclusion: The study shows that the different aspects of leadership processes interact in explaining individual proficiency in safety practices.Practical Implications: Organizations as warehouses should improve the quality of the relationship between a leader and a subordinate based upon the dimensions of respect, trust, and obligation for high level of safety performance.

  19. Preliminary standard review guide for Environmental Restoration/Decontamination and Decommissioning safety analyses

    International Nuclear Information System (INIS)

    Ellingson, D.R.

    1993-06-01

    The review guide is based on the shared experiences, approaches, and philosophies of the Environmental Restoration/Decontamination and Decommissioning (ER/D ampersand D) subgroup members. It is presented in the form of a review guide to maximize the benefit to both the safety analyses practitioner and reviewer. The guide focuses on those challenges that tend to be unique to ER/D ampersand D cleanup activities. Some of these experiences, approaches, and philosophies may find application or be beneficial to a broader spectrum of activities such as terminal cleanout or even new operations. Challenges unique to ER/D ampersand D activities include (1) consent agreements requiring activity startup on designated dates; (2) the increased uncertainty of specific hazards; and (3) the highly variable activities covered under the broad category of ER/D ampersand D. These unique challenges are in addition to the challenges encountered in all activities; e.g., new and changing requirements and multiple interpretations. The experiences in approaches, methods, and solutions to the challenges are documented from the practitioner and reviewer's perspective, thereby providing the viewpoints on why a direction was taken and the concerns expressed. Site cleanup consent agreements with predetermined dates for restoration activity startup add the dimension of imposed punitive actions for failure to meet the date. Approval of the safety analysis is a prerequisite to startup. Actions that increase expediency are (1) assuring activity safety; (2) documenting that assurance; and (3) acquiring the necessary approvals. These actions increase the timeliness of startup and decrease the potential for punitive action. Improvement in expediency has been achieved by using safety analysis techniques to provide input to the line management decision process rather than as a review of line management decisions. Expediency is also improved by sharing the safety input and resultant decisions with

  20. A road safety performance indicator for vehicle fleet compatibility.

    NARCIS (Netherlands)

    Christoph, M. Vis, M.A. Rackliff, L. & Stipdonk, H.

    2013-01-01

    This paper discusses the development and the application of a safety performance indicator which measures the intrinsic safety of a country's vehicle fleet related to fleet composition. The indicator takes into account both the ‘relative severity’ of individual collisions between different vehicle

  1. Strengthening the culture of safety and performance in nuclear installations

    International Nuclear Information System (INIS)

    Briant, V.S.; Germann, R.P.

    1997-01-01

    In mid-1995, the International Atomic Energy Agency (IAEA) in Vienna brought together a group of safety culture experts from around the world to explore and summarize those practices they viewed as important in establishing sound safety cultures in nuclear installations. This paper will summarize key findings of the Vienna team and also expand those ideas based on related work in which the authors are engaged. The paper includes a definition of safety culture, a description of three stages of safety culture, and five key practices essential to establishing and maintaining a sound safety culture. Additionally, the authors contradicts the conventional view of safety and production as trade-offs, supporting the Vienna team's conclusion that the principles, attitudes, and practices which bring about sustained levels of high performance are the same as those which enhance safety. Based on input from colleagues in several countries, this appears to hold true across geographical and ethnic boundaries. The authors also discuss how this information can be put to practical use to obtain an objective, measurable, and repeated assessment of the current state of the safety culture within a company, plant or work unit. With that information, leaders are then in the position to act on any of the several parameters which affect both safety and performance effectiveness. (author)

  2. Performance Monitoring for Nuclear Safety Related Instrumentation at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Sabri Minhat

    2015-01-01

    The Reactor TRIGA PUSPATI (RTP) at Malaysia Nuclear Agency is a TRIGA Mark II type reactor and pool type cooled by natural circulation of light water. This paper describe on performance monitoring for nuclear safety related instrumentation in TRIGA PUSPATI Reactor (RTP) of based on various parameter of reactor safety instrument channel such as log power, linear power, Fuel temperature, coolant temperature will take into consideration. Methodology of performance on estimation and monitoring is to evaluate and analysis of reactor parameters which is important of reactor safety and control. And also to estimate power measurement, differential of log and linear power and fuel temperature during reactor start-up, operation and shutdown .This study also focus on neutron power fluctuation from fission chamber during reactor start-up and operation. This work will present result of performance monitoring from RTP which indicated the safety parameter identification and initiate safety action on crossing the threshold set point trip. Conclude that performance of nuclear safety related instrumentation will improved the reactor control and safety parameter during reactor start-up, operation and shutdown. (author)

  3. Transformational leadership and employee safety performance: a within-person, between-jobs design.

    Science.gov (United States)

    Inness, Michelle; Turner, Nick; Barling, Julian; Stride, Chris B

    2010-07-01

    We investigated the extent to which the safety performance (i.e., self-reported safety compliance and safety participation) of employees with 2 jobs was predicted by their respective supervisors' transformational leadership behaviors. We compared 2 within-person models: a context-specific model (i.e., transformational leadership experienced by employees in 1 context related to those same employees' safety performance only in that context) and a context-spillover model (i.e., transformational leadership experienced by employees in 1 context related to those same employees' safety performance in the same and other contexts). Our sample comprised 159 "moonlighters" (73 men, 86 women): employees who simultaneously hold 2 different jobs, each with a different supervisor, providing within-person data on the influence of different supervisors on employee safety performance across 2 job contexts. Having controlled for individual differences (negative affectivity and conscientiousness) and work characteristics (e.g., hours worked and length of relationship with supervisor), the context-specific model provided the best fit to the data among alternative nested models. Implications for the role of transformational leadership in promoting workplace safety are discussed.

  4. Analyses of hydraulic performance of velocity caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Degn Eskesen, Mark Chr.; Buhrkall, Jeppe

    2014-01-01

    The hydraulic performance of a velocity cap has been investigated. Velocity caps are often used in connection with offshore intakes. CFD (computational fluid dynamics) examined the flow through the cap openings and further down into the intake pipes. This was combined with dimension analyses...

  5. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Control modules C4, C6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U. S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume is part of the manual related to the control modules for the newest updated version of this computational package.

  6. Engineering Solutions to Enhance Traffic Safety Performance on Two-Lane Highways

    Directory of Open Access Journals (Sweden)

    Lina Wu

    2015-01-01

    Full Text Available Improving two-lane highway traffic safety conditions is of practical importance to the traffic system, which has attracted significant research attention within the last decade. Many cost-effective and proactive solutions such as low-cost treatments and roadway safety monitoring programs have been developed to enhance traffic safety performance under prevailing conditions. This study presents research perspectives achieved from the Highway Safety Enhancement Project (HSEP that assessed safety performance on two-lane highways in Beijing, China. Potential causal factors are identified based on proposed evaluation criteria, and primary countermeasures are developed against inferior driving conditions such as sharp curves, heavy gradients, continuous downgrades, poor sight distance, and poor clear zones. Six cost-effective engineering solutions were specifically implemented to improve two-lane highway safety conditions, including (1 traffic sign replacement, (2 repainting pavement markings, (3 roadside barrier installation, (4 intersection channelization, (5 drainage optimization, and (6 sight distance improvement. The effectiveness of these solutions was examined and evaluated based on Empirical Bayes (EB models. The results indicate that the proposed engineering solutions effectively improved traffic safety performance by significantly reducing crash occurrence risks and crash severities.

  7. Impact of individual resilience and safety climate on safety performance and psychological stress of construction workers: A case study of the Ontario construction industry.

    Science.gov (United States)

    Chen, Yuting; McCabe, Brenda; Hyatt, Douglas

    2017-06-01

    The construction industry has hit a plateau in terms of safety performance. Safety climate is regarded as a leading indicator of safety performance; however, relatively little safety climate research has been done in the Canadian construction industry. Safety climate may be geographically sensitive, thus it is necessary to examine how the construct of safety climate is defined and used to improve safety performance in different regions. On the other hand, more and more attention has been paid to job related stress in the construction industry. Previous research proposed that individual resilience may be associated with a better safety performance and may help employees manage stress. Unfortunately, few empirical research studies have examined this hypothesis. This paper aims to examine the role of safety climate and individual resilience in safety performance and job stress in the Canadian construction industry. The research was based on 837 surveys collected in Ontario between June 2015 and June 2016. Structural equation modeling (SEM) techniques were used to explore the impact of individual resilience and safety climate on physical safety outcomes and on psychological stress among construction workers. The results show that safety climate not only affected construction workers' safety performance but also indirectly affected their psychological stress. In addition, it was found that individual resilience had a direct negative impact on psychological stress but had no impact on physical safety outcomes. These findings highlight the roles of both organizational and individual factors in individual safety performance and in psychological well-being. Construction organizations need to not only monitor employees' safety performance, but also to assess their employees' psychological well-being. Promoting a positive safety climate together with developing training programs focusing on improving employees' psychological health - especially post-trauma psychological

  8. Transient performance analysis of pressurized safety injection tank with a partition

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo

    2015-01-01

    Highlights: • Functional performance of safety injection tanks with a partition is evaluated. • Effects of key design parameters are scrutinized. • Distinctive features of the flow in multi-unit safety injection tanks are explored. - Abstract: A parametric study has been performed to evaluate the functional performance of a pressurized multi-unit safety injection tank, which would be considered as one of the candidates for a passive safety injection system in a nuclear power plant. The influences of key design parameters including the orifice size, initial gas fraction, and resistance coefficients and operating condition on the injection flow rate are scrutinized with a discussion of the relevant flow features such as the choked flow of gas through an orifice and two interconnected regions of differing gaseous pressure. The obtained results indicate that a multi-unit safety injection tank can passively control the injection flow rate and provide a stable safety injection over a relatively long period even in the case of drastic depressurization of a reactor coolant system

  9. SGHWR fuel performance, safety and reliability

    International Nuclear Information System (INIS)

    Pickman, D.O.; Inglis, G.H.

    1977-05-01

    The design principles involved in fuel pins and elements need to take account of the sometimes conflicting requirements of safety and reliability. The principal factors involved in this optimisation are discussed and it is shown from fuel irradiation experience in the Winfrith SGHWR that the necessary bias towards safety has not resulted in a reliability level lower than that shown by other successful water reactor designs. Reliability has important economic implications. By a detailed evaluation of SGHWR fuel defects it is shown that very few defects can be shown to be related to design, rating, or burn-up. This demonstrates that economic aspects have not over-ridden necessary criteria that most be met to achieve the desirable reliability level. It is possible that large scale experience on SGHWR fuel may eventually demonstrate that the balance is too much in favour of reliability and consideration may be given to whether design changes favouring economy could be achieved without compromising safety. The safety criteria applied to SGHWR fuel are designed to avoid any possibility of a temperature runaway in any credible accident situation. the philosophy and supporting experimental work programme are outlines and the fuel design features which particularly contribute to maximising safety margins are outlined. Reference is made to the new 60-pin fuel element to be used in the commercial SGHWRs and to its comparison in design and performance aspects with the 36-pin element that has been used to date in the Winfrith SGHWR. (author)

  10. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    For non-reactor nuclear facilities, the U.S. Department of Energy (DOE) does not require that nuclear criticality safety engineers demonstrate qualification for their job. It is likely, however, that more formalism will be required in the future. Current DOE requirements for those positions which do have to demonstrate qualification indicate that qualification should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis is incompletely developed in some areas

  11. Building quality into performance and safety assessment software

    International Nuclear Information System (INIS)

    Wojciechowski, L.C.

    2011-01-01

    Quality assurance is integrated throughout the development lifecycle for performance and safety assessment software. The software used in the performance and safety assessment of a Canadian deep geological repository (DGR) follows the CSA quality assurance standard CSA-N286.7 [1], Quality Assurance of Analytical, Scientific and Design Computer Programs for Nuclear Power Plants. Quality assurance activities in this standard include tasks such as verification and inspection; however, much more is involved in producing a quality software computer program. The types of errors found with different verification methods are described. The integrated quality process ensures that defects are found and corrected as early as possible. (author)

  12. Strengthening the culture of safety and performance in nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Briant, V S [GPU Nuclear, Parsippany (United States); Germann, R P [Aberdeen Center for Team Learning, Matawan (United States)

    1997-07-01

    In mid-1995, the International Atomic Energy Agency (IAEA) in Vienna brought together a group of safety culture experts from around the world to explore and summarize those practices they viewed as important in establishing sound safety cultures in nuclear installations. This paper will summarize key findings of the Vienna team and also expand those ideas based on related work in which the authors are engaged. The paper includes a definition of safety culture, a description of three stages of safety culture, and five key practices essential to establishing and maintaining a sound safety culture. Additionally, the authors contradicts the conventional view of safety and production as trade-offs, supporting the Vienna team`s conclusion that the principles, attitudes, and practices which bring about sustained levels of high performance are the same as those which enhance safety. Based on input from colleagues in several countries, this appears to hold true across geographical and ethnic boundaries. The authors also discuss how this information can be put to practical use to obtain an objective, measurable, and repeated assessment of the current state of the safety culture within a company, plant or work unit. With that information, leaders are then in the position to act on any of the several parameters which affect both safety and performance effectiveness. (author) 9 refs., 5 tabs.

  13. Incorporating Workplace Injury to Measure the Safety Performance of Industrial Sectors in Taiwan

    Directory of Open Access Journals (Sweden)

    Li-Ting Yeh

    2017-12-01

    Full Text Available The severity of workplace injuries varies by industry. Information on workplace injuries can enable firms and governments to effectively improve their safety performance based on the specific contexts of each industry. Incorporating the three workplace injury rates (being wounded or ill, disability, and death, a data envelopment analysis (DEA model is developed to evaluate the safety performance of 17 industrial sectors in Taiwan. The results suggest that the Taiwanese government should pay particular attention to the mining and quarrying industry, which has the lowest safety performance. Additionally, the results provide abundant information for the Taiwanese government to design industry safety regulations in a way that may prompt firms to develop a sustainable economy by improving their health and safety practices and enhancing their overall safety performance.

  14. The safety culture change process performed in Polish research reactor MARIA

    International Nuclear Information System (INIS)

    Golab, Andrzej

    2002-01-01

    The Safety Culture Change Process Performed in research reactor MARIA is described in this paper. The essential issues fulfilled in realization of the Safety Culture Enhancement Programme are related to the attitude and behaviour of top management, co-operating groups, operational personnel, relations between the operating organization and the supervising and advising organizations. Realization of this programme is based on changing the employees understanding of safety, changing their attitudes and behaviours by means of adequate training, requalification process and performing the broad self-assessment programme. Also a high level Quality Assurance Programme helps in development of the Safety Culture. (author)

  15. Development of Safety Grade PLC (POSAFE-Q) and Performance Test Results

    International Nuclear Information System (INIS)

    Kim, Chang Hwoi; Park, Won Man; Choi, Jong Gyun; Lee, Dong Young; No, Young Hun; Song, Seung Hwan

    2006-01-01

    The safety grade PLC (POSAFE-Q) is being developed in the Korea Nuclear Instrumentation and Control System (KNICS) R and D project. The PLC satisfies Safety Class 1E, Quality Class 1, and Seismic Category I. The software such as the RTOS and firmware are being developed according to the safety critical software life cycle. Especially, the formal method is applied to design the SRS (Software Requirement Spec.) and the SDS (Software Design Specification.) to be error-free. The POSAFE-Q has several modules such as processor module, input and output modules, communication modules, redundant processor module, redundant power modules, etc,. To verify the function and performance, several tests such as CT, IT and ST were performed. And also, the equipment qualification test for environment, EMI and EMC, and seismic ware performed. All tests are satisfied with the requirements and specification for safety grade PLC, and the criteria for safety system in nuclear power plants

  16. Development of Safety Grade PLC (POSAFE-Q) and Performance Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hwoi; Park, Won Man; Choi, Jong Gyun; Lee, Dong Young [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); No, Young Hun; Song, Seung Hwan [POSCON, Seoul (Korea, Republic of)

    2006-07-01

    The safety grade PLC (POSAFE-Q) is being developed in the Korea Nuclear Instrumentation and Control System (KNICS) R and D project. The PLC satisfies Safety Class 1E, Quality Class 1, and Seismic Category I. The software such as the RTOS and firmware are being developed according to the safety critical software life cycle. Especially, the formal method is applied to design the SRS (Software Requirement Spec.) and the SDS (Software Design Specification.) to be error-free. The POSAFE-Q has several modules such as processor module, input and output modules, communication modules, redundant processor module, redundant power modules, etc,. To verify the function and performance, several tests such as CT, IT and ST were performed. And also, the equipment qualification test for environment, EMI and EMC, and seismic ware performed. All tests are satisfied with the requirements and specification for safety grade PLC, and the criteria for safety system in nuclear power plants.

  17. Performance and safety of hydraulic turbines

    International Nuclear Information System (INIS)

    Brekke, H

    2010-01-01

    The first part of the paper contains the choice of small turbines for run of the river power plants. Then a discussion is given on the optimization of the performance of different types of large turbines. Finally a discussion on the safety and necessary maintenance of turbines is given with special attention to bolt connections.

  18. Risk-based safety performance indicators for nuclear power plants

    International Nuclear Information System (INIS)

    Chakraborty, S.; Prohaska, G.; Flodin, Y.; Grint, G.; Habermacher, H.; Hallman, A.; Isasia, R.; Melendez, E.; Verduras, E.; Karsa, Z.; Khatib-Rahbar, M.; Koeberlein, K.; Schwaeger, C.; Matahri, N.; Moravcik, I.; Tkac, M.; Preston, J.

    2003-01-01

    In a Concerted Action (CA), sponsored by the European Commission within its 5th Framework Program, a consortium of eleven partners from eight countries has reviewed and evaluated the application of Safety Performance Indicators (SPIs), which - in combination with other tools - can be used to monitor and improve the safety of nuclear power plants. The project was aimed at identification of methods that can be used in a risk-informed regulatory system and environment, and to exploit PSA techniques for the development and use of meaningful additional/alternative SPIs. The CA included the review of existing indicator systems, and the collection of information on the experience from indicator systems by means of a specific questionnaire. One of the most important and challenging issues for nuclear plant owners and/or regulators is to recognize early signs of deterioration in safety performance, caused by influences from management, organization and safety culture (MOSC), before actual events and/or mishaps take place. Most of the existing SPIs as proposed by various organizations are considered as 'lagging' indicators, that is, they are expected to show an impact only when a downward trend has already started. Furthermore, most of the available indicators are at a relatively high level, such that they will not provide useful information on fundamental weaknesses causing the problem in the first place. Regulators' and utilities' views on the use of a Safety Performance Indicator System have also been a part of the development of the CA. (author)

  19. Independent assessment for new nuclear reactor safety

    Directory of Open Access Journals (Sweden)

    D'Auria Francesco

    2017-01-01

    Full Text Available A rigorous framework for safety assessment is established in all countries where nuclear technology is used for the production of electricity. On the one side, industry, i.e. reactor designers, vendors and utilities perform safety analysis and demonstrate consistency between results of safety analyses and requirements. On the other side, regulatory authorities perform independent assessment of safety and confirm the acceptability of safety of individual reactor units. The process of comparing results from analyses by reactor utilities and regulators is very complex. The process is also highly dependent upon mandatory approaches pursued for the analysis and from very many details which required the knowledge of sensitive proprietary data (e.g. spacer designs. Furthermore, all data available for the design, construction and operation of reactors produced by the nuclear industry are available to regulators. Two areas for improving the process of safety assessment for individual Nuclear Power Plant Units are identified: New details introduced by industry are not always and systematically requested by regulators for the independent assessment; New analytical techniques and capabilities are not necessarily used in the analyses by regulators (and by the industry. The established concept of independent assessment constitutes the way for improving the process of safety assessment. This is possible, or is largely facilitated, by the recent availability of the so-called Best Estimate Plus Uncertainty approach.

  20. Independent assessment for new nuclear reactor safety

    International Nuclear Information System (INIS)

    D'Auria, F.; Glaeser, H.; Debrecin, N.

    2017-01-01

    A rigorous framework for safety assessment is established in all countries where nuclear technology is used for the production of electricity. On one side, industry, i.e. reactor designers, vendors and utilities perform safety analysis and demonstrate consistency between results of safety analyses and requirements. On the other side, regulatory authorities perform independent assessment of safety and confirm the acceptability of safety of individual reactor units. The process of comparing results from analyses by reactor utilities and regulators is very complex. The process is also highly dependent upon mandatory approaches pursued for the analysis and from very many details which required the knowledge of sensitive proprietary data (e.g. spacer designs). Furthermore, all data available for the design, construction and operation of reactors produced by the nuclear industry are available to regulators. Two areas for improving the process of safety assessment for individual Nuclear Power Plant Units are identified: New details introduced by industry are not always and systematically requested by regulators for the independent assessment; New analytical techniques and capabilities are not necessarily used in the analyses by regulators (and by the industry). The established concept of independent assessment constitutes the way for improving the process of safety assessment. This is possible, or is largely facilitated, by the recent availability of the so-called Best Estimate Plus Uncertainty (BEPU) approach. (authors)

  1. Applying importance-performance analysis to patient safety culture.

    Science.gov (United States)

    Lee, Yii-Ching; Wu, Hsin-Hung; Hsieh, Wan-Lin; Weng, Shao-Jen; Hsieh, Liang-Po; Huang, Chih-Hsuan

    2015-01-01

    The Sexton et al.'s (2006) safety attitudes questionnaire (SAQ) has been widely used to assess staff's attitudes towards patient safety in healthcare organizations. However, to date there have been few studies that discuss the perceptions of patient safety both from hospital staff and upper management. The purpose of this paper is to improve and to develop better strategies regarding patient safety in healthcare organizations. The Chinese version of SAQ based on the Taiwan Joint Commission on Hospital Accreditation is used to evaluate the perceptions of hospital staff. The current study then lies in applying importance-performance analysis technique to identify the major strengths and weaknesses of the safety culture. The results show that teamwork climate, safety climate, job satisfaction, stress recognition and working conditions are major strengths and should be maintained in order to provide a better patient safety culture. On the contrary, perceptions of management and hospital handoffs and transitions are important weaknesses and should be improved immediately. Research limitations/implications - The research is restricted in generalizability. The assessment of hospital staff in patient safety culture is physicians and registered nurses. It would be interesting to further evaluate other staff's (e.g. technicians, pharmacists and others) opinions regarding patient safety culture in the hospital. Few studies have clearly evaluated the perceptions of healthcare organization management regarding patient safety culture. Healthcare managers enable to take more effective actions to improve the level of patient safety by investigating key characteristics (either strengths or weaknesses) that healthcare organizations should focus on.

  2. APMS: An Integrated Suite of Tools for Measuring Performance and Safety

    Science.gov (United States)

    Statler, Irving C.; Lynch, Robert E.; Connors, Mary M. (Technical Monitor)

    1997-01-01

    This is a report of work in progress. In it, I summarize the status of the research and development of the Aviation Performance Measuring System (APMS) for managing, processing, and analyzing digital flight-recorded data. The objectives of the NASA-FAA APMS research project are to establish a sound scientific and technological basis for flight-data analysis, to define an open and flexible architecture for flight-data-analysis systems, and to articulate guidelines for a standardized database structure on which to continue to build future flight-data-analysis extensions. APMS will offer to the air transport community an open, voluntary standard for flight-data-analysis software, a standard that will help to ensure suitable functionality, and data interchangeability, among competing software programs. APMS will develop and document the methodologies, algorithms, and procedures for data management and analyses to enable users to easily interpret the implications regarding safety and efficiency of operations. APMS does not entail the implementation of a nationwide flight-data-collection system. It is intended to provide technical tools to ease the large-scale implementation of flight-data analyses at both the air-carrier and the national-airspace levels in support of their Flight Operations and Quality Assurance (FOQA) Programs and Advanced Qualifications Programs (AQP). APMS cannot meet its objectives unless it develops tools that go substantially beyond the capabilities of the current commercially available software and supporting analytic methods that are mainly designed to count special events. These existing capabilities, while of proven value, were created primarily with the needs of air crews in mind. APMS tools must serve the needs of the government and air carriers, as well as air crews, to fully support the FOQA and AQP programs. They must be able to derive knowledge not only through the analysis of single flights (special-event detection), but through

  3. Safety performance evaluation of converging chevron pavement markings : final report.

    Science.gov (United States)

    2014-12-01

    The objectives of this study were (1) to perform a detailed safety analysis of converging chevron : pavement markings, quantifying the potential safety benefits and developing an understanding of the : incident types addressed by the treatment, and (...

  4. State of the art of probabilistic safety analysis (PSA) in the FRG, and principles of a PSA-guideline

    International Nuclear Information System (INIS)

    Balfanz, H.P.

    1987-01-01

    Contents of the articles: Survey of PSA performed during licensing procedures of an NPP; German Nuclear Standards' requirements on the reliability of safety systems; PSA-guideline for NPP: Principles and suggestions; Motivation and tasks of PSA; Aspects of the methodology of safety analyses; Structure of event tree and fault tree analyses; Extent of safety analyses; Performance and limits of PSA. (orig./HSCH)

  5. Safety Performance Index Industri Batik Tulis Berdasarkan Kriteria Majemuk

    Directory of Open Access Journals (Sweden)

    Nachnul Ansori

    2015-12-01

    Full Text Available Accident generally occurs due to the activities which is done in unsafe conditions or even unsafe behavior. These conditions can influence workers productivity. In batik industries, those workers use toxic material and work in non ergonomic atmosphere. Moreover, they also do not take care of the environment and do not use personal protective equipments (PPE. Workers at Madura batik SMEs have not fully realized the significance of occupational health and safety (OHS in their working areas. The aims of this research is to evaluate OHS performance based on the indicators of safety performance index (SPI, which is multicriteria, in that industri. The safety performance attributes were obtained from factor analysis from the previous study. The index is calculated based on the weighted evaluation results of critical behavior checklist (CBC, integrated with analytical hierarchy process (AHP. As the results, we should give priority to improve the knowledge and experience toward OHS of the workers and also improve the working environment of the Madura’s batik industries. Additionally, the performance of OHS in coloring process is also on the threshold of unsafe condition, further development on the coloring process is needed.

  6. NPP Temelin safety analysis reports and PSA status

    International Nuclear Information System (INIS)

    Mlady, O.

    1999-01-01

    To enhance the safety level of Temelin NPP, recommendations of the international reviews were implemented into the design as well as into organization of the plant construction and preparation for operation. The safety assessment of these design changes has been integrated and reflected in the Safety Analysis Reports, which follow the internationally accepted guidelines. All safety analyses within Safety Analysis Reports were repeated carefully considering technical improvements and replacements to complement preliminary safety documentation. These analyses were performed by advanced western computer codes to the depth and in the structure required by western standards. The Temelin NPP followed a systematic approach in the functional design of the Reactor Protection System and related safety analyses. Modifications of reactor protection system increase defense in depth and facilitate demonstrating that LOCA and radiological limits are met for non-LOCA events. The rigorous safety analysis methodology provides assurance that LOCA and radiological limits are met. Established and accepted safety analysis methodology and accepted criteria were applied to Temelin NPP meeting US NRC and Czech Republic requirements. IAEA guidelines and recommendations

  7. Experience of safety and performance improvement for fuel handling equipment

    International Nuclear Information System (INIS)

    Gyoon Chang, Sang; Hee Lee, Dae

    2014-01-01

    The purpose of this study is to provide experience of safety and performance improvement of fuel handling equipment for nuclear power plants in Korea. The fuel handling equipment, which is used as an important part of critical processes during the refueling outage, has been improved to enhance safety and to optimize fuel handling procedures. Results of data measured during the fuel reloading are incorporated into design changes. The safety and performance improvement for fuel handling equipment could be achieved by simply modifying the components and improving the interlock system. The experience provided in this study can be useful lessons for further improvement of the fuel handling equipment. (authors)

  8. Analysis on Occupants’ Satisfaction for Safety Performance Assessment in Low Cost Housing

    Directory of Open Access Journals (Sweden)

    Husin Husrul Nizam

    2014-01-01

    Full Text Available The delivery performance of the low cost housing is questioned since the occupants are prone towards safety hazards in the housing complex, such as structural instability and falling building fragments. Without defining the occupants’ requirements for the development of low cost housing, the prevailing safety factors are hard to be determined. This paper explores the rationale of safety performance assessment in the low cost housing by considering the occupants’ participation to achieve a better safety provision during occupancy period. Questionnaire survey was distributed to 380 occupants of the low cost housing in Kuala Lumpur and Selangor, Malaysia. The result shows that 80.8% of the respondents had expressed their dissatisfaction with the safety performance of the lift. By referring to the mode of ranking level, the most significant aspect rated by the respondents is Building Safety Features, with 51.6% respondents. The attained aspects can be fundamental parameters which can be considered in the future development of low cost housing.

  9. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    Historically, new entrants to the practice of nuclear criticality safety have learned their job primarily by on-the-job training (OJT) often by association with an experienced nuclear criticality safety engineer who probably also learned their job by OJT. Typically, the new entrant learned what he/she needed to know to solve a particular problem and accumulated experience as more problems were solved. It is likely that more formalism will be required in the future. Current US Department of Energy requirements for those positions which have to demonstrate qualification indicate that it should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis i's incompletely developed in some areas. Details of this analysis are provided in this report

  10. Design for safety: theoretical framework of the safety aspect of BIM system to determine the safety index

    Directory of Open Access Journals (Sweden)

    Ai Lin Evelyn Teo

    2016-12-01

    Full Text Available Despite the safety improvement drive that has been implemented in the construction industry in Singapore for many years, the industry continues to report the highest number of workplace fatalities, compared to other industries. The purpose of this paper is to discuss the theoretical framework of the safety aspect of a proposed BIM System to determine a Safety Index. An online questionnaire survey was conducted to ascertain the current workplace safety and health situation in the construction industry and explore how BIM can be used to improve safety performance in the industry. A safety hazard library was developed based on the main contributors to fatal accidents in the construction industry, determined from the formal records and existing literature, and a series of discussions with representatives from the Workplace Safety and Health Institute (WSH Institute in Singapore. The results from the survey suggested that the majority of the firms have implemented the necessary policies, programmes and procedures on Workplace Safety and Health (WSH practices. However, BIM is still not widely applied or explored beyond the mandatory requirement that building plans should be submitted to the authorities for approval in BIM format. This paper presents a discussion of the safety aspect of the Intelligent Productivity and Safety System (IPASS developed in the study. IPASS is an intelligent system incorporating the buildable design concept, theory on the detection, prevention and control of hazards, and the Construction Safety Audit Scoring System (ConSASS. The system is based on the premise that safety should be considered at the design stage, and BIM can be an effective tool to facilitate the efforts to enhance safety performance. IPASS allows users to analyse and monitor key aspects of the safety performance of the project before the project starts and as the project progresses.

  11. TWRS safety SSCs: Requirements and characteristics

    International Nuclear Information System (INIS)

    Smith-Fewell, M.A.

    1997-01-01

    Safety Systems, Structures, and Components (SSCs) have been identified from hazard and accident analyses. These analyses were performed to support the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR) and Basis for Interim Operation (BID). The text identifies and evaluates the SSCs and their supporting SSCs to show that they either prevent the occurrence of the accident or mitigate the consequences of the accident to below the acceptance guidelines. The requirements for the SSCs to fulfill these tasks are described

  12. 29 CFR 1960.11 - Evaluation of occupational safety and health performance.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Evaluation of occupational safety and health performance. 1960.11 Section 1960.11 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... AND HEALTH PROGRAMS AND RELATED MATTERS Administration § 1960.11 Evaluation of occupational safety and...

  13. Comparing performance level estimation of safety functions in three distributed structures

    International Nuclear Information System (INIS)

    Hietikko, Marita; Malm, Timo; Saha, Heikki

    2015-01-01

    The capability of a machine control system to perform a safety function is expressed using performance levels (PL). This paper presents the results of a study where PL estimation was carried out for a safety function implemented using three different distributed control system structures. Challenges relating to the process of estimating PLs for safety related distributed machine control functions are highlighted. One of these examines the use of different cabling schemes in the implementation of a safety function and its effect on the PL evaluation. The safety function used as a generic example in PL calculations relates to a mobile work machine. It is a safety stop function where different technologies (electrical, hydraulic and pneumatic) can be utilized. It was detected that by replacing analogue cables with digital communication the system structure becomes simpler with less number of failing components, which can better the PL of the safety function. - Highlights: • Integration in distributed systems enables systems with less components. • It offers high reliability and diagnostic properties. • Analogue signals create uncertainty in signal reliability and difficult diagnostics

  14. Performance indicators and combining assessments to evaluate the safety performance of licensees

    International Nuclear Information System (INIS)

    Aubrey, Richard; Van Binnebeek, J.J.; Warren, T.F.H.

    1998-01-01

    The CNRA believes that safety inspections are a major element in the regulatory authority's efforts to ensure the safe operation of nuclear facilities. Considering the importance of these issues, the Committee has established a special Working Group on Inspection Practices (WGIP). The purpose of WGIP, is to facilitate the exchange of information and experience related to regulatory safety inspections between CNRA Member countries. As a follow-up to the 1995 document on Compilation of Responses to a Questionnaire on the Evaluation of the Safety Performance of Licensees, WGIP members identified several issues where additional information would be useful in future meetings and discussions. The consensus of the Group was that performance indicators (PIs) and how assessments are combined were the two issues that should be addressed first. It was noted also that in addition to information in obtained through the questionnaire, results from the workshop in May 1996 may provide valuable input to the endeavour. This report summarises a review conducted of the PI-related information provided by the questionnaire, the workshop, and responses from WGIP members to a request for specific information not addressed previously

  15. INPO Perspectives and Activities to Enhance Supplier Human Performance and Safety Culture

    International Nuclear Information System (INIS)

    Duncan, R. J.

    2016-01-01

    Within their own organizations, utilities have made significant improvements in human performance and safety culture, supported by a strong community of practice through INPO and WANO. In recent years, utilities have been making increasing use of suppliers for design, construction, inspection and maintenance services in support of their NPPs. Many of these suppliers do not have the benefit of being members of a community of practice when it comes to human performance and safety culture. To help the supplier community make improvements similar to what the utilities have achieved, INPO has recently expanded its Supplier Participant program to address the issue of human performance and safety culture in the supplier community. The intent of this paper will be to share the INPO’s perspectives and activities in helping suppliers of services and products to NPPs enhance their human performance and safety culture. (author)

  16. Containment-emergency-sump performance. Technical findings related to Unresolved Safety Issue A-43

    International Nuclear Information System (INIS)

    1983-04-01

    This report summarizes key technical findings related to the Unresolved Safety Issue A-43, Containment Emergency Sump Performance, and provides recommendations for resolution of attendant safety issues. The key safety questions relate to: (a) effects of insulation debris on sump performance; (b) sump hydraulic performance as determined by design features, submergence, and plant induced effects, and (c) recirculation pump performance wherein air and/or particulate ingestion can occur. The technical findings presented in this report provide information relevant to the design and performance evaluation of the containment emergency sump

  17. Current regulatory developments concerning the implementation of probabilistic safety analyses for external hazards in Germany

    International Nuclear Information System (INIS)

    Krauss, Matias; Berg, Heinz-Peter

    2014-01-01

    The Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) initiated in September 2003 a comprehensive program for the revision of the national nuclear safety regulations which has been successfully completed in November 2012. These nuclear regulations take into account the current recommendations of the International Atomic Energy Agency (IAEA) and Western European Nuclear Regulators Association (WENRA). In this context, the recommendations and guidelines of the Nuclear Safety Standards Commission (KTA) and the technical documents elaborated by the respective expert group on Probabilistic Safety Analysis for Nuclear Power Plants (FAK PSA) are being updated or in the final process of completion. A main topic of the revision was the issue external hazards. As part of this process and in the light of the accident at Fukushima and the findings of the related actions resulting in safety reviews of nuclear power plants at national level in Germany and on European level, a revision of all relevant standards and documents has been made, especially the recommendations of KTA and FAK PSA. In that context, not only design issues with respect to events such as earthquakes and floods have been discussed, but also methodological issues regarding the implementation of improved probabilistic safety analyses on this topic. As a result of the revision of the KTA 2201 series 'Design of Nuclear Power Plants against Seismic Events' with their parts 1 to 6, part 1 'Principles' was published as the first standard in November 2011, followed by the revised versions of KTA 2201.2 (soil) and 2201.4 (systems and components) in 2012. The modified the standard KTA 2201.3 (structures) is expected to be issued before the end of 2013. In case of part 5 (seismic instrumentation) and part 6 (post>seismic actions) draft amendments are expected in 2013. The expert group 'Probabilistic Safety Assessments for Nuclear Power Plants' (FAK PSA) is an advisory body of the Federal

  18. Potential safety features and safety analysis aspects for high performance light water reactor (HPLWR)

    International Nuclear Information System (INIS)

    Aksan, N.; Schulenberg, T.; Squarer, D.

    2003-01-01

    Research Activities are ongoing worldwide to develop advanced nuclear power plants with high thermal efficiency for the purpose to improve their economical competitiveness. Within the 5th Framework Programme of the European Commission, a project has been launched with the main objective to assess the technical and economical feasibility of a high efficiency LWR operating at super critical pressure conditions. Several European research institutions, industrial partners and the University of Tokyo participated and worked in this common research project. Within the aims of the development of the HPLWR is to use both passive and active safety systems for performing safety related functions in the event of transients or accidents. Consequently substantial effort has been invested in order to define the safety features of the plant in a European environment, as well as to incorporate passive safety features into the design. Throughout this process, the European Utility Requirements (EUR) and requirements known from Generation IV initiative were considered as a guideline in general terms in order to include further advanced ideas. The HPLWR general features were compared to both requirements, indicating a potential to meet these. Since, the supercritical HPLWR represents a challenge for best-estimate safety codes like RELAP5, CATHARE and TRAB due to the fact that these codes were developed for two-phase or single-phase coolant at pressures far below critical point, work on the preliminary assessment of the appropriateness of these codes have been performed for selected relevant phenomena, and application of the codes to the selected transients on the basis of defined 'reference design'. An overview on their successful upgrade to supercritical pressures and application to some plant safety analysis are provided in the paper. Further elaborations in relation to future needs are also discussed. (author)

  19. Work support, psychological well-being and safety performance among nurses in Hong Kong.

    Science.gov (United States)

    Wong, Kenchi C K

    2018-02-06

    This study investigated the mediating role of psychological well-being between work support and safety performance of 314 Hong Kong nurses, using self-reported questionnaires. Results showed that psychological well-being mediated the effects of work support on safety performance. The findings illustrate that work support was an important element to improve psychological well-being. This could generate better safety performance of the nurses. Implications and limitations are discussed.

  20. New safety performance indicators for safety assessment of radioactive waste disposal facilities. Cuban experience

    International Nuclear Information System (INIS)

    Peralta Vital, J.L.; Castillo, R.G.; Olivera, J.

    2002-01-01

    The paper shows the Cuban experience on implementing geological disposal of radioactive waste and the necessity for identifying new safety performance indicators for the safety assessment (SA) of radioactive waste disposal facilities. The selected indicator was the concentration of natural radioactive elements (U, Ra, Th, K) in the Cuban geologic environment. We have carried out a group of investigations, which have allowed characterising the concentration for the whole Country, creating a wide database where this indicator is associated with the lithology. The main lithologies in Cuba are: the sedimentary rocks (70 percent of national occurrence), which are present in the three regions (limestone and lutite), and finally the igneous and metamorphic rocks. The results show the concentrations ranges of the natural radionuclides associated fundamentally to the variation in the lithology and geographical area of the Country. In Cuba, the higher concentration (ppm) of Uranium and Radium are referenced to the Central region associated to Skarn, while for Thorium (ppm) and Potassium (%), in the East region the concentration peaks in Tuffs have been found. The concentrations ranges obtained are preliminary, they characterise the behaviour of this parameter for the Cuban geology, but they do not represent limits for safety assessment purposes yet. Also other factors should be taken into account as the assessment context, time scales and others assumptions before establishing the final concentration limits for the natural radionuclides as a radiological and nuclear safety performance indicator complementary to dose and risk for safety assessment for radiological and nuclear facilities. (author)

  1. Nuclear criticality safety experiments, calculations, and analyses: 1958 to 1982. Volume 1. Lookup tables

    International Nuclear Information System (INIS)

    Koponen, B.L.; Hampel, V.E.

    1982-01-01

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains - in chronological order - the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41

  2. The Dread Factor: How Hazards and Safety Training Influence Learning and Performance

    Science.gov (United States)

    Burke, Michael J.; Salvador, Rommel O.; Smith-Crowe, Kristin; Chan-Serafin, Suzanne; Smith, Alexis; Sonesh, Shirley

    2011-01-01

    On the basis of hypotheses derived from social and experiential learning theories, we meta-analytically investigated how safety training and workplace hazards impact the development of safety knowledge and safety performance. The results were consistent with an expected interaction between the level of engagement of safety training and hazardous…

  3. 76 FR 24831 - Site-Specific Analyses for Demonstrating Compliance With Subpart C Performance Objectives

    Science.gov (United States)

    2011-05-03

    ...-level radioactive waste disposal facilities to conduct site-specific analyses to demonstrate compliance... public health and safety, these amendments would enhance the safe disposal of low-level radioactive waste... would be to enhance the safe disposal of low-level radioactive waste. The NRC is also proposing...

  4. Determining the causal relationships among balanced scorecard perspectives on school safety performance: case of Saudi Arabia.

    Science.gov (United States)

    Alolah, Turki; Stewart, Rodney A; Panuwatwanich, Kriengsak; Mohamed, Sherif

    2014-07-01

    In the public schools of many developing countries, numerous accidents and incidents occur because of poor safety regulations and management systems. To improve the educational environment in Saudi Arabia, the Ministry of Education seeks novel approaches to measure school safety performance in order to decrease incidents and accidents. The main objective of this research was to develop a systematic approach for measuring Saudi school safety performance using the balanced scorecard framework philosophy. The evolved third generation balanced scorecard framework is considered to be a suitable and robust framework that captures the system-wide leading and lagging indicators of business performance. The balanced scorecard architecture is ideal for adaptation to complex areas such as safety management where a holistic system evaluation is more effective than traditional compartmentalised approaches. In developing the safety performance balanced scorecard for Saudi schools, the conceptual framework was first developed and peer-reviewed by eighteen Saudi education experts. Next, 200 participants, including teachers, school executives, and Ministry of Education officers, were recruited to rate both the importance and the performance of 79 measurement items used in the framework. Exploratory factor analysis, followed by the confirmatory partial least squares method, was then conducted in order to operationalise the safety performance balanced scorecard, which encapsulates the following five salient perspectives: safety management and leadership; safety learning and training; safety policy, procedures and processes; workforce safety culture; and safety performance. Partial least squares based structural equation modelling was then conducted to reveal five significant relationships between perspectives, namely, safety management and leadership had a significant effect on safety learning and training and safety policy, procedures and processes, both safety learning and training

  5. Regulatory supervision of safety indicators; experience with radiation safety indicators in Dukovany nuclear power plant performance

    International Nuclear Information System (INIS)

    Urbancik, L.; Kulich, V.

    2004-01-01

    The State Office for Nuclear Safety uses three sets of indicators describing the following aspects of a favourable nuclear power plant operation: smooth operation in normal circumstances, low risk to the population, and operation with a positive safety attitude. These are three safety-related areas for assessment. Each area has its own set of indicators. Overall operational safety performance indicators were identified for each attribute. From this point, a level of strategic indicators was developed, and finally, a set of specific indicators was set up. While neither the overall indicators nor the strategic indicators are directly measurable, the specific indicators are directly measurable and are targeted during inspection. (author)

  6. Continuous improvement of the MHTGR safety and competitive performance

    International Nuclear Information System (INIS)

    Eichenberg, T.W.; Etzel, K.T.; Mascaro, L.L.; Rucker, R.A.

    1992-05-01

    An increase in reactor module power from 350 to 450 MW(t) would markedly improve the economics of the Modular High Temperature Gas-Cooled Reactor (MHTGR). The higher power level was recommended as the result of an in-depth cost reduction study undertaken to compete with the declining price of fossil fuel. The safety assessment confirms that the high level of safety, which relies on inherent characteristics and passive features, is maintained at the elevated power level. Preliminary systems, nuclear, and safety performance results are discussed for the recommended 450 MW(t) design. Optimization of plant parameters and design modifications accommodated the operation of the steam generator and circulator at the higher power level. Events in which forced cooling is lost, designated as conduction cooldowns are described in detail. For the depressurized conduction cooldown, without full helium inventory, peak fuel temperatures are significantly lowered. A more negative temperature coefficient of reactivity was achieved while maintaining an adequate fuel cycle and reactivity control. Continual improvement of the MHTGR delivers competitive performance without relinquishing the high safety margins demanded of the next generation of power plants

  7. Pump performance and reliability follow-up by the French Safety Authorities

    International Nuclear Information System (INIS)

    Clausner, J.P.; De La Ronciere, X.; Scott de Martinville, E.; Courbiere, P.

    1990-12-01

    This paper will present, through actual examples, the methodology of the performance and reliability safety-related pumps evaluation applied by the French Safety Authorities and the lessons drawn from this evaluation

  8. Design premises for a KBS-3V repository based on results from the safety assessment SR-Can and some subsequent analyses

    Energy Technology Data Exchange (ETDEWEB)

    2009-11-15

    The objective with this report is to: - provide design premises from a long term safety aspect of a KBS-3V repository for spent nuclear fuel, to form the basis for the development of the reference design of the repository. The design premises are used as input to the documents, called production reports, that present the reference design to be analysed in the long term safety assessment SR-Site. It is the aim that the production reports should verify that the chosen design complies with the design premises given in this report, whereas this report takes the burden of justifying why these design premises are relevant. The more specific aims and objectives with the production reports are provided in these reports. The following approach is used: - The reference design analysed in SR-Can is a starting point for setting safety related design premises for the next design step. - A few design basis cases, in accordance with the definition used in the regulation SSMFS 2008:211 and mainly related to the canister, can be derived from the results of the SR-Can assessment. From these it is possible to formulate some specific design premises for the canister. - The design basis cases involve several assumptions on the state of other barriers. These implied conditions are thus set as design premises for these barriers. - Even if there are few load cases on individual barriers that can be directly derived from the analyses, SR-Can provides substantial feedback on most aspects of the analysed reference design. This feedback is also formulated as design premises. - An important part of SR-Can Main report is the formulation and assessment of safety function indicator criteria. These criteria are a basis for formulating design premises, but they are not the same as the design premises discussed in the present report. Whereas the former should be upheld throughout the assessment period, the latter refer to the initial state and must be defined such that they give a margin for

  9. Design premises for a KBS-3V repository based on results from the safety assessment SR-Can and some subsequent analyses

    International Nuclear Information System (INIS)

    2009-11-01

    The objective with this report is to: - provide design premises from a long term safety aspect of a KBS-3V repository for spent nuclear fuel, to form the basis for the development of the reference design of the repository. The design premises are used as input to the documents, called production reports, that present the reference design to be analysed in the long term safety assessment SR-Site. It is the aim that the production reports should verify that the chosen design complies with the design premises given in this report, whereas this report takes the burden of justifying why these design premises are relevant. The more specific aims and objectives with the production reports are provided in these reports. The following approach is used: - The reference design analysed in SR-Can is a starting point for setting safety related design premises for the next design step. - A few design basis cases, in accordance with the definition used in the regulation SSMFS 2008:211 and mainly related to the canister, can be derived from the results of the SR-Can assessment. From these it is possible to formulate some specific design premises for the canister. - The design basis cases involve several assumptions on the state of other barriers. These implied conditions are thus set as design premises for these barriers. - Even if there are few load cases on individual barriers that can be directly derived from the analyses, SR-Can provides substantial feedback on most aspects of the analysed reference design. This feedback is also formulated as design premises. - An important part of SR-Can Main report is the formulation and assessment of safety function indicator criteria. These criteria are a basis for formulating design premises, but they are not the same as the design premises discussed in the present report. Whereas the former should be upheld throughout the assessment period, the latter refer to the initial state and must be defined such that they give a margin for

  10. Assessment of Human Performance and Safety Culture at the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Toth, Janos; Hadnagy, Lajos

    2002-01-01

    Evaluation of human performance and safety culture of the personnel at a Nuclear Power Plant is a very important element of the self assessment process. At the Paks NPP a systematic approach to this problem started in the early 90's. The first comprehensive analysis of the human performance of the personnel was performed by the Hungarian Research Institute for Electric Power (VEIKI). The analysis of human failures is also a part of the investigation and analysis of safety related reported events. This human performance analysis of events is carried out by the Laboratory of Psychology of the plant and a supporting organisation namely the Department of Ergonomics and Psychology of the Budapest University of Technical and Economical Sciences. The analysis of safety culture at the Paks NPP has been in the focus of attention since the implementation of the INSAG-4 document started world-wide. In 1993 an IAEA model project namely 'Strengthening Training for Operational Safety' was initiated with a sub-project called 'Enhancement of Safety Culture'. Within this project the first step was the initial assessment of the safety culture level at the Paks NPP. It was followed by some corrective actions and safety culture improvement programme. In 1999 the second assessment was performed in order to evaluate the progress as a result of the improvement programme. A few indicators reflecting the elements of safety culture were defined and compared. The assessment of the safety culture with a survey among the managers was performed in September 2000 and the results are being evaluated at the moment. The intention of the plant management is to repeat the assessment every 2-3 years and evaluate the trend of the indicator. (authors)

  11. On the safety performance of the advanced nuclear energy systems

    International Nuclear Information System (INIS)

    Li Shounan

    1999-01-01

    Some features on the safety performances of the Advanced Nuclear Energy Systems are discussed. The advantages and some peculiar problems on the safety of Advanced Nuclear Energy Systems with subcritical nuclear reactor driven by external neutron sources are also pointed out in comparison with conventional nuclear reactors

  12. The relationships between OHS prevention costs, safety performance, employee satisfaction and accident costs.

    Science.gov (United States)

    Bayram, Metin; Ünğan, Mustafa C; Ardıç, Kadir

    2017-06-01

    Little is known about the costs of safety. A literature review conducted for this study indicates there is a lack of survey-based research dealing with the effects of occupational health and safety (OHS) prevention costs. To close this gap in the literature, this study investigates the interwoven relationships between OHS prevention costs, employee satisfaction, OHS performance and accident costs. Data were collected from 159 OHS management system 18001-certified firms operating in Turkey and analyzed through structural equation modeling. The findings indicate that OHS prevention costs have a significant positive effect on safety performance, employee satisfaction and accident costs savings; employee satisfaction has a significant positive effect on accident costs savings; and occupational safety performance has a significant positive effect on employee satisfaction and accident costs savings. Also, the results indicate that safety performance and employee satisfaction leverage the relationship between prevention costs and accident costs.

  13. Sensitivity and uncertainty analyses for performance assessment modeling

    International Nuclear Information System (INIS)

    Doctor, P.G.

    1988-08-01

    Sensitivity and uncertainty analyses methods for computer models are being applied in performance assessment modeling in the geologic high level radioactive waste repository program. The models used in performance assessment tend to be complex physical/chemical models with large numbers of input variables. There are two basic approaches to sensitivity and uncertainty analyses: deterministic and statistical. The deterministic approach to sensitivity analysis involves numerical calculation or employs the adjoint form of a partial differential equation to compute partial derivatives; the uncertainty analysis is based on Taylor series expansions of the input variables propagated through the model to compute means and variances of the output variable. The statistical approach to sensitivity analysis involves a response surface approximation to the model with the sensitivity coefficients calculated from the response surface parameters; the uncertainty analysis is based on simulation. The methods each have strengths and weaknesses. 44 refs

  14. Analysis of international approaches which are used at development of theoperational safety performance indicators

    International Nuclear Information System (INIS)

    Lyigots'kij, O.Yi.; Nosovs'kij, A.V.; Chemeris, Yi.O.

    2009-01-01

    Description of international approaches and experience of the use of theoperational safety performance indicators system is provided for estimationof current status and making a decision on corrections in the operationpractice. The state of development of the operational safety performanceindicators system by the operating organization is overviewed. Thepossibility of application of international approaches during development ofthe integral safety performance indicators system is analyzed. Aims and tasksof future researches are formulated in relation to development of theintegral safety performance indicators system.

  15. Assessment of softball bat safety performance using mid-compression polyurethane softballs.

    Science.gov (United States)

    McDowell, Mark

    2004-07-01

    There is currently much debate about the safety of the sport of softball. Batted-ball speed and average pitcher reaction time are factors often used to determine safe performance. Batted-ball speed is shown to be the most important factor to consider when determining safe play. Average pitcher reaction time is explained and directly correlated to batted-ball speed. Eleven aluminum multi-wall, three aluminum single-wall and two composite softball bats were tested with mid-compression polyurethane softballs averaging 1721+/-62 N/6.4 mm to represent the relative bat-ball performance for the sport of slowpitch softball. Nine men and six women were chosen for this study out of a test group of over three hundred slowpitch softball players. On average, aluminum bat performance results were within the recommended safety limits established by the national softball associations. However, when composite bats were used, their performance results exceeded the recommended safety limits which can pose a significant safety risk. Using aluminum softball bats, batted-ball speeds ranged from 80 to 145km x h(-1) Using composite softball bats, batted-ball speeds ranged from 146 to 161 km x h(-1). The scientific relevance of this study is to provide performance information that can lead to injury prevention in the sport of softball.

  16. Transient safety performance of the PRISM innovative liquid metal reactor

    International Nuclear Information System (INIS)

    Magee, P.M.; Dubberley, A.E.; Rhow, S.K.; Wu, T.

    1988-01-01

    The PRISM sodium-cooled reactor concept utilizes passive safety characteristics and modularity to increase performance margins, improve licensability, reduce owner's risk and reduce costs. The relatively small size of each reactor module (471 MWt) facilitates the use of passive self-shutdown and shutdown heat removal features, which permit design simplification and reduction of safety-related systems. Key to the transient performance is the inherent negative reactivity feedback characteristics of the core design resulting from the use of metal (U-Pu-Zr) swing, and very low control rod runout worth. Selected beyond design basis events relying only on these core design features are analyzed and the design margins summarized to demonstrate the advancement in reactor safety achieved with the PRISM design concept

  17. Preliminary safety analysis for key design features of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, D. H.; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, S. O.; Lee, Y. B.; Jeong, K. S

    2000-07-01

    KAERI is currently developing the conceptual design of a liquid metal reactor, KALIMER(Korea Advanced Liquid Metal Reactor) under the long-term nuclear R and D program. In this report, descriptions of the KALIMER safety design features and safety analyses results for selected ATWS accidents are presented. First, the basic approach to achieve the safety goal is introduced in chapter 1, and the safety evaluation procedure for the KALIMER design is described in chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events. In chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure design performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram(ATWS) have been performed to investigate the KALIMER system response to the events. They are categorized as bounding events(BEs) because of their low probability of occurrence. In chapter 4, the design of the KALIMER containment dome and the results of its performance analysis are presented. The designs of the existing LMR containment and the KALIMER containment dome have been compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core kinetics and hydraulic behavior during HCDA in chapter 5. Mathematical formulations have been developed in the framework of the modified bethe-tait method, and scoping analyses have been performed for the KALIMER core behavior during super-prompt critical excursions.

  18. Provisional safety analyses for SGT stage 2 -- Models, codes and general modelling approach

    International Nuclear Information System (INIS)

    2014-12-01

    In the framework of the provisional safety analyses for Stage 2 of the Sectoral Plan for Deep Geological Repositories (SGT), deterministic modelling of radionuclide release from the barrier system along the groundwater pathway during the post-closure period of a deep geological repository is carried out. The calculated radionuclide release rates are interpreted as annual effective dose for an individual and assessed against the regulatory protection criterion 1 of 0.1 mSv per year. These steps are referred to as dose calculations. Furthermore, from the results of the dose calculations so-called characteristic dose intervals are determined, which provide input to the safety-related comparison of the geological siting regions in SGT Stage 2. Finally, the results of the dose calculations are also used to illustrate and to evaluate the post-closure performance of the barrier systems under consideration. The principal objective of this report is to describe comprehensively the technical aspects of the dose calculations. These aspects comprise: · the generic conceptual models of radionuclide release from the solid waste forms, of radionuclide transport through the system of engineered and geological barriers, of radionuclide transfer in the biosphere, as well as of the potential radiation exposure of the population, · the mathematical models for the explicitly considered release and transport processes, as well as for the radiation exposure pathways that are included, · the implementation of the mathematical models in numerical codes, including an overview of these codes and the most relevant verification steps, · the general modelling approach when using the codes, in particular the generic assumptions needed to model the near field and the geosphere, along with some numerical details, · a description of the work flow related to the execution of the calculations and of the software tools that are used to facilitate the modelling process, and · an overview of the

  19. Provisional safety analyses for SGT stage 2 -- Models, codes and general modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-12-15

    In the framework of the provisional safety analyses for Stage 2 of the Sectoral Plan for Deep Geological Repositories (SGT), deterministic modelling of radionuclide release from the barrier system along the groundwater pathway during the post-closure period of a deep geological repository is carried out. The calculated radionuclide release rates are interpreted as annual effective dose for an individual and assessed against the regulatory protection criterion 1 of 0.1 mSv per year. These steps are referred to as dose calculations. Furthermore, from the results of the dose calculations so-called characteristic dose intervals are determined, which provide input to the safety-related comparison of the geological siting regions in SGT Stage 2. Finally, the results of the dose calculations are also used to illustrate and to evaluate the post-closure performance of the barrier systems under consideration. The principal objective of this report is to describe comprehensively the technical aspects of the dose calculations. These aspects comprise: · the generic conceptual models of radionuclide release from the solid waste forms, of radionuclide transport through the system of engineered and geological barriers, of radionuclide transfer in the biosphere, as well as of the potential radiation exposure of the population, · the mathematical models for the explicitly considered release and transport processes, as well as for the radiation exposure pathways that are included, · the implementation of the mathematical models in numerical codes, including an overview of these codes and the most relevant verification steps, · the general modelling approach when using the codes, in particular the generic assumptions needed to model the near field and the geosphere, along with some numerical details, · a description of the work flow related to the execution of the calculations and of the software tools that are used to facilitate the modelling process, and · an overview of the

  20. High Burnup Fuel Performance and Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Je Keun; Lee, Chan Bok; Kim, Dae Ho (and others)

    2007-03-15

    The worldwide trend of nuclear fuel development is to develop a high burnup and high performance nuclear fuel with high economies and safety. Because the fuel performance evaluation code, INFRA, has a patent, and the superiority for prediction of fuel performance was proven through the IAEA CRP FUMEX-II program, the INFRA code can be utilized with commercial purpose in the industry. The INFRA code was provided and utilized usefully in the universities and relevant institutes domesticallly and it has been used as a reference code in the industry for the development of the intrinsic fuel rod design code.

  1. Research on Integration of NPP Operational Safety Management Performance Systems

    International Nuclear Information System (INIS)

    Chi, Miao; Shi, Liping

    2014-01-01

    The operational safety management of Nuclear Power Plants demands systematic planning and integrated control. NPPs are following the well-developed safety indicator systems proposed by IAEA Operational Safety Performance Indicator Programme, NRC Reactor Oversight Process or the other institutions. Integration of the systems is proposed to benefiting from the advantages of both systems and avoiding improper application into the real world. The authors analyzed the possibility and necessity for system integration, and propose an indicator system integrating method

  2. Evaluation of safety practices and performance in a brewery industry ...

    African Journals Online (AJOL)

    Evaluation of safety practices and performance in a brewery industry in Nigeria between 2000 – 2007. ... Journal of Applied Sciences and Environmental Management ... The study revealed that a total of 156 accidents were prevented in the period of the safety programme which translates to an average of 19.45 per year.

  3. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules, F9-F11

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with three of the functional modules in the code. Those are the Morse-SGC for the SCALE system, Heating 7.2, and KENO V.a. The manual describes the latest released versions of the codes.

  4. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules, F9-F11

    International Nuclear Information System (INIS)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with three of the functional modules in the code. Those are the Morse-SGC for the SCALE system, Heating 7.2, and KENO V.a. The manual describes the latest released versions of the codes

  5. Nuclear Analyses of Indian LLCB Test Blanket System in ITER

    Science.gov (United States)

    Swami, H. L.; Shaw, A. K.; Danani, C.; Chaudhuri, Paritosh

    2017-04-01

    Heading towards the Nuclear Fusion Reactor Program, India is developing Lead Lithium Ceramic Breeder (LLCB) tritium breeding blanket for its future fusion Reactor. A mock-up of the LLCB blanket is proposed to be tested in ITER equatorial port no.2, to ensure the overall performance of blanket in reactor relevant nuclear fusion environment. Nuclear analyses play an important role in LLCB Test Blanket System design & development. It is required for tritium breeding estimation, thermal-hydraulic design, coolants process design, radioactive waste management, equipment maintenance & replacement strategies and nuclear safety. The nuclear behaviour of LLCB test blanket module in ITER is predicated in terms of nuclear responses such as tritium production, nuclear heating, neutron fluxes and radiation damages. Radiation shielding capability of LLCB TBS inside and outside bio-shield was also assessed to fulfill ITER shielding requirements. In order to supports the rad-waste and safety assessment, nuclear activation analyses were carried out and radioactivity data were generated for LLCB TBS components. Nuclear analyses of LLCB TBS are performed using ITER recommended nuclear analyses codes (i.e. MCNP, EASY), nuclear cross section data libraries (i.e. FENDL 2.1, EAF) and neutronic model (ITER C-lite v.l). The paper describes a comprehensive nuclear performance of LLCB TBS in ITER.

  6. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules F1-F8

    International Nuclear Information System (INIS)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with eight of the functional modules in the code. Those are: BONAMI - resonance self-shielding by the Bondarenko method; NITAWL-II - SCALE system module for performing resonance shielding and working library production; XSDRNPM - a one-dimensional discrete-ordinates code for transport analysis; XSDOSE - a module for calculating fluxes and dose rates at points outside a shield; KENO IV/S - an improved monte carlo criticality program; COUPLE; ORIGEN-S - SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms; ICE

  7. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules F1-F8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with eight of the functional modules in the code. Those are: BONAMI - resonance self-shielding by the Bondarenko method; NITAWL-II - SCALE system module for performing resonance shielding and working library production; XSDRNPM - a one-dimensional discrete-ordinates code for transport analysis; XSDOSE - a module for calculating fluxes and dose rates at points outside a shield; KENO IV/S - an improved monte carlo criticality program; COUPLE; ORIGEN-S - SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms; ICE.

  8. Thermal and stress analyses of meltdown cups for LMFBR safety experiments using SLSF in-reactor loops

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, C. A. [Argonne National Lab., IL (United States); Ariman, T. [Univ. of Notre Dame, IN (United States); Pierce, R. D.; Pedersen, D. R. [Argonne National Lab., IL (United States)

    1977-07-01

    The test trains for the Sodium Loop Safety Facility (SLSF) in-reactor experiments, which simulate hypothetical LMFBR accidents, have a meltdown cup to protect the primary containment from the effects of molten materials. Thermal and stress analyses were performed on the cup which is designed to contain 3.6 kg of molten fuel and 2.4 kg of molten steel. The cup principal components are: 1. A 38 mm diameter tungsten spike which provides initial fuel quenching and prevents fuel boiling, 2. A 73 mm inside diameter tungsten liner to isolate the support vessel from the molten material high initial temperature, 3. An insulator which is an expedient for extending the experiment time, and 4. An Inconel 625 vessel which provides the structural support to withstand the thermal and pressure stresses. The spike, liner, and insulator are supported by a hemispherical tungsten end cap which fits inside the hemispherical bottom of the support vessel. This vessel is attached to the 316 stainless steel test train with an Inconel 750 wire-formed retaining ring. Thermal analyses were performed with the Argonne-modified version of the general heat transfer code THTB, based on the instantaneous addition of 3200/sup 0/K molten fuel with a decay heat of 9 W/gm and 1920/sup 0/K molten steel. These analyses have shown that the cup will adequately cool the molten materials. The maximum temperature occurs at the center of the fuel region but it is always less than the fuel boiling point. The maximum temperature occurs at the center of the fuel region but it is always less than the fuel boiling point. The most severe heating occurs when there is no sodium flow outside the cup. For this case the sodium boils (approximately 1200/sup 0/K) and the Inconel vessel and tungsten liner temperatures are approximately 1250/sup 0/K and 2420/sup 0/K, respectively.

  9. Preliminary safety analysis for key design features of KALIMER with breakeven core

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, Y. B.; Jeong, K. S

    2001-06-01

    KAERI is currently developing the conceptual design of a Liquid Metal Reactor, KALIMER (Korea Advanced Liquid MEtal Reactor) under the Long-term Nuclear R and D Program. KALIMER addresses key issues regarding future nuclear power plants such as plant safety, economics, proliferation, and waste. In this report, descriptions of safety design features and safety analyses results for selected ATWS accidents for the breakeven core KALIMER are presented. First, the basic approach to achieve the safety goal is introduced in Chapter 1, and the safety evaluation procedure for the KALIMER design is described in Chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events.In Chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure benign performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram (ATWS) have been performed to investigate the KALIMER system response to the events. In Chapter 4, the design of the KALIMER containment dome and the results of its performance analyses are presented. The design of the existing containment and the KALIMER containment dome are compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core energetics behavior during HCDA in Chapter 5. Sensitivity analyses have been performed for the KALIMER core behavior during super-prompt critical excursions, using mathematical formulations developed in the framework of the Modified Bethe-Tait method. Work energy potential was then calculated based on the isentropic fuel expansion model.

  10. Systematic review of economic analyses in patient safety: a protocol designed to measure development in the scope and quality of evidence.

    Science.gov (United States)

    Carter, Alexander W; Mandavia, Rishi; Mayer, Erik; Marti, Joachim; Mossialos, Elias; Darzi, Ara

    2017-08-18

    Recent avoidable failures in patient care highlight the ongoing need for evidence to support improvements in patient safety. According to the most recent reviews, there is a dearth of economic evidence related to patient safety. These reviews characterise an evidence gap in terms of the scope and quality of evidence available to support resource allocation decisions. This protocol is designed to update and improve on the reviews previously conducted to determine the extent of methodological progress in economic analyses in patient safety. A broad search strategy with two core themes for original research (excluding opinion pieces and systematic reviews) in 'patient safety' and 'economic analyses' has been developed. Medline, Econlit and National Health Service Economic Evaluation Database bibliographic databases will be searched from January 2007 using a combination of medical subject headings terms and research-derived search terms (see table 1). The method is informed by previous reviews on this topic, published in 2012. Screening, risk of bias assessment (using the Cochrane collaboration tool) and economic evaluation quality assessment (using the Drummond checklist) will be conducted by two independent reviewers, with arbitration by a third reviewer as needed. Studies with a low risk of bias will be assessed using the Drummond checklist. High-quality economic evaluations are those that score >20/35. A qualitative synthesis of evidence will be performed using a data collection tool to capture the study design(s) employed, population(s), setting(s), disease area(s), intervention(s) and outcome(s) studied. Methodological quality scores will be compared with previous reviews where possible. Effect size(s) and estimate uncertainty will be captured and used in a quantitative synthesis of high-quality evidence, where possible. Formal ethical approval is not required as primary data will not be collected. The results will be disseminated through a peer

  11. Does Employee Safety Matter for Patients Too? Employee Safety Climate and Patient Safety Culture in Health Care.

    Science.gov (United States)

    Mohr, David C; Eaton, Jennifer Lipkowitz; McPhaul, Kathleen M; Hodgson, Michael J

    2015-04-22

    We examined relationships between employee safety climate and patient safety culture. Because employee safety may be a precondition for the development of patient safety, we hypothesized that employee safety culture would be strongly and positively related to patient safety culture. An employee safety climate survey was administered in 2010 and assessed employees' views and experiences of safety for employees. The patient safety survey administered in 2011 assessed the safety culture for patients. We performed Pearson correlations and multiple regression analysis to examine the relationships between a composite measure of employee safety with subdimensions of patient safety culture. The regression models controlled for size, geographic characteristics, and teaching affiliation. Analyses were conducted at the group level using data from 132 medical centers. Higher employee safety climate composite scores were positively associated with all 9 patient safety culture measures examined. Standardized multivariate regression coefficients ranged from 0.44 to 0.64. Medical facilities where staff have more positive perceptions of health care workplace safety climate tended to have more positive assessments of patient safety culture. This suggests that patient safety culture and employee safety climate could be mutually reinforcing, such that investments and improvements in one domain positively impacts the other. Further research is needed to better understand the nexus between health care employee and patient safety to generalize and act upon findings.

  12. Improvements in operational safety performance of the Magnox power stations

    Energy Technology Data Exchange (ETDEWEB)

    Marchese, C.J. [BNFL Magnox Generation, Berkeley (United Kingdom)

    2000-10-01

    In the 43 years since commencement of operation of Calder Hall, the first Magnox power station, there remain eight Magnox stations and 20 reactors still in operation, owned by BNFL Magnox Generation. This paper describes how the operational safety performance of these stations has significantly improved over the last ten years. This has been achieved against a background of commercial competition introduced by privatization and despite the fact that the Magnox base design belongs to the past. Finally, the company's future plans for continued improvements in operational safety performance are discussed. (author)

  13. Seismic Safety Of Simple Masonry Buildings

    International Nuclear Information System (INIS)

    Guadagnuolo, Mariateresa; Faella, Giuseppe

    2008-01-01

    Several masonry buildings comply with the rules for simple buildings provided by seismic codes. For these buildings explicit safety verifications are not compulsory if specific code rules are fulfilled. In fact it is assumed that their fulfilment ensures a suitable seismic behaviour of buildings and thus adequate safety under earthquakes. Italian and European seismic codes differ in the requirements for simple masonry buildings, mostly concerning the building typology, the building geometry and the acceleration at site. Obviously, a wide percentage of buildings assumed simple by codes should satisfy the numerical safety verification, so that no confusion and uncertainty have to be given rise to designers who must use the codes. This paper aims at evaluating the seismic response of some simple unreinforced masonry buildings that comply with the provisions of the new Italian seismic code. Two-story buildings, having different geometry, are analysed and results from nonlinear static analyses performed by varying the acceleration at site are presented and discussed. Indications on the congruence between code rules and results of numerical analyses performed according to the code itself are supplied and, in this context, the obtained result can provide a contribution for improving the seismic code requirements

  14. Operational safety system performance alternative to the WANO's indicator

    International Nuclear Information System (INIS)

    Lyra, Moacir

    2002-01-01

    One of the operational safety performance indicators recommended by the World Association of Nuclear Operators (WANO) and adopted by Electronuclear is the reliability of the safety systems. The parameter selected to represent this indicator is the average unavailability of the trains of the concerned system. This parameter would be universally representative of the reliability for comparison purpose only if all nuclear power plants were designed within the same redundancy criteria. Considering the diversity of design criteria of the power plants in operation and based on a probabilistic approach, this paper proposes new performance indicators which are comparable regardless the redundancy criteria of the system. A case example applied to a system of the Angra 2 nuclear power plant shows that, even though with the plant in the infancy phase, the performance of the system in the period is very good. (author)

  15. Experience of Tecnatom in Developing a Strong Leadership for Safety and Performance

    International Nuclear Information System (INIS)

    González, F.; Villadóniga, J. I.

    2016-01-01

    This paper presents experience and insights of Tecnatom in the support of internal and external clients to develop a strong Leadership for Safety. Several cases are presented briefly: (a) The leadership and culture change activities for a utility, a radwaste company, and for Tecnatom itself. One important characteristic of the work performed is the detailed consideration of the underlying organizational culture that underpins the safety culture. Measurable improvements have been achieved and some of the key insights are shared in this paper. (b) The development and implementation of a leadership model with 17 competencies, including safety explicitly. One benefit of this model is that allows to perform a quantitative assessment of leadership effectiveness, something vital to be able to ensure that leadership development actions are truly supporting safety. The model uses an approach to development oriented to strengths and the use of companion competencies to further develop leadership. Moreover it aims to produce significant improvements on safety but also on performance, since both are not competing goals when the proper leadership model is selected. The training material prepared was shortlisted in the 2014 Nuclear Training Awards. (c) The design and implementation of a training development program on Safety Culture, and required competencies of Leadership, for Top Managers of the nuclear industry, as part of the project NUSHARE of the European Commission’s 7th research framework program. The program is sensible to the reduced time availability of Top Managers and uses a combination of learning approaches (webinars, micro-elearnings, web meetings) that provide higher flexibility for the learner, but complemented with other proven methods (group dialog, journaling, mentoring, etc.) to ensure that the program is effective. All these experiences reveal that to improve the organizational Safety Culture we need to enhance Leadership for Safety and Performance

  16. Preliminary study on functional performance of compound type multistage safety injection tank

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo

    2015-01-01

    Highlights: • Functional performance of compound type multistage safety injection tanks is studied. • Effects of key design parameters are scrutinized. • Distinctive flow features in compound type safety injection tanks are explored. - Abstract: A parametric study is carried out to evaluate the functional performance of a compound type multistage safety injection tank that would be considered one of the components for the passive safety injection systems in nuclear power plants. The effects of key design parameters such as the initial volume fraction and charging pressure of gas, tank elevation, vertical location of a sparger, resistance coefficient, and operating condition on the injection flow rate are scrutinized along with a discussion of the relevant flow features. The obtained results indicate that the compound type multistage safety injection tank can effectively control the injection flow rate in a passive manner, by switching the driving force for the safety injection from gas pressure to gravity during the refill and reflood phases, respectively

  17. FY01 Supplemental Science and Performance Analyses, Volume 1: Scientific Bases and Analyses, Part 1 and 2

    International Nuclear Information System (INIS)

    Dobson, David

    2001-01-01

    The U.S. Department of Energy (DOE) is considering the possible recommendation of a site at Yucca Mountain, Nevada, for development as a geologic repository for the disposal of high-level radioactive waste and spent nuclear fuel. To facilitate public review and comment, in May 2001 the DOE released the Yucca Mountain Science and Engineering Report (S and ER) (DOE 2001 [DIRS 153849]), which presents technical information supporting the consideration of the possible site recommendation. The report summarizes the results of more than 20 years of scientific and engineering studies. A decision to recommend the site has not been made: the DOE has provided the S and ER and its supporting documents as an aid to the public in formulating comments on the possible recommendation. When the S and ER (DOE 2001 [DIRS 153849]) was released, the DOE acknowledged that technical and scientific analyses of the site were ongoing. Therefore, the DOE noted in the Federal Register Notice accompanying the report (66 FR 23 013 [DIRS 155009], p. 2) that additional technical information would be released before the dates, locations, and times for public hearings on the possible recommendation were announced. This information includes: (1) the results of additional technical studies of a potential repository at Yucca Mountain, contained in this FY01 Supplemental Science and Performance Analyses: Vol. 1, Scientific Bases and Analyses; and FY01 Supplemental Science and Performance Analyses: Vol. 2, Performance Analyses (McNeish 2001 [DIRS 155023]) (collectively referred to as the SSPA) and (2) a preliminary evaluation of the Yucca Mountain site's preclosure and postclosure performance against the DOE's proposed site suitability guidelines (10 CFR Part 963 [64 FR 67054] [DIRS 124754]). By making the large amount of information developed on Yucca Mountain available in stages, the DOE intends to provide the public and interested parties with time to review the available materials and to formulate

  18. Utility Expectations for Human Performance and Safety Culture in the Supplier Community

    International Nuclear Information System (INIS)

    Clewett, L. K.

    2016-01-01

    Canadian NPPs, like many others around the world, make use of suppliers for the design and execution of major projects, and to support on-going inspection and maintenance activities. The work performed by suppliers today represents a significant portion of the work performed at utility NPPs, and, at times, can even exceed the work performed by utility staff. It is imperative for both the utility and the supplier work forces to work in collaboration to ensure that the probability of consequential errors impacting plant safety or contributing to broader enterprise risk is kept very low. An important element for keeping the risk low is for utilities to work with their suppliers to develop a high degree of confidence that the supplier workforce is performing to the same standards of human performance and safety culture as its own staff. This paper will provide a senior utility executive’s expectations and perspective on achieving excellence in supplier human performance and safety culture. (author)

  19. Barrier performance researches for the safety evaluation

    International Nuclear Information System (INIS)

    Niibori, Yuichi

    2004-01-01

    So far, many researches were conducted to propose a scientific evidence (a safety case) for the realization of geological disposal in Japan. In order to regulate the geological disposal system of radioactive wastes, on the other hand, we need also a holistic approach to integrate various data related for the performance evaluations of the engineered barrier system and the natural barrier system. However, the scientific bases are not sufficient to establish the safety regulation for such a natural system. For example, we often apply the specific probability density function (PDF) to the uncertainty of barrier system due to the essential heterogeneity. However, the applicability is not clear in the regulation point of view. A viewpoint to understand such an applicability of PDFs has been presented. (author)

  20. Opportunities for Using Building Information Modeling to Improve Worker Safety Performance

    Directory of Open Access Journals (Sweden)

    Kasim Alomari

    2017-02-01

    Full Text Available Building information modelling (BIM enables the creation of a digital representation of a designed facility combined with additional information about the project attributes, performance criteria, and construction process. Users of BIM tools point to the ability to visualize the final design along with the construction process as a beneficial feature of using BIM. Knowing the construction process in relationship to a facility’s design benefits both safety professionals when planning worker safety measures for a project and designers when creating a project’s design. Success in using BIM to enhance safety partly depends on the familiarity of project personnel with BIM tools and the extent to which the tools can be used to identify and eliminate safety hazards. In a separate, ongoing study, the authors investigated the connection between BIM and safety to document the opportunities, barriers, and impacts. Utilizing an on-line survey of project engineers who work for construction firms together with a comprehensive literature review, the study found those who use BIM feel that it aids in communication of project information and project delivery, both of which have been found to have positive impacts on construction site safety. Further, utilizing the survey results, the authors apply the binary logistic regression econometric framework to better understand the factors that lead to safety professionals believing that BIM increases safety in the work place. In addition, according to the survey results, a large percentage of the engineers who use BIM feel that ultimately it helps to eliminate safety hazards and improve worker safety. The study findings suggest that improvements in safety performance across the construction industry may be due in part to increased use of BIM in the construction industry.

  1. Annual health, safety and environmental performance report for 1992

    International Nuclear Information System (INIS)

    Orman, R.F.; Richards, S.

    1993-12-01

    This report summarizes the safety and environmental record of the operations of Atomic Energy of Canada Limited (AECL) during 1992. An introduction highlights the results and describes the facilities and organizational systems. Subsequent sections indicate the performance of the company with respect to personnel radiation exposures, occupational injuries, the handling of wastes and the release of materials into the environment. Programs in health, safety and environmental protection are presented, along with site remediation and emergency preparedness practices

  2. Annual health, safety and environmental performance report for 1992

    International Nuclear Information System (INIS)

    Orman, R.F.; Richards, S.

    1993-12-01

    This report summarizes the safety and environmental record of the operations of Atomic Energy of Canada Limited (AECL) during 1992. an introduction highlights the results and describes the facilities and organizational systems. Subsequent sections indicate the performance of the company with respect to personnel radiation exposures, occupational injuries, the handling of wastes and the release of materials into the environment. Programs in health, safety and environmental protection are presented, along with site remediation and emergency preparedness practices

  3. Regulatory activities in the area of fuel safety and performance

    International Nuclear Information System (INIS)

    Viktorov, A.; Couture, M.

    2005-01-01

    Generic Action Item 94G02 'Impact of Fuel Bundle Condition on Reactor Safety' in many ways determined the present priorities in regulatory activities related to fuel performance. As one of the closure criteria it required that all licensees establish 'an effective formal and systematic process for integrating fuel design, fuel and channel inspection, laboratory examination, research, operating limits and safety analysis'. To date, such a process has been, to a large extent, put in place by all licensees. To assure that such processes remain operational and effective after the GAI closure, CNSC required, through S-99, to report annually on fuel performance and major activities in the fuel safety area. The scope of reported information has been defined to allow CNSC staff evaluation of key events and trends in fuel performance. To compliment reporting by the industry, CNSC staff has conducted targeted inspections of fuel compliance programs at all sites. Combined together, these activities provide the regulator with the confidence that CANDU fuel is robust and operates with safety margins. The scrutiny, to which fuel performance has been subjected lately, has allowed identification of certain programmatic weaknesses and gaps in the knowledge concerning the fuel behaviour under various conditions. It has become apparent that top-level strategies for assessment of fuel performance may have been inadequate and far from systematic; fuel inspection practices and capabilities have varied significantly from site to site; certain issues were identified but remained unaddressed for significant time; priorities in experimental or design support activities were not assigned consistently. The presentation gives examples of areas where, in the opinion of the CNSC staff, further work is required to support fuel design and safety envelopes. The implementation of new CANFLEX fuel designs is currently being considered by the industry and CNSC staff has been engaged in the review

  4. Safety analysis procedures for PHWR

    International Nuclear Information System (INIS)

    Min, Byung Joo; Kim, Hyoung Tae; Yoo, Kun Joong

    2004-03-01

    The methodology of safety analyses for CANDU reactors in Canada, a vendor country, uses a combination of best-estimate physical models and conservative input parameters so as to minimize the uncertainty of the plant behavior predictions. As using the conservative input parameters, the results of the safety analyses are assured the regulatory requirements such as the public dose, the integrity of fuel and fuel channel, the integrity of containment and reactor structures, etc. However, there is not the comprehensive and systematic procedures for safety analyses for CANDU reactors in Korea. In this regard, the development of the safety analyses procedures for CANDU reactors is being conducted not only to establish the safety analyses system, but also to enhance the quality assurance of the safety assessment. In the first phase of this study, the general procedures of the deterministic safety analyses are developed. The general safety procedures are covered the specification of the initial event, selection of the methodology and accident sequences, computer codes, safety analysis procedures, verification of errors and uncertainties, etc. Finally, These general procedures of the safety analyses are applied to the Large Break Loss Of Coolant Accident (LBLOCA) in Final Safety Analysis Report (FSAR) for Wolsong units 2, 3, 4

  5. Posttest analysis of the FFTF inherent safety tests

    International Nuclear Information System (INIS)

    Padilla, A. Jr.; Claybrook, S.W.

    1987-01-01

    Inherent safety tests were performed during 1986 in the 400-MW (thermal) Fast Flux Test Facility (FFTF) reactor to demonstrate the effectiveness of an inherent shutdown device called the gas expansion module (GEM). The GEM device provided a strong negative reactivity feedback during loss-of-flow conditions by increasing the neutron leakage as a result of an expanding gas bubble. The best-estimate pretest calculations for these tests were performed using the IANUS plant analysis code (Westinghouse Electric Corporation proprietary code) and the MELT/SIEX3 core analysis code. These two codes were also used to perform the required operational safety analyses for the FFTF reactor and plant. Although it was intended to also use the SASSYS systems (core and plant) analysis code, the calibration of the SASSYS code for FFTF core and plant analysis was not completed in time to perform pretest analyses. The purpose of this paper is to present the results of the posttest analysis of the 1986 FFTF inherent safety tests using the SASSYS code

  6. Quantitative assessment of safety barrier performance in the prevention of domino scenarios triggered by fire

    International Nuclear Information System (INIS)

    Landucci, Gabriele; Argenti, Francesca; Tugnoli, Alessandro; Cozzani, Valerio

    2015-01-01

    The evolution of domino scenarios triggered by fire critically depends on the presence and the performance of safety barriers that may have the potential to prevent escalation, delaying or avoiding the heat-up of secondary targets. The aim of the present study is the quantitative assessment of safety barrier performance in preventing the escalation of fired domino scenarios. A LOPA (layer of protection analysis) based methodology, aimed at the definition and quantification of safety barrier performance in the prevention of escalation was developed. Data on the more common types of safety barriers were obtained in order to characterize the effectiveness and probability of failure on demand of relevant safety barriers. The methodology was exemplified with a case study. The results obtained define a procedure for the estimation of safety barrier performance in the prevention of fire escalation in domino scenarios. - Highlights: • We developed a methodology for the quantitative assessment of safety barriers. • We focused on safety barriers aimed at preventing domino effect triggered by fire. • We obtained data on effectiveness and availability of the safety barriers. • The methodology was exemplified with a case study of industrial interest. • The results showed the role of safety barriers in preventing fired domino escalation

  7. Key Factors Affecting Construction Safety Performance in Developing Countries: Evidence from Cambodia

    Directory of Open Access Journals (Sweden)

    Serdar Durdyev

    2017-12-01

    Full Text Available Although proper safety management in construction is of utmost importance; anecdotal evidence suggests that safety is not adequately considered in many developing countries. This paper considers the key variables affecting construction safety performance in Cambodia. Using an empirical questionnaire survey targeting local construction professionals, respondents were invited to rate the level of importance of 30 variables identified from the seminal literature. The data set was subjected to factor analysis. Correlations between the variables show that five key factors underlie the challenges facing the local industry; management and organisation, resources, site management, cosmetic and workforce. It is found that the forefront construction professionals (top management and government authorities should take more responsibilities for further improvements in safety performance on project sites. Findings and recommendations of this study may be useful to construction professional who are seeking ways to improve safety records in developing countries.

  8. FMEA Performed on the SPINLINE3 Operational System Software as part of the TIHANGE 1 NIS Refurbishment Safety Case

    International Nuclear Information System (INIS)

    Ristord, L.; Esmenjaud, C.

    2002-01-01

    This paper introduces the SPINLINE3 technology and TIHANGE 1 the NIS project. It then focuses on the specificity of FMEA performed on software. It points out the benefits of this analysis and also some of the limitations and possible developments. It also gives characteristics that, if present in the software, help the analysis and the defenses. It takes as an example the analysis performed on the Operational System Software of the Schneider Electric safety digital generic platform SPINLINE3. The New TIHANGE 1 Nuclear Instrumentation System successfully started operation on the beginning of Marsh 2001 after the plant outage, as planned at the beginning of the project. The choice of a software-based technology has raised the issue of the risk of CCF due to the same software being used in redundant independent units. Implementing functional diversity or equipment diversity has been considered but found either not practicable or of little value within this context. The safety characteristics of the SPINLINE3 solution and the stringent and proven safety software development process applied by the Nuclear department of the Schneider Electric company have made acceptable the principle of a design based on redundant identical processing units for this project. In addition, because of the possible consequences in case of the NIS not performing its protection function on demand, the licensing authority has required an FMEA oriented toward the SCCF risk as part of the safety case. This FMEA has been performed on : - the NIS architecture, - the SPINLINE3 Operational System Software, - the three Tihange 1 application software (i.e. source, intermediate and power range). The process used and the results have been elaborated by Schneider Electric and reviewed by the customer and the licensing authority all along the project development until final acceptance. Issues have been raised and answers and/or complementary analyses provided, some of them making direct references to the

  9. Performance Analyses in an Assistive Technology Service Delivery Process

    DEFF Research Database (Denmark)

    Petersen, Anne Karin

    Performance Analyses in an Assistive Technology Service Delivery Process.Keywords: process model, occupational performance, assistive technologiesThe Poster is about teaching students, using models and theory in education and practice. It is related to Occupational therapy process and professional...... af top-til-bund, klientcentreret og aktivitetsbaseret interventioner, ERGO/MunksgaardFisher, A. &, Griswold, L. A., 2014. Performance Skills. I: B.Schell red.2014 Occupational Therapy. Willard &Spackman’s occupational therapy. -12th ed., p.249-264Cook A.M., Polgar J.M. (2015) Assistive Technologies...

  10. Safety and protection for large scale superconducting magnets. FY 1984 report

    International Nuclear Information System (INIS)

    Thome, R.J.; Pillsbury, R.D. Jr.; Minervini, J.V.

    1984-11-01

    The Fusion Program is moving rapidly into design and construction of systems using magnets with stored energies in the range of hundreds of megajoules to gigajoules. For example, the toroidal field coil system alone for TFCX would store about 4 GJ and the mirror system MFTF-B would store about 1.6 GJ. Safety and protection analyses of the magnet subsystems become progressively more important as the size and complexity of the installations increase. MIT has been carrying out a program for INEL oriented toward safety and protection in large scale superconducting magnet systems. The program involves collection and analysis of information on actual magnet failures, analyses of general problems associated with safety and protection, and performance of safety oriented experiments. This report summarizes work performed in FY 1984

  11. A structural equation modelling approach examining the pathways between safety climate, behaviour performance and workplace slipping

    Science.gov (United States)

    Swedler, David I; Verma, Santosh K; Huang, Yueng-Hsiang; Lombardi, David A; Chang, Wen-Ruey; Brennan, Melayne; Courtney, Theodore K

    2015-01-01

    Objective Safety climate has previously been associated with increasing safe workplace behaviours and decreasing occupational injuries. This study seeks to understand the structural relationship between employees’ perceptions of safety climate, performing a safety behaviour (ie, wearing slip-resistant shoes) and risk of slipping in the setting of limited-service restaurants. Methods At baseline, we surveyed 349 employees at 30 restaurants for their perceptions of their safety training and management commitment to safety as well as demographic data. Safety performance was identified as wearing slip-resistant shoes, as measured by direct observation by the study team. We then prospectively collected participants’ hours worked and number of slips weekly for the next 12 weeks. Using a confirmatory factor analysis, we modelled safety climate as a higher order factor composed of previously identified training and management commitment factors. Results The 349 study participants experienced 1075 slips during the 12-week follow-up. Confirmatory factor analysis supported modelling safety climate as a higher order factor composed of safety training and management commitment. In a structural equation model, safety climate indirectly affected prospective risk of slipping through safety performance, but no direct relationship between safety climate and slips was evident. Conclusions Results suggest that safety climate can reduce workplace slips through performance of a safety behaviour as well as suggesting a potential causal mechanism through which safety climate can reduce workplace injuries. Safety climate can be modelled as a higher order factor composed of safety training and management commitment. PMID:25710968

  12. Performance Evaluation of SMART Passive Safety System for Small Break LOCA Using MARS Code

    International Nuclear Information System (INIS)

    Chun, Ji Han; Lee, Guy Hyung; Bae, Kyoo Hwan; Chung, Young Jong; Kim, Keung Koo

    2013-01-01

    SMART has significantly enhanced safety by reducing its core damage frequency to 1/10 that of a conventional nuclear power plant. KAERI is developing a passive safety injection system to replace the active safety injection pump in SMART. It consists of four trains, each of which includes gravity-driven core makeup tank (CMT) and safety injection tank (SIT). This system is required to meet the passive safety performance requirements, i.e., the capability to maintain a safe shutdown condition for a minimum of 72 hours without an AC power supply or operator action in the case of design basis accidents (DBAs). The CMT isolation valve is opened by the low pressurizer pressure signal, and the SIT isolation valve is opened at 2 MPa. Additionally, two stages of automatic depressurization systems are used for rapid depressurization. Preliminary safety analysis of SMART passive safety system in the event of a small-break loss-of-coolant accident (SBLOCA) was performed using MARS code. In this study, the safety analysis results of a guillotine break of safety injection line which was identified as the limiting SBLOCA in SMART are given. The preliminary safety analysis of a SBLOCA for the SMART passive safety system was performed using the MARS code. The analysis results of the most limiting SI line guillotine break showed that the collapsed liquid level inside the core support barrel was maintained sufficiently high above the top of core throughout the transient. This means that the passive safety injection flow from the CMT and SIT causes no core uncovery during the 72 hours following the break with no AC power supply or operator action, which in turn results in a consistent decrease in the fuel cladding temperature. Therefore, the SMART passive safety system can meet the passive safety performance requirement of maintaining the plant at a safe shutdown condition for a minimum of 72 hours without AC power or operator action for a representing accident of SBLOCA

  13. Performance and safety analysis of WP-cave concept

    International Nuclear Information System (INIS)

    Skagius, K.; Svemar, C.

    1989-08-01

    The report presents a performance safety, and cost analysis of the WP-cave, WPC, concept. In the performance analysis, questions specific to the WPC have been addressed which have been identified to require more detailed studies. Based on the outcome of this analysis, a safety analysis has been made which comprises of the modeling and calculation of radionuclide transport from the repository to the biosphere and the resulting dose exposure to man. The result of the safety analysis indicates that the present design of a WPC repository may give unacceptably high doses. By improving the properties of the bentonite/sand barrier such that the hydraulic conductivity is reduced, or by changing the short-lived steel canisters to more long-lived canisters, e.g. copper canisters, it is judged possible to achieve a sufficiently low level of dose exposure rates to man. The cost for a WPC repository of the studied design is significantly higher than for a KBS-3 repository considering the Swedish conditions and the Swedish amount of spent fuel. The major costs are connected to the excavation and backfilling of the bentonite/sand barrier. The potential for cost savings is high but it is not judged possible to account for savings in such a way that the WPC concept shows lower cost than the KBS-3 concept. (34 figs., 33 tabs., 29 refs.)

  14. Relationship between organizational justice and organizational safety climate: do fairness perceptions influence employee safety behaviour?

    Science.gov (United States)

    Gyekye, Seth Ayim; Haybatollahi, Mohammad

    2014-01-01

    This study investigated the relationships between organizational justice, organizational safety climate, job satisfaction, safety compliance and accident frequency. Ghanaian industrial workers participated in the study (N = 320). Safety climate and justice perceptions were assessed with Hayes, Parender, Smecko, et al.'s (1998) and Blader and Tyler's (2003) scales respectively. A median split was performed to dichotomize participants into 2 categories: workers with positive and workers with negative justice perceptions. Confirmatory factors analysis confirmed the 5-factor structure of the safety scale. Regression analyses and t tests indicated that workers with positive fairness perceptions had constructive perspectives regarding workplace safety, expressed greater job satisfaction, were more compliant with safety policies and registered lower accident rates. These findings provide evidence that the perceived level of fairness in an organization is closely associated with workplace safety perception and other organizational factors which are important for safety. The implications for safety research are discussed.

  15. Annual health, safety and environmental performance report for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Gallapher, J D; Wright, M G

    1994-05-01

    This report summarizes the occupational health and safety and the environmental protection record of the operations of Atomic Energy of Canada Limited (AECL) during 1993. An introduction highlights the results and describes the facilities and organizational systems. Subsequent sections indicate the performance of the company with respect to personnel radiation exposures, occupational injuries, the handling of wastes, and the release of materials into the environment. Programs in health, safety and environmental protection are presented, along with site remediation and emergency preparedness practices. (author). 14 figs.

  16. Annual health, safety and environmental performance report for 1993

    International Nuclear Information System (INIS)

    Gallapher, J.D.; Wright, M.G.

    1994-05-01

    This report summarizes the occupational health and safety and the environmental protection record of the operations of Atomic Energy of Canada Limited (AECL) during 1993. An introduction highlights the results and describes the facilities and organizational systems. Subsequent sections indicate the performance of the company with respect to personnel radiation exposures, occupational injuries, the handling of wastes, and the release of materials into the environment. Programs in health, safety and environmental protection are presented, along with site remediation and emergency preparedness practices. (author). 14 figs

  17. A performance improvement plan to increase nurse adherence to use of medication safety software.

    Science.gov (United States)

    Gavriloff, Carrie

    2012-08-01

    Nurses can protect patients receiving intravenous (IV) medication by using medication safety software to program "smart" pumps to administer IV medications. After a patient safety event identified inconsistent use of medication safety software by nurses, a performance improvement team implemented the Deming Cycle performance improvement methodology. The combined use of improved direct care nurse communication, programming strategies, staff education, medication safety champions, adherence monitoring, and technology acquisition resulted in a statistically significant (p < .001) increase in nurse adherence to using medication safety software from 28% to above 85%, exceeding national benchmark adherence rates (Cohen, Cooke, Husch & Woodley, 2007; Carefusion, 2011). Copyright © 2012 Elsevier Inc. All rights reserved.

  18. The necessity of periodic fire safety review

    International Nuclear Information System (INIS)

    Mowrer, D.S.

    1998-01-01

    Effective fire safety requires the coordinated integration of many diverse elements. Clear fire safety objectives are defined by plant management and/or regulatory authorities. Extensive and time-consuming systematic analyses are performed. Fire safety features (both active and passive) are installed and maintained, and administrative programs are established and implemented to achieve the defined objectives. Personnel are rigorously trained. Given the time, effort and monetary resources expended to achieve a specific level of fire safety, conducting periodic assessments to verify that the specified level of fire safety has been achieved and is maintained is a matter of common sense. Periodic fire safety reviews and assessment play an essential role in assuring continual nuclear safety in the world's power plants

  19. Reactor safety analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    Risk assessments of nuclear installations require accurate safety and reliability analyses to estimate the consequences of accidental events and their probability of occurrence. The objective of the work performed in this field at the Belgian Nuclear Research Centre SCK-CEN is to develop expertise in probabilistic and deterministic reactor safety analysis. The four main activities of the research project on reactor safety analysis are: (1) the development of software for the reliable analysis of large systems; (2) the development of an expert system for the aid to diagnosis; (3) the development and the application of a probabilistic reactor-dynamics method, and (4) to participate in the international PHEBUS-FP programme for severe accidents. Progress in research during 1997 is described

  20. Utilisation of best estimate system codes and best estimate methods in safety analyses of VVER reactors in the Czech Republic

    International Nuclear Information System (INIS)

    Macek, Jiri; Kral, Pavel

    2010-01-01

    The content of the presentation was as follows: Conservative versus best estimate approach, Brief description and selection of methodology, Description of uncertainty methods, Examples of the BE methodology. It is concluded that where BE computer codes are used, uncertainty and sensitivity analyses should be included; if best estimate codes + uncertainty are used, the safety margins increase; and BE + BSA is the next step in licensing analyses. (P.A.)

  1. Accident consequence calculations for project W-058 safety analysis

    International Nuclear Information System (INIS)

    Van Keuren, J.C.

    1997-01-01

    This document describes the calculations performed to determine the accident consequences for the W-058 safety analysis. Project W-058 is the replacement cross site transfer system (RCSTS), which is designed to transort liquid waste between the 200 W and 200 E areas. Calculations for RCSTS safety analyses used the same methods as the calculations for the Tank Waste Remediation System (TWRS) Basis for Interim Operation (BIO) and its supporting calculation notes. Revised analyses were performed for the spray and pool leak accidents since the RCSTS flows and pressures differ from those assumed in the TWRS BIO. Revision 1 of the document incorporates review comments

  2. Fire-safety engineering and performance-based codes

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    project administrators, etc. The book deals with the following topics: • Historical presentation on the subject of fire • Legislation and building project administration • European fire standardization • Passive and active fire protection • Performance-based Codes • Fire-safety Engineering • Fundamental......Fire-safety Engineering is written as a textbook for Engineering students at universities and other institutions of higher education that teach in the area of fire. The book can also be used as a work of reference for consulting engineers, Building product manufacturers, contractors, building...... thermodynamics • Heat exchange during the fire process • Skin burns • Burning rate, energy release rate and design fires • Proposal to Risk-based design fires • Proposal to a Fire scale • Material ignition and flame spread • Fire dynamics in buildings • Combustion products and toxic gases • Smoke inhalation...

  3. Safety strategy and safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1976-01-01

    The safety strategy for nuclear power plants is characterized by the fact that the high level of safety was attained not as a result of experience, but on the basis of preventive accident analyses and the finding derived from such analyses. Although, in these accident analyses, the deterministic approach is predominant, it is supplemented by reliability analyses. The accidents analyzed in nuclear licensing procedures cover a wide spectrum from minor incidents to the design basis accidents which determine the design of the safety devices. The initial and boundary conditions, which are essentail for accident analyses, and the determination of the loads occurring in various states during regular operation and in accidents flow into the design of the individual systems and components. The inevitable residual risk and its origins are discussed. (orig.) [de

  4. Toward an understanding of the impact of production pressure on safety performance in construction operations.

    Science.gov (United States)

    Han, Sanguk; Saba, Farzaneh; Lee, Sanghyun; Mohamed, Yasser; Peña-Mora, Feniosky

    2014-07-01

    It is not unusual to observe that actual schedule and quality performances are different from planned performances (e.g., schedule delay and rework) during a construction project. Such differences often result in production pressure (e.g., being pressed to work faster). Previous studies demonstrated that such production pressure negatively affects safety performance. However, the process by which production pressure influences safety performance, and to what extent, has not been fully investigated. As a result, the impact of production pressure has not been incorporated much into safety management in practice. In an effort to address this issue, this paper examines how production pressure relates to safety performance over time by identifying their feedback processes. A conceptual causal loop diagram is created to identify the relationship between schedule and quality performances (e.g., schedule delays and rework) and the components related to a safety program (e.g., workers' perceptions of safety, safety training, safety supervision, and crew size). A case study is then experimentally undertaken to investigate this relationship with accident occurrence with the use of data collected from a construction site; the case study is used to build a System Dynamics (SD) model. The SD model, then, is validated through inequality statistics analysis. Sensitivity analysis and statistical screening techniques further permit an evaluation of the impact of the managerial components on accident occurrence. The results of the case study indicate that schedule delays and rework are the critical factors affecting accident occurrence for the monitored project. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. ELFR: The European Lead Fast Reactor. Design, Safety Approach and Safety Characteristics

    International Nuclear Information System (INIS)

    Alemberti, Alessandro

    2012-01-01

    • In the framework of the LEADER project, the safety approach for a Lead cooled fast reactor has been defined and, in particular, all the possible challenges to the main safety functions and their mechanisms have been specified, in order to better define the needed provisions. • On the basis of the above and taking into account the results of the safety analyses performed during previous project (ELSY), a reference configuration of the ELFR plant has been consolidated, by improving and updating the plant design features. In particular, the emerged safety concerns have been analyzed in the LEADER project and a new set of design options and safety provisions have been proposed. • The combination of favourable Lead coolant inherent characteristics and plant design features, specifically developed to face identified challenges, resulted in a very robust and forgiving design, even in very extreme conditions, as a Fukushima-like scenario

  6. Modern diaper performance: construction, materials, and safety review.

    Science.gov (United States)

    Dey, Swatee; Kenneally, Dianna; Odio, Mauricio; Hatzopoulos, Ioannis

    2016-07-01

    A review of the literature on diapers and diaper rash reveals that many clinicians are unfamiliar with modern diaper construction and materials as well as diaper safety testing methods. Typical modern diapers do not contain ingredients of concern such as latex and disperse dyes, but use ingredients such as spandex and pigments with a favorable safety profile. Today's disposable diaper is a high performance product whose carefully designed layers and liners provide optimal urine and feces absorption and an ever more clothing-like and comfortable fit. This is possible due to a variety of specialized polymer materials that provide optimal absorption of urine and feces, thereby minimizing skin exposure. © 2016 The International Society of Dermatology.

  7. Status of the EU test blanket systems safety studies

    International Nuclear Information System (INIS)

    Panayotov, Dobromir; Poitevin, Yves; Ricapito, Italo; Zmitko, Milan

    2015-01-01

    Highlights: • TBS safety demonstration files. • Safety functions and related design features – detailed TBS components classifications. • Nuclear analyses, radiation shielding and protection. • TBS radiological waste management strategy and categorization. • Selection and definition of reference accidents scenarios and accidents analyses. - Abstract: The European joint undertaking for ITER and the development of fusion energy (‘Fusion for Energy’ – F4E) provides the European contributions to the ITER international fusion energy research project. Among others it includes also the development, design, technological demonstration and implementation of the European test blanket systems (TBS) in ITER. Currently two EU TBS designs are in the phase of conceptual design – helium-cooled lithium-lead (HCLL) and helium-cooled pebble-bed (HCPB). Safety demonstration is an important part of the work devoted to the achievement of the next key project milestone the conceptual design review. The paper reveals the details of the work on EU TBS safety performed in the last couple of years: update of the TBS safety demonstration files; safety functions and related design features; detailed TBS components classifications; nuclear analyses, radiation shielding and protection; TBS radiological waste management strategy and categorization; selection and definition of reference accidents scenarios, and accidents analyses. Finally the authors share the information on on-going and planned future EU TBS safety activities.

  8. Status of the EU test blanket systems safety studies

    Energy Technology Data Exchange (ETDEWEB)

    Panayotov, Dobromir, E-mail: dobromir.panayotov@f4e.europa.eu; Poitevin, Yves; Ricapito, Italo; Zmitko, Milan

    2015-10-15

    Highlights: • TBS safety demonstration files. • Safety functions and related design features – detailed TBS components classifications. • Nuclear analyses, radiation shielding and protection. • TBS radiological waste management strategy and categorization. • Selection and definition of reference accidents scenarios and accidents analyses. - Abstract: The European joint undertaking for ITER and the development of fusion energy (‘Fusion for Energy’ – F4E) provides the European contributions to the ITER international fusion energy research project. Among others it includes also the development, design, technological demonstration and implementation of the European test blanket systems (TBS) in ITER. Currently two EU TBS designs are in the phase of conceptual design – helium-cooled lithium-lead (HCLL) and helium-cooled pebble-bed (HCPB). Safety demonstration is an important part of the work devoted to the achievement of the next key project milestone the conceptual design review. The paper reveals the details of the work on EU TBS safety performed in the last couple of years: update of the TBS safety demonstration files; safety functions and related design features; detailed TBS components classifications; nuclear analyses, radiation shielding and protection; TBS radiological waste management strategy and categorization; selection and definition of reference accidents scenarios, and accidents analyses. Finally the authors share the information on on-going and planned future EU TBS safety activities.

  9. A structural equation modelling approach examining the pathways between safety climate, behaviour performance and workplace slipping.

    Science.gov (United States)

    Swedler, David I; Verma, Santosh K; Huang, Yueng-Hsiang; Lombardi, David A; Chang, Wen-Ruey; Brennan, Melayne; Courtney, Theodore K

    2015-07-01

    Safety climate has previously been associated with increasing safe workplace behaviours and decreasing occupational injuries. This study seeks to understand the structural relationship between employees' perceptions of safety climate, performing a safety behaviour (ie, wearing slip-resistant shoes) and risk of slipping in the setting of limited-service restaurants. At baseline, we surveyed 349 employees at 30 restaurants for their perceptions of their safety training and management commitment to safety as well as demographic data. Safety performance was identified as wearing slip-resistant shoes, as measured by direct observation by the study team. We then prospectively collected participants' hours worked and number of slips weekly for the next 12 weeks. Using a confirmatory factor analysis, we modelled safety climate as a higher order factor composed of previously identified training and management commitment factors. The 349 study participants experienced 1075 slips during the 12-week follow-up. Confirmatory factor analysis supported modelling safety climate as a higher order factor composed of safety training and management commitment. In a structural equation model, safety climate indirectly affected prospective risk of slipping through safety performance, but no direct relationship between safety climate and slips was evident. Results suggest that safety climate can reduce workplace slips through performance of a safety behaviour as well as suggesting a potential causal mechanism through which safety climate can reduce workplace injuries. Safety climate can be modelled as a higher order factor composed of safety training and management commitment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Nuclear data for criticality safety

    International Nuclear Information System (INIS)

    Westfall, R.M.

    1994-01-01

    A brief overview is presented on emerging requirements for new criticality safety analyses arising from applications involving nuclear waste management, facility remediation, and the storage of nuclear weapons components. A derivation of criticality analyses from the specifications of national consensus standards is given. These analyses, both static and dynamic, define the needs for nuclear data. Integral data, used primarily for analytical validation, and differential data, used in performing the analyses, are listed, along with desirable margins of uncertainty. Examples are given of needs for additional data to address systems having intermediate neutron energy spectra and/or containing nuclides of intermediate mass number

  11. Design provisions for safety

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1983-01-01

    Design provisions for safety of nuclear power plants are based on a well balanced concept: the public is protected against a release of radioactive material by multiple barriers. These barriers are protected according to a 'defence-in-depth' principle. The reactor safety concept is primarily aimed at the prevention of accidents, especially fuel damage. Additionally, measures for consequence limitation are provided in order to prevent a severe release of radioactivity to the environment. However, it is difficult to judge the overall effectiveness of such devices. In a comprehensive safety analysis it has to be shown that the protection systems and safeguards work with sufficient reliability in the event of an accident. For the reliability assessment deterministic criteria (single failure, redundancy, fail-safe, demand for diversity) play an important role. Increasing efforts have been made to assess reliability quantitatively by means of probabilistic methods. It is now usual to perform reliability analyses of essential systems of nuclear power plants in the course of licensing procedures. As an additional level of emergency measures for a further reduction of hazards a reasonable amount of accident information has to be transferred. Operational experience may be considered as an important feedback to the design of plant safety features. Operator training has to include, besides skill in performing of operating procedures, the training of a flexible response to different accident situations. Experience has shown that the design provisions for safety could prevent dangerous release of the radioactive material to the environment after an accident has occurred. For future developments of reactor safety, extensive analyses of operating experience are of great importance. The main goal should be to enhance the reliability of measures for accident prevention, which prevent the core from meltdown or other damages

  12. Network meta-analyses performed by contracting companies and commissioned by industry

    NARCIS (Netherlands)

    Schuit, Ewoud; Ioannidis, John P A

    2016-01-01

    Background: Industry commissions contracting companies to perform network meta-analysis for health technology assessment (HTA) and reimbursement submissions. Our objective was to estimate the number of network meta-analyses performed by consulting companies contracted by industry, to assess whether

  13. Labor unions and safety climate: perceived union safety values and retail employee safety outcomes.

    Science.gov (United States)

    Sinclair, Robert R; Martin, James E; Sears, Lindsay E

    2010-09-01

    Although trade unions have long been recognized as a critical advocate for employee safety and health, safety climate research has not paid much attention to the role unions play in workplace safety. We proposed a multiple constituency model of workplace safety which focused on three central safety stakeholders: top management, ones' immediate supervisor, and the labor union. Safety climate research focuses on management and supervisors as key stakeholders, but has not considered whether employee perceptions about the priority their union places on safety contributes contribute to safety outcomes. We addressed this gap in the literature by investigating unionized retail employee (N=535) perceptions about the extent to which their top management, immediate supervisors, and union valued safety. Confirmatory factor analyses demonstrated that perceived union safety values could be distinguished from measures of safety training, workplace hazards, top management safety values, and supervisor values. Structural equation analyses indicated that union safety values influenced safety outcomes through its association with higher safety motivation, showing a similar effect as that of supervisor safety values. These findings highlight the need for further attention to union-focused measures related to workplace safety as well as further study of retail employees in general. We discuss the practical implications of our findings and identify several directions for future safety research. 2009 Elsevier Ltd. All rights reserved.

  14. Analysing the performance of dynamic multi-objective optimisation algorithms

    CSIR Research Space (South Africa)

    Helbig, M

    2013-06-01

    Full Text Available and the goal of the algorithm is to track a set of tradeoff solutions over time. Analysing the performance of a dynamic multi-objective optimisation algorithm (DMOA) is not a trivial task. For each environment (before a change occurs) the DMOA has to find a set...

  15. The LBB methodology application results performed on the safety related piping of NPP V-1 in Jaslovske Bohunice

    Energy Technology Data Exchange (ETDEWEB)

    Kupca, L.; Beno, P. [Nuclear Power Plants Research Institute, Trnava (Slovakia)

    1997-04-01

    A broad overview of the leak before break (LBB) application to the Slovakian V-1 nuclear power plant is presented in the paper. LBB was applied to the primary cooling circuit and surge lines of both WWER 440 type units, and also used to assess the integrity of safety related piping in the feed water and main steam systems. Experiments and calculations performed included analyses of stresses, material mechanical properties, corrosion, fatigue damage, stability of heavy component supports, water hammer, and leak rates. A list of analysis results and recommendations are included in the paper.

  16. Health and safety plan for operations performed for the Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Trippet, W.A. II (IT Corp., (United States)); Reneau, M.; Morton, S.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-04-01

    This document constitutes the generic health and safety plan for the Environmental Restoration Program (ERP). It addresses the health and safety requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 standard; and EG G Idaho, Inc. This plan is a guide to individuals who must complete a health and safety plan for a task performed for the EPR. It contains a task specific addendum that, when completed, specifically addresses task specific health and safety issues. This health and safety plan reduces the time it takes to write a task specific health and safety plan by providing discussions of requirements, guidance on where specific information is located, and specific topics in the Addendum that must be discussed at a task level. This format encourages a complete task specific health and safety plan and a standard for all health and safety plans written for ERP.

  17. Health and safety plan for operations performed for the Environmental Restoration Program

    International Nuclear Information System (INIS)

    Trippet, W.A. II; Reneau, M.; Morton, S.L.

    1992-04-01

    This document constitutes the generic health and safety plan for the Environmental Restoration Program (ERP). It addresses the health and safety requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 standard; and EG ampersand G Idaho, Inc. This plan is a guide to individuals who must complete a health and safety plan for a task performed for the EPR. It contains a task specific addendum that, when completed, specifically addresses task specific health and safety issues. This health and safety plan reduces the time it takes to write a task specific health and safety plan by providing discussions of requirements, guidance on where specific information is located, and specific topics in the Addendum that must be discussed at a task level. This format encourages a complete task specific health and safety plan and a standard for all health and safety plans written for ERP

  18. Safety analysis for research reactors

    International Nuclear Information System (INIS)

    2008-01-01

    The aim of safety analysis for research reactors is to establish and confirm the design basis for items important to safety using appropriate analytical tools. The design, manufacture, construction and commissioning should be integrated with the safety analysis to ensure that the design intent has been incorporated into the as-built reactor. Safety analysis assesses the performance of the reactor against a broad range of operating conditions, postulated initiating events and other circumstances, in order to obtain a complete understanding of how the reactor is expected to perform in these situations. Safety analysis demonstrates that the reactor can be kept within the safety operating regimes established by the designer and approved by the regulatory body. This analysis can also be used as appropriate in the development of operating procedures, periodic testing and inspection programmes, proposals for modifications and experiments and emergency planning. The IAEA Safety Requirements publication on the Safety of Research Reactors states that the scope of safety analysis is required to include analysis of event sequences and evaluation of the consequences of the postulated initiating events and comparison of the results of the analysis with radiological acceptance criteria and design limits. This Safety Report elaborates on the requirements established in IAEA Safety Standards Series No. NS-R-4 on the Safety of Research Reactors, and the guidance given in IAEA Safety Series No. 35-G1, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, providing detailed discussion and examples of related topics. Guidance is given in this report for carrying out safety analyses of research reactors, based on current international good practices. The report covers all the various steps required for a safety analysis; that is, selection of initiating events and acceptance criteria, rules and conventions, types of safety analysis, selection of

  19. Human factors in safety assessment. Safety culture assessment

    International Nuclear Information System (INIS)

    Zhang Li; Deng Zhiliang; Wang Yiqun; Huang Weigang

    1996-01-01

    This paper analyses the present conditions and problems in enterprises safety assessment, and introduces the characteristics and effects of safety culture. The authors think that safety culture must be used as a 'soul' to form the pattern of modern safety management. Furthermore, they propose that the human safety and synthetic safety management assessment in a system should be changed into safety culture assessment. Finally, the assessment indicators are discussed

  20. Key Factors Affecting Construction Safety Performance in Developing Countries: Evidence from Cambodia

    OpenAIRE

    Durdyev, Serdar; Mohamed, Sherif; Lay, Meng Leang; Ismail, Syuhaida

    2017-01-01

    Although proper safety management in construction is of utmost importance; anecdotal evidence suggests that safety is not adequately considered in many developing countries. This paper considers the key variables affecting construction safety performance in Cambodia. Using an empirical questionnaire survey targeting local construction professionals, respondents were invited to rate the level of importance of 30 variables identified from the seminal literature. The data set was subjected to f...

  1. The use of probabilistic safety assessment based maintenance indicators to increase the availability of safety related systems in nuclear power plants

    International Nuclear Information System (INIS)

    Kirchsteiger, C.

    1991-04-01

    This work describes the theoretical development of a Probabilistic Safety Assessment (PSA) based Performance Indicator (PI) model for a comprehensive Maintenance Efficiency Analysis (MEA) and its practical application to past operational history data of a certain Nuclear Power Plant. Plant specific equipment history and maintenance work order data have been collected and analysed using various advanced statistical procedures (nonparametric methods, multivariate analysis) in order to be able to estimate safety system related equipment and maintenance process trends. The main results of such a MEA case study are the trends in the (in)effectiveness of the performance of a selected safety system and its dominant maintenance related causes of its bad (good) equipment performance. Finally, the therefrom gained results are used to propose a new set of safety system based and maintenance related Performance Indicators, including suggestions for a corresponding plant specific maintenance data collection system. (author)

  2. International conference on the operational safety performance in nuclear installations. Contributed papers

    International Nuclear Information System (INIS)

    2005-01-01

    In 2001, the IAEA organized an 'International Conference on Topical Issues in Nuclear Safety'. The issues discussed during the conference were: (1) risk- informed decision-making; (2) influence of external factors on safety; (3) safety of fuel cycle facilities; (4) safety of research reactors; and (5) safety performance indicators. Senior nuclear safety decision makers reviewed the issues and formulated recommendations for future actions by national and international organizations. In 2004, the IAEA organized an 'International Conference on Topical Issues in Nuclear Safety' in Beijing China. The issues discussed during the conference were: (1) changing environment - coping with diversity and globalization; (2) operating experience - managing changes effectively; (3) regulatory management systems - adapting to changes in the environment; and (4) long term operations - maintaining safety margins while extending plant lifetimes. The results of this conference confirmed the importance of operators and regulators of nuclear facilities meeting periodically to share experience and opinion on emerging issues and future challenges of the nuclear industry. Substantial progress has been made, and continues to be made by Member States in enhancing the safety of nuclear installations worldwide. At the same time, more attention is being given to other areas of nuclear safety. The safety standards for research reactors are being updated and new standards are planned on the safety of other facilities in the nuclear fuel cycle. The Agency has taken a lead role in this effort and is receiving much support from its Member States to gain international consensus in these areas. The objective of the conference is to foster the exchange of information on operational safety performance and operating experience in nuclear installations, with the aim of consolidating an international consensus on: - the present status of these issues; - emerging issues with international implications

  3. Organizational Culture and Safety Performance in the Manufacturing Companies in Malaysia: A Conceptual Analysis

    OpenAIRE

    Ong Choon Hee; Lim Lee Ping

    2014-01-01

    The purpose of this paper is to provide a conceptual analysis of organizational culture and safety performance in the manufacturing companies in Malaysia. Our conceptual analysis suggests that manufacturing companies that adopt group culture or hierarchical culture are more likely to demonstrate safety compliance and safety participation. Manufacturing companies that adopt rational culture or developmental culture are less likely to demonstrate safety compliance and safety participation. Give...

  4. Artificial neural network model for prediction of safety performance indicators goals in nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Souto, Kelling C.; Nunes, Wallace W. [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro, Nilopolis, RJ (Brazil). Lab. de Aplicacoes Computacionais; Machado, Marcelo D., E-mail: dornemd@eletronuclear.gov.b [ELETROBRAS Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Gerencia de Combustivel Nuclear - GCN.T

    2011-07-01

    Safety performance indicators have been developed to provide a quantitative indication of the performance and safety in various industry sectors. These indexes can provide assess to aspects ranging from production, design, and human performance up to management issues in accordance with policy, objectives and goals of the company. The use of safety performance indicators in nuclear power plants around the world is a reality. However, it is necessary to periodically set goal values. Such goals are targets relating to each of the indicators to be achieved by the plant over a predetermined period of operation. The current process of defining these goals is carried out by experts in a subjective way, based on actual data from the plant, and comparison with global indices. Artificial neural networks are computational techniques that present a mathematical model inspired by the neural structure of intelligent organisms that acquire knowledge through experience. This paper proposes an artificial neural network model aimed at predicting values of goals to be used in the evaluation of safety performance indicators for nuclear power plants. (author)

  5. Artificial neural network model for prediction of safety performance indicators goals in nuclear plants

    International Nuclear Information System (INIS)

    Souto, Kelling C.; Nunes, Wallace W.; Machado, Marcelo D.

    2011-01-01

    Safety performance indicators have been developed to provide a quantitative indication of the performance and safety in various industry sectors. These indexes can provide assess to aspects ranging from production, design, and human performance up to management issues in accordance with policy, objectives and goals of the company. The use of safety performance indicators in nuclear power plants around the world is a reality. However, it is necessary to periodically set goal values. Such goals are targets relating to each of the indicators to be achieved by the plant over a predetermined period of operation. The current process of defining these goals is carried out by experts in a subjective way, based on actual data from the plant, and comparison with global indices. Artificial neural networks are computational techniques that present a mathematical model inspired by the neural structure of intelligent organisms that acquire knowledge through experience. This paper proposes an artificial neural network model aimed at predicting values of goals to be used in the evaluation of safety performance indicators for nuclear power plants. (author)

  6. Safety and cost evaluation of nuclear waste management

    International Nuclear Information System (INIS)

    Vieno, T.; Hautojaervi, A.; Korhonen, R.

    1989-11-01

    The report introduces the results of the nuclear waste management safety and cost evaluation research carried out in the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) during the years 1984-1988. The emphasis is on the description of the state-of-art of performance and cost evaluation methods. The report describes VTT's most important assessment models. Development, verification and validation of the models has largely taken place within international projects, including the Stripa, HYDROCOIN, INTRACOIN, INTRAVAL, PSACOIN and BIOMOVS projects. Furthermore, VTT's other laboratories are participating in the Natural Analogue Working Group,k the CHEMVAL project and the CoCo group. Resent safety analyses carried out in the Nuclear Engineering Laboratory include a concept feasibility study of spent fuel disposal, safety analyses for the Preliminary Safety Analysis Reports (PSAR's) of the repositories to be constructed for low and medium level operational reactor waste at the Olkiluoto and Loviisa power plants as well as safety analyses of disposal of decommissioning wastes. Appendix 1 contains a comprehensive list of the most important publications and technical reports produced. They present the content and results of the research in detail

  7. Study on the operational safety performance indicator of nuclear power plants in China

    International Nuclear Information System (INIS)

    Zhou Shirong

    2005-01-01

    The operational Safety Performance Indicator system (SPI) has been more and more regarded recently for their clear and effective characteristic in safety assessment for Nuclear Power Plants (NPPs). A large developing plan for NPPs construction is being discussed and considered in P.R. China. As one of important nuclear country, China expects to ensure the normal operation of NPPs and improve the safety level. National Nuclear Safety Administration (NNSA), National Nuclear Regulatory Agency of China, has put high attention on safety and SPI area, and many endeavours and attempts have been done or being carried out for an establishment of SPI system in China. NNSA intends to build an integrated SPI system to monitor all of the NPPs operation in China, based on the SPI system currently used in the world. NNSA believes that the SPI system will help to more effectively enforce the function of surveillance and management. The paper will introduces the status of study on the operational safety performance indicator of Nuclear Power Plants in China. (author)

  8. Job hindrances, job resources, and safety performance: The mediating role of job engagement.

    Science.gov (United States)

    Yuan, Zhenyu; Li, Yongjuan; Tetrick, Lois E

    2015-11-01

    Job engagement has received widespread attention in organizational research but has rarely been empirically investigated in the context of safety. In the present study, we examined the mediating role of job engagement in the relationships between job characteristics and safety performance using self-reported data collected at a coal mining company in China. Most of our study hypotheses were supported. Job engagement partially mediated the relationships between job resources and safety performance dimensions. Theoretical and practical implications and directions for future research are also discussed. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. Effects on Task Performance and Psychophysiological Measures of Performance During Normobaric Hypoxia Exposure

    Science.gov (United States)

    Stephens, Chad; Kennedy, Kellie; Napoli, Nicholas; Demas, Matthew; Barnes, Laura; Crook, Brenda; Williams, Ralph; Last, Mary Carolyn; Schutte, Paul

    2017-01-01

    Human-autonomous systems have the potential to mitigate pilot cognitive impairment and improve aviation safety. A research team at NASA Langley conducted an experiment to study the impact of mild normobaric hypoxia induction on aircraft pilot performance and psychophysiological state. A within-subjects design involved non-hypoxic and hypoxic exposures while performing three 10-minute tasks. Results indicated the effect of 15,000 feet simulated altitude did not induce significant performance decrement but did produce increase in perceived workload. Analyses of psychophysiological responses evince the potential of biomarkers for hypoxia onset. This study represents on-going work at NASA intending to add to the current knowledge of psychophysiologically-based input to automation to increase aviation safety. Analyses involving coupling across physiological systems and wavelet transforms of cortical activity revealed patterns that can discern between the simulated altitude conditions. Specifically, multivariate entropy of ECG/Respiration components were found to be significant predictors (pTask performance was not appreciably impacted by the effect of 15,000 feet simulated altitude. Analyses of psychophysiological responses evince the potential of biomarkers for mild hypoxia onset.The potential for identifying shifts in underlying cortical and physiological systems could serve as a means to identify the onset of deteriorated cognitive state. Enabling such assessment in future flightdecks could permit increasingly autonomous systems-supported operations. Augmenting human operator through assessment of cognitive impairment has the potential to further improve operator performance and mitigate human error in safety critical contexts. This study represents ongoing work at NASA intending to add to the current knowledge of psychophysiologically-based input to automation to increase aviation safety.

  10. Electrochemical performance and safety features of high-safety lithium ion battery using novel branched additive for internal short protection

    International Nuclear Information System (INIS)

    Li Yuhan; Lee, Meng-Lun; Wang Fuming; Yang, Chang-Rung; Chu, Peter P.J.; Yau, Shueh-Lin; Pan, Jing-Pin

    2012-01-01

    Highlights: ► N-phenylmaleimide-containing branched oligomer has been employed as an additive in lithium cells. ► The branched oligomer additive enhances safety and cycling performance of Li ion battery. ► The highest temperature of branched oligomer-containing battery was only 85 °C in the nail penetration test. - Abstract: In this study, we have investigated N-phenylmaleimide/bismaleimide-containing branched oligomer (BO1) as additive in Li-ion batteries to increase the safety performance by reducing the probability of batteries suffering an internal short circuit. In the nail penetration test, a LiCoO 2 /MCMB full battery with N-phenylmaleimide/bismaleimide-containing branched oligomer (BO1) showed a significant improvement in thermal stability and was able to restrain the temperature of the battery at about 85 °C. Furthermore, we found that N-phenylmaleimide/bismaleimide-containing branched oligomer (BO1) contained battery revealed better cycling and electrochemical performance, compared with the battery with bismaleimide-containing branched oligomer (BO3) in the electrolyte. The improvement might result from the favorable ionic conductivity, Li ion mobility and lower resistance in the battery. This additive can meet the cycling performance and safety requirements for Li-ion batteries.

  11. Structural and Treatment Analyses of Safe and At-Risk Behaviors and Postures Performed by Pharmacy Employees

    Science.gov (United States)

    Fante, Rhiannon; Gravina, Nicole; Betz, Alison; Austin, John

    2010-01-01

    This study employed structural and treatment analyses to determine factors that contributed to wrist posture safety in a small pharmacy. The pharmacy was located on a university campus and participants were three female pharmacy technicians. These particular employees had experienced various repetitive-motion injuries that resulted in a total of…

  12. Evaluating Models of Human Performance: Safety-Critical Systems Applications

    Science.gov (United States)

    Feary, Michael S.

    2012-01-01

    This presentation is part of panel discussion on Evaluating Models of Human Performance. The purpose of this panel is to discuss the increasing use of models in the world today and specifically focus on how to describe and evaluate models of human performance. My presentation will focus on discussions of generating distributions of performance, and the evaluation of different strategies for humans performing tasks with mixed initiative (Human-Automation) systems. I will also discuss issues with how to provide Human Performance modeling data to support decisions on acceptability and tradeoffs in the design of safety critical systems. I will conclude with challenges for the future.

  13. Key Element Performance In Occupational Safety And Health Management System In Organization (A Literature

    Directory of Open Access Journals (Sweden)

    Agus Salim Nuzaihan Aras

    2016-01-01

    Full Text Available Setting an effective safety and health management system is crucial in order to reduce problem relating to accident and ill in management organizational. It is involve with multiple level of management and stakeholders who empower the organization to the management in handling the safety and health cases and issues in organizational. It is necessary to prepare a well knowledge about safety and health management systems and preparing the framework for setting a certain scale in measuring its performance in this area. The successful or failure of management does showing the capability of the organization in delivering the responsible to management levels [1]. The problem in safe work issues and practices cause by the management commitment and involvement that create improper safety program and procedures, and this crisis keep continuing till present [2]. This paper describes about key element of safety and health management system and measuring the performance in order to get an effective management system in organization that describes the process in achieving effectiveness in management. The literature review will be conducted through the data collection from research findings and defined the strong character of key element in which focusing on measuring performance. A guide on key element performance in occupational safety and health management system is specifically drawn to prepare for a future research.

  14. High performance liquid chromatography in pharmaceutical analyses

    Directory of Open Access Journals (Sweden)

    Branko Nikolin

    2004-05-01

    Full Text Available In testing the pre-sale procedure the marketing of drugs and their control in the last ten years, high performance liquid chromatographyreplaced numerous spectroscopic methods and gas chromatography in the quantitative and qualitative analysis. In the first period of HPLC application it was thought that it would become a complementary method of gas chromatography, however, today it has nearly completely replaced gas chromatography in pharmaceutical analysis. The application of the liquid mobile phase with the possibility of transformation of mobilized polarity during chromatography and all other modifications of mobile phase depending upon the characteristics of substance which are being tested, is a great advantage in the process of separation in comparison to other methods. The greater choice of stationary phase is the next factor which enables realization of good separation. The separation line is connected to specific and sensitive detector systems, spectrafluorimeter, diode detector, electrochemical detector as other hyphernated systems HPLC-MS and HPLC-NMR, are the basic elements on which is based such wide and effective application of the HPLC method. The purpose high performance liquid chromatography(HPLC analysis of any drugs is to confirm the identity of a drug and provide quantitative results and also to monitor the progress of the therapy of a disease.1 Measuring presented on the Fig. 1. is chromatogram obtained for the plasma of depressed patients 12 h before oral administration of dexamethasone. It may also be used to further our understanding of the normal and disease process in the human body trough biomedical and therapeutically research during investigation before of the drugs registration. The analyses of drugs and metabolites in biological fluids, particularly plasma, serum or urine is one of the most demanding but one of the most common uses of high performance of liquid chromatography. Blood, plasma or

  15. Understanding the relationship between safety culture dimensions and safety performance of construction projects through partial least square method

    Science.gov (United States)

    Latief, Yusuf; Machfudiyanto, Rossy A.; Arifuddin, Rosmariani; Yogiswara, Yoko

    2017-03-01

    Based on the data, 32% of accidental cases in Indonesia occurs on constructional sectors. It is supported by the data from Public Work and Housing Department that 27.43% of the implementation level of Safety Management System policy at construction companies in Indonesia remains unsafe categories. Moreover, there are dimensions of occupational safety culture formed including leadership, behavior, strategy, policy, process, people, safety cost, value and contract system. The aim of this study is to determine the model of an effective safety culture and know the relationship between dimensions in construction industry. The method used in this research was questionnaire survey which was distributed to the sample of construction companies either in a national private one in Indonesia. The result of this research is supposed to be able to illustrate the development of the relationship among occupational safety culture dimensions which have influences to the performances of constructional companies in Indonesia.

  16. Seismic performance assessment of base-isolated safety-related nuclear structures

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2010-01-01

    Seismic or base isolation is a proven technology for reducing the effects of earthquake shaking on buildings, bridges and infrastructure. The benefit of base isolation has been presented in terms of reduced accelerations and drifts on superstructure components but never quantified in terms of either a percentage reduction in seismic loss (or percentage increase in safety) or the probability of an unacceptable performance. Herein, we quantify the benefits of base isolation in terms of increased safety (or smaller loss) by comparing the safety of a sample conventional and base-isolated nuclear power plant (NPP) located in the Eastern U.S. Scenario- and time-based assessments are performed using a new methodology. Three base isolation systems are considered, namely, (1) Friction Pendulum??? bearings, (2) lead-rubber bearings and (3) low-damping rubber bearings together with linear viscous dampers. Unacceptable performance is defined by the failure of key secondary systems because these systems represent much of the investment in a new build power plant and ensure the safe operation of the plant. For the scenario-based assessments, the probability of unacceptable performance is computed for an earthquake with a magnitude of 5.3 at a distance 7.5 km from the plant. For the time-based assessments, the annual frequency of unacceptable performance is computed considering all potential earthquakes that may occur. For both assessments, the implementation of base isolation reduces the probability of unacceptable performance by approximately four orders of magnitude for the same NPP superstructure and secondary systems. The increase in NPP construction cost associated with the installation of seismic isolators can be offset by substantially reducing the required seismic strength of secondary components and systems and potentially eliminating the need to seismically qualify many secondary components and systems. ?? 2010 John Wiley & Sons, Ltd.

  17. Status of Ignalina's safety analysis reports

    International Nuclear Information System (INIS)

    Uspuras, E.

    1999-01-01

    Ignalina NPP is unique among RBMK type reactors in the scope and comprehensiveness of international studies which have been performed to verify its design parameters and analyze risk levels. International assistance took several forms, a very valuable mod of assistance utilized the knowledge of international experts in extensive international studies whose purpose was: collection, systematization and verification of plant design data; analysis of risk levels; recommendations leading to improvements in the safety lave; transfer of state of the art analytical methodology to Lithuanian specialists. The major large scale international studies include: probabilistic risk analysis; extensive international study meant to provide comprehensive overview of plant status with special emphasis on safety aspects; an extensive review of the Safety Analysis Report by an independent group of international experts. In spite of the safety improvements and analyses which have been performed at the Ignalina NPP, much remains to be done in the nearest future

  18. Development of safety analysis technology for integral reactor

    International Nuclear Information System (INIS)

    Kim, Hee Cheol; Kim, K. K.; Kim, S. H.

    2002-04-01

    The state-of-the-arts for the integral reactor was performed to investigate the safety features. The safety and performance of SMART were assessed using the technologies developed during the study. For this purpose, the computer code system and the analysis methodology were developed and the safety and performance analyses on SMART basic design were carried out for the design basis event and accident. The experimental facilities were designed for the core flow distribution test and the self-pressurizing pressurizer performance test. The tests on the 2-phase critical flow with non-condensable gas were completed and the results were used to assess the critical flow model. Probabilistic Safety Assessment(PSA) was carried out to evaluate the safety level and to optimize the design by identifying and remedying any weakness in the design. A joint study with KINS was carried out to promote licensing environment. The generic safety issues of integral reactors were identified and the solutions were formulated. The economic evaluation of the SMART desalination plant and the activities related to the process control were carried out in the scope of the study

  19. Occupational driver safety: conceptualising a leadership-based intervention to improve safe driving performance.

    Science.gov (United States)

    Newnam, Sharon; Lewis, Ioni; Watson, Barry

    2012-03-01

    Occupational driving crashes are the most common cause of death and injury in the workplace. The physical and psychological outcomes following injury are also very costly to organizations. Thus, safe driving poses a managerial challenge. Some research has attempted to address this issue through modifying discrete and often simple target behaviours (e.g., driver training programs). However, current intervention approaches in the occupational driving field generally consider the role of organizational factors in workplace safety. This study adopts the A-B-C framework to identify the contingencies associated with an effective exchange of safety information within the occupational driving context. Utilizing a sample of occupational drivers and their supervisors, this multi-level study examines the contingencies associated with the exchange of safety information within the supervisor-driver relationship. Safety values are identified as an antecedent of the safety information exchange, and the quality of the leader-member exchange relationship and safe driving performance is identified as the behavioural consequences. We also examine the function of role overload as a factor influencing the relationship between safety values and the safety information exchange. Hierarchical linear modelling found that role overload moderated the relationship between supervisors' perceptions of the value given to safety and the safety information exchange. A significant relationship was also found between the safety information exchange and the subsequent quality of the leader-member exchange relationship. Finally, the quality of the leader-member exchange relationship was found to be significantly associated with safe driving performance. Theoretical and practical implications of these results are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Incorporation of advanced accident analysis methodology into safety analysis reports

    International Nuclear Information System (INIS)

    2003-05-01

    The IAEA Safety Guide on Safety Assessment and Verification defines that the aim of the safety analysis should be by means of appropriate analytical tools to establish and confirm the design basis for the items important to safety, and to ensure that the overall plant design is capable of meeting the prescribed and acceptable limits for radiation doses and releases for each plant condition category. Practical guidance on how to perform accident analyses of nuclear power plants (NPPs) is provided by the IAEA Safety Report on Accident Analysis for Nuclear Power Plants. The safety analyses are performed both in the form of deterministic and probabilistic analyses for NPPs. It is customary to refer to deterministic safety analyses as accident analyses. This report discusses the aspects of using the advanced accident analysis methods to carry out accident analyses in order to introduce them into the Safety Analysis Reports (SARs). In relation to the SAR, purposes of deterministic safety analysis can be further specified as (1) to demonstrate compliance with specific regulatory acceptance criteria; (2) to complement other analyses and evaluations in defining a complete set of design and operating requirements; (3) to identify and quantify limiting safety system set points and limiting conditions for operation to be used in the NPP limits and conditions; (4) to justify appropriateness of the technical solutions employed in the fulfillment of predetermined safety requirements. The essential parts of accident analyses are performed by applying sophisticated computer code packages, which have been specifically developed for this purpose. These code packages include mainly thermal-hydraulic system codes and reactor dynamics codes meant for the transient and accident analyses. There are also specific codes such as those for the containment thermal-hydraulics, for the radiological consequences and for severe accident analyses. In some cases, codes of a more general nature such

  1. Investigation of road network features and safety performance.

    Science.gov (United States)

    Wang, Xuesong; Wu, Xingwei; Abdel-Aty, Mohamed; Tremont, Paul J

    2013-07-01

    The analysis of road network designs can provide useful information to transportation planners as they seek to improve the safety of road networks. The objectives of this study were to compare and define the effective road network indices and to analyze the relationship between road network structure and traffic safety at the level of the Traffic Analysis Zone (TAZ). One problem in comparing different road networks is establishing criteria that can be used to scale networks in terms of their structures. Based on data from Orange and Hillsborough Counties in Florida, road network structural properties within TAZs were scaled using 3 indices: Closeness Centrality, Betweenness Centrality, and Meshedness Coefficient. The Meshedness Coefficient performed best in capturing the structural features of the road network. Bayesian Conditional Autoregressive (CAR) models were developed to assess the safety of various network configurations as measured by total crashes, crashes on state roads, and crashes on local roads. The models' results showed that crash frequencies on local roads were closely related to factors within the TAZs (e.g., zonal network structure, TAZ population), while crash frequencies on state roads were closely related to the road and traffic features of state roads. For the safety effects of different networks, the Grid type was associated with the highest frequency of crashes, followed by the Mixed type, the Loops & Lollipops type, and the Sparse type. This study shows that it is possible to develop a quantitative scale for structural properties of a road network, and to use that scale to calculate the relationships between network structural properties and safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The effect of Health, Safety and Environment Management System (HSE-MS on the improvement of safety performance indices in Urea and Ammonia Kermanshah Petrochemical Company

    Directory of Open Access Journals (Sweden)

    M. S. Poursoleiman

    2015-09-01

    Full Text Available Introduction: Work-related accidents may cause damage to people, environment and lead to waste of time and money. Health, Safety and Environment Management System has been developed in order to reduce accidents. This study aimed to investigate the effect of implementation of this system on reduction of the accidents and its consequences and also on the safety performance indices in Kermanshah Petrochemical Company. Material and Method: In this study, records of accidents were collected by OSHA incident report form 301 over 4 years. Following, the mean annual accidents and its consequences and safety performance indices were calculated and reported. Then, using statistical analysis, the impacts of two years implementation of this system on the accidents and its consequences and safety performance indices were evaluated. Result: The results showed that the implementation of HSE system was significantly correlated with Frequency Severity Indicator, Accident Severity Rate, lost days, minor accidents and total incidents (P-value 0.05. Conclusion: The implementation of Health, Safety and the Environment Management System caused a reduction in accidents and its consequences and most of the safety performance indices in the entire process cycle of Kermanshah Petrochemical Company. Overall, safety condition has been improved considerably.

  3. Systems reliability analyses and risk analyses for the licencing procedure under atomic law

    International Nuclear Information System (INIS)

    Berning, A.; Spindler, H.

    1983-01-01

    For the licencing procedure under atomic law in accordance with Article 7 AtG, the nuclear power plant as a whole needs to be assessed, plus the reliability of systems and plant components that are essential to safety are to be determined with probabilistic methods. This requirement is the consequence of safety criteria for nuclear power plants issued by the Home Department (BMI). Systems reliability studies and risk analyses used in licencing procedures under atomic law are identified. The stress is on licencing decisions, mainly for PWR-type reactors. Reactor Safety Commission (RSK) guidelines, examples of reasoning in legal proceedings and arguments put forth by objectors are also dealt with. Correlations are shown between reliability analyses made by experts and licencing decisions by means of examples. (orig./HP) [de

  4. Safety and performance indicators for repositories in salt and clay formations

    International Nuclear Information System (INIS)

    Wolf, Jens; Ruebel, Andre; Noseck, Ulrich; Becker, Dirk

    2008-07-01

    The GRS (Gesellschaft fuer Reaktorsicherheit) study aims to the identification of suitable indicators for repositories in salt and clay formation. It is not intended to compare the two formations with respect to the safe disposal of radioactive waste. A first set of safety and performance indicators for both host rocks has been derived on the basis of results of the SPIN project. Reference values for the safety indicators have been determined. The suitability of the indicators and their significance for different time frames Is demonstrated by means of deterministic model calculations and external parameter variations of previous studies. The safety indicators considered in the report are the effective dose rate (Sv/a), the radiotoxicity concentration in the biosphere water (Sv/m 3 ) and the radiotoxicity flux from the geosphere (overlying rock) (Sv/a). The performance indicators considered in the study are the radiotoxicity inventory in different compartments (S), radiotoxicity fluxes from compartments and the integrated radiotoxicity fluxes from compartments (Sv).

  5. Final report-passive safety optimization in liquid sodium-cooled reactors

    International Nuclear Information System (INIS)

    Cahalana, J. E.; Hahn, D.

    2007-01-01

    This report summarizes the results of a three-year collaboration between Argonne National Laboratory (ANL) and the Korea Atomic Energy Research Institute (KAERI) to identify and quantify the performance of innovative design features in metallic-fueled, sodium-cooled fast reactor designs. The objective of the work was to establish the reliability and safety margin enhancements provided by design innovations offering significant potential for construction, maintenance, and operating cost reductions. The project goal was accomplished with a combination of advanced model development (Task 1), analysis of innovative design and safety features (Tasks 2 and 3), and planning of key safety experiments (Task 4). Task 1--Computational Methods for Analysis of Passive Safety Design Features: An advanced three-dimensional subassembly thermal-hydraulic model was developed jointly and implemented in ANL and KAERI computer codes. The objective of the model development effort was to provide a high-accuracy capability to predict fuel, cladding, coolant, and structural temperatures in reactor fuel subassemblies, and thereby reduce the uncertainties associated with lower fidelity models previously used for safety and design analysis. The project included model formulation, implementation, and verification by application to available reactor tests performed at EBR-II. Task 2--Comparative Analysis and Evaluation of Innovative Design Features: Integrated safety assessments of innovative liquid metal reactor designs were performed to quantify the performance of inherent safety features. The objective of the analysis effort was to identify the potential safety margin enhancements possible in a sodium-cooled, metal-fueled reactor design by use of passive safety mechanisms to mitigate low-probability accident consequences. The project included baseline analyses using state-of-the-art computational models and advanced analyses using the new model developed in Task 1. Task 3--Safety

  6. Barrier and system performances within a safety case: their functioning and evolution with time

    International Nuclear Information System (INIS)

    Hedin, A.; Voinis, S.; Fillion, E.; Keller, S.; Lalieux, Ph.; Nachmilner, L.; Nys, V.; Rodriguez, J.; Sevougian, D.; Wollrath, J.

    2002-01-01

    The following six questions were used as the basis for the discussions in a Working Group: - What is the role of each barrier as a function of time or in the different time frames? What is its contribution to the overall system performance or safety as a function of time? - Which are the main uncertainties on the performance of barriers in the timescales? To what extent should we enhance the robustness of barriers because of the uncertainties of some component behaviour with time? - What is the requested or required performance versus the expected realistic or conservative behaviour with time? How are these safety margins used as arguments in a safety case? - What is the issue associated with the geosphere stability for different geological systems? - How are barriers and system performances, as a function of time, evaluated (presented and communicated) in a safety case? - What kind of measures are used for siting, designing and optimising robust barriers corresponding to situations that can vary with time? Are human actions considered to be relevant? (authors)

  7. Hydrogen Safety Sensor Performance and Use Gap Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burgess, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schmidt, Kara [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hartmann, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wright, Hannah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Weidner, Eveline [Joint Research Centre, Petten, the Netherlands; Cebolla, Rafael O. [Joint Research Centre, Petten, the Netherlands; Bonato, Christian [Joint Research Centre, Petten, the Netherlands; Moretto, Pietro [Joint Research Centre, Petten, the Netherlands

    2017-11-15

    Hydrogen sensors are recognized as an important technology for facilitating the safe implementation of hydrogen as an alternative fuel, and there are numerous reports of a sensor alarm successfully preventing a potentially serious event. However, gaps in sensor metrological specifications, as well as in their performance for some applications, exist.The U.S. Department of Energy (DOE) Fuel Cell Technology Office published a short list of critical gaps in the 2007 and 2012 multiyear project plans; more detailed gap analyses were independently performed by the JRC and NREL. There have been, however, some significant advances in sensor technologies since these assessments, including the commercial availability of hydrogen sensors with fast response times (t90 less than 1 s, which had been an elusive DOE target since 2007), improved robustness to chemical poisons, improved selectivity, and improved lifetime and stability. These improvements, however, have not been universal and typically pertain to select platforms or models. Moreover, as hydrogen markets grow and new applications are being explored, more demands will be imposed on sensor performance. The hydrogen sensor laboratories at NREL and JRC are currently updating the hydrogen safety sensor gap analysis through direct interaction with international stakeholders in the hydrogen community, especially end-users. NREL and the JRC are currently organizing a series of workshops (in Europe and the U.S.) with sensor developers, end-users, and other stakeholders in 2017 to identify technology gaps and to develop a path forward to address them. One workshop is scheduled for May 10 in Brussels, Belgium at the Headquarters of the Fuel Cell and Hydrogen Joint Undertaking. A second workshop is planned at the National Renewable Energy Laboratory in Golden, CO, USA. This presentation will review improvements in sensor technologies in the past 5 to 10 years, identify gaps in sensor performance and use requirements, and identify

  8. Numerical indicators of nuclear power plant safety performance

    International Nuclear Information System (INIS)

    1991-04-01

    The workshop was attended by representatives from twenty-two Member States operating nuclear power plants (NPP). The current status of the development and use of numerical indicators of NPP safety performance was presented. A consensus on the benefits of use of numerical indicators was reached. The Technical Committee Meeting reviewed the progress in the development and use of performance indicators and identified them as the most appropriate ones for international use. The purpose of this document is to summarize the discussions held and conclusions reached in both meetings. Lists of participants and all the papers of both meetings are presented

  9. Westinghouse Hanford Company health and safety performance report

    International Nuclear Information System (INIS)

    Rogers, L.

    1996-01-01

    Topping the list of WHC Safety recognition during this reporting period is a commendation received from the National Safety Council (NSC). The NSC bestowed their Award of Honor upon WHC for significant reduction of incidence rates during CY 1995. The award is based upon a reduction of 48 % or greater in cases involving days away from work, a 30 % or greater reduction in the number of days away, and a 15% or greater reduction in the total number of occupational injuries and illnesses. (page 2-1). A DOE-HQ review team representing the Office of Envirorunent, Safety and Health (EH), visited the Hanford Site during several weeks of the quarter. Ile 40-member Safety Management Evaluation Team (SMET) assessed WHC in the areas of management responsibility, comprehensive requirements, and competence commensurate with responsibility. As part of their new approach to oversight, they focused on the existence of management systems and programs (comparable approach to VPP). Plant/project areas selected for review within WHC were PFP, B Plant/WESF, Tank Farms, and K-Basins (page 2-2). Effective safety meetings, prejob safety meetings, etc., are a cornerstone of any successful safety program. In an effort to improve the reporting of safety meetings, the Safety/Security Meeting Report form was revised. It now provides a mechanism for recording and tracking safety issues (page 2-4). WHC has experienced an increase in the occupational injury and illness incidence rates during the first quarter of CY 1996. Trends show this increase can be partially attributed to inattention to workplace activities due 0999to the uncertainty Hanford employees currently face with recent reduction of force, reorganization, and reengineering efforts (page 2-7). The cumulative CY 1995 lost/restricted workday case incidence rate for the first quarter of CY 1996 (1.28) is 25% below the DOE CY 1991-93 average (1.70). However, the incidence rate increased 24% from the CY 1995 rate of 1.03 (page 2-8). The

  10. Westinghouse Hanford Company health and safety performance report

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.

    1996-05-15

    Topping the list of WHC Safety recognition during this reporting period is a commendation received from the National Safety Council (NSC). The NSC bestowed their Award of Honor upon WHC for significant reduction of incidence rates during CY 1995. The award is based upon a reduction of 48 % or greater in cases involving days away from work, a 30 % or greater reduction in the number of days away, and a 15% or greater reduction in the total number of occupational injuries and illnesses. (page 2-1). A DOE-HQ review team representing the Office of Envirorunent, Safety and Health (EH), visited the Hanford Site during several weeks of the quarter. Ile 40-member Safety Management Evaluation Team (SMET) assessed WHC in the areas of management responsibility, comprehensive requirements, and competence commensurate with responsibility. As part of their new approach to oversight, they focused on the existence of management systems and programs (comparable approach to VPP). Plant/project areas selected for review within WHC were PFP, B Plant/WESF, Tank Farms, and K-Basins (page 2-2). Effective safety meetings, prejob safety meetings, etc., are a cornerstone of any successful safety program. In an effort to improve the reporting of safety meetings, the Safety/Security Meeting Report form was revised. It now provides a mechanism for recording and tracking safety issues (page 2-4). WHC has experienced an increase in the occupational injury and illness incidence rates during the first quarter of CY 1996. Trends show this increase can be partially attributed to inattention to workplace activities due 0999to the uncertainty Hanford employees currently face with recent reduction of force, reorganization, and reengineering efforts (page 2-7). The cumulative CY 1995 lost/restricted workday case incidence rate for the first quarter of CY 1996 (1.28) is 25% below the DOE CY 1991-93 average (1.70). However, the incidence rate increased 24% from the CY 1995 rate of 1.03 (page 2-8). The

  11. Probabilistic safety analysis procedures guide

    International Nuclear Information System (INIS)

    Papazoglou, I.A.; Bari, R.A.; Buslik, A.J.

    1984-01-01

    A procedures guide for the performance of probabilistic safety assessment has been prepared for interim use in the Nuclear Regulatory Commission programs. The probabilistic safety assessment studies performed are intended to produce probabilistic predictive models that can be used and extended by the utilities and by NRC to sharpen the focus of inquiries into a range of tissues affecting reactor safety. This guide addresses the determination of the probability (per year) of core damage resulting from accident initiators internal to the plant and from loss of offsite electric power. The scope includes analyses of problem-solving (cognitive) human errors, a determination of importance of the various core damage accident sequences, and an explicit treatment and display of uncertainties for the key accident sequences. Ultimately, the guide will be augmented to include the plant-specific analysis of in-plant processes (i.e., containment performance) and the risk associated with external accident initiators, as consensus is developed regarding suitable methodologies in these areas. This guide provides the structure of a probabilistic safety study to be performed, and indicates what products of the study are essential for regulatory decision making. Methodology is treated in the guide only to the extent necessary to indicate the range of methods which is acceptable; ample reference is given to alternative methodologies which may be utilized in the performance of the study

  12. Behavior of underclad cracks in reactor pressure vessels - evaluation of mechanical analyses with tests on cladded mock-ups

    International Nuclear Information System (INIS)

    Moinereau, D.; Rousselier, G.; Bethmont, M.

    1993-01-01

    Innocuity of underclad flaws in the reactor pressure vessels must be demonstrated in the French safety analyses, particularly in the case of a severe transient at the end of the pressure vessel lifetime, because of the radiation embrittlement of the vessel material. Safety analyses are usually performed with elastic and elasto-plastic analyses taking into account the effect of the stainless steel cladding. EDF has started a program including experiments on large size cladded specimens and their interpretations. The purpose of this program is to evaluate the different methods of fracture analysis used in safety studies. Several specimens made of ferritic steel A508 C1 3 with stainless steel cladding, containing small artificial defects, are loaded in four-point bending. Experiments are performed at very low temperature to simulate radiation embrittlement and to obtain crack instability by cleavage fracture. Three tests have been performed on mock-ups containing a small underclad crack (with depth about 5 mn) and a fourth test has been performed on one mock-up with a larger crack (depth about 13 mn). In each case, crack instability occurred by cleavage fracture in the base metal, without crack arrest, at a temperature of about - 170 deg C. Each test is interpreted using linear elastic analysis and elastic-plastic analysis by two-dimensional finite element computations. The fracture are conservatively predicted: the stress intensity factors deduced from the computations (K cp or K j ) are always greater than the base metal toughness. The comparison between the elastic analyses (including two plasticity corrections) and the elastic-plastic analyses shows that the elastic analyses are often conservative. The beneficial effect of the cladding in the analyses is also shown : the analyses are too conservative if the cladding effects is not taken into account. (authors). 9 figs., 6 tabs., 10 refs

  13. A review of significant events analysed in general practice: implications for the quality and safety of patient care

    Directory of Open Access Journals (Sweden)

    Bradley Nick

    2009-09-01

    Full Text Available Abstract Background Significant event analysis (SEA is promoted as a team-based approach to enhancing patient safety through reflective learning. Evidence of SEA participation is required for appraisal and contractual purposes in UK general practice. A voluntary educational model in the west of Scotland enables general practitioners (GPs and doctors-in-training to submit SEA reports for feedback from trained peers. We reviewed reports to identify the range of safety issues analysed, learning needs raised and actions taken by GP teams. Method Content analysis of SEA reports submitted in an 18 month period between 2005 and 2007. Results 191 SEA reports were reviewed. 48 described patient harm (25.1%. A further 109 reports (57.1% outlined circumstances that had the potential to cause patient harm. Individual 'error' was cited as the most common reason for event occurrence (32.5%. Learning opportunities were identified in 182 reports (95.3% but were often non-specific professional issues not shared with the wider practice team. 154 SEA reports (80.1% described actions taken to improve practice systems or professional behaviour. However, non-medical staff were less likely to be involved in the changes resulting from event analyses describing patient harm (p Conclusion The study provides some evidence of the potential of SEA to improve healthcare quality and safety. If applied rigorously, GP teams and doctors in training can use the technique to investigate and learn from a wide variety of quality issues including those resulting in patient harm. This leads to reported change but it is unclear if such improvement is sustained.

  14. Objective indicators of organizational performance at nuclear power plants

    International Nuclear Information System (INIS)

    Olson, J.; Osborn, R.N.; Jackson, D.H.; Shikiar, R.

    1986-01-01

    This report summarizes research conducted on the development and validation of organizational performance measures at operating nuclear power plants. Publicly available data, including measures from Licensee Event Reports, operating and outage data, and violations data, are used to predict penultimate measures of plant safety. Penultimate measures of safety include potentially significant events, overexposures and near overexposures, and several radiological release measures. The 1981 and 1982 performance measures are used in correlation and regression analyses to predict performance on the penultimate safety measures in 1982 and 1983. Many of the plant performance measures are consistently predictive of the frequency of potentially significant events. No strong, consistent predictors emerge for exposures or liquid radiological releases. Several performance measures are consistent predictors of gaseous releases. The regression analyses indicate that the predictors do not tend to combine in consistent, multivariate patterns, and controls for plant age, size, type, region, and fuel cycle stage do not substantially affect the results. The analysis concludes that existing performance data do appear to be predictive of some aspects of plant safety performance. The report recommends that more reliable, summary performance measures be created by combining several of the performance measures tested in the current analysis

  15. Proceedings of the specialist meeting on safety performance indicators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-28

    In 1998, the OECD/NEA committee on Nuclear Regulatory Activities (CNRA) initiated an activity with the objective of advancing the discussion on how to enhance and measure regulatory effectiveness in relation to nuclear installations. One of the outcome of this activity was to establish a Task group to develop internal (direct) performance indicators which would be used to monitor regulatory efficiency. On the initiative of the NEA/CSNI Working Group on Operating Experience the Spanish CSN hosted a workshop (Madrid, 2000) to review the state of the art on Safety Performance Indicators. This workshop, which was co-sponsored by the IAEA and WANO was attended by 73 participants from 19 countries, representing the industry, regulators, service companies as well as international organisations. The conclusions were: 1. there is considerable development effort on performance indicators in many countries; 2. utilities continue to rely on the WANO Performance indicators system which consists of indicators in 8 key areas and receives data from virtually all commercial NPP's in the world; 3. Regulators do not have a common set of performance indicators. This document gathers the 25 presentations given during this workshop. After this workshop, a joint CNRA/CSNI task group was launched in December 2000 to exchange information and develop external (indirect) indicators to measure regulatory effectiveness, i.e. impact on licensee's safety performance. These external indicators are, in other words, the traditional plant performance indicators (PI's). The task force consisted of regulators, organisations which have a performance indicators system in operation or under testing. The task force met in Paris on February 19-20, 2001 and the work performed by the group is summarized in a report (NEA-CSNI-R--2001-11) attached in appendix to these proceedings.

  16. Proceedings of the specialist meeting on safety performance indicators

    International Nuclear Information System (INIS)

    2002-01-01

    In 1998, the OECD/NEA committee on Nuclear Regulatory Activities (CNRA) initiated an activity with the objective of advancing the discussion on how to enhance and measure regulatory effectiveness in relation to nuclear installations. One of the outcome of this activity was to establish a Task group to develop internal (direct) performance indicators which would be used to monitor regulatory efficiency. On the initiative of the NEA/CSNI Working Group on Operating Experience the Spanish CSN hosted a workshop (Madrid, 2000) to review the state of the art on Safety Performance Indicators. This workshop, which was co-sponsored by the IAEA and WANO was attended by 73 participants from 19 countries, representing the industry, regulators, service companies as well as international organisations. The conclusions were: 1. there is considerable development effort on performance indicators in many countries; 2. utilities continue to rely on the WANO Performance indicators system which consists of indicators in 8 key areas and receives data from virtually all commercial NPP's in the world; 3. Regulators do not have a common set of performance indicators. This document gathers the 25 presentations given during this workshop. After this workshop, a joint CNRA/CSNI task group was launched in December 2000 to exchange information and develop external (indirect) indicators to measure regulatory effectiveness, i.e. impact on licensee's safety performance. These external indicators are, in other words, the traditional plant performance indicators (PI's). The task force consisted of regulators, organisations which have a performance indicators system in operation or under testing. The task force met in Paris on February 19-20, 2001 and the work performed by the group is summarized in a report (NEA-CSNI-R--2001-11) attached in appendix to these proceedings

  17. Preclosure Safety Analysis Guide

    International Nuclear Information System (INIS)

    D.D. Orvis

    2003-01-01

    A preclosure safety analysis (PSA) is a required element of the License Application (LA) for the high- level radioactive waste repository at Yucca Mountain. This guide provides analysts and other Yucca Mountain Repository Project (the Project) personnel with standardized methods for developing and documenting the PSA. The definition of the PSA is provided in 10 CFR 63.2, while more specific requirements for the PSA are provided in 10 CFR 63.112, as described in Sections 1.2 and 2. The PSA requirements described in 10 CFR Part 63 were developed as risk-informed performance-based regulations. These requirements must be met for the LA. The PSA addresses the safety of the Geologic Repository Operations Area (GROA) for the preclosure period (the time up to permanent closure) in accordance with the radiological performance objectives of 10 CFR 63.111. Performance objectives for the repository after permanent closure (described in 10 CFR 63.113) are not mentioned in the requirements for the PSA and they are not considered in this guide. The LA will be comprised of two phases: the LA for construction authorization (CA) and the LA amendment to receive and possess (R and P) high-level radioactive waste (HLW). PSA methods must support the safety analyses that will be based on the differing degrees of design detail in the two phases. The methods described herein combine elements of probabilistic risk assessment (PRA) and deterministic analyses that comprise a risk-informed performance-based safety analysis. This revision to the PSA guide was prepared for the following objectives: (1) To correct factual and typographical errors. (2) To provide additional material suggested from reviews by the Project, the U.S. Department of Energy (DOE), and U.S. Nuclear Regulatory Commission (NRC) Staffs. (3) To update material in accordance with approaches and/or strategies adopted by the Project. In addition, a principal objective for the planned revision was to ensure that the methods and

  18. Preliminary safety evaluation for CSR1000 with passive safety system

    International Nuclear Information System (INIS)

    Wu, Pan; Gou, Junli; Shan, Jianqiang; Zhang, Bo; Li, Xiang

    2014-01-01

    Highlights: • The basic information of a Chinese SCWR concept CSR1000 is introduced. • An innovative passive safety system is proposed for CSR1000. • 6 Transients and 3 accidents are analysed with system code SCTRAN. • The passive safety systems greatly mitigate the consequences of these incidents. • The inherent safety of CSR1000 is enhanced. - Abstract: This paper describes the preliminary safety analysis of the Chinese Supercritical water cooled Reactor (CSR1000), which is proposed by Nuclear Power Institute of China (NPIC). The two-pass core design applied to CSR1000 decreases the fuel cladding temperature and flattens the power distribution of the core at normal operation condition. Each fuel assembly is made up of four sub-assemblies with downward-flow water rods, which is favorable to the core cooling during abnormal conditions due to the large water inventory of the water rods. Additionally, a passive safety system is proposed for CSR1000 to increase the safety reliability at abnormal conditions. In this paper, accidents of “pump seizure”, “loss of coolant flow accidents (LOFA)”, “core depressurization”, as well as some typical transients are analysed with code SCTRAN, which is a one-dimensional safety analysis code for SCWRs. The results indicate that the maximum cladding surface temperatures (MCST), which is the most important safety criterion, of the both passes in the mentioned incidents are all below the safety criterion by a large margin. The sensitivity analyses of the delay time of RCPs trip in “loss of offsite power” and the delay time of RMT actuation in “loss of coolant flowrate” were also included in this paper. The analyses have shown that the core design of CSR1000 is feasible and the proposed passive safety system is capable of mitigating the consequences of the selected abnormalities

  19. The use of probabilistic safety assessment (PSA) based maintenance indicators to increase the availability of safety related systems in nuclear power plants

    International Nuclear Information System (INIS)

    Kirchsteiger, C.

    1991-04-01

    This work describes the theoretical development of a Probabilistic Safety Assessment (PSA) based Performance Indicator (PI) model for a comprehensive Maintenance Efficiency Analysis (MEA) and its practical application to past operational history data of a certain nuclear power plant. Plant specific equipment history and maintenance work on data have been collected and analysed using various advanced statistical procedures (nonparametric methods, multivariate analysis in order to be able to estimate safety system related equipment and maintenance process trends. The main results of such a MEA case study are the trends in the (in)effectiveness of the performance of a selected safety system and its dominant components as well as the detection of the dominant maintenance related causes of its bad (good) equipment performance. Finally, the therefrom gained results are used to propose a new set of safety system-based and maintenance-related performance indicators, including suggestions for a corresponding plant specific maintenance data collection system. (author)

  20. Review of radionuclide source terms used for performance-assessment analyses

    International Nuclear Information System (INIS)

    Barnard, R.W.

    1993-06-01

    Two aspects of the radionuclide source terms used for total-system performance assessment (TSPA) analyses have been reviewed. First, a detailed radionuclide inventory (i.e., one in which the reactor type, decay, and burnup are specified) is compared with the standard source-term inventory used in prior analyses. The latter assumes a fixed ratio of pressurized-water reactor (PWR) to boiling-water reactor (BWR) spent fuel, at specific amounts of burnup and at 10-year decay. TSPA analyses have been used to compare the simplified source term with the detailed one. The TSPA-91 analyses did not show a significant difference between the source terms. Second, the radionuclides used in source terms for TSPA aqueous-transport analyses have been reviewed to select ones that are representative of the entire inventory. It is recommended that two actinide decay chains be included (the 4n+2 ''uranium'' and 4n+3 ''actinium'' decay series), since these include several radionuclides that have potentially important release and dose characteristics. In addition, several fission products are recommended for the same reason. The choice of radionuclides should be influenced by other parameter assumptions, such as the solubility and retardation of the radionuclides

  1. Ageing study of the engineered safety features actuation system of the Loviisa NPP

    International Nuclear Information System (INIS)

    Simola, K.; Maskuniitty, M.

    1995-06-01

    An ageing study of the engineered safety features actuation system of the Loviisa nuclear power plant has been performed. The operating experience, including failure and maintenance histories of analog measuring devices, logics for safety signal formation and individual control electronics of pumps and valves, has been collected and analysed. The safety importance of system components has been studied with a fault tree analysis of a selected safety function. Based on the results of the analysis of operating experiences and the fault tree analysis, some components were selected for deeper analyses. According to the operating experience, the amount of failures in the Loviisa plant safety system has been low and no increasing trend in the failure history can yet be observed. Only a few failures had prohibited the propagation of the safety signal, mostly the failures have caused a false alarm. The failures reported have concerned mainly limit signal units, transmitters, and priority units. According to the fault tree analysis of one safety function, the most important components of this subsystem are individual control units and pulse/DC converters. Failure modes and effect analyses were performed for priority and individual control unit, limit signal unit and comparator and pulse/DC converter in order to identify the critical failure modes of these devices. (orig.) (15 refs., 26 figs., 9 tabs.)

  2. Recommended Tritium Oxide Deposition Velocity For Use In Savannah River Site Safety Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Lee, P. L.; Murphy, C. E.; Viner, B. J.; Hunter, C. H.

    2012-07-31

    This report documents the results of examining the deposition velocity of water to forests, the residence time of HTO in forests, and the relation between deposition velocity and residence time with specific consideration given to the topography and experimental work performed at SRS. A simple mechanistic model is used to obtain plausible deposition velocity and residence time values where experimental data are not available and recommendations are made for practical application in a safety analysis model.

  3. Installation and performance evaluation of an indigenous surface area analyser

    International Nuclear Information System (INIS)

    Pillai, S.N.; Solapurkar, M.N.; Venkatesan, V.; Prakash, A.; Khan, K.B.; Kumar, Arun; Prasad, R.S.

    2014-01-01

    An indigenously available surface area analyser was installed inside glove box and checked for its performance by analyzing uranium oxide and thorium oxide powders at RMD. The unit has been made ready for analysis of Plutonium oxide powders after incorporating several important features. (author)

  4. Determinants of safety outcomes and performance: A systematic literature review of research in four high-risk industries.

    Science.gov (United States)

    Cornelissen, Pieter A; Van Hoof, Joris J; De Jong, Menno D T

    2017-09-01

    In spite of increasing governmental and organizational efforts, organizations still struggle to improve the safety of their employees as evidenced by the yearly 2.3 million work-related deaths worldwide. Occupational safety research is scattered and inaccessible, especially for practitioners. Through systematically reviewing the safety literature, this study aims to provide a comprehensive overview of behavioral and circumstantial factors that endanger or support employee safety. A broad search on occupational safety literature using four online bibliographical databases yielded 27.527 articles. Through a systematic reviewing process 176 online articles were identified that met the inclusion criteria (e.g., original peer-reviewed research; conducted in selected high-risk industries; published between 1980-2016). Variables and the nature of their interrelationships (i.e., positive, negative, or nonsignificant) were extracted, and then grouped and classified through a process of bottom-up coding. The results indicate that safety outcomes and performance prevail as dependent research areas, dependent on variables related to management & colleagues, work(place) characteristics & circumstances, employee demographics, climate & culture, and external factors. Consensus was found for five variables related to safety outcomes and seven variables related to performance, while there is debate about 31 other relationships. Last, 21 variables related to safety outcomes and performance appear understudied. The majority of safety research has focused on addressing negative safety outcomes and performance through variables related to others within the organization, the work(place) itself, employee demographics, and-to a lesser extent-climate & culture and external factors. This systematic literature review provides both scientists and safety practitioners an overview of the (under)studied behavioral and circumstantial factors related to occupational safety behavior. Scientists

  5. Road safety performance indicators for the interurban road network.

    Science.gov (United States)

    Yannis, George; Weijermars, Wendy; Gitelman, Victoria; Vis, Martijn; Chaziris, Antonis; Papadimitriou, Eleonora; Azevedo, Carlos Lima

    2013-11-01

    Various road safety performance indicators (SPIs) have been proposed for different road safety research areas, mainly as regards driver behaviour (e.g. seat belt use, alcohol, drugs, etc.) and vehicles (e.g. passive safety); however, no SPIs for the road network and design have been developed. The objective of this research is the development of an SPI for the road network, to be used as a benchmark for cross-region comparisons. The developed SPI essentially makes a comparison of the existing road network to the theoretically required one, defined as one which meets some minimum requirements with respect to road safety. This paper presents a theoretical concept for the determination of this SPI as well as a translation of this theory into a practical method. Also, the method is applied in a number of pilot countries namely the Netherlands, Portugal, Greece and Israel. The results show that the SPI could be efficiently calculated in all countries, despite some differences in the data sources. In general, the calculated overall SPI scores were realistic and ranged from 81 to 94%, with the exception of Greece where the SPI was relatively lower (67%). However, the SPI should be considered as a first attempt to determine the safety level of the road network. The proposed method has some limitations and could be further improved. The paper presents directions for further research to further develop the SPI. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A human error taxonomy for analysing healthcare incident reports: assessing reporting culture and its effects on safety perfomance

    DEFF Research Database (Denmark)

    Itoh, Kenji; Omata, N.; Andersen, Henning Boje

    2009-01-01

    The present paper reports on a human error taxonomy system developed for healthcare risk management and on its application to evaluating safety performance and reporting culture. The taxonomy comprises dimensions for classifying errors, for performance-shaping factors, and for the maturity...

  7. Development of SAGE, A computer code for safety assessment analyses for Korean Low-Level Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Zhou, W.; Kozak, Matthew W.; Park, Joowan; Kim, Changlak; Kang, Chulhyung

    2002-01-01

    This paper describes a computer code, called SAGE (Safety Assessment Groundwater Evaluation) to be used for evaluation of the concept for low-level waste disposal in the Republic of Korea (ROK). The conceptual model in the code is focused on releases from a gradually degrading engineered barrier system to an underlying unsaturated zone, thence to a saturated groundwater zone. Doses can be calculated for several biosphere systems including drinking contaminated groundwater, and subsequent contamination of foods, rivers, lakes, or the ocean by that groundwater. The flexibility of the code will permit both generic analyses in support of design and site development activities, and straightforward modification to permit site-specific and design-specific safety assessments of a real facility as progress is made toward implementation of a disposal site. In addition, the code has been written to easily interface with more detailed codes for specific parts of the safety assessment. In this way, the code's capabilities can be significantly expanded as needed. The code has the capability to treat input parameters either deterministic ally or probabilistic ally. Parameter input is achieved through a user-friendly Graphical User Interface.

  8. Performance Evaluation and Analysis of Rural Drinking Water Safety Project——A Case Study in Jiangsu, China

    Science.gov (United States)

    Du, Xiaorong

    2017-04-01

    Water is the basic condition for human survival and development. As China is the most populous country, rural drinking water safety problems are most conspicuous. Therefore, the Chinese government keeps increasing investment and has built a large number of rural drinking water safety projects. Scientific evaluation of project performance is of great significance to promote the sustainable operation of the project and the sustainable development of rural economy. Previous studies mainly focus on the economic benefits of the project, while ignoring the fact that the rural drinking water safety project is quasi-public goods, which has economic, social and ecological benefits. This paper establishes a comprehensive evaluation model for rural drinking water safety performance, which adapts the rules of "5E" (economy, efficiency, effectiveness, equity and environment) as the value orientation, and selects a rural drinking water safety project as object in case study at K District, which is in the north of Jiangsu Province, China. The results shows: 1) the comprehensive performance of K project is in good condition; 2) The performance of every part shows that the scores of criteria "efficiency", "environment" and "effect" are higher than the mean performance, while the "economy" is slightly lower than the mean and the "equity" is the lowest. 3) The performance of indicator layer shows that: the planned completion rate of project, the reduction rate of project cost and the penetration rate of water-use population are significantly lower than other indicators. Based on the achievements of previous studies and the characteristics of rural drinking water safety project, this study integrates the evaluation dimensions of equity and environment, which can contribute to a more comprehensive and systematic assessment of project performance and provide empirical data for performance evaluation and management of rural drinking water safety project. Key Words: Rural drinking water

  9. Improvement of Managers’ Safety Knowledge through Scientifically Reasonable Interviews

    Directory of Open Access Journals (Sweden)

    Paas Õnnela

    2015-11-01

    Full Text Available The safety management system has been analysed in 16 Estonian enterprises using the MISHA method (Method for Industrial Safety and Health Activity Assessment. The factor analysis (principal component analysis and varimax with Kaiser analysis has been implemented for the interpretation of the results on safety performance at the enterprises implementing OHSAS 18001 and the ones that do not implement OHSAS 18001. The division of the safety areas into four parts for a better understanding of the safety level and its improvement possibilities has been proven through the statistical analysis. The connections between the questions aimed to clarify the safety level and performance at the enterprises have been set based on the statistics. New learning package “training through the questionnaires” has been worked out in the current paper for the top and middle-level managers to improve their safety knowledge, where the MISHA questionnaire has been taken as the basis.

  10. Guidance on the implementation of a risk based safety performance monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Sewell, R.T.; Kuritzky, A.S.; Khatib-Rahbar, M.

    1997-05-01

    The principal objective of the present study is to review and evaluate existing Performance Indicator (PI) monitoring programs, and to develop and demonstrate an overall PSA-based methodology and framework for the monitoring and use of risk-based PIs and SIs (Safety Indicator), that would enable: Identification of trends and patterns in safety performance at a specific plant and a population of plants; Assessment of the significance of the trends and patterns; Identification of precursors of accident sequences and safety reductions; Identification of the most critical functional areas of concern, especially as they relate to a defense-in-depth safety philosophy; Comparison of safety performance trends at a plant with those at comparable plants; Incorporation of the PIs and SIs into a risk- and performance-based decision process. To support the overall project objective, it is important that information needs and data collection procedures are clearly outlined. Of key significance in this regard is the premise that a performance monitoring system should not be burdened by an excessive number of low-level PIs that may have only a peripheral relationship to safety. Other supporting objectives of the study include: To identify and discuss other issues pertaining to the practical implementation of a safety performance monitoring system (outlining the databases and algorithms needed); and to demonstrate implementation of the preliminary guidance for monitoring and use of the selected set of PIs and SIs, within the proposed framework, via application to the operating history of a NPP having a PSA and readily available event data

  11. Benchmarking road safety performance by grouping local territories : a study in The Netherlands.

    NARCIS (Netherlands)

    Aarts, L.T. & Houwing, S.

    2015-01-01

    The method of benchmarking provides an opportunity to learn from better performing territories to improve the effectiveness and efficiency of activities in a particular field of interest. Such a field of interest could be road safety. Road safety benchmarking can include several indicators, ranging

  12. Efficacy and Safety Extrapolation Analyses for Atomoxetine in Young Children with Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Upadhyaya, Himanshu; Kratochvil, Christopher; Ghuman, Jaswinder; Camporeale, Angelo; Lipsius, Sarah; D'Souza, Deborah; Tanaka, Yoko

    2015-12-01

    This extrapolation analysis qualitatively compared the efficacy and safety profile of atomoxetine from Lilly clinical trial data in 6-7-year-old patients with attention-deficit/hyperactivity disorder (ADHD) with that of published literature in 4-5-year-old patients with ADHD (two open-label [4-5-year-old patients] and one placebo-controlled study [5-year-old patients]). The main efficacy analyses included placebo-controlled Lilly data and the placebo-controlled external study (5-year-old patients) data. The primary efficacy variables used in these studies were the ADHD Rating Scale-IV Parent Version, Investigator Administered (ADHD-RS-IV-Parent:Inv) total score, or the Swanson, Nolan and Pelham (SNAP-IV) scale score. Safety analyses included treatment-emergent adverse events (TEAEs) and vital signs. Descriptive statistics (means, percentages) are presented. Acute atomoxetine treatment improved core ADHD symptoms in both 6-7-year-old patients (n=565) and 5-year-old patients (n=37) (treatment effect: -10.16 and -7.42). In an analysis of placebo-controlled groups, the mean duration of exposure to atomoxetine was ∼ 7 weeks for 6-7-year-old patients and 9 weeks for 5-year-old patients. Decreased appetite was the most common TEAE in atomoxetine-treated patients. The TEAEs observed at a higher rate in 5-year-old versus 6-7-year-old patients were irritability (36.8% vs. 3.6%) and other mood-related events (6.9% each vs. atomoxetine may improve ADHD symptoms, but possibly to a lesser extent than in older children, with some adverse events occurring at a higher rate in 5-year-old patients.

  13. NASA's Aviation Safety and Modeling Project

    Science.gov (United States)

    Chidester, Thomas R.; Statler, Irving C.

    2006-01-01

    The Aviation Safety Monitoring and Modeling (ASMM) Project of NASA's Aviation Safety program is cultivating sources of data and developing automated computer hardware and software to facilitate efficient, comprehensive, and accurate analyses of the data collected from large, heterogeneous databases throughout the national aviation system. The ASMM addresses the need to provide means for increasing safety by enabling the identification and correcting of predisposing conditions that could lead to accidents or to incidents that pose aviation risks. A major component of the ASMM Project is the Aviation Performance Measuring System (APMS), which is developing the next generation of software tools for analyzing and interpreting flight data.

  14. Contractors’ Attitude towards Enhancing Safety Performance: Case Study on Construction Firms in Penang

    Directory of Open Access Journals (Sweden)

    Ulang N. Md

    2014-01-01

    Full Text Available A qualitative study was conducted to investigate the contractors’ attitude towards enhancing the safety performance in construction site. Despite the fact that there are many safety initiatives established by the government, the rates of accidents are still in a critically high condition. Thus the purpose of this research is to study the contractors’ attitude towards enhancing the implementation of safety management system in construction site in order to increase the safety awareness of construction practitioners in construction site and improve the safety condition of construction sites. This study is conducted through oral interviews with the construction practitioners, and visual inspection of construction sites. The attitudes of contractors are evaluated from 3 aspects: Contractors’ efforts in implement and enforce the safety rules, Contractors efforts in overcoming the rate of accidents, and Reasons given by the contractors for not implement safety law.

  15. Operational safety evaluation for minor reactor accidents

    International Nuclear Information System (INIS)

    Wang, O.S.

    1981-01-01

    The purpose of this paper is to address a concern of applying conservatism in analysing minor reactor incidents. A so-called ''conservative'' safety analysis may exaggerate the system responses and result in a reactor scram tripped by the reactor protective system (RPS). In reality, a minor incident may lead the reactor to a new thermal hydraulic steady-state without scram, and the mitigation or termination of the incident may entirely depend on operator actions. An example on a small steamline break evaluation for a pressurized water reactor recently investigated by the staff at the Washington Public Power Supply System is presented to illustrate this point. A safety evaluation using mainly the safety-related systems to be consistent with the conservative assumptions used in the Safety Analysis Report was conducted. For comparison, a realistic analysis was also performed using both the safety- and control-related systems. The analyses were performed using the RETRAN plant simulation computer code. The ''conservative'' safety analysis predicts that the incident can be turned over by the RPS scram trips without operator intervention. However, the realistic analysis concludes that the reactor will reach a new steady-state at a different plant thermal hydraulic condition. As a result, the termination of the incident at this stage depends entirely on proper operator action. On the basis of this investigation it is concluded that, for minor incidents, ''conservative'' assumptions are not necessary, sometimes not justifiable. A realistic investigation from the operational safety point of view is more appropriate. It is essential to highlight the key transient indications for specific incident recognition in the operator training program

  16. Post Chernobyl safety review at Ontario Hydro

    International Nuclear Information System (INIS)

    Frescura, G.M.; Luxat, J.C.; Jobe, C.

    1991-01-01

    It is generally recognized that the Chernobyl Unit 4 accident did not reveal any new phenomena which had not been previously identified in safety analyses. However, the accident provided a tragic reminder of the potential consequences of reactivity initiated accidents (RIAs) and stimulated nuclear plant operators to review their safety analyses, operating procedures and various operational and management aspects of nuclear safety. Concerning Ontario Hydro, the review of the accident performed by the corporate body responsible for nuclear safety policy and by the Atomic Energy Control Board (the Regulatory Body) led to a number of specific recommendations for further action by various design, analysis and operation groups. These recommendations are very comprehensive in terms of reactor safety issues considered. The general conclusion of the various studies carried out in response to the recommendations, is that the CANDU safety design and the procedures in place to identify and mitigate the consequences of accidents are adequate. Improvements to the reliability of the Pickering NGSA shutdown system and to some aspects of safety management and staff training, although not essential, are possible and would be pursued. In support of this conclusion, the paper describes some of the studies that were carried out and discusses the findings. The first part of the paper deals with safety design aspects. While the second is concerned with operational aspects

  17. TVSA-T fuel assembly for 'Temelin' NPP. Main results of design and safety analyses. Trends of development

    International Nuclear Information System (INIS)

    Samojlov, O.B.; Kajdalov, V.B.; Falkov, A.A.; Bolnov, V.A.; Morozkin, O.N.; Molchanov, V.L.; Ugryumov, A.V.

    2010-01-01

    TVSA is a fuel assembly with rigid skeleton formed by 6 angle pieces and SG is successfully operated at 17 VVER-1000 power units of Kalinin NPP, as well as at Ukrainian and Bulgarian NPPs. Based on a contract for fuel supply to the Temelin NPP, the TVSA-T fuel assembly was developed, building on proven solutions confirmed by operation of TVSA modifications during 4-6 years and by the results of post-irradiation examination. The TVSA-T design includes combined spacer grids (SG+MG) and by fuel column elongation by 150 mm. A set of analyses and experiments was performed to validate the design, including thermal hydraulic tests, validation of critical heat flux correlation for TVSA-T, integrated mechanical, vibration and lifetime tests. A licence to use the fuel has been granted by the Czech State Office for Nuclear Safety. The TVSA-T core is currently in operation at the Temelin-1 reactor unit. The presentation is concluded as follows: TVSA-T fuel assembly for Temelin has been validated. The TVSA-T design is based on approved technical decisions and meets the current requirements for lifetime, operational maneuverability and safety. The results of post-irradiation examination of TVSA-T operated at the Kalinin-1 unit for 4 years confirm the assembly operability, skeleton stiffness, geometric stability and normal fuel rod cladding condition. The properties of the TVSA fuel with MG allow the core power to be increased up to 3300 MW to match the envisaged future VVER (MIR-1200) design, providing allowable fuel rod power FΔh =1.63 (to implement effective fuel cycles). (P.A.)

  18. Safety and protection for large-scale superconducting magnets. FY'82 report

    International Nuclear Information System (INIS)

    Thome, R.J.; Pillsbury, R.D. Jr.; Iwasa, Y.; Mann, W.R.; Langton, W.G.

    1982-10-01

    The FY82 effort in safety and protection focused on tests and analyses in the following areas: (a) short circuit performance in the 30 T hybrid magnet, (b) arc voltage/current characteristics in simulated windings, (c) vapor-cooled lead burnout, (d) acoustic emission, and (e) joint MESA/MIT safety activity

  19. Chernobyl and the safety of nuclear reactors in OECD countries

    International Nuclear Information System (INIS)

    1987-01-01

    This report assesses the possible bearing of the Chernobyl accident on the safety of nuclear reactors in OECD countries. It discusses analyses of the accident performed in several countries as well as improvements to the safety of RBMK reactors announced by the USSR. Several remaining questions are identified. The report compares RBMK safety features with those of commercial reactors in OECD countries and evaluates a number of issues raised by the Chernobyl accident

  20. Status of Nuclear Safety evaluation in China

    International Nuclear Information System (INIS)

    Tian Jiashu

    1999-01-01

    Chinese nuclear safety management and control follows international practice, the regulations are mainly from IAEA with the Chinese condition. The regulatory body is National Nuclear Safety Administration (NNSA). The nuclear safety management, surveillance, safety review and evaluation are guided by NNSA with technical support by several units. Beijing Review Center of Nuclear Safety is one of these units, which was founded in 1987 within Beijing Institute of nuclear Engineering (BINE), co-directed by NNSA and BINE, it is the first technical support team to NNSA. Most of the safety reviews and evaluations of Chinese nuclear installations has been finished by this unit. It is described briefly in this paper that the NNSA's main function and organization, regulations on the nuclear safety, procedure of application and issuing of license, the main activities performed by Beijing Review Center of Nuclear Safety, the situation of severe accident analyses in China, etc. (author)

  1. Identifying the most significant indicators of the total road safety performance index.

    Science.gov (United States)

    Tešić, Milan; Hermans, Elke; Lipovac, Krsto; Pešić, Dalibor

    2018-04-01

    The review of the national and international literature dealing with the assessment of the road safety level has shown great efforts of the authors who tried to define the methodology for calculating the composite road safety index on a territory (region, state, etc.). The procedure for obtaining a road safety composite index of an area has been largely harmonized. The question that has not been fully resolved yet concerns the selection of indicators. There is a wide range of road safety indicators used to show a road safety situation on a territory. Road safety performance index (RSPI) obtained on the basis of a larger number of safety performance indicators (SPIs) enable decision makers to more precisely define the earlier goal- oriented actions. However, recording a broader comprehensive set of SPIs helps identify the strengths and weaknesses of a country's road safety system. Providing high quality national and international databases that would include comparable SPIs seems to be difficult since a larger number of countries dispose of a small number of identical indicators available for use. Therefore, there is a need for calculating a road safety performance index with a limited number of indicators (RSPI ln n ) which will provide a comparison of a sufficient quality, of as many countries as possible. The application of the Data Envelopment Analysis (DEA) method and correlative analysis has helped to check if the RSPI ln n is likely to be of sufficient quality. A strong correlation between the RSPI ln n and the RSPI has been identified using the proposed methodology. Based on this, the most contributing indicators and methodologies for gradual monitoring of SPIs, have been defined for each country analyzed. The indicator monitoring phases in the analyzed countries have been defined in the following way: Phase 1- the indicators relating to alcohol, speed and protective systems; Phase 2- the indicators relating to roads and Phase 3- the indicators relating to

  2. LOCA, LOFA and LOVA analyses pertaining to NET/ITER safety design guidance

    International Nuclear Information System (INIS)

    Ebert, E.; Raeder, J.

    1991-01-01

    The analyses presented pertain to loss of coolant accidents (LOCA), loss of coolant flow accidents (LOFA) and loss of vacuum accidents (LOVA). These types of accidents may jeopardise components and plasma vessel integrity and cause radioactivity mobilisation. The analyses reviewed have been performed under the assumption that the plasma facing components are protected by a carbon based armour. Accidental temperatures and pressure transients are quantified, the possibility of reaction products combustion is investigated and worst case accidental public doses are assessed. On this basis, design recommendations are given and design features such as low plasma facing components armour temperatures (on almost the entire surface) and inert gas adjacent to the vacuum vessel have been implemented. (orig.)

  3. Status of science and technology with respect of preparation and evaluation of accident analyses and the use of analysis simulators

    International Nuclear Information System (INIS)

    Pointner, Winfried; Cuesta Morales, Alejandra; Draeger, Peer; Hartung, Juergen; Jakubowski, Zygmunt; Meyer, Gerhard; Palazzo, Simone; Moner, Guim Pallas; Perin, Yann; Pasichnyk, Ihor

    2014-07-01

    The scope of the work was to elaborate the prerequisites for short term accident analyses including recommendations for the application of new methodologies and computational procedures and technical aspects of safety evaluation. The following work packages were performed: Knowledge base for best estimate accident analyses; analytical studies on the PWR plant behavior in case of multiple safety system failures; extension and maintenance of the data base for plant specific analysis simulators.

  4. Risk-informed, performance-based safety-security interface

    International Nuclear Information System (INIS)

    Mrowca, B.; Eltawila, F.

    2012-01-01

    Safety-security interface is a term that is used as part of the commercial nuclear power security framework to promote coordination of the many potentially adverse interactions between plant security and plant safety. Its object is to prevent the compromise of either. It is also used to describe the concept of building security into a plant's design similar to the long standing practices used for safety therefore reducing the complexity of the operational security while maintaining or enhancing overall security. With this in mind, the concept of safety-security interface, when fully implemented, can influence a plant's design, operation and maintenance. It brings the approach use for plant security to one that is similar to that used for safety. Also, as with safety, the application of risk-informed techniques to fully implement and integrate safety and security is important. Just as designers and operators have applied these techniques to enhance and focus safety, these same techniques can be applied to security to not only enhance and focus the security but also to aid in the implementation of effective techniques to address the safety-security interfaces. Implementing this safety-security concept early within the design process can prevent or reduce security vulnerabilities through low cost solutions that often become difficult and expensive to retrofit later in the design and/or post construction period. These security considerations address many of the same issues as safety in ensuring that the response of equipment and plant personnel are adequate. That is, both safety and security are focused on reaching safe shutdown and preventing radiological release. However, the initiation of challenges and the progression of actions in response these challenges and even the definitions of safe shutdown can be considerably different. This paper explores the techniques and limitations that are employed to fully implement a risk-informed, safety-security interface

  5. Performance and safety design of the advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Berglund, R.C.; Magee, P.M.; Boardman, C.E.; Gyorey, G.L.

    1991-01-01

    The Advanced Liquid Metal Reactor (ALMR) program led by General Electric is developing, under U.S. Department of Energy sponsorship, a conceptual design for an advanced sodium-cooled liquid metal reactor plant. This design is intended to improve the already excellent level of plant safety achieved by the nuclear power industry while at the same time providing significant reductions in plant construction and operating costs. In this paper, the plant design and performance are reviewed, with emphasis on the ALMR's unique passive design safety features and its capability to utilize as fuel the actinides in LWR spent fuel

  6. The Tiotropium Safety and Performance in Respimat® (TIOSPIR®) Trial

    DEFF Research Database (Denmark)

    Anzueto, Antonio; Wise, Robert; Calverley, Peter

    2015-01-01

    ). The rate of FEV1 decline in GOLD I + II patients was greater than in GOLD III + IV patients (46 vs. 23 mL/year); as well as in current versus ex-smokers, in patients receiving combination therapies at baseline versus not, and in those experiencing an exacerbation during the study versus not. CONCLUSIONS......BACKGROUND: Tiotropium Safety and Performance in Respimat® (TIOSPIR®) compared the safety and efficacy of tiotropium Respimat® and tiotropium HandiHaler® in patients with chronic obstructive pulmonary disease (COPD). A prespecified spirometry substudy compared the lung function efficacy between...

  7. Food safety management systems performance in the lamb production chain

    NARCIS (Netherlands)

    Oses, S.M.; Luning, P.A.; Jacxsens, L.; Jaime, I.; Rovira, J.

    2012-01-01

    This study describes a performance measurement of implemented food safety management system (FSMS) along the lamb chain using an FSMS-diagnostic instrument (FSMS-DI) and a Microbiological Assessment Scheme (MAS). Three slaughterhouses, 1 processing plant and 5 butcher shops were evaluated. All the

  8. W-1 Sodium Loop Safety Facility experiment centerline fuel thermocouple performance

    International Nuclear Information System (INIS)

    Meyers, S.C.; Henderson, J.M.

    1980-05-01

    The W-1 Sodium Loop Safety Facility (SLSF) experiment is the fifth in a series of experiments sponsored by the Department of Energy (DOE) as part of the National Fast Breeder Reactor (FBR) Safety Assurance Program. The experiments are being conducted under the direction of Argonne National Laboratory (ANL) and Hanford Engineering Development Laboratory (HEDL). The irradiation phase of the W-1 SLSF experiment was conducted between May 27 and July 20, 1979, and terminated with incipient fuel pin cladding failure during the final boiling transient. Experimental hardware and facility performed as designed, allowing completion of all planned tests and test objectives. This paper focuses on high temperature in-fuel thermocouples and discusses their development, fabrication, and performance in the W-1 experiment

  9. Activation and Shielding Analyses in Support of the GUINEVERE Project

    International Nuclear Information System (INIS)

    Serikov, A.; Fischer, U.; Mercatali, L.; Baeten, P.; Vittiglio, G.

    2008-01-01

    The GUINEVERE facility (Generator of Uninterrupted Intense Neutrons at the lead Venus Reactor) must satisfy the nuclear safety criteria required by the Belgian safety authority to be licensed. The radiation dose and activation analyses for the nuclear safety assessment of the GUINEVERE project were performed at FZK. The concerted efforts of several European institutions were concentrated on the development and construction of a subcritical fast lead core based on the Venus water moderated reactor at the SCK-CEN site in Mol, Belgium. A Monte Carlo (MC) MCNP5 model was developed in accordance with the current design of the GUINEVERE fast lead core. The analytical MC method does not work for shielding analysis of the GUINEVERE building because of the large size of the rooms and thick concrete walls and floors. MC variance reduction techniques, such as particles splitting, Russian roulette, and point detectors were therefore applied. The JEFF-3.1 nuclear data library was used for radiation transport calculations. The activation analyses for the lead core and building materials were performed with the FISPACT-2005 inventory code and the EAF-2005 library. The neutron and photon dose rate maps were produced using MCNP track-length estimations, point detectors, and a mesh tally superimposed over the GUINEVERE geometry. The effects of D-D and D-T fusion neutron sources were estimated. (authors)

  10. Activation and Shielding Analyses in Support of the GUINEVERE Project

    Energy Technology Data Exchange (ETDEWEB)

    Serikov, A.; Fischer, U.; Mercatali, L. [Association FZK-EURATOM, KIT, Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Baeten, P.; Vittiglio, G. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2008-07-01

    The GUINEVERE facility (Generator of Uninterrupted Intense Neutrons at the lead Venus Reactor) must satisfy the nuclear safety criteria required by the Belgian safety authority to be licensed. The radiation dose and activation analyses for the nuclear safety assessment of the GUINEVERE project were performed at FZK. The concerted efforts of several European institutions were concentrated on the development and construction of a subcritical fast lead core based on the Venus water moderated reactor at the SCK-CEN site in Mol, Belgium. A Monte Carlo (MC) MCNP5 model was developed in accordance with the current design of the GUINEVERE fast lead core. The analytical MC method does not work for shielding analysis of the GUINEVERE building because of the large size of the rooms and thick concrete walls and floors. MC variance reduction techniques, such as particles splitting, Russian roulette, and point detectors were therefore applied. The JEFF-3.1 nuclear data library was used for radiation transport calculations. The activation analyses for the lead core and building materials were performed with the FISPACT-2005 inventory code and the EAF-2005 library. The neutron and photon dose rate maps were produced using MCNP track-length estimations, point detectors, and a mesh tally superimposed over the GUINEVERE geometry. The effects of D-D and D-T fusion neutron sources were estimated. (authors)

  11. Study on safety performance evaluation system of nuclear engineering construction units based on AHP

    International Nuclear Information System (INIS)

    Xu Yulin; Sun Jian; Shi Xiaofan

    2012-01-01

    As a very effectual management mean, the performance management has extensively used by many companies of China for staff assessment. The author explored the establishment of the 'Safety Performance Evaluation System' by finding out the similarities in operation between a company and a team of nuclear power projects. Then the author analyzed the principles of the performance management and good practices and summarized safety management experiences. The weight of the system index by using AHP method was calculated in this article. (authors)

  12. Reactor safety research and safety technology. Pt. 2

    International Nuclear Information System (INIS)

    Theenhaus, R.; Wolters, J.

    1987-01-01

    The state of HTR safety research work reached permits a comprehensive and reliable answer to be given to questions which have been raised by the reactor accident at Chernobyl, regarding HTR safety. Together with the probability safety analyses, the way to a safety concept suitable for an HTR is cleared; instructions are given for design optimisation with regard to safety technique and economy. The consequences of a graphite fire, the neutron physics design and the consequenes of the lack of a safety containment are briefly described. (DG) [de

  13. Safety barriers on oil and gas platforms. Means to prevent hydrocarbon releases

    Energy Technology Data Exchange (ETDEWEB)

    Sklet, Snorre

    2005-12-15

    The main objective of the PhD project has been to develop concepts and methods that can be used to define, illustrate, analyse, and improve safety barriers in the operational phase of offshore oil and gas production platforms. The main contributions of this thesis are; Clarification of the term safety barrier with respect to definitions, classification, and relevant attributes for analysis of barrier performance Development and discussion of a representative set of hydrocarbon release scenarios Development and testing of a new method, BORA-Release, for qualitative and quantitative risk analysis of hydrocarbon releases Safety barriers are defined as physical and/or non-physical means planned to prevent, control, or mitigate undesired events or accidents. The means may range from a single technical unit or human actions, to a complex socio-technical system. It is useful to distinguish between barrier functions and barrier systems. Barrier functions describe the purpose of safety barriers or what the safety barriers shall do in order to prevent, control, or mitigate undesired events or accidents. Barrier systems describe how a barrier function is realized or executed. If the barrier system is functioning, the barrier function is performed. If a barrier function is performed successfully, it should have a direct and significant effect on the occurrence and/or consequences of an undesired event or accident. It is recommended to address the following attributes to characterize the performance of safety barriers; a) functionality/effectiveness, b) reliability/ availability, c) response time, d) robustness, and e) triggering event or condition. For some types of barriers, not all the attributes are relevant or necessary in order to describe the barrier performance. The presented hydrocarbon release scenarios include initiating events, barrier functions introduced to prevent hydrocarbon releases, and barrier systems realizing the barrier functions. Both technical and human

  14. Evacuation routes performances and fire safety of buildings

    Directory of Open Access Journals (Sweden)

    Laban Mirjana Đ.

    2015-01-01

    Full Text Available Residential buildings, public and business facilities with large number of occupants are particularly exposed to the risk of event with catastrophic consequences, especially in case of fire. Evacuation routes must be separated fire compartments with surfaces made of non-combustible materials. Safe evacuation of building occupants in case of fire is a crucial requirement for the preservation of human life in building. In our engineering practice, calculation model is usually applied in order to determine the time required for evacuation (SRPS TP 21. However, evacuation simulation models are more present in research papers, contributing to better assessment of flow of evacuation in the real time. These models could provide an efficient way of testing the safety of a building in the face of fire and indicate critical points at the evacuation paths. Computer models enable the development and analysis of multiple various scenarios during a fire event, contributing to defining the measures for improving the safety of the building in case of fire. This paper analyses the fulfilment of technical requirements for the safe evacuation and proposes improvement measures based on a comparative analysis of the time required for occupants' evacuation from the building (Department of Civil Engineering and Geodesy in Novi Sad, obtained by calculation model and by using evacuation simulation software.

  15. IT-CARES: an interactive tool for case-crossover analyses of electronic medical records for patient safety.

    Science.gov (United States)

    Caron, Alexandre; Chazard, Emmanuel; Muller, Joris; Perichon, Renaud; Ferret, Laurie; Koutkias, Vassilis; Beuscart, Régis; Beuscart, Jean-Baptiste; Ficheur, Grégoire

    2017-03-01

    The significant risk of adverse events following medical procedures supports a clinical epidemiological approach based on the analyses of collections of electronic medical records. Data analytical tools might help clinical epidemiologists develop more appropriate case-crossover designs for monitoring patient safety. To develop and assess the methodological quality of an interactive tool for use by clinical epidemiologists to systematically design case-crossover analyses of large electronic medical records databases. We developed IT-CARES, an analytical tool implementing case-crossover design, to explore the association between exposures and outcomes. The exposures and outcomes are defined by clinical epidemiologists via lists of codes entered via a user interface screen. We tested IT-CARES on data from the French national inpatient stay database, which documents diagnoses and medical procedures for 170 million inpatient stays between 2007 and 2013. We compared the results of our analysis with reference data from the literature on thromboembolic risk after delivery and bleeding risk after total hip replacement. IT-CARES provides a user interface with 3 columns: (i) the outcome criteria in the left-hand column, (ii) the exposure criteria in the right-hand column, and (iii) the estimated risk (odds ratios, presented in both graphical and tabular formats) in the middle column. The estimated odds ratios were consistent with the reference literature data. IT-CARES may enhance patient safety by facilitating clinical epidemiological studies of adverse events following medical procedures. The tool's usability must be evaluated and improved in further research. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  16. Safety and performance indicators for the assessment of long-term safety of deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Hugi, M.; Schneider, J.W.; Dorp, F. van; Zuidema, P.

    2005-01-01

    The evaluation of the ability to isolate radioactive waste and the assessment of the long-term safety of a deep geological repository is usually done in terms of the calculated dose and/or risk for an average individual of the population which is potentially most affected by the potential impacts of the repository. At present, various countries and international organisations are developing so-called complementary indicators to supplement such calculations. These indicators are called ''safety indicators'' if they refer to the safety of the whole repository system; if they address the isolation capability of individual system components or the whole system from a more technical perspective, they are called ''performance indicators''. The need for complementary indicators follows from the long time frames which characterise the safety assessment of a geological repository, and the corresponding uncertainty of the calculated radiation dose. The main reason for these uncertainties is associated with the uncertain long-term prognosis of the surface environment and the related human behaviour. (orig.)

  17. ANALYSING PERFORMANCE ASSESSMENT IN PUBLIC SERVICES: HOW USEFUL IS THE CONCEPT OF A PERFORMANCE REGIME?

    Science.gov (United States)

    Martin, Steve; Nutley, Sandra; Downe, James; Grace, Clive

    2016-03-01

    Approaches to performance assessment have been described as 'performance regimes', but there has been little analysis of what is meant by this concept and whether it has any real value. We draw on four perspectives on regimes - 'institutions and instruments', 'risk regulation regimes', 'internal logics and effects' and 'analytics of government' - to explore how the concept of a multi-dimensional regime can be applied to performance assessment in public services. We conclude that the concept is valuable. It helps to frame comparative and longitudinal analyses of approaches to performance assessment and draws attention to the ways in which public service performance regimes operate at different levels, how they change over time and what drives their development. Areas for future research include analysis of the impacts of performance regimes and interactions between their visible features (such as inspections, performance indicators and star ratings) and the veiled rationalities which underpin them.

  18. Modeling the Relationship between Safety Climate and Safety Performance in a Developing Construction Industry: A Cross-Cultural Validation Study.

    Science.gov (United States)

    Zahoor, Hafiz; Chan, Albert P C; Utama, Wahyudi P; Gao, Ran; Zafar, Irfan

    2017-03-28

    This study attempts to validate a safety performance (SP) measurement model in the cross-cultural setting of a developing country. In addition, it highlights the variations in investigating the relationship between safety climate (SC) factors and SP indicators. The data were collected from forty under-construction multi-storey building projects in Pakistan. Based on the results of exploratory factor analysis, a SP measurement model was hypothesized. It was tested and validated by conducting confirmatory factor analysis on calibration and validation sub-samples respectively. The study confirmed the significant positive impact of SC on safety compliance and safety participation , and negative impact on number of self-reported accidents/injuries . However, number of near-misses could not be retained in the final SP model because it attained a lower standardized path coefficient value. Moreover, instead of safety participation , safety compliance established a stronger impact on SP. The study uncovered safety enforcement and promotion as a novel SC factor, whereas safety rules and work practices was identified as the most neglected factor. The study contributed to the body of knowledge by unveiling the deviations in existing dimensions of SC and SP. The refined model is expected to concisely measure the SP in the Pakistani construction industry, however, caution must be exercised while generalizing the study results to other developing countries.

  19. Fuel pin transient behavior technology applied to safety analyses. Presentation to AEC Regulatory Staff 4th Regulatory Briefing on safety technology, Washington, D.C., November 19--20, 1974

    International Nuclear Information System (INIS)

    1974-11-01

    Information is presented concerning LMFBR fuel pin performance requirements and evaluation; fuels behavior codes with safety interfaces; performance evaluations; ex-reactor materials and simulation tests; models for fuel pin failure; and summary of continuing fuels technology tasks. (DCC)

  20. Thermal hydraulic analyses of LVR-15 research reactor with IRT-M fuel

    International Nuclear Information System (INIS)

    Macek, J.

    1997-01-01

    The LVR-15 pool-type research reactor has been in operation at the Nuclear Research Institute at Rez since 1955. Following a number of reconstructions and redesigning, the current reactor power is 15 MW. Thermal hydraulic analyses to demonstrate that the core heat will be safely removed during operation as well as in accident situations were performed based on methodology which had been specifically developed for the LVR-15 research reactor. This methodology was applied to stationary thermal hydraulic computations, as well as to transients, particularly with reactivity failure and loss of circulation pumps emergencies. The applied methodology and the core configuration as used in the Safety Report are described. The initial and boundary conditions are then considered and the summary of the calculated failures with regard to the defined safety limits is presented. The results of the core configuration analyses are also discussed with respect to meeting the safety limits and to the applicability of the methodology to this purpose

  1. FY01 Supplemental Science and Performance Analysis: Volume 1, Scientific Bases and Analyses

    International Nuclear Information System (INIS)

    Bodvarsson, G.S.; Dobson, David

    2001-01-01

    The U.S. Department of Energy (DOE) is considering the possible recommendation of a site at Yucca Mountain, Nevada, for development as a geologic repository for the disposal of high-level radioactive waste and spent nuclear fuel. To facilitate public review and comment, in May 2001 the DOE released the Yucca Mountain Science and Engineering Report (S and ER) (DOE 2001 [DIRS 153849]), which presents technical information supporting the consideration of the possible site recommendation. The report summarizes the results of more than 20 years of scientific and engineering studies. A decision to recommend the site has not been made: the DOE has provided the S and ER and its supporting documents as an aid to the public in formulating comments on the possible recommendation. When the S and ER (DOE 2001 [DIRS 153849]) was released, the DOE acknowledged that technical and scientific analyses of the site were ongoing. Therefore, the DOE noted in the Federal Register Notice accompanying the report (66 FR 23013 [DIRS 155009], p. 2) that additional technical information would be released before the dates, locations, and times for public hearings on the possible recommendation were announced. This information includes: (1) the results of additional technical studies of a potential repository at Yucca Mountain, contained in this FY01 Supplemental Science and Performance Analyses: Vol. 1, Scientific Bases and Analyses; and FY01 Supplemental Science and Performance Analyses: Vol. 2, Performance Analyses (McNeish 2001 [DIRS 155023]) (collectively referred to as the SSPA) and (2) a preliminary evaluation of the Yucca Mountain site's preclosure and postclosure performance against the DOE's proposed site suitability guidelines (10 CFR Part 963 [64 FR 67054 [DIRS 124754

  2. FY01 Supplemental Science and Performance Analysis: Volume 1,Scientific Bases and Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Bodvarsson, G.S.; Dobson, David

    2001-05-30

    The U.S. Department of Energy (DOE) is considering the possible recommendation of a site at Yucca Mountain, Nevada, for development as a geologic repository for the disposal of high-level radioactive waste and spent nuclear fuel. To facilitate public review and comment, in May 2001 the DOE released the Yucca Mountain Science and Engineering Report (S&ER) (DOE 2001 [DIRS 153849]), which presents technical information supporting the consideration of the possible site recommendation. The report summarizes the results of more than 20 years of scientific and engineering studies. A decision to recommend the site has not been made: the DOE has provided the S&ER and its supporting documents as an aid to the public in formulating comments on the possible recommendation. When the S&ER (DOE 2001 [DIRS 153849]) was released, the DOE acknowledged that technical and scientific analyses of the site were ongoing. Therefore, the DOE noted in the Federal Register Notice accompanying the report (66 FR 23013 [DIRS 155009], p. 2) that additional technical information would be released before the dates, locations, and times for public hearings on the possible recommendation were announced. This information includes: (1) the results of additional technical studies of a potential repository at Yucca Mountain, contained in this FY01 Supplemental Science and Performance Analyses: Vol. 1, Scientific Bases and Analyses; and FY01 Supplemental Science and Performance Analyses: Vol. 2, Performance Analyses (McNeish 2001 [DIRS 155023]) (collectively referred to as the SSPA) and (2) a preliminary evaluation of the Yucca Mountain site's preclosure and postclosure performance against the DOE's proposed site suitability guidelines (10 CFR Part 963 [64 FR 67054 [DIRS 124754

  3. The effect of Health, Safety and Environment Management System (HSE-MS on the improvement of safety performance indices in Urea and Ammonia Kermanshah Petrochemical Company

    Directory of Open Access Journals (Sweden)

    M. S. Poursoleiman

    2015-09-01

    .Conclusion: The implementation of Health, Safety and the Environment Management System caused a reduction in accidents and its consequences and most of the safety performance indices in the entire process cycle of Kermanshah Petrochemical Company. Overall, safety condition has been improved considerably.

  4. Safety Analysis Report for the KRI-ALM Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, D. H.; Park, H. Y.; Kim, J. B.; Kim, H. J.; Seo, K. S

    2005-11-15

    Safety evaluation for the KRI-ALM transport package to transport safely I-123, which is produced at Cyclotron in KIRAMS, was carried out. In the safety analyses results for the KRI-ALM transport package, all the maximum stresses as well as the maximum temperature of the surface are lower than their allowable limits. The safety tests were performed by using the test model of the KRI-ALM transport package. Leak Test was performed after drop test, the measured leakage rate was lower than allowable leakage rate. It is revealed that the containment integrity of the KRI-ALM transport package is maintained. Therefore, it shows that the integrity of the KRI-ALM transport package is well maintained.

  5. Performance and safety to NAVSEA instruction 9310.1A of lithium-thionyl chloride reserve batteries

    Science.gov (United States)

    Hall, J. C.

    1984-09-01

    The design, performance and safety of a fully engineered, selfcontained Li/SOCl2 battery as the power source for underwater applications. In addition to meeting the performance standards of the end user this battery is successfully tested under the rigorous safety conditions of NAVSEA Instruction 9310.1A for use on land, aircraft and surface ships.

  6. Performance of neutron kinetics models for ADS transient analyses

    International Nuclear Information System (INIS)

    Rineiski, A.; Maschek, W.; Rimpault, G.

    2002-01-01

    Within the framework of the SIMMER code development, neutron kinetics models for simulating transients and hypothetical accidents in advanced reactor systems, in particular in Accelerator Driven Systems (ADSs), have been developed at FZK/IKET in cooperation with CE Cadarache. SIMMER is a fluid-dynamics/thermal-hydraulics code, coupled with a structure model and a space-, time- and energy-dependent neutronics module for analyzing transients and accidents. The advanced kinetics models have also been implemented into KIN3D, a module of the VARIANT/TGV code (stand-alone neutron kinetics) for broadening application and for testing and benchmarking. In the paper, a short review of the SIMMER and KIN3D neutron kinetics models is given. Some typical transients related to ADS perturbations are analyzed. The general models of SIMMER and KIN3D are compared with more simple techniques developed in the context of this work to get a better understanding of the specifics of transients in subcritical systems and to estimate the performance of different kinetics options. These comparisons may also help in elaborating new kinetics models and extending existing computation tools for ADS transient analyses. The traditional point-kinetics model may give rather inaccurate transient reaction rate distributions in an ADS even if the material configuration does not change significantly. This inaccuracy is not related to the problem of choosing a 'right' weighting function: the point-kinetics model with any weighting function cannot take into account pronounced flux shape variations related to possible significant changes in the criticality level or to fast beam trips. To improve the accuracy of the point-kinetics option for slow transients, we have introduced a correction factor technique. The related analyses give a better understanding of 'long-timescale' kinetics phenomena in the subcritical domain and help to evaluate the performance of the quasi-static scheme in a particular case. One

  7. Road safety performance measures and AADT uncertainty from short-term counts.

    Science.gov (United States)

    Milligan, Craig; Montufar, Jeannette; Regehr, Jonathan; Ghanney, Bartholomew

    2016-12-01

    The objective of this paper is to enable better risk analysis of road safety performance measures by creating the first knowledge base on uncertainty surrounding annual average daily traffic (AADT) estimates when the estimates are derived by expanding short-term counts with the individual permanent counter method. Many road safety performance measures and performance models use AADT as an input. While there is an awareness that the input suffers from uncertainty, the uncertainty is not well known or accounted for. The paper samples data from a set of 69 permanent automatic traffic recorders in Manitoba, Canada, to simulate almost 2 million short-term counts over a five year period. These short-term counts are expanded to AADT estimates by transferring temporal information from a directly linked nearby permanent count control station, and the resulting AADT values are compared to a known reference AADT to compute errors. The impacts of five factors on AADT error are considered: length of short-term count, number of short-term counts, use of weekday versus weekend counts, distance from a count to its expansion control station, and the AADT at the count site. The mean absolute transfer error for expanded AADT estimates is 6.7%, and this value varied by traffic pattern group from 5% to 10.5%. Reference percentiles of the error distribution show that almost all errors are between -20% and +30%. Error decreases substantially by using a 48-h count instead of a 24-h count, and only slightly by using two counts instead of one. Weekday counts are superior to weekend counts, especially if the count is only 24h. Mean absolute transfer error increases with distance to control station (elasticity 0.121, p=0.001), and increases with AADT (elasticity 0.857, proad safety performance measures that use AADT as inputs. Analytical frameworks for such analysis exist but are infrequently used in road safety because the evidence base on AADT uncertainty is not well developed. Copyright

  8. LWR safety studies. Analyses and further assessments relating to the German Risk Assessment Study on Nuclear Power Plants. Vol. 1

    International Nuclear Information System (INIS)

    1983-01-01

    This documentation of the activities of the Oeko-Institut is intended to show errors made and limits encountered in the experimental approaches and in results obtained by the work performed under phase A of the German Risk Assessment Study on Nuclear Power Plants (DRS). Concern is expressed and explained relating to the risk definition used in the Study, and the results of other studies relied on; specific problems of methodology are discussed with regard to the value of fault-tree/accident analyses for describing the course of safety-related events, and to the evaluations presented in the DRS. The Markov model is explained as an approach offering alternative solutions. The identification and quantification of common-mode failures is discussed. Origin, quality and methods of assessing the reliability characteristics used in the DRS as well as the statistical models for describing failure scenarios of reactor components and systems are critically reviewed. (RF) [de

  9. 7 CFR 98.3 - Analyses performed and locations of laboratories.

    Science.gov (United States)

    2010-01-01

    ... the special laboratory analyses rendered by the Science and Technology as a result of an agreement... Sausage Fat, salt 4 Pork Sausage Fat, moisture 4 Pork Sausage Fat 4 Mil-P-44131A (Pork Steaks, Flaked... performed at any one of the Science and Technology (S&T) field laboratories as follows: (1) USDA, AMS...

  10. The development and status of performance assessment in radioactive waste disposal

    International Nuclear Information System (INIS)

    McCombie, C.; Papp, T.; Coplan, S.

    1990-01-01

    The development of formal performance assessment in radioactive waste disposal has been in progress for around 10-15 years now. The time is particularly opportune for a review of the state-of-the-art because of current changes in the status of repository planning and implementation worldwide. Several major feasibility-type studies have been completed, the first full site-specific safety analyses are being performed for engineered underground disposal facilities for L/ILW, and - for HLW - the die are now being cast by implementers and regulatory determining how the safety analyses for licensing are to be performed and assessed. The article reviews the development of performance assessment and attempts to identify some key issues occupying safety analysts and regulatory reviewers involved in waste disposal today. (author) 7 figs

  11. Quantification of human reliability in probabilistic safety assessment

    International Nuclear Information System (INIS)

    Hirschberg, S.; Dankg, Vinh N.

    1996-01-01

    Human performance may substantially influence the reliability and safety of complex technical systems. For this reason, Human Reliability Analysis (HRA) constitutes an important part of Probabilistic Safety Assessment (PSAs) or Quantitative Risk Analyses (QRAs). The results of these studies as well as analyses of past accidents and incidents clearly demonstrate the importance of human interactions. The contribution of human errors to the core damage frequency (CDF), as estimated in the Swedish nuclear PSAs, are between 15 and 88%. A survey of the FRAs in the Swiss PSAs shows that also for the Swiss nuclear power plants the estimated HE contributions are substantial (49% of the CDF due to internal events in the case of Beznau and 70% in the case of Muehleberg; for the total CDF, including external events, 25% respectively 20%). Similar results can be extracted from the PSAs carried out for French, German, and US plants. In PSAs or QRAs, the adequate treatment of the human interactions with the system is a key to the understanding of accident sequences and their relative importance to overall risk. The main objectives of HRA are: first, to ensure that the key human interactions are systematically identified and incorporated into the safety analysis in a traceable manner, and second, to quantify the probabilities of their success and failure. Adopting a structured and systematic approach to the assessment of human performance makes it possible to provide greater confidence that the safety and availability of human-machine systems is not unduly jeopardized by human performance problems. Section 2 discusses the different types of human interactions analysed in PSAs. More generally, the section presents how HRA fits in the overall safety analysis, that is, how the human interactions to be quantified are identified. Section 3 addresses the methods for quantification. Section 4 concludes the paper by presenting some recommendations and pointing out the limitations of the

  12. Factors for analysing and improving performance of R&D in Malaysian universities

    NARCIS (Netherlands)

    Ramli, Mohammad Shakir; de Boer, S.J.; de Bruijn, E.J.

    2004-01-01

    This paper presents a model for analysing and improving performance of R&D in Malaysian universities. There are various general models for R&D analysis, but none is specific for improving the performance of R&D in Malaysian universities. This research attempts to fill a gap in the body of knowledge

  13. Evaluation of repository safety

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, B.; Patrick, W.; Dasgupta, B.; Mohanty, S. [Center for Nuclear Waste Regulatory Analyses, San Antonio (United States)

    2002-07-01

    The United States high-level waste program requires evaluation of radiological safety during two distinct time intervals. The first interval, commonly referred to as the preclosure period, deals with receipt of waste at the site, transfer into disposal containers, if needed, emplacement in the underground openings, monitoring and maintenance activities, backfill and closure of the underground openings, and decontamination and decommissioning of the surface facilities of the geologic repository. The preclosure period may extend from a few tens of years to as long as a few hundred of years, depending on repository design and societal norms regarding a final decision to permanently seal the repository. During the preclosure or operational period, performance confirmation studies are conducted to provide a basis for updating and reevaluating estimates of postclosure performance and, finally, to provide a basis for a closure decision. The postclosure period during which expected repository performance must meet certain standards may range from ten thousands years, as it does in the United States, to millions of years, as it does in some European nations. Waste handling operations in the preclosure period are to be evaluated in relation to their potential effect on workers, members of general public, and the general environment. During this period, releases of radioactivity are to be monitored and appropriate actions taken whenever established limits are approached or exceeded. Preclosure safety is highly dependent on facility design, operational hardware and automated systems, operational sequences, and reliability of humans involved in operations. Preclosure safety analyses conducted before operations begin play a major role in the design process, selection of equipment, and development of operational procedures. Because of the complexity, duration, and spatial scales of the operations, analyses are conducted using mathematical models implemented in computer codes

  14. Evaluation of repository safety

    International Nuclear Information System (INIS)

    Sagar, B.; Patrick, W.; Dasgupta, B.; Mohanty, S.

    2002-01-01

    The United States high-level waste program requires evaluation of radiological safety during two distinct time intervals. The first interval, commonly referred to as the preclosure period, deals with receipt of waste at the site, transfer into disposal containers, if needed, emplacement in the underground openings, monitoring and maintenance activities, backfill and closure of the underground openings, and decontamination and decommissioning of the surface facilities of the geologic repository. The preclosure period may extend from a few tens of years to as long as a few hundred of years, depending on repository design and societal norms regarding a final decision to permanently seal the repository. During the preclosure or operational period, performance confirmation studies are conducted to provide a basis for updating and reevaluating estimates of postclosure performance and, finally, to provide a basis for a closure decision. The postclosure period during which expected repository performance must meet certain standards may range from ten thousands years, as it does in the United States, to millions of years, as it does in some European nations. Waste handling operations in the preclosure period are to be evaluated in relation to their potential effect on workers, members of general public, and the general environment. During this period, releases of radioactivity are to be monitored and appropriate actions taken whenever established limits are approached or exceeded. Preclosure safety is highly dependent on facility design, operational hardware and automated systems, operational sequences, and reliability of humans involved in operations. Preclosure safety analyses conducted before operations begin play a major role in the design process, selection of equipment, and development of operational procedures. Because of the complexity, duration, and spatial scales of the operations, analyses are conducted using mathematical models implemented in computer codes

  15. Coupling of channel thermalhydraulics and fuel behaviour in ACR-1000 safety analyses

    International Nuclear Information System (INIS)

    Huang, F.L.; Lei, Q.M.; Zhu, W.; Bilanovic, Z.

    2008-01-01

    Channel thermalhydraulics and fuel thermal-mechanical behaviour are interlinked. This paper describes a channel thermalhydraulics and fuel behaviour coupling methodology that has been used in ACR-1000 safety analyses. The coupling is done for all 12 fuel bundles in a fuel channel using the channel thermalhydraulics code CATHENA MOD-3.5d/Rev 2 and the transient fuel behaviour code ELOCA 2.2. The coupling approach can be used for every fuel element or every group of fuel elements in the channel. Test cases are presented where a total of 108 fuel element models are set up to allow a full coupling between channel thermalhydraulics and detailed fuel analysis for a channel containing a string of 12 fuel bundles. An additional advantage of this coupling approach is that there is no need for a separate detailed fuel analysis because the coupling analysis, once done, provides detailed calculations for the fuel channel (fuel bundles, pressure tube, and calandria tube) as well as all the fuel elements (or element groups) in the channel. (author)

  16. The role of human performance in the safety complex plants' operation

    International Nuclear Information System (INIS)

    Preda, Irina Aida; Lazar, Roxana Elena; Croitoru, Cornelia

    1999-01-01

    According to statistics, about 20-30% from the failures occurred in the plants are caused directly or indirectly by human errors. Furthermore, it was established that 10-15% of the global failures are related with the human errors. These are mainly due to the wrong actions, maintenance errors, and misinterpretation of instruments. The human performance is influenced by: professional ability, complexity and danger to the plant experience in the working place, level of skills, events in personal and/or professional life, discipline, social ambience, somatic health. The human performances' assessment in the probabilistic safety assessment offers the possibility of evaluation of human contribution to the events sequences outcome. Not all the human errors have impact on the system. A human error may be recovered before the unwanted consequences had been occurred on system. This paper presents the possibilities to use the probabilistic method (event tree, fault tree) to identify the solutions for human reliability improved in order to minimize the risk in industrial plants' operation. Also, the human error types and their causes are defined and the 'decision tree method' as technique in our analysis for human reliability assessment is presented. The exemplification of human error analysis method was achieved based on operation data for Valcea Heavy Water Pilot Plant. As initiating event for the accident state 'the steam supply interruption' event has been considered. The human errors' contribution was analysed for the accident sequence with the worst consequences. (authors)

  17. A Critical Review of Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage

    International Nuclear Information System (INIS)

    Wagner, J.C.; Parks, C.V.

    2000-01-01

    This research examines the practice of equating the reactivity of spent fuel to that of fresh fuel for the purpose of performing burnup credit criticality safety analyses for PWR spent fuel pool (SFP) storage conditions. The investigation consists of comparing k inf estimates based on reactivity equivalent fresh fuel enrichment (REFFE) to k inf estimates using the actual spent fuel isotopics. Analyses of selected storage configurations common in PWR SFPs show that this practice yields nonconservative results (on the order of a few tenths of a percent) in configurations in which the spent fuel is adjacent to higher-reactivity assemblies (e.g., fresh or lower-burned assemblies) and yields conservative results in configurations in which spent fuel is adjacent to lower-reactivity assemblies (e.g., higher-burned fuel or empty cells). When the REFFE is determined based on unborated water moderation, analyses for storage conditions with soluble boron present reveal significant nonconservative results associated with the use of the REFFE. This observation is considered to be important, especially considering the recent allowance of credit for soluble boron up to 5% in reactivity. Finally, it is shown that the practice of equating the reactivity of spent fuel to fresh fuel is acceptable, provided the conditions for which the REFFE was determined remain unchanged. Determination of the REFFE for a reference configuration and subsequent use of the REFFE for different configurations violates the basis used for the determination of the REFFE and, thus, may lead to inaccurate, and possibly, nonconservative estimates of reactivity. A significant concentration (approx. 2000 ppm) of soluble boron is typically (but not necessarily required to be) present in PWR SFPs, of which only a portion (le 500 ppm) may be credited in safety analyses. Thus, a large subcritical margin currently exists that more than accounts for errors or uncertainties associated with the use of the REFFE

  18. Developing safety performance functions incorporating reliability-based risk measures.

    Science.gov (United States)

    Ibrahim, Shewkar El-Bassiouni; Sayed, Tarek

    2011-11-01

    Current geometric design guides provide deterministic standards where the safety margin of the design output is generally unknown and there is little knowledge of the safety implications of deviating from these standards. Several studies have advocated probabilistic geometric design where reliability analysis can be used to account for the uncertainty in the design parameters and to provide a risk measure of the implication of deviation from design standards. However, there is currently no link between measures of design reliability and the quantification of safety using collision frequency. The analysis presented in this paper attempts to bridge this gap by incorporating a reliability-based quantitative risk measure such as the probability of non-compliance (P(nc)) in safety performance functions (SPFs). Establishing this link will allow admitting reliability-based design into traditional benefit-cost analysis and should lead to a wider application of the reliability technique in road design. The present application is concerned with the design of horizontal curves, where the limit state function is defined in terms of the available (supply) and stopping (demand) sight distances. A comprehensive collision and geometric design database of two-lane rural highways is used to investigate the effect of the probability of non-compliance on safety. The reliability analysis was carried out using the First Order Reliability Method (FORM). Two Negative Binomial (NB) SPFs were developed to compare models with and without the reliability-based risk measures. It was found that models incorporating the P(nc) provided a better fit to the data set than the traditional (without risk) NB SPFs for total, injury and fatality (I+F) and property damage only (PDO) collisions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Health, safety and environmental unit performance assessment model under uncertainty (case study: steel industry).

    Science.gov (United States)

    Shamaii, Azin; Omidvari, Manouchehr; Lotfi, Farhad Hosseinzadeh

    2017-01-01

    Performance assessment is a critical objective of management systems. As a result of the non-deterministic and qualitative nature of performance indicators, assessments are likely to be influenced by evaluators' personal judgments. Furthermore, in developing countries, performance assessments by the Health, Safety and Environment (HSE) department are based solely on the number of accidents. A questionnaire is used to conduct the study in one of the largest steel production companies in Iran. With respect to health, safety, and environment, the results revealed that control of disease, fire hazards, and air pollution are of paramount importance, with coefficients of 0.057, 0.062, and 0.054, respectively. Furthermore, health and environment indicators were found to be the most common causes of poor performance. Finally, it was shown that HSE management systems can affect the majority of performance safety indicators in the short run, whereas health and environment indicators require longer periods of time. The objective of this study is to present an HSE-MS unit performance assessment model in steel industries. Moreover, we seek to answer the following question: what are the factors that affect HSE unit system in the steel industry? Also, for each factor, the extent of impact on the performance of the HSE management system in the organization is determined.

  20. A Microbial Assessment Scheme to measure microbial performance of Food Safety Management Systems.

    Science.gov (United States)

    Jacxsens, L; Kussaga, J; Luning, P A; Van der Spiegel, M; Devlieghere, F; Uyttendaele, M

    2009-08-31

    A Food Safety Management System (FSMS) implemented in a food processing industry is based on Good Hygienic Practices (GHP), Hazard Analysis Critical Control Point (HACCP) principles and should address both food safety control and assurance activities in order to guarantee food safety. One of the most emerging challenges is to assess the performance of a present FSMS. The objective of this work is to explain the development of a Microbial Assessment Scheme (MAS) as a tool for a systematic analysis of microbial counts in order to assess the current microbial performance of an implemented FSMS. It is assumed that low numbers of microorganisms and small variations in microbial counts indicate an effective FSMS. The MAS is a procedure that defines the identification of critical sampling locations, the selection of microbiological parameters, the assessment of sampling frequency, the selection of sampling method and method of analysis, and finally data processing and interpretation. Based on the MAS assessment, microbial safety level profiles can be derived, indicating which microorganisms and to what extent they contribute to food safety for a specific food processing company. The MAS concept is illustrated with a case study in the pork processing industry, where ready-to-eat meat products are produced (cured, cooked ham and cured, dried bacon).

  1. Job safety and awareness analysis of safety implementation among electrical workers in airport service company

    Directory of Open Access Journals (Sweden)

    Putra Perdana Suteja

    2018-01-01

    Full Text Available Electrical is a fundamental process in the company that has high risk and responsibility especially in public service company such as an airport. Hence, the company that operates activities in the airport has to identify and control the safety activities of workers. On the safety implementation, the lack of workers’ awareness is fundamental aspects to the safety failure. Therefore, this study aimed to analyse the safety awareness and identify risk in the electrical workplace. Safety awareness questionnaires are distributed to ten workers in order to analyse their awareness. Job safety analysis method used to identify the risk in the electrical workplace. The preliminary study stated that workers were not aware of personal protective equipment usage so that the awareness and behavioural need to be analysed. The result is the hazard was found such as electrical shock and noise for various intensity in the workplace. While electrical workers were aware of safety implementation but less of safety behaviour. Furthermore, the recommendation can be implemented are the implementation of behaviour-based safety (BBS, 5S implementation and accident report list.

  2. Trend and pattern analyses of operational data from nuclear power plants

    International Nuclear Information System (INIS)

    Amesz, J.

    1990-01-01

    One step towards maximizing the benefits gained from plant operating experience is the establishment of a rigorous scheme of classification and storage of operational data related to equipment failures and/or human errors. The analysis of data thus collected can fall into one of the following two categories: in-depth analysis of individual incidents which are considered to be of major significance from the safety point of view; and trend and pattern analyses of the stored data with the aim of identifying situations that warrant further studies or that require particular attention. In order to perform the second type of analyses, various approaches/systems are being used by organizations with interests in the nuclear power domain. Similar methodologies may be used in general industrial safety as well. For the purpose of facilitating a comparison between the different methods, the OECD/NEA Committee on the Safety of Nuclear Installations (CSNI) decided to organize a specialist meeting jointly with the Commission of the European Communities (CEC) for a systematic and comprehensive review of the matter

  3. Career-span analyses of track performance: longitudinal data present a more optimistic view of age-related performance decline.

    Science.gov (United States)

    Young, Bradley W; Starkes, Janet L

    2005-01-01

    Sport scientists (Starkes, Weir, Singh, Hodges, & Kerr, 1999; Starkes, Weir, & Young, 2003) have suggested that prolonged training is critical for the maintenance of athletic performance even in the face of predicted age-related decline. This study used polynomial regression analyses to examine the relationship between age and running performance in the 1500 and 10,000 metre events. We compared the age and career-longitudinal performances for 15 male Canadian Masters athletes with a cross-sectional sample of performances at different ages. We hypothesized that the 30 years of uninterrupted training characteristic of this longitudinal sample would moderate the patterns of age-related decline (retention hypothesis); alternatively, the cross-sectional data were expected to demonstrate pronounced age-related decline (quadratic hypothesis). Investigators performed multimodel regression analyses on the age and performance data. Based on the absence (for longitudinal data) or presence (for the cross-sectional data) of significant quadratic components in second-order polynomial models, the authors found support for their respective hypotheses. The longitudinal data showed that running performance declined with age in a more linear fashion than did cross-sectional data. Graphical trends showed that the moderation of age-related decline appeared greater for the longitudinal 10 km performances than for the 1500m event.

  4. Performance Confirmation Plan

    International Nuclear Information System (INIS)

    Lindner, E.N.

    2000-01-01

    As described, the purpose of the Performance Confirmation Plan is to specify monitoring, testing, and analysis activities for evaluating the accuracy and adequacy of the information used to determine that performance objectives for postclosure will be met. This plan defines a number of specific performance confirmation activities and associated test concepts in support of the MGR that will be implemented to fulfill this purpose. In doing so, the plan defines an approach to identify key factors and processes, predict performance, establish tolerances and test criteria, collect data (through monitoring, testing, and experiments), analyze these data, and recommend appropriate action. The process of defining which factors to address under performance confirmation incorporates input from several areas. In all cases, key performance confirmation factors are those factors which are: (1) important to safety, (2) measurable and predictable, and (3) relevant to the program (i.e., a factor that is affected by construction, emplacement, or is a time-dependent variable). For the present version of the plan, performance confirmation factors important to safety are identified using the principal factors from the RSS (CRWMS M and O 2000a) (which is derived from TSPA analyses) together with other available performance assessment analyses. With this basis, key performance confirmation factors have been identified, and test concepts and test descriptions have been developed in the plan. Other activities are also incorporated into the performance confirmation program outside of these key factors. Additional activities and tests have been incorporated when they are prescribed by requirements and regulations or are necessary to address data needs and model validation requirements relevant to postclosure safety. These other activities have been included with identified factors to construct the overall performance confirmation program

  5. Performance Confirmation Plan

    International Nuclear Information System (INIS)

    Lindner, E.N.

    2000-01-01

    As described, the purpose of the Performance Confirmation Plan is to specify monitoring, testing, and analysis activities for evaluating the accuracy and adequacy of the information used to determine that performance objectives for postclosure will be met. This plan defines a number of specific performance confirmation activities and associated test concepts in support of the MGR that will be implemented to fulfill this purpose. In doing so, the plan defines an approach to identify key factors and processes, predict performance, establish tolerances and test criteria, collect data (through monitoring, testing, and experiments), analyze these data, and recommend appropriate action. The process of defining which factors to address under performance confirmation incorporates input from several areas. In all cases, key performance confirmation factors are those factors which are: (1) important to safety, (2) measurable and predictable, and (3) relevant to the program (i.e., a factor that i s affected by construction, emplacement, or is a time-dependent variable). For the present version of the plan, performance confirmation factors important to safety are identified using the principal factors from the RSS (CRWMS M and O 2000a) (which is derived from TSPA analyses) together with other available performance assessment analyses. With this basis, key performance confirmation factors have been identified, and test concepts and test descriptions have been developed in the plan. Other activities are also incorporated into the performance confirmation program outside of these key factors. Additional activities and tests have been incorporated when they are prescribed by requirements and regulations or are necessary to address data needs and model validation requirements relevant to postclosure safety. These other activities have been included with identified factors to construct the overall performance confirmation program

  6. Total System Performance Assessment Sensitivity Analyses for Final Nuclear Regulatory Commission Regulations

    International Nuclear Information System (INIS)

    Bechtel SAIC Company

    2001-01-01

    This Letter Report presents the results of supplemental evaluations and analyses designed to assess long-term performance of the potential repository at Yucca Mountain. The evaluations were developed in the context of the Nuclear Regulatory Commission (NRC) final public regulation, or rule, 10 CFR Part 63 (66 FR 55732 [DIRS 156671]), which was issued on November 2, 2001. This Letter Report addresses the issues identified in the Department of Energy (DOE) technical direction letter dated October 2, 2001 (Adams 2001 [DIRS 156708]). The main objective of this Letter Report is to evaluate performance of the potential Yucca Mountain repository using assumptions consistent with performance-assessment-related provisions of 10 CFR Part 63. The incorporation of the final Environmental Protection Agency (EPA) standard, 40 CFR Part 197 (66 FR 32074 [DIRS 155216]), and the analysis of the effect of the 40 CFR Part 197 EPA final rule on long-term repository performance are presented in the Total System Performance Assessment--Analyses for Disposal of Commercial and DOE Waste Inventories at Yucca Mountain--Input to Final Environmental Impact Statement and Site Suitability Evaluation (BSC 2001 [DIRS 156460]), referred to hereafter as the FEIS/SSE Letter Report. The Total System Performance Assessment (TSPA) analyses conducted and documented prior to promulgation of the NRC final rule 10 CFR Part 63 (66 FR 55732 [DIRS 156671]), were based on the NRC proposed rule (64 FR 8640 [DIRS 101680]). Slight differences exist between the NRC's proposed and final rules which were not within the scope of the FEIS/SSE Letter Report (BSC 2001 [DIRS 156460]), the Preliminary Site Suitability Evaluation (PSSE) (DOE 2001 [DIRS 155743]), and supporting documents for these reports. These differences include (1) the possible treatment of ''unlikely'' features, events and processes (FEPs) in evaluation of both the groundwater protection standard and the human-intrusion scenario of the individual

  7. Safety

    International Nuclear Information System (INIS)

    2001-01-01

    This annual report of the Senior Inspector for the Nuclear Safety, analyses the nuclear safety at EDF for the year 1999 and proposes twelve subjects of consideration to progress. Five technical documents are also provided and discussed concerning the nuclear power plants maintenance and safety (thermal fatigue, vibration fatigue, assisted control and instrumentation of the N4 bearing, 1300 MW reactors containment and time of life of power plants). (A.L.B.)

  8. Solubility of radionuclides in a bentonite environment for provisional safety analyses for SGT-E2

    International Nuclear Information System (INIS)

    Berner, U.

    2014-08-01

    Within stage 2 of the sectoral plan for deep geological repositories for radioactive waste in Switzerland provisional safety analyses are carried out. In the case of the repository for spent fuel and vitrified high level waste considered, retention mechanisms include the concentration limits of safety relevant elements in the pore water of the buffer material (bentonite). The present work describes the solubility limits of the safety relevant elements Be, C_i_n_o_r_g, Cl, K, Ca, Co, Ni, Se, Sr, Zr, Nb, Mo, Tc, Pd, Ag, Sn, I, Cs, Sm, Eu, Ho, Pb, Po, Ra, Ac, Th, Pa, U, Np, Pu, Am and Cm in the pore water of bentonite after diffusive solution exchange with the host rock Opalinus Clay. The term solubility limit denotes the maximum amount of an element dissolving in the pore solution of the considered chemical reference system. Chemical equilibrium thermodynamics is the classical tool used for quantifying such considerations. For a given solid phase equilibrium thermodynamics predict the amount of substance dissolving in the solution and describe the speciation of the considered element in solution. The principles of chemical equilibrium will also be the primary work hypothesis in the present work. Solubility calculations were performed with the most recent version of GEMS/PSI (GEMS3.2 v.890) using the PSI/Nagra Chemical Thermodynamic Data Base 12/07, which is an update of the former Nagra/PSI Chemical Thermodynamic Data Base 01/01. The database was complemented with datasets from the ThermoChimie v. 7b for elements that were not considered in the mentioned update (Ag, Co, Sm, Ho, Pa, Be), with data from Iupac (Pb) and with data from the literature (Mo). Differing sources for thermodynamic data are noted. Reference values as well as lower and upper guideline values are evaluated. For many formation constants of solids and solutes uncertainties are known and allow conveying lower and upper guideline values. In many cases it is not clear whether the most stable solid is

  9. Patient safety culture assessment in oman.

    Science.gov (United States)

    Al-Mandhari, Ahmed; Al-Zakwani, Ibrahim; Al-Kindi, Moosa; Tawilah, Jihane; Dorvlo, Atsu S S; Al-Adawi, Samir

    2014-07-01

    To illustrate the patient safety culture in Oman as gleaned via 12 indices of patient safety culture derived from the Hospital Survey on Patient Safety Culture (HSPSC) and to compare the average positive response rates in patient safety culture between Oman and the USA, Taiwan, and Lebanon. This was a cross-sectional research study employed to gauge the performance of HSPSC safety indices among health workers representing five secondary and tertiary care hospitals in the northern region of Oman. The participants (n=398) represented different professional designations of hospital staff. Analyses were performed using univariate statistics. The overall average positive response rate for the 12 patient safety culture dimensions of the HSPSC survey in Oman was 58%. The indices from HSPSC that were endorsed the highest included 'organizational learning and continuous improvement' while conversely, 'non-punitive response to errors' was ranked the least. There were no significant differences in average positive response rates between Oman and the United States (58% vs. 61%; p=0.666), Taiwan (58% vs. 64%; p=0.386), and Lebanon (58% vs. 61%; p=0.666). This study provides the first empirical study on patient safety culture in Oman which is similar to those rates reported elsewhere. It highlights the specific strengths and weaknesses which may stem from the specific milieu prevailing in Oman.

  10. Patient Safety Culture Assessment in Oman

    Science.gov (United States)

    Al-Mandhari, Ahmed; Al-Zakwani, Ibrahim; Al-Kindi, Moosa; Tawilah, Jihane; Dorvlo, Atsu S.S.; Al-Adawi, Samir

    2014-01-01

    Objective To illustrate the patient safety culture in Oman as gleaned via 12 indices of patient safety culture derived from the Hospital Survey on Patient Safety Culture (HSPSC) and to compare the average positive response rates in patient safety culture between Oman and the USA, Taiwan, and Lebanon. Methods This was a cross-sectional research study employed to gauge the performance of HSPSC safety indices among health workers representing five secondary and tertiary care hospitals in the northern region of Oman. The participants (n=398) represented different professional designations of hospital staff. Analyses were performed using univariate statistics. Results The overall average positive response rate for the 12 patient safety culture dimensions of the HSPSC survey in Oman was 58%. The indices from HSPSC that were endorsed the highest included ‘organizational learning and continuous improvement’ while conversely, ‘non-punitive response to errors’ was ranked the least. There were no significant differences in average positive response rates between Oman and the United States (58% vs. 61%; p=0.666), Taiwan (58% vs. 64%; p=0.386), and Lebanon (58% vs. 61%; p=0.666). Conclusion This study provides the first empirical study on patient safety culture in Oman which is similar to those rates reported elsewhere. It highlights the specific strengths and weaknesses which may stem from the specific milieu prevailing in Oman. PMID:25170407

  11. Relational approach in managing construction project safety: a social capital perspective.

    Science.gov (United States)

    Koh, Tas Yong; Rowlinson, Steve

    2012-09-01

    Existing initiatives in the management of construction project safety are largely based on normative compliance and error prevention, a risk management approach. Although advantageous, these approaches are not wholly successful in further lowering accident rates. A major limitation lies with the approaches' lack of emphasis on the social and team processes inherent in construction project settings. We advance the enquiry by invoking the concept of social capital and project organisational processes, and their impacts on project safety performance. Because social capital is a primordial concept and affects project participants' interactions, its impact on project safety performance is hypothesised to be indirect, i.e. the impact of social capital on safety performance is mediated by organisational processes in adaptation and cooperation. A questionnaire survey was conducted within Hong Kong construction industry to test the hypotheses. 376 usable responses were received and used for analyses. The results reveal that, while the structural dimension is not significant, the mediational thesis is generally supported with the cognitive and relational dimensions affecting project participants' adaptation and cooperation, and the latter two processes affect safety performance. However, the cognitive dimension also directly affects safety performance. The implications of these results for project safety management are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The performance regulatory approach in quality assurance: Its application to safety in nuclear power plants

    International Nuclear Information System (INIS)

    Sajaroff, Pedro M.

    2000-01-01

    In early 1991, the IAEA assembled an Advisory Group on the Comprehensive Revision of the Code and the Safety on Quality Assurance of the NUSS Programme. The Group was made up by specialists from a number of countries and from ISO, FORATOM, the EC and the IAEA itself, and its objective was completed in June 1995. This paper is aimed at describing the conceptual contents of the final draft of the revision 2 of the 50-C-QA Code 'Quality Assurance for Safety in Nuclear Power Plants and other Nuclear Facilities' (hereinafter, the Code) which is essentially based on performance. Although the performance regulatory approach is not new in Argentina and in other countries, what is indeed novel is applying performance based QA. In such a way the Code will contribute to preventing both QA misinterpretations (i.e., a formalistic regulatory requirement) and the execution of non-effective work without attaining the needed quality level (what may be seen as a pathological deviation of QA). The Code contains ten basic requirements to be adopted when QA programmes are established and implemented in nuclear power plants. The goal is improving safety through an improvement in the methods applied for attaining quality. In line with the current developments in quality management techniques, priority is given to effectiveness of the QA programme. All the involved individuals (that is those in the managerial level, those performing the work and those assessing the work performed) must contribute to quality in a co-ordinated manner. The revised Safety Guides are being introduced, standing out those non existing before. Interrelation between quality assurance, safety culture and quality culture is to be noted. Besides QA for safety-related software mentioned as an issue to be considered by the IAEA. (author)

  13. Numerical and experimental investigation on the performance of safety valves operating with different gases

    International Nuclear Information System (INIS)

    Dossena, V.; Marinoni, F.; Bassi, F.; Franchina, N.; Savini, M.

    2013-01-01

    A detailed analysis of the effect related to the expansion of different gases throughout safety relief valves is carried out both numerically and experimentally. The considered gases are air, argon and ethylene, representative of a wide range of specific heat ratios. A first experimental campaign performed in air and argon on a safety relief valve characterized by connection 1/2″ × 1″ and orifice designation D (diameter 10 mm) according to API 526 showed significant reduction both in disc lift and in exhausted mass flow rate, at the nominal overpressure, when operating with argon. In order to gain a deeper insight into the physics involved and to evaluate the valve behavior with other gases, an extensive numerical testing has been performed by means of an accurate CFD code based on discontinuous Galerkin formulation. Numerical results are at first validated against measurements obtained in air on a 2″ J 3″ safety relief valve proving a remarkable accuracy of the computational method. Then the validated solver is applied on the same computational grid using argon and ethylene as working fluids. The three gases are considered as thermally perfect gases. A critical discussion based on the numerical results allows to clarify the fluid dynamic and physical reasons causing the observed trends both in the opening force and in the discharge coefficient. The main conclusion is that particular care must be taken when a safety valve operates with a fluid characterized by a specific heat ratio greater than the one of the gas used during type testing. -- Highlights: ► Effects of different gases on the discharge capacity and operational characteristics on safety relief valves. ► Influence of different specific heat ratio on safety relief valves discharge coefficient. ► Skilful application of Discontinuous Galerkin CFD solver to safety valves performances prediction

  14. Acute and chronic safety and efficacy of dose dependent creatine nitrate supplementation and exercise performance

    OpenAIRE

    Galvan, Elfego; Walker, Dillon K.; Simbo, Sunday Y.; Dalton, Ryan; Levers, Kyle; O?Connor, Abigail; Goodenough, Chelsea; Barringer, Nicholas D.; Greenwood, Mike; Rasmussen, Christopher; Smith, Stephen B.; Riechman, Steven E.; Fluckey, James D.; Murano, Peter S.; Earnest, Conrad P.

    2016-01-01

    Background Creatine monohydrate (CrM) and nitrate are popular supplements for improving exercise performance; yet have not been investigated in combination. We performed two studies to determine the safety and exercise performance-characteristics of creatine nitrate (CrN) supplementation. Methods Study 1 participants (N?=?13) ingested 1.5?g CrN (CrN-Low), 3?g CrN (CrN-High), 5?g CrM or a placebo in a randomized, crossover study (7d washout) to determine supplement safety (hepatorenal and musc...

  15. Engaging Employees: The Importance of High-Performance Work Systems for Patient Safety.

    Science.gov (United States)

    Etchegaray, Jason M; Thomas, Eric J

    2015-12-01

    To develop and test survey items that measure high-performance work systems (HPWSs), report psychometric characteristics of the survey, and examine associations between HPWSs and teamwork culture, safety culture, and overall patient safety grade. We reviewed literature to determine dimensions of HPWSs and then asked executives to tell us which dimensions they viewed as most important for safety and quality. We then created a HPWSs survey to measure the most important HPWSs dimensions. We administered an anonymous, electronic survey to employees with direct patient care working at a large hospital system in the Southern United States and looked for linkages between HPWSs, culture, and outcomes. Similarities existed for the HPWS practices viewed as most important by previous researchers and health-care executives. The HPWSs survey was found to be reliable, distinct from safety culture and teamwork culture based on a confirmatory factor analysis, and was the strongest predictor of the extent to which employees felt comfortable speaking up about patient safety problems as well as patient safety grade. We used information from a literature review and executive input to create a reliable and valid HPWSs survey. Future research needs to examine whether HPWSs is associated with additional safety and quality outcomes.

  16. The practical implementation of integrated safety management for nuclear safety analysis and fire hazards analysis documentation

    International Nuclear Information System (INIS)

    COLLOPY, M.T.

    1999-01-01

    In 1995 Mr. Joseph DiNunno of the Defense Nuclear Facilities Safety Board issued an approach to describe the concept of an integrated safety management program which incorporates hazard and safety analysis to address a multitude of hazards affecting the public, worker, property, and the environment. Since then the U S . Department of Energy (DOE) has adopted a policy to systematically integrate safety into management and work practices at all levels so that missions can be completed while protecting the public, worker, and the environment. While the DOE and its contractors possessed a variety of processes for analyzing fire hazards at a facility, activity, and job; the outcome and assumptions of these processes have not always been consistent for similar types of hazards within the safety analysis and the fire hazard analysis. Although the safety analysis and the fire hazard analysis are driven by different DOE Orders and requirements, these analyses should not be entirely independent and their preparation should be integrated to ensure consistency of assumptions, consequences, design considerations, and other controls. Under the DOE policy to implement an integrated safety management system, identification of hazards must be evaluated and agreed upon to ensure that the public. the workers. and the environment are protected from adverse consequences. The DOE program and contractor management need a uniform, up-to-date reference with which to plan. budget, and manage nuclear programs. It is crucial that DOE understand the hazards and risks necessarily to authorize the work needed to be performed. If integrated safety management is not incorporated into the preparation of the safety analysis and the fire hazard analysis, inconsistencies between assumptions, consequences, design considerations, and controls may occur that affect safety. Furthermore, confusion created by inconsistencies may occur in the DOE process to grant authorization of the work. In accordance with

  17. Operational safety performance indicator system - a management tool for the self assessment of safety and reliability of nuclear power plants

    International Nuclear Information System (INIS)

    Anil Kumar; Mandowara, S.L.; Mittal, S.

    2006-01-01

    Operational Safety Performance Indicator system is one of the self assessment tools for station management to monitor safety and reliability of nuclear power plants. It provides information to station management about the performance of various areas of the plants by means of different colours of relevant performance indicators. Such systems have been implemented at many nuclear power plants in the world and have been considered as strength during WANO Peer Review. IAEA had a Coordinated Research Programme (CRP) on this with several countries participating including India. In NPCIL this system has been implemented in KAPS about a year back and found very useful in identifying areas which needs to be given more attention. Based on the KAPS feedback Implementation of this system has been taken up in RAPS-3 and 4 and KGS-l and 2. (author)

  18. Probabilistic safety assessment of LWR containment systems performance. Report of principal working group n.5 on risk assessment

    International Nuclear Information System (INIS)

    Holloway, N.J.; Harper, F.T.; Bellard, S.W.

    1992-01-01

    This report reviews current approaches to PSA of LWR containment systems performance. It is based on a variety of recent PSA reports which deal with Level-2 PSA. The report is a summary of recent state-of-the-art containment analysis and is intended to assist analysts in their selection of the most appropriate methods of extending Level-1 plant safety evaluations into Level-2 assessments of the containment performance. The document is primarily concerned with the performance of the containment as an engineered system rather than with the source terms consequent upon its failure. It is addressed mainly to the performance of large dry PWR containments, with a secondary emphasis on other containment types. After explaining the purposes of these analyses, a survey of LWR containment analysis options is presented: direct approaches using containment event tree construction, indirect approaches based on previous PSAs, alternative and novel approaches. The selection process is then described, followed by conclusions on their suitability for various cases: accident management, research prioritization, identifying design weaknesses, specific issue resolution, modelling physical reality, etc.

  19. Data used for safety assessment of reprocessing facilities

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Suzuki, Atsuyuki; Kanagawa, Akira

    1990-08-01

    For safety assessment of a reprocessing facility, it is important to know performance of radioactive materials in their accidental release and transfer. Accordingly, it is necessary to collect and prepare data for use in analyses for their performance. In JAERI, experiments such as for data acquisition, for source-term evaluation and for radioactive material transfer, are now planned to be performed. Prior to these experiments, it is decided to investigate data in use for accidental safety assessment of reprocessing plants and their based experimental data, thus to make it possible to recommend reasonable values for safety analysis parameters by evaluating the investigated results, to select the experimental items, to edit a safety assessment handbook and so on. In this line of objectives, JAERI rewarded a two-year contract of investigation to Nuclear Safety Research Association, to make a working group under a special committee on data investigation for reprocessing facility safety assessment. This report is a collection of results reviewed and checked by the working group. The contents consist of two parts, one for investigation and review of data used for safety assessment of domestic or oversea reprocessing facilities, and the other for investigation, review and evaluation of ANSI recommended American standard data reported by E. Walker together with their based experimental data resorting to the original referred reports. (author)

  20. Study on real working performance and overload safety factor of high arch dam

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Considering the fact that high arch dams have problems such as complicated stress,high cost,and hazards after being damaged,this paper intends to study the effects of load,material strength,and safety analysis method on dam safety and working performance of arch dams.In this article,the effects of temperature,self weight exaction way and water loading on structure response are first discussed,and a more reasonable way of considering is then put forward.By taking into consideration the mechanical property of materials and comparing the effects of different yield criteria on overloading safety of high arch dams,this paper concludes that brittle characteristics of concrete should be fully considered when conducting safety assessment for high arch dams to avoid overestimating the bearing capacity of the dams.By comparing several typical projects,this paper works out a safety assessment system of multiple safety and relevant engineering analogical analysis methods,which is closer to the actual situation,and thus is able to assess the response of high arch dam structure in a more comprehensive way,elicit the safety coefficients in different situations,and provide a new way of considering the safety assessment of high arch dams.

  1. A root cause analysis project in a medication safety course.

    Science.gov (United States)

    Schafer, Jason J

    2012-08-10

    To develop, implement, and evaluate team-based root cause analysis projects as part of a required medication safety course for second-year pharmacy students. Lectures, in-class activities, and out-of-class reading assignments were used to develop students' medication safety skills and introduce them to the culture of medication safety. Students applied these skills within teams by evaluating cases of medication errors using root cause analyses. Teams also developed error prevention strategies and formally presented their findings. Student performance was assessed using a medication errors evaluation rubric. Of the 211 students who completed the course, the majority performed well on root cause analysis assignments and rated them favorably on course evaluations. Medication error evaluation and prevention was successfully introduced in a medication safety course using team-based root cause analysis projects.

  2. International validation of safety analyses for nuclear power plants; Mednarodno preverjanje varnostnih analiz za jedrske elektrane

    Energy Technology Data Exchange (ETDEWEB)

    Gregoric, N; Mavko, B [Institut ' Jozef Stefan' Ljubljana (Yugoslavia)

    1988-07-01

    Paper describes the participation of 'J.Stefan' Institute in international standard problems for validation of modeling and programs for safety analysis. Listed are main international experimental facilities for collecting data basic for understanding of physical phenomena, code development and validation of modelling and programs. Since the results of international standard problem analyses are published in a joint final report, it is simple to asses the conformance of the results of a particular group with the experiment. Good results from three international exercises done so far, have encouraged the group to currently participate in OECD-ISP-22 which is a model of the Italian three loop PWR. (author)

  3. SafetyBarrierManager, a software tool to perform risk analysis using ARAMIS's principles

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2017-01-01

    of the ARAMIS project, Risø National Laboratory started developing a tool that could implement these methodologies, leading to SafetyBarrierManager. The tool is based on the principles of “safety‐barrier diagrams”, which are very similar to “bowties”, with the possibility of performing quantitative analysis......The ARAMIS project resulted in a number of methodologies, dealing with among others: the development of standard fault trees and “bowties”; the identification and classification of safety barriers; and including the quality of safety management into the quantified risk assessment. After conclusion....... The tool allows constructing comprehensive fault trees, event trees and safety‐barrier diagrams. The tool implements the ARAMIS idea of a set of safety barrier types, to which a number of safety management issues can be linked. By rating the quality of these management issues, the operational probability...

  4. Key Performance Indicators in the Evaluation of the Quality of Radiation Safety Programs.

    Science.gov (United States)

    Schultz, Cheryl Culver; Shaffer, Sheila; Fink-Bennett, Darlene; Winokur, Kay

    2016-08-01

    Beaumont is a multiple hospital health care system with a centralized radiation safety department. The health system operates under a broad scope Nuclear Regulatory Commission license but also maintains several other limited use NRC licenses in off-site facilities and clinics. The hospital-based program is expansive including diagnostic radiology and nuclear medicine (molecular imaging), interventional radiology, a comprehensive cardiovascular program, multiple forms of radiation therapy (low dose rate brachytherapy, high dose rate brachytherapy, external beam radiotherapy, and gamma knife), and the Research Institute (including basic bench top, human and animal). Each year, in the annual report, data is analyzed and then tracked and trended. While any summary report will, by nature, include items such as the number of pieces of equipment, inspections performed, staff monitored and educated and other similar parameters, not all include an objective review of the quality and effectiveness of the program. Through objective numerical data Beaumont adopted seven key performance indicators. The assertion made is that key performance indicators can be used to establish benchmarks for evaluation and comparison of the effectiveness and quality of radiation safety programs. Based on over a decade of data collection, and adoption of key performance indicators, this paper demonstrates one way to establish objective benchmarking for radiation safety programs in the health care environment.

  5. Safety Analysis Report for the KRI-ASM Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, D. H.; Park, H. Y.; Kim, J. B.; Kim, H. J.; Seo, K. S

    2005-11-15

    Safety evaluation for the KRI-ASM transport package to transport safely I-131, which is produced at HANARO research reactor in KAERI, was carried out. In the safety analyses results for the KRI-ASM transport package, all the maximum stresses as well as the maximum temperature of the surface are lower than their allowable limits. The safety tests were performed by using the test model of the KRI-ASM transport package. Leak Test was performed after drop test and penetration test, the measured leakage rate was lower than allowable leakage rate. It is revealed that the containment integrity of the KRI-ASM transport package is maintained. Therefore, it shows that the integrity of the KRI-ASM transport package is well maintained.

  6. IMPROVING CONTROL ROOM DESIGN AND OPERATIONS BASED ON HUMAN FACTORS ANALYSES OR HOW MUCH HUMAN FACTORS UPGRADE IS ENOUGH ?

    Energy Technology Data Exchange (ETDEWEB)

    HIGGINS,J.C.; OHARA,J.M.; ALMEIDA,P.

    2002-09-19

    THE JOSE CABRERA NUCLEAR POWER PLANT IS A ONE LOOP WESTINGHOUSE PRESSURIZED WATER REACTOR. IN THE CONTROL ROOM, THE DISPLAYS AND CONTROLS USED BY OPERATORS FOR THE EMERGENCY OPERATING PROCEDURES ARE DISTRIBUTED ON FRONT AND BACK PANELS. THIS CONFIGURATION CONTRIBUTED TO RISK IN THE PROBABILISTIC SAFETY ASSESSMENT WHERE IMPORTANT OPERATOR ACTIONS ARE REQUIRED. THIS STUDY WAS UNDERTAKEN TO EVALUATE THE IMPACT OF THE DESIGN ON CREW PERFORMANCE AND PLANT SAFETY AND TO DEVELOP DESIGN IMPROVEMENTS.FIVE POTENTIAL EFFECTS WERE IDENTIFIED. THEN NUREG-0711 [1], PROGRAMMATIC, HUMAN FACTORS, ANALYSES WERE CONDUCTED TO SYSTEMATICALLY EVALUATE THE CR-LA YOUT TO DETERMINE IF THERE WAS EVIDENCE OF THE POTENTIAL EFFECTS. THESE ANALYSES INCLUDED OPERATING EXPERIENCE REVIEW, PSA REVIEW, TASK ANALYSES, AND WALKTHROUGH SIMULATIONS. BASED ON THE RESULTS OF THESE ANALYSES, A VARIETY OF CONTROL ROOM MODIFICATIONS WERE IDENTIFIED. FROM THE ALTERNATIVES, A SELECTION WAS MADE THAT PROVIDED A REASONABLEBALANCE BE TWEEN PERFORMANCE, RISK AND ECONOMICS, AND MODIFICATIONS WERE MADE TO THE PLANT.

  7. Operational safety performance and economical efficiency evaluation for nuclear power plants

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang

    2012-01-01

    The economical efficiency of nuclear power includes a series of environmental parameters, for example, cleanliness. Nuclear security is the precondition and guarantee for its economy, and both are the direct embodiment of the social benefits of nuclear power. Through analyzing the supervision and management system on the effective operation of nuclear power plants, which has been put forward by the International Atomic Energy Agency (IAEA), the World Association of Nuclear Operators (WANO), the U.S. Nuclear Regulatory Commission (NRC), and other organizations, a set of indexs on the safety performance and economical efficiency of nuclear power are explored and established; Based on data envelopment analysis, a DEA approach is employed to evaluate the efficiency of the operation performance of several nuclear power plants, Some primary conclusion are achieved on the basis of analyzing the threshold parameter's sensitivity and relativity which affected operational performance. To address the conflicts between certain security and economical indicators, a multi-objective programming model is established, where top priority is given to nuclear safety, and the investment behavior of nuclear power plant is thereby optimized. (authors)

  8. Methods and data for HTGR fuel performance and radionuclide release modeling during normal operation and accidents for safety analysis

    International Nuclear Information System (INIS)

    Verfondern, K.; Martin, R.C.; Moormann, R.

    1993-01-01

    The previous status report released in 1987 on reference data and calculation models for fission product transport in High-Temperature, Gas-Cooled Reactor (HTGR) safety analyses has been updated to reflect the current state of knowledge in the German HTGR program. The content of the status report has been expanded to include information from other national programs in HTGRs to provide comparative information on methods of analysis and the underlying database for fuel performance and fission product transport. The release and transport of fission products during normal operating conditions and during the accident scenarios of core heatup, water and air ingress, and depressurization are discussed. (orig.) [de

  9. MCNP benchmark analyses of critical experiments for space nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Selcow, E.C.; Cerbone, R.J.; Ludewig, H.

    1993-01-01

    The particle-bed reactor (PBR) system is being developed for use in the Space Nuclear Thermal Propulsion (SNTP) Program. This reactor system is characterized by a highly heterogeneous, compact configuration with many streaming pathways. The neutronics analyses performed for this system must be able to accurately predict reactor criticality, kinetics parameters, material worths at various temperatures, feedback coefficients, and detailed fission power and heating distributions. The latter includes coupled axial, radial, and azimuthal profiles. These responses constitute critical inputs and interfaces with the thermal-hydraulics design and safety analyses of the system

  10. Performance and Reliability of DSRC Vehicular Safety Communication: A Formal Analysis

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available IEEE- and ASTM-adopted dedicated short range communications (DSRC standard toward 802.11p is a key enabling technology for the next generation of vehicular safety communication. Broadcasting of safety messages is one of the fundamental services in DSRC. There have been numerous publications addressing design and analysis of such broadcast ad hoc system based on the simulations. For the first time, an analytical model is proposed in this paper to evaluate performance and reliability of IEEE 802.11a-based vehicle-to-vehicle (V2V safety-related broadcast services in DSRC system on highway. The proposed model takes two safety services with different priorities, nonsaturated message arrival, hidden terminal problem, fading transmission channel, transmission range, IEEE 802.11 backoff counter process, and highly mobile vehicles on highway into account. Based on the solutions to the proposed analytic model, closed-form expressions of channel throughput, transmission delay, and packet reception rates are derived. From the obtained numerical results under various offered traffic and network parameters, new insights and enhancement suggestions are given.

  11. Nuclear power performance and safety. V.5. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1988-01-01

    The International Conference on Nuclear Power Performance and Safety, organized by the International Atomic Energy Agency, was held at the Austria Centre Vienna (ACV) in Vienna, Austria, from 28 September to 2 October 1987. The objective of the Conference was to promote an exchange of worldwide information on the current trends in the performance and safety of nuclear power and its fuel cycle, and to take a forward look at the expectations and objectives for the 1990s. Policy decisions for waste management have already been taken in many countries and the 1990s should be a period of demonstration and implementation of these policies. As ilustrated by data presented from a number of countries, many years of experience in radioactive waste management have been achieved and the technology exists to implement the national plans and policies that have been developed. The establishment of criteria, the development of safety performance methodology and site investigation work are key activities essential to the successful selection, characterization and construction of geological repositories for the final disposal of radioactive waste. Considerable work has been done in these areas over the last ten years and will continue into the 1990s. However, countries that are considering geological disposal for high level waste now recognize the need for relating the technical aspects to public understanding and acceptance of the concept and decision making activities. The real challenge for the 1990s in waste disposal will be successfully to integrate technological activities within a process which responds to institutional and public concern. Volume 5 of the Proceedings comprehends the contributions on waste management in the 1990s. Decontamination and decommissioning, waste management, treatment and disposal, nuclear fuel cycle - present and future. Enrichment services and advanced reactor fuels, improvements in reactor fuel utilization and performance, spent fuel management

  12. Safety climate and culture: Integrating psychological and systems perspectives.

    Science.gov (United States)

    Casey, Tristan; Griffin, Mark A; Flatau Harrison, Huw; Neal, Andrew

    2017-07-01

    Safety climate research has reached a mature stage of development, with a number of meta-analyses demonstrating the link between safety climate and safety outcomes. More recently, there has been interest from systems theorists in integrating the concept of safety culture and to a lesser extent, safety climate into systems-based models of organizational safety. Such models represent a theoretical and practical development of the safety climate concept by positioning climate as part of a dynamic work system in which perceptions of safety act to constrain and shape employee behavior. We propose safety climate and safety culture constitute part of the enabling capitals through which organizations build safety capability. We discuss how organizations can deploy different configurations of enabling capital to exert control over work systems and maintain safe and productive performance. We outline 4 key strategies through which organizations to reconcile the system control problems of promotion versus prevention, and stability versus flexibility. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Analyses to demonstrate the thermal performance of the CASTOR KN12

    International Nuclear Information System (INIS)

    Diersch, R.; Weiss, M.; Tso, C.F.; Powell, D.; Choy, B.I.; Lee, H.Y.

    2004-01-01

    The CASTOR registered KN-12 is a new cask design of GNB for dry and wet transportation of up to 12 PWR spent nuclear fuel assemblies in Korea. It complies with the requirements of 10 CFR 71 [1] and IAEA ST-1 [2] for TYPE B(U)F packages. It received its transport license from the Korean Competent Authority KINS in July 2002 and is now in use in South Korea. Demonstration of the cask's compliance with the regulatory requirements in the area of thermal performance has been carried out by a combination of testing carried out by Korea Atomic Energy Research Institute and analyses carried out by Arup. This paper describes the analyses to demonstrate the thermal performance of the cask and compliance with regulatory requirements under normal and hypothetical accident conditions of transport. Other aspects of the design of the CASTOR registered KN12 are presented in other papers at this conference

  14. Dynamics of safety performance and culture: a group model building approach.

    Science.gov (United States)

    Goh, Yang Miang; Love, Peter E D; Stagbouer, Greg; Annesley, Chris

    2012-09-01

    The management of occupational health and safety (OHS) including safety culture interventions is comprised of complex problems that are often hard to scope and define. Due to the dynamic nature and complexity of OHS management, the concept of system dynamics (SD) is used to analyze accident prevention. In this paper, a system dynamics group model building (GMB) approach is used to create a causal loop diagram of the underlying factors influencing the OHS performance of a major drilling and mining contractor in Australia. While the organization has invested considerable resources into OHS their disabling injury frequency rate (DIFR) has not been decreasing. With this in mind, rich individualistic knowledge about the dynamics influencing the DIFR was acquired from experienced employees with operations, health and safety and training background using a GMB workshop. Findings derived from the workshop were used to develop a series of causal loop diagrams that includes a wide range of dynamics that can assist in better understanding the causal influences OHS performance. The causal loop diagram provides a tool for organizations to hypothesize the dynamics influencing effectiveness of OHS management, particularly the impact on DIFR. In addition the paper demonstrates that the SD GMB approach has significant potential in understanding and improving OHS management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Leading safety performance indicators for resilience assessment of radiopharmaceuticals production process

    International Nuclear Information System (INIS)

    Grecco, Claudio H.S.; Santos, Isaac J.A.L.; Carvalho, Paulo V.R.

    2011-01-01

    Radiopharmaceuticals are radiation-emitting substances used in medicine for radiotherapy and imaging diagnosis. A Research Institute, located in Rio de Janeiro, produces three radiopharmaceuticals: the sodium iodate is used in the diagnosis of thyroid dysfunctions, the meta-iodo-benzyl guanidine is used in the diagnosis of cardiac diseases, and the fluorodeoxyglucose is used in diagnosis in cardiology, oncology, neurology and neuro psychiatry. This paper presents a leading safety performance indicators framework to assess the resilience of radiopharmaceuticals production processes. The organizations that use resilience indicators will be able to pro actively evaluate and manage safety. (author)

  16. Leading safety performance indicators for resilience assessment of radiopharmaceuticals production process

    Energy Technology Data Exchange (ETDEWEB)

    Grecco, Claudio H.S.; Santos, Isaac J.A.L.; Carvalho, Paulo V.R., E-mail: grecco@ien.gov.b, E-mail: luquetti@ien.gov.b, E-mail: paulov@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Instrumentacao e Confiabilidade Humana; Vidal, Mario C.R., E-mail: mvidal@ergonomia.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEP/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia de Producao. Grupo de Ergonomia e Novas Tecnologias (GENTE)

    2011-07-01

    Radiopharmaceuticals are radiation-emitting substances used in medicine for radiotherapy and imaging diagnosis. A Research Institute, located in Rio de Janeiro, produces three radiopharmaceuticals: the sodium iodate is used in the diagnosis of thyroid dysfunctions, the meta-iodo-benzyl guanidine is used in the diagnosis of cardiac diseases, and the fluorodeoxyglucose is used in diagnosis in cardiology, oncology, neurology and neuro psychiatry. This paper presents a leading safety performance indicators framework to assess the resilience of radiopharmaceuticals production processes. The organizations that use resilience indicators will be able to pro actively evaluate and manage safety. (author)

  17. Benchmarking road safety performances of countries.

    NARCIS (Netherlands)

    Wegman, F.C.M. & Oppe, S.

    2014-01-01

    In order to obtain political interest in road safety problems and to learn from other countries’ ‘good practices’, it is often helpful to compare one’s own safety situation with that of other countries. In a number of projects tools have been developed for such comparisons. These tools range from

  18. Breeder design for enhanced performance and safety characteristics

    International Nuclear Information System (INIS)

    Fischer, G.J.; Atefi, B.; Yang, J.W.; Galperin, A.; Segev, M.

    1980-01-01

    A fast breeder reactor design has been created which offers a considerably extended fuel cycle and excellent performance characteristics. An example of a core designed to operate on a ten-year fuel cycle is described in some detail. Use of metal fuel along with a moderator such as beryllium oxide dispersed throughout the core provides both design flexibility and safety advantages such as a strong Doppler feedback and limited sodium void reactivity gain. Local power variations are small for the entire cycle; control requirements are also modest, and fuel cycle costs are low

  19. Performance Test Results of Safety I and C Systems of SMART MMIS

    International Nuclear Information System (INIS)

    Suh, Yong Suk; Keum, Jong Yong; Jeong, Kwang Il; Lee, Joon Ku; Lee, Sang Seok; Kim, Kwan Woong

    2011-01-01

    KAERI has developed SMART (System-integrated Modular Advanced ReacTor), a 330MWt integral pressurized light water reactor that integrates four reactor coolant pumps, one pressurizer, eight steam generators, and one reactor core into a reactor vessel, since 1997 and submitted a SSAR (Standard design Safety Analysis Report) to Korea institute of nuclear safety (KINS) at the end of 2010 for the purpose of achieving the standard design approval (SDA) by the end of 2011. SMART MMIS has been designed with fully digitalized systems. Non-safety instrumentation and control (I and C) systems are designed based on the commercial distributed control systems. The safety I and C systems are designed using a new platform that was developed and validated by KAERI. Safety I and C systems are modularized using the platform. In the protection systems (PSs), datalinks are used to transmit data in a one-way direction in order to meet the independency requirement. In the engineered safety features-component control system (ESF-CCS), network switch devices (NSDs) are used to connect the group and loop controllers. The NSD was also newly developed and validated by KAERI. After validating the platform and NSD, a test facility was developed using the platform and NSDs to validate the performance of safety I and C systems. This paper presents the development and test results from the test facility

  20. Safety investigation of team performance in accidents

    International Nuclear Information System (INIS)

    Petkov, G.; Todorov, V.; Takov, T.; Petrov, V.; Stoychev, K.; Vladimirov, V.; Chukov, I.

    2004-01-01

    The paper presents the capacities of the performance evaluation of teamwork (PET) method. Its practicability and efficiency are illustrated by retrospective human reliability analyse of the famous nuclear and maritime accidents. A quantitative assessment of operators' performance on the base of thermo-hydraulic (T/H) calculations and full-scope simulator data for set of NPP design basic accidents with WWER is demonstrated. The last data are obtained on the 'WWER-1000' full-scope simulator of Kozloduy NPP during the regular practical training of the operators' teams. An outlook on the 'evaluation system of main control room (MCR) operators' reliability' project, based on simulator data of operators' training is given

  1. Comparative approach between nuclear safety and security

    International Nuclear Information System (INIS)

    2009-04-01

    Adopting the definition of nuclear safety and nuclear security as they are specified by IAEA glossaries, this report first outlines that these both notions refer to similar risks but with causes of different nature. They discuss the notions of transparency and confidentiality and outline that security and safety both aims at the protection of population and of the environment. They discuss their organisational principles, notice that both have their own legal and regulatory framework, that authorities have expertise on both, that the responsibility is distributed among operators and the State, and that safety and security cultures are complementary. They analyse the design, exploitation and management principles of security and safety approaches: graded approach, defence-in-depth, synergy between security and safety, same daily monitoring requirement, same necessity to address the return on experience, same need to update a referential, a more constrained exchange of good practices in safety, a necessity to deal with their respective requirements, elaboration of emergency plans, performance of exercises

  2. Safety assessment and improvement of Ignalina NPP against downcomer ruptures outside Accident Localisation System

    International Nuclear Information System (INIS)

    Rimkevicius, S.; Urbonavicius, E.

    2002-01-01

    Accident Localisation System (ALS) of Ignalina NPP is a pressure suppression type confinement, designed to prevent the release of contaminated steam-water mixture to the environment in case of Loss-of-Coolant Accident (LOCA). One of the peculiarities of Ignalina NPP with RBMK-1500 reactors is that not all of the reactor coolant circuit is enclosed within ALS. Some part of downcomers, that connect Drum Separator (DS) and suction header of main circulation pump is located outside ALS. In case of downcomer rupture in DS compartment the discharge is not confined, but flows to the environment through the safety panels installed in the ceiling of DS compartments. Numerous safety analyses were performed to assess the safety of Ignalina NPP against downcomer break outside ALS, and results were used for different applications in order to improve the safety of the plant. This paper presents the overview of the performed analyses, recommendations raised and safety improvements made to enhance the safety level of NPP. One of the applications is to present the recommendations for safety improvement if maximal allowable pressure limits are exceeded. The calculations results demonstrate that in the case of two downcomers rupture in drum separators compartment the maximum permissible pressure in the reactor hall could be exceeded. The knock-out panels from the reactor hall to the environment were recommended and installed for reactor hall overpressure protection. The evaluation of the drainage system efficiency from DS compartments was performed. In this case the especial attention was paid to analyse the water collection and drainage system behaviour in long term after postulated breaks. The analysis results showed that the modernization of the drainage system prevents the accumulation of the released water in the compartments even in the case of two downcomer pipes ruptures, and decreases the release of radioactive fission products (FP) to the environment.(author)

  3. Validation of computer codes used in the safety analysis of Canadian research reactors

    International Nuclear Information System (INIS)

    Bishop, W.E.; Lee, A.G.

    1998-01-01

    AECL has embarked on a validation program for the suite of computer codes that it uses in performing the safety analyses for its research reactors. Current focus is on codes used for the analysis of the two MAPLE reactors under construction at Chalk River but the program will be extended to include additional codes that will be used for the Irradiation Research Facility. The program structure is similar to that used for the validation of codes used in the safety analyses for CANDU power reactors. (author)

  4. Requirements of safety and reliability

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1977-01-01

    The safety strategy for nuclear power plants is characterized by the fact that the high level of safety was attained not as a result of experience, but on the basis of preventive accident analyses and the findings derived from such analyses. Although, in these accident analyses, the deterministic approach is predominant it is supplemented by reliability analyses. The accidents analyzed in nuclear licensing procedures cover a wide spectrum from minor incidents to the design basis accidents which determine the design of the safety devices. The initial and boundary conditions, which are essential for accident analyses, and the determination of the loads occuring in various states during regular operation and in accidents flow into the design of the individual systems and components. The inevitable residual risk and its origins are discussed. (orig./HP) [de

  5. Determination of performance criteria of safety systems in a nuclear power plant via simulated annealing optimization method

    International Nuclear Information System (INIS)

    Jung, Woo Sik

    1993-02-01

    This study presents and efficient methodology that derives design alternatives and performance criteria of safety functions/systems in commercial nuclear power plants. Determination of design alternatives and intermediate-level performance criteria is posed as a reliability allocation problem. The reliability allocation is performed for determination of reliabilities of safety functions/systems from top-level performance criteria. The reliability allocation is a very difficult multi objective optimization problem (MOP) as well as a global optimization problem with many local minima. The weighted Chebyshev norm (WCN) approach in combination with an improved Metropolis algorithm of simulated annealing is developed and applied to the reliability allocation problem. The hierarchy of probabilistic safety criteria (PSC) may consist of three levels, which ranges from the overall top level (e.g., core damage frequency, acute fatality and latent cancer fatality) through the interlnediate level (e.g., unavailiability of safety system/function) to the low level (e.g., unavailability of components, component specifications or human error). In order to determine design alternatives of safety functions/systems and the intermediate-level PSC, the reliability allocation is performed from the top-level PSC. The intermediated level corresponds to an objective space and the top level is related to a risk space. The reliability allocation is performed by means of a concept of two-tier noninferior solutions in the objective and risk spaces within the top-level PSC. In this study, two kinds of towtier noninferior solutions are defined: intolerable intermediate-level PSC and desirable design alternatives of safety functions/systems that are determined from Sets 1 and 2, respectively. Set 1 is obtained by maximizing simultaneously not only safety function/system unavailabilities but also risks. Set 1 reflects safety function/system unavailabilities in the worst case. Hence, the

  6. Performance of balanced bellows safety relief valves

    International Nuclear Information System (INIS)

    Lai, Y.S.

    1992-01-01

    By the nature of its design, the set point and lift of a conventional spring loaded safety relief valve are sensitive to back pressure. One way to reduce the adverse effects of the back pressure on the safety relief valve function is to install a balanced bellows in a safety relief valve. The metallic bellows has a rather wide range of manufacturing tolerance which makes the design of the bellows safety relief valve very complicated. The state-of-the-art balanced bellows safety relief valve can only substantially minimize, but cannot totally eliminate the back pressure effects on its set point and relieving capacity. Set point change is a linear function of the back pressure to the set pressure ratio. Depending on the valve design, the set point correction factor can be either greater or smaller than unity. There exists an allowable back pressure and critical back pressure for each safety relief valve. When total back pressure exceeds the R a , the relieving capacity will be reduced mainly resulting from the valve lift being reduced by the back pressure and the capacity reduction factor should be applied in valve sizing. Once the R c is exceeded, the safety relief valve becomes unstable and loses its over pressure protection capability. The capacity reduction factor is a function of system overpressure, but their relationship is non-linear in nature. (orig.)

  7. A structural equation modelling approach examining the pathways between safety climate, behaviour performance and workplace slipping

    OpenAIRE

    Swedler, David I; Verma, Santosh K; Huang, Yueng-Hsiang; Lombardi, David A; Chang, Wen-Ruey; Brennan, Melayne; Courtney, Theodore K

    2015-01-01

    Objective: Safety climate has previously been associated with increasing safe workplace behaviours and decreasing occupational injuries. This study seeks to understand the structural relationship between employees’ perceptions of safety climate, performing a safety behaviour (ie, wearing slip-resistant shoes) and risk of slipping in the setting of limited-service restaurants. Methods: At baseline, we surveyed 349 employees at 30 restaurants for their perceptions of their safety training and m...

  8. ITER safety

    International Nuclear Information System (INIS)

    Raeder, J.; Piet, S.; Buende, R.

    1991-01-01

    As part of the series of publications by the IAEA that summarize the results of the Conceptual Design Activities for the ITER project, this document describes the ITER safety analyses. It contains an assessment of normal operation effluents, accident scenarios, plasma chamber safety, tritium system safety, magnet system safety, external loss of coolant and coolant flow problems, and a waste management assessment, while it describes the implementation of the safety approach for ITER. The document ends with a list of major conclusions, a set of topical remarks on technical safety issues, and recommendations for the Engineering Design Activities, safety considerations for siting ITER, and recommendations with regard to the safety issues for the R and D for ITER. Refs, figs and tabs

  9. [Patient safety and errors in medicine: development, prevention and analyses of incidents].

    Science.gov (United States)

    Rall, M; Manser, T; Guggenberger, H; Gaba, D M; Unertl, K

    2001-06-01

    "Patient safety" and "errors in medicine" are issues gaining more and more prominence in the eyes of the public. According to newer studies, errors in medicine are among the ten major causes of death in association with the whole area of health care. A new era has begun incorporating attention to a "systems" approach to deal with errors and their causes in the health system. In other high-risk domains with a high demand for safety (such as the nuclear power industry and aviation) many strategies to enhance safety have been established. It is time to study these strategies, to adapt them if necessary and apply them to the field of medicine. These strategies include: to teach people how errors evolve in complex working domains and how types of errors are classified; the introduction of critical incident reporting systems that are free of negative consequences for the reporters; the promotion of continuous medical education; and the development of generic problem-solving skills incorporating the extensive use of realistic simulators wherever possible. Interestingly, the field of anesthesiology--within which realistic simulators were developed--is referred to as a model for the new patient safety movement. Despite this proud track record in recent times though, there is still much to be done even in the field of anesthesiology. Overall though, the most important strategy towards a long-term improvement in patient safety will be a change of "culture" throughout the entire health care system. The "culture of blame" focused on individuals should be replaced by a "safety culture", that sees errors and critical incidents as a problem of the whole organization. The acceptance of human fallability and an open-minded non-punitive analysis of errors in the sense of a "preventive and proactive safety culture" should lead to solutions at the systemic level. This change in culture can only be achieved with a strong commitment from the highest levels of an organization. Patient

  10. Analysis of the reliability of the active injection safety systems of Angra I

    International Nuclear Information System (INIS)

    Frutuoso e Melo, P.F.F.

    1981-01-01

    The reliability of the active emergency core cooling systems of Angra I nuclear power plant is evaluated. The fault tree analysis is employed. The unavailability of the above cited systems, is calculated. A parametric sensitivity analysis has been performed, due to the existing scattering in the failure and repair rate data of these system's components. The minimal cut sets were determined and, as a final step, a reliability importance analysis has been performed. This final step has required the development of a computer program. The methodology and data from the 'Reactor Safety Study' (Wash-1400) (in which the reliability of safety systems of a tipical PWR plant is calculated), is employed. The unavailability values for the safety systems analysed are too low, thus showing that in most cases the systems analysed are available to mitigate the effects of a loss-of-coolant accident. (Author) [pt

  11. Performance improvement of the Annular Core Pulse Reactor for reactor safety experiments

    International Nuclear Information System (INIS)

    Reuscher, J.A.; Pickard, P.S.

    1976-01-01

    The Annular Core Pulse Reactor (ACPR) is a TRIGA type reactor which has been in operation at Sandia Laboratories since 1967. The reactor is utilized in a wide variety of experimental programs which include radiation effects, neutron radiography, activation analysis, and fast reactor safety. During the past several years, the ACPR has become an important experimental facility for the United States Fast Reactor Safety Research Program and questions of interest to the safety of the LMFBR are being addressed. In order to enhance the capabilities of the ACPR for reactor safety experiments, a project to improve the performance of the reactor was initiated. It is anticipated that the pulse fluence can be increased by a factor of 2.0 to 2.5 utilizing a two-region core concept with high heat capacity fuel elements around the central irradiation cavity. In addition, the steady-state power of the reactor will be increased by about a factor of two. The new features of the improvements are described

  12. Three-dimensional analyses of fluid flow and heat transfer for moderator integrity assessment in PHWR

    International Nuclear Information System (INIS)

    Yu, S.-O.; Kim, M.; Kim, H.-J.

    2002-01-01

    A CANDU reactor has the unique features and the intrinsic safety related characteristics that distinguish it from other water-cooled thermal reactors. If there is the loss of coolant accident (LOCA) and a coincident failure of the emergency coolant injection (ECI) system, the heavy water moderator is continuously cooled, providing a heat sink for decay heat produced in the fuel. Therefore, it is one of major concerns to estimate the local subcooling of moderator inside the calandria vessel under postulated accident in CANDU safety analyses. The Canadian Nuclear Safety Commission (CNSC), a regulatory body in Canada, categorized the integrity of moderator as a generic safety issue and recommended that a series of experimental works be performed to verify the safety evaluation codes for individual simulated condition of nuclear power plant, comparing with the results of three-dimensional experimental data. In this study, three-dimensional analyses of fluid flow and heat transfer have been performed to assess thermal-hydraulic characteristics for moderator simulation conducted by SPEL (Sheridan Park Experimental Laboratory) experimental facility. The parametric study has also carried out to investigate the effect of major parameters such as flowrate, temperature, and heat load generated from the heaters on the temperature and flow distribution inside the moderator. Three flow patterns have been identified in the moderator with flowrate, heat generation, or both. As the transition of fluid flow is progressed, it is found that the dimensionless numbers (Ar) and the ratio of buoyancy to inertia forces are constant. (author)

  13. LWR safety studies. Analyses and further assessments relating to the German Risk Assessment Study on Nuclear Power Plants. Vol. 3

    International Nuclear Information System (INIS)

    1983-01-01

    Critical review of the analyses of the German Risk Assessment Study on Nuclear Power Plants (DRS) concerning the reliability of the containment under accident conditions and the conditions of fission product release (transport and distribution in the environment). Main point of interest in this context is an explosion in the steam section and its impact on the containment. Critical comments are given on the models used in the DRS for determining the accident consequences. The analyses made deal with the mathematical models and database for propagation calculations, the methods of dose computation and assessment of health hazards, and the modelling of protective and safety measures. Social impacts of reactor accidents are also considered. (RF) [de

  14. Technical difficulties and challenges for performing safety analysis on digital I and C systems

    International Nuclear Information System (INIS)

    Yih, Swu

    1996-01-01

    Performing safety analysis on digital I and C systems is an important task for nuclear safety analysts. The analysis results can not only confirm that the system is well-developed but also provide crucial evidence for licensing process. However, currently both I and C developers and regulators have difficulties in evaluating the safety of digital I and C systems. To investigate this problem, this paper propose a frame-based model to analyze the working and failure mechanisms of software and its interaction with the environment. Valid isomorphic relationship between the logical (software) and the physical (hardware environment) frame is identified as a major factor that determines the safe behavior of the software. The failures that may potentially cause the violation of isomorphic relations are also discussed. To perform safety analysis on digital I and C systems, analysts need to predict the effects incurred by such failures. However, due to lack of continuity, regularity, integrity, and high complexity of software structure, software does not have a stable and predictable pattern of behavior, which in turn makes the trustworthiness of results of software safety analysis susceptible. Our model can explain many troublesome events experienced by computer controlled systems. Implications and possible directions for improvement are also discussed. (author)

  15. Preliminary Performance Analysis Program Development for Safety System with Safeguard Vessel

    International Nuclear Information System (INIS)

    Kang, Han-Ok; Lee, Jun; Park, Cheon-Tae; Yoon, Ju-Hyeon; Park, Keun-Bae

    2007-01-01

    SMART is an advanced modular integral type pressurized water reactor for a seawater desalination and an electricity production. Major components of the reactor coolant system such as the pressurizer, Reactor Coolant Pump (RCP), and steam generators are located inside the reactor vessel. The SMART can fundamentally eliminate the possibility of large break loss of coolant accidents (LBLOCAs), improve the natural circulation capability, and better accommodate and thus enhance a resistance to a wide range of transients and accidents. The safety goals of the SMART are enhanced through highly reliable safety systems such as the passive residual heat removal system (PRHRS) and the safeguard vessel coupled with the passive safety injection feature. The safeguard vessel is a steel-made, leak-tight pressure vessel housing the RPV, SIT, and the associated valves and pipelines. A primary function of the safeguard vessel is to confine any radioactive release from the primary circuit within the vessel under DBAs related to loss of the integrity of the primary system. A preliminary performance analysis program for a safety system using the safeguard vessel is developed in this study. The developed program is composed of several subroutines for the reactor coolant system, passive safety injection system, safeguard vessel including the pressure suppression pool, and PRHRS. A small break loss of coolant accident at the upper part of a reactor is analyzed and the results are discussed

  16. Biosphere Modeling and Analyses in Support of Total System Performance Assessment

    International Nuclear Information System (INIS)

    Tappen, J. J.; Wasiolek, M. A.; Wu, D. W.; Schmitt, J. F.; Smith, A. J.

    2002-01-01

    The Nuclear Waste Policy Act of 1982 established the obligations of and the relationship between the U.S. Environmental Protection Agency (EPA), the U.S. Nuclear Regulatory Commission (NRC), and the U.S. Department of Energy (DOE) for the management and disposal of high-level radioactive wastes. In 1985, the EPA promulgated regulations that included a definition of performance assessment that did not consider potential dose to a member of the general public. This definition would influence the scope of activities conducted by DOE in support of the total system performance assessment program until 1995. The release of a National Academy of Sciences (NAS) report on the technical basis for a Yucca Mountain-specific standard provided the impetus for the DOE to initiate activities that would consider the attributes of the biosphere, i.e. that portion of the earth where living things, including man, exist and interact with the environment around them. The evolution of NRC and EPA Yucca Mountain-specific regulations, originally proposed in 1999, was critical to the development and integration of biosphere modeling and analyses into the total system performance assessment program. These proposed regulations initially differed in the conceptual representation of the receptor of interest to be considered in assessing performance. The publication in 2001 of final regulations in which the NRC adopted standard will permit the continued improvement and refinement of biosphere modeling and analyses activities in support of assessment activities

  17. Biosphere Modeling and Analyses in Support of Total System Performance Assessment

    International Nuclear Information System (INIS)

    Jeff Tappen; M.A. Wasiolek; D.W. Wu; J.F. Schmitt

    2001-01-01

    The Nuclear Waste Policy Act of 1982 established the obligations of and the relationship between the U.S. Environmental Protection Agency (EPA), the U.S. Nuclear Regulatory Commission (NRC), and the U.S. Department of Energy (DOE) for the management and disposal of high-level radioactive wastes. In 1985, the EPA promulgated regulations that included a definition of performance assessment that did not consider potential dose to a member of the general public. This definition would influence the scope of activities conducted by DOE in support of the total system performance assessment program until 1995. The release of a National Academy of Sciences (NAS) report on the technical basis for a Yucca Mountain-specific standard provided the impetus for the DOE to initiate activities that would consider the attributes of the biosphere, i.e. that portion of the earth where living things, including man, exist and interact with the environment around them. The evolution of NRC and EPA Yucca Mountain-specific regulations, originally proposed in 1999, was critical to the development and integration of biosphere modeling and analyses into the total system performance assessment program. These proposed regulations initially differed in the conceptual representation of the receptor of interest to be considered in assessing performance. The publication in 2001 of final regulations in which the NRC adopted standard will permit the continued improvement and refinement of biosphere modeling and analyses activities in support of assessment activities

  18. Improved nuclear power plant operations through performance-based safety regulation

    International Nuclear Information System (INIS)

    Golay, M.W.

    1998-01-01

    The US Nuclear Regulatory Commission (NRC) has recently instituted use of Risk-Informed, Performance-Based Regulation (RIPBR) for protecting public safety in the use of nuclear power. This was done most importantly during June 1997 in issuance of revised Regulatory Guides and Standard Review Plan (SRP) guidance to licensees and the NRC staff. The propose of RIPBR is to replace the previously-used system of prescriptive regulation, which focuses upon what licensees must do, to a system which focuses upon what they must achieve. RIPBR is goals-oriented and the previous system is means-oriented. This regulatory change is potentially revolutionary, and offers many opportunities for improving the efficiency of improving both nuclear power operations and safety. However, it must be nurtured carefully if is to be successful. The work reported in this paper is concerned with showing how RIPBR can be implemented successfully, with benefits in both areas being attained. It is also concerned with how several of the practical barriers to establishing a workable new regulatory system can be overcome. This work, sponsored by the US Dept. of Energy, is being performed in collaboration with Northeast Utilities Services Crop. and the Idaho National Engineering Laboratory. In our work we have examined a practical safety-related example at the Millstone 3 nuclear power station for implementation of RIPBR. In this examination we have formulated a set of modifications to the plant's technical specifications, and are in the process of investigating their bases and refining the modifications. (author)

  19. Exploiting data from safety investigations and processes to assess performance of safety management aspects

    NARCIS (Netherlands)

    Karanikas, Nektarios

    2016-01-01

    This paper presents an alternative way to use records from safety investigations as a means to support the evaluation of safety management (SM) aspects. Datasets from safety investigation reports and progress records of an aviation organization were analyzed with the scope of assessing safety

  20. Uncodified safety norms and procedural compliance in nuclear power plants

    International Nuclear Information System (INIS)

    Ignatov, M.

    2000-01-01

    The mechanism of procedural compliance in operational teams is analysed. It is investigated the interrelationship between codified (institutional or officials) rules and uncodified safety norm and their influence on the job performance, social behaviour and social interaction of the operational personnel

  1. Institute for safety technology

    International Nuclear Information System (INIS)

    1991-01-01

    In the area of nuclear reactor safety studies, the Institute for Safety Technology (STI) concentrated its efforts in analysing experimentally and numerically phenomena which characterize highly-improbable but very severe accidents either for light water or for sodium cooled reactors. In the STI nuclear isle, three new laboratories for waste (PETRA), fusion (ETHEL) and safeguards, (PERLA) activities are approaching completion and have made substantial progress in their licensing procedure. The Institute started activities in the non-nuclear safety research area only a few years ago and has been able this year to present its first significant experimental and theoretical results in the areas of runaway reactions, accidental release of products and their deflagration/detonation. Concerning Reference Methods for the Evaluation of Structure Reliability a better understanding was gained of the nonlinear cyclic and dynamic behaviour of materials and structures by performing experiments and developing constitutive and structural member models leading to the computer simulation of complete structures

  2. Slovenske elektrarne, Mochovce nuclear power plant. Safety strategy

    International Nuclear Information System (INIS)

    1999-01-01

    In this leaflet the Management's declaration is presented. This declaration contains: operation management and quality assurance, plant commissioning, maintenance and repairs, reactor physics, radiation protection, surveillance programmes, events analyses and experience feed-back, accident management procedures and training, emergency planning and preparedness review of safety performance, human resources, and personnel responsibility

  3. Probabilistic safety analysis and interpretation thereof

    International Nuclear Information System (INIS)

    Steininger, U.; Sacher, H.

    1999-01-01

    Increasing use of the instrumentation of PSA is being made in Germany for quantitative technical safety assessment, for example with regard to incidents which must be reported and forwarding of information, especially in the case of modification of nuclear plants. The Commission for Nuclear Reactor Safety recommends regular execution of PSA on a cycle period of ten years. According to the PSA guidance instructions, probabilistic analyses serve for assessing the degree of safety of the entire plant, expressed as the expectation value for the frequency of endangering conditions. The authors describe the method, action sequence and evaluation of the probabilistic safety analyses. The limits of probabilistic safety analyses arise in the practical implementation. Normally the guidance instructions for PSA are confined to the safety systems, so that in practice they are at best suitable for operational optimisation only to a limited extent. The present restriction of the analyses has a similar effect on power output operation of the plant. This seriously degrades the utilitarian value of these analyses for the plant operators. In order to further develop PSA as a supervisory and operational optimisation instrument, both authors consider it to be appropriate to bring together the specific know-how of analysts, manufacturers, plant operators and experts. (orig.) [de

  4. Sensitivity studies for 3-D rod ejection analyses on axial power shape

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min-Ho; Park, Jin-Woo; Park, Guen-Tae; Ryu, Seok-Hee; Um, Kil-Sup; Lee, Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)

    2015-10-15

    The current safety analysis methodology using the point kinetics model combined with numerous conservative assumptions result in unrealistic prediction of the transient behavior wasting huge margin for safety analyses while the safety regulation criteria for the reactivity initiated accident are going strict. To deal with this, KNF is developing a 3-D rod ejection analysis methodology using the multi-dimensional code coupling system CHASER. The CHASER system couples three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST using message passing interface (MPI). A sensitivity study for 3-D rod ejection analysis on axial power shape (APS) is carried out to survey the tendency of safety parameters by power distributions and to build up a realistic safety analysis methodology while maintaining conservatism. The currently developing 3-D rod ejection analysis methodology using the multi-dimensional core transient analysis code system, CHASER was shown to reasonably reflect the conservative assumptions by tuning up kinetic parameters.

  5. Unique differences in applying safety analyses for a graphite moderated, channel reactor

    International Nuclear Information System (INIS)

    Moffitt, R.L.

    1993-06-01

    Unlike its predecessors, the N Reactor at the Hanford Site in Washington State was designed to produce electricity for civilian energy use as well as weapons-grade plutonium. This paper describes the major problems associated with applying safety analysis methodologies developed for commercial light water reactors (LWR) to a unique reactor like the N Reactor. The focus of the discussion is on non-applicable LWR safety standards and computer modeling/analytical variances of standards. The approaches used to resolve these problems to develop safety standards and limits for the N Reactor are described

  6. Performance assessment analyses unique to Department of Energy spent nuclear fuel

    International Nuclear Information System (INIS)

    Loo, H.H.; Duguid, J.J.

    2000-01-01

    This paper describes the iterative process of grouping and performance assessment that has led to the current grouping of the U.S. Department of Energy (DOE) spent nuclear fuel (SNF). The unique sensitivity analyses that form the basis for incorporating DOE fuel into the total system performance assessment (TSPA) base case model are described. In addition, the chemistry that results from dissolution of DOE fuel and high level waste (HLW) glass in a failed co-disposal package, and the effects of disposal of selected DOE SNF in high integrity cans are presented

  7. Parametric Criticality Safety Calculations for Arrays of TRU Waste Containers

    Energy Technology Data Exchange (ETDEWEB)

    Gough, Sean T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    The Nuclear Criticality Safety Division (NCSD) has performed criticality safety calculations for finite and infinite arrays of transuranic (TRU) waste containers. The results of these analyses may be applied in any technical area onsite (e.g., TA-54, TA-55, etc.), as long as the assumptions herein are met. These calculations are designed to update the existing reference calculations for waste arrays documented in Reference 1, in order to meet current guidance on calculational methodology.

  8. Cognitive functioning differentially predicts different dimensions of older drivers' on-road safety.

    Science.gov (United States)

    Aksan, Nazan; Anderson, Steve W; Dawson, Jeffrey; Uc, Ergun; Rizzo, Matthew

    2015-02-01

    The extent to which deficits in specific cognitive domains contribute to older drivers' safety risk in complex real-world driving tasks is not well understood. We selected 148 drivers older than 70 years of age both with and without neurodegenerative diseases (Alzheimer disease-AD and Parkinson disease-PD) from an existing driving database of older adults. Participant assessments included on-road driving safety and cognitive functioning in visuospatial construction, speed of processing, memory, and executive functioning. The standardized on-road drive test was designed to examine multiple facets of older driver safety including navigation performance (e.g., following a route, identifying landmarks), safety errors while concurrently performing secondary navigation tasks ("on-task" safety errors), and safety errors in the absence of any secondary navigation tasks ("baseline" safety errors). The inter-correlations of these outcome measures were fair to moderate supporting their distinctiveness. Participants with diseases performed worse than the healthy aging group on all driving measures and differences between those with AD and PD were minimal. In multivariate analyses, different domains of cognitive functioning predicted distinct facets of driver safety on road. Memory and set-shifting predicted performance in navigation-related secondary tasks, speed of processing predicted on-task safety errors, and visuospatial construction predicted baseline safety errors. These findings support broad assessments of cognitive functioning to inform decisions regarding older driver safety on the road and suggest navigation performance may be useful in evaluating older driver fitness and restrictions in licensing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Safety Basis Report

    International Nuclear Information System (INIS)

    R.J. Garrett

    2002-01-01

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities

  10. Safety Basis Report

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2002-01-14

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  11. Exposure data and risk indicators for safety performance assessment in Europe.

    NARCIS (Netherlands)

    Papadimitriou, E. Yannis, G. Bijleveld, F.D. & Cardoso, J.L.

    2013-01-01

    The objective of this paper is the analysis of the state-of-the-art in risk indicators and exposure data for safety performance assessment in Europe, in terms of data availability, collection methodologies and use. More specifically, the concepts of exposure and risk are explored, as well as the

  12. RECOMMENDED TRITIUM OXIDE DEPOSITION VELOCITY FOR USE IN SAVANNAH RIVER SITE SAFETY ANALYSES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, P.; Murphy, C.; Viner, B.; Hunter, C.; Jannik, T.

    2012-04-03

    The Defense Nuclear Facilities Safety Board (DNFSB) has recently questioned the appropriate value for tritium deposition velocity used in the MELCOR Accident Consequence Code System Ver. 2 (Chanin and Young 1998) code when estimating bounding dose (95th percentile) for safety analysis (DNFSB 2011). The purpose of this paper is to provide appropriate, defensible values of the tritium deposition velocity for use in Savannah River Site (SRS) safety analyses. To accomplish this, consideration must be given to the re-emission of tritium after deposition. Approximately 85% of the surface area of the SRS is forested. The majority of the forests are pine plantations, 68%. The remaining forest area is 6% mixed pine and hardwood and 26% swamp hardwood. Most of the path from potential release points to the site boundary is through forested land. A search of published studies indicate daylight, tritiated water (HTO) vapor deposition velocities in forest vegetation can range from 0.07 to 2.8 cm/s. Analysis of the results of studies done on an SRS pine plantation and climatological data from the SRS meteorological network indicate that the average deposition velocity during daylight periods is around 0.42 cm/s. The minimum deposition velocity was determined to be about 0.1 cm/s, which is the recommended bounding value. Deposition velocity and residence time (half-life) of HTO in vegetation are related by the leaf area and leaf water volume in the forest. For the characteristics of the pine plantation at SRS the residence time corresponding to the average, daylight deposition velocity is 0.4 hours. The residence time corresponding to the night-time deposition velocity of 0.1 cm/s is around 2 hours. A simple dispersion model which accounts for deposition and re-emission of HTO vapor was used to evaluate the impact on exposure to the maximally exposed offsite individual (MOI) at the SRS boundary (Viner 2012). Under conditions that produce the bounding, 95th percentile MOI exposure

  13. Optimization of a Centrifugal Boiler Circulating Pump's Casing Based on CFD and FEM Analyses

    Directory of Open Access Journals (Sweden)

    Zhigang Zuo

    2014-04-01

    Full Text Available It is important to evaluate the economic efficiency of boiler circulating pumps in manufacturing process from the manufacturers' point of view. The possibility of optimizing the pump casing with respect to structural pressure integrity and hydraulic performance was discussed. CFD analyses of pump models with different pump casing sizes were firstly carried out for the hydraulic performance evaluation. The effects of the working temperature and the sealing ring on the hydraulic efficiency were discussed. A model with casing diameter of 0.875D40 was selected for further analyses. FEM analyses were then carried out on different combinations of casing sizes, casing wall thickness, and materials, to evaluate its safety related to pressure integrity, with respect to both static and fatigue strength analyses. Two models with forging and cast materials were selected as final results.

  14. An overview of performance assessment methodology

    International Nuclear Information System (INIS)

    Hongnian Jow

    2010-01-01

    The definition of performance assessment (PA) within the context of a geologic repository program is a post-closure safety assessment; a system analysis of hazards associated with the facility and the ability of the site and the design of the facility to provide for the safety functions. For the last few decades, PA methodology bas been developed and applied to different waste disposal programs around the world. PA has been used in the safety analyses for waste disposal repositories for low-level waste, intermediate level waste, and high-level waste including spent nuclear fuels. This paper provides an overview of the performance assessment methodology and gives examples of its applications for the Yucca Mountain Project. (authors)

  15. GT-MHR design, performance, and safety

    International Nuclear Information System (INIS)

    Neylan, A.J.; Shenoy, A.; Silady, F.A.; Dunn, T.D.

    1994-11-01

    The Gas Turbine-Modular Helium Reactor (GT-MHR) is the result of coupling the evolution of a low power density passively safe modular reactor with key technology developments in the U.S. during the last decade: large industrial gas turbines; large active magnetic bearings; and compact, highly effective plate-fin heat exchangers. This is accomplished through the unique use of the Brayton cycle to produce electricity with the helium as primary coolant from the reactor directly driving the gas turbine electrical generator. This cycle can achieve a high net efficiency in the range of 45% to 48%. In the design of the GT-MHR the desirable inherent characteristics of the inert helium coolant, graphite core, and the coated fuel particles are supplemented with specific design features such as passive heat removal to achieve the safety objective of not disturbing the normal day-to-day activities of the public even for beyond design basis rare accidents. Each GT-MHR plant consists of four modules. The GT-MHR module components are contained within steel pressure vessels: a reactor vessel, a power conversion vessel, and a connecting cross vessel. All vessels are sited underground in a concrete silo, which serves as an independent vented low pressure containment structure. By capitalizing on industrial and aerospace gas turbine development, highly effective heat exchanger designs, and inherent gas cooled reactor temperature characteristics, the passively safe GT-MHR provides a sound technical, monetary, and environmental basis for new nuclear power generating capacity. This paper provides an update on the status of the design, which has been under development on the US-DOE program since February 1993. An assessment of plant performance and safety is also included

  16. Exploring the state of health and safety management system performance measurement in mining organizations.

    Science.gov (United States)

    Haas, Emily Joy; Yorio, Patrick

    2016-03-01

    Complex arguments continue to be articulated regarding the theoretical foundation of health and safety management system (HSMS) performance measurement. The culmination of these efforts has begun to enhance a collective understanding. Despite this enhanced theoretical understanding, however, there are still continuing debates and little consensus. The goal of the current research effort was to empirically explore common methods to HSMS performance measurement in mining organizations. The purpose was to determine if value and insight could be added into the ongoing approaches of the best ways to engage in health and safety performance measurement. Nine site-level health and safety management professionals were provided with 133 practices corresponding to 20 HSMS elements, each fitting into the plan, do, check, act phases common to most HSMS. Participants were asked to supply detailed information as to how they (1) assess the performance of each practice in their organization, or (2) would assess each practice if it were an identified strategic imperative. Qualitative content analysis indicated that the approximately 1200 responses provided could be described and categorized into interventions , organizational performance , and worker performance . A discussion of how these categories relate to existing indicator frameworks is provided. The analysis also revealed divergence in two important measurement issues; (1) quantitative vs qualitative measurement and reporting; and (2) the primary use of objective or subjective metrics. In lieu of these findings we ultimately recommend a balanced measurement and reporting approach within the three metric categories and conclude with suggestions for future research.

  17. Accident analyses performed for the Norwegian committee on nuclear power

    International Nuclear Information System (INIS)

    Tveten, U.; Thomassen, D.; Kvaal, E.

    1979-02-01

    As part of the work performed for the Norwegian Government Committee on Nuclear Power, risk calculations were carried out for two examples of possible reactor sites in Norway. The calculations were performed with the computer program COMO (or CRACK), which was also used in the American reactor safety study (WASH-1400). In connection with the Norwegian calculations some modifications were made to the program, and relevant data for Norwegian conditions were introduced. The atmospheric dispersion model and meteorological data are discussed at some length. An analysi of the population distribution around both sites is presented and land usage is also discussed. Radiation dose calculations internal, and external, are summarised. Shielding factors from terrain and buildings are also given, and the effect of evacuation briefly discussed. Health effects, immediate mortalities, and delayed and genetic effects are discussed at some length. The economic consequences of an accident due to e.g. evacuation, condemnation of agricultural products, cost of decontamination, loss in property value and relocation costs are estimated. The results are presented graphically as a function of probability. (JIW)

  18. The role of safety analyses in site selection. Some personal observations based on the experience from the Swiss site selection process

    Energy Technology Data Exchange (ETDEWEB)

    Zuidema, Piet [Nagra, Wettingen (Switzerland)

    2015-07-01

    In Switzerland, the site selection process according to the ''Sectoral Plan for Deep Geological Repositories'' (BFE 2008) is underway since 2008. This process takes place in three stages. In stage 1 geological siting regions (six for the L/ILW repository and three for the HLW repository) have been identified, in stage 2 sites for the surface facilities have been identified for all siting regions in close co-operation with the sting regions and a narrowing down of the number of siting regions based on geological criteria will take place. In stage 3 the sites for a general license application are selected and the general license applications will be submitted which eventually will lead to the siting decision for both repository types. In the Swiss site selection process, safety has the highest priority. Many factors affect safety and thus a whole range of safety-related issues are considered in the identification and screening of siting possibilities. Besides dose calculations a range of quantitative and qualitative issues are considered. Dose calculations are performed in all three stages of the site selection process. In stage 1 generic safety calculations were made to develop criteria to be used for the identification of potential siting regions. In stage 2, dose calculations are made for comparing the different siting regions according to a procedure prescribed in detail by the regulator. Combined with qualitative evaluations this will lead to a narrowing down of the number of siting regions to at least two siting regions for each repository type. In stage 3 full safety cases will be prepared as part of the documentation for the general license applications. Besides the dose calculations, many other issues related to safety are analyzed in a quantitative and qualitative manner. These consider the 13 criteria defined in the Sectoral Plan and the corresponding indicators. The features analyzed cover the following broad themes: efficiency of

  19. The role of safety analyses in site selection. Some personal observations based on the experience from the Swiss site selection process

    International Nuclear Information System (INIS)

    Zuidema, Piet

    2015-01-01

    In Switzerland, the site selection process according to the ''Sectoral Plan for Deep Geological Repositories'' (BFE 2008) is underway since 2008. This process takes place in three stages. In stage 1 geological siting regions (six for the L/ILW repository and three for the HLW repository) have been identified, in stage 2 sites for the surface facilities have been identified for all siting regions in close co-operation with the sting regions and a narrowing down of the number of siting regions based on geological criteria will take place. In stage 3 the sites for a general license application are selected and the general license applications will be submitted which eventually will lead to the siting decision for both repository types. In the Swiss site selection process, safety has the highest priority. Many factors affect safety and thus a whole range of safety-related issues are considered in the identification and screening of siting possibilities. Besides dose calculations a range of quantitative and qualitative issues are considered. Dose calculations are performed in all three stages of the site selection process. In stage 1 generic safety calculations were made to develop criteria to be used for the identification of potential siting regions. In stage 2, dose calculations are made for comparing the different siting regions according to a procedure prescribed in detail by the regulator. Combined with qualitative evaluations this will lead to a narrowing down of the number of siting regions to at least two siting regions for each repository type. In stage 3 full safety cases will be prepared as part of the documentation for the general license applications. Besides the dose calculations, many other issues related to safety are analyzed in a quantitative and qualitative manner. These consider the 13 criteria defined in the Sectoral Plan and the corresponding indicators. The features analyzed cover the following broad themes: efficiency of

  20. Safety performance assessment of food industry facilities using a fuzzy approach

    Directory of Open Access Journals (Sweden)

    F. Barreca

    2013-09-01

    Full Text Available The latest EU policies focus on the issue of food safety with a view to assuring adequate and standard quality levels for the food produced and/or consumed within the EC. To that purpose, the environment where agricultural products are manufactured and processed plays a crucial role in achieving food hygiene. As a consequence, it is of the utmost importance to adopt proper building solutions which meet health and hygiene requirements and to use suitable tools to measure the levels achieved. Similarly, it is necessary to verify and evaluate the level of safety and welfare of the workers in their working environment. The safety of the workers has not only an ethical and social value but also an economic implication, since possible accidents or environmental stressors are the major causes of the lower efficiency and productivity of workers. However, the technical solutions adopted in the manufacturing facilities in order to achieve adequate levels of safety and welfare of the workers are not always consistent with the solutions aimed at achieving adequate levels of food hygiene, even if both of them comply with sectoral rules which are often unconnected with each other. Therefore, it is fundamental to design suitable models of analysis that allow assessing buildings as a whole, taking into account both health and hygiene safety as well as the safety and welfare of workers. Hence, this paper proposes an evaluation model that, based on an established study protocol and on the application of a fuzzy logic procedure, allows evaluating the global safety level of a building. The proposed model allows to obtain a synthetic and global value of the building performance in terms of food hygiene and safety and welfare of the workers as well as to highlight possible weaknesses. Though the model may be applied in either the design or the operational phase of a building, this paper focuses on its application to certain buildings already operational in a specific