WorldWideScience

Sample records for safety analyses developments

  1. SCALE Graphical Developments for Improved Criticality Safety Analyses

    International Nuclear Information System (INIS)

    Barnett, D.L.; Bowman, S.M.; Horwedel, J.E.; Petrie, L.M.

    1999-01-01

    New computer graphic developments at Oak Ridge National Ridge National Laboratory (ORNL) are being used to provide visualization of criticality safety models and calculational results as well as tools for criticality safety analysis input preparation. The purpose of this paper is to present the status of current development efforts to continue to enhance the SCALE (Standardized Computer Analyses for Licensing Evaluations) computer software system. Applications for criticality safety analysis in the areas of 3-D model visualization, input preparation and execution via a graphical user interface (GUI), and two-dimensional (2-D) plotting of results are discussed

  2. Development of the evaluation methods in reactor safety analyses and core characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In order to support the safety reviews by NRA on reactor safety design including the phenomena with multiple failures, the computer codes are developed and the safety evaluations with analyses are performed in the areas of thermal hydraulics and core characteristics evaluation. In the code preparation of safety analyses, the TRACE and RELAP5 code were prepared to conduct the safety analyses of LOCA and beyond design basis accidents with multiple failures. In the core physics code preparation, the functions of sensitivity and uncertainty analysis were incorporated in the lattice physics code CASMO-4. The verification of improved CASMO-4 /SIMULATE-3 was continued by using core physics data. (author)

  3. Code development and analyses within the area of transmutation and safety

    International Nuclear Information System (INIS)

    Maschek, W.

    2002-01-01

    A strong code development is going on to meet various demands resulting from the development of dedicated reactors for transmutation and incineration. Code development is concerned with safety codes and general codes needed for assessing scenarios and transmutation strategies. Analyses concentrate on various ADS systems with solid and liquid molten salt fuels. Analyses deal with ADS Demo Plant (5th FP EU) and transmuters with advanced fuels

  4. Safety analyses for reprocessing and waste processing

    International Nuclear Information System (INIS)

    1983-03-01

    Presentation of an incident analysis of process steps of the RP, simplified considerations concerning safety, and safety analyses of the storage and solidification facilities of the RP. A release tree method is developed and tested. An incident analysis of process steps, the evaluation of the SRL-study and safety analyses of the storage and solidification facilities of the RP are performed in particular. (DG) [de

  5. Methodology development for statistical evaluation of reactor safety analyses

    International Nuclear Information System (INIS)

    Mazumdar, M.; Marshall, J.A.; Chay, S.C.; Gay, R.

    1976-07-01

    In February 1975, Westinghouse Electric Corporation, under contract to Electric Power Research Institute, started a one-year program to develop methodology for statistical evaluation of nuclear-safety-related engineering analyses. The objectives of the program were to develop an understanding of the relative efficiencies of various computational methods which can be used to compute probability distributions of output variables due to input parameter uncertainties in analyses of design basis events for nuclear reactors and to develop methods for obtaining reasonably accurate estimates of these probability distributions at an economically feasible level. A series of tasks was set up to accomplish these objectives. Two of the tasks were to investigate the relative efficiencies and accuracies of various Monte Carlo and analytical techniques for obtaining such estimates for a simple thermal-hydraulic problem whose output variable of interest is given in a closed-form relationship of the input variables and to repeat the above study on a thermal-hydraulic problem in which the relationship between the predicted variable and the inputs is described by a short-running computer program. The purpose of the report presented is to document the results of the investigations completed under these tasks, giving the rationale for choices of techniques and problems, and to present interim conclusions

  6. Architecture Level Safety Analyses for Safety-Critical Systems

    Directory of Open Access Journals (Sweden)

    K. S. Kushal

    2017-01-01

    Full Text Available The dependency of complex embedded Safety-Critical Systems across Avionics and Aerospace domains on their underlying software and hardware components has gradually increased with progression in time. Such application domain systems are developed based on a complex integrated architecture, which is modular in nature. Engineering practices assured with system safety standards to manage the failure, faulty, and unsafe operational conditions are very much necessary. System safety analyses involve the analysis of complex software architecture of the system, a major aspect in leading to fatal consequences in the behaviour of Safety-Critical Systems, and provide high reliability and dependability factors during their development. In this paper, we propose an architecture fault modeling and the safety analyses approach that will aid in identifying and eliminating the design flaws. The formal foundations of SAE Architecture Analysis & Design Language (AADL augmented with the Error Model Annex (EMV are discussed. The fault propagation, failure behaviour, and the composite behaviour of the design flaws/failures are considered for architecture safety analysis. The illustration of the proposed approach is validated by implementing the Speed Control Unit of Power-Boat Autopilot (PBA system. The Error Model Annex (EMV is guided with the pattern of consideration and inclusion of probable failure scenarios and propagation of fault conditions in the Speed Control Unit of Power-Boat Autopilot (PBA. This helps in validating the system architecture with the detection of the error event in the model and its impact in the operational environment. This also provides an insight of the certification impact that these exceptional conditions pose at various criticality levels and design assurance levels and its implications in verifying and validating the designs.

  7. Periodic safety analyses; Les essais periodiques

    Energy Technology Data Exchange (ETDEWEB)

    Gouffon, A; Zermizoglou, R

    1990-12-01

    The IAEA Safety Guide 50-SG-S8 devoted to 'Safety Aspects of Foundations of Nuclear Power Plants' indicates that operator of a NPP should establish a program for inspection of safe operation during construction, start-up and service life of the plant for obtaining data needed for estimating the life time of structures and components. At the same time the program should ensure that the safety margins are appropriate. Periodic safety analysis are an important part of the safety inspection program. Periodic safety reports is a method for testing the whole system or a part of the safety system following the precise criteria. Periodic safety analyses are not meant for qualification of the plant components. Separate analyses are devoted to: start-up, qualification of components and materials, and aging. All these analyses are described in this presentation. The last chapter describes the experience obtained for PWR-900 and PWR-1300 units from 1986-1989.

  8. Chapter No.4. Safety analyses

    International Nuclear Information System (INIS)

    2002-01-01

    In 2001 the activity in the field of safety analyses was focused on verification of the safety analyses reports for NPP V-2 Bohunice and NPP Mochovce concerning the new profiled fuel and probabilistic safety assessment study for NPP Mochovce. The calculation safety analyses were performed and expert reviews for the internal UJD needs were elaborated. An important part of work was performed also in solving of scientific and technical tasks appointed within bilateral projects of co-operation between UJD and its international partnership organisations as well as within international projects ordered and financed by the European Commission. All these activities served as an independent support for UJD in its deterministic and probabilistic safety assessment of nuclear installations. A special attention was paid to a review of probabilistic safety assessment study of level 1 for NPP Mochovce. The probabilistic safety analysis of NPP related to the full power operation was elaborated in the study and a contribution of the technical and operational improvements to the risk decreasing was quantified. A core damage frequency of the reactor was calculated and the dominant initiating events and accident sequences with the major contribution to the risk were determined. The target of the review was to determine the acceptance of the sources of input information, assumptions, models, data, analyses and obtained results, so that the probabilistic model could give a real picture of the NPP. The review of the study was performed in co-operation of UJD with the IAEA (IPSART mission) as well as with other external organisations, which were not involved in the elaboration of the reviewed document and probabilistic model of NPP. The review was made in accordance with the IAEA guidelines and methodical documents of UJD and US NRC. In the field of calculation safety analyses the UJD activity was focused on the analysis of an operational event, analyses of the selected accident scenarios

  9. Evaluation of periodic safety status analyses

    International Nuclear Information System (INIS)

    Faber, C.; Staub, G.

    1997-01-01

    In order to carry out the evaluation of safety status analyses by the safety assessor within the periodical safety reviews of nuclear power plants safety goal oriented requirements have been formulated together with complementary evaluation criteria. Their application in an inter-disciplinary coopertion covering the subject areas involved facilitates a complete safety goal oriented assessment of the plant status. The procedure is outlined briefly by an example for the safety goal 'reactivity control' for BWRs. (orig.) [de

  10. Response surface use in safety analyses

    International Nuclear Information System (INIS)

    Prosek, A.

    1999-01-01

    When thousands of complex computer code runs related to nuclear safety are needed for statistical analysis, the response surface is used to replace the computer code. The main purpose of the study was to develop and demonstrate a tool called optimal statistical estimator (OSE) intended for response surface generation of complex and non-linear phenomena. The performance of optimal statistical estimator was tested by the results of 59 different RELAP5/MOD3.2 code calculations of the small-break loss-of-coolant accident in a two loop pressurized water reactor. The results showed that OSE adequately predicted the response surface for the peak cladding temperature. Some good characteristic of the OSE like monotonic function between two neighbor points and independence on the number of output parameters suggest that OSE can be used for response surface generation of any safety or system parameter in the thermal-hydraulic safety analyses.(author)

  11. European passive plant program preliminary safety analyses to support system design

    International Nuclear Information System (INIS)

    Saiu, Gianfranco; Barucca, Luciana; King, K.J.

    1999-01-01

    In 1994, a group of European Utilities, together with Westinghouse and its Industrial Partner GENESI (an Italian consortium including ANSALDO and FIAT), initiated a program designated EPP (European Passive Plant) to evaluate Westinghouse Passive Nuclear Plant Technology for application in Europe. In the Phase 1 of the European Passive Plant Program which was completed in 1996, a 1000 MWe passive plant reference design (EP1000) was established which conforms to the European Utility Requirements (EUR) and is expected to meet the European Safety Authorities requirements. Phase 2 of the program was initiated in 1997 with the objective of developing the Nuclear Island design details and performing supporting analyses to start development of Safety Case Report (SCR) for submittal to European Licensing Authorities. The first part of Phase 2, 'Design Definition' phase (Phase 2A) was completed at the end of 1998, the main efforts being design definition of key systems and structures, development of the Nuclear Island layout, and performing preliminary safety analyses to support design efforts. Incorporation of the EUR has been a key design requirement for the EP1000 form the beginning of the program. Detailed design solutions to meet the EUR have been defined and the safety approach has also been developed based on the EUR guidelines. The present paper describes the EP1000 approach to safety analysis and, in particular, to the Design Extension Conditions that, according to the EUR, represent the preferred method for giving consideration to the Complex Sequences and Severe Accidents at the design stage without including them in the design bases conditions. Preliminary results of some DEC analyses and an overview of the probabilistic safety assessment (PSA) are also presented. (author)

  12. Sensitivity and uncertainty analyses applied to criticality safety validation. Volume 2

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Hopper, C.M.; Parks, C.V.

    1999-01-01

    This report presents the application of sensitivity and uncertainty (S/U) analysis methodologies developed in Volume 1 to the code/data validation tasks of a criticality safety computational study. Sensitivity and uncertainty analysis methods were first developed for application to fast reactor studies in the 1970s. This work has revitalized and updated the existing S/U computational capabilities such that they can be used as prototypic modules of the SCALE code system, which contains criticality analysis tools currently in use by criticality safety practitioners. After complete development, simplified tools are expected to be released for general use. The methods for application of S/U and generalized linear-least-square methodology (GLLSM) tools to the criticality safety validation procedures were described in Volume 1 of this report. Volume 2 of this report presents the application of these procedures to the validation of criticality safety analyses supporting uranium operations where enrichments are greater than 5 wt %. Specifically, the traditional k eff trending analyses are compared with newly developed k eff trending procedures, utilizing the D and c k coefficients described in Volume 1. These newly developed procedures are applied to a family of postulated systems involving U(11)O 2 fuel, with H/X values ranging from 0--1,000. These analyses produced a series of guidance and recommendations for the general usage of these various techniques. Recommendations for future work are also detailed

  13. Method of accounting for code safety valve setpoint drift in safety analyses

    International Nuclear Information System (INIS)

    Rousseau, K.R.; Bergeron, P.A.

    1989-01-01

    In performing the safety analyses for transients that result in a challenge to the reactor coolant system (RCS) pressure boundary, the general acceptance criterion is that the peak RCS pressure not exceed the American Society of Mechanical Engineers limit of 110% of the design pressure. Without crediting non-safety-grade pressure mitigating systems, protection from this limit is mainly provided by the primary and secondary code safety valves. In theory, the combination of relief capacity and setpoints for these valves is designed to provide this protection. Generally, banks of valves are set at varying setpoints staggered by 15- to 20-psid increments to minimize the number of valves that would open by an overpressure challenge. In practice, however, when these valves are removed and tested (typically during a refueling outage), setpoints are sometimes found to have drifted by >50 psid. This drift should be accounted for during the performance of the safety analysis. This paper describes analyses performed by Yankee Atomic Electric Company (YAEC) to account for setpoint drift in safety valves from testing. The results of these analyses are used to define safety valve operability or acceptance criteria

  14. Preliminary Results of Ancillary Safety Analyses Supporting TREAT LEU Conversion Activities

    Energy Technology Data Exchange (ETDEWEB)

    Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Fei, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Strons, P. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Papadias, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Kontogeorgakos, D. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Connaway, H. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Wright, A. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-10-01

    The Transient Reactor Test Facility (TREAT), located at Idaho National Laboratory (INL), is a test facility designed to evaluate the performance of reactor fuels and materials under transient accident conditions. The facility, an air-cooled, graphite-moderated reactor designed to utilize fuel containing high-enriched uranium (HEU), has been in non-operational standby status since 1994. Currently, in support of the missions of the Department of Energy (DOE) National Nuclear Security Administration (NNSA) Material Management and Minimization (M3) Reactor Conversion Program, a new core design is being developed for TREAT that will utilize low-enriched uranium (LEU). The primary objective of this conversion effort is to design an LEU core that is capable of meeting the performance characteristics of the existing HEU core. Minimal, if any, changes are anticipated for the supporting systems (e.g. reactor trip system, filtration/cooling system, etc.); therefore, the LEU core must also be able to function with the existing supporting systems, and must also satisfy acceptable safety limits. In support of the LEU conversion effort, a range of ancillary safety analyses are required to evaluate the LEU core operation relative to that of the existing facility. These analyses cover neutronics, shielding, and thermal hydraulic topics that have been identified as having the potential to have reduced safety margins due to conversion to LEU fuel, or are required to support the required safety analyses documentation. The majority of these ancillary tasks have been identified in [1] and [2]. The purpose of this report is to document the ancillary safety analyses that have been performed at Argonne National Laboratory during the early stages of the LEU design effort, and to describe ongoing and anticipated analyses. For all analyses presented in this report, methodologies are utilized that are consistent with, or improved from, those used in analyses for the HEU Final Safety Analysis

  15. Quality assurance requirements for the computer software and safety analyses

    International Nuclear Information System (INIS)

    Husarecek, J.

    1992-01-01

    The requirements are given as placed on the development, procurement, maintenance, and application of software for the creation or processing of data during the design, construction, operation, repair, maintenance and safety-related upgrading of nuclear power plants. The verification and validation processes are highlighted, and the requirements put on the software documentation are outlined. The general quality assurance principles applied to safety analyses are characterized. (J.B.). 1 ref

  16. Thermal hydraulic reactor safety analyses and experiments

    International Nuclear Information System (INIS)

    Holmstroem, H.; Eerikaeinen, L.; Kervinen, T.; Kilpi, K.; Mattila, L.; Miettinen, J.; Yrjoelae, V.

    1989-04-01

    The report introduces the results of the thermal hydraulic reactor safety research performed in the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) during the years 1972-1987. Also practical applications i.e. analyses for the safety authorities and power companies are presented. The emphasis is on description of the state-of-the-art know how. The report describes VTT's most important computer codes, both those of foreign origin and those developed at VTT, and their assessment work, VTT's own experimental research, as well as international experimental projects and other forms of cooperation VTT has participated in. Appendix 8 contains a comprehensive list of the most important publications and technical reports produced. They present the content and results of the research in detail.(orig.)

  17. Development of safety analysis technology for LMR

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kwon, Y. M.; Kim, K. D.

    2000-05-01

    The analysis methodologies as well as the analysis computer code system for the transient, HCDA, and containment performance analyses, which are required for KALIMER safety analyses, have been developed. The SSC-K code has been developed based on SSC-L which is an analysis code for loop type LMR, by improving models necessary for the KALIMER system analysis, and additional models have been added to the code. In addition, HCDA analysis model has been developed and the containment performance analysis code has been also improved. The preliminary basis for the safety analysis has been established, and the preliminary safety analyses for the key design features have been performed. In addition, a state-of-art analysis for LMR PSA and overseas safety and licensing requirements have been reviewed. The design database for the systematic management of the design documents as well as design processes has been established as well

  18. Development of safety analysis technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kwon, Y. M.; Kim, K. D. [and others

    2000-05-01

    The analysis methodologies as well as the analysis computer code system for the transient, HCDA, and containment performance analyses, which are required for KALIMER safety analyses, have been developed. The SSC-K code has been developed based on SSC-L which is an analysis code for loop type LMR, by improving models necessary for the KALIMER system analysis, and additional models have been added to the code. In addition, HCDA analysis model has been developed and the containment performance analysis code has been also improved. The preliminary basis for the safety analysis has been established, and the preliminary safety analyses for the key design features have been performed. In addition, a state-of-art analysis for LMR PSA and overseas safety and licensing requirements have been reviewed. The design database for the systematic management of the design documents as well as design processes has been established as well.

  19. The role of CFD computer analyses in hydrogen safety management

    International Nuclear Information System (INIS)

    Komen, E.M.J; Visser, D.C; Roelofs, F.; Te Lintelo, J.G.T

    2014-01-01

    The risks of hydrogen release and combustion during a severe accident in a light water reactor have attracted considerable attention after the Fukushima accident in Japan. Reliable computer analyses are needed for the optimal design of hydrogen mitigation systems, like e.g. passive autocatalytic recombiners (PARs), and for the assessment of the associated residual risk of hydrogen combustion. Traditionally, so-called Lumped Parameter (LP) computer codes are being used for these purposes. In the last decade, significant progress has been made in the development, validation, and application of more detailed, three-dimensional Computational Fluid Dynamics (CFD) simulations for hydrogen safety analyses. The objective of the current paper is to address the following questions: - When are CFD computer analyses needed complementary to the traditional LP code analyses for hydrogen safety management? - What is the validation status of the CFD computer code for hydrogen distribution, mitigation, and combustion analyses? - Can CFD computer analyses nowadays be executed in practical and reliable way for full scale containments? The validation status and reliability of CFD code simulations will be illustrated by validation analyses performed for experiments executed in the PANDA, THAI, and ENACCEF facilities. (authors)

  20. Swiss-Slovak cooperation program: a training strategy for safety analyses

    International Nuclear Information System (INIS)

    Husarcek, J.

    2000-01-01

    During the 1996-1999 period, a new training strategy for safety analyses was implemented at the Slovak Nuclear Regulatory Authority (UJD) within the Swiss-Slovak cooperation programme in nuclear safety (SWISSLOVAK). The SWISSLOVAK project involved the recruitment, training, and integration of the newly established team into UJD's organizational structure. The training strategy consisted primarily of the following two elements: a) Probabilistic Safety Analysis (PSA) applications (regulatory review and technical evaluation of Level-1/Level-2 PSAs; PSA-based operational events analysis, PSA applications to assessment of Technical Specifications; and PSA-based hardware and/or procedure modifications) and b) Deterministic accident analyses (analysis of accidents and regulatory review of licensee Safety Analysis Reports; analysis of severe accidents/radiological releases and the potential impact of the containment and engineered safety systems, including the development of technical bases for emergency response planning; and application of deterministic methods for evaluation of accident management strategies/procedure modifications). The paper discusses the specific aspects of the training strategy performed at UJD in both the probabilistic and deterministic areas. The integration of team into UJD's organizational structure is described and examples of contributions of the team to UJD's statutory responsibilities are provided. (author)

  1. Development of safety analysis technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Suk K.; Song, J. H.; Chung, Y. J. and others

    1999-03-01

    Inherent safety features and safety system characteristics of the SMART integral reactor are investigated in this study. Performance and safety of the SMART conceptual design have been evaluated and confirmed through the performance and safety analyses using safety analysis system codes as well as a preliminary performance and safety analysis methodology. SMART design base events and their acceptance criteria are identified to develop a preliminary PIRT for the SMART integral reactor. Using the preliminary PIRT, a set of experimental program for the thermal hydraulic separate effect tests and the integral effect tests was developed for the thermal hydraulic model development and the system code validation. Safety characteristics as well as the safety issues of the integral reactor has been identified during the study, which will be used to resolve the safety issues and guide the regulatory criteria for the integral reactor. The results of the performance and safety analyses performed during the study were used to feedback for the SMART conceptual design. The performance and safety analysis code systems as well as the preliminary safety analysis methodology developed in this study will be validated as the SMART design evolves. The performance and safety analysis technology developed during the study will be utilized for the SMART basic design development. (author)

  2. Accelerated safety analyses - structural analyses Phase I - structural sensitivity evaluation of single- and double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Becker, D.L.

    1994-11-01

    Accelerated Safety Analyses - Phase I (ASA-Phase I) have been conducted to assess the appropriateness of existing tank farm operational controls and/or limits as now stipulated in the Operational Safety Requirements (OSRs) and Operating Specification Documents, and to establish a technical basis for the waste tank operating safety envelope. Structural sensitivity analyses were performed to assess the response of the different waste tank configurations to variations in loading conditions, uncertainties in loading parameters, and uncertainties in material characteristics. Extensive documentation of the sensitivity analyses conducted and results obtained are provided in the detailed ASA-Phase I report, Structural Sensitivity Evaluation of Single- and Double-Shell Waste Tanks for Accelerated Safety Analysis - Phase I. This document provides a summary of the accelerated safety analyses sensitivity evaluations and the resulting findings

  3. Implementing partnerships in nonreactor facility safety analyses

    International Nuclear Information System (INIS)

    Courtney, J.C.; Perry, W.H.; Phipps, R.D.

    1996-01-01

    Faculty and students from LSU have been participating in nuclear safety analyses and radiation protection projects at ANL-W at INEL since 1973. A mutually beneficial relationship has evolved that has resulted in generation of safety-related studies acceptable to Argonne and DOE, NRC, and state regulatory groups. Most of the safety projects have involved the Hot Fuel Examination Facility or the Fuel Conditioning Facility; both are hot cells that receive spent fuel from EBR-II. A table shows some of the major projects at ANL-W that involved LSU students and faculty

  4. [Patient safety and errors in medicine: development, prevention and analyses of incidents].

    Science.gov (United States)

    Rall, M; Manser, T; Guggenberger, H; Gaba, D M; Unertl, K

    2001-06-01

    "Patient safety" and "errors in medicine" are issues gaining more and more prominence in the eyes of the public. According to newer studies, errors in medicine are among the ten major causes of death in association with the whole area of health care. A new era has begun incorporating attention to a "systems" approach to deal with errors and their causes in the health system. In other high-risk domains with a high demand for safety (such as the nuclear power industry and aviation) many strategies to enhance safety have been established. It is time to study these strategies, to adapt them if necessary and apply them to the field of medicine. These strategies include: to teach people how errors evolve in complex working domains and how types of errors are classified; the introduction of critical incident reporting systems that are free of negative consequences for the reporters; the promotion of continuous medical education; and the development of generic problem-solving skills incorporating the extensive use of realistic simulators wherever possible. Interestingly, the field of anesthesiology--within which realistic simulators were developed--is referred to as a model for the new patient safety movement. Despite this proud track record in recent times though, there is still much to be done even in the field of anesthesiology. Overall though, the most important strategy towards a long-term improvement in patient safety will be a change of "culture" throughout the entire health care system. The "culture of blame" focused on individuals should be replaced by a "safety culture", that sees errors and critical incidents as a problem of the whole organization. The acceptance of human fallability and an open-minded non-punitive analysis of errors in the sense of a "preventive and proactive safety culture" should lead to solutions at the systemic level. This change in culture can only be achieved with a strong commitment from the highest levels of an organization. Patient

  5. Concepts and examples of safety analyses for radioactive waste repositories in continental geological formations

    International Nuclear Information System (INIS)

    1983-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of underground radioactive waste repositories. It is a companion to a general introductory document on the subject ''Safety Assessment for the Underground Disposal of Radioactive Wastes'', IAEA Safety Series No. 56, 1981, and reference to this earlier document will facilitate the reader's understanding of the present report. Since examples of safety analyses are summarized here, it is hoped that this document will contribute to providing a basis for a common understanding among authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing technical information, this document is also intended to stimulate further international discussion. The purposes of this report are: a) to identify the factors to be taken into account in radiological safety analyses of deep geological repositories, indicating as far as possible their relative importance during the various phases of system development; b) to show how these factors have been analysed in various safety assessment studies; and c) to comment on the merits of the selected and alternative approaches

  6. Concepts and examples of safety analyses for radioactive waste repositories in continental geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of underground radioactive waste repositories. It is a companion to a general introductory document on the subject ''Safety Assessment for the Underground Disposal of Radioactive Wastes'', IAEA Safety Series No. 56, 1981, and reference to this earlier document will facilitate the reader's understanding of the present report. Since examples of safety analyses are summarized here, it is hoped that this document will contribute to providing a basis for a common understanding among authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing technical information, this document is also intended to stimulate further international discussion. The purposes of this report are: a) to identify the factors to be taken into account in radiological safety analyses of deep geological repositories, indicating as far as possible their relative importance during the various phases of system development; b) to show how these factors have been analysed in various safety assessment studies; and c) to comment on the merits of the selected and alternative approaches.

  7. Safety analyses for high-temperature reactors

    International Nuclear Information System (INIS)

    Mueller, A.

    1978-01-01

    The safety evaluation of HTRs may be based on the three methods presented here: The licensing procedure, the probabilistic risk analysis, and the damage extent analysis. Thereby all safety aspects - from normal operation to the extreme (hypothetical) accidents - of the HTR are covered. The analyses within the licensing procedure of the HTR-1160 have shown that for normal operation and for the design basis accidents the radiation exposures remain clearly below the maximum permissible levels as prescribed by the radiation protection ordinance, so that no real hazard for the population will avise from them. (orig./RW) [de

  8. Safety and deterministic failure analyses in high-beta D-D tokamak reactors

    International Nuclear Information System (INIS)

    Selcow, E.C.

    1984-01-01

    Safety and deterministic failure analyses were performed to compare major component failure characteristics for different high-beta D-D tokamak reactors. The primary focus was on evaluating damage to the reactor facility. The analyses also considered potential hazards to the general public and operational personnel. Parametric designs of high-beta D-D tokamak reactors were developed, using WILDCAT as the reference. The size, and toroidal field strength were reduced, and the fusion power increased in an independent manner. These changes were expected to improve the economics of D-D tokamaks. Issues examined using these designs were radiation induced failurs, radiation safety, first wall failure from plasma disruptions, and toroidal field magnet coil failure

  9. Additional methodology development for statistical evaluation of reactor safety analyses

    International Nuclear Information System (INIS)

    Marshall, J.A.; Shore, R.W.; Chay, S.C.; Mazumdar, M.

    1977-03-01

    The project described is motivated by the desire for methods to quantify uncertainties and to identify conservatisms in nuclear power plant safety analysis. The report examines statistical methods useful for assessing the probability distribution of output response from complex nuclear computer codes, considers sensitivity analysis and several other topics, and also sets the path for using the developed methods for realistic assessment of the design basis accident

  10. Setting clear expectations for safety basis development

    International Nuclear Information System (INIS)

    MORENO, M.R.

    2003-01-01

    DOE-RL has set clear expectations for a cost-effective approach for achieving compliance with the Nuclear Safety Management requirements (10 CFR 830, Nuclear Safety Rule) which will ensure long-term benefit to Hanford. To facilitate implementation of these expectations, tools were developed to streamline and standardize safety analysis and safety document development resulting in a shorter and more predictable DOE approval cycle. A Hanford Safety Analysis and Risk Assessment Handbook (SARAH) was issued to standardized methodologies for development of safety analyses. A Microsoft Excel spreadsheet (RADIDOSE) was issued for the evaluation of radiological consequences for accident scenarios often postulated for Hanford. A standard Site Documented Safety Analysis (DSA) detailing the safety management programs was issued for use as a means of compliance with a majority of 3009 Standard chapters. An in-process review was developed between DOE and the Contractor to facilitate DOE approval and provide early course correction. As a result of setting expectations and providing safety analysis tools, the four Hanford Site waste management nuclear facilities were able to integrate into one Master Waste Management Documented Safety Analysis (WM-DSA)

  11. Towards an Industrial Application of Statistical Uncertainty Analysis Methods to Multi-physical Modelling and Safety Analyses

    International Nuclear Information System (INIS)

    Zhang, Jinzhao; Segurado, Jacobo; Schneidesch, Christophe

    2013-01-01

    Since 1980's, Tractebel Engineering (TE) has being developed and applied a multi-physical modelling and safety analyses capability, based on a code package consisting of the best estimate 3D neutronic (PANTHER), system thermal hydraulic (RELAP5), core sub-channel thermal hydraulic (COBRA-3C), and fuel thermal mechanic (FRAPCON/FRAPTRAN) codes. A series of methodologies have been developed to perform and to license the reactor safety analysis and core reload design, based on the deterministic bounding approach. Following the recent trends in research and development as well as in industrial applications, TE has been working since 2010 towards the application of the statistical sensitivity and uncertainty analysis methods to the multi-physical modelling and licensing safety analyses. In this paper, the TE multi-physical modelling and safety analyses capability is first described, followed by the proposed TE best estimate plus statistical uncertainty analysis method (BESUAM). The chosen statistical sensitivity and uncertainty analysis methods (non-parametric order statistic method or bootstrap) and tool (DAKOTA) are then presented, followed by some preliminary results of their applications to FRAPCON/FRAPTRAN simulation of OECD RIA fuel rod codes benchmark and RELAP5/MOD3.3 simulation of THTF tests. (authors)

  12. Use of probabilistic safety analyses in severe accident management

    International Nuclear Information System (INIS)

    Neogy, P.; Lehner, J.

    1991-01-01

    An important consideration in the development and assessment of severe accident management strategies is that while the strategies are often built on the knowledge base of Probabilistic Safety Analyses (PSA), they must be interpretable and meaningful in terms of the control room indicators. In the following, the relationships between PSA and severe accident management are explored using ex-vessel accident management at a PWR ice-condenser plant as an example. 2 refs., 1 fig., 3 tabs

  13. Development of SAGE, A computer code for safety assessment analyses for Korean Low-Level Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Zhou, W.; Kozak, Matthew W.; Park, Joowan; Kim, Changlak; Kang, Chulhyung

    2002-01-01

    This paper describes a computer code, called SAGE (Safety Assessment Groundwater Evaluation) to be used for evaluation of the concept for low-level waste disposal in the Republic of Korea (ROK). The conceptual model in the code is focused on releases from a gradually degrading engineered barrier system to an underlying unsaturated zone, thence to a saturated groundwater zone. Doses can be calculated for several biosphere systems including drinking contaminated groundwater, and subsequent contamination of foods, rivers, lakes, or the ocean by that groundwater. The flexibility of the code will permit both generic analyses in support of design and site development activities, and straightforward modification to permit site-specific and design-specific safety assessments of a real facility as progress is made toward implementation of a disposal site. In addition, the code has been written to easily interface with more detailed codes for specific parts of the safety assessment. In this way, the code's capabilities can be significantly expanded as needed. The code has the capability to treat input parameters either deterministic ally or probabilistic ally. Parameter input is achieved through a user-friendly Graphical User Interface.

  14. Safety analyses for NHR-200

    Energy Technology Data Exchange (ETDEWEB)

    Jincai, Li; Zuying, Gao; Baocheng, Xu; Junxiao, He [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The NHR-200 is a commercial 200-MW District Heating Reactor developed in China. It is designed on the basis of design, construction and four-year operating experience of the 5MW Experimental Heating Reactor (NHR-5). It has special safety features which are briefly described in this paper. Accident classification and safety criteria are also explained. Some typical and serious accidents are studied theoretically, and their results are detailed in this paper. They demonstrate the excellent safety characteristics of HR-200. (author). 4 refs, 9 figs, 1 tab.

  15. Regulatory support activities of JNES by thermal-hydraulic and safety analyses

    International Nuclear Information System (INIS)

    Kasahara, Fumio

    2008-01-01

    Current status and some related topics on regulatory support activities of Japan Nuclear Energy Safety Organization (JNES) by thermal-hydraulic and safety analyses are reported. The safety of nuclear facilities is secured primarily by plant owners and operators. However, the regulatory body NISA (Nuclear and Industrial Safety Agency) has conducted a strict regulation to confirm the adequacy of the site condition as well as the basic and detailed design. The JNES has been conducting independent analyses from applicants (audit analyses, etc.) by direction of NISA and supporting its review. In addition to the audit analysis, thermal-hydraulic and safety analyses are used in such areas as analytical evaluation for investigation of causes of accidents and troubles, level 2 PSA for risk informed regulation, etc. Recent activities of audit analyses are for the application of Tsuruga 3 and 4 (APWR), the spent fuel storage facility for the establishment, and the LMFBR Monju for the core change. For the trouble event evaluation, the criticality accident analysis of Sika1 was carried out and the evaluation of effectiveness of accident management (AM) measure for Tomari 3 (PWR) and Monju was performed. The analytical codes for these evaluations are continuously revised by reflecting the state-of-art technical information and validated using the information provided by the data from JAEA, OECD project, etc. (author)

  16. Passive safety injection experiments and analyses (PAHKO)

    International Nuclear Information System (INIS)

    Tuunanen, J.

    1998-01-01

    PAHKO project involved experiments on the PACTEL facility and computer simulations of selected experiments. The experiments focused on the performance of Passive Safety Injection Systems (PSIS) of Advanced Light Water Reactors (ALWRs) in Small Break Loss-Of-Coolant Accident (SBLOCA) conditions. The PSIS consisted of a Core Make-up Tank (CMT) and two pipelines (Pressure Balancing Line, PBL, and Injection Line, IL). The examined PSIS worked efficiently in SBLOCAs although the flow through the PSIS stopped temporarily if the break was very small and the hot water filled the CMT. The experiments demonstrated the importance of the flow distributor in the CMT to limit rapid condensation. The project included validation of three thermal-hydraulic computer codes (APROS, CATHARE and RELAP5). The analyses showed the codes are capable to simulate the overall behaviour of the transients. The detailed analyses of the results showed some models in the codes still need improvements. Especially, further development of models for thermal stratification, condensation and natural circulation flow with small driving forces would be necessary for accurate simulation of the PSIS phenomena. (orig.)

  17. Requirements on the provisional safety analyses and technical comparison of safety measures

    International Nuclear Information System (INIS)

    2010-04-01

    The concept of a Geological Underground Repository (SGT) was adopted by the Swiss Federal Council on April 2 nd , 2008. It fixes the goals and the safety technical criteria as well as the procedures for the choice of the site for an underground repository. Those responsible for waste management evaluate possible site regions according to the present status of geological knowledge and based on the safety criteria defined in SGT as well as on technical feasibility. In a first step, they propose geological repository sites for high level (HAA) and for low and intermediate level (SMA) radioactive wastes and justify their choice in a report delivered to the Swiss Federal Office of Energy. The Swiss Federal Council reviews the choices presented and, in the case of positive evaluation, approves them and considers them as an initial orientation. In a second step, based on the possible sites according to step 1, the waste management institution responsible has to reduce the repositories chosen for HAA and SMA by taking into account safety aspects, technical feasibility as well as space planning and socio-economical aspects. In making this choice, safety aspects have the highest priority. The criteria used for the evaluation in the first step have to be defined using provisional quantitative safety analyses. On the basis of the whole appraisal, including space planning and socio-economical aspects, those responsible for waste management propose at least two repository sites for HAA- and SMA-waste. Their selection is then reviewed by the authorities and, in the case of a positive assesment, the selection is taken as an intermediate result. The remaining sites are further studied to examine site choice and the delivery of a request for a design license. If necessary, the requested geological knowledge has to be confirmed by new investigations. Based on the results of the choosing process and a positive evaluation by the safety authorities, the Swiss Federal Council has to

  18. Safety analyses of the nuclear-powered ship Mutsu with RETRAN

    International Nuclear Information System (INIS)

    Naruko, Y.; Ishida, T.; Tanaka, Y.; Futamura, Y.

    1982-01-01

    To provide a quantitative basis for the safety evaluation of the N.S. Mutsu, a number of safety analyses were performed in the course of reexamination. With respect to operational transient analyses, the RETRAN computer code was used to predict plant performances on the basis of postulated transient scenarios. The COBRA-IV computer code was also used to obtain a value of the minimum DNBR for each transient, which is necessary to predict detailed thermal-hydraulic performances in the core region of the reactor. In the present paper, the following three operational transients, which were calculated as a part of the safety analyses, are being dealt with: a complete loss of load without reactor scram; an excessive load increase incident, which is followed by a 30 percent stepwise load increase in the steam dump flow; and an accidental depressurization of the primary system, which is followed by a sudden full opening of the pressurizer spray valve. A Mutsu two-loop RETRAN model and simulation results were described. The results being compared with those of land-based PWRs, the characteristic features of the Mutsu reactor were presented and the safety of the plant under the operational transient conditions was confirmed

  19. Supporting Fernald Site Closure with Integrated Health and Safety Plans as Documented Safety Analyses

    International Nuclear Information System (INIS)

    Kohler, S.; Brown, T.; Fisk, P.; Krach, F.; Klein, B.

    2004-01-01

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D and D) of over 200 structures, including eight major nuclear production plants. There is one of twelve nuclear facilities still remaining (Silos containing uranium ore residues) with its own safety basis documentation. This paper presents the status of the FCP's safety basis documentation program, illustrating that all of the former nuclear facilities and activities have now replaced. Basis of Interim Operations (BIOs) with I-HASPs as their safety basis during the closure process

  20. Current regulatory developments concerning the implementation of probabilistic safety analyses for external hazards in Germany

    International Nuclear Information System (INIS)

    Krauss, Matias; Berg, Heinz-Peter

    2014-01-01

    The Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) initiated in September 2003 a comprehensive program for the revision of the national nuclear safety regulations which has been successfully completed in November 2012. These nuclear regulations take into account the current recommendations of the International Atomic Energy Agency (IAEA) and Western European Nuclear Regulators Association (WENRA). In this context, the recommendations and guidelines of the Nuclear Safety Standards Commission (KTA) and the technical documents elaborated by the respective expert group on Probabilistic Safety Analysis for Nuclear Power Plants (FAK PSA) are being updated or in the final process of completion. A main topic of the revision was the issue external hazards. As part of this process and in the light of the accident at Fukushima and the findings of the related actions resulting in safety reviews of nuclear power plants at national level in Germany and on European level, a revision of all relevant standards and documents has been made, especially the recommendations of KTA and FAK PSA. In that context, not only design issues with respect to events such as earthquakes and floods have been discussed, but also methodological issues regarding the implementation of improved probabilistic safety analyses on this topic. As a result of the revision of the KTA 2201 series 'Design of Nuclear Power Plants against Seismic Events' with their parts 1 to 6, part 1 'Principles' was published as the first standard in November 2011, followed by the revised versions of KTA 2201.2 (soil) and 2201.4 (systems and components) in 2012. The modified the standard KTA 2201.3 (structures) is expected to be issued before the end of 2013. In case of part 5 (seismic instrumentation) and part 6 (post>seismic actions) draft amendments are expected in 2013. The expert group 'Probabilistic Safety Assessments for Nuclear Power Plants' (FAK PSA) is an advisory body of the Federal

  1. Sensitivity and uncertainty analyses applied to criticality safety validation, methods development. Volume 1

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Hopper, C.M.; Childs, R.L.; Parks, C.V.

    1999-01-01

    This report presents the application of sensitivity and uncertainty (S/U) analysis methodologies to the code/data validation tasks of a criticality safety computational study. Sensitivity and uncertainty analysis methods were first developed for application to fast reactor studies in the 1970s. This work has revitalized and updated the available S/U computational capabilities such that they can be used as prototypic modules of the SCALE code system, which contains criticality analysis tools currently used by criticality safety practitioners. After complete development, simplified tools are expected to be released for general use. The S/U methods that are presented in this volume are designed to provide a formal means of establishing the range (or area) of applicability for criticality safety data validation studies. The development of parameters that are analogous to the standard trending parameters forms the key to the technique. These parameters are the D parameters, which represent the differences by group of sensitivity profiles, and the ck parameters, which are the correlation coefficients for the calculational uncertainties between systems; each set of parameters gives information relative to the similarity between pairs of selected systems, e.g., a critical experiment and a specific real-world system (the application)

  2. Safety analyses of the electrical systems on VVER NPP

    International Nuclear Information System (INIS)

    Andel, J.

    2004-01-01

    Energoprojekt Praha has been the main entity responsible for the section on 'Electrical Systems' in the safety reports of the Temelin, Dukovany and Mochovce nuclear power plants. The section comprises 2 main chapters, viz. Offsite Power System (issues of electrical energy production in main generators and the link to the offsite transmission grid) and Onsite Power Systems (AC and DC auxiliary system, both normal and safety related). In the chapter on the off-site system, attention is paid to the analysis of transmission capacity of the 400 kV lines, analysis of transient stability, multiple fault analyses, and probabilistic analyses of the grid and NPP power system reliability. In the chapter on the on-site system, attention is paid to the power balances of the electrical sources and switchboards set for various operational and accident modes, checks of loading and function of service and backup sources, short circuit current calculations, analyses of electrical protections, and analyses of the function and sizing of emergency sources (DG sets and UPS systems). (P.A.)

  3. Safety balance: Analysis of safety systems; Bilans de surete: analyse par les organismes de surete

    Energy Technology Data Exchange (ETDEWEB)

    Delage, M; Giroux, C

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses.

  4. Reliability and safety analyses under fuzziness

    International Nuclear Information System (INIS)

    Onisawa, T.; Kacprzyk, J.

    1995-01-01

    Fuzzy theory, for example possibility theory, is compatible with probability theory. What is shown so far is that probability theory needs not be replaced by fuzzy theory, but rather that the former works much better in applications if it is combined with the latter. In fact, it is said that there are two essential uncertainties in the field of reliability and safety analyses: One is a probabilistic uncertainty which is more relevant for mechanical systems and the natural environment, and the other is fuzziness (imprecision) caused by the existence of human beings in systems. The classical probability theory alone is therefore not sufficient to deal with uncertainties in humanistic system. In such a context this collection of works will put a milestone in the arguments of probability theory and fuzzy theory. This volume covers fault analysis, life time analysis, reliability, quality control, safety analysis and risk analysis. (orig./DG). 106 figs

  5. Process hazards analysis (PrHA) program, bridging accident analyses and operational safety

    International Nuclear Information System (INIS)

    Richardson, J.A.; McKernan, S.A.; Vigil, M.J.

    2003-01-01

    Recently the Final Safety Analysis Report (FSAR) for the Plutonium Facility at Los Alamos National Laboratory, Technical Area 55 (TA-55) was revised and submitted to the US. Department of Energy (DOE). As a part of this effort, over seventy Process Hazards Analyses (PrHAs) were written and/or revised over the six years prior to the FSAR revision. TA-55 is a research, development, and production nuclear facility that primarily supports US. defense and space programs. Nuclear fuels and material research; material recovery, refining and analyses; and the casting, machining and fabrication of plutonium components are some of the activities conducted at TA-35. These operations involve a wide variety of industrial, chemical and nuclear hazards. Operational personnel along with safety analysts work as a team to prepare the PrHA. PrHAs describe the process; identi fy the hazards; and analyze hazards including determining hazard scenarios, their likelihood, and consequences. In addition, the interaction of the process to facility systems, structures and operational specific protective features are part of the PrHA. This information is rolled-up to determine bounding accidents and mitigating systems and structures. Further detailed accident analysis is performed for the bounding accidents and included in the FSAR. The FSAR is part of the Documented Safety Analysis (DSA) that defines the safety envelope for all facility operations in order to protect the worker, the public, and the environment. The DSA is in compliance with the US. Code of Federal Regulations, 10 CFR 830, Nuclear Safety Management and is approved by DOE. The DSA sets forth the bounding conditions necessary for the safe operation for the facility and is essentially a 'license to operate.' Safely of day-to-day operations is based on Hazard Control Plans (HCPs). Hazards are initially identified in the PrI-IA for the specific operation and act as input to the HCP. Specific protective features important to worker

  6. Nuclear power plants: Results of recent safety analyses

    International Nuclear Information System (INIS)

    Steinmetz, E.

    1987-01-01

    The contributions deal with the problems posed by low radiation doses, with the information currently available from analyses of the Chernobyl reactor accident, and with risk assessments in connection with nuclear power plant accidents. Other points of interest include latest results on fission product release from reactor core or reactor building, advanced atmospheric dispersion models for incident and accident analyses, reliability studies on safety systems, and assessment of fire hazard in nuclear installations. The various contributions are found as separate entries in the database. (DG) [de

  7. Radiation physics and shielding codes and analyses applied to design-assist and safety analyses of CANDUR and ACRTM reactors

    International Nuclear Information System (INIS)

    Aydogdu, K.; Boss, C. R.

    2006-01-01

    This paper discusses the radiation physics and shielding codes and analyses applied in the design of CANDU and ACR reactors. The focus is on the types of analyses undertaken rather than the inputs supplied to the engineering disciplines. Nevertheless, the discussion does show how these analyses contribute to the engineering design. Analyses in radiation physics and shielding can be categorized as either design-assist or safety and licensing (accident) analyses. Many of the analyses undertaken are designated 'design-assist' where the analyses are used to generate recommendations that directly influence plant design. These recommendations are directed at mitigating or reducing the radiation hazard of the nuclear power plant with engineered systems and components. Thus the analyses serve a primary safety function by ensuring the plant can be operated with acceptable radiation hazards to the workers and public. In addition to this role of design assist, radiation physics and shielding codes are also deployed in safety and licensing assessments of the consequences of radioactive releases of gaseous and liquid effluents during normal operation and gaseous effluents following accidents. In the latter category, the final consequences of accident sequences, expressed in terms of radiation dose to members of the public, and inputs to accident analysis, e.g., decay heat in fuel following a loss-of-coolant accident, are also calculated. Another role of the analyses is to demonstrate that the design of the plant satisfies the principle of ALARA (as low as reasonably achievable) radiation doses. This principle is applied throughout the design process to minimize worker and public doses. The principle of ALARA is an inherent part of all design-assist recommendations and safety and licensing assessments. The main focus of an ALARA exercise at the design stage is to minimize the radiation hazards at the source. This exploits material selection and impurity specifications and relies

  8. Safety systems I/C equipment reliability analyses of the Kozloduy NPP units 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Halev, G; Christov, N [Risk Engineering Ltd., Sofia (Bulgaria)

    1996-12-31

    The purpose of the analysis is to assess the safety systems I/C equipment reliability. The assessment includes: quantification of the safety systems unavailability due to component failures; definition of the minimal cut sets leading to the analysed safety systems failure; quantification of the I/C equipment importance measures of the dominant contribution components. The safety systems I/C equipment reliability has been analysed using PSAPACK (a code for probabilistic safety assessment). Fault trees for the following safety systems of the Kozloduy-3 and Kozloduy-4 reactors have been constructed: neutron flow control equipment, reactor protection system, main coolant pumps, pressurizer safety valves `Sempell`, steam dump systems, spray system, low pressure injection system, emergency feeding water system, essential service water system. THree separate reports have been issued containing the performed analyses and results. 1 ref.

  9. Safety culture and learning from incidents: the role of incident reporting and causal analyses

    International Nuclear Information System (INIS)

    Wilpert, B.

    1994-01-01

    Nuclear industry more than any other industrial branch has developed and used predictive risk analysis as a method of feedforward control of safety and reliability. Systematic evaluation of operating experience, statistical documentation of component failures, systematic documentation and analysis of incidents are important complementary elements of feedback control: we are dealing here with adjustment and learning from experience, in particular from past incidents. Using preliminary findings from ongoing research at the Research Center Systems Safety at the Berlin University of Technology the contribution discusses preconditions for an effective use of lessons to be learnt from closely matched incident reporting and in depth analyses of causal chains leading to incidents. Such conditions are especially standardized documentation, reporting and analyzing methods of incidents; structured information flows and feedback loops; abstaining from culpability search; mutual trust of employees and management; willingness of all concerned to continually evaluate and optimize the established learning system. Thus, incident related reporting and causal analyses contribute to safety culture, which is seen to emerge from tightly coupled organizational measures and respective change in attitudes and behaviour. (author) 2 figs., 7 refs

  10. The long-term safety and performance analyses of the surface disposal facility for the Belgian category a waste at Dessel

    Energy Technology Data Exchange (ETDEWEB)

    Cool, Wim; Vermarien, Elise; Wacquier, William [ONDRAF/NIRAS Avenue des Arts 14, BE-1210 Bruxelles (Belgium); Perko, Janez [SCK-CEN Boeretang 200, BE-2400 Mol (Belgium)

    2013-07-01

    ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, and its partners have developed long-term safety and performance analyses in the framework of the license application for a surface disposal facility for low level radioactive waste (category A waste) at Dessel, Belgium. This paper focusses on the methodology of the safety assessments and on key results from the application of this methodology. An overview is given (1) of the performance analyses for the containment safety function of the disposal system and (2) of the radiological impact analyses confirming that radiological impacts are below applicable reference values and constraints and leading to radiological criteria for the waste and the facility. In this discussion, multiple indicators for performance and safety are used to illustrate the multi-faceted nature of long-term performance and safety of the surface disposal. This contributes to the multiple lines of reasoning for confidence building that a positive decision to proceed to the next stage of construction is justified. (authors)

  11. RETRAN safety analyses of the nuclear-powered ship Mutsu

    International Nuclear Information System (INIS)

    Yoshinori, N.; Ishida, T.; Tanaka, Y.; Yoshiaki, F.

    1983-01-01

    A number of operational transient analyses of the nuclear-powered ship Mutsu have been performed in response to Japanese nuclear safety regulatory concerns. The RETRAN and COBRA-IV computer codes were used to provide a quantitative basis for the safety evaluation of the plant. This evaluation includes a complete loss of load without reactor scram, an excessive load increase incident, and an accidental depressurization of the primary system. The minimum departure from nucleate boiling ratio remained in excess of 1.53 for these three transients. Hence, the integrity of the core was shown to be maintained during these transients. Comparing the transient behaviors with those of land-based pressurized water reactors, the characteristic features of the Mutsu reactor were presented and the safety of the plant under the operational transient conditions was confirmed

  12. Collaborating with nurse leaders to develop patient safety practices.

    Science.gov (United States)

    Kanerva, Anne; Kivinen, Tuula; Lammintakanen, Johanna

    2017-07-03

    Purpose The organisational level and leadership development are crucial elements in advancing patient safety, because patient safety weaknesses are often caused by system failures. However, little is known about how frontline leader and director teams can be supported to develop patient safety practices. The purpose of this study is to describe the patient safety development process carried out by nursing leaders and directors. The research questions were: how the chosen development areas progressed in six months' time and how nursing leaders view the participatory development process. Design/methodology/approach Participatory action research was used to engage frontline nursing leaders and directors into developing patient safety practices. Semi-structured group interviews ( N = 10) were used in data collection at the end of a six-month action cycle, and data were analysed using content analysis. Findings The participatory development process enhanced collaboration and gave leaders insights into patient safety as a part of the hospital system and their role in advancing it. The chosen development areas advanced to different extents, with the greatest improvements in those areas with simple guidelines to follow and in which the leaders were most participative. The features of high-reliability organisation were moderately identified in the nursing leaders' actions and views. For example, acting as a change agent to implement patient safety practices was challenging. Participatory methods can be used to support leaders into advancing patient safety. However, it is important that the participants are familiar with the method, and there are enough facilitators to steer development processes. Originality/value Research brings more knowledge of how leaders can increase their effectiveness in advancing patient safety and promoting high-reliability organisation features in the healthcare organisation.

  13. Best Estimate plus Uncertainty (BEPU) Analyses in the IAEA Safety Standards

    International Nuclear Information System (INIS)

    Dusic, Milorad; )

    2013-01-01

    The Safety Standards Series establishes an essential basis for safety and represents the broadest international consensus. Safety Standards Series publications are categorized into: Safety Fundamental (Present the overall objectives, concepts and principles of protection and safety, they are the policy documents of the safety standards), Safety Requirements (Establish requirements that must be met to ensure the protection and safety of people and the environment, both now and in the future), and Safety Guides (Provide guidance, in the form of more detailed actions, conditions or procedures that can be used to comply with the Requirements). The incorporation of more detailed requirements, in accordance with national practice, may still be necessary. There should be only one set of international safety standards. Each safety standard will be reviewed by the relevant committee or by the commission every five years. Best Estimate plus Uncertainty (BEPU) Analyses are approached in the following IAEA Safety Standards: - Safety Requirements SSR 2/1 - Safety of NPPs, Design (Revision of NS-R-1); - General Safety Requirement GSR Part 4: Safety Assessment for Facilities and Activities; - Safety Guide SSG-2 Deterministic Safety Analysis for Nuclear Power Plants. NUSSC suggested that new safety guides should be accompanied by documents like TECDOCs or Safety Reports describing in detail their recommendations where appropriate. Special review is currently underway to identify needs for revision in the light of the Fukushima accident. Revision will concern, first, the Safety Requirements, and then, the Selected Safety Guides

  14. Dry critical experiments and analyses performed in support of the Topaz-2 Safety Program

    International Nuclear Information System (INIS)

    Pelowitz, D.B.; Sapir, J.; Glushkov, E.S.; Ponomarev-Stepnoi, N.N.; Bubelev, V.G.; Kompanietz, G.B.; Krutov, A.M.; Polyakov, D.N.; Loynstev, V.A.

    1994-01-01

    In December 1991, the Strategic Defense Initiative Organization decided to investigate the possibility of launching a Russian Topaz-2 space nuclear power system. Functional safety requirements developed for the Topaz mission mandated that the reactor remain subcritical when flooded and immersed in water. Initial experiments and analyses performed in Russia and the United States indicated that the reactor could potentially become supercritical in several water- or sand-immersion scenarios. Consequently, a series of critical experiments was performed on the Narciss M-II facility at the Kurchatov Institute to measure the reactivity effects of water and sand immersion, to quantify the effectiveness of reactor modifications proposed to preclude criticality, and to benchmark the calculational methods and nuclear data used in the Topaz-2 safety analyses. In this paper we describe the Narciss M-II experimental configurations along with the associated calculational models and methods. We also present and compare the measured and calculated results for the dry experimental configurations

  15. Dry critical experiments and analyses performed in support of the TOPAZ-2 safety program

    International Nuclear Information System (INIS)

    Pelowitz, D.B.; Sapir, J.; Glushkov, E.S.; Ponomarev-Stepnoi, N.N.; Bubelev, V.G.; Kompanietz, G.B.; Krutov, A.M.; Polyakov, D.N.; Lobynstev, V.A.

    1995-01-01

    In December 1991, the Strategic Defense Initiative Organization decided to investigate the possibility of launching a Russian Topaz-2 space nuclear power system. Functional safety requirements developed for the Topaz mission mandated that the reactor remain subcritical when flooded and immersed in water. Initial experiments and analyses performed in Russia and the United States indicated that the reactor could potentially become supercritical in several water- or sand-immersion scenarios. Consequently, a series of critical experiments was performed on the Narciss M-II facility at the Kurchatov Institute to measure the reactivity effects of water and sand immersion, to quantify the effectiveness of reactor modifications proposed to preclude criticality, and to benchmark the calculational methods and nuclear data used in the Topaz-2 safety analyses. In this paper we describe the Narciss M-II experimental configurations along with the associated calculational models and methods. We also present and compare the measured and calculated results for the dry experimental configurations. copyright 1995 American Institute of Physics

  16. Systematic review of economic analyses in patient safety: a protocol designed to measure development in the scope and quality of evidence.

    Science.gov (United States)

    Carter, Alexander W; Mandavia, Rishi; Mayer, Erik; Marti, Joachim; Mossialos, Elias; Darzi, Ara

    2017-08-18

    Recent avoidable failures in patient care highlight the ongoing need for evidence to support improvements in patient safety. According to the most recent reviews, there is a dearth of economic evidence related to patient safety. These reviews characterise an evidence gap in terms of the scope and quality of evidence available to support resource allocation decisions. This protocol is designed to update and improve on the reviews previously conducted to determine the extent of methodological progress in economic analyses in patient safety. A broad search strategy with two core themes for original research (excluding opinion pieces and systematic reviews) in 'patient safety' and 'economic analyses' has been developed. Medline, Econlit and National Health Service Economic Evaluation Database bibliographic databases will be searched from January 2007 using a combination of medical subject headings terms and research-derived search terms (see table 1). The method is informed by previous reviews on this topic, published in 2012. Screening, risk of bias assessment (using the Cochrane collaboration tool) and economic evaluation quality assessment (using the Drummond checklist) will be conducted by two independent reviewers, with arbitration by a third reviewer as needed. Studies with a low risk of bias will be assessed using the Drummond checklist. High-quality economic evaluations are those that score >20/35. A qualitative synthesis of evidence will be performed using a data collection tool to capture the study design(s) employed, population(s), setting(s), disease area(s), intervention(s) and outcome(s) studied. Methodological quality scores will be compared with previous reviews where possible. Effect size(s) and estimate uncertainty will be captured and used in a quantitative synthesis of high-quality evidence, where possible. Formal ethical approval is not required as primary data will not be collected. The results will be disseminated through a peer

  17. Development of safety analysis technology for integral reactor; evaluation on safety concerns of integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Chul; Kim, Woong Sik; Lee, J. H. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2002-03-01

    The Nuclear Desalination Plant (NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in this study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current light water reactor and advanced reactor designs, and user requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified and discussed. They include the use of proven technology for new safety features, systematic event classification and selection, strengthening containment function, and the safety impacts on desalination-related systems. The study presents the general safety requirements applicable to licensing of an integral reactor and suggests additional regulatory requirements, which need to be developed, based on the direction to resolution of the safety concerns. The efforts to identify and technically resolve the safety concerns in the design stage will provide the early confidence of SMART safety and the technical basis to evaluate the safety to designers and reviewers in the future. Suggestion on the development of additional regulatory requirements will contribute for the regulator to taking actions for licensing of an integral reactor. 66 refs., 5 figs., 24 tabs. (Author)

  18. Development of safety analysis technology for integral reactor

    International Nuclear Information System (INIS)

    Kim, Hee Cheol; Kim, K. K.; Kim, S. H.

    2002-04-01

    The state-of-the-arts for the integral reactor was performed to investigate the safety features. The safety and performance of SMART were assessed using the technologies developed during the study. For this purpose, the computer code system and the analysis methodology were developed and the safety and performance analyses on SMART basic design were carried out for the design basis event and accident. The experimental facilities were designed for the core flow distribution test and the self-pressurizing pressurizer performance test. The tests on the 2-phase critical flow with non-condensable gas were completed and the results were used to assess the critical flow model. Probabilistic Safety Assessment(PSA) was carried out to evaluate the safety level and to optimize the design by identifying and remedying any weakness in the design. A joint study with KINS was carried out to promote licensing environment. The generic safety issues of integral reactors were identified and the solutions were formulated. The economic evaluation of the SMART desalination plant and the activities related to the process control were carried out in the scope of the study

  19. Nuclear criticality safety experiments, calculations, and analyses: 1958 to 1982. Volume 1. Lookup tables

    International Nuclear Information System (INIS)

    Koponen, B.L.; Hampel, V.E.

    1982-01-01

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains - in chronological order - the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41

  20. Multi-person and multi-attribute design evaluations using evidential reasoning based on subjective safety and cost analyses

    International Nuclear Information System (INIS)

    Wang, J.; Yang, J.B.; Sen, P.

    1996-01-01

    This paper presents an approach for ranking proposed design options based on subjective safety and cost analyses. Hierarchical system safety analysis is carried out using fuzzy sets and evidential reasoning. This involves safety modelling by fuzzy sets at the bottom level of a hierarchy and safety synthesis by evidential reasoning at higher levels. Fuzzy sets are also used to model the cost incurred for each design option. An evidential reasoning approach is then employed to synthesise the estimates of safety and cost, which are made by multiple designers. The developed approach is capable of dealing with problems of multiple designers, multiple attributes and multiple design options to select the best design. Finally, a practical engineering example is presented to demonstrate the proposed multi-person and multi-attribute design selection approach

  1. Criticality safety analyses in SKODA JS a.s

    International Nuclear Information System (INIS)

    Mikolas, P.; Svarny, J.

    1999-01-01

    This paper describes criticality safety analyses of spent fuel systems for storage and transport of spent fuel performed in SKODA JS s.r.o.. Analyses were performed for different systems both at NPP site including originally designed spent fuel pool with a large pitch between assemblies without any special absorbing material, high density spent fuel pool with an additional absorption by boron steel, depository rack for fresh fuel assemblies with a very large pitch between fuel assemblies, a container for transport of fresh fuel into the reactor pool and a cask for transport and storage of spent fuel and container for final storage depository. required subcriticality has been proven taking into account all possible unfavourable conditions, uncertainties etc. In two cases, burnup credit methodology is expected to be used. (Authors)

  2. Integration of safety culture in transient analyses for nuclear power plants

    International Nuclear Information System (INIS)

    Stosic, Zoran V.; Stoll, Uwe

    2009-01-01

    In the nuclear field Safety Culture is the arrangement of attitudes and characteristics in individuals and organisations which determines first and foremost that nuclear power plant safety issues receive adequate attention due to their outstanding significance. It differs from general Corporate Culture via its concept of core hazards and the potentially large effects associated with the release of radioactivity. One can talk about positive and negative Safety Cultures. A positive Safety Culture assumes that the whole is more than the sum of the parts. The different parts interact to increase the overall effectiveness. In a negative Safety Culture the opposite is the case, with the action of some individuals restricted by the cynicism of others. Some examples of issues that contribute to a negative safety culture are: non-adherence to the established instructions and procedures, unclear definition of responsibilities, disinterest and inattentiveness, overestimation of own capabilities and arrogance, unclear rules, and mistrust between involved organisations. In addition to differentiation and importance of Safety Culture, necessary commitment levels, safety management framework, the paper discusses integration of Safety Culture in transient analyses of nuclear power plants. In this course the commitment to Safety Culture is defined as: a good Safety Culture depends on the continuous commitment and fulfilment of all involved organizations, persons and processes without any exception. (author)

  3. C4P cross-section libraries for safety analyses with SIMMER and related studies

    International Nuclear Information System (INIS)

    Rineiski, A.; Sinitsa, V.; Gabrielli, F.; Maschek, W.

    2011-01-01

    A code and data system, C 4 P, is under development at KIT. It includes fine-group master libraries and tools for generating problem-oriented cross-section libraries, primarily for safety studies with the SIMMER code and related analyses. In the paper, the 560-group master library and problem oriented 40-group and 72-group cross-section libraries, for thermal and fast systems, respectively, are described and their performances are investigated. (author)

  4. Achieving reasonable conservatism in nuclear safety analyses

    International Nuclear Information System (INIS)

    Jamali, Kamiar

    2015-01-01

    In the absence of methods that explicitly account for uncertainties, seeking reasonable conservatism in nuclear safety analyses can quickly lead to extreme conservatism. The rate of divergence to extreme conservatism is often beyond the expert analysts’ intuitive feeling, but can be demonstrated mathematically. Too much conservatism in addressing the safety of nuclear facilities is not beneficial to society. Using certain properties of lognormal distributions for representation of input parameter uncertainties, example calculations for the risk and consequence of a fictitious facility accident scenario are presented. Results show that there are large differences between the calculated 95th percentiles and the extreme bounding values derived from using all input variables at their upper-bound estimates. Showing the relationship of the mean values to the key parameters of the output distributions, the paper concludes that the mean is the ideal candidate for representation of the value of an uncertain parameter. The mean value is proposed as the metric that is consistent with the concept of reasonable conservatism in nuclear safety analysis, because its value increases towards higher percentiles of the underlying positively skewed distribution with increasing levels of uncertainty. Insensitivity of the results to the actual underlying distributions is briefly demonstrated. - Highlights: • Multiple conservative assumptions can quickly diverge into extreme conservatism. • Mathematics and attractive properties provide basis for wide use of lognormal distribution. • Mean values are ideal candidates for representation of parameter uncertainties. • Mean values are proposed as reasonably conservative estimates of parameter uncertainties

  5. Development of advanced methods and related software for human reliability evaluation within probabilistic safety analyses

    International Nuclear Information System (INIS)

    Kosmowski, K.T.; Mertens, J.; Degen, G.; Reer, B.

    1994-06-01

    Human Reliability Analysis (HRA) is an important part of Probabilistic Safety Analysis (PSA). The first part of this report consists of an overview of types of human behaviour and human error including the effect of significant performance shaping factors on human reliability. Particularly with regard to safety assessments for nuclear power plants a lot of HRA methods have been developed. The most important of these methods are presented and discussed in the report, together with techniques for incorporating HRA into PSA and with models of operator cognitive behaviour. Based on existing HRA methods the concept of a software system is described. For the development of this system the utilization of modern programming tools is proposed; the essential goal is the effective application of HRA methods. A possible integration of computeraided HRA within PSA is discussed. The features of Expert System Technology and examples of applications (PSA, HRA) are presented in four appendices. (orig.) [de

  6. Safety analyses for sodium-cooled fast reactors with pelletized and sphere-pac oxide fuels within the FP-7 European project PELGRIMM - 15386

    International Nuclear Information System (INIS)

    Maschek, W.; Andriolo, L.; Matzerath-Boccaccini, C.; Delage, F.; Parisi, C.; Del Nevo, A.; Abbate, G.; Schmitt, D.

    2015-01-01

    The European FP-7 project PELGRIMM addresses the development of Minor-Actinide (MA) bearing oxide fuel for Sodium-cooled Fast Reactors. Optionally, both MA homogeneous recycling and heterogeneous recycling is investigated with pellet and sphere-pac fuel. A first safety assessment of sphere-pac fuelled cores should be given in the Work Package 4 of the project. This assessment is in continuity with the former FP-7 CP-ESFR project. Within the CP-ESFR project the CONF2 core design has been developed characterized by a core with a large upper sodium plenum to reduce the coolant void worth. This optimized core has been chosen for the safety analyses in PELGRIMM. The task within the PELGRIMM project is thus a safety assessment of the CONF2 core loaded either with pellets or with sphere-pac fuel. The investigations started with the design of the CONF2 core with sphere-pac fuel and the determination of core safety parameters and burn-up behavior. The neutronic analyses have been performed with the MCNPX code. Variants of the CONF2 core contain up to 4% Am in the fuel. The results revealed an extended void worth (core + upper plenum) for an Am free core of 1 up to 3 dollars for the 4% Am core. Thermal-hydraulic design analyses have been performed by RELAP5-3D. The accident simulations should be performed by different codes, some of which focus on the initiation phase of the accident, as SAS4A, BELLA and the MAT5DYN code, whereas the SIMMER-III code will also deal with the later accident phases and a potential whole core melting. The codes had to be adapted to the specifics of the sphere-pac fuel, in particular to the thermal conductivity and gap conditions. Analyses showed that the safety assessment has to take into account two main phases. Starting up the core, the green fuel shows a reduced fuel thermal conductivity. After restructuring within a couple of hours, the thermal conductivity recovers and the fuel temperature decreases. The main objective of the safety analyses

  7. Development of Safety Analysis Technology for Integral Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, S. K. [Korea Atomic Energy Research Institute, Taejeon (Korea); Seul, K. W.; Kim, W. S.; Kim, W. K.; Yun, Y. G.; Ahn, H. J.; Lee, J. S.; Sin, A. D. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2000-03-01

    The Nuclear Desalination Plant(NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in a present study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated based on the design of foreign and domestic integral reactors. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current and advanced reactor designs, and use requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified. They includes the use of proven technology for new safety systems, the systematic classification and selection of design basis accidents, and the safety assurance of desalination-related systems. These efforts to identify and resolve the safety concerns in the design stage will provide the early confidence of SMART safety to designers, and the technical basis to evaluate the safety to reviewers in the future. 8 refs., 20 figs., 4 tabs. (Author)

  8. Safety design analyses of Korea Advanced Liquid Metal Reactor

    International Nuclear Information System (INIS)

    Suk, S.D.; Park, C.K.

    2000-01-01

    The national long-term R and D program updated in 1997 requires Korea Atomic Energy Research Institute (KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self consistent design meeting a set of the major safety design requirements for accident prevention. Some of current emphasis include those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve supporting R and D programs of substance. This paper summarizes some of the results of engineering and design analyses performed for the safety of KALIMER. (author)

  9. TVSA-T fuel assembly for 'Temelin' NPP. Main results of design and safety analyses. Trends of development

    International Nuclear Information System (INIS)

    Samojlov, O.B.; Kajdalov, V.B.; Falkov, A.A.; Bolnov, V.A.; Morozkin, O.N.; Molchanov, V.L.; Ugryumov, A.V.

    2010-01-01

    TVSA is a fuel assembly with rigid skeleton formed by 6 angle pieces and SG is successfully operated at 17 VVER-1000 power units of Kalinin NPP, as well as at Ukrainian and Bulgarian NPPs. Based on a contract for fuel supply to the Temelin NPP, the TVSA-T fuel assembly was developed, building on proven solutions confirmed by operation of TVSA modifications during 4-6 years and by the results of post-irradiation examination. The TVSA-T design includes combined spacer grids (SG+MG) and by fuel column elongation by 150 mm. A set of analyses and experiments was performed to validate the design, including thermal hydraulic tests, validation of critical heat flux correlation for TVSA-T, integrated mechanical, vibration and lifetime tests. A licence to use the fuel has been granted by the Czech State Office for Nuclear Safety. The TVSA-T core is currently in operation at the Temelin-1 reactor unit. The presentation is concluded as follows: TVSA-T fuel assembly for Temelin has been validated. The TVSA-T design is based on approved technical decisions and meets the current requirements for lifetime, operational maneuverability and safety. The results of post-irradiation examination of TVSA-T operated at the Kalinin-1 unit for 4 years confirm the assembly operability, skeleton stiffness, geometric stability and normal fuel rod cladding condition. The properties of the TVSA fuel with MG allow the core power to be increased up to 3300 MW to match the envisaged future VVER (MIR-1200) design, providing allowable fuel rod power FΔh =1.63 (to implement effective fuel cycles). (P.A.)

  10. Analysis of adverse events as a contribution to safety culture in the context of practice development

    Science.gov (United States)

    Hoffmann, Susanne; Frei, Irena Anna

    2017-01-01

    Background: Analysing adverse events is an effective patient safety measure. Aim: We show, how clinical nurse specialists have been enabled to analyse adverse events with the „Learning from Defects-Tool“ (LFD-Tool). Method: Our multi-component implementation strategy addressed both, the safety knowledge of clinical nurse specialists and their attitude towards patient safety. The culture of practice development was taken into account. Results: Clinical nurse specialists relate competency building on patient safety due to the application of the LFD-tool. Applying the tool, fosters the reflection of adverse events in care teams. Conclusion: Applying the „Learning from Defects-Tool“ promotes work-based learning. Analysing adverse events with the „Learning from Defects-Tool“ contributes to the safety culture in a hospital.

  11. Design premises for a KBS-3V repository based on results from the safety assessment SR-Can and some subsequent analyses

    Energy Technology Data Exchange (ETDEWEB)

    2009-11-15

    The objective with this report is to: - provide design premises from a long term safety aspect of a KBS-3V repository for spent nuclear fuel, to form the basis for the development of the reference design of the repository. The design premises are used as input to the documents, called production reports, that present the reference design to be analysed in the long term safety assessment SR-Site. It is the aim that the production reports should verify that the chosen design complies with the design premises given in this report, whereas this report takes the burden of justifying why these design premises are relevant. The more specific aims and objectives with the production reports are provided in these reports. The following approach is used: - The reference design analysed in SR-Can is a starting point for setting safety related design premises for the next design step. - A few design basis cases, in accordance with the definition used in the regulation SSMFS 2008:211 and mainly related to the canister, can be derived from the results of the SR-Can assessment. From these it is possible to formulate some specific design premises for the canister. - The design basis cases involve several assumptions on the state of other barriers. These implied conditions are thus set as design premises for these barriers. - Even if there are few load cases on individual barriers that can be directly derived from the analyses, SR-Can provides substantial feedback on most aspects of the analysed reference design. This feedback is also formulated as design premises. - An important part of SR-Can Main report is the formulation and assessment of safety function indicator criteria. These criteria are a basis for formulating design premises, but they are not the same as the design premises discussed in the present report. Whereas the former should be upheld throughout the assessment period, the latter refer to the initial state and must be defined such that they give a margin for

  12. Design premises for a KBS-3V repository based on results from the safety assessment SR-Can and some subsequent analyses

    International Nuclear Information System (INIS)

    2009-11-01

    The objective with this report is to: - provide design premises from a long term safety aspect of a KBS-3V repository for spent nuclear fuel, to form the basis for the development of the reference design of the repository. The design premises are used as input to the documents, called production reports, that present the reference design to be analysed in the long term safety assessment SR-Site. It is the aim that the production reports should verify that the chosen design complies with the design premises given in this report, whereas this report takes the burden of justifying why these design premises are relevant. The more specific aims and objectives with the production reports are provided in these reports. The following approach is used: - The reference design analysed in SR-Can is a starting point for setting safety related design premises for the next design step. - A few design basis cases, in accordance with the definition used in the regulation SSMFS 2008:211 and mainly related to the canister, can be derived from the results of the SR-Can assessment. From these it is possible to formulate some specific design premises for the canister. - The design basis cases involve several assumptions on the state of other barriers. These implied conditions are thus set as design premises for these barriers. - Even if there are few load cases on individual barriers that can be directly derived from the analyses, SR-Can provides substantial feedback on most aspects of the analysed reference design. This feedback is also formulated as design premises. - An important part of SR-Can Main report is the formulation and assessment of safety function indicator criteria. These criteria are a basis for formulating design premises, but they are not the same as the design premises discussed in the present report. Whereas the former should be upheld throughout the assessment period, the latter refer to the initial state and must be defined such that they give a margin for

  13. Analysing context-dependent deviations in interacting with safety-critical systems

    International Nuclear Information System (INIS)

    Paterno, Fabio; Santoro, Carmen

    2006-01-01

    Mobile technology is penetrating many areas of human life. This implies that the context of use can vary in many respects. We present a method that aims to support designers in managing the complex design space when considering applications with varying contexts and help them to identify solutions that support users in performing their activities while preserving usability and safety. The method is a novel combination of an analysis of both potential deviations in task performance and most suitable information representations based on distributed cognition. The originality of the contribution is in providing a conceptual tool for better understanding the impact of context of use on user interaction in safety-critical domains. In order to present our approach we provide an example in which the implications of introducing new support through mobile devices in a safety-critical system are identified and analysed in terms of potential hazards

  14. Chapter 2: Development of instrumentation for safety analyses in fuel reprocessing and treatment plants

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Development and provision of methods allowing for safety-related statements on non-appropriate operation of intermediate storage, reprocessing and waste conditioning on the basis of probabilities. By applying the methods and models to the courses of events considered, activity releases at the chimney and their probable frequency were determined. For accidents known to be radiologically relevant, expected values for exposure were computed by means of complex distribution and exposure models. (DG) [de

  15. Development of safety analysis technology for LMR

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kwon, Y. M.; Suk, S. D.

    2002-05-01

    In the present study, the KALIMER safety analysis has been made for the transients considered in the design concept, hypothetical core disruptive accident (HCDA), and containment performance with the establishment of the design basis. Such analyses have not been possible without the computer code improvement, and the experience attained during this research period must have greatly contributed to the achievement of the self reliance in the domestic technology establishment on the safety analysis areas of the conceptual design. The safety analysis codes have been improved to extend their applicable ranges for detailed conceptual design, and a basic computer code system has been established for HCDA analysis. A code-to-code comparison analysis has been performed as a part of code verification attempt, and the leading edge technology of JNC also has been brought for the technology upgrade. In addition, the research and development on the area of the database establishment has been made for the efficient and systematic project implementation of the conceptual design, through performances on the development of a project scheduling management, integration of the individually developed technology, establishment of the product database, and so on, taking into account coupling of the activities conducted in each specific area

  16. Development of core design and analyses technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  17. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  18. NPP Krsko periodic safety review. Safety assessment and analyses

    International Nuclear Information System (INIS)

    Basic, I.; Spiler, J.; Thaulez, F.

    2002-01-01

    Definition of a PSR (Periodic Safety Review) project is a comprehensive safety review of a plant after ten years of operation. The objective is a verification by means of a comprehensive review using current methods that the plant remains safe when judged against current safety objectives and practices and that adequate arrangements are in place to maintain plant safety. The overall goals of the NEK PSR Program are defined in compliance with the basic role of a PSR and the current practice typical for most of the countries in EU. This practice is described in the related guides and good practice documents issued by international organizations. The overall goals of the NEK PSR are formulated as follows: to demonstrate that the plant is as safe as originally intended; to evaluate the actual plant status with respect to aging and wear-out identifying any structures, systems or components that could limit the life of the plant in the foreseeable future, and to identify appropriate corrective actions, where needed; to compare current level of safety in the light of modern standards and knowledge, and to identify where improvements would be beneficial for minimizing deviations at justifiable costs. The Krsko PSR will address the following safety factors: Operational Experience, Safety Assessment, EQ and Aging Management, Safety Culture, Emergency Planning, Environmental Impact and Radioactive Waste.(author)

  19. The impact of safety analyses on the design of the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Koppenaal, T.J.; Yee, A.K.; Reisdorf, J.B.; Hall, B.W.

    1993-04-01

    Accident analyses are being performed to evaluate and document the safety of the Hanford Waste Vitrification Plant (HWVP). The safety of the HWVP is assessed by evaluating worst-case accident scenarios and determining the dose to offsite and onsite receptors. Air dispersion modeling is done with the GENII computer code. Three accidents are summarized in this paper, and their effects on the safety and the design of the HWVP are demonstrated

  20. Application and further development of models for the final repository safety analyses on the clearance of radioactive materials for disposal. Final report; Anwendung und Weiterentwicklung von Modellen fuer Endlagersicherheitsanalysen auf die Freigabe radioaktiver Stoffe zur Deponierung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Artmann, Andreas; Larue, Juergen; Seher, Holger; Weiss, Dietmar

    2014-08-15

    The project of application and further development of models for the final repository safety analyses on the clearance of radioactive materials for disposal is aimed to study the long-term safety using repository-specific simulation programs with respect to radiation exposure for different scenarios. It was supposed to investigate whether the 10 micro Sv criterion can be guaranteed under consideration of human intrusion scenarios. The report covers the following issues: selection and identification of models and codes and the definition of boundary conditions; applicability of conventional repository models for long-term safety analyses; modeling results for the pollutant release and transport and calculation of radiation exposure; determination of the radiation exposure.

  1. Statistical modelling of traffic safety development

    DEFF Research Database (Denmark)

    Christens, Peter

    2004-01-01

    there were 6861 injury trafficc accidents reported by the police, resulting in 4519 minor injuries, 3946 serious injuries, and 431 fatalities. The general purpose of the research was to improve the insight into aggregated road safety methodology in Denmark. The aim was to analyse advanced statistical methods......, that were designed to study developments over time, including effects of interventions. This aim has been achieved by investigating variations in aggregated Danish traffic accident series and by applying state of the art methodologies to specific case studies. The thesis comprises an introduction...

  2. Safety analysis procedures for PHWR

    International Nuclear Information System (INIS)

    Min, Byung Joo; Kim, Hyoung Tae; Yoo, Kun Joong

    2004-03-01

    The methodology of safety analyses for CANDU reactors in Canada, a vendor country, uses a combination of best-estimate physical models and conservative input parameters so as to minimize the uncertainty of the plant behavior predictions. As using the conservative input parameters, the results of the safety analyses are assured the regulatory requirements such as the public dose, the integrity of fuel and fuel channel, the integrity of containment and reactor structures, etc. However, there is not the comprehensive and systematic procedures for safety analyses for CANDU reactors in Korea. In this regard, the development of the safety analyses procedures for CANDU reactors is being conducted not only to establish the safety analyses system, but also to enhance the quality assurance of the safety assessment. In the first phase of this study, the general procedures of the deterministic safety analyses are developed. The general safety procedures are covered the specification of the initial event, selection of the methodology and accident sequences, computer codes, safety analysis procedures, verification of errors and uncertainties, etc. Finally, These general procedures of the safety analyses are applied to the Large Break Loss Of Coolant Accident (LBLOCA) in Final Safety Analysis Report (FSAR) for Wolsong units 2, 3, 4

  3. Recognising safety critical events: can automatic video processing improve naturalistic data analyses?

    Science.gov (United States)

    Dozza, Marco; González, Nieves Pañeda

    2013-11-01

    applications for NDS video processing. As new NDS such as SHRP2 are now providing the equivalent of five years of one vehicle data each day, the development of new methods, such as the one proposed in this paper, seems necessary to guarantee that these data can actually be analysed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Development of safety analysis technology for LMR

    International Nuclear Information System (INIS)

    Lee, Y. B.; Kwon, Y. M.; Suk, S. D.

    2005-03-01

    The MATRA-LMR-FB has been developed internally for the damage prevention as well as the safety assessment during a channel blockage accident and, as a the result, the quality of the code becomes comparable to that developed in the leading countries. For a code-to-code comparison, KAERI could have access to the SASSYS-1 through a bilateral collaboration between KAERI and ANL. The study could bring into the reliability improvements both on the reactivity models in the SSC-K and on the SSC-K prediction capability. It finally leads to the completion of the SSC-K version 1.3 resulting from the qualitative and quantitative code-to-code comparison. The preliminary analysis for a metal fueled LMR could also become possible with the MELT-III and the VENUS-II, which had originally been developed for the HCDA analysis with an oxidized fuel, by developing the relevant models For the development of the safety evaluation technology, the safety limits have been set up, and the analyses of the internal and external channel blockages in an assembly have also been performed. Besides, the more reliable analysis results on the key design concepts could be obtained by way of the methodology improvement resulting from the qualitative and quantitative comparison study. For an efficient and systematic control of the main project, the integration of the developed technologies and the establishment of their data base have been pursued. It has gone through the development of the process control with taking account of interfaces among the sub-projects, the overall coordination of the developed technologies, the data base for the design products, and so on

  5. Development of safety related technology and infrastructure for safety assessment

    International Nuclear Information System (INIS)

    Venkat Raj, V.

    1997-01-01

    Development and optimum utilisation of any technology calls for the building up of the necessary infrastructure and backup facilities. This is particularly true for a developing country like India and more so for an advanced technology like nuclear technology. Right from the inception of its nuclear power programme, the Indian approach has been to develop adequate infrastructure in various areas such as design, construction, manufacture, installation, commissioning and safety assessment of nuclear plants. This paper deals with the development of safety related technology and the relevant infrastructure for safety assessment. A number of computer codes for safety assessment have been developed or adapted in the areas of thermal hydraulics, structural dynamics etc. These codes have undergone extensive validation through data generated in the experimental facilities set up in India as well as participation in international standard problem exercises. Side by side with the development of the tools for safety assessment, the development of safety related technology was also given equal importance. Many of the technologies required for the inspection, ageing assessment and estimation of the residual life of various components and equipment, particularly those having a bearing on safety, were developed. This paper highlights, briefly, the work carried out in some of the areas mentioned above. (author)

  6. Development and assessment of best estimate integrated safety analysis code

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Lee, Young Jin; Hwang, Moon Kyu

    2007-03-01

    Improvement of the integrated safety analysis code MARS3.0 has been carried out and a multi-D safety analysis application system has been established. Iterative matrix solver and parallel processing algorithm have been introduced, and a LINUX version has been generated to enable MARS to run in cluster PCs. MARS variables and sub-routines have been reformed and modularised to simplify code maintenance. Model uncertainty analyses have been performed for THTF, FLECHT, NEPTUN, and LOFT experiments as well as APR1400 plant. Participations in international cooperation research projects such as OECD BEMUSE, SETH, PKL, BFBT, and TMI-2 have been actively pursued as part of code assessment efforts. The assessment, evaluation and experimental data obtained through international cooperation projects have been registered and maintained in the T/H Databank. Multi-D analyses of APR1400 LBLOCA, DVI Break, SLB, and SGTR have been carried out as a part of application efforts in multi-D safety analysis. GUI based 3D input generator has been developed for user convenience. Operation of the MARS Users Group (MUG) was continued and through MUG, the technology has been transferred to 24 organisations. A set of 4 volumes of user manuals has been compiled and the correction reports for the code errors reported during MARS development have been published

  7. Development and assessment of best estimate integrated safety analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bub Dong; Lee, Young Jin; Hwang, Moon Kyu (and others)

    2007-03-15

    Improvement of the integrated safety analysis code MARS3.0 has been carried out and a multi-D safety analysis application system has been established. Iterative matrix solver and parallel processing algorithm have been introduced, and a LINUX version has been generated to enable MARS to run in cluster PCs. MARS variables and sub-routines have been reformed and modularised to simplify code maintenance. Model uncertainty analyses have been performed for THTF, FLECHT, NEPTUN, and LOFT experiments as well as APR1400 plant. Participations in international cooperation research projects such as OECD BEMUSE, SETH, PKL, BFBT, and TMI-2 have been actively pursued as part of code assessment efforts. The assessment, evaluation and experimental data obtained through international cooperation projects have been registered and maintained in the T/H Databank. Multi-D analyses of APR1400 LBLOCA, DVI Break, SLB, and SGTR have been carried out as a part of application efforts in multi-D safety analysis. GUI based 3D input generator has been developed for user convenience. Operation of the MARS Users Group (MUG) was continued and through MUG, the technology has been transferred to 24 organisations. A set of 4 volumes of user manuals has been compiled and the correction reports for the code errors reported during MARS development have been published.

  8. Use of the deterministic safety analyses in support to the NPP Krsko modification

    International Nuclear Information System (INIS)

    Feretic, D.; Cavlina, N.; Debrecin, N.; Grgic, D.; Bajs, T.; Spalj, S.

    2004-01-01

    The ultimate goal of the safety analysis is to verify that Nuclear Power Plant (NPP) meets safety and operational requirements. To this aim it is necessary to demonstrate that plant safety has not been deteriorated in the case of the modifications to the plant Systems, Structures and Components (SSC) or changes to the plant procedures. In addition, safety analyses are needed in the case of reassessment of an existing plant. The reasons for reassessment may be different, e.g. due to the changes in the methodology and assumptions used in the original design, if the original design basis or acceptance criteria may no longer be adequate, if the safety analysis tools used may have been superseded by more sophisticated methods or if the original design basis may no longer be met. The operation of the NPP Krsko has experienced numerous changes from the original design for the majority of the reasons that have been mentioned before. On the other side, the application of the large best-estimate thermalhydraulic codes has evolved to the wide spread support in the operation of the NPP: compliance with the regulatory goals, support to the PSA studies, analysis of the operational transients, plant modifications studies, equipment qualification, training of the operators, preparation of the operating procedures, etc. This trend has been followed at the Faculty of Electrical Engineering Zagreb (FER) and applied to the on-going needs due to the modifications and changes at NPP Krsko. In this paper, an overview of the deterministic safety analyses performed at FER in the support to the NPP Krsko modifications and changes is presented.(author)

  9. Development of design and safety analysis supporting system for casks

    International Nuclear Information System (INIS)

    Ohsono, Katsunari; Higashino, Akira; Endoh, Shuji

    1993-01-01

    Mitsubishi heavy Industries has developed a design and safety analysis supporting system 'CADDIE' (Cask Computer Aided Design, Drawing and Integrated Evaluation System), with the following objectives: (1) Enhancement of efficiency of the design and safety analysis (2) Further advancement of design quality (3) Response to the diversification of design requirements. The features of this system are as follows: (1) The analysis model data common to analyses is established, and it is prepared automatically from the model made by CAD. (2) The input data for the analysis code is available by simple operation of conversation type from the analysis model data. (3) The analysis results are drawn out in diagrams by output generator, so as to facilitate easy observation. (4) The data of material properties, fuel assembly data, etc. required for the analyses are made available as a data base. (J.P.N.)

  10. Probabilistic safety analyses. Status and further development of methods and models, applications

    International Nuclear Information System (INIS)

    Berg, H.P.; Schott, H.

    1992-12-01

    The report describes the topics of the deterministic and probabilistic approach. The PSA is used in order to investigate event sequences beyond design limits; in particular the expected frequency of core melting is important. The basis of PSA is described including its limits. Moreover, the current state of the art of science and technology in the field of PSA including the so-called 'living PSA' are explained. Some measures which result in order to improve the safety of a nuclear power plant from the German Risk-Study are shown. An overview is given on the status of PSA in periodic safety reviews in German nuclear power plants. Moreover, the main topics of running investigations are presented. (orig.) [de

  11. The development and validation of a psychological contract of safety scale.

    Science.gov (United States)

    Walker, Arlene

    2010-08-01

    This paper builds on previous research by the author and describes the development and validation of a new measure of the psychological contract of safety. The psychological contract of safety is defined as the beliefs of individuals about reciprocal safety obligations inferred from implicit and explicit promises. A psychological contract is established when an individual believes that perceived employer and employee safety obligations are contingent on each other. A pilot test of the measure is first undertaken with participants from three different occupations: nurses, construction workers, and meat processing workers (N=99). Item analysis is used to refine the measure and provide initial validation of the scale. A larger validation study is then conducted with a participant sample of health care workers (N=424) to further refine the measure and to determine the psychometric properties of the scale. Item and correlational analyses produced the final employer and employee obligations scales, consisting of 21 and 17 items, respectively. Factor analyses identified two underlying dimensions in each scale comparable to that previously established in the organizational literature. These transactional and relational-type obligations provided construct validity of the scale. Internal consistency ratings using Cronbach's alpha found the components of the psychological contract of safety measure to be reliable. The refined and validated psychological contract of safety measure will allow investigation of the positive and negative outcomes associated with fulfilment and breach of the psychological contract of safety in future research. 2010 Elsevier Ltd. All rights reserved.

  12. General safety basis development guidance for environmental restoration decontamination and decommissioning

    International Nuclear Information System (INIS)

    Ellingson, D.R.; Kerr, N.; Bohlander, K.; Hansen, J.; Crowley, W.

    1994-02-01

    Safety analyses have the objective of contributing to two essential ingredients of a successful operation. The first is promoting the safety of the operation through worker involvement in information development (safety basis). The second is obtaining approval to conduct the operation (authorization). Typically these ingredients are assembled under separate programs covered by separate DOE requirements. DOE authorization relies on successful development of a document containing up to 21 topics written in terms and language suited to reviewers and approvers. Safety relies on successful training and procedures that convert the technical documented information into terms and language understandable to the worker. This separation can lead to successful incorporation of one ingredient independent of the other. At best, this separation may result in a safe but unauthorized operation; at worst, the separation may result in an unsafe operation authorized to proceed. This guide is based on experiences gained by contractors who have integrated rather than separated the safety and authorization. The short duration of ER/D ampersand D activities, the uncertainties of hazards, and the publicly expressed desire for demonstrable progress in cleanup activities add emphasis to the need to integrate rather than separate and develop new programs. Experience-based information has been useful to workers, safety analysis practitioners, and reviewers in the following ways: (1) Acquiring or developing the needed information in a useful form; (2) Managing the uncertainties during activity development and operation; (3) Identifying the subset of applicable requirements for an activity; (4) Developing the appropriate level of documentation detail for a specific activity; and (5) Increasing the usefulness and use of safety analysis (ownership)

  13. Thermal Safety Analyses for the Production of Plutonium-238 at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, Christopher J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hobbs, Randy W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maldonado, G. Ivan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    There has been a considerable effort over the previous few years to demonstrate and optimize the production of plutonium-238 (238Pu) at the High Flux Isotope Reactor (HFIR). This effort has involved resources from multiple divisions and facilities at the Oak Ridge National Laboratory (ORNL) to demonstrate the fabrication, irradiation, and chemical processing of targets containing neptunium-237 (237Np) dioxide (NpO2)/aluminum (Al) cermet pellets. A critical preliminary step to irradiation at the HFIR is to demonstrate the safety of the target under irradiation via documented experiment safety analyses. The steady-state thermal safety analyses of the target are simulated in a finite element model with the COMSOL Multiphysics code that determines, among other crucial parameters, the limiting maximum temperature in the target. Safety analysis efforts for this model discussed in the present report include: (1) initial modeling of single and reduced-length pellet capsules in order to generate an experimental knowledge base that incorporate initial non-linear contact heat transfer and fission gas equations, (2) modeling efforts for prototypical designs of partially loaded and fully loaded targets using limited available knowledge of fabrication and irradiation characteristics, and (3) the most recent and comprehensive modeling effort of a fully coupled thermo-mechanical approach over the entire fully loaded target domain incorporating burn-up dependent irradiation behavior and measured target and pellet properties, hereafter referred to as the production model. These models are used to conservatively determine several important steady-state parameters including target stresses and temperatures, the limiting condition of which is the maximum temperature with respect to the melting point. The single pellet model results provide a basis for the safety of the irradiations, followed by parametric analyses in the initial prototypical designs

  14. Guidelines for nuclear-power-plant safety-issue prioritization information development

    International Nuclear Information System (INIS)

    Andrews, W.B.; Gallucci, R.H.V.; Konzek, G.J.

    1983-05-01

    This is the second in a series of reports to document the use of a methodology developed by the Pacific Northwest Laboratory to calculate, for prioritization purposes, the risk, dose and cost impacts of implementing resolutions to reactor safety issues. This report contains results of issue-specific analyses for 15 issues. Each issue was considered within the contraints of available information as of September 1982 and two staff-weeks of labor. The results will be referenced, as one consideration in setting priorities for reactor safety issues, in an NRC prioritization report to be published at a future date

  15. Guidelines for nuclear power plant safety issue prioritization information development. Supplement 2

    International Nuclear Information System (INIS)

    Andrews, W.B.; Gallucci, R.H.V.; Konzek, G.J.; Heaberlin, S.W.; Fecht, B.A.; Allen, C.H.; Allen, R.D.; Bickford, W.E.; Carbaugh, E.H.; Lewis, J.R.

    1983-12-01

    This is the third in a series of reports to document the use of a methodology developed by the Pacific Northwest Laboratory to calculate, for prioritization purposes, the risk, dose and cost impacts of implementing resolutions to reactor safety issues (NUREG/CR-2800, Andrews et al. 1983). This report contains results of issue-specific analyses for 31 issues. Each issue was considered within the constraints of available information as of summer 1983, and two staff-weeks of labor. The results are referenced, as one consideration in setting priorities for reactor safety issues, in NUREG-0933, A Prioritization of Generic Safety Issues

  16. Assessing the validity of road safety evaluation studies by analysing causal chains.

    Science.gov (United States)

    Elvik, Rune

    2003-09-01

    This paper discusses how the validity of road safety evaluation studies can be assessed by analysing causal chains. A causal chain denotes the path through which a road safety measure influences the number of accidents. Two cases are examined. One involves chemical de-icing of roads (salting). The intended causal chain of this measure is: spread of salt --> removal of snow and ice from the road surface --> improved friction --> shorter stopping distance --> fewer accidents. A Norwegian study that evaluated the effects of salting on accident rate provides information that describes this causal chain. This information indicates that the study overestimated the effect of salting on accident rate, and suggests that this estimate is influenced by confounding variables the study did not control for. The other case involves a traffic club for children. The intended causal chain in this study was: join the club --> improve knowledge --> improve behaviour --> reduce accident rate. In this case, results are rather messy, which suggests that the observed difference in accident rate between members and non-members of the traffic club is not primarily attributable to membership in the club. The two cases show that by analysing causal chains, one may uncover confounding factors that were not adequately controlled in a study. Lack of control for confounding factors remains the most serious threat to the validity of road safety evaluation studies.

  17. Model-Driven Development of Safety Architectures

    Science.gov (United States)

    Denney, Ewen; Pai, Ganesh; Whiteside, Iain

    2017-01-01

    We describe the use of model-driven development for safety assurance of a pioneering NASA flight operation involving a fleet of small unmanned aircraft systems (sUAS) flying beyond visual line of sight. The central idea is to develop a safety architecture that provides the basis for risk assessment and visualization within a safety case, the formal justification of acceptable safety required by the aviation regulatory authority. A safety architecture is composed from a collection of bow tie diagrams (BTDs), a practical approach to manage safety risk by linking the identified hazards to the appropriate mitigation measures. The safety justification for a given unmanned aircraft system (UAS) operation can have many related BTDs. In practice, however, each BTD is independently developed, which poses challenges with respect to incremental development, maintaining consistency across different safety artifacts when changes occur, and in extracting and presenting stakeholder specific information relevant for decision making. We show how a safety architecture reconciles the various BTDs of a system, and, collectively, provide an overarching picture of system safety, by considering them as views of a unified model. We also show how it enables model-driven development of BTDs, replete with validations, transformations, and a range of views. Our approach, which we have implemented in our toolset, AdvoCATE, is illustrated with a running example drawn from a real UAS safety case. The models and some of the innovations described here were instrumental in successfully obtaining regulatory flight approval.

  18. Accomplishment of 10-year research in NUCEF and future development. Criticality safety research

    International Nuclear Information System (INIS)

    Miyoshi, Yoshinori

    2005-01-01

    Since 1995, static and transient critical experiments on low enriched uranyl nitrate solution have been performed using two solution type criticality facilities, STACY and TRACY constructed in NUCEF. The obtained fundamental and systematic data on aqueous solution were used to validate the criticality safety calculation codes and to develop the transient analyses codes for criticality accident evaluation. This paper describes the outline of the criticality safety research conducted in NUCEF. (author)

  19. IT-CARES: an interactive tool for case-crossover analyses of electronic medical records for patient safety.

    Science.gov (United States)

    Caron, Alexandre; Chazard, Emmanuel; Muller, Joris; Perichon, Renaud; Ferret, Laurie; Koutkias, Vassilis; Beuscart, Régis; Beuscart, Jean-Baptiste; Ficheur, Grégoire

    2017-03-01

    The significant risk of adverse events following medical procedures supports a clinical epidemiological approach based on the analyses of collections of electronic medical records. Data analytical tools might help clinical epidemiologists develop more appropriate case-crossover designs for monitoring patient safety. To develop and assess the methodological quality of an interactive tool for use by clinical epidemiologists to systematically design case-crossover analyses of large electronic medical records databases. We developed IT-CARES, an analytical tool implementing case-crossover design, to explore the association between exposures and outcomes. The exposures and outcomes are defined by clinical epidemiologists via lists of codes entered via a user interface screen. We tested IT-CARES on data from the French national inpatient stay database, which documents diagnoses and medical procedures for 170 million inpatient stays between 2007 and 2013. We compared the results of our analysis with reference data from the literature on thromboembolic risk after delivery and bleeding risk after total hip replacement. IT-CARES provides a user interface with 3 columns: (i) the outcome criteria in the left-hand column, (ii) the exposure criteria in the right-hand column, and (iii) the estimated risk (odds ratios, presented in both graphical and tabular formats) in the middle column. The estimated odds ratios were consistent with the reference literature data. IT-CARES may enhance patient safety by facilitating clinical epidemiological studies of adverse events following medical procedures. The tool's usability must be evaluated and improved in further research. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  20. Safety analyses for an in-pile SCWR fuel qualification test loop

    Energy Technology Data Exchange (ETDEWEB)

    Schulenberg, T.; Raque, M. [Karlsruhe Inst. of Tech., Karlsruhe (Germany)

    2014-07-01

    As a nuclear facility cooled with supercritical water has never been built nor operated in the past, the planned SCWR fuel qualification test will give the first experience with supercritical water-cooled nuclear systems in general. With a fuel inventory of almost 1 kg of UO{sub 2} with almost 20% enrichment, the supercritical pressure test section inside a low pressure, pool type research reactor needs to be cooled properly even in case of a number of postulated design basis accidents. Depressurization systems and emergency cooling systems will need to be designed with similar reliability as for a prototype reactor to ensure the integrity of barriers retaining the radioactive material. The paper reports about the safety concept and summarizes the safety analyses which have been performed in this context. (author)

  1. Work safety and sustainable development in enterprise

    Institute of Scientific and Technical Information of China (English)

    TANG Min-kang; ZHOU Yue; XU Jian-hong

    2005-01-01

    The nature of work safety and the way insisting on sustainable development in enterprise were analyzed. It indicates that problem of work safety in enterprise is closely related to the public's consciousness, to the development of science and technology, and to the weakening of safety management during the economic transition period. However, it is the people's questions concerned in the final analysis for the forming and development of the problem of work safety. Therefore, in order to solve the problem of work safety radically, the most basic way of insisting on the sustainable development in safety administration is to do a good job of every aspect about people. We should improve all people quality in science and culture and strengthen their safety and legal consciousness to form correct safety value concept. We should fortify safety legislation and bring close attention to approach and apply new safety technology.

  2. Developing a strong safety culture - a safety management challenge

    International Nuclear Information System (INIS)

    Low, M.; Gipson, G. P.; Williams, M.

    1995-01-01

    The approach is presented adapted by Nuclear Electric to build a strong safety culture through the development of its safety management system. Two features regarded as critical to a strong safety culture are: provision of effective communications to promote an awareness and ownership of safety among craft, and commitment to continuous improvement with a genuine willingness to learn from own experiences and those from others. (N.T.) 5 refs., 4 figs., 1 tab

  3. ACCIDENT ANALYSES & CONTROL OPTIONS IN SUPPORT OF THE SLUDGE WATER SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    WILLIAMS, J.C.

    2003-11-15

    This report documents the accident analyses and nuclear safety control options for use in Revision 7 of HNF-SD-WM-SAR-062, ''K Basins Safety Analysis Report'' and Revision 4 of HNF-SD-SNF-TSR-001, ''Technical Safety Requirements - 100 KE and 100 KW Fuel Storage Basins''. These documents will define the authorization basis for Sludge Water System (SWS) operations. This report follows the guidance of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', for calculating onsite and offsite consequences. The accident analysis summary is shown in Table ES-1 below. While this document describes and discusses potential control options to either mitigate or prevent the accidents discussed herein, it should be made clear that the final control selection for any accident is determined and presented in HNF-SD-WM-SAR-062.

  4. Guidelines for nuclear power plant safety issue prioritization information development. Supplement 5

    International Nuclear Information System (INIS)

    Daling, P.M.; Lavender, J.C.

    1996-07-01

    This is the sixth in a series of reports to document the development and use of a methodology developed by the Pacific Northwest Laboratory (PNL) to calculate, for prioritization purposes, the risk, dose, and cost impacts of implementing potential resolutions to reactor safety issues (see NUREG/CR-2800, Andrews, et al., 1983). This report contains the results of issue-specific analyses for 34 generic issues. Each issue was considered within the constraints of available information at the time the issues were examined and approximately 2 staff-weeks of labor. The results are referenced as one consideration in NUREG-0933, A Prioritization of Generic Safety Issues (Emrit, et al., 1983)

  5. Guidelines for nuclear power plant safety issue prioritization information development. Supplement 5

    Energy Technology Data Exchange (ETDEWEB)

    Daling, P.M.; Lavender, J.C. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-07-01

    This is the sixth in a series of reports to document the development and use of a methodology developed by the Pacific Northwest Laboratory (PNL) to calculate, for prioritization purposes, the risk, dose, and cost impacts of implementing potential resolutions to reactor safety issues (see NUREG/CR-2800, Andrews, et al., 1983). This report contains the results of issue-specific analyses for 34 generic issues. Each issue was considered within the constraints of available information at the time the issues were examined and approximately 2 staff-weeks of labor. The results are referenced as one consideration in NUREG-0933, A Prioritization of Generic Safety Issues (Emrit, et al., 1983).

  6. Developing design premises for a KBS-3V repository based on results from the safety assessment - 16027

    International Nuclear Information System (INIS)

    Andersson, Johan; Hedin, Allan

    2009-01-01

    As a part of the planned license application for a final repository for spent nuclear fuel the Swedish Nuclear Fuel and Waste Management Co. (SKB), has developed design premises from a long term safety aspect of a KBS-3V repository for spent nuclear fuel. The purpose is to provide requirements from a long term safety aspect, to form the basis for the development of the reference design of the repository and to justify that design. Design premises typically concern specification on what mechanical loads the barriers must withstand, restrictions on the composition of barrier materials or acceptance criteria for the various underground excavations. These design constraints, if all fulfilled by the actual design, should form a good basis for demonstrating repository safety. The justification for these design premises is derived from SKB's most recent safety assessment SR-Can complemented by a few additional analyses. Some of the design premises may be modified in future stages of SKB's program, as a result of analyses based on more detailed site data and a more developed understanding of processes of importance for long-term safety. (authors)

  7. Road safety in developing countries.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1991-01-01

    This paper presents a classification of countries (developing and developed alike), divided into two main categories: an economical and historical entry. When road safety problems are placed into the economical context, it then appears that, among other things: (1) The road safety problem in the

  8. Overcoming regulatory challenges in the development of companion diagnostics for monitoring and safety.

    Science.gov (United States)

    Shimazawa, Rumiko; Ikeda, Masayuki

    2016-03-01

    Concurrent development and co-approval of a companion diagnostic (CDx) with a corresponding drug is ideal, but often unfeasible. Because of limited exposure to a drug in clinical trials, crucial information on safety is sometimes revealed only after approval. Therefore, a CDx for monitoring/safety is often developed after approval of a corresponding drug. However, regulatory guidance is insufficient if contemporaneous development is not possible, thereby leaving plenty of opportunities for improvement with respect to pharmacovigilance and retrospective validation of the CDx. Furthermore, global harmonization of guidance on how to incorporate new scientific information from retrospective analyses of biomarkers should lead to the establishment of more evidence for the development of CDx for approved drugs.

  9. Safety demonstration analyses at JAERI for severe accident during overland transport of fresh nuclear fuel

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Kitao, Kohichi; Karasawa, Kiyonori; Yamada, Kenji; Takahashi, Satoshi; Watanabe, Kohji; Okuno, Hiroshi; Miyoshi, Yoshinori

    2005-01-01

    It is expected in the near future that more and more fresh nuclear fuel will be transported in a variety of transport packages to cope with increasing demand from nuclear fuel cycle facilities. Accordingly, safety demonstration analyses are planned and conducted at JAERI under contract with the Ministry of Economy, Trade and Industry of Japan. These analyses are conducted in a four year plan from 2001 to 2004 to verify integrity of packaging against leakage of radioactive material in the case of a severe accident postulated to occur during transportation, for the purpose of gaining acceptance of such nuclear fuel activities. In order to create the accident scenarios, actual transportation routes were surveyed, accident or incident records were tracked, international radioactive material transport regulations such as IAEA rules were investigated and thus, accident conditions leading to mechanical damages and thermal failure were determined to characterize the scenarios. As a result, the worst-case conditions of run-off-the-road accidents were set up to define the impact against a concrete or asphalt surface. For fire accident scenarios to be set up, collisions were assumed to occur with an oil tanker carrying lots of inflammable material in open air, or with a commonly used two-ton-truck inside a tunnel without ventilation. Then the cask models were determined for these safety demonstration analyses to represent those commonly used for fresh nuclear fuel transported throughout Japan. Following the postulated accident scenarios, the mechanical damages were analyzed by using the general-purpose finite element code LS-DYNA with three-dimensional elements. It was found that leak tightness of the package be maintained even in the severe impact scenario. Then the thermal safety was analyzed by using the general-purpose finite element code ABAOUS with three-dimensional elements to describe cask geometry. As a result of the thermal analyses, the integrity of the containment

  10. Development and Validation of a Safety Attitude Scale for Coal Miners in China

    Directory of Open Access Journals (Sweden)

    Xiang Wu

    2017-11-01

    Full Text Available Safety attitude is of vital importance to accident prevention, and the high accident rate in the coal mining industry makes it urgent to undertake research on coal miners’ safety attitude. However, the current literature still lacks a valid and reliable safety attitude measurement scale for coal miners, which stands as a barrier against their safety attitude improvement. In this study, a scale is developed that can be used to measure coal miners’ safety attitude. The preliminary scale was based on an extended literature review. Empirical data were then collected from 725 coal miners using the preliminary scale. Both exploratory and confirmatory factor analyses were undertaken to validate and improve the scale. The final scale, which consists of 17 items, contains four dimensions: management safety commitment, team safety climate, fatalism and work pressure. Results show that this safety attitude scale can effectively measure the safety attitude of coal miners, showing high psychological measurement validity. This paper contributes to the occupational safety research by developing the factor structure and indicator system of coal miners’ safety attitude, thus providing more profound interpretation of this crucial construct in the safety research domain. The measurement scale serves as an important tool for safety attitude benchmarking among different coal mining enterprises and, thus, can boost the overall safety improvement of the whole industry. These findings can facilitate improvement of both theories and practices related to occupational safety attitude.

  11. Unique differences in applying safety analyses for a graphite moderated, channel reactor

    International Nuclear Information System (INIS)

    Moffitt, R.L.

    1993-06-01

    Unlike its predecessors, the N Reactor at the Hanford Site in Washington State was designed to produce electricity for civilian energy use as well as weapons-grade plutonium. This paper describes the major problems associated with applying safety analysis methodologies developed for commercial light water reactors (LWR) to a unique reactor like the N Reactor. The focus of the discussion is on non-applicable LWR safety standards and computer modeling/analytical variances of standards. The approaches used to resolve these problems to develop safety standards and limits for the N Reactor are described

  12. Sustainable Development of Food Safety

    DEFF Research Database (Denmark)

    Fabech, B.; Georgsson, F.; Gry, Jørn

    to food safety - Strengthen efforts against zoonoses and pathogenic microorganisms - Strengthen safe food handling and food production in industry and with consumers - Restrict the occurrence of chemical contaminants and ensure that only well-examined production aids, food additives and flavours are used...... - Strengthen scientific knowledge of food safety - Strengthen consumer knowledge The goals for sustainable development of food safety are listed from farm to fork". All of the steps and areas are important for food safety and consumer protection. Initiatives are needed in all areas. Many of the goals...... in other areas. It should be emphasized that an indicator will be an excellent tool to assess the efficacy of initiatives started to achieve a goal. Conclusions from the project are: - Sustainable development in food safety is important for humanity - Focus on the crucial goals would optimize the efforts...

  13. Support analysis for safety analysis development for CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Bedreaga, L.; Florescu, Gh.; Apostol, M.; Nitoi, M.

    2004-01-01

    Probabilistic Safety Assessment analysis (PSA) is a technique used to assess the safety of a nuclear power plant. Assessments of the nuclear plant systems/components from safety point of view consist in accomplishment of a lot of support analyses that are the base for the main analysis, in order to evaluate the impact of occurrences of abnormal states for these systems. Evaluation of initiating events frequency and components failure rate is based on underlying probabilistic theory and mathematic statistics. Some of these analyses are detailed analyses and are known very well in PSA. There are also some analyses, named support analyses for PSA, which are very important but less applicable because they involve a huge human effort and hardware facilities to accomplish. The usual methods applicable in PSA such as input data extracted from the specific documentation (operation procedures, testing procedures, maintenance procedures and so on) or conservative evaluation provide a high level of uncertainty for both input and output data. The paper describes support analysis required to improve the certainty level in evaluation of reliability parameters and also in the final results (either risk, reliability or safety assessment). (author)

  14. Fusion safety codes International modeling with MELCOR and ATHENA- INTRA

    CERN Document Server

    Marshall, T; Topilski, L; Merrill, B

    2002-01-01

    For a number of years, the world fusion safety community has been involved in benchmarking their safety analyses codes against experiment data to support regulatory approval of a next step fusion device. This paper discusses the benchmarking of two prominent fusion safety thermal-hydraulic computer codes. The MELCOR code was developed in the US for fission severe accident safety analyses and has been modified for fusion safety analyses. The ATHENA code is a multifluid version of the US-developed RELAP5 code that is also widely used for fusion safety analyses. The ENEA Fusion Division uses ATHENA in conjunction with the INTRA code for its safety analyses. The INTRA code was developed in Germany and predicts containment building pressures, temperatures and fluid flow. ENEA employs the French-developed ISAS system to couple ATHENA and INTRA. This paper provides a brief introduction of the MELCOR and ATHENA-INTRA codes and presents their modeling results for the following breaches of a water cooling line into the...

  15. Probabilistic evaluation of scenarios in long-term safety analyses. Results of the project ISIBEL; Probabilistische Bewertung von Szenarien in Langzeitsicherheitsanalysen. Ergebnisse des Vorhabens ISIBEL

    Energy Technology Data Exchange (ETDEWEB)

    Buhmann, Dieter; Becker, Dirk-Alexander; Laggiard, Eduardo; Ruebel, Andre; Spiessl, Sabine; Wolf, Jens

    2016-07-15

    In the frame of the project ISIBEL deterministic analyses on the radiological consequences of several possible developments of the final repository were performed (VSG: preliminary safety analysis of the site Gorleben). The report describes the probabilistic evaluation of the VSG scenarios using uncertainty and sensitivity analyses. It was shown that probabilistic analyses are important to evaluate the influence of uncertainties. The transfer of the selected scenarios in computational cases and the used modeling parameters are discussed.

  16. Japanese standard method for safety evaluation using best estimate code based on uncertainty and scaling analyses with statistical approach

    International Nuclear Information System (INIS)

    Mizokami, Shinya; Hotta, Akitoshi; Kudo, Yoshiro; Yonehara, Tadashi; Watada, Masayuki; Sakaba, Hiroshi

    2009-01-01

    Current licensing practice in Japan consists of using conservative boundary and initial conditions(BIC), assumptions and analytical codes. The safety analyses for licensing purpose are inherently deterministic. Therefore, conservative BIC and assumptions, such as single failure, must be employed for the analyses. However, using conservative analytical codes are not considered essential. The standard committee of Atomic Energy Society of Japan(AESJ) has drawn up the standard for using best estimate codes for safety analyses in 2008 after three-years of discussions reflecting domestic and international recent findings. (author)

  17. Safety guides development process in Spain

    International Nuclear Information System (INIS)

    Butragueno, J.L.; Perello, M.

    1979-01-01

    Safety guides have become a major factor in the licensing process of nuclear power plants and related nuclear facilities of the fuel cycle. As far as the experience corroborates better and better engineering methodologies and procedures, the results of these are settled down in form of standards, guides, and similar issues. This paper presents the actual Spanish experience in nuclear standards and safety guides development. The process to develop a standard or safety guide is shown. Up to date list of issued and on development nuclear safety guides is included and comments on the future role of nuclear standards in the licensing process are made. (author)

  18. The development of safety requirements

    International Nuclear Information System (INIS)

    Jorel, M.

    2009-01-01

    This document describes the safety approach followed in France for the design of nuclear reactors. This safety approach is based on safety principles from which stem safety requirements that set limiting values for specific parameters. The improvements in computerized simulation, the use of more adequate new materials, a better knowledge of the concerned physical processes, the changes in the reactor operations (higher discharge burnups for instance) have to be taken into account for the definition of safety criteria and the setting of limiting values. The developments of the safety criteria linked to the risks of cladding failure and loss of primary coolant are presented. (A.C.)

  19. Measuring patient safety in a UK dental hospital: development of a dental clinical effectiveness dashboard.

    Science.gov (United States)

    Pemberton, M N; Ashley, M P; Shaw, A; Dickson, S; Saksena, A

    2014-10-01

    Patient safety is an important marker of quality for any healthcare organisation. In 2008, the British Government white paper entitled High quality care for all, resulting from a review led by Lord Darzi, identified patient safety as a key component of quality and discussed how it might be measured, analysed and acted upon. National and local clinically curated metrics were suggested, which could be displayed via a 'clinical dashboard'. This paper explains the development of a clinical effectiveness dashboard focused on patient safety in an English dental hospital and how it has helped us identify relevant patient safety issues in secondary dental care.

  20. Traceability of Software Safety Requirements in Legacy Safety Critical Systems

    Science.gov (United States)

    Hill, Janice L.

    2007-01-01

    How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?

  1. Development of Basic Key Technologies for Gen IV SFR Safety Evaluation

    International Nuclear Information System (INIS)

    Jeong, Hae Yong; Kwon, Young Min; Kim, Tae Woon; Park, Soo Yong; Suk, Soo Dong; Lee, Kwi Lim; Lee, Yong Bum; Chang, Won Pyo; Ha, Kwi Seok; Hahn, Sang Hoon

    2010-07-01

    Safety issues and design requirements on control rod worth were identified through the evaluation of safety design characteristics and the preliminary safety evaluation. This results will be taken into account for the conceptual design studies of the demonstration reactor in the next stage. The Level-1 Pasa has been performed and a quantitative Cdf value was produced for the selected design from the several candidates. The inherent safety characteristics of the selected design were evaluated through the DBE and ATWS analyses. A surrogate material for Tru has been selected which is applicable to the study of liquidus/solidus temperature test for the metallic fuel containing Tru. A methodology for the regression analysis with surrogate material has been developed and valuable data on metal fuel liquidus/solidus temperature have been measured. A simple mechanistic model describing a bending of subassemblies has been formulated based on the foreign test data and existing models. Its applicability has been evaluated for the Phenix design. New criteria of the core damage for the SFR PSA were identified. The list of initiating events, system response event tree, and core response event tree, which constitute a PSA methodology for an SFR, have been introduced. By developing the SFR PIRT, phenomenological model features, which have to be satisfied in a safety code, were defined and the PIRT results were applied to the design of the PDRC test facility. Bases for a safety evaluation methodology for the SFR DBEs have been also prepared. A draft version of the topical report on the code for local fault analysis has been completed. Since 2007, the MARS-LMR code has been developed and assessments for model validation with the test data from EBR-II and Phenix reactor have been continued. The code has been applied to the evaluation of passive safety of a conceptual design of Gen IV SFR

  2. Accident simulator development for probabilistic safety analysis

    International Nuclear Information System (INIS)

    Cacciabue, P.C.; Amendola, A.; Mancini, G.

    1985-01-01

    This paper describes the basic features of a new concept of incident simulator, Response System Analyzed (RSA) which is being developed within the CEC JRC Research Program on Reactor Safety. Focusing on somewhat different aims than actual simulators, RSA development extends the field of application of simulators to the area of risk and reliability analysis and in particular to the identification of relevant sequences, to the modeling of human behavior and to the validation of operating procedures. The fundamental components of the project, i.e. the deterministic transient model of the plant, the automatic probabilistic driver and the human possible intervention modeling, are discussed in connection with the problem of their dynamic interaction. The analyses so far performed by separately testing RSA on significant study cases have shown encouraging results and have proven the feasibility of the overall program

  3. Sign up to Safety: developing a safety improvement plan.

    Science.gov (United States)

    Dight, Carol; Peters, Hayley

    2015-04-01

    The Sign up to Safety (SutS) programme was launched in June 2014 by health secretary Jeremy Hunt. It focuses on listening to patients, carers and staff, learning from what they say when things go wrong, and then taking action to improve patient safety. The programme aims to make the NHS the safest healthcare system in the world by creating a culture devoted to continuous learning and improvement (NHS England 2014). Musgrove Park Hospital, part of Taunton and Somerset NHS Foundation Trust, was one of 12 NHS organisations that signed up to the SutS programme, making public its commitment to the national pledges to be 'open and transparent' and to develop a safety improvement plan. This paper describes the development of the strategy.

  4. SAFETY BASIS DESIGN DEVELOPMENT CHALLENGES IMECE2007-42747

    Energy Technology Data Exchange (ETDEWEB)

    RYAN GW

    2007-09-24

    'Designing in Safety' is a desired part of the development of any new potentially hazardous system, process, or facility. It is a required part of nuclear safety activities as specified in the U.S. Department of Energy (DOE) Order 420.B, Facility Safety. This order addresses the design of nuclear related facilities developed under federal regulation IOCFR830, Nuclear Safety Management. IOCFR830 requires that safety basis documentation be provided to identify how nuclear safety is being adequately addressed as a condition for system operation (e.g., the safety basis). To support the development of the safety basis, a safety analysis is performed. Although the concept of developing a design that addresses 'Safety is simple, the execution can be complex and challenging. This paper addresses those complexities and challenges for the design activity of a system to treat sludge, a corrosion product of spent nuclear fuel, at DOE's Hanford Site in Washington State. The system being developed is referred to as the Sludge Treatment Project (STP). This paper describes the portion of the safety analysis that addresses the selection of design basis events using the experience gained from the STP and the development of design requirements for safety features associated with those events. Specifically, the paper describes the safety design process and the application of the process for two types of potential design basis accidents associated with the operation of the system, (1) flashing spray leaks and (2) splash and splatter leaks. Also presented are the technical challenges that are being addressed to develop effective safety features to deal with these design basis accidents.

  5. SAFETY BASIS DESIGN DEVELOPMENT CHALLENGES IMECE2007-42747

    International Nuclear Information System (INIS)

    RYAN GW

    2007-01-01

    'Designing in Safety' is a desired part of the development of any new potentially hazardous system, process, or facility. It is a required part of nuclear safety activities as specified in the U.S. Department of Energy (DOE) Order 420.B, Facility Safety. This order addresses the design of nuclear related facilities developed under federal regulation IOCFR830, Nuclear Safety Management. IOCFR830 requires that safety basis documentation be provided to identify how nuclear safety is being adequately addressed as a condition for system operation (e.g., the safety basis). To support the development of the safety basis, a safety analysis is performed. Although the concept of developing a design that addresses 'Safety is simple, the execution can be complex and challenging. This paper addresses those complexities and challenges for the design activity of a system to treat sludge, a corrosion product of spent nuclear fuel, at DOE's Hanford Site in Washington State. The system being developed is referred to as the Sludge Treatment Project (STP). This paper describes the portion of the safety analysis that addresses the selection of design basis events using the experience gained from the STP and the development of design requirements for safety features associated with those events. Specifically, the paper describes the safety design process and the application of the process for two types of potential design basis accidents associated with the operation of the system, (1) flashing spray leaks and (2) splash and splatter leaks. Also presented are the technical challenges that are being addressed to develop effective safety features to deal with these design basis accidents

  6. Scoping analyses for the safety injection system configuration for Korean next generation reactor

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Song, Jin Ho; Park, Jong Kyoon

    1996-01-01

    Scoping analyses for the Safety Injection System (SIS) configuration for Korean Next Generation Reactor (KNGR) are performed in this study. The KNGR SIS consists of four mechanically separated hydraulic trains. Each hydraulic train consisting of a High Pressure Safety Injection (HPSI) pump and a Safety Injection Tank (SIT) is connected to the Direct Vessel Injection (DVI) nozzle located above the elevation of cold leg and thus injects water into the upper portion of reactor vessel annulus. Also, the KNGR is going to adopt the advanced design feature of passive fluidic device which will be installed in the discharge line of SIT to allow more effective use of borated water during the transient of large break LOCA. To determine the feasible configuration and capacity of SIT and HPSl pump with the elimination of the Low Pressure Safety Injection (LPSI) pump for KNGR, licensing design basis evaluations are performed for the limiting large break LOCA. The study shows that the DVI injection with the fluidic device SlT enhances the SIS performance by allowing more effective use of borated water for an extended period of time during the large break LOCA

  7. The development of technologies of safety analysis for LMR ('03)

    International Nuclear Information System (INIS)

    Lee, Y. B.; Suk, S. D.; Chang, W. P.; Kwon, Y. M.; Jeong, H. Y.; Ha, K. W.; Heo, S.

    2004-03-01

    The developmental objectives of the project, 'The development of safety analysis techniques in LMR', are the code development for the subchannel blockage analysis, the code development for the system transient analysis, the code development for the HCDA(Hypothetical Core Disruptive Accident) analysis, the preliminary safety analysis for KALIMER-600 equipped with the components of new concepts, and the establishment of data base. The purpose of the analysis for subchannel blockage in the subassembly of LMR is to represent quantitatively that the maximum damage due to the accident is within the safety criteria. The computational program should be developed to simulate the thermal hydraulic phenomena and to verify the safety of LMR for the accident. For the purpose, the hybrid scheme has been implemented into the MATRA-LMR code based on the upwind scheme to analyze the various flow fields occurred in the subchannel blockage accident. The turbulent mixing models using the CFX code were assessed to compute more precisely the heat transfer between subchannels. Through this assessment, empirical correction factors of 1.7 for the heat conduction, 0.006 for the turbulent mixing coefficient were obtained. The distributed resistance model instead of wire forcing function has been developed to represent the more exact flow field due to wire-wrap. Other models, such as heat conductor model and various turbulent mixing model, have been implemented into the MATRA-LMR. The ORNL THORS 19-Pin FFM-5B tests have been assessed to validate above new models using the improved MATRA-LMR. The results using MATRA-LMR were well agreed with the experimental data. The subchannel blockage accidents which assumed to be occurred at the three locations for the conceptual plant of KALIMER-600 have been analysed according to blockage size using the MATRA-LMR code. The results of calculations for the design basis events which 6 subchannels were blocked showed the margins of the 290 7.dog. C up to the

  8. Reactivity initiated accident analyses for the safety assessment of upgraded JRR-3

    International Nuclear Information System (INIS)

    Harami, Taikan; Uemura, Mutsumi; Ohnishi, Nobuaki

    1984-08-01

    JRR-3, currently a heavy water moderated and cooled 10 MW reactor, is to be upgraded to a light water moderated and cooled, heavy water reflected 20 MW reactor. This report describes the analytical results of reactivity initiated accidents for the safety assessment of upgraded JRR-3. The following five cases have been selected for the assessment; (1) uncontrolled control rod withdrawal from zero power, (2) uncontrolled control rod withdrawal from full power, (3) removal of irradiation samples, (4) increase of primary coolant flow, (5) failure of heavy water tank. Parameter studies have been made for each of the above cases to cover possible uncertainties. All analyses have been made by a computer code EUREKA-2. The results show that the safety criteria for upgraded JRR-3 are all met and the adequacy of the design is confirmed. (author)

  9. Economic Developments on Perceived Safety, Violence, and Economic Benefits

    Directory of Open Access Journals (Sweden)

    Anthony Fabio

    2015-01-01

    Full Text Available Background. Emerging research highlights the promise of community- and policy-level strategies in preventing youth violence. Large-scale economic developments, such as sports and entertainment arenas and casinos, may improve the living conditions, economics, public health, and overall wellbeing of area residents and may influence rates of violence within communities. Objective. To assess the effect of community economic development efforts on neighborhood residents’ perceptions on violence, safety, and economic benefits. Methods. Telephone survey in 2011 using a listed sample of randomly selected numbers in six Pittsburgh neighborhoods. Descriptive analyses examined measures of perceived violence and safety and economic benefit. Responses were compared across neighborhoods using chi-square tests for multiple comparisons. Survey results were compared to census and police data. Results. Residents in neighborhoods with the large-scale economic developments reported more casino-specific and arena-specific economic benefits. However, 42% of participants in the neighborhood with the entertainment arena felt there was an increase in crime, and 29% of respondents from the neighborhood with the casino felt there was an increase. In contrast, crime decreased in both neighborhoods. Conclusions. Large-scale economic developments have a direct influence on the perception of violence, despite actual violence rates.

  10. Patient involvement in patient safety: Protocol for developing an intervention using patient reports of organisational safety and patient incident reporting

    Directory of Open Access Journals (Sweden)

    Armitage Gerry

    2011-05-01

    Full Text Available Abstract Background Patients have the potential to provide a rich source of information on both organisational aspects of safety and patient safety incidents. This project aims to develop two patient safety interventions to promote organisational learning about safety - a patient measure of organisational safety (PMOS, and a patient incident reporting tool (PIRT - to help the NHS prevent patient safety incidents by learning more about when and why they occur. Methods To develop the PMOS 1 literature will be reviewed to identify similar measures and key contributory factors to error; 2 four patient focus groups will ascertain practicality and feasibility; 3 25 patient interviews will elicit approximately 60 items across 10 domains; 4 10 patient and clinician interviews will test acceptability and understanding. Qualitative data will be analysed using thematic content analysis. To develop the PIRT 1 individual and then combined patient and clinician focus groups will provide guidance for the development of three potential reporting tools; 2 nine wards across three hospital directorates will pilot each of the tools for three months. The best performing tool will be identified from the frequency, volume and quality of reports. The validity of both measures will be tested. 300 patients will be asked to complete the PMOS and PIRT during their stay in hospital. A sub-sample (N = 50 will complete the PMOS again one week later. Health professionals in participating wards will also be asked to complete the AHRQ safety culture questionnaire. Case notes for all patients will be reviewed. The psychometric properties of the PMOS will be assessed and a final valid and reliable version developed. Concurrent validity for the PIRT will be assessed by comparing reported incidents with those identified from case note review and the existing staff reporting scheme. In a subsequent study these tools will be used to provide information to wards/units about their

  11. Safety culture development at Daya Bay NPP

    International Nuclear Information System (INIS)

    Zhang Shanming

    2001-01-01

    From view on Organization Behavior theory, the concept, development and affecting factors of safety culture are introduced. The focuses are on the establishment, development and management practice for safety culture at Daya Bay NPP. A strong safety culture, also demonstrated, has contributed greatly to improving performance at Daya Bay

  12. International validation of safety analyses for nuclear power plants; Mednarodno preverjanje varnostnih analiz za jedrske elektrane

    Energy Technology Data Exchange (ETDEWEB)

    Gregoric, N; Mavko, B [Institut ' Jozef Stefan' Ljubljana (Yugoslavia)

    1988-07-01

    Paper describes the participation of 'J.Stefan' Institute in international standard problems for validation of modeling and programs for safety analysis. Listed are main international experimental facilities for collecting data basic for understanding of physical phenomena, code development and validation of modelling and programs. Since the results of international standard problem analyses are published in a joint final report, it is simple to asses the conformance of the results of a particular group with the experiment. Good results from three international exercises done so far, have encouraged the group to currently participate in OECD-ISP-22 which is a model of the Italian three loop PWR. (author)

  13. Development of safety performance indicators of regulatory interest (SAFPER) in Pakistan

    International Nuclear Information System (INIS)

    Khatoon, Abida

    2002-01-01

    Safety performance indicators provide a very useful tool for monitoring operational safety of a nuclear power plant. Utilities in many countries have developed plant specific indicators for the assessment of their performance and safety. Regulators can make use of some of these indicators for their regulatory assessment. In addition to these regulatory bodies in some countries have also developed programs for the formulation of safety performance indicators which are used in monitoring operational safety and regulatory decision making. Realizing its usefulness Directorate of Nuclear Safety and Radiation Protection (DNSRP-the regulatory body in Pakistan) has also initiated a country specific program for the development of Safety Performance Indicators (SAFPER) based on data provided by the utility and that collected during the course of regulatory inspections. Selected areas of NPP operation to be monitored are: - Significant events; - Safety systems performance; - Barriers integrity; - Environment protection; - Workers radiation safety; and - Emergency Preparedness. One of the objectives of this program is also to monitor the effectiveness of DNSRP regulatory activities. IAEA framework is taken as one of the bases for our program. Safety performance will be assessed on the basis of Performance Indicators and inspection findings. DNSRP program as shown in Appendix includes the indicators in use and under development. It is felt that the term Safety Performance Indicators may be termed as 'SAFPER Indicators' to be used by the Regulators, as it is clear from this presentation that utility safety performance indicators together with the regulatory effectiveness indicators constitute the measure for the adequate safety to the public and the environment. Additional research is still necessary for: - indicator definition for the proposed and under developed indicators; - data collection systems; - thresholds; - trend analysis; - goal setting (benefit from the trend can be

  14. Safety and sensitivity analyses of a generic geologic disposal system for high-level radioactive waste

    International Nuclear Information System (INIS)

    Kimura, Hideo; Takahashi, Tomoyuki; Shima, Shigeki; Matsuzuru, Hideo

    1994-11-01

    This report describes safety and sensitivity analyses of a generic geologic disposal system for HLW, using a GSRW code and an automated sensitivity analysis methodology based on the Differential Algebra. An exposure scenario considered here is based on a normal evolution scenario which excludes events attributable to probabilistic alterations in the environment. The results of sensitivity analyses indicate that parameters related to a homogeneous rock surrounding a disposal facility have higher sensitivities to the output analyzed here than those of a fractured zone and engineered barriers. The sensitivity analysis methodology provides technical information which might be bases for the optimization of design of the disposal facility. Safety analyses were performed on the reference disposal system which involve HLW in amounts corresponding to 16,000 MTU of spent fuels. The individual dose equivalent due to the exposure pathway ingesting drinking water was calculated using both the conservative and realistic values of geochemical parameters. In both cases, the committed dose equivalent evaluated here is the order of 10 -7 Sv, and thus geologic disposal of HLW may be feasible if the disposal conditions assumed here remain unchanged throughout the periods assessed here. (author)

  15. Safety culture development in nuclear electric plc

    International Nuclear Information System (INIS)

    Gibson, G.P.; Low, M.B.J.

    1995-01-01

    Nuclear Electric plc (NE) has always given the highest priority to safety. However, past emphasis has been directed towards ensuring safety thorough engineering design and hazard control procedures. Whilst the company did achieve high safety standards, particularly with respect to accidents, it was recognized that further improvements could be obtained. Analysis of the safety performance across a wide range of industries showed that the key to improving safety performance lay in developing a strong safety culture within the company. Over the last five years, NE has made great strides to improve its safety culture. This has resulted in a considerable improvement in its measured safety performance indicators, such as the number of incidents at international nuclear event scale (INES) rating 1, the number of lost time accidents and the collective radiation dose. However, despite this success, the company is committed to further improvement and a means by which this process becomes self-sustaining. In this way the company will achieve its prime goal, to ''ensure the safety of people, plant and the environment''. The paper provides an overview of the development of safety culture in NE since its formation in November 1989. It describes the research and international developments that have influenced the company's understanding of safety culture, the key initiatives that the company has undertaken to enhance its safety culture and the future initiatives being considered to ensure continual improvement. (author). 5 refs, 2 figs, 2 tabs

  16. Development of reliability databases and the particular requirements of probabilistic risk analyses

    International Nuclear Information System (INIS)

    Meslin, T.

    1989-01-01

    Nuclear utilities have an increasing need to develop reliability databases for their operating experience. The purposes of these databases are often multiple, including both equipment maintenance aspects and probabilistic risk analyses. EDF has therefore been developing experience feedback databases, including the Reliability Data Recording System (SRDF) and the Event File, as well as the history of numerous operating documents. Furthermore, since the end of 1985, EDF has been preparing a probabilistic safety analysis applied to one 1,300 MWe unit, for which a large amount of data of French origin is necessary. This data concerns both component reliability parameters and initiating event frequencies. The study has thus been an opportunity for trying out the performance databases for a specific application, as well as in-depth audits of a number of nuclear sites to make it possible to validate numerous results. Computer aided data collection is also on trial in a number of plants. After describing the EDF operating experience feedback files, we discuss the particular requirements of probabilistic risk analyses, and the resources implemented by EDF to satisfy them. (author). 5 refs

  17. Safety And Transient Analyses For Full Core Conversion Of The Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong

    2011-01-01

    Preparing for full core conversion of Dalat Nuclear Research Reactor (DNRR), safety and transient analyses were carried out to confirm about ability to operate safely of proposed Low Enriched Uranium (LEU) working core. The initial LEU core consisting 92 LEU fuel assemblies and 12 Beryllium rods was analyzed under initiating events of uncontrolled withdrawal of a control rod, cooling pump failure, earthquake and fuel cladding fail. Working LEU core response were evaluated under these initial events based on RELAP/Mod3.2 computer code and other supported codes like ORIGEN, MCNP and MACCS2. Obtained results showed that safety of the reactor is maintained for all transients/accidents analyzed. (author)

  18. Development of nuclear safety issues program

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. C.; Yoo, S. O.; Yoon, Y. K.; Kim, H. J.; Jeong, M. J.; Noh, K. W.; Kang, D. K

    2006-12-15

    The nuclear safety issues are defined as the cases which affect the design and operation safety of nuclear power plants and also require the resolution action. The nuclear safety issues program (NSIP) which deals with the overall procedural requirements for the nuclear safety issues management process is developed, in accordance with the request of the scientific resolution researches and the establishment/application of the nuclear safety issues management system for the nuclear power plants under design, construction or operation. The NSIP consists of the following 4 steps; - Step 1 : Collection of candidates for nuclear safety issues - Step 2 : Identification of nuclear safety issues - Step 3 : Categorization and resolution of nuclear safety issues - Step 4 : Implementation, verification and closure The NSIP will be applied to the management directives of KINS related to the nuclear safety issues. Through the identification of the nuclear safety issues which may be related to the potential for accident/incidents at operating nuclear power plants either directly or indirectly, followed by performance of regulatory researches to resolve the safety issues, it will be possible to prevent occurrence of accidents/incidents as well as to cope with unexpected accidents/incidents by analyzing the root causes timely and scientifically and by establishing the proper flow-up or remedied regulatory actions. Moreover, the identification and resolution of the safety issues related to the new nuclear power plants completed at the design stage are also expected to make the new reactor licensing reviews effective and efficient as well as to make the possibility of accidents/incidents occurrence minimize. Therefore, the NSIP developed in this study is expected to contribute for the enhancement of the safety of nuclear power plants.

  19. Development of nuclear safety issues program

    International Nuclear Information System (INIS)

    Cho, J. C.; Yoo, S. O.; Yoon, Y. K.; Kim, H. J.; Jeong, M. J.; Noh, K. W.; Kang, D. K.

    2006-12-01

    The nuclear safety issues are defined as the cases which affect the design and operation safety of nuclear power plants and also require the resolution action. The nuclear safety issues program (NSIP) which deals with the overall procedural requirements for the nuclear safety issues management process is developed, in accordance with the request of the scientific resolution researches and the establishment/application of the nuclear safety issues management system for the nuclear power plants under design, construction or operation. The NSIP consists of the following 4 steps; - Step 1 : Collection of candidates for nuclear safety issues - Step 2 : Identification of nuclear safety issues - Step 3 : Categorization and resolution of nuclear safety issues - Step 4 : Implementation, verification and closure The NSIP will be applied to the management directives of KINS related to the nuclear safety issues. Through the identification of the nuclear safety issues which may be related to the potential for accident/incidents at operating nuclear power plants either directly or indirectly, followed by performance of regulatory researches to resolve the safety issues, it will be possible to prevent occurrence of accidents/incidents as well as to cope with unexpected accidents/incidents by analyzing the root causes timely and scientifically and by establishing the proper flow-up or remedied regulatory actions. Moreover, the identification and resolution of the safety issues related to the new nuclear power plants completed at the design stage are also expected to make the new reactor licensing reviews effective and efficient as well as to make the possibility of accidents/incidents occurrence minimize. Therefore, the NSIP developed in this study is expected to contribute for the enhancement of the safety of nuclear power plants

  20. Developing safety culture in nuclear power engineering

    International Nuclear Information System (INIS)

    Tevlin, S.A.

    2000-01-01

    The new issue (no. 11) of the IAEA publications series Safety Reports, devoted to the safety culture in nuclear engineering Safety culture development in the nuclear activities. Practical recommendations to achieve success, is analyzed. A number of recommendations of international experts is presented and basic general indicators of satisfactory and insufficient safety culture in the nuclear engineering are indicated. It is shown that the safety culture has two foundations: human behavior and high quality of the control system. The necessity of creating the confidence by the management at all levels of the enterprise, development of individual initiative and responsibility of the workers, which make it possible to realize the structural hierarchic system, including technical, human and organizational constituents, is noted. Three stages are traced in the process of introducing the safety culture. At the first stage the require,emts of scientific-technical documentation and provisions of the governmental, regional and control organs are fulfilled. At the second stage the management of the organization accepts the safety as an important direction in its activities. At the third stage the organization accomplishes its work, proceeding from the position of constant safety improvement. The general model of the safety culture development is considered [ru

  1. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Kim, K. Y.

    2002-03-01

    In general, small and medium-sized integral reactors adopt new technology such as passive and inherent safety concepts to minimize the necessity of power source and operator actions, and to provide the automatic measures to cope with any accidents. Specifically, such reactors are often designed with a lower core power density and with soluble boron free concept for system simplification. Those reactors require ultra long cycle operation for higher economical efficiency. This cycle length requirement is one of the important factors in the design of burnable absorbers as well as assurance of shutdown margin. Hence, both computer code system and design methodology based on the today's design technology for the current commercial reactor cores require intensive improvement for the small and medium-sized soluble boron free reactors. New database is also required for the development of this type of reactor core. Under these technical requirements, conceptual design of small integral reactor SMART has been performed since July 1997, and recently completed under the long term nuclear R and D program. Thus, the final objectives of this work is design and development of an integral reactor core and development of necessary indigenous design technology. To reach the goal of the 2nd stage R and D program for basic design of SMART, design bases and requirements adequate for ultra long cycle and soluble boron free concept are established. These bases and requirements are satisfied by the core loading pattern. Based on the core loading pattern, nuclear, and thermal and hydraulic characteristics are analyzed. Also included are fuel performance analysis and development of a core protection and monitoring system that is adequate for the soluble boron free core of an integral reactor. Core shielding design analysis is accomplished, too. Moreover, full scope interface data are produced for reactor safety and performance analyses and other design activities. Nuclear, thermal and

  2. RAMONA-4B development for SBWR safety studies

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, U.S.; Aronson, A.L.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.

    1993-12-31

    The Simplified Boiling Water Reactor (SBWR) is a revolutionary design of a boiling-water reactor. The reactor is based on passive safety systems such as natural circulation, gravity flow, pressurized gas, and condensation. SBWR has no active systems, and the flow in the vessel is by natural circulation. There is a large chimney section above the core to provide a buoyancy head for natural circulation. The reactor can be shut down by either of four systems; namely, scram, Fine Motion Control Rod Drive (FMCRD), Alternate Rod Insertion (ARI), and Standby Liquid Control System (SLCS). The safety injection is by gravity drain from the Gravity Driven Cooling System (GDCS) and Suppression Pool (SP). The heat sink is through two types of heat exchangers submerged in the tank of water. These heat exchangers are the Isolation Condenser (IC) and the Passive Containment Cooling System (PCCS). The RAMONA-4B code has been developed to simulate the normal operation, reactivity transients, and to address the instability issues for SBWR. The code has a three-dimensional neutron kinetics coupled to multiple parallel-channel thermal-hydraulics. The two-phase thermal hydraulics is based on a nonhomogeneous nonequilibrium drift-flux formulation. It employs an explicit integration to solve all state equations (except for neutron kinetics) in order to predict the instability without numerical damping. The objective of this project is to develop a Sun SPARC and IBM RISC 6000 based RAMONA-4B code for applications to SBWR safety analyses, in particular for stability and ATWS studies.

  3. RAMONA-4B development for SBWR safety studies

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Aronson, A.L.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.

    1993-01-01

    The Simplified Boiling Water Reactor (SBWR) is a revolutionary design of a boiling-water reactor. The reactor is based on passive safety systems such as natural circulation, gravity flow, pressurized gas, and condensation. SBWR has no active systems, and the flow in the vessel is by natural circulation. There is a large chimney section above the core to provide a buoyancy head for natural circulation. The reactor can be shut down by either of four systems; namely, scram, Fine Motion Control Rod Drive (FMCRD), Alternate Rod Insertion (ARI), and Standby Liquid Control System (SLCS). The safety injection is by gravity drain from the Gravity Driven Cooling System (GDCS) and Suppression Pool (SP). The heat sink is through two types of heat exchangers submerged in the tank of water. These heat exchangers are the Isolation Condenser (IC) and the Passive Containment Cooling System (PCCS). The RAMONA-4B code has been developed to simulate the normal operation, reactivity transients, and to address the instability issues for SBWR. The code has a three-dimensional neutron kinetics coupled to multiple parallel-channel thermal-hydraulics. The two-phase thermal hydraulics is based on a nonhomogeneous nonequilibrium drift-flux formulation. It employs an explicit integration to solve all state equations (except for neutron kinetics) in order to predict the instability without numerical damping. The objective of this project is to develop a Sun SPARC and IBM RISC 6000 based RAMONA-4B code for applications to SBWR safety analyses, in particular for stability and ATWS studies

  4. Plasma-safety assessment model and safety analyses of ITER

    International Nuclear Information System (INIS)

    Honda, T.; Okazaki, T.; Bartels, H.-H.; Uckan, N.A.; Sugihara, M.; Seki, Y.

    2001-01-01

    A plasma-safety assessment model has been provided on the basis of the plasma physics database of the International Thermonuclear Experimental Reactor (ITER) to analyze events including plasma behavior. The model was implemented in a safety analysis code (SAFALY), which consists of a 0-D dynamic plasma model and a 1-D thermal behavior model of the in-vessel components. Unusual plasma events of ITER, e.g., overfueling, were calculated using the code and plasma burning is found to be self-bounded by operation limits or passively shut down due to impurity ingress from overheated divertor targets. Sudden transition of divertor plasma might lead to failure of the divertor target because of a sharp increase of the heat flux. However, the effects of the aggravating failure can be safely handled by the confinement boundaries. (author)

  5. Impact of biomarker development on drug safety assessment

    International Nuclear Information System (INIS)

    Marrer, Estelle; Dieterle, Frank

    2010-01-01

    Drug safety has always been a key aspect of drug development. Recently, the Vioxx case and several cases of serious adverse events being linked to high-profile products have increased the importance of drug safety, especially in the eyes of drug development companies and global regulatory agencies. Safety biomarkers are increasingly being seen as helping to provide the clarity, predictability, and certainty needed to gain confidence in decision making: early-stage projects can be stopped quicker, late-stage projects become less risky. Public and private organizations are investing heavily in terms of time, money and manpower on safety biomarker development. An illustrative and 'door opening' safety biomarker success story is the recent recognition of kidney safety biomarkers for pre-clinical and limited translational contexts by FDA and EMEA. This milestone achieved for kidney biomarkers and the 'know how' acquired is being transferred to other organ toxicities, namely liver, heart, vascular system. New technologies and molecular-based approaches, i.e., molecular pathology as a complement to the classical toolbox, allow promising discoveries in the safety biomarker field. This review will focus on the utility and use of safety biomarkers all along drug development, highlighting the present gaps and opportunities identified in organ toxicity monitoring. A last part will be dedicated to safety biomarker development in general, from identification to diagnostic tests, using the kidney safety biomarkers success as an illustrative example.

  6. Safety culture assessment developed by JANTI

    International Nuclear Information System (INIS)

    Hamada, Jun

    2009-01-01

    Japan's JCO accident in September 1999 provided a real-life example of what can happen when insufficient attention is paid to safety culture. This accident brought to light the importance of safety culture and reinforced the movement to foster a safety culture. Despite this, accidents and inappropriate conduct have continued to occur. Therefore, there is a strong demand to instill a safety culture throughout the nuclear power industry. In this context, Japan's nuclear power regulator, the Nuclear and Industrial Safety Agency (NISA), decided to include in its safety inspections assessments of the safety culture found in power utilities' routine safety operations to get signs of deterioration in the organizational climate. In 2007, NISA constructed guidelines for their inspectors to carry out these assessments. At the same time, utilities have embarked on their own independent safety culture initiatives, such as revising their technical specifications and building effective PDCA cycle to promote safety culture. In concert with these developments, JANTI has also instituted safety culture assessments. (author)

  7. Safety demonstration analyses for severe accident of fresh nuclear fuel transport packages at JAERI

    International Nuclear Information System (INIS)

    Yamada, K.; Watanabe, K.; Nomura, Y.; Okuno, H.; Miyoshi, Y.

    2004-01-01

    It is expected in the near future that more and more fresh nuclear fuel will be transported in a variety of transport packages to cope with increasing demand from nuclear fuel cycle facilities. Accordingly, safety demonstration analyses of these methods are planned and conducted at JAERI under contract with the Ministry of Economy, Trade and Industry of Japan. These analyses are conducted part of a four year plan from 2001 to 2004 to verify integrity of packaging against leakage of radioactive material in the case of a severe accident envisioned to occur during transportation, for the purpose of gaining public acceptance of such nuclear fuel activities. In order to create the accident scenarios, actual transportation routes were surveyed, accident or incident records were tracked, international radioactive material transport regulations such as IAEA rules were investigated and, thus, accident conditions leading to mechanical damage and thermal failure were selected for inclusion in the scenario. As a result, the worst-case conditions of run-off-the-road accidents were incorporated, where there is impact against a concrete or asphalt surface. Fire accidents were assumed to occur after collision with a tank truck carrying lots of inflammable material or destruction by fire after collision inside a tunnel. The impact analyses were performed by using three-dimensional elements according to the general purpose impact analysis code LS-DYNA. Leak-tightness of the package was maintained even in the severe impact accident scenario. In addition, the thermal analyses were performed by using two-dimensional elements according to the general purpose finite element method computer code ABAQUS. As a result of these analyses, the integrity of the inside packaging component was found to be sufficient to maintain a leak-tight state, confirming its safety

  8. Survey and evaluation of inherent safety characteristics and passive safety systems for use in probabilistic safety analyses

    International Nuclear Information System (INIS)

    Wetzel, N.; Scharfe, A.

    1998-01-01

    The present report examines the possibilities and limits of a probabilistic safety analysis to evaluate passive safety systems and inherent safety characteristics. The inherent safety characteristics are based on physical principles, that together with the safety system lead to no damage. A probabilistic evaluation of the inherent safety characteristic is not made. An inventory of passive safety systems of accomplished nuclear power plant types in the Federal Republic of Germany was drawn up. The evaluation of the passive safety system in the analysis of the accomplished nuclear power plant types was examined. The analysis showed that the passive manner of working was always assumed to be successful. A probabilistic evaluation was not performed. The unavailability of the passive safety system was determined by the failure of active components which are necessary in order to activate the passive safety system. To evaluate the passive safety features in new concepts of nuclear power plants the AP600 from Westinghouse, the SBWR from General Electric and the SWR 600 from Siemens, were selected. Under these three reactor concepts, the SWR 600 is specially attractive because the safety features need no energy sources and instrumentation in this concept. First approaches for the assessment of the reliability of passively operating systems are summarized. Generally it can be established that the core melt frequency for the passive concepts AP600 and SBWR is advantageous in comparison to the probabilistic objectives from the European Pressurized Water Reactor (EPR). Under the passive concepts is the SWR 600 particularly interesting. In this concept the passive systems need no energy sources and instrumentation, and has active operational systems and active safety equipment. Siemens argues that with this concept the frequency of a core melt will be two orders of magnitude lower than for the conventional reactors. (orig.) [de

  9. A framework for the development of patient safety education and training guidelines.

    Science.gov (United States)

    Zikos, Dimitrios; Diomidous, Marianna; Mantas, John

    2010-01-01

    Patient Safety (PS) is a major concern that involves a wide range of roles in healthcare, including those who are directly and indirectly involved, and patients as well. In order to succeed into developing a safety culture among healthcare providers, carers and patients, there should be given great attention into building appropriate education and training tools, especially addressing those who plan patient safety activities. The framework described in this policy paper is based on the results of the European Network for Patient Safety (EUNetPaS) project and analyses the principles and elements of the guidance that should be provided to those who design and implement Patient Safety Education and training activities. The main principles that it should be based on and the core teaching objectives-expected outcomes are addressed. Once the main context and considerations are properly set, the guidance should define the general schema of the content that should be included in the Education and Training activities, as well as how these activities would be delivered. It is also important that the different roles of the recipients are clearly distinguished and linked to their role-specific methods, proper delivery platforms and success stories. Setting these principles into practice when planning and implementing interventions, primarily aims to enlighten and support those who are enrolled to design and implement Patient Safety education and training teaching activities. This is achieved by providing them with a framework to build upon, succeeding to build a collaborative, safety conscious and competent environment, in terms of PS. A guidelines web platform has been developed to support this process.

  10. Evaluation of methods and tools to develop safety concepts and to demonstrate safety for an HLW repository in salt. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bollingerfehr, W.; Buhmann, D.; Doerr, S.; and others

    2017-03-15

    Salt formations have been the preferred option as host rocks for the disposal of high level radioactive waste in Germany for more than 40 years. During this period comprehensive geological investigations have been carried out together with a broad spectrum of concept and safety related R and D work. The behaviour of an HLW repository in salt formations, particularly in salt domes, has been analysed in terms of assessment of the total system performance. This was first carried out for concepts of generic waste repositories in salt and, since 1998, for a repository concept with specific boundary conditions, taking the geology of the Gorleben salt dome as an example. Suitable repository concepts and designs were developed, the technical feasibility has been proven and operational and long-term safety evaluated. Numerical modelling is an important input into the development of a comprehensive safety case for a waste repository. Significant progress in the development of numerical tools and their application for long-term safe ty assessment has been made in the last two decades. An integrated approach has been used in which the repository concept and relevant scientific and engineering data are combined with the results from iterative safety assessments to increase the clarity and the traceability of the evaluation. A safety concept that takes full credit of the favourable properties of salt formations was developed in the course of the R and D project ISIBEL, which started in 2005. This concept is based on the safe containment of radioactive waste in a specific part of the host rock formation, termed the containment providing rock zone, which comprises the geological barrier, the geotechnical barriers and the compacted backfill. The future evolution of the repository system will be analysed using a catalogue of Features, Events and Processes (FEP), scenario development and numerical analysis, all of which are adapted to suit the safety concept. Key elements of the

  11. Evaluation of methods and tools to develop safety concepts and to demonstrate safety for an HLW repository in salt. Final report

    International Nuclear Information System (INIS)

    Bollingerfehr, W.; Buhmann, D.; Doerr, S.

    2017-03-01

    Salt formations have been the preferred option as host rocks for the disposal of high level radioactive waste in Germany for more than 40 years. During this period comprehensive geological investigations have been carried out together with a broad spectrum of concept and safety related R and D work. The behaviour of an HLW repository in salt formations, particularly in salt domes, has been analysed in terms of assessment of the total system performance. This was first carried out for concepts of generic waste repositories in salt and, since 1998, for a repository concept with specific boundary conditions, taking the geology of the Gorleben salt dome as an example. Suitable repository concepts and designs were developed, the technical feasibility has been proven and operational and long-term safety evaluated. Numerical modelling is an important input into the development of a comprehensive safety case for a waste repository. Significant progress in the development of numerical tools and their application for long-term safe ty assessment has been made in the last two decades. An integrated approach has been used in which the repository concept and relevant scientific and engineering data are combined with the results from iterative safety assessments to increase the clarity and the traceability of the evaluation. A safety concept that takes full credit of the favourable properties of salt formations was developed in the course of the R and D project ISIBEL, which started in 2005. This concept is based on the safe containment of radioactive waste in a specific part of the host rock formation, termed the containment providing rock zone, which comprises the geological barrier, the geotechnical barriers and the compacted backfill. The future evolution of the repository system will be analysed using a catalogue of Features, Events and Processes (FEP), scenario development and numerical analysis, all of which are adapted to suit the safety concept. Key elements of the

  12. Development of Safety Culture Indicators for HANARO

    International Nuclear Information System (INIS)

    Wu, Jong-Sup; Lee, Kye-Hong

    2007-01-01

    Safety culture is more important than a technical matter for the management of nuclear facilities. Some of the accidents that have occurred recently in nuclear plants are important as a social problem besides a technical problem. That's why the management of nuclear plants has been focused on the safety culture to improve confidence of nuclear facilities. As for a safety culture, there are difficulties in that a tangible result does not come out clearly in spite of an effort for a long time. Some IAEA guides and reports about a safety culture and its evaluation method for nuclear power plants (NPP) were published after the Chernobyl accident. Until now there is no tool to evaluate a safety culture of for research reactors. HANARO developed its own safety culture indicators based on the IAEA's documents. The purpose of the development of the safety culture indicators is to evaluate and enhance the safety attitude in HANARO

  13. Safety policy for nuclear power development

    International Nuclear Information System (INIS)

    Uchida, Hideo

    1987-01-01

    The report discusses various aspects of the safety policy for nuclear power development in Japan. Nuclear power development over three decades in Japan has led to operating performance which is highly safe and reliable. This has been appreciated internationally. Discussed here is the Japanese basic safety policy for nuclear power development that is essential first to design, manufacture and construction using high technology. The current careful quality assurance and reliable operation management by skilled operators are relied upon, on the basis of the fact that measures to prevent abnormal events are given first priority rather than those to mitigate consequences of abnormal events or accidents. Lessons learned from accidents and failures within or outside Japan such as the TMI accident and Chernobyl accident have been reflected in the improvement of safety through careful and thorough examinations of them. For further improvement in nuclear safety, deliberate studies and investigations on severe accidents and probabilistic safety assessment are considered to be important. Such efforts are currently being promoted. For this purpose, it is important to advance international cooperation and continue technical exchanges, based on operation experience in nuclear power stations in Japan. (Nogami, K.)

  14. Ferrocyanide safety project: Task 3.5 cyanide species analytical methods development

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pool, K.H.; Burger, L.L.; Carlson, C.D.; Hess, N.J.; Matheson, J.D.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1993-01-01

    This report summarizes the results of studies conducted in FY 1992 to develop methods for the identification and quantification of cyanide species in ferrocyanide tank waste. Currently there are 24 high-level waste storage tanks at the Hanford Site that have been placed on a Ferrocyanide Tank Watchlist because they contain an estimated 1,000 g-moles or greater amount of precipitated ferrocyanide. This amount of ferrocyanide is of concern because the consequences of a potential explosion may exceed those reported previously in safety analyses. The threshold concentration of total cyanide within the tank waste matrix that is expected to be a safety concern is estimated at approximately 1 to 3 wt%. Methods for detection and speciation of ferrocyanide complexes in actual waste are needed to definitively measure and quantitate the amount of ferrocyanides present within actual waste tanks to a lower limit of at least 0.1 wt% in order to bound the safety concern

  15. Producing health, producing safety. Developing a collective safety culture in radiotherapy

    International Nuclear Information System (INIS)

    Nascimento, Adelaide

    2009-01-01

    This research thesis aims at a better understanding of safety management in radiotherapy and at proposing improvements for patient safety through the development of a collective safety culture. A first part presents the current context in France and abroad, addresses the transposition of other safety methods to the medical domain, and discusses the peculiarities of radiotherapy in terms of risks and the existing quality-assurance approaches. The second part presents the theoretical framework by commenting the intellectual evolution with respect to system safety and the emergence of the concept of safety culture, and by presenting the labour collective aspects and their relationship with system safety. The author then comments the variety of safety cultures among the different professions present in radiotherapy, highlights the importance of the collective dimension in correcting discrepancies at the end of the treatment process, and highlights how physicians take their colleagues work into account. Recommendations are made to improve patient safety in radiotherapy

  16. The development of technologies of safety analysis for LMR ('03)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. B.; Suk, S. D.; Chang, W. P.; Kwon, Y. M.; Jeong, H. Y.; Ha, K. W.; Heo, S

    2004-03-01

    The developmental objectives of the project, 'The development of safety analysis techniques in LMR', are the code development for the subchannel blockage analysis, the code development for the system transient analysis, the code development for the HCDA(Hypothetical Core Disruptive Accident) analysis, the preliminary safety analysis for KALIMER-600 equipped with the components of new concepts, and the establishment of data base. The purpose of the analysis for subchannel blockage in the subassembly of LMR is to represent quantitatively that the maximum damage due to the accident is within the safety criteria. The computational program should be developed to simulate the thermal hydraulic phenomena and to verify the safety of LMR for the accident. For the purpose, the hybrid scheme has been implemented into the MATRA-LMR code based on the upwind scheme to analyze the various flow fields occurred in the subchannel blockage accident. The turbulent mixing models using the CFX code were assessed to compute more precisely the heat transfer between subchannels. Through this assessment, empirical correction factors of 1.7 for the heat conduction, 0.006 for the turbulent mixing coefficient were obtained. The distributed resistance model instead of wire forcing function has been developed to represent the more exact flow field due to wire-wrap. Other models, such as heat conductor model and various turbulent mixing model, have been implemented into the MATRA-LMR. The ORNL THORS 19-Pin FFM-5B tests have been assessed to validate above new models using the improved MATRA-LMR. The results using MATRA-LMR were well agreed with the experimental data. The subchannel blockage accidents which assumed to be occurred at the three locations for the conceptual plant of KALIMER-600 have been analysed according to blockage size using the MATRA-LMR code. The results of calculations for the design basis events which 6 subchannels were blocked showed the margins of the 290 7.dog. C

  17. Preliminary standard review guide for Environmental Restoration/Decontamination and Decommissioning safety analyses

    International Nuclear Information System (INIS)

    Ellingson, D.R.

    1993-06-01

    The review guide is based on the shared experiences, approaches, and philosophies of the Environmental Restoration/Decontamination and Decommissioning (ER/D ampersand D) subgroup members. It is presented in the form of a review guide to maximize the benefit to both the safety analyses practitioner and reviewer. The guide focuses on those challenges that tend to be unique to ER/D ampersand D cleanup activities. Some of these experiences, approaches, and philosophies may find application or be beneficial to a broader spectrum of activities such as terminal cleanout or even new operations. Challenges unique to ER/D ampersand D activities include (1) consent agreements requiring activity startup on designated dates; (2) the increased uncertainty of specific hazards; and (3) the highly variable activities covered under the broad category of ER/D ampersand D. These unique challenges are in addition to the challenges encountered in all activities; e.g., new and changing requirements and multiple interpretations. The experiences in approaches, methods, and solutions to the challenges are documented from the practitioner and reviewer's perspective, thereby providing the viewpoints on why a direction was taken and the concerns expressed. Site cleanup consent agreements with predetermined dates for restoration activity startup add the dimension of imposed punitive actions for failure to meet the date. Approval of the safety analysis is a prerequisite to startup. Actions that increase expediency are (1) assuring activity safety; (2) documenting that assurance; and (3) acquiring the necessary approvals. These actions increase the timeliness of startup and decrease the potential for punitive action. Improvement in expediency has been achieved by using safety analysis techniques to provide input to the line management decision process rather than as a review of line management decisions. Expediency is also improved by sharing the safety input and resultant decisions with

  18. Development of NUMO safety case for geological disposal

    International Nuclear Information System (INIS)

    Suzuki, Satoru; Deguchi, Akira

    2016-01-01

    NUMO has developed a generic safety ease based on the latest knowledge to show the feasibility and safety of geological disposal in Japan. The NUMO safety case has been developed to provide a basic structure for subsequent safety cases that would be applied to any selected site, emphasising practical approaches and methodology, which will be applicable for the conditions/constraints during an actual siting process. This paper will provide a brief overview of the NUMO safety case. (author)

  19. The development of international safety standards on geological disposal

    International Nuclear Information System (INIS)

    McCartin, T.

    2005-01-01

    The IAEA is developing a set of safety requirements for geologic disposal to be used by both developers and regulators for planning, designing, operating, and closing a geologic disposal facility. Safety requirements would include quantitative criteria for assessing safety of geologic disposal facilities as well as requirements for development of the facility and the safety strategy including the safety case. Geologic disposal facilities are anticipated to be developed over a period of at least a few decades. Key decisions, e.g., on the disposal concept, siting, design, operational management and closure, are expected to be made in a series of steps. Decisions will be made based on the information available at each step and the confidence that may be placed in that information. A safety strategy is important for ensuring that at each step during the development of the disposal facility, an adequate understanding of the safety implications of the available options is developed such that the ultimate goal of providing an acceptable level of operational and post closure safety will be met. A safety case for a geologic disposal facility would present all the safety relevant aspects of the site, the facility design and the managerial and regulatory controls. The safety case and its supporting assessments illustrates the level of protection provided and shall give reasonable assurance that safety standards will be met. Overall, the safety case provides confidence in the feasibility of implementing the disposal system as designed, convincing estimates of the performance of the disposal system and a reasonable assurance that safety standards will be met. (author)

  20. Conclusions and Recommendations of the IAEA International Conference on Topical Issues in Nuclear Safety: Ensuring Safety for Sustainable Nuclear Development

    International Nuclear Information System (INIS)

    El-Shanawany, Mamdouh

    2011-01-01

    Over 200 participants from 33 countries and three international organizations came and actively participated and contributed to focused discussions and the success of the conference. The following points summarize the key conclusions and recommendations of the conference with respect to nuclear safety. 1. The nuclear safety approach is based on the philosophy developed in the 60's: defense in depth principles and deterministic criteria. When properly applied and completed by probabilistic analyses and operational experience feedback, it continues to be a successful approach. However, guarding against the risk of accidents requires constant vigilance and high technical competence and a never ending fight against complacency. In this context, having a strong leadership with a commitment to continuous improvement and a vision of sustained excellence is a key element of nuclear safety. Continuous improvement in safety also should be pursued through scientific research and operational experience feedback. 2. An accident anywhere is of concern to all Member States. Therefore, it is in the interest of all Member States to share and collaborate on safety matters. Participation of all Member States in international nuclear safety instruments and conventions, including liability for nuclear damage, is considered beneficial to global safety. The Convention on Nuclear Safety, the Joint Convention, international cooperation through IAEA and other organizations, bilateral or multilateral arrangements are important elements for establishing networks for sharing and transferring knowledge. It is acknowledged that the IAEA's Safety Fundamentals and Safety Requirements provide a sound foundation for high level nuclear safety. IAEA Safety Standards should be the basis for the establishment and maintenance of safety infrastructure. The IAEA's peer reviews and services such as IRRS, OSART, Site Evaluation and Reactor Safety Reviews provide also a valuable platform for sharing

  1. Main Conclusions and Recommendations of International Conference on Topical Issues in Nuclear Installation Safety: Ensuring Safety for Sustainable Nuclear Development

    International Nuclear Information System (INIS)

    El-Shanawany, Mamdouh

    2011-01-01

    Over 200 participants from 33 countries and three international organizations came and actively participated and contributed to focused discussions and the success of the conference. The following points summarize the key conclusions and recommendations of the conference with respect to nuclear safety. 1. The nuclear safety approach is based on the philosophy developed in the 60's: defense in depth principles and deterministic criteria. When properly applied and completed by probabilistic analyses and operational experience feedback, it continues to be a successful approach. However, guarding against the risk of accidents requires constant vigilance and high technical competence and a never ending fight against complacency. In this context, having a strong leadership with a commitment to continuous improvement and a vision of sustained excellence is a key element of nuclear safety. Continuous improvement in safety also should be pursued through scientific research and operational experience feedback. 2. An accident anywhere is of concern to all Member States. Therefore, it is in the interest of all Member States to share and collaborate on safety matters. Participation of all Member States in international nuclear safety instruments and conventions, including liability for nuclear damage, is considered beneficial to global safety. The Convention on Nuclear Safety, the Joint Convention, international cooperation through IAEA and other organizations, bilateral or multilateral arrangements are important elements for establishing networks for sharing and transferring knowledge. It is acknowledged that the IAEA's Safety Fundamentals and Safety Requirements provide a sound foundation for high level nuclear safety. IAEA Safety Standards should be the basis for the establishment and maintenance of safety infrastructure. The IAEA's peer reviews and services such as IRRS, OSART, Site Evaluation and Reactor Safety Reviews provide also a valuable platform for sharing

  2. Development of the Digital Reactor Safety System

    International Nuclear Information System (INIS)

    Lee, Dong Young; Lee, C. K.; Hwang, I. K.

    2008-04-01

    Objectives of Project - Development of Digital Safety Grade PLC and Licensing - Development of Safety System(RPS) and Licensing - Development of Safety System(ESF-CCS) and Licensing Content and Result of Project - POSAFE-Q PLC : Development of PLC platform for Shin-UCN unit 1 and 2 ·Development Scope : Processor module, Power module, 3 kinds of Communication module, Bus extension module(Master and Slave), 16 kinds of Input and Output module ·PLC application software development tool(pSET) - IDiPS RPS and IDiPS ESF-CCS : Development of PPS for Sin-UCN 1 and 2 ·Development Scope - 4-channels RPS with the KNICS inherent architecture - A part of 1-channels ESF-CCS with the KNICS inherent architecture - Licensing ·optical Report Submitted and Expected to finish the licensing process until Aug. 2008

  3. Safety case development with SBVR-based controlled language

    NARCIS (Netherlands)

    Luo, Y.; van den Brand, M.G.J.; Kiburse, A.; Desfray, P.; Philipe, J.; Hammoudi, S.; Pires, L.F.

    2015-01-01

    Safety case development is highly recommended by some safety standards to justify the safety of a system. The Goal Structuring Notation (GSN) is a popular approach to construct a safety case. However, the content of the safety case elements, such as safety claims, is in natural language. Therefore,

  4. Safety research on fusion DEMO in Japan: Toward development of safety strategy of a water-cooled DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Makoto, E-mail: nakamura.makoto@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho 039-3212, Aomori (Japan); Tobita, Kenji; Someya, Youji; Utoh, Hiroyasu; Sakamoto, Yoshiteru [Japan Atomic Energy Agency, Rokkasho 039-3212, Aomori (Japan); Gulden, Werner [Fusion for Energy, Garching D-85748 (Germany)

    2016-11-01

    Highlights: • This paper reports the current status of a safety research on water-cooled fusion DEMO in Japan. • We report analyses of two transients: (i) complete loss of decay heat removal and (ii) major ex-VV LOCA. • The MELCOR analysis has clarified the temperature histories of the DEMO components in complete loss of decay heat removal. • A strategy to reduce the pressure load to the final barrier confining radioactive materials is proposed against the major ex-VV LOCA. - Abstract: This paper reports the current status of a safety research on water-cooled fusion DEMO in Japan. A basic strategy of development of the safety guidelines is described for DEMO based on a water-cooled solid pebble bed blanket. Clarification of safety features of the DEMO in accident situations is a key issue to develop the guidelines. Recent achievements in understanding of the safety features of the water-cooled DEMO are reported. The MELCOR analysis has clarified the temperature histories of the DEMO components in a complete loss of decay heat removal event. The transient behavior of the first wall temperature is found to be essentially different from that of ITER. The pressure load to the tokamak cooling water system vault (TCWSV) is analyzed based on a simple model equation of the energy conservation. If the amount of the primary coolant is the same as that of Slim-CS, the previous small Japanese DEMO, the discharged water does not damage the TCWSV with the volume and pressure-tightness similar to those of pressurized light water reactors. It is shown that implementation of a pressure suppression system to the small TCWSV is effective to suppress the pressure load to the second confinement barrier.

  5. Developing safety in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Brown, M.L.

    1996-01-01

    The nuclear fuel cycle had its origins in the new technology developed in the 1940s and 50s involving novel physical and chemical processes. At the front end of the cycle, mining, milling and fuel fabrication all underwent development, but in general the focus of process development and safety concerns was the reprocessing stage, with radiation, contamination and criticality the chief hazards. Safety research is not over and there is still work to be done in advancing technical knowledge to new generation nuclear fuels such as Mixed Oxide Fuel and in refining knowledge of margins and of potential upset conditions. Some comments are made on potential areas for work. The NUCEF facility will provide many useful data to aid safety analysis and accident prevention. The routine operations in such plants, basically chemical factories, requires industrial safety and in addition the protection of workers against radiation or contamination. The engineering and management measures for this were novel and the early operation of such plants pioneering. Later commissioning and operating experience has improved routine operating safety, leading to a new generation of factories with highly developed worker protection, engineering safeguards and safety management systems. Ventilation of contamination control zones, remote operation and maintenance, and advanced neutron shielding are engineering examples. In safety management, dose control practices, formally controlled operating procedures and safety cases, and audit processes are comparable with, or lead, best industry practice in other hazardous industries. Nonetheless it is still important that the knowledge and experience from operating plants continue to be gathered together to provide a common basis for improvement. The NEA Working Group on Fuel Cycle Safety provides a forum for much of this interchange. Some activities in the Group are described in particular the FINAS incident reporting system. (J.P.N.)

  6. Scenario Development Workshop Synopsis. Integration Group for the Safety Case - June 2015

    International Nuclear Information System (INIS)

    Smith, Paul; Voinis, Sylvie; Griffault, Lise; De Meredieu, Jean; Kwong, Gloria; ); Van Luik, Abraham; Bailey, Lucy; Capouet, Manuel; Depaus, Christophe; Makino, Hitoshi; Leigh, Christi; Kirkes, Ross; Leino, Jaakko; Niemeyer, Matthias; Wolf, Jens; Watson, Sarah; Franke, Bettina; Ilett, Doug; Pastina, Barbara; Weetjens, Eef

    2016-03-01

    safety case that also includes a broad range of evidence and arguments that complement and support the reliability of the results of the quantitative analyses. Assessments typically describe and evaluate repository evolution and potential radiological and other consequences for a range of scenarios. The present report is based largely on the presentations and discussions at the second workshop, including the working group sessions, and on a review of the questionnaire responses. It is structured as follows: - Chapter 2 summarises the work of the NEA and other international organisations on scenario development and related topics. - Chapter 3 discusses regulatory perspectives on scenario development, including general regulatory principles, more specific guidance, the level of detail in regulatory guidance and the importance of dialogue and review. - Chapter 4 describes the roles of scenario development both in safety assessments and, more generally, in the management of uncertainty in repository programmes. Its role in promoting interdisciplinary communication is also discussed. - Chapter 5 describes the broad classes into which scenarios are generally divided, including what-if scenarios and the special case of human intrusion. - Chapter 6 reviews the approaches to scenario development followed by various national programmes, including their evolution, common features and differences between programmes, the main broad steps in scenario development and the tools that have been used to implement these and also the issues of comprehensiveness and sufficiency of the sets of scenarios that are derived. - Chapter 7 discusses the analysis of scenarios, including the development of models and their application in deterministic and probabilistic calculations. - Finally, Chapter 8 summarises the main findings of this report and draws some conclusions

  7. LESSONS LEARNED IN DEVELOPMENT OF THE HANFORD SWOC MASTER DOCUMENTED SAFETY ANALYSIS (MDSA) and IMPLEMENTATION VALIDATION REVIEW (IVR)

    International Nuclear Information System (INIS)

    MORENO, M.R.

    2004-01-01

    DOE set clear expectations on a cost-effective approach for achieving compliance with the Nuclear Safety Management requirements (20 CFR 830, Nuclear Safety Rule), which ensured long-term benefit to Hanford, via issuance of a nuclear safety strategy in February 2003. To facilitate implementation of these expectations, tools were developed to streamline and standardize safety analysis and safety document development with the goal of a shorter and more predictable DOE approval cycle. A Hanford Safety Analysis and Risk Assessment Handbook (SARAH) was approved to standardize methodologies for development of safety analyses. A Microsoft Excel spreadsheet (RADIDOSE) was approved for the evaluation of radiological consequences for accident scenarios often postulated at Hanford. Standard safety management program chapters were approved for use as a means of compliance with the programmatic chapters of DOE-STD-3009, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports''. An in-process review was developed between DOE and the Contractor to facilitate DOE approval and provide early course correction. The new Documented Safety Analysis (DSA) developed to address the operations of four facilities within the Solid Waste Operations Complex (SWOC) necessitated development of an Implementation Validation Review (IVR) process. The IVR process encompasses the following objectives: safety basis controls and requirements are adequately incorporated into appropriate facility documents and work instructions, facility personnel are knowledgeable of controls and requirements, and the DSA/TSR controls have been implemented. Based on DOE direction and safety analysis tools, four waste management nuclear facilities were integrated into one safety basis document. With successful completion of implementation of this safety document, lessons-learned from the in-process review, safety analysis tools and IVR process were documented for future action

  8. Radiation Safety for Sustainable Development

    International Nuclear Information System (INIS)

    2015-10-01

    The objective of radiation safety is Assessments of Natural Radioactivity and its Radiological. The following topics were discussed during the conference: AFROSAFE Championing Radiation Safety in Africa, Radiation Calibration, and Development and Validation of a Laser Induced Breakdown Spectrometry Method for Cancer Detection and Characterization. Young Generation in NUCLEAR Initiative to Promote Nuclear Science and Technology, Radiation Protection Safety Culture and Application of Nuclear Techniques in Industry and the Environment were discuss. Rapid Chemometric X-Ray Fluorescence approaches for spectral Diagnostics of Cancer utilizing Tissue Trace Metals and Speciation profiles. Fundamental role of medical physics in Radiation Therapy

  9. Developing and maintaining national food safety control systems ...

    African Journals Online (AJOL)

    The establishment of effective food safety systems is pivotal to ensuring the safety of the national food supply as well as food products for regional and international trade. The development, structure and implementation of modern food safety systems have been driven over the years by a number of developments.

  10. Ensuring ecology safety, furthering the development of nuclear energy

    International Nuclear Information System (INIS)

    Shang Zhaorong; Chen Xiaoqiu; Tang Senming

    2008-01-01

    Ecology safety is as important as political safety, national defense safety, economy safety, food safety, etc. The nuclear power development is an important step for the national energy structure optimization, ecology caring, and implementing sustainable development. The aquatic ecology is important on disposal of low-level liquid waste and cooling water from NPPs and nuclear fuel cycle facilities, and people pay more attention to ecology impact and human threat from the nuclear energy. The author describes relevant ecology problems correlated with nuclear energy such as impact of thermal discharge, ecology sensitive zone, ecology restoration, etc. in order to emphasis that development of nuclear energy should guarantee ecology safety for the sustainable development of nuclear energy. (authors)

  11. Development of digital safety system logic and control

    International Nuclear Information System (INIS)

    Nishikawa, H.; Sakamoto, H.

    1995-01-01

    Advanced-BWR (ABWR) uses total digital control and instrumentation (C and I) system. In particular, ABWR adopts a newly developed safety system using advanced digital technology. In the presentation the digital safety system design, manufacturing and factory validation test method are shortly overviewed. The digital safety system consists of micro-processor based digital controllers, data and information transmission by optical fibers and human-machine interface using color flat displays. This new developed safety system meet the nuclear safety requirements such as high reliability, independence of divisions, operability and maintainability. (2 refs., 4 figs., 1 tab.)

  12. Development of regulatory technology for thermal-hydraulic safety analysis

    International Nuclear Information System (INIS)

    Bang, Young Seok; Lee, S. H.; Ryu, Y. H.

    2001-02-01

    The present study aims to develop the regulation capability in thermal-hydraulic safety analysis which was required for the reasonable safety regulation in the current NPP, the next generation reactors, and the future-type reactors. The fourth fiscal year of the first phase of the research was focused on the following research topics: Investigation on the current status of the thermal-hydraulic safety analysis technology outside and inside of the country; Review on the improved features of the thermal-hydraulic safety analysis regulatory audit code, RELAP5/MOD3; Assessments of code with LOFT L9-3 ATWS experiment and LSTF SB-SG-10 multiple SGTR experiment; Application of the RELAP5/CANDU code to analyses of SLB and LBLOCA and evaluation of its effect on safety; Application of the code to IAEA PHWR ISP analysis; Assessments of RELAP5 and TRAC with UPTF downcomer injection test and Analysis of LBLOCA with RELAP5 for the performance evaluation of KNGR DVI; Setup of a coupled 3-D kinetics and thermal-hydraulics and application it to a reactivity accident analysis; and Extension of database and improvement of plant input decks. For supporting the resolution of safety issues, loss of RHR event during midloop operation was analyzed for Kori Unit 3, issues on high burnup fuel were reviewed and performance of FRAPCON-3 assessed. Also MSLB was analyzed to figure out the sensitivity of downcomer temperature supporting the PTS risk evaluation of Kori Unit 1. Thermal stratification in pipe was analyzed using the method proposed. And a method predicting the thermal-hydraulic performance of IRWST of KNGR was explored. The PWR ECCS performance criteria was issued as a MOST Article 200-19.and a regulatory guide on evaluation methodology was improved to cover concerns raised from the related licensing review process

  13. Assessing progress in the development of safety culture

    International Nuclear Information System (INIS)

    Rotaru, I.; Ghita, S.; Biro, L.

    2002-01-01

    This paper is focussed on the organizational culture and learning processes required for the implementation of all aspects of safety culture. There is no prescriptive formula for improving safety culture. However, some common characteristics and practices are emerging that can be adopted by organizations in order to make progress. The paper refers to some approaches that have been successful in a number of countries. The experience of the international nuclear industry in the development and improvement of safety culture could be extended and found useful in other nuclear activities, irrespective of scale. The examples given of specific practice cover a wide range of activities including analysis of events, the regulatory approach on safety culture, employee participation and safety performance measures. Many of these practices may be relevant to smaller organizations and could contribute to improving safety culture, whatever the size of the organization. The most effective approach is to pursue a range of practices that can be mutually supportive in the development of a progressive safety culture, supported by professional standards, organizational and management commitment. Some guidance is also given on the assessment of safety culture and on the detection of a weakening safety culture. Few suggestions for accelerating the safety culture development and improvement process are also provided. (author)

  14. System theory and safety models in Swedish, UK, Dutch and Australian road safety strategies.

    Science.gov (United States)

    Hughes, B P; Anund, A; Falkmer, T

    2015-01-01

    Road safety strategies represent interventions on a complex social technical system level. An understanding of a theoretical basis and description is required for strategies to be structured and developed. Road safety strategies are described as systems, but have not been related to the theory, principles and basis by which systems have been developed and analysed. Recently, road safety strategies, which have been employed for many years in different countries, have moved to a 'vision zero', or 'safe system' style. The aim of this study was to analyse the successful Swedish, United Kingdom and Dutch road safety strategies against the older, and newer, Australian road safety strategies, with respect to their foundations in system theory and safety models. Analysis of the strategies against these foundations could indicate potential improvements. The content of four modern cases of road safety strategy was compared against each other, reviewed against scientific systems theory and reviewed against types of safety model. The strategies contained substantial similarities, but were different in terms of fundamental constructs and principles, with limited theoretical basis. The results indicate that the modern strategies do not include essential aspects of systems theory that describe relationships and interdependencies between key components. The description of these strategies as systems is therefore not well founded and deserves further development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Safety Design Approach for the Development of Safety Requirements for Design of Commercial HTGR

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Nishihara, Tetsuo; Yan, Xing; Sakaba, Nariaki; Kunitomi, Kazuhiko

    2014-01-01

    The research committee on “Safety requirements for HTGR design” was established in 2013 under the Atomic Energy Society of Japan to develop the draft safety requirements for the design of commercial High Temperature Gas-cooled Reactors (HTGRs), which incorporate the HTGR safety features demonstrated using the High Temperature Engineering Test Reactor (HTTR), lessons learned from the accident of Fukushima Daiichi Nuclear Power Station and requirements for the integration of the hydrogen production plants. The safety design approach for the commercial HTGRs which is a basement of the safety requirements is determined prior to the development of the safety requirements. The safety design approaches for the commercial HTGRs are to confine the radioactive materials within the coated fuel particles not only during normal operation but also during accident conditions, and the integrity of the coated fuel particles and other requiring physical barriers are protected by the inherent and passive safety features. This paper describes the main topics of the research committee, the safety design approaches and the safety functions of the commercial HTGRs determined in the research committee. (author)

  16. Reentry safety for the Topaz II Space Reactor: Issues and analyses

    International Nuclear Information System (INIS)

    Connell, L.W.; Trost, L.C.

    1994-03-01

    This report documents the reentry safety analyses conducted for the TOPAZ II Nuclear Electric Propulsion Space Test Program (NEPSTP). Scoping calculations were performed on the reentry aerothermal breakup and ground footprint of reactor core debris. The calculations were used to assess the risks associated with radiologically cold reentry accidents and to determine if constraints should be placed on the core configuration for such accidents. Three risk factors were considered: inadvertent criticality upon reentry impact, atmospheric dispersal of U-235 fuel, and the Special Nuclear Material Safeguards risks. Results indicate that the risks associated with cold reentry are very low regardless of the core configuration. Core configuration constraints were therefore not established for radiologically cold reentry accidents

  17. Safety KPIs - Monitoring of safety performance

    Directory of Open Access Journals (Sweden)

    Andrej Lališ

    2014-09-01

    Full Text Available This paper aims to provide brief overview of aviation safety development focusing on modern trends represented by implementation of Safety Key Performance Indicators. Even though aviation is perceived as safe means of transport, it is still struggling with its complexity given by long-term growth and robustness which it has reached today. Thus nowadays safety issues are much more complex and harder to handle than ever before. We are more and more concerned about organizational factors and control mechanisms which have potential to further increase level of aviation safety. Within this paper we will not only introduce the concept of Key Performance Indicators in area of aviation safety as an efficient control mechanism, but also analyse available legislation and documentation. Finally we will propose complex set of indicators which could be applied to Czech Air Navigation Service Provider.

  18. EXPLORATORY STUDY OF OBSTACLES IN SAFETY CULTURE DEVELOPMENT IN THE CONSTRUCTION INDUSTRY: A GROUNDED THEORY APPROACH

    Directory of Open Access Journals (Sweden)

    Bonaventure H.W. Hadikusumo

    2010-06-01

    Full Text Available The aim of this paper is to analyse the obstacles that prevent the development of a safety culture in Thailand’s large construction industry from various managerial points of view. Qualitative research methods were used by performing a series of semi-structured interviews of eight case studies selected from six prominent construction firms to investigate the obstacles they face. Glaser’s keyword coding from Grounded Theory was used to reduce the information load after the interviews. Our findings revealed that the factors influencing the successful development of a safety culture in the construction industry are the workers, the characteristics of construction, the subcontractors, the supervisors, and external factors. Based on the frequency analysis, the main obstacles in developing a safety culture result from problems related to the workers themselves. The three most frequently discussed problems are unskilled workers, unsafe worker habits, and high worker turnover. Our results also suggest that managers should encourage engagement from their workers to optimise the successful implementation of safety programs and their long-term improvement.

  19. Development of Safety Culture Assessment Strategy for Korean NPP

    International Nuclear Information System (INIS)

    Park, Jung Hwan; Kim, Jong Hyun

    2014-01-01

    This paper aims at developing the requirements for a method to evaluate the operational safety culture, evaluating currently available methods based on the requirements, and suggesting a method to evaluate and improve the operational safety culture for Korean nuclear power plants. This paper reviews the widely-used methods to assess safety culture for NPPs and their basis. Then, this paper develops the requirements for the method to evaluate operational safety culture for Korean NPPs. Based on these requirements, Korean Safety Culture Indicators (KSCI) and evaluation measures are also suggested. Finally this paper proposes the guidelines to develop improvements to safety culture from the evaluation results

  20. Development of Safety Culture Assessment Strategy for Korean NPP

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hwan; Kim, Jong Hyun [KEPCO, Ulsan (Korea, Republic of)

    2014-08-15

    This paper aims at developing the requirements for a method to evaluate the operational safety culture, evaluating currently available methods based on the requirements, and suggesting a method to evaluate and improve the operational safety culture for Korean nuclear power plants. This paper reviews the widely-used methods to assess safety culture for NPPs and their basis. Then, this paper develops the requirements for the method to evaluate operational safety culture for Korean NPPs. Based on these requirements, Korean Safety Culture Indicators (KSCI) and evaluation measures are also suggested. Finally this paper proposes the guidelines to develop improvements to safety culture from the evaluation results.

  1. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    Energy Technology Data Exchange (ETDEWEB)

    GARVIN, L. J.; JENSEN, M. A.

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  2. Safety and licensing analyses for the Fort St. Vrain HTGR

    International Nuclear Information System (INIS)

    Ball, S.J.; Conklin, J.C.; Harrington, R.M.; Cleveland, J.C.; Clapp, N.E. Jr.

    1982-01-01

    The Oak Ridge National Laboratory (ORNL) safety analysis program for the HTGR includes development and verification of system response simulation codes, and applications of these codes to specific Fort St. Vrain reactor licensing problems. Licensing studies addressed the oscillation problems and the concerns about large thermal stresses in the core support blocks during a postulated accident

  3. Development and perceived effects of an educational programme on quality and safety in medication handling in residential facilities.

    Science.gov (United States)

    Mygind, Anna; El-Souri, Mira; Rossing, Charlotte; Thomsen, Linda Aagaard

    2018-04-01

    To develop and test an educational programme on quality and safety in medication handling for staff in residential facilities for the disabled. The continuing pharmacy education instructional design model was used to develop the programme with 22 learning objectives on disease and medicines, quality and safety, communication and coordination. The programme was a flexible, modular seven + two days' course addressing quality and safety in medication handling, disease and medicines, and medication supervision and reconciliation. The programme was tested in five Danish municipalities. Municipalities were selected based on their application for participation; each independently selected a facility for residents with mental and intellectual disabilities, and a facility for residents with severe mental illnesses. Perceived effects were measured based on a questionnaire completed by participants before and after the programme. Effects on motivation and confidence as well as perceived effects on knowledge, skills and competences related to medication handling, patient empowerment, communication, role clarification and safety culture were analysed conducting bivariate, stratified analyses and test for independence. Of the 114 participants completing the programme, 75 participants returned both questionnaires (response rate = 66%). Motivation and confidence regarding quality and safety in medication handling significantly improved, as did perceived knowledge, skills and competences on 20 learning objectives on role clarification, safety culture, medication handling, patient empowerment and communication. The programme improved staffs' motivation and confidence and their perceived ability to handle residents' medication safely through improved role clarification, safety culture, medication handling and patient empowerment and communication skills. © 2017 Royal Pharmaceutical Society.

  4. Probabilistic safety criteria at the safety function/system level

    International Nuclear Information System (INIS)

    1989-09-01

    A Technical Committee Meeting was held in Vienna, Austria, from 26-30 January 1987. The objectives of the meeting were: to review the national developments of PSC at the level of safety functions/systems including future trends; to analyse basic principles, assumptions, and objectives; to compare numerical values and the rationale for choosing them; to compile the experience with use of such PSC; to analyse the role of uncertainties in particular regarding procedures for showing compliance. The general objective of establishing PSC at the level of safety functions/systems is to provide a pragmatic tool to evaluate plant safety which is placing emphasis on the prevention principle. Such criteria could thus lead to a better understanding of the importance to safety of the various functions which have to be performed to ensure the safety of the plant, and the engineering means of performing these functions. They would reflect the state-of-the-art in modern PSAs and could contribute to a balance in system design. This report, prepared by the participants of the meeting, reviews the current status and future trends in the field and should assist Member States in developing their national approaches. The draft of this document was also submitted to INSAG to be considered in its work to prepare a document on safety principles for nuclear power plants. Five papers presented at the meeting are also included in this publication. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  5. Technical Guidance from the International Safety Framework for Nuclear Power Source Applications in Outer Space for Design and Development Phases

    Science.gov (United States)

    Summerer, Leopold

    2014-08-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space [1] has been adopted, following a multi-year process that involved all major space faring nations in the frame of the International Atomic Energy Agency and the UN Committee on the Peaceful Uses of Outer Space. The safety framework reflects an international consensus on best practices. After the older 1992 Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second document at UN level dedicated entirely to space nuclear power sources.This paper analyses aspects of the safety framework relevant for the design and development phases of space nuclear power sources. While early publications have started analysing the legal aspects of the safety framework, its technical guidance has not yet been subject to scholarly articles. The present paper therefore focuses on the technical guidance provided in the safety framework, in an attempt to assist engineers and practitioners to benefit from these.

  6. Development of web-based safety review advisory system

    International Nuclear Information System (INIS)

    Kim, M. W.; Lee, H. C.; Park, S. O.; Lee, K. H.; Hur, K. Y.; Lee, S. J.; Choi, S. S.; Kang, C. M.

    2002-01-01

    For the development of an expert system supporting the safety review of nuclear power plants, the application was implemented after gathering necessary theoretical background and practical requirements. The general and the detail functional specifications were established, and they are investigated by KINS (Korea Institute of Nuclear Safety). The Safety Review Advisory System(SRAS), this application on web-server environment was developed according to the above specifications. Reviews can do their safety reviewing regardless of their speciality or reviewing experiences because SRAS is operated by the safety review plans which are converted to standardized format. When the safety reviewing is carried out by using SRAS, the results of safety reviewing are accumulated in the database and may be utilized later usefully, and we can grasp safety reviewing progress. Users of SRAS are categorized into four groups, administrator, project manager, project reviewer and general reviewer. Each user group is delegated appropriate access capability. The function and some screen shots of SRAS are described

  7. Reactor safety analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    Risk assessments of nuclear installations require accurate safety and reliability analyses to estimate the consequences of accidental events and their probability of occurrence. The objective of the work performed in this field at the Belgian Nuclear Research Centre SCK-CEN is to develop expertise in probabilistic and deterministic reactor safety analysis. The four main activities of the research project on reactor safety analysis are: (1) the development of software for the reliable analysis of large systems; (2) the development of an expert system for the aid to diagnosis; (3) the development and the application of a probabilistic reactor-dynamics method, and (4) to participate in the international PHEBUS-FP programme for severe accidents. Progress in research during 1997 is described

  8. ELEMENTS OF SAFETY IN PARAGLIDING

    OpenAIRE

    Janez Mekinc; Katarina Mušič

    2016-01-01

    Paragliding is an opportunity for tourism development, depending on what position the sport has place in the local community, the restrictions for paragliders and the safety components of the region. The paper explores the phenomenon of paragliding and safety elements in the Upper Soča region, one of ten best paragliding sites in the world (Placestoseeinyourlifetime, 2015). The purpose of the research is to analyse the safety elements, the development and the risk of paragliding.The goals of ...

  9. Development of the status of W and T for the realization of a long-term safety demonstration for the final repository using the examples VSG and Konrad. Report on the Working package 2. Review and development of safety-related assessments of disposal facilities of wastes with negligible heat generation; development and provision of the necessary set of tools using the example of the final repository Konrad

    International Nuclear Information System (INIS)

    Larue, Juergen; Fischer-Appelt, Klaus; Hartwig-Thurat, Eva

    2015-09-01

    In the research project on the ''Review and development of safety-related assessments of disposal facilities with negligible heat generation; development and provision of the necessary set of tools, using the example of the Konrad disposal facility'' (3612R03410), the state of the art in science and technology of the safety-related assessments and sets of tools for building a safety case was examined. The reports pertaining to the two work packages described the further development of the methodology for accident analyses (WP 1) and of building a safety case (WP 2); also, comparisons were drawn on a national and international scale with the methods applied in the licensing procedure of the Konrad disposal facility. A safety case as well as its underlying analyses and methods always has to be brought up to date with the development of the state of the art in science and technology. In Germany, two safety cases regarding the long-term safety of disposal facilities have been prepared. These are the licensing documentation for the Konrad disposal facility in the year 1990 and the research project regarding the preliminary safety case for the Gorleben site (Vorlaeufige Sicherheitsanalyse Gorleben - VSG) in the year 2013, both reflecting the state of development of building a safety case at the respective time. Comparing the two above-mentioned examples of safety cases and taking recent international recommendations and national regulations into account, this report on Work Package 2 presents the development of the international state of the art in science and technology. This has been done by summarising the essential differences and similarities of each element of the safety case for the Konrad disposal facility on the one hand and the VSG and the international status on the other hand.

  10. Assessing progress in the development of safety culture

    International Nuclear Information System (INIS)

    Rotaru, Ioan; Ghita, Sorin

    1999-01-01

    visible prescriptive formula for developing a strong safety culture. However, a prerequisite is genuine and consistent commitment by the top management of an organization to improving safety . Providing this commitment exists, the best recommendation is to due something tangible and visible to improve safety, preferably involving employees from the outset. The choice of practices for developing an improved safety culture should take account of the existing national and organizational culture in order to ensure effective implementation. The importance of the learning process has been emphasized. A mechanism is necessary to ensure that international experience of practices to develop a strong safety culture is shared on a regular and frequent basis. The maintenance and improvement of a safety culture is a process of continuous evolution. Indicators are available to assess positive progress in this evolution and to detect a weakening safety culture. (authors)

  11. Safety Case Development as an Information Modelling Problem

    Science.gov (United States)

    Lewis, Robert

    This paper considers the benefits from applying information modelling as the basis for creating an electronically-based safety case. It highlights the current difficulties of developing and managing large document-based safety cases for complex systems such as those found in Air Traffic Control systems. After a review of current tools and related literature on this subject, the paper proceeds to examine the many relationships between entities that can exist within a large safety case. The paper considers the benefits to both safety case writers and readers from the future development of an ideal safety case tool that is able to exploit these information models. The paper also introduces the idea that the safety case has formal relationships between entities that directly support the safety case argument using a methodology such as GSN, and informal relationships that provide links to direct and backing evidence and to supporting information.

  12. Probabilistic safety analysis and interpretation thereof

    International Nuclear Information System (INIS)

    Steininger, U.; Sacher, H.

    1999-01-01

    Increasing use of the instrumentation of PSA is being made in Germany for quantitative technical safety assessment, for example with regard to incidents which must be reported and forwarding of information, especially in the case of modification of nuclear plants. The Commission for Nuclear Reactor Safety recommends regular execution of PSA on a cycle period of ten years. According to the PSA guidance instructions, probabilistic analyses serve for assessing the degree of safety of the entire plant, expressed as the expectation value for the frequency of endangering conditions. The authors describe the method, action sequence and evaluation of the probabilistic safety analyses. The limits of probabilistic safety analyses arise in the practical implementation. Normally the guidance instructions for PSA are confined to the safety systems, so that in practice they are at best suitable for operational optimisation only to a limited extent. The present restriction of the analyses has a similar effect on power output operation of the plant. This seriously degrades the utilitarian value of these analyses for the plant operators. In order to further develop PSA as a supervisory and operational optimisation instrument, both authors consider it to be appropriate to bring together the specific know-how of analysts, manufacturers, plant operators and experts. (orig.) [de

  13. The Development of Severe Accident Codes at IRSN and Their Application to Support the Safety Assessment of EPR

    International Nuclear Information System (INIS)

    Caroli, Cataldo; Bleyer, Alexandre; Bentaib, Ahmed; Chatelard, Patrick; Cranga, Michel; Van Dorsselaere, Jean-Pierre

    2006-01-01

    IRSN uses a two-tier approach for development of codes analysing the course of a hypothetical severe accident (SA) in a Pressurized Water Reactor (PWR): on one hand, the integral code ASTEC, jointly developed by IRSN and GRS, for fast-running and complete analysis of a sequence; on the other hand, detailed codes for best-estimate analysis of some phenomena such as ICARE/CATHARE, MC3D (for steam explosion), CROCO and TONUS. They have been extensively used to support the level 2 Probabilistic Safety Assessment of the 900 MWe PWR and, in general, for the safety analysis of the French PWR. In particular the codes ICARE/CATHARE, CROCO, MEDICIS (module of ASTEC) and TONUS are used to support the safety assessment of the European Pressurized Reactor (EPR). The ICARE/CATHARE code system has been developed for the detailed evaluation of SA consequences in a PWR primary system. It is composed of the coupling of the core degradation IRSN code ICARE2 and of the thermal-hydraulics French code CATHARE2. The CFD code CROCO describes the corium flow in the spreading compartment. Heat transfer to the surrounding atmosphere and to the basemat, leading to the possible formation of an upper and lower crust, basemat ablation and gas sparging through the flow are modelled. CROCO has been validated against a wide experimental basis, including the CORINE, KATS and VULCANO programs. MEDICIS simulates MCCI (Molten-Corium-Concrete-Interaction) using a lumped-parameter approach. Its models are being continuously improved through the interpretation of most MCCI experiments (OECD-CCI, ACE...). The TONUS code has been developed by IRSN in collaboration with CEA for the analysis of the hydrogen risk (both distribution and combustion) in the reactor containment. The analyses carried out to support the EPR safety assessment are based on a CFD formulation. At this purpose a low-Mach number multi-component Navier-Stokes solver is used to analyse the hydrogen distribution. Presence of air, steam and

  14. Swiss regulatory use of databanks for nuclear power plant life management, surveillance and safety analyses

    International Nuclear Information System (INIS)

    Tipping, Ph.; Beutler, R.; Schoen, G.; Noeggerath, J.

    2002-01-01

    Full text: As operational time is accumulated, the overall safety and performance of nuclear power plants (NPPs) will tend to be characterised by those areas in which structures, systems and components (SSCs) have not performed as well, or as reliably, as expected. The reasons for non-availability of equipment in NPPs due to SSC material malfunction or unsatisfactory performance, leading to events or even accidents, are varied and they must be analysed in order to obtain the root causes. Once the root causes are identified, corresponding measures can be applied in order to improve reliability and therefore safety. The root cause information obtained, if brought into user-friendly databanks (DBs), can be used to follow NPP performance trends, to check whether a repair or replacement has been effective, to focus regulatory attention and NPP surveillance on known weak-spots and to serve as an advance indicator where potential problems may arise. Using the DBs, similar occurrences of failures or problems in other NPPs can be identified and generic issues recognised early on and preventative action taken. The following describes the Swiss Federal Nuclear Safety Inspectorate's (HSK) DB concepts for keeping track of NPP safety and lifetime management issues. Typical sources of data for the Inspectorate's DBs are, for example, the IAEA/NEA Incident Reporting System (IRS) reports, US-NRC Generic Letters, the Swiss NPP's own reports (monthly, annual and normal outage) and, more importantly, the document that these NPPs must issue to the Inspectorate whenever a reportable event takes place. Specifically, the reporting of events in the NPPs is laid down in the Inspectorate's Guideline (R-15 'Reporting Guideline Concerning The Operation of Nuclear Power Plants'). In this Guideline, reportable events are defined and the criteria for assessing the degree of importance or impact on nuclear safety are given. In this manner, a standard and consistent approach to data collection is

  15. Development of web-based safety review advisory system

    International Nuclear Information System (INIS)

    Kim, M. W.; Hur, K. Y.; Lee, S. J.; Choi, S. J.

    2002-01-01

    For the development of an expert system supporting the safety review of nuclear power plants, the application was implemented after gathering necessary theoretical background and practical requirements. The general and the detail functional specifications were established, and they are investigated by KINS. Safety Review Advisory System (SRAS), this application on web-server environment was developed according to the above specifications. Reviews can do their safety reviewing regardless of their speciality or reviewing experiences because SRAS is operated by the safety review plans which are converted to standardized format. When the safety reviewing is carried out by using SRAS, the results of safety reviewing are accumulated in the database and may be utilized later usefully, and we can grasp safety reviewing progress. Users of SRAS are categorized into four groups, administrator, project manager, project reviewer and general reviewer. Each user group is delegated appropriate access capability. The function and some screen shots of SRAS are described

  16. Nuclear safety and radiation protection consideration in the design of research and development facility

    International Nuclear Information System (INIS)

    Akbar, M.R.

    2010-01-01

    Nuclear safety is a critically important aspect that must be considered in the design of a nuclear facility in order to ensure the protection of the workers, public and environment. This paper looks at the methodology, approach and incorporation of this aspect, specifically into the design of a research and development facility. The Health, Safety and Environmental Basis of Design is an initial analysis of nuclear safety and radiation protection considerations that is performed during the conceptual design phase and sets the baseline for what the design of the facility must conform to. It consists of general nuclear safety design principles, such as defence in depth and optimisation considerations, and a hazard management strategy. Following the Health, Safety and Environmental Basis of Design, a Preliminary Safety Assessment Report is generated during the basic design phase in conjunction with various analyses in order to assess the impact of hazards on the workers and members of the public. This assessment follows a hazard graded approach where the depth of the analysis will be determined by the impact of the worst case accident scenario in the facility. The assessment also includes a waste management strategy which is an essential aspect to be considered in the design in order to minimize the generation of waste. The safety assessment also demonstrates compliance to dose limits and risk criteria for the workers and members of the public set by the regulatory body and supported by a legal framework. Measures are taken to keep risk as low as reasonably achievable and prevent transgression of the risk and dose limits. However, a balance needs to be maintained between 5 reducing these doses further and the cost of such a reduction, which is known as optimization. It is therefore imperative to have nuclear safety specialists analyse the design in order to protect the worker and member of the public from unwarranted exposure to nuclear radiation. (author)

  17. Nuclear criticality safety experiments, calculations, and analyses - 1958 to 1982. Volume 2. Summaries. Complilation of papers from the Transactions of the American Nuclear Society

    International Nuclear Information System (INIS)

    Koponen, B.L.; Hampel, V.E.

    1982-01-01

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains-in chronological order-the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41

  18. Nuclear criticality safety experiments, calculations, and analyses - 1958 to 1982. Volume 2. Summaries. Complilation of papers from the Transactions of the American Nuclear Society

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, B.L.; Hampel, V.E.

    1982-10-21

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains-in chronological order-the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

  19. Development and applications of a safety assessment system for promoting safety culture in nuclear power plants

    International Nuclear Information System (INIS)

    Takano, Ken-ichi; Hasegawa, Naoko; Hirose, Ayako; Hayase, Ken-ichi

    2004-01-01

    For past five years, CRIEPI has been continuing efforts to develop and make applications of a 'safety assessment system' which enable to measure the safety level of organization. This report describe about frame of the system, assessment results and its reliability, and relation between labor accident rate in the site and total safety index (TSI), which can be obtained by the principal factors analysis. The safety assessment in this report is based on questionnaire survey of employee. The format and concrete questionnaires were developed using existing literatures including organizational assessment tools. The tailored questionnaire format involved 124 questionnaire items. The assessment results could be considered as a well indicator of the safety level of organization, safety management, and safety awareness of employee. (author)

  20. Nuclear safety as applied to space power reactor systems

    International Nuclear Information System (INIS)

    Cummings, G.E.

    1987-01-01

    Current space nuclear power reactor safety issues are discussed with respect to the unique characteristics of these reactors. An approach to achieving adequate safety and a perception of safety is outlined. This approach calls for a carefully conceived safety program which makes uses of lessons learned from previous terrestrial power reactor development programs. This approach includes use of risk analyses, passive safety design features, and analyses/experiments to understand and control off-design conditions. The point is made that some recent accidents concerning terrestrial power reactors do not imply that space power reactors cannot be operated safety

  1. Development of Safety Review Guide for the Periodic Safety Review of Reactor Vessel Internals

    International Nuclear Information System (INIS)

    Park, Jeongsoon; Ko, Hanok; Kim, Seonjae; Jhung, Myungjo

    2013-01-01

    Aging management of the reactor vessel internals (RVIs) is one of the important issues for long-term operation of nuclear power plants (NPPs). Safety review on the assessment and management of the RVI aging is conducted through the process of a periodic safety review (PSR). The regulatory body should check that reactor facilities sustain safety functions in light of degradation due to aging and that the operator of a nuclear power reactor establishes and implements management program to deal with degradation due to aging in order to guarantee the safety functions and the safety margin as a result of PSR. KINS(Korea Institute of Nuclear Safety) has utilized safety review guides (SRG) which provide guidance to KINS staffs in performing safety reviews in order to assure the quality and uniformity of staff safety reviews. The KINS SRGs for the continued operation of pressurized water reactors (PWRs) published in 2006 contain areas of review regarding aging management of RVIs in chapter 2 (III.2.15, Appendix 2.0.1). However unlike the SRGs for the continued operation, KINS has not officially published the SRGs for the PSR of PWRs, but published them as a form of the research report. In addition to that, the report provides almost same review procedures for aging assessment and management of RVIs with the ones provided in the SRGs for the continued operation, it cannot provide review guidance specific to PSRs. Therefore, a PSR safety review guide should be developed for RVIs in PWRs. In this study, a draft PSR safety review guide for reactor vessel internals in PWRs is developed and provided. In this paper, a draft PSR safety review guide for reactor vessel internals (PSR SRG-RVIs) in PWRs is introduced and main contents of the draft are provided. However, since the PSR safety review guides for areas other than RVIs in the pressurized water reactors (PWRs) are expected to be developed in the near future, the draft PSR SRG-RVIs should be revisited to be compatible with

  2. Safety climate and attitude as evaluation measures of organizational safety.

    Science.gov (United States)

    Isla Díaz, R; Díaz Cabrera, D

    1997-09-01

    The main aim of this research is to develop a set of evaluation measures for safety attitudes and safety climate. Specifically it is intended: (a) to test the instruments; (b) to identify the essential dimensions of the safety climate in the airport ground handling companies; (c) to assess the quality of the differences in the safety climate for each company and its relation to the accident rate; (d) to analyse the relationship between attitudes and safety climate; and (e) to evaluate the influences of situational and personal factors on both safety climate and attitude. The study sample consisted of 166 subjects from three airport companies. Specifically, this research was centered on ground handling departments. The factor analysis of the safety climate instrument resulted in six factors which explained 69.8% of the total variance. We found significant differences in safety attitudes and climate in relation to type of enterprise.

  3. Recent development and application of a new safety analysis code for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad J., E-mail: Brad.Merrill@inl.gov; Humrickhouse, Paul W.; Shimada, Masashi

    2016-11-01

    Highlights: • This paper presents recent code development activities for the MELCOR for fusion and Tritium Migration Analysis Program computer codes at the Idaho National Engineering Laboratory. • The capabilities of these computer codes are being merged into a single safety analysis tool for fusion reactor accidents. • The result of benchmarking these codes against previous code versions is presented by the authors of this paper. • This new capability is applied to study the tritium inventory and permeation rate for a water cold tungsten divertor that has neutron damage at 0.3 dpa. - Abstract: This paper describes the recent progress made in the development of two codes for fusion reactor safety assessments at the Idaho National Laboratory (INL): MELCOR for fusion and the Tritium Migration Analysis Program (TMAP). During the ITER engineering design activity (EDA), the INL Fusion Safety Program (FSP) modified the MELCOR 1.8.2 code for fusion applications to perform ITER thermal hydraulic safety analyses. Because MELCOR has undergone many improvements at SNL-NM since version 1.8.2 was released, the INL FSP recently imported these same fusion modifications into the MELCOR 1.8.6 code, along with the multiple fluids modifications of MELCOR 1.8.5 for fusion used in US advanced fusion reactor design studies. TMAP has also been under development for several decades at the INL by the FSP. TMAP treats multi-specie surface absorption and diffusion in composite materials with dislocation traps, plus the movement of these species from room to room by fluid flow within a given facility. Recently, TMAP was updated to consider multiple trap site types to allow the simulation of experimental data from neutron irradiated tungsten. The natural development path for both of these codes is to merge their capabilities into one computer code to provide a more comprehensive safety tool for analyzing accidents in fusion reactors. In this paper we detail recent developments in this

  4. Recent development and application of a new safety analysis code for fusion reactors

    International Nuclear Information System (INIS)

    Merrill, Brad J.; Humrickhouse, Paul W.; Shimada, Masashi

    2016-01-01

    Highlights: • This paper presents recent code development activities for the MELCOR for fusion and Tritium Migration Analysis Program computer codes at the Idaho National Engineering Laboratory. • The capabilities of these computer codes are being merged into a single safety analysis tool for fusion reactor accidents. • The result of benchmarking these codes against previous code versions is presented by the authors of this paper. • This new capability is applied to study the tritium inventory and permeation rate for a water cold tungsten divertor that has neutron damage at 0.3 dpa. - Abstract: This paper describes the recent progress made in the development of two codes for fusion reactor safety assessments at the Idaho National Laboratory (INL): MELCOR for fusion and the Tritium Migration Analysis Program (TMAP). During the ITER engineering design activity (EDA), the INL Fusion Safety Program (FSP) modified the MELCOR 1.8.2 code for fusion applications to perform ITER thermal hydraulic safety analyses. Because MELCOR has undergone many improvements at SNL-NM since version 1.8.2 was released, the INL FSP recently imported these same fusion modifications into the MELCOR 1.8.6 code, along with the multiple fluids modifications of MELCOR 1.8.5 for fusion used in US advanced fusion reactor design studies. TMAP has also been under development for several decades at the INL by the FSP. TMAP treats multi-specie surface absorption and diffusion in composite materials with dislocation traps, plus the movement of these species from room to room by fluid flow within a given facility. Recently, TMAP was updated to consider multiple trap site types to allow the simulation of experimental data from neutron irradiated tungsten. The natural development path for both of these codes is to merge their capabilities into one computer code to provide a more comprehensive safety tool for analyzing accidents in fusion reactors. In this paper we detail recent developments in this

  5. Status of SPACE Safety Analysis Code Development

    International Nuclear Information System (INIS)

    Lee, Dong Hyuk; Yang, Chang Keun; Kim, Se Yun; Ha, Sang Jun

    2009-01-01

    In 2006, the Korean the Korean nuclear industry started developing a thermal-hydraulic analysis code for safety analysis of PWR(Pressurized Water Reactor). The new code is named as SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). The SPACE code can solve two-fluid, three-field governing equations in one dimensional or three dimensional geometry. The SPACE code has many component models required for modeling a PWR, such as reactor coolant pump, safety injection tank, etc. The programming language used in the new code is C++, for new generation of engineers who are more comfortable with C/C++ than old FORTRAN language. This paper describes general characteristics of SPACE code and current status of SPACE code development

  6. Safety assessment for Generation IV nuclear systems

    International Nuclear Information System (INIS)

    Leahy, T.J.

    2012-01-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Recent RSWG work has focused on the definition of an integrated safety assessment methodology (ISAM) for evaluating the safety of Generation IV systems. ISAM is an integrated 'tool-kit' consisting of 5 analytical techniques that are available and matched to appropriate stages of Generation IV system concept development: 1) qualitative safety features review - QSR, 2) phenomena identification and ranking table - PIRT, 3) objective provision tree - OPT, 4) deterministic and phenomenological analyses - DPA, and 5) probabilistic safety analysis - PSA. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time

  7. Inherent and passive safety measures in accelerator driven systems: a safety strategy for ADS

    International Nuclear Information System (INIS)

    Maschek, W.; Rineiski, A.; Morita, K.; Flad, M.

    2001-01-01

    The efficiency of Accelerator Driven Systems (ADSs) for the transmutation and incineration of nuclear waste is strongly related to the utilization of so-called dedicated fuels. In the ideal case these fuels should consist of pure TRUs without fertile materials as 238 U or 232 Th to achieve highest incineration/transmutation rates. Dedicated fuels still have to be developed and programs are under way for their fabrication, irradiation and testing. These fertile-free fuels may suffer from deteriorated thermal or thermo-mechanical properties, as a reduced melting point, reduced thermal conductivity or even thermal instability. First analyses have shown that the use of dedicated fuels may lead to a strong deterioration of the safety parameters of the reactor core as e.g. the void worth, the Doppler or the kinetics quantities as neutron generation time and β eff . In addition, a dedicated core may contain multiple ''critical'' fuel masses, resulting in a considerable recriticality potential. Current knowledge on these dedicated fuels suggests that ''critical'' reactors may not be feasible, because of safety reasons. However, for ADSs, the salient hope has been promoted that due to the subcriticality of the system the poor safety features of such fuels could be coped with. Analyses are presented which show potential safety problems for such dedicated cores. Respecting the results of these analyses a safety strategy is proposed along the lines of defense approach in analogy with ideas formerly developed for fast reactors. Inherent and passive safety measures are integrated into the various defense lines. (author)

  8. Developing safety culture-rocket science or common sense?

    International Nuclear Information System (INIS)

    Mahn, J.A.

    1998-01-01

    Despite evidence of significant management contributions to the causes of major accidents, recent events at Millstone Nuclear Power Station in the US and Ontario Hydro in Canada might lead one to conclude that the significance of safety culture, and the role of management in developing and maintaining an appropriate safety culture, is either not being understood or not being taken serious as integral to the safe operation of some complex, high-reliability operations. It is the purpose of this paper to address four aspects of management that are particularly important to safety culture, and to illustrate how development of an appropriate safety culture is more a matter of common sense than rocket science

  9. Developing safety culture-rocket science or common sense?

    Energy Technology Data Exchange (ETDEWEB)

    Mahn, J.A.

    1998-08-01

    Despite evidence of significant management contributions to the causes of major accidents, recent events at Millstone Nuclear Power Station in the US and Ontario Hydro in Canada might lead one to conclude that the significance of safety culture, and the role of management in developing and maintaining an appropriate safety culture, is either not being understood or not being taken serious as integral to the safe operation of some complex, high-reliability operations. It is the purpose of this paper to address four aspects of management that are particularly important to safety culture, and to illustrate how development of an appropriate safety culture is more a matter of common sense than rocket science.

  10. Development of Comprehensive Nuclear Safety Regulation Plan for 2007-2011

    International Nuclear Information System (INIS)

    Choi, Young Sung; Kim, Woong Sik; Park, Dong Keuk; Kim, Ho Ki

    2006-01-01

    The Article 8-2 of Atomic Energy Act requires the government to establish Atomic Energy Promotion Plan every five years. It sets out national nuclear energy policies in a systematic and consistent way. The plan presents the goals and basic directions of national nuclear energy policies on the basis of current status and prospects. Both areas of utilization and safety management of nuclear energy are included and various projects and schedules are delineated based on the national policy directions. The safety management area in this plan deals with the overall safety and regulation policy. Its detail projects and schedule should be developed in separate plans by responsible ministries under the mediation of the MOST. As a regulatory authority, MOST is responsible for safety management area and its technical support organization, KINS has developed Comprehensive Nuclear Safety Regulation Plan as an implementation plan of safety area. This paper presents the development process and specific projects contained in the Comprehensive Nuclear Safety Regulation Plan which is under development now

  11. LFR safety approach and main ELFR safety analysis results

    International Nuclear Information System (INIS)

    Bubelis, E.; Schikorr, M.; Frogheri, M.; Mansani, L.; Bandini, G.; Burgazzi, L.; Mikityuk, K.; Zhang, Y.; Lo Frano, R.; Forgione, N.

    2013-01-01

    LFR safety approach: → A global safety approach for the LFR reference plant has been assessed and the safety analyses methodology has been developed. → LFR follows the general guidelines of the Generation IV safety concept recommendations. Thus, improved safety and higher reliability are recognized as an essential priority. → The fundamental safety objectives and the Defence-in-Depth (DiD) approach, as described by IAEA Safety Guides, have been preserved. → The recommendations of the Risk and Safety Working Group (RSWG) of GEN-IV IF has been taken into account: • safety is to be “built-in” in the fundamental design rather than “added on”; • full implementation of the Defence-in-Depth principles in a manner that is demonstrably exhaustive, progressive, tolerant, forgiving and well-balanced; • “risk-informed” approach - deterministic approach complemented with a probabilistic one; • adoption of an integrated methodology that can be used to evaluate and document the safety of Gen IV nuclear systems - ISAM. In particular the OPT tool is the fundamental methodology used throughout the design process

  12. Development of a hybrid safety system: Actuation of the secondary automatic depressurization system at an early stage

    International Nuclear Information System (INIS)

    Nishimoto, Masae; Umezawa, Shigemitsu; Okabe, Kazuharu; Matsuoka, Tsuyoshi

    1996-01-01

    A Hybrid Safety System, which is an optimum combination of active and passive safety systems, has been developed in order to improve the safety, reliability and economic features of the next generation of PWRs. The passive safety systems include Automatic primary Depressurization System (ADS), Secondary Automatic Depressurization System (SADS), advanced accumulators, gravity injection system and so on. In this study the authors have improved the actuation logic of the passive safety systems. The original logic in the previous study actuates ADS at an early stage of an event such as a Loss-of-Coolant Accident (LOCA), and this is followed by the actuation of SADS. In this study they divide SADS into two systems. The first, small SADS, uses small valves corresponding to the relief valves of the conventional PWR plants. The second, large SADS, corresponds to the original SADS using multiple valves of large capacity. With the new logic, the passive systems are actuated during a typical small LOCA. Small LOCA analyses using several break areas were performed for a 1,400 MWe PWR plant with a Hybrid Safety System. The results predict that core uncovery does not occur in the case of a relatively small break area and that core heat removal during a small LOCA is improved in comparison with the analyses for conventional PWR plants, where the secondary pressure remains higher during the event. The results also predict that this new logic make it possible to reduce the ADS valve size and the actuation pressure setpoint of the passive safety systems

  13. Safety Analysis for Key Design Features of KALIMER-600 Design Concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Kwon, Y. M.; Kim, E. K.; Suk, S. D.; Chang, W. P.; Jeong, H. Y.; Ha, K. S

    2007-02-15

    This report contains the safety analyses of the KALIMER-600 conceptual design which KAERI has been developing under the Long-term Nuclear R and D Program. The analyses have been performed reflecting the design developments during the second year of the 4th design phase in the program. The specific presentations are the key design features with the safety principles for achieving the safety objectives, the event categorization and safety criteria, and results on the safety analyses for the DBAs and ATWS events, the containment performance, and the channel blockages. The safety analyses for both the DBAs and ATWS events have been performed using SSC-K version 1.3., and the results have shown the fulfillment of the safety criteria for DBAs with conservative assumptions. The safety margins as well as the inherent safety also have been confirmed for the ATWS events. For the containment performance analysis, ORIGEN-2.1 and CONTAIN-LMR have been used. In results, the structural integrity has been acceptable and the evaluated exposure dose rate has been complied with 10 CFR 100 and PAG limits. The analysis results for flow blockages of 6-subchannels, 24-subchannels, and 54- subchannels with the MATRA-LMR-FB code, have assured the integrity of subassemblies.

  14. Advanced handbook for accident analyses of German nuclear power plants; Weiterentwicklung eines Handbuches fuer Stoerfallanalysen deutscher Kernkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, Alexander; Broecker, Annette; Hartung, Juergen; Mayer, Gerhard; Pallas Moner, Guim

    2014-09-15

    The advanced handbook of safety analyses (HSA) comprises a comprehensive electronic collection of knowledge for the compilation and conduction of safety analyses in the area of reactor, plant and containment behaviour as well as results of existing safety analyses (performed by GRS in the past) with characteristic specifications and further background information. In addition, know-how from the analysis software development and validation process is presented and relevant rules and regulations with regard to safety demonstration are provided. The HSA comprehensively covers the topic thermo-hydraulic safety analyses (except natural hazards, man-made hazards and malicious acts) for German pressurized and boiling water reactors for power and non-power operational states. In principle, the structure of the HSA-content represents the analytical approach utilized by safety analyses and applying the knowledge from safety analyses to technical support services. On the basis of a multilevel preparation of information to the topics ''compilation of safety analyses'', ''compilation of data bases'', ''assessment of safety analyses'', ''performed safety analyses'', ''rules and regulation'' and ''ATHLET-validation'' the HSA addresses users with different background, allowing them to enter the HSA at different levels. Moreover, the HSA serves as a reference book, which is designed future-oriented, freely configurable related to the content, completely integrated into the GRS internal portal and prepared to be used by a growing user group.

  15. Developing IAM for Life Cycle Safety Assessment

    NARCIS (Netherlands)

    Toxopeus, Marten E.; Lutters, Diederick; Nee, Andrew Y.C.; Song, Bin; Ong, Soh-Khim

    2013-01-01

    This publication discusses aspects of the development of an impact assessment method (IAM) for safety. Compared to the many existing IAM’s for environmentally oriented LCA, this method should translate the impact of a product life cycle on the subject of safety. Moreover, the method should be

  16. Analysis and development of the automated emergency algorithm to control primary to secondary LOCA for SUNPP safety upgrading

    International Nuclear Information System (INIS)

    Kim, V.; Kuznetsov, V.; Balakan, G.; Gromov, G.; Krushynsky, A.; Sholomitsky, S.; Lola, I.

    2007-01-01

    The paper presents the results of the study conducted to support planned modernization of the South Ukraine nuclear power plant. The objective of the analysis has been to develop the automated emergency control algorithm for primary to secondary LOCA accident for SUNPP WWER-1000 safety upgrading. According to the analyses performed in the framework of safety assesment report, given accident is the most complex for control and has the largest contribution into the core damage frequency value. This is because of initial event diagnostics is difficult, emergency control is complicated for personnel, time available for decision making and actions performing is limited with coolant inventory for make-up, probability of steam dump valves on affected steam generator non-closing after opening is high, and as a consequence containment bypass, irretrievable loss of coolant and radioactive materials release into the environment are possible. Unit design modifications are directed on expansion of safety systems capabilities to overcome given accident and to facilitate the personnel actions on emergency control. Safety systems modification according to developed algorithm will allow to simplify accident control by personnel and enable to control the ECCS discharge limiting pressure below the affected steam generator steam dump valve opening pressure, and decrease the probability of the containment bypass sequences. The analysis of the primary-to-secondary LOCA thermal-hydraulics has been conducted with RELAP5/Mod 3.2, and involved development of the dedicated analytical model, calculations of various plant response accident scenarios, conducting of plant personnel intervention analyses using full-scale simulator, development and justification of the emergency control algorithm aimed on the minimization of negative consequences of the primary-to-secondary LOCA (Authors)

  17. Initial development of a practical safety audit tool to assess fleet safety management practices.

    Science.gov (United States)

    Mitchell, Rebecca; Friswell, Rena; Mooren, Lori

    2012-07-01

    Work-related vehicle crashes are a common cause of occupational injury. Yet, there are few studies that investigate management practices used for light vehicle fleets (i.e. vehicles less than 4.5 tonnes). One of the impediments to obtaining and sharing information on effective fleet safety management is the lack of an evidence-based, standardised measurement tool. This article describes the initial development of an audit tool to assess fleet safety management practices in light vehicle fleets. The audit tool was developed by triangulating information from a review of the literature on fleet safety management practices and from semi-structured interviews with 15 fleet managers and 21 fleet drivers. A preliminary useability assessment was conducted with 5 organisations. The audit tool assesses the management of fleet safety against five core categories: (1) management, systems and processes; (2) monitoring and assessment; (3) employee recruitment, training and education; (4) vehicle technology, selection and maintenance; and (5) vehicle journeys. Each of these core categories has between 1 and 3 sub-categories. Organisations are rated at one of 4 levels on each sub-category. The fleet safety management audit tool is designed to identify the extent to which fleet safety is managed in an organisation against best practice. It is intended that the audit tool be used to conduct audits within an organisation to provide an indicator of progress in managing fleet safety and to consistently benchmark performance against other organisations. Application of the tool by fleet safety researchers is now needed to inform its further development and refinement and to permit psychometric evaluation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Global road safety online course development.

    Science.gov (United States)

    2017-06-01

    The Global Road Safety Online Curriculum Development project involved the adaptation of in-person classroom materials and development of new materials to be used in an online setting. A short-course format was selected to pilot the course, and four t...

  19. Status of the EU test blanket systems safety studies

    International Nuclear Information System (INIS)

    Panayotov, Dobromir; Poitevin, Yves; Ricapito, Italo; Zmitko, Milan

    2015-01-01

    Highlights: • TBS safety demonstration files. • Safety functions and related design features – detailed TBS components classifications. • Nuclear analyses, radiation shielding and protection. • TBS radiological waste management strategy and categorization. • Selection and definition of reference accidents scenarios and accidents analyses. - Abstract: The European joint undertaking for ITER and the development of fusion energy (‘Fusion for Energy’ – F4E) provides the European contributions to the ITER international fusion energy research project. Among others it includes also the development, design, technological demonstration and implementation of the European test blanket systems (TBS) in ITER. Currently two EU TBS designs are in the phase of conceptual design – helium-cooled lithium-lead (HCLL) and helium-cooled pebble-bed (HCPB). Safety demonstration is an important part of the work devoted to the achievement of the next key project milestone the conceptual design review. The paper reveals the details of the work on EU TBS safety performed in the last couple of years: update of the TBS safety demonstration files; safety functions and related design features; detailed TBS components classifications; nuclear analyses, radiation shielding and protection; TBS radiological waste management strategy and categorization; selection and definition of reference accidents scenarios, and accidents analyses. Finally the authors share the information on on-going and planned future EU TBS safety activities.

  20. Status of the EU test blanket systems safety studies

    Energy Technology Data Exchange (ETDEWEB)

    Panayotov, Dobromir, E-mail: dobromir.panayotov@f4e.europa.eu; Poitevin, Yves; Ricapito, Italo; Zmitko, Milan

    2015-10-15

    Highlights: • TBS safety demonstration files. • Safety functions and related design features – detailed TBS components classifications. • Nuclear analyses, radiation shielding and protection. • TBS radiological waste management strategy and categorization. • Selection and definition of reference accidents scenarios and accidents analyses. - Abstract: The European joint undertaking for ITER and the development of fusion energy (‘Fusion for Energy’ – F4E) provides the European contributions to the ITER international fusion energy research project. Among others it includes also the development, design, technological demonstration and implementation of the European test blanket systems (TBS) in ITER. Currently two EU TBS designs are in the phase of conceptual design – helium-cooled lithium-lead (HCLL) and helium-cooled pebble-bed (HCPB). Safety demonstration is an important part of the work devoted to the achievement of the next key project milestone the conceptual design review. The paper reveals the details of the work on EU TBS safety performed in the last couple of years: update of the TBS safety demonstration files; safety functions and related design features; detailed TBS components classifications; nuclear analyses, radiation shielding and protection; TBS radiological waste management strategy and categorization; selection and definition of reference accidents scenarios, and accidents analyses. Finally the authors share the information on on-going and planned future EU TBS safety activities.

  1. Analyses and computer code developments for accident-induced thermohydraulic transients in water-cooled nuclear reactor systems

    International Nuclear Information System (INIS)

    Wulff, W.

    1977-01-01

    A review is presented on the development of analyses and computer codes for the prediction of thermohydraulic transients in nuclear reactor systems. Models for the dynamics of two-phase mixtures are summarized. Principles of process, reactor component and reactor system modeling are presented, as well as the verification of these models by comparing predicted results with experimental data. Codes of major importance are described, which have recently been developed or are presently under development. The characteristics of these codes are presented in terms of governing equations, solution techniques and code structure. Current efforts and problems of code verification are discussed. A summary is presented of advances which are necessary for reducing the conservatism currently implied in reactor hydraulics codes for safety assessment

  2. Development of fusion safety standards

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Petti, D.A.; Dinneen, G.A.; Herring, J.S.; DeLooper, J.; Levine, J.D.; Gouge, M.J.

    1996-01-01

    Two new U.S. Department of Energy (DOE) standards have been prepared to assist in the design and regulation of magnetic fusion facilities. They are DOE-STD-6002-96, 'Safety of Magnetic Fusion Facilities - Requirements,' and DOE-STD-6003-96 'Safety of Magnetic Fusion Facilities - Guidance.' The first standard sets forth requirements, mostly based on the Code of Federal Regulations, deemed necessary for the safe design and operation of fusion facilities and a set of safety principles to use in the design. The second standard provides guidance on how to meet the requirements identified in DOE-STD-6002-96. It is written specifically for a facility such as the International Thermonuclear Experimental Reactor (ITER) in the DOE regulatory environment. As technical standards, they are applicable only to the extent that compliance with these standards is included in the contracts of the developers. 7 refs., 1 fig

  3. Scanning electron microscopic analyses of Ferrocyanide tank wastes for the Ferrocyanide safety program

    International Nuclear Information System (INIS)

    Callaway, W.S.

    1995-09-01

    This is Fiscal Year 1995 Annual Report on the progress of activities relating to the application of scanning electron microscopy in addressing the Ferrocyanide Safety Issue associated with Hanford Site high-level radioactive waste tanks. The status of the FY 1995 activities directed towards establishing facilities capable of providing SEM based micro-characterization of ferrocyanide tank wastes is described. A summary of key events in the SEM task over FY 1995 and target activities in FY 1996 are presented. A brief overview of the potential applications of computer controlled SEM analytical data in light of analyses of ferrocyanide simulants performed by an independent contractor is also presented

  4. AST-500 safety analysis experience

    Energy Technology Data Exchange (ETDEWEB)

    Falikov, A A; Bakhmetiev, A M; Kuul, V S; Samoilov, O B [OKBM, Nizhny Novgorod (Russian Federation)

    1997-09-01

    Characteristic AST-type NHR safety features and requirements are described briefly. The main approaches and results of design and beyond-design accidents analyses for the AST-500 NHR, and the results of probabilistic safety assessments are considered. It is concluded that the AST-500 possesses a high safety level in virtue of the development and realization in the design of self-protection, passivity and defence-in-depth principles. (author). 9 refs, 2 figs.

  5. Workshop on development and view on digital safety system of KNICS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    The contents of this workshop are vision of KNICS, introduction of development of safety system of KNICS, development situation of safety class of PLC, view of software for safety-critical system in PLC, RTOS development by shaping, quality assurance and attestation of PLC, development situation of nuclear reactor system and development situation of ESF-CCS.

  6. Workshop on development and view on digital safety system of KNICS

    International Nuclear Information System (INIS)

    2006-05-01

    The contents of this workshop are vision of KNICS, introduction of development of safety system of KNICS, development situation of safety class of PLC, view of software for safety-critical system in PLC, RTOS development by shaping, quality assurance and attestation of PLC, development situation of nuclear reactor system and development situation of ESF-CCS

  7. Development of an FPGA-based controller for safety critical application

    International Nuclear Information System (INIS)

    Xing, A.; De Grosbois, J.; Sklyar, V.; Archer, P.; Awwal, A.

    2011-01-01

    In implementing safety functions, Field Programmable Gate Arrays (FPGA) technology offers a distinct combination of benefits and advantages over microprocessor-based systems. FPGAs can be designed such that the final product is purely hardware, without any overhead runtime software, bringing the design closer to a conventional hardware-based solution. On the other hand, FPGAs can implement more complex safety logic that would generally require microprocessor-based safety systems. There are now qualified FPGA-based platforms available on the market with a credible use history in safety applications in nuclear power plants. Atomic Energy of Canada (AECL), in collaboration with RPC Radiy, has initiated a development program to define a vigorous FPGA engineering process suitable for implementing safety critical functions at the application development level. This paper provides an update on the FPGA development program along with the proposed design model using function block diagrams for the development of safety controllers in CANDU applications. (author)

  8. Developing reports on safety analysis and probabilistic analysis of safety for operating power units at nuclear power stations with WWER reactors in Russia; Razrabotka otchetov po analizu bezopasnosti i VAB dlya ehkspluatiruyushchikhsya ehnergoblokov AEhS s WWEhR v Rossii

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, A B; Morozov, V B [ATOMENERGOPROEKT Institute, Moscow (Russian Federation)

    1999-06-01

    Report presents the current state-of art in developing safety reports and probabilistic safety analyses for WWER NPPs operated in Russia. Development of these reports and implementation of PSA is done according to the requirements outlined in the basic document `General Statement on Ensuring safety (OPB). At present submitting safety reports to the regulatory authority GAN RF is mandatory for licensing NPPs. Current state of safety reports for the operating WWER type NPPs meets generally the effective Russian standard engineering documents which are approaching the international standards. A mechanism ensuring correspondence of the safety documentation to the current state of operating units is determined. Modernization of the operating units is underway, it is aimed to eliminate existing deviations from requirements of the modern standards in the field of NPP safety

  9. Safety management in research and development organisation

    International Nuclear Information System (INIS)

    Nivedha, T.

    2016-01-01

    Health and safety is one of the most important aspects of an organizations smooth and effective functioning. It depends on the safety management, health management, motivation, leadership and training, welfare facilities, accident statistics, policy, organization and administration, hazard control and risk analysis, monitoring, statistics and reporting. Workplace accidents are increasingly common, main causes are untidiness, noise, too hot or cold environments, old or poorly maintained machines, and lack of training or carelessness of employees. One of the biggest issues facing employers today is the safety of their employees. This study aims at analyzing the occupational health and safety of Research organization in Indira Gandhi Centre for Atomic Research by gathering information on health management, safety management, motivation, leadership and training, welfare facilities, accident statistics, organization and administration, hazard control and risk analysis, monitoring, statistics and reporting. Data were collected by using questionnaires which were developed on health and safety management system. (author)

  10. Patterns of use and impact of standardised MedDRA query analyses on the safety evaluation and review of new drug and biologics license applications.

    Directory of Open Access Journals (Sweden)

    Lin-Chau Chang

    Full Text Available Standardised MedDRA Queries (SMQs have been developed since the early 2000's and used by academia, industry, public health, and government sectors for detecting safety signals in adverse event safety databases. The purpose of the present study is to characterize how SMQs are used and the impact in safety analyses for New Drug Application (NDA and Biologics License Application (BLA submissions to the United States Food and Drug Administration (USFDA.We used the PharmaPendium database to capture SMQ use in Summary Basis of Approvals (SBoAs of drugs and biologics approved by the USFDA. Characteristics of the drugs and the SMQ use were employed to evaluate the role of SMQ safety analyses in regulatory decisions and the veracity of signals they revealed.A comprehensive search of the SBoAs yielded 184 regulatory submissions approved from 2006 to 2015. Search strategies more frequently utilized restrictive searches with "narrow terms" to enhance specificity over strategies using "broad terms" to increase sensitivity, while some involved modification of search terms. A majority (59% of 1290 searches used descriptive statistics, however inferential statistics were utilized in 35% of them. Commentary from reviewers and supervisory staff suggested that a small, yet notable percentage (18% of 1290 searches supported regulatory decisions. The searches with regulatory impact were found in 73 submissions (40% of the submissions investigated. Most searches (75% of 227 searches with regulatory implications described how the searches were confirmed, indicating prudence in the decision-making process.SMQs have an increasing role in the presentation and review of safety analysis for NDAs/BLAs and their regulatory reviews. This study suggests that SMQs are best used for screening process, with descriptive statistics, description of SMQ modifications, and systematic verification of cases which is crucial for drawing regulatory conclusions.

  11. Patterns of use and impact of standardised MedDRA query analyses on the safety evaluation and review of new drug and biologics license applications.

    Science.gov (United States)

    Chang, Lin-Chau; Mahmood, Riaz; Qureshi, Samina; Breder, Christopher D

    2017-01-01

    Standardised MedDRA Queries (SMQs) have been developed since the early 2000's and used by academia, industry, public health, and government sectors for detecting safety signals in adverse event safety databases. The purpose of the present study is to characterize how SMQs are used and the impact in safety analyses for New Drug Application (NDA) and Biologics License Application (BLA) submissions to the United States Food and Drug Administration (USFDA). We used the PharmaPendium database to capture SMQ use in Summary Basis of Approvals (SBoAs) of drugs and biologics approved by the USFDA. Characteristics of the drugs and the SMQ use were employed to evaluate the role of SMQ safety analyses in regulatory decisions and the veracity of signals they revealed. A comprehensive search of the SBoAs yielded 184 regulatory submissions approved from 2006 to 2015. Search strategies more frequently utilized restrictive searches with "narrow terms" to enhance specificity over strategies using "broad terms" to increase sensitivity, while some involved modification of search terms. A majority (59%) of 1290 searches used descriptive statistics, however inferential statistics were utilized in 35% of them. Commentary from reviewers and supervisory staff suggested that a small, yet notable percentage (18%) of 1290 searches supported regulatory decisions. The searches with regulatory impact were found in 73 submissions (40% of the submissions investigated). Most searches (75% of 227 searches) with regulatory implications described how the searches were confirmed, indicating prudence in the decision-making process. SMQs have an increasing role in the presentation and review of safety analysis for NDAs/BLAs and their regulatory reviews. This study suggests that SMQs are best used for screening process, with descriptive statistics, description of SMQ modifications, and systematic verification of cases which is crucial for drawing regulatory conclusions.

  12. History of aviation safety; the satisfying sighs of relief due to developments in Aviation safety

    NARCIS (Netherlands)

    Stoop, J.A.A.M.

    2014-01-01

    ”Aviation safety is an Integral part of my career. Being part of TU Delft’s impressive record of research on Aviation safety, my career has been with a sense of purpose and a responsibility to equip students to deal with the status quo challenges on Aviation safety, developments, Investigations and

  13. ATHENA/INTRA analyses for ITER, NSSR-2

    International Nuclear Information System (INIS)

    Shen, Kecheng; Eriksson, John; Sjoeberg, A.

    1999-02-01

    The present report is a summary report including thermal-hydraulic analyses made at Studsvik Eco and Safety AB for the ITER NSSR-2 safety documentation. The objective of the analyses was to reveal the safety characteristics of various heat transfer systems at specified operating conditions and to indicate the conditions for which there were obvious risks of jeopardising the structural integrity of the coolant systems. In the latter case also some analyses were made to indicate conceivable mitigating measures for maintaining the integrity.The analyses were primarily concerned with the First Wall and Divertor heat transfer systems. Several enveloping transients were analysed with associated specific flow and heat load boundary conditions. The analyses were performed with the ATHENA and INTRA codes

  14. ATHENA/INTRA analyses for ITER, NSSR-2

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Kecheng; Eriksson, John; Sjoeberg, A

    1999-02-01

    The present report is a summary report including thermal-hydraulic analyses made at Studsvik Eco and Safety AB for the ITER NSSR-2 safety documentation. The objective of the analyses was to reveal the safety characteristics of various heat transfer systems at specified operating conditions and to indicate the conditions for which there were obvious risks of jeopardising the structural integrity of the coolant systems. In the latter case also some analyses were made to indicate conceivable mitigating measures for maintaining the integrity.The analyses were primarily concerned with the First Wall and Divertor heat transfer systems. Several enveloping transients were analysed with associated specific flow and heat load boundary conditions. The analyses were performed with the ATHENA and INTRA codes 8 refs, 14 figs, 15 tabs

  15. Selected problems and results of the transient event and reliability analyses for the German safety study

    International Nuclear Information System (INIS)

    Hoertner, H.

    1977-01-01

    For the investigation of the risk of nuclear power plants loss-of-coolant accidents and transients have to be analyzed. The different functions of the engineered safety features installed to cope with transients are explained. The event tree analysis is carried out for the important transient 'loss of normal onsite power'. Preliminary results of the reliability analyses performed for quantitative evaluation of this event tree are shown. (orig.) [de

  16. Development of a patient safety climate survey for Chinese hospitals: cross-national adaptation and psychometric evaluation.

    Science.gov (United States)

    Zhu, Junya; Li, Liping; Zhao, Hailei; Han, Guangshu; Wu, Albert W; Weingart, Saul N

    2014-10-01

    Existing patient safety climate instruments, most of which have been developed in the USA, may not accurately reflect the conditions in the healthcare systems of other countries. To develop and evaluate a patient safety climate instrument for healthcare workers in Chinese hospitals. Based on a review of existing instruments, expert panel review, focus groups and cognitive interviews, we developed items relevant to patient safety climate in Chinese hospitals. The draft instrument was distributed to 1700 hospital workers from 54 units in six hospitals in five Chinese cities between July and October 2011, and 1464 completed surveys were received. We performed exploratory and confirmatory factor analyses and estimated internal consistency reliability, within-unit agreement, between-unit variation, unit-mean reliability, correlation between multi-item composites, and association between the composites and two single items of perceived safety. The final instrument included 34 items organised into nine composites: institutional commitment to safety, unit management support for safety, organisational learning, safety system, adequacy of safety arrangements, error reporting, communication and peer support, teamwork and staffing. All composites had acceptable unit-mean reliabilities (≥0.74) and within-unit agreement (Rwg ≥0.71), and exhibited significant between-unit variation with intraclass correlation coefficients ranging from 9% to 21%. Internal consistency reliabilities ranged from 0.59 to 0.88 and were ≥0.70 for eight of the nine composites. Correlations between composites ranged from 0.27 to 0.73. All composites were positively and significantly associated with the two perceived safety items. The Chinese Hospital Survey on Patient Safety Climate demonstrates adequate dimensionality, reliability and validity. The integration of qualitative and quantitative methods is essential to produce an instrument that is culturally appropriate for Chinese hospitals

  17. Development of a draft of human factors safety review procedures for the Korean Next Generation Reactor

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Moon, B. S.; Park, J. C.; Lee, Y. H.; Oh, I. S.; Lee, H. C.

    2000-02-01

    In this study, a draft of Human Factors Engineering (HFE) Safety Review Procedures (SRP) was developed for the safety review of KNGR based on HFE Safety and Regulatory Requirements and Guidelines (SRRG). This draft includes acceptance criteria, review procedure, and evaluation findings for the areas of review including HFE program management, human factors analyses, human factors design, and HFE verification and validation, based on section 15.1 'human factors engineering design process' and 15.2 'control room human factors engineering' of KNGR specific safety requirements and chapter 15 'human factors engineering' of KNGR safety regulatory guides. For the effective review, human factors concerns or issues related to advanced HSI design that have been reported so far should be extensively examined. In this study, a total of 384 human factors issues related to the advanced HSI design were collected through our review of a total of 145 documents. A summary of each issue was described and the issues were identified by specific features of HSI design. These results were implemented into a database system

  18. Development of Safety Review Guidance for Research and Training Reactors

    International Nuclear Information System (INIS)

    Oh, Kju-Myeng; Shin, Dae-Soo; Ahn, Sang-Kyu; Lee, Hoon-Joo

    2007-01-01

    The KINS already issued the safety review guidance for pressurized LWRs. But the safety review guidance for research and training reactors were not developed. So, the technical standard including safety review guidance for domestic research and training reactors has been applied mutates mutandis to those of nuclear power plants. It is often difficult for the staff to effectively perform the safety review of applications for the permit by the licensee, based on peculiar safety review guidance. The NRC and NSC provide the safety review guidance for test and research reactors and European countries refer to IAEA safety requirements and guides. The safety review guide (SRG) of research and training reactors was developed considering descriptions of the NUREG- 1537 Part 2, previous experiences of safety review and domestic regulations for related facilities. This study provided the safety review guidance for research and training reactors and surveyed the difference of major acceptance criteria or characteristics between the SRG of pressurized light water reactor and research and training reactors

  19. Development of a Novel Nuclear Safety Culture Evaluation Method for an Operating Team Using Probabilistic Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sangmin; Lee, Seung Min; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    IAEA defined safety culture as follows: 'Safety Culture is that assembly of characteristics and attitudes in organizations and individuals which establishes that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance'. Also, celebrated behavioral scientist, Cooper, defined safety culture as,'safety culture is that observable degree of effort by which all organizational members direct their attention and actions toward improving safety on a daily basis' with his internal psychological, situational, and behavioral context model. With these various definitions and criteria of safety culture, several safety culture assessment methods have been developed to improve and manage safety culture. To develop a new quantitative safety culture evaluation method for an operating team, we unified and redefined safety culture assessment items. Then we modeled a new safety culture evaluation by adopting level 1 PSA concept. Finally, we suggested the criteria to obtain nominal success probabilities of assessment items by using 'operational definition'. To validate the suggested evaluation method, we analyzed the collected audio-visual recording data collected from a full scope main control room simulator of a NPP in Korea.

  20. Development of a Novel Nuclear Safety Culture Evaluation Method for an Operating Team Using Probabilistic Safety Analysis

    International Nuclear Information System (INIS)

    Han, Sangmin; Lee, Seung Min; Seong, Poong Hyun

    2015-01-01

    IAEA defined safety culture as follows: 'Safety Culture is that assembly of characteristics and attitudes in organizations and individuals which establishes that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance'. Also, celebrated behavioral scientist, Cooper, defined safety culture as,'safety culture is that observable degree of effort by which all organizational members direct their attention and actions toward improving safety on a daily basis' with his internal psychological, situational, and behavioral context model. With these various definitions and criteria of safety culture, several safety culture assessment methods have been developed to improve and manage safety culture. To develop a new quantitative safety culture evaluation method for an operating team, we unified and redefined safety culture assessment items. Then we modeled a new safety culture evaluation by adopting level 1 PSA concept. Finally, we suggested the criteria to obtain nominal success probabilities of assessment items by using 'operational definition'. To validate the suggested evaluation method, we analyzed the collected audio-visual recording data collected from a full scope main control room simulator of a NPP in Korea

  1. Development of reliability database for safety-related I and C component based on operating experience of KSNP

    International Nuclear Information System (INIS)

    Jang, S. C.; Han, S. H.; Min, K. R.

    2001-01-01

    Reliability database for safety-related I and C components has been developed, based on domestic operating experience of total 8.63 years from four units-Yonggwang Units 3 and 4, and Ulchin Units 3 and 4. This plant-specific data of safety-related I and C components has compared with operating experience for CE-supplied plants in U.S.A. As a results, we found that on the whole the domestic reliability data was similar to CE-supplied plants in USA, through lots of failures occurred early in the commercial operation were included in our analyses without percolation

  2. ENTREPRENEURSHIP ECONOMIC SAFETY AND DEVELOPMENT OF SECURITY SERVICES

    Directory of Open Access Journals (Sweden)

    G. V. Goudkov

    2011-01-01

    Full Text Available Successful functioning of the industry that provides for safety of organizations and physical entities exercises strategic impacts on development of society and economics of any state including Russia. Economic safety of Russia is directly linked with economic and information safety of itsbusiness structures. Extension of the scope and use of services offered by experienced state and private security enterprises including licensed individuals is one of most important directions of business safety perfection. Further improvement of Russian legislation on non-governmentalsecurity structures and coordination of their activities with those of state law enforcement bodies is obligatory condition of attaining higherpublic and economic safety levels.

  3. Safety case plan 2008

    International Nuclear Information System (INIS)

    2008-07-01

    Following the guidelines set forth by the Ministry of Trade and Industry (now Ministry of Employment and Economy) Posiva is preparing to submit the construction license application for a spent fuel repository by the end of the year 2012. The long-term safety section supporting the license application is based on a safety case, which, according to the internationally adopted definition, is a compilation of the evidence, analyses and arguments that quantify and substantiate the safety and the level of expert confidence in the safety of the planned repository. In 2005, Posiva presented a plan to prepare such a safety case. The present report provides a revised plan of the safety case contents mentioned above. The update of the safety case plan takes into account the recommendations made by the Radiation and Nuclear Safety Authority (STUK) about improving the focus and further developing the plan. Accordingly, particular attention is given to the quality management of the safety case work, the management of uncertainties and the scenario methodology. The quality management is based on the ISO 9001:2000 standard process thinking enhanced with special features arising from STUK's YVL Guides. The safety case production process is divided into four main sub-processes. The conceptualisation and methodology sub-process defines the framework for the assessment. The critical data handling and modelling sub-process links Posiva's main technical and scientific activities to the production of the safety case. The assessment sub-process analyses the consequences of the evolution of the disposal system in various scenarios, classified either as part of the expected evolution or as disruptive scenarios. The compliance and confidence sub-process is responsible for final evaluation of compliance of the assessment results with the regulatory criteria and the overall confidence in the safety case. As in the previous safety case plan, the safety case will be based on several reports, but

  4. The Development of child road safety competence : the new approach tо road safety education

    OpenAIRE

    Vilkonis, Rytis

    2005-01-01

    The education and information are the strategies of the Road safety. However, some of the documents and scientific findings revealed the chaotic, desultory and theoretically groundless Road safety education and it can be stated that Road safety education system in Lithuania is still being established. The shortage of the theoretical and empirical base of Road safety education is slowing down the process of the system development. Aim of the research is to disclose the assumptions for developm...

  5. Utilisation of best estimate system codes and best estimate methods in safety analyses of VVER reactors in the Czech Republic

    International Nuclear Information System (INIS)

    Macek, Jiri; Kral, Pavel

    2010-01-01

    The content of the presentation was as follows: Conservative versus best estimate approach, Brief description and selection of methodology, Description of uncertainty methods, Examples of the BE methodology. It is concluded that where BE computer codes are used, uncertainty and sensitivity analyses should be included; if best estimate codes + uncertainty are used, the safety margins increase; and BE + BSA is the next step in licensing analyses. (P.A.)

  6. Fire safety of ETICS with wood fibreboards for multi-storey buildings – first research and development results

    Directory of Open Access Journals (Sweden)

    Küppers Judith

    2016-01-01

    Full Text Available Wood fibreboards can serve as alternative sustainable insulation material for external thermal insulation component systems (ETICS. In Germany, the application of ETICS with wood fibreboards is restricted to low buildings. The restrictions are mainly caused by the smouldering tendency of the wood fibreboards. Thus, the development of an ETICS with wood fibreboards for multi-storey buildings complying with the requirements would provide a new scope of application for this sustainable insulation material. This paper presents first results of standardised and innovative investigation methods as basis for the development. These investigations and analyses concern the fire behaviour, especially smouldering processes, the plaster system, other constructive protection measures as well as risk and safety analyses.

  7. Formal model-based development for safety-critical embedded software

    International Nuclear Information System (INIS)

    Kim, Jin Hyun; Choi, Jin Young

    2005-01-01

    Safety-critical embedded software for nuclear I and C system is developed under the safety and reliability regulation. Programmable logic controller(PLC) is a computer system for instrumentation and control (I and C) system of nuclear power plants. PLC consists of various I and C logics in software, including real-time operating system (RTOS). Hence, errors related with RTOS should be detected and eliminated in development processes. Practically, the verification and validation for errors in RTOS is performed in test procedure, in which a lot of tasks for testing are embedded in RTOS and are running under a test environments. But the test process can not be enough to guarantee the safety and reliability of RTOS. Therefore, in this paper, we introduce to applying formal methods with the development of software for the PLC. We particularity apply formal methods to a development of RTOS for PLC, which is a safety critical level. In this development, we use the state charts of I-Logix to specify and verification and model checking to verify the specification

  8. Formal model-based development for safety-critical embedded software

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hyun; Choi, Jin Young [Korea University, seoul (Korea, Republic of)

    2005-11-15

    Safety-critical embedded software for nuclear I and C system is developed under the safety and reliability regulation. Programmable logic controller(PLC) is a computer system for instrumentation and control (I and C) system of nuclear power plants. PLC consists of various I and C logics in software, including real-time operating system (RTOS). Hence, errors related with RTOS should be detected and eliminated in development processes. Practically, the verification and validation for errors in RTOS is performed in test procedure, in which a lot of tasks for testing are embedded in RTOS and are running under a test environments. But the test process can not be enough to guarantee the safety and reliability of RTOS. Therefore, in this paper, we introduce to applying formal methods with the development of software for the PLC. We particularity apply formal methods to a development of RTOS for PLC, which is a safety critical level. In this development, we use the state charts of I-Logix to specify and verification and model checking to verify the specification.

  9. Calculational framework for safety analyses of non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    Coleman, J.R.

    1994-01-01

    A calculational framework for the consequences analysis of non-reactor nuclear facilities is presented. The analysis framework starts with accident scenarios which are developed through a traditional hazard analysis and continues with a probabilistic framework for the consequences analysis. The framework encourages the use of response continua derived from engineering judgment and traditional deterministic engineering analyses. The general approach consists of dividing the overall problem into a series of interrelated analysis cells and then devising Markov chain like probability transition matrices for each of the cells. An advantage of this division of the problem is that intermediate output (as probability state vectors) are generated at each calculational interface. The series of analyses when combined yield risk analysis output. The analysis approach is illustrated through application to two non-reactor nuclear analyses: the Ulysses Space Mission, and a hydrogen burn in the Hanford waste storage tanks

  10. Development of Network Protocol for the Integrated Safety System

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. W.; Baek, J. I.; Lee, S. H.; Park, C. S.; Park, K. H.; Shin, J. M. [Hannam Univ., Daejeon (Korea, Republic of)

    2007-06-15

    Communication devices in the safety system of nuclear power plants are distinguished from those developed for commercial purposes in terms of a strict requirement of safety. The concept of safety covers the determinability, the reliability, and the separation/isolation to prevent the undesirable interactions among devices. The safety also requires that these properties be never proof less. Most of the current commercialized communication products rarely have the safety properties. Moreover, they can be neither verified nor validated to satisfy the safety property of implementation process. This research proposes the novel architecture and protocol of a data communication network for the safety system in nuclear power plants.

  11. Development of Network Protocol for the Integrated Safety System

    International Nuclear Information System (INIS)

    Park, S. W.; Baek, J. I.; Lee, S. H.; Park, C. S.; Park, K. H.; Shin, J. M.

    2007-06-01

    Communication devices in the safety system of nuclear power plants are distinguished from those developed for commercial purposes in terms of a strict requirement of safety. The concept of safety covers the determinability, the reliability, and the separation/isolation to prevent the undesirable interactions among devices. The safety also requires that these properties be never proof less. Most of the current commercialized communication products rarely have the safety properties. Moreover, they can be neither verified nor validated to satisfy the safety property of implementation process. This research proposes the novel architecture and protocol of a data communication network for the safety system in nuclear power plants

  12. Health and safety in clinical laboratories in developing countries: safety considerations.

    Science.gov (United States)

    Ejilemele, A A; Ojule, A C

    2004-01-01

    Clinical laboratories are potentially hazardous work areas. Health and safety in clinical laboratories is becoming an increasingly important subject as a result of the emergence of highly infectious diseases such as hepatitis and HIV. This is even more so in developing countries where health and safety have traditionally been regarded as low priority issues, considering the more important health problems confronting the health authorities in these countries. We conducted a literature search using the medical subheadings titles on the INTERNET over a period of twenty years and summarized our findings. This article identifies hazards in the laboratories and highlights measures to make the laboratory a safer work place. It also emphasizes the mandatory obligations of employers and employees towards the attainment of acceptable safety standards in clinical laboratories in Third World countries in the face of the current HIV/AIDS epidemic in many of these developing countries especially in the sub-Saharan Africa while accommodating the increasing work load in these laboratories. Both the employer and the employee have major roles to play in the maintenance of a safe working environment. This can be achieved if measures discussed are incorporated into everyday laboratory practice.

  13. Safety strategy and safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1976-01-01

    The safety strategy for nuclear power plants is characterized by the fact that the high level of safety was attained not as a result of experience, but on the basis of preventive accident analyses and the finding derived from such analyses. Although, in these accident analyses, the deterministic approach is predominant, it is supplemented by reliability analyses. The accidents analyzed in nuclear licensing procedures cover a wide spectrum from minor incidents to the design basis accidents which determine the design of the safety devices. The initial and boundary conditions, which are essentail for accident analyses, and the determination of the loads occurring in various states during regular operation and in accidents flow into the design of the individual systems and components. The inevitable residual risk and its origins are discussed. (orig.) [de

  14. Development of safety assessment model based on TRU-2 report using GoldSim

    International Nuclear Information System (INIS)

    Ebina, Takanori; Inagaki, Manabu; Kato, Tomoko

    2011-03-01

    The safety assessment model at 'Second Progress Report on Research and Development for TRU Waste Disposal in Japan'(TRU-2 report) was designed using the numerical code TIGER, that allows the physical and chemical properties within the system to vary with time. In the future, at the examination to optimize nuclear fuel cycle for geological disposal, it is expected that the analysis that has many cases like sensitivity analysis and uncertainty analysis are in demand. The numerical code TIGER is a calculation code that analyze engineered barrier system and geological barrier system, and its numerical model is verified with nuclide migration code for engineered barrier system MESHNOTE, and nuclide migration code for geosphere MATRICS. At the analysis using TIGER, the migration (i.e. Engineered barrier system, Host rock and Fault) have to be analysed independently at each region, consequently the huge number of complicated parameter setting have been required. On the other hand, by using numerical code GoldSim, all regions are analyzed synchronously and parameters can be defined at same model. So it makes quality control of parameters easier. Furthermore, analysis time by GoldSim is shorter than TIGER and GoldSim can calculate many number of Monte Carlo simulations among multiple computers. In future, Safety Analyses of TRU waste package disposal will be carried out according as study of an optimization of nuclear fuel cycle. Therefor, safety assessment model for TRU waste disposal using GoldSim was designed, and calculation results were verified by comparing with the result of TRU-2 report. (author)

  15. Does Employee Safety Matter for Patients Too? Employee Safety Climate and Patient Safety Culture in Health Care.

    Science.gov (United States)

    Mohr, David C; Eaton, Jennifer Lipkowitz; McPhaul, Kathleen M; Hodgson, Michael J

    2015-04-22

    We examined relationships between employee safety climate and patient safety culture. Because employee safety may be a precondition for the development of patient safety, we hypothesized that employee safety culture would be strongly and positively related to patient safety culture. An employee safety climate survey was administered in 2010 and assessed employees' views and experiences of safety for employees. The patient safety survey administered in 2011 assessed the safety culture for patients. We performed Pearson correlations and multiple regression analysis to examine the relationships between a composite measure of employee safety with subdimensions of patient safety culture. The regression models controlled for size, geographic characteristics, and teaching affiliation. Analyses were conducted at the group level using data from 132 medical centers. Higher employee safety climate composite scores were positively associated with all 9 patient safety culture measures examined. Standardized multivariate regression coefficients ranged from 0.44 to 0.64. Medical facilities where staff have more positive perceptions of health care workplace safety climate tended to have more positive assessments of patient safety culture. This suggests that patient safety culture and employee safety climate could be mutually reinforcing, such that investments and improvements in one domain positively impacts the other. Further research is needed to better understand the nexus between health care employee and patient safety to generalize and act upon findings.

  16. Presentation on development of safety assessment reports in Romania

    International Nuclear Information System (INIS)

    Goicea, L.

    2002-01-01

    This presentation shows whole steps of Cernavoda 2 NPP licensing and accident management relevant changes considered. There are description of CANDU Safety principles and design criteria, as well as FSAR structured according to NRC Regulatory Guide 1.70, format of presentation of accident analyses, applicable acceptant criteria to analyses and Design Codes, Safety standards and Safety Guides used. The main features of CANDU reactors are presented, including of base design characteristics and describing of structures of CANDU reactors. During the licensing Cernavoda 2 are passed through Site approval, Construction permits of NPP system (1980-1993), Final construction license (1993) and Commissioning license (1995). In the May 1998 the First operating license is issued, based on FSAR Phase 1, Full power probationary report and carried out the requirements related to revising the FSAR and initiating of the Modernization program. To achieve the defense in depth concept are used and implemented the norms and quality standards during all plant stages, as well as selecting the high quality materials. During all plant stages is keeps strictly accomplishment of the quality requirements, and ensures a high level of reliability by using of operating principle and fabrication. In NPP operation is established using of the approved operating concept permitting only the safe condition for reactor operation. In the process of Cernavoda NPP licensing and operating the CSA and CGSB Canadian Standards, ASME and ANSI American Standards, Romanian Norms are implemented. Another useful Codes and Standards are implemented too, as ACI, ASTM, ANSI, AWS and others. In accident analysis for Safety Analysis Report for Cernavoda Unit 1 are involved 37 computer codes, in such areas as Reactor physics, Thermal-hydraulics, Fuel behavior, Fuel channel, Containment, and Fission product release and dose calculation

  17. NPA applications development in the nuclear safety authority framework

    International Nuclear Information System (INIS)

    Maselj, A.; Vojnovic, D.; Gregonc, M.

    1999-01-01

    Due to the present tasks of the SNSA (Slovenian Nuclear Safety Administration) there was a need to gain a tool for analysing the transients of the Krsko Nuclear Power Plant at the SNSA. Combining the RELAP5 code with graphical interface NPA (Nuclear Plant Analyzer), the SNSA management saw an opportunity to have a powerful instrument for analyses and assessments on a user friendly basis and without high costs. The Krsko NPP Analyzer is a joint project of the SNSA and the operator, the Krsko NPP. The RELAP5/Mod2.5 input deck was constructed by the Krsko NPP's experts and their subcontractors. In 1996 the work started with translation of input model from RELAP5/Mod2.5 version to Mod3.2. This was done by Tractebel which combined NPA masks with translated input deck and constructed new dynamic function and interactive commands between graphical MMI (Man Machine Interface) and simulation code. Since Tractebel performed similar activities for the Belgian plants, their experience was used through a transfer of knowledge to the SNSA. After this phase of the project, a user of the NPP Analyzer can run accidents as SBLOCA, Main Steam Line Break, Feed Water Break, SGTR, and many other transients activating and combining interactive commands, starting from a full power operation. This project has not been finished yet. Improvements of the input deck should be done. The Critical Safety Function window will be created. The analyzer will be a helpful tool during the training program for Accident Assessment Group, which will give to the experts basic knowledge of plant operation, its systems, and physical phenomena during a steady state and transients or accidents. Also a new dimension is added to the existing safety evaluations at the SNSA to confirm the requested level of nuclear safety at the Krsko NPP. (author)

  18. Development of IFC based fire safety assesment tools

    DEFF Research Database (Denmark)

    Taciuc, Anca; Karlshøj, Jan; Dederichs, Anne

    2016-01-01

    Due to the impact that the fire safety design has on the building's layout and on other complementary systems, as installations, it is important during the conceptual design stage to evaluate continuously the safety level in the building. In case that the task is carried out too late, additional...... changes need to be implemented, involving supplementary work and costs with negative impact on the client. The aim of this project is to create a set of automatic compliance checking rules for prescriptive design and to develop a web application tool for performance based design that retrieves data from...... Building Information Models (BIM) to evacuate the safety level in the building during the conceptual design stage. The findings show that the developed tools can be useful in AEC industry. Integrating BIM from conceptual design stage for analyzing the fire safety level can ensure precision in further...

  19. Development and application of digital safety system in NPPs

    International Nuclear Information System (INIS)

    Kwon, Keechoon; Kim, Changhwoi; Lee, Dongyoung

    2012-01-01

    This paper describes the development of digital safety system in NPPs based on safety- grade programmable logic controller (PLC) platform and its application to real NPP construction. The digital safety system consists of a reactor protection system and an engineered safety feature-component control system. The safety-grade PLC platform was developed so that it meets the requirements of the regulation. The PLC consists of various modules such as a power module, a processor module, communication modules, digital input/output modules, analog input/output modules, a LOCA bus extension module, and a high-speed pulse counter module. The reactor protection system is designed with a redundant 4-channel architecture, and every channel is implemented with the same architecture. A single channel consists of a redundant bi-stable processor, a redundant coincidence processor, an automatic test and interface processor, and a cabinet operator module. The engineered safety feature-component control system is designed with four redundant divisions, and implemented with the PLC platform. The principal components of an individual division are fault tolerant group controllers, loop controllers, a test and interface processor, a cabinet operator module and a control channel gateway. The topical report is submitted to the regulatory body, and got safety evaluation report from the regulatory body. Also, the developed system is tested in the integrated performance validation facility. It is decided that the digital safety system applied to Shin-Uljin unit 1 and 2 after a topical report approval and validation test. Design changes occur in the digital safety system that is applied to an actual nuclear power plant construction, and the PLC has also been upgraded

  20. Development and application of digital safety system in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Keechoon; Kim, Changhwoi; Lee, Dongyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    This paper describes the development of digital safety system in NPPs based on safety- grade programmable logic controller (PLC) platform and its application to real NPP construction. The digital safety system consists of a reactor protection system and an engineered safety feature-component control system. The safety-grade PLC platform was developed so that it meets the requirements of the regulation. The PLC consists of various modules such as a power module, a processor module, communication modules, digital input/output modules, analog input/output modules, a LOCA bus extension module, and a high-speed pulse counter module. The reactor protection system is designed with a redundant 4-channel architecture, and every channel is implemented with the same architecture. A single channel consists of a redundant bi-stable processor, a redundant coincidence processor, an automatic test and interface processor, and a cabinet operator module. The engineered safety feature-component control system is designed with four redundant divisions, and implemented with the PLC platform. The principal components of an individual division are fault tolerant group controllers, loop controllers, a test and interface processor, a cabinet operator module and a control channel gateway. The topical report is submitted to the regulatory body, and got safety evaluation report from the regulatory body. Also, the developed system is tested in the integrated performance validation facility. It is decided that the digital safety system applied to Shin-Uljin unit 1 and 2 after a topical report approval and validation test. Design changes occur in the digital safety system that is applied to an actual nuclear power plant construction, and the PLC has also been upgraded.

  1. Challenges on innovations of newly-developed safety analysis codes

    International Nuclear Information System (INIS)

    Yang, Yanhua; Zhang, Hao

    2016-01-01

    With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.

  2. Challenges on innovations of newly-developed safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yanhua [Shanghai Jiao Tong Univ. (China). School of Nuclear Science and Engineering; Zhang, Hao [State Nuclear Power Software Development Center, Beijing (China). Beijing Future Science and Technology City

    2016-05-15

    With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.

  3. Thermal and stress analyses of meltdown cups for LMFBR safety experiments using SLSF in-reactor loops

    International Nuclear Information System (INIS)

    Blomquist, C.A.; Pierce, R.D.; Pedersen, D.R.; Ariman, T.

    1977-01-01

    The test trains for the Sodium Loop Safety Facility (SLSF) in-reactor experiments, which simulate hypothetical LMFBR accidents, have a meltdown cup to protect the primary containment from the effects of molten materials. Thermal and stress analyses were performed on the cup which is designed to contain 3.6 kg of molten fuel and 2.4 kg of molten steel. Thermal analyses were performed with the Argonne-modified version fo the general heat transfer code THTB, based on the instantaneous addition of 3200 0 K molten fuel with a decay heat of 9 W/gm and 1920 0 K molten steel. These analyses have shown that the cup will adequately cool the molten materials. The stress analysis showed that the Inconel vessel would not fail from the pressure loading, it was also shown that brittle fracture of the tungsten liner from thermal gradients is unlikely. Therefore, the melt-down cup meets the structural design requirements. (Auth.)

  4. Development of photovoltaic array and module safety requirements

    Science.gov (United States)

    1982-01-01

    Safety requirements for photovoltaic module and panel designs and configurations likely to be used in residential, intermediate, and large-scale applications were identified and developed. The National Electrical Code and Building Codes were reviewed with respect to present provisions which may be considered to affect the design of photovoltaic modules. Limited testing, primarily in the roof fire resistance field was conducted. Additional studies and further investigations led to the development of a proposed standard for safety for flat-plate photovoltaic modules and panels. Additional work covered the initial investigation of conceptual approaches and temporary deployment, for concept verification purposes, of a differential dc ground-fault detection circuit suitable as a part of a photovoltaic array safety system.

  5. The practical implementation of integrated safety management for nuclear safety analysis and fire hazards analysis documentation

    International Nuclear Information System (INIS)

    COLLOPY, M.T.

    1999-01-01

    the integrated safety management system approach for having a uniform and consistent process: a method has been suggested by the U S . Department of Energy at Richland and the Project Hanford Procedures when fire hazard analyses and safety analyses are required. This process provides for a common basis approach in the development of the fire hazard analysis and the safety analysis. This process permits the preparers of both documents to jointly participate in the development of the hazard analysis process. This paper presents this method to implement the integrated safety management approach in the development of the fire hazard analysis and safety analysis that provides consistency of assumptions. consequences, design considerations, and other controls necessarily to protect workers, the public. and the environment

  6. Development of the safety PLC for plant protection system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hwoi; Lee, Dong Young [Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of)

    2005-11-15

    The safety PLC (POSAFE-Q) is developing in the Korea Nuclear Instrumentation and Control System (KNICS) R and D project. The PLC satisfies Safety Class 1E, Quality Class 1, and Seismic Category I. The software such as RTOS and firmware are developed according to safety critical software life cycle. Especially, the formal method is applied to design SRS (Software Requirement Spec.) and SDS (Software Design Specification.) for error-free. The developed software according to software life cycle is verified by independent software V and V team. The overall response time from an input to the outputs shall be 50ms or less. The prototype for the POSAFE-Q was developed and functional testing and equipment qualification tests have been underway.

  7. Development of an environmental safety case guidance manual

    International Nuclear Information System (INIS)

    Wellstead, Matthew John

    2014-01-01

    NDA RWMD is currently considering the scope, purpose and structure of a safety case manual that covers the development of nuclear operational, transport and environmental safety cases for a geological disposal facility in the United Kingdom. This paper considers the Environmental Safety Case (ESC) input into such a manual (herein referred to as the 'ESC Manual'), looking at the drivers and benefits that a guidance manual in this area may provide. (authors)

  8. Developing and Strengthening of Safety Culture at Ukrainian NPPs: Experience of NNEGC “Energoatom”

    International Nuclear Information System (INIS)

    Sheyko, Y.; Kotin, P.

    2016-01-01

    safety of nuclear power plants and the development of a deep understanding of the importance of safety approach and the practical realisation of the principles of safety culture in production activities; • Creating an atmosphere of fruitful cooperation between management and staff, the improvement of collective action and of the behavior, developing a positive safety culture; Currently NAEC “Energoatom” is making efforts to improve the effectiveness of the implementation of these projects; to analyse the emerging issues in the implementation of project both at the pilot nuclear power plant and during its subsequent extension to the rest of the NPP; to conduct generalization, systematisation and integration of the results of these projects into a single management system of safety culture for NAEC “Energatom”. Realizing the importance of safety culture to achieve the goals of safety, as well as performing for many years a whole range of measures to improve safety and to improve the safety culture, NNEGC “Energoatom” considers the need for constant attention to safety culture at all organizational levels to be the key to success, and the main driving mechanism of progress and development in this area—wide awareness of international experience and achievements in improving the safety culture, their integration and implementation in your organization. (author)

  9. Development of safety review advisory system for nuclear power plants

    International Nuclear Information System (INIS)

    Kim, M. W.; Lee, H. C.; Park, S. O.; Park, W. J.; Lee, J. I.; Hur, K. Y.; Choi, S. S.; Lee, S. J.; Kang, C. M.

    2001-01-01

    For the development of an expert system supporting the safety review of nuclear power plants, the application program was implemented after gathering necessary theoretical background and practical requirements. The general and the detail functional specifications were established, and they were investigated by the safety review experts at KINS. Safety Review Advisory System (SRAS), the windows application on client-server environment was developed according to the above specifications. Reviewers can do their safety reviewing regardless of speciality or reviewing experiences because SRAS is operated by the safety review plans which are converted to standardized format. When the safety reviewing is carried out by using SRAS, the results of safety reviewing are accumulated in the database and may be utilized later usefully, and we can grasp safety reviewing progress. Users of SRAS are categorized into three groups, administrator, project manager, and reviewer. Each user group has appropriate access capability. The function and some screen shots of SRAS are described in this paper

  10. Analysing supercritical water reactor's (SCWR's) special safety systems using probabilistic tools

    International Nuclear Information System (INIS)

    Ituen, I.; Novog, D.R.

    2011-01-01

    The next generation of reactors, termed Generation IV, has very attractive features -- its superior safety characteristics, high thermal efficiency, and fuel cycle sustainability. A key element of the Generation IV designs is the improvement in safety, which in turn requires improvements in safety system performance and reliability, as well as a reduction in initiating event frequencies. This study compares the response of the systems important to safety in the CANDU-Supercritical Water Reactor to those of the generic CANDU under a main steamline break accident and loss of forced circulation events -- to quantify the improvements in safety for the pre-conceptual CANDU SCWR design. Probabilistic safety analysis is the tool used in this study to test the behavior of the pre- conceptual design during these events. (author)

  11. The practice of pre-marketing safety assessment in drug development.

    Science.gov (United States)

    Chuang-Stein, Christy; Xia, H Amy

    2013-01-01

    The last 15 years have seen a substantial increase in efforts devoted to safety assessment by statisticians in the pharmaceutical industry. While some of these efforts were driven by regulations and public demand for safer products, much of the motivation came from the realization that there is a strong need for a systematic approach to safety planning, evaluation, and reporting at the program level throughout the drug development life cycle. An efficient process can help us identify safety signals early and afford us the opportunity to develop effective risk minimization plan early in the development cycle. This awareness has led many pharmaceutical sponsors to set up internal systems and structures to effectively conduct safety assessment at all levels (patient, study, and program). In addition to process, tools have emerged that are designed to enhance data review and pattern recognition. In this paper, we describe advancements in the practice of safety assessment during the premarketing phase of drug development. In particular, we share examples of safety assessment practice at our respective companies, some of which are based on recommendations from industry-initiated working groups on best practice in recent years.

  12. Labor unions and safety climate: perceived union safety values and retail employee safety outcomes.

    Science.gov (United States)

    Sinclair, Robert R; Martin, James E; Sears, Lindsay E

    2010-09-01

    Although trade unions have long been recognized as a critical advocate for employee safety and health, safety climate research has not paid much attention to the role unions play in workplace safety. We proposed a multiple constituency model of workplace safety which focused on three central safety stakeholders: top management, ones' immediate supervisor, and the labor union. Safety climate research focuses on management and supervisors as key stakeholders, but has not considered whether employee perceptions about the priority their union places on safety contributes contribute to safety outcomes. We addressed this gap in the literature by investigating unionized retail employee (N=535) perceptions about the extent to which their top management, immediate supervisors, and union valued safety. Confirmatory factor analyses demonstrated that perceived union safety values could be distinguished from measures of safety training, workplace hazards, top management safety values, and supervisor values. Structural equation analyses indicated that union safety values influenced safety outcomes through its association with higher safety motivation, showing a similar effect as that of supervisor safety values. These findings highlight the need for further attention to union-focused measures related to workplace safety as well as further study of retail employees in general. We discuss the practical implications of our findings and identify several directions for future safety research. 2009 Elsevier Ltd. All rights reserved.

  13. Research on the improvement of nuclear safety

    International Nuclear Information System (INIS)

    Yoo, Keon Joong; Kim, Dong Soo; Kim, Hui Dong; Park, Chang Kyu

    1993-06-01

    To improve the nuclear safety, this project is divided into three areas which are the development of safety analysis technology, the development of severe accident analysis technology and the development of integrated safety assessment technology. 1. The development of safety analysis technology. The present research aims at the development of necessary technologies for nuclear safety analysis in Korea. Establishment of the safety analysis technologies enables to reduce the expenditure both by eliminating excessive conservatisms incorporated in nuclear reactor design and by increasing safety margins in operation. It also contributes to improving plant safety through realistic analyses of the Emergency Operating Procedures (EOP). 2. The development of severe accident analysis technology. By the computer codes (MELCOR and CONTAIN), the in-vessel and the ex-vessel severe accident phenomena are simulated. 3. The development of integrated safety assessment technology. In the development of integrated safety assessment techniques, the included research areas are the improvement of PSA computer codes, the basic study on the methodology for human reliability analysis (HRA) and common cause failure (CCF). For the development of the level 2 PSA computer code, the basic research for the interface between level 1 and 2 PSA, the methodology for the treatment of containment event tree are performed. Also the new technologies such as artificial intelligence, object-oriented programming techniques are used for the improvement of computer code and the assessment techniques

  14. Human factors in safety assessment. Safety culture assessment

    International Nuclear Information System (INIS)

    Zhang Li; Deng Zhiliang; Wang Yiqun; Huang Weigang

    1996-01-01

    This paper analyses the present conditions and problems in enterprises safety assessment, and introduces the characteristics and effects of safety culture. The authors think that safety culture must be used as a 'soul' to form the pattern of modern safety management. Furthermore, they propose that the human safety and synthetic safety management assessment in a system should be changed into safety culture assessment. Finally, the assessment indicators are discussed

  15. Development of Safety Assessment Information System (SAIS)

    International Nuclear Information System (INIS)

    Park, Byung Shik; Lee, Kyung Jin; Lee, Byung Chul; Song, Tae Young; Lee, Chang Ho

    2007-01-01

    Many reports and documents about nuclear power plant safety analysis like a Periodic Safe Review (PSR), Periodic Safety Analysis (PSA) and Severe Accident Management Guideline (SAMG) come to be drawn up from KHNP. Since these are not arranged easy to look up, the systematic arrangement of data was necessary. The solution against hereupon is to store database, and it was developed with the name, SAIS, by FNC Tech. Co. together with NETEC KHNP. In this web program it is easy to manage (registration, search and statistics) data. And the authorized user can approach this system. This was developed, and was verified under the development environment of; - Web Server : Apache 2.2.5 - Program Language : PHP 5.2 - DBMS : Oracle 10g

  16. Development of Safety Assessment Information System (SAIS)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Shik; Lee, Kyung Jin; Lee, Byung Chul [FNC Tech. Co. Ltd. SNU, Seoul (Korea, Republic of); Song, Tae Young; Lee, Chang Ho [KHNP, Daejeon (Korea, Republic of)

    2007-10-15

    Many reports and documents about nuclear power plant safety analysis like a Periodic Safe Review (PSR), Periodic Safety Analysis (PSA) and Severe Accident Management Guideline (SAMG) come to be drawn up from KHNP. Since these are not arranged easy to look up, the systematic arrangement of data was necessary. The solution against hereupon is to store database, and it was developed with the name, SAIS, by FNC Tech. Co. together with NETEC KHNP. In this web program it is easy to manage (registration, search and statistics) data. And the authorized user can approach this system. This was developed, and was verified under the development environment of; - Web Server : Apache 2.2.5 - Program Language : PHP 5.2 - DBMS : Oracle 10g.

  17. Development of a new methodology for quantifying nuclear safety culture

    International Nuclear Information System (INIS)

    Han, Kiyoon; Jae, Moosung

    2017-01-01

    The present study developed a Safety Culture Impact Assessment Model (SCIAM) which consists of a safety culture assessment methodology and a safety culture impact quantification methodology. The SCIAM uses a safety culture impact index (SCII) to monitor the status of safety culture of NPPs periodically and it uses relative core damage frequency (RCDF) to present the impact of safety culture on the safety of NPPs. As a result of applying the SCIAM to the reference plant (Kori 3), the standard for the healthy safety culture of the reference plant is suggested. SCIAM might contribute to improve the safety of NPPs (Nuclear Power Plants) by monitoring the status of safety culture periodically and presenting the standard of healthy safety culture.

  18. Development of a new methodology for quantifying nuclear safety culture

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kiyoon; Jae, Moosung [Hanyang Univ., Seoul (Korea, Republic of). Dept. of Nuclear Engineering

    2017-01-15

    The present study developed a Safety Culture Impact Assessment Model (SCIAM) which consists of a safety culture assessment methodology and a safety culture impact quantification methodology. The SCIAM uses a safety culture impact index (SCII) to monitor the status of safety culture of NPPs periodically and it uses relative core damage frequency (RCDF) to present the impact of safety culture on the safety of NPPs. As a result of applying the SCIAM to the reference plant (Kori 3), the standard for the healthy safety culture of the reference plant is suggested. SCIAM might contribute to improve the safety of NPPs (Nuclear Power Plants) by monitoring the status of safety culture periodically and presenting the standard of healthy safety culture.

  19. Safety report content and development for test loop facility on MARIA reactor

    International Nuclear Information System (INIS)

    Konechko, A.; Shumskij, A.M.; Mikul'ahin, V.E.

    1982-01-01

    A 600 kW test loop facility for investigatin.o safety problems is realized on MARIA reactor in Poland together with USSR organizations. Safety reports have been developed in two steps at the designstage. The 1st report being essentially a preliminary safety analysis was developed within the scope of the feasibility study. At the engineering design stage the preliminary test loop facility safety report had been prepared considering measures excluding the possibility of the MARIA reactor damage. The test loop facility safety report is fulfilled for normal, transient and emergency operation regimes. Separate safety basing for each group of experiments will be prepared. The report presents the test loop facility safety criteria coordinated by the nuclear safety comission. They contains the preliminary reports on the test loop facility safety. At the final stage of construction and at thecommitioning stage the start-up safety report will be developed which after required correction and adding up the putting into operation data will turn into operation safety report [ru

  20. The use of probabilistic safety assessments for improving nuclear safety in Europe

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1992-01-01

    The political changes in Europe broadened the scope of international nuclear safety matters considerably. The Western world started to receive reliable and increasingly detailed information on Eastern European nuclear technology and took note of a broad range of technical and administrative problems relevant for nuclear safety in these countries. Reunification made Germany a focus of information exchange on these matters. Here, cooperation with the former German Democratic Republic and with other Eastern European countries as well as safety analyses of Soviet-built nuclear power plants started rather early. Meanwhile, these activities are progressing toward all-European cooperation in the nuclear safety sector. This cooperation includes the use of probabilistic safety assessments (PSAs) addressing applications in both Western and Eastern Europe as well as the further development of this methodology in a converging Europe

  1. Development of a safety management protocol.

    Science.gov (United States)

    2008-09-01

    The UC Berkeley Traffic Safety Center (TSC) has produced this report under a contract from the California Department of Transportation : (Caltrans). The aim is to address workplace injuries and accidents among Caltrans employees and develop recommend...

  2. Safety analyses of potential exposure in medical irradiation plants by Fuzzy Fault Tree

    International Nuclear Information System (INIS)

    Casamirra, Maddalena; Castiglia, Francesco; Giardina, Mariarosa; Tomarchio, Elio

    2008-01-01

    The results of Fuzzy Fault Tree (FFT) analyses of various accidental scenarios, which involve the operators in potential exposures inside an High Dose Rate (HDR) remote after-loading systems for use in brachytherapy, are reported. To carry out fault tree analyses by means of fuzzy probabilities, the TREEZZY2 computer code is used. Moreover, the HEART (Human Error Assessment and Reduction Technique) model, properly modified on the basis of the fuzzy approach, has been employed to assess the impact of performances haping and error-promoting factors in the context of the accidental events. The assessment of potential dose values for some identified accidental scenarios allows to consider, for a particular event, a fuzzy uncertainty range in potential dose estimate. The availability of lower and upper limits allows evaluating the possibility of optimization of the installation from the point of view of radiation protection. The adequacy of the training and information program for staff and patients (and their family members) and the effectiveness of behavioural rules and safety procedures were tested. Some recommendations on procedures and equipment to reduce the risk of radiological exposure are also provided. (author)

  3. Application of geostatistical methods to long-term safety analyses for radioactive waste repositories

    International Nuclear Information System (INIS)

    Roehlig, K.J.

    2001-01-01

    Long-term safety analyses are an important part of the design and optimisation process as well as of the licensing procedure for final repositories for radioactive waste in deep geological formations. For selected scenarios describing possible evolutions of the repository system in the post-closure phase, quantitative consequence analyses are performed. Due to the complexity of the phenomena of concern and the large timeframes under consideration, several types of uncertainties have to be taken into account. The modelling work for the far-field (geosphere) surrounding or overlaying the repository is based on model calculations concerning the groundwater movement and the resulting migration of radionuclides which possibly will be released from the repository. In contrast to engineered systems, the geosphere shows a strong spatial variability of facies, materials and material properties. The paper presented here describes the first steps towards a quantitative approach for an uncertainty assessment taking into account this variability. Due to the availability of a large amount of data and information of several types, the Gorleben site (Germany) has been used for a case study in order to demonstrate the method. (orig.)

  4. Development of a draft of human factors safety review procedures for the Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Moon, B. S.; Park, J. C.; Lee, Y. H.; Oh, I. S.; Lee, H. C. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    In this study, a draft of human factors engineering (HFE) safety review procedures (SRP) was developed for the safety review of KNGR based on HFE Safety and Regulatory Requirements and Guidelines (SRRG). This draft includes acceptance criteria, review procedure, and evaluation findings for the areas of review including HFE Program Management, Human Factors Analyses, Human Factors Design, and HFE Verification and Validation, based on Section 15.1 'Human Factors Engineering Design Process' and 15.2 'Control Room Human Factors Engineering' of KNGR Specific Safety Requirements and Chapter 15 'Human Factors Engineering' of KNGR Safety Regulatory Guides. For the effective review, human factors concerns or issues related to advanced HSI design that have been reported so far should be extensively examined. In this study, a total of 384 human factors issues related to the advanced HSI design were collected through our review of a total of 145 documents. A summary of each issue was described and the issues were identified by specific features of HSI design. These results were implemented into a database system. 8 refs., 2 figs. (Author)

  5. Development of Strategic Technology Road map for Establishing Safety Infrastructure of Fusion Energy

    International Nuclear Information System (INIS)

    Han, B. S.; Cho, S. H.; Kam, S. C.; Kim, K. T.

    2009-01-01

    The Korean Government established an 'Act for the Promotion of Fusion Energy Development (APFED)' and formulated a 'Strategy Promotion Plan for Fusion Energy Development.' KINS has carried out a safety review of KSTAR (Korea Superconducting Tokamak Advanced Research), for which an application for use was received in 2002 and the license was issued in August 2007. With respect to the APFED, 'Atomic Energy Acts (AEAs)' shall apply in the fusion safety regulation. However the AEAs are not applicable because they aim for dealing with nuclear energy. In this regard, this study was planned to establish safety infrastructure for fusion energy and to develop technologies necessary for verifying the safety. The purpose of this study is to develop a 'Strategic Technology Roadmap (STR) for establishing safety infrastructure of the fusion energy', which displays the content and development schedule and strategy for developing the laws, safety goals and principles, and safety standards applicable for fusion safety regulation, and core technology required for safety regulation of fusion facilities

  6. Development of Non-LOCA Safety Analysis Methodology with RETRAN-3D and VIPRE-01/K

    International Nuclear Information System (INIS)

    Kim, Yo-Han; Cheong, Ae-Ju; Yang, Chang-Keun

    2004-01-01

    Korea Electric Power Research Institute has launched a project to develop an in-house non-loss-of-coolant-accident analysis methodology to overcome the hardships caused by the narrow analytical scopes of existing methodologies. Prior to the development, some safety analysis codes were reviewed, and RETRAN-3D and VIPRE-01 were chosen as the base codes. The codes have been modified to improve the analytical capabilities required to analyze the nuclear power plants in Korea. The methodologies of the vendors and the Electric Power Research Institute have been reviewed, and some documents of foreign utilities have been used to compensate for the insufficiencies. For the next step, a draft methodology for pressurized water reactors has been developed and modified to apply to Westinghouse-type plants in Korea. To verify the feasibility of the methodology, some events of Yonggwang Units 1 and 2 have been analyzed from the standpoints of reactor coolant system pressure and the departure from nucleate boiling ratio. The results of the analyses show trends similar to those of the Final Safety Analysis Report

  7. KAERI software safety guideline for developing safety-critical software in digital instrumentation and control system of nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Jang Soo; Kim, Jang Yeol; Eum, Heung Seop.

    1997-07-01

    Recently, the safety planning for safety-critical software systems is being recognized as the most important phase in the software life cycle, and being developed new regulatory positions and standards by the regulatory and the standardization organization. The requirements for software important to safety of nuclear reactor are described in such positions and standards. Most of them are describing mandatory requirements, what shall be done, for the safety-critical software. The developers of such a software. However, there have been a lot of controversial factors on whether the work practices satisfy the regulatory requirements, and to justify the safety of such a system developed by the work practices, between the licenser and the licensee. We believe it is caused by the reason that there is a gap between the mandatory requirements (What) and the work practices (How). We have developed a guidance to fill such gap, which can be useful for both licenser and licensee to conduct a justification of the safety in the planning phase of developing the software for nuclear reactor protection systems. (author). 67 refs., 13 tabs., 2 figs

  8. KAERI software safety guideline for developing safety-critical software in digital instrumentation and control system of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Soo; Kim, Jang Yeol; Eum, Heung Seop

    1997-07-01

    Recently, the safety planning for safety-critical software systems is being recognized as the most important phase in the software life cycle, and being developed new regulatory positions and standards by the regulatory and the standardization organization. The requirements for software important to safety of nuclear reactor are described in such positions and standards. Most of them are describing mandatory requirements, what shall be done, for the safety-critical software. The developers of such a software. However, there have been a lot of controversial factors on whether the work practices satisfy the regulatory requirements, and to justify the safety of such a system developed by the work practices, between the licenser and the licensee. We believe it is caused by the reason that there is a gap between the mandatory requirements (What) and the work practices (How). We have developed a guidance to fill such gap, which can be useful for both licenser and licensee to conduct a justification of the safety in the planning phase of developing the software for nuclear reactor protection systems. (author). 67 refs., 13 tabs., 2 figs.

  9. Microbiological food safety: a dilemma of developing societies.

    Science.gov (United States)

    Akhtar, Saeed; Sarker, Mahfuzur R; Hossain, Ashfaque

    2014-11-01

    Current food safety issues are deleteriously reshaping the life style of the population in the developing world. Socioeconomic status of the population in poorer economies is one of the major determinants to delineate the availability of safe food to the vulnerable population. Assessment of the prevalence of foodborne illness in developing world is the most neglected area to control disease. Botulism, Shigellosis, Campylobacteriosis, Escherichia coli infection, Staphylococcus aureus infection, Salmonellosis, Listeriosis and Cholerae are extensively prevalent and pose a major threat to human health in underdeveloped communities. The existing food safety status of many African, South Asian, Central, and South American developing countries is distressing therefore; it seems much timely to highlight the areas for the improvement to ensure the supply of safe food to the population in these regions. Extensive literature search at PubMed, Science Direct and Medline was carried out during the current year to catch on relevant data from 1976 to date, using selective terms like food safety, South East Asia, Africa, Central and South America, and foodborne illness etc. Efforts were made to restrict the search to low income countries of these regions with reference to specific foodborne pathogens. This report briefly discusses the present food safety situation in these developing countries and associated consequences as prime issues, suggesting foodborne illness to be the most distressing threat for human health and economic growth.

  10. Development of Safety Kit for Industrial Radiography Application

    International Nuclear Information System (INIS)

    Mohd Noorul Ikhsan Ahmad; Amry Amin Abas

    2011-01-01

    A safety kit for industrial radiography has been developed. The safety kit that consist of a set of technical rod and various size of base that can be used in radiograph of pipe with diameter between half and one and half inch with utilization of collimator. With the kit, radiographers will not having anymore problem to use collimator in their work. The paper discuss about the technical measures of the safety kit and the importance of introducing it to the industry. (author)

  11. Preliminary Study on the Development of Quantitative Safety Culture Index

    International Nuclear Information System (INIS)

    Lee, Young Eal; Kim, Hun Sil; Ahn, Nam Sung

    2005-01-01

    Safety culture is that assembly of characteristics and attitudes in organizations and individuals which establishes that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance. Because it needs to be recognized as the most significant consciousness to achieve the nuclear safety performance, Korean government and nuclear power generation company have tried to develop the practical method to improve the safety culture from the long term point view. In this study, based on the site interviews to define the potential issues on organizational behavior for the safe operation and the survey on the level of safety culture of occupied workers are conducted. Survey results are quantified as a few indicators of nuclear safety by the statistical method and it can be simulated by the dynamic modeling as time goes on. Currently index and dynamic modeling are still being developed, however, results can be used to suggest the long term strategy which safety is clearly integrated into all activities in the nuclear organization

  12. Nuclear safety culture in Finland and Sweden - Developments and challenges

    International Nuclear Information System (INIS)

    Reiman, T.; Pietikaeinen, E.; Kahlbom, U.; Rollenhagen, C.

    2011-02-01

    The project aimed at studying the concept of nuclear safety culture and the Nordic nuclear branch safety culture. The project also aimed at looking how the power companies and the regulators view the current responsibilities and role of subcontractors in the Nordic nuclear safety culture as well as to inspect the special demands for safety culture in subcontracting chains. Interview data was collected in Sweden (n = 14) and Finland (n = 16) during 2009. Interviewees represented the major actors in the nuclear field (regulators, power companies, expert organizations, waste management organizations). Results gave insight into the nature and evaluation of safety culture in the nuclear industry. Results illustrated that there is a wide variety of views on matters that are considered important for nuclear safety within the Nordic nuclear community. However, the interviewees considered quite uniformly such psychological states as motivation, mindfulness, sense of control, understanding of hazards and sense of responsibility as important for nuclear safety. Results also gave insight into the characteristics of Nordic nuclear culture. Various differences in safety cultures in Finland and Sweden were uncovered. In addition to the differences, historical reasons for the development of the nuclear safety cultures in Finland and Sweden were pointed out. Finally, results gave implications that on the one hand subcontractors can bring new ideas and improvements to the plants' practices, but on the other hand the assurance of necessary safety attitudes and competence of the subcontracting companies and their employees is considered as a challenge. The report concludes that a good safety culture requires a deep and wide understanding of nuclear safety including the various accident mechanisms of the power plants as well as a willingness to continuously develop one's competence and understanding. An effective and resilient nuclear safety culture has to foster a constant sense of

  13. Development of a Safety Assessment Information System for the Management of Periodic Safety Assessment Activities

    International Nuclear Information System (INIS)

    Song, Tae Young

    2007-01-01

    At present, the 10-year Periodic Safety Review(PSR) has been performing to confirm all the aspects of safety issues for all the operating plants in compliance with domestic nuclear law of article 23, subarticle 3. For each plant, in addition, Probabilistic Safety Assessment(PSA) and Severe Accident Management Guideline(SAMG) are being implemented and revised periodically to reflect the latest safety level according to principle fulfillment of severe accident policy statement. The assessment reports, as one of outcomes from these activities, are submitted into and reviewed by domestic regulatory body. During reviewing (in-office duty) and licensing (regulatory duty) process, a large number of outcomes of which most are the formal technical reports and licensing materials, are inevitably produced. Moreover, repeated review process over the plants can make them accumulated and produce a variety of documents additionally. This circumstance motivates to develop effective tool or system for the management of these reports and related technical documents for the future use in licensing process and for subsequent plant assessments. This paper presents the development status of Safety Assessment Information System(SAIS) which manages safety-related documents of PSR, PSA and SAMG for practical use for experienced engineers in charge of these areas

  14. Development of a Safety Assessment Information System for the Management of Periodic Safety Assessment Activities

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Young [Nuclear Engineering and Technology Institute, Daejeon (Korea, Republic of)

    2007-07-01

    At present, the 10-year Periodic Safety Review(PSR) has been performing to confirm all the aspects of safety issues for all the operating plants in compliance with domestic nuclear law of article 23, subarticle 3. For each plant, in addition, Probabilistic Safety Assessment(PSA) and Severe Accident Management Guideline(SAMG) are being implemented and revised periodically to reflect the latest safety level according to principle fulfillment of severe accident policy statement. The assessment reports, as one of outcomes from these activities, are submitted into and reviewed by domestic regulatory body. During reviewing (in-office duty) and licensing (regulatory duty) process, a large number of outcomes of which most are the formal technical reports and licensing materials, are inevitably produced. Moreover, repeated review process over the plants can make them accumulated and produce a variety of documents additionally. This circumstance motivates to develop effective tool or system for the management of these reports and related technical documents for the future use in licensing process and for subsequent plant assessments. This paper presents the development status of Safety Assessment Information System(SAIS) which manages safety-related documents of PSR, PSA and SAMG for practical use for experienced engineers in charge of these areas.

  15. Development of a measure of safety climate

    Directory of Open Access Journals (Sweden)

    N. R. Barnes

    1990-06-01

    Full Text Available A measure of safety climate was developed to aid management in identifying safety problems and responding proactively to safety issues; to assess the general mood of the workforce to safety; and as a standard for comparison with other organizations. The measure of safety climate was based on items extracted from the Chamber of Mines "Loss Control" audit manual. Reliability analysis performed on the scale indicated consistently high reliability coefficients across three ethnic groups. Factor analysis gave support for the construct validity of the scale. Opsomming 'n Meting vir veiligheidsklimaat is ontwikkel ten einde bestuur in staat te stel om veiligheidsprobleme te identifiseer en om pro-aktiefop te tree; om die algemene gevoel van die werkskragte rakende veiligheid te bepaal en om 'n maatstaf vir vergelyking met ander organisasies daar te stel. 'n Betroubaarheidssanalise wat op die skaal uitgevoer is het daarop gedui dat daar konsekwent hoe betroubaarheidskoefisiënte vir drie etniese groepe verkry word. 'n Faktoranalise het die konstrukgeldigheid van die skaal bevestig. The author acknowledges the financial assistance provided by the Human Sciences Research Council for this research.

  16. Implementing 10 CFR 830 at the FEMP Silos: Nuclear Health and Safety Plans as Documented Safety Analysis

    International Nuclear Information System (INIS)

    Fisk, Patricia; Rutherford, Lavon

    2003-01-01

    The objective of the Silos Project at the Fernald Closure Project (FCP) is to safely remediate high-grade uranium ore residues (Silos 1 and 2) and metal oxide residues (Silo 3). The evolution of Documented Safety Analyses (DSAs) for these facilities has reflected the changes in remediation processes. The final stage in silos DSAs is an interpretation of 10 CFR 830 Safe Harbor Requirements that combines a Health and Safety Plan with nuclear safety requirements. This paper will address the development of a Nuclear Health and Safety Plan, or N-HASP

  17. Safety culture indicators for NPP: international trends and development status in Korea

    International Nuclear Information System (INIS)

    Choi, Y. S.; Ko, J. D.; Choi, K. S.; Jung, Y. H.

    2004-01-01

    Safety culture has been recognized as important to achieve high level of nuclear safety, as several recent events that have occurred in advanced countries were found to have important implications for safety culture. Under the recognition, implementation-focused and practical methods to foster safety culture have become necessary. Development of safety culture indicators for assessing the level of safety culture and identifying some deficiencies is being conducted. This paper examines the regulatory positions of major nuclear power countries on licensee's safety culture, introduces the development status of Korean Safety Culture Indicators and presents its future direction

  18. Evaluation of geological documents available for provisional safety analyses of potential sites for nuclear waste repositories - Are additional geological investigations needed?

    International Nuclear Information System (INIS)

    2010-10-01

    The procedure for selecting repository sites for all categories of radioactive waste in Switzerland is defined in the conceptual part of the Sectoral Plan for Deep Geological Repositories, which foresees a selection of sites in three stages. In Stage I, Nagra proposed geological siting regions based on criteria relating to safety and engineering feasibility. The Swiss Government (the Federal Council) is expected to decide on the siting proposals in 2011. The objective of Stage 2 is to prepare proposals for the location of the surface facilities within the planning perimeters defined by the Federal Council in its decision on Stage 1 and to identify potential sites. Nagra also has to carry out a provisional safety analysis for each site and a safety-based comparison of the sites. Based on this, and taking into account the results of the socio-economic-ecological impact studies, Nagra then has to propose at least two sites for each repository type to be carried through to Stage 3. The proposed sites will then be investigated in more detail in Stage 3 to ensure that the selection of the sites for the General Licence Applications is well founded. In order to realise the objectives of the upcoming Stage 2, the state of knowledge of the geological conditions at the sites has to be sufficient to perform the provisional safety analyses. Therefore, in preparation for Stage 2, the conceptual part of the Sectoral Plan requires Nagra to clarify the need for additional investigations aimed at providing input for the provisional safety analyses. The purpose of the present report is to document Nagra's technical-scientific assessment of this need. The focus is on evaluating the geological information based on processes and parameters that are relevant for safety and engineering feasibility. In evaluating the state of knowledge the key question is whether additional information could lead to a different decision regarding the selection of the sites to be carried through to Stage 3

  19. Safety-related operator actions: methodology for developing criteria

    International Nuclear Information System (INIS)

    Kozinsky, E.J.; Gray, L.H.; Beare, A.N.; Barks, D.B.; Gomer, F.E.

    1984-03-01

    This report presents a methodology for developing criteria for design evaluation of safety-related actions by nuclear power plant reactor operators, and identifies a supporting data base. It is the eleventh and final NUREG/CR Report on the Safety-Related Operator Actions Program, conducted by Oak Ridge National Laboratory for the US Nuclear Regulatory Commission. The operator performance data were developed from training simulator experiments involving operator responses to simulated scenarios of plant disturbances; from field data on events with similar scenarios; and from task analytic data. A conceptual model to integrate the data was developed and a computer simulation of the model was run, using the SAINT modeling language. Proposed is a quantitative predictive model of operator performance, the Operator Personnel Performance Simulation (OPPS) Model, driven by task requirements, information presentation, and system dynamics. The model output, a probability distribution of predicted time to correctly complete safety-related operator actions, provides data for objective evaluation of quantitative design criteria

  20. Development and implementation of a hospital-based patient safety program

    International Nuclear Information System (INIS)

    Frush, Karen S.; Alton, Michael; Frush, Donald P.

    2006-01-01

    Evidence from numerous studies indicates that large numbers of patients are harmed by medical errors while receiving health-care services in the United States today. The 1999 Institute of Medicine report on medical errors recommended that hospitals and health-care agencies ''establish safety programs to act as a catalyst for the development of a culture of safety'' [1]. In this article, we describe one approach to successful implementation of a hospital-based patient safety program. Although our experience at Duke University Health System will be used as an example, the needs, principles, and solutions can apply to a variety of other health-care practices. Key components include the development of safety teams, provision of tools that teams can use to support an environment of safety, and ongoing program modification to meet patient and staff needs and respond to changing priorities. By moving patient safety to the forefront of all that we do as health-care providers, we can continue to improve our delivery of health care to children and adults alike. This improvement is fostered when we enhance the culture of safety, develop a constant awareness of the possibility of human and system errors in the delivery of care, and establish additional safeguards to intercept medical errors in order to prevent harm to patients. (orig.)

  1. Design for safety: theoretical framework of the safety aspect of BIM system to determine the safety index

    Directory of Open Access Journals (Sweden)

    Ai Lin Evelyn Teo

    2016-12-01

    Full Text Available Despite the safety improvement drive that has been implemented in the construction industry in Singapore for many years, the industry continues to report the highest number of workplace fatalities, compared to other industries. The purpose of this paper is to discuss the theoretical framework of the safety aspect of a proposed BIM System to determine a Safety Index. An online questionnaire survey was conducted to ascertain the current workplace safety and health situation in the construction industry and explore how BIM can be used to improve safety performance in the industry. A safety hazard library was developed based on the main contributors to fatal accidents in the construction industry, determined from the formal records and existing literature, and a series of discussions with representatives from the Workplace Safety and Health Institute (WSH Institute in Singapore. The results from the survey suggested that the majority of the firms have implemented the necessary policies, programmes and procedures on Workplace Safety and Health (WSH practices. However, BIM is still not widely applied or explored beyond the mandatory requirement that building plans should be submitted to the authorities for approval in BIM format. This paper presents a discussion of the safety aspect of the Intelligent Productivity and Safety System (IPASS developed in the study. IPASS is an intelligent system incorporating the buildable design concept, theory on the detection, prevention and control of hazards, and the Construction Safety Audit Scoring System (ConSASS. The system is based on the premise that safety should be considered at the design stage, and BIM can be an effective tool to facilitate the efforts to enhance safety performance. IPASS allows users to analyse and monitor key aspects of the safety performance of the project before the project starts and as the project progresses.

  2. Development and use of safety indicators at STUK

    International Nuclear Information System (INIS)

    Tiipana, P.

    2001-01-01

    This paper gives an outline of the development and use of STUK's indicator system at the department of Nuclear Reactor Regulation (YTO) in the Radiation and Nuclear Safety Authority, STUK. Indicators used at YTO are measures related to the safety of nuclear installations and regulatory activities. Indicators are numbers, ratios, percentages and amounts of interested matters that are for suitable for regulatory purposes, that is assessment and trending of the safety of nuclear installations and regulatory activities. STUK's indicator system is divided into two main areas: safety of nuclear facilities and regulatory activities. Safety of nuclear facilities is divided into 3 areas based on the concept of defence in de safety and quality culture, operational events and physical barriers. Regulatory activities are divided into 3 areas: working processes, resource management and regeneration and ability to work. These areas are measured using several indicators. At the moment some of indicators are included in YTO's management system to measure whether or not internally set goals are achieved. (author)

  3. Developing a patient-led electronic feedback system for quality and safety within Renal PatientView.

    Science.gov (United States)

    Giles, Sally J; Reynolds, Caroline; Heyhoe, Jane; Armitage, Gerry

    2017-03-01

    It is increasingly acknowledged that patients can provide direct feedback about the quality and safety of their care through patient reporting systems. The aim of this study was to explore the feasibility of patients, healthcare professionals and researchers working in partnership to develop a patient-led quality and safety feedback system within an existing electronic health record (EHR), known as Renal PatientView (RPV). Phase 1 (inception) involved focus groups (n = 9) and phase 2 (requirements) involved cognitive walkthroughs (n = 34) and 1:1 qualitative interviews (n = 34) with patients and healthcare professionals. A Joint Services Expert Panel (JSP) was convened to review the findings from phase 1 and agree the core principles and components of the system prototype. Phase 1 data were analysed using a thematic approach. Data from phase 1 were used to inform the design of the initial system prototype. Phase 2 data were analysed using the components of heuristic evaluation, resulting in a list of core principles and components for the final system prototype. Phase 1 identified four main barriers and facilitators to patients feeding back on quality and safety concerns. In phase 2, the JSP agreed that the system should be based on seven core principles and components. Stakeholders were able to work together to identify core principles and components for an electronic patient quality and safety feedback system in renal services. Tensions arose due to competing priorities, particularly around anonymity and feedback. Careful consideration should be given to the feasibility of integrating a novel element with differing priorities into an established system with existing functions and objectives. © 2016 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  4. Safety Psychology Applicating on Coal Mine Safety Management Based on Information System

    Science.gov (United States)

    Hou, Baoyue; Chen, Fei

    In recent years, with the increase of intensity of coal mining, a great number of major accidents happen frequently, the reason mostly due to human factors, but human's unsafely behavior are affected by insecurity mental control. In order to reduce accidents, and to improve safety management, with the help of application security psychology, we analyse the cause of insecurity psychological factors from human perception, from personality development, from motivation incentive, from reward and punishment mechanism, and from security aspects of mental training , and put forward countermeasures to promote coal mine safety production,and to provide information for coal mining to improve the level of safety management.

  5. MORT: a safety management program developed for ERDA

    International Nuclear Information System (INIS)

    1977-03-01

    ERDA's System Safety Development Center (SSDC) is located at the Idaho National Engineering Laboratory under the EG and G Idaho, Inc., contract administered by the Idaho Operations Office. The SSDC performs a variety of tasks for ERDA's Division of Safety, Standards, and Compliance, for the purpose of improvement and application of safety program elements. Primary among these tasks are development and demonstration of new methodologies, training, consultation, and technical writing. This information package (ERDA 77-38) is an example of the later task, aimed at communicating to a general audience the nature and purpose of major features of the Management Oversight and Risk Tree (MORT) program. The SSDC also originates a guideline series of monographs (the ERDA 76-45 series) for individuals who desire more specific explanations of the MORT program

  6. A Systematic Analysis of Functional Safety Certification Practices in Industrial Robot Software Development

    Directory of Open Access Journals (Sweden)

    Tong Xie

    2017-01-01

    Full Text Available For decades, industry robotics have delivered on the promise of speed, efficiency and productivity. The last several years have seen a sharp resurgence in the orders of industrial robots in China, and the areas addressed within industrial robotics has extended into safety-critical domains. However, safety standards have not yet been implemented widely in academia and engineering applications, particularly in robot software development. This paper presents a systematic analysis of functional safety certification practices in software development for the safety-critical software of industrial robots, to identify the safety certification practices used for the development of industrial robots in China and how these practices comply with the safety standard requirements. Reviewing from Chinese academic papers, our research shows that safety standards are barely used in software development of industrial robot. The majority of the papers propose various solutions to achieve safety, but only about two thirds of the papers refer to non-standardized approaches that mainly address the systematic level rather than the software development level. In addition, our research shows that with the development of artificial intelligent, an emerging field is still on the quest for standardized and suitable approaches to develop safety-critical software.

  7. Research on the improvement of nuclear safety -The development of LOCA analysis codes for nuclear power plant-

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Won Pyo; Jung, Yung Jong; Kim, Kyung Doo; Jung, Jae Joon; Kim, Won Suk; Han, Doh Heui; Hah, Kooi Suk; Jung, Bub Dong; Lee, Yung Jin; Hwang, Tae Suk; Lee, Sang Yong; Park, Chan Uk; Choi, Han Rim; Lee, Sang Jong; Choi, Jong Hoh; Ban, Chang Hwan; Bae, Kyoo Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The present research aims at development of both a best estimate methodology on LOCA analysis and, as an application, performance analyses of safety systems. SBLOCA analyses have been continued to examine the capacity reduction effect of ECCS since the second project year. As a results, core uncovery, which is requirement of URD has not been occurred in 6`` cold leg break. Although core uncovery has been predicted when DVI line has been broken for DVI+4-Train HPIS, the calculated PCT has lied well within the criterion. The effect of safety injection position and SIT characteristics are also analyzed for LBLOCA. The results show that cold leg injection is the most effective way and the adaption of advanced SIT could lead to elimination of LPSI pump from the safety system. On the other hand, the quantified uncertainties obtained from THTF and FLECHT/SEASET which represents blowdown and reflood phenomena, respectively, have been confirmed using IET(LOFT test). The application uncertainty for Kori unit 3 has been analyzed. Finally, application of the best estimate methodology using the uncertainties concerned with the code, the bais, and the application, leads to overall uncertainty of about 200K for Kori unit 3. 244 figs, 22 tabs, 92 refs. (Author).

  8. Research on the improvement of nuclear safety -The development of LOCA analysis codes for nuclear power plant-

    International Nuclear Information System (INIS)

    Jang, Won Pyo; Jung, Yung Jong; Kim, Kyung Doo; Jung, Jae Joon; Kim, Won Suk; Han, Doh Heui; Hah, Kooi Suk; Jung, Bub Dong; Lee, Yung Jin; Hwang, Tae Suk; Lee, Sang Yong; Park, Chan Uk; Choi, Han Rim; Lee, Sang Jong; Choi, Jong Hoh; Ban, Chang Hwan; Bae, Kyoo Hwan

    1995-07-01

    The present research aims at development of both a best estimate methodology on LOCA analysis and, as an application, performance analyses of safety systems. SBLOCA analyses have been continued to examine the capacity reduction effect of ECCS since the second project year. As a results, core uncovery, which is requirement of URD has not been occurred in 6'' cold leg break. Although core uncovery has been predicted when DVI line has been broken for DVI+4-Train HPIS, the calculated PCT has lied well within the criterion. The effect of safety injection position and SIT characteristics are also analyzed for LBLOCA. The results show that cold leg injection is the most effective way and the adaption of advanced SIT could lead to elimination of LPSI pump from the safety system. On the other hand, the quantified uncertainties obtained from THTF and FLECHT/SEASET which represents blowdown and reflood phenomena, respectively, have been confirmed using IET(LOFT test). The application uncertainty for Kori unit 3 has been analyzed. Finally, application of the best estimate methodology using the uncertainties concerned with the code, the bais, and the application, leads to overall uncertainty of about 200K for Kori unit 3. 244 figs, 22 tabs, 92 refs. (Author)

  9. To improve the safety of treatments in radiotherapy by developing a safety culture

    International Nuclear Information System (INIS)

    2008-01-01

    Following the radiotherapy accidents between 2004 and 2006, the I.R.S.N. deemed necessary to lead a study on the safety of treatments in radiotherapy and on the use and the adaptation to the medical domain of safety analysis approach developed for the nuclear installations. Of this study, six mains lines of investigation appear: Endow the radiotherapy services with real referential of safety, reinforce the robustness of the organization of radiotherapy services, improve the safety of the equipment and software at the design and operating stages, improve the management of the expertise and reinforce the operating feed back on incidents and accidents. The main learning from this study is the benefit that could be gained by fitting the safety analysis concepts and methods to the specificities of radiotherapy considering the organization of it collective work, the cooperation between actors stemming from different jobs as well as the interactions between actors and technical systems in the process of the treatments, when they are put into service and during their periodic checks. (author)

  10. Systems reliability analyses and risk analyses for the licencing procedure under atomic law

    International Nuclear Information System (INIS)

    Berning, A.; Spindler, H.

    1983-01-01

    For the licencing procedure under atomic law in accordance with Article 7 AtG, the nuclear power plant as a whole needs to be assessed, plus the reliability of systems and plant components that are essential to safety are to be determined with probabilistic methods. This requirement is the consequence of safety criteria for nuclear power plants issued by the Home Department (BMI). Systems reliability studies and risk analyses used in licencing procedures under atomic law are identified. The stress is on licencing decisions, mainly for PWR-type reactors. Reactor Safety Commission (RSK) guidelines, examples of reasoning in legal proceedings and arguments put forth by objectors are also dealt with. Correlations are shown between reliability analyses made by experts and licencing decisions by means of examples. (orig./HP) [de

  11. Experiment to evaluate software safety

    International Nuclear Information System (INIS)

    Soubies, B.; Henry, J.Y.

    1994-01-01

    The process of licensing nuclear power plants for operation consists of mandatory steps featuring detailed examination of the instrumentation and control system by the safety authorities, including softwares. The criticality of these softwares obliges the manufacturer to develop in accordance with the IEC 880 standard 'Computer software in nuclear power plant safety systems' issued by the International Electronic Commission. The evaluation approach, a two-stage assessment is described in detail. In this context, the IPSN (Institute of Protection and Nuclear Safety), the technical support body of the safety authority uses the MALPAS tool to analyse the quality of the programs. (R.P.). 4 refs

  12. Deep Borehole Disposal Safety Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Tillman, Jack Bruce [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.

  13. Sensitivity and Uncertainty Analyses Applied to Neutronics Calculations for Safety Assessment at IRSN

    International Nuclear Information System (INIS)

    Ivanov, Evgeny; Ivanova, Tatiana; Pignet, Sophie

    2013-01-01

    Objective of the presentation: • Present IRSN vision relevant to validation of stand-alone neutronics codes on support of the fuel cycle and reactor safety assessment for fast neutron reactors. • Provide work status, future developments and needs for R&D working program on validation methodology for neutronics of fast systems

  14. A new look on the safety case for geologic disposal

    International Nuclear Information System (INIS)

    Pescatore, Claudio; Riotte, Hans; Voinis, Sylvie

    2005-01-01

    It has become evident that the development of a geologic repository will involve a number of stages punctuated by interdependent decisions on whether and how to move to the next stage. These decisions require a clear and traceable presentation of technical and scientific arguments that will help in giving confidence in the feasibility and safety of a proposed concept. A detailed safety assessment is typically required at major decision points in repository planning and implementation, including decisions that require the granting of licenses. In recent years the scope of the safety assessment has broadened to include the collation of a broad range of evidence and arguments that complement and support the reliability of the results of quantitative analyses, and the broader term 'post-closure safety case' or simply 'safety case' is used to refer to these studies. This paper reflects the historical development from integrated safety assessment to modern safety cases and outlines the main elements of a safety case for geologic disposal. The presentation of the safety strategy, multiple barrier concept and strategies to deal with uncertainties are analysed and the importance of an explicit statement of confidence is emphasized. (author)

  15. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    other reactor types, including innovative developments in future systems, some of the requirements may not be applicable, or may need some judgment in their interpretation. Various Safety Guides will provide guidance in the interpretation and implementation of these requirements. This publication is intended for use by organizations designing, manufacturing, constructing and operating nuclear power plants as well as by regulatory bodies. This publication establishes design requirements for structures, systems and components important to safety that must be met for safe operation of a nuclear power plant, and for preventing or mitigating the consequences of events that could jeopardize safety. It also establishes requirements for a comprehensive safety assessment, which is carried out in order to identify the potential hazards that may arise from the operation of the plant, under the various plant states (operational states and accident conditions). The safety assessment process includes the complementary techniques of deterministic safety analysis and probabilistic safety analysis. These analyses necessitate consideration of postulated initiating events (PlEs), which include many factors that, singly or in combination, may affect safety and which may: originate in the operation of the nuclear power plant itself; be caused by human action; be directly related to the nuclear power plant and its environment. This publication also addresses events that are very unlikely to occur, such as severe accidents that may result in major radioactive releases, and for which it may be appropriate and practicable to provide preventive or mitigatory features in the design. This publication does not address: external natural or human induced events that are extremely unlikely (such as the impact of a meteorite or an artificial satellite); conventional industrial accidents that under no circumstances could affect the safety of the nuclear power plant; or non-radiological effects arising

  16. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    other reactor types, including innovative developments in future systems, some of the requirements may not be applicable, or may need some judgment in their interpretation. Various Safety Guides will provide guidance in the interpretation and implementation of these requirements. This publication is intended for use by organizations designing, manufacturing, constructing and operating nuclear power plants as well as by regulatory bodies. This publication establishes design requirements for structures, systems and components important to safety that must be met for safe operation of a nuclear power plant, and for preventing or mitigating the consequences of events that could jeopardize safety. It also establishes requirements for a comprehensive safety assessment, which is carried out in order to identify the potential hazards that may arise from the operation of the plant, under the various plant states (operational states and accident conditions). The safety assessment process includes the complementary techniques of deterministic safety analysis and probabilistic safety analysis. These analyses necessitate consideration of postulated initiating events (PlEs), which include many factors that, singly or in combination, may affect safety and which may: originate in the operation of the nuclear power plant itself. Be caused by human action. Be directly related to the nuclear power plant and its environment. This publication also addresses events that are very unlikely to occur, such as severe accidents that may result in major radioactive releases, and for which it may be appropriate and practicable to provide preventive or mitigatory features in the design. This publication does not address: external natural or human induced events that are extremely unlikely (such as the impact of a meteorite or an artificial satellite). Conventional industrial accidents that under no circumstances could affect the safety of the nuclear power plant. Or non-radiological effects arising

  17. Development of the Advanced Nuclear Safety Information Management (ANSIM) System

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jae Min; Ko, Young Cheol; Song, Tai Gil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Korea has become a technically independent nuclear country and has grown into an exporter of nuclear technologies. Thus, nuclear facilities are increasing in significance at KAERI (Korea Atomic Energy Research Institute), and it is time to address the nuclear safety. The importance of nuclear safety cannot be overemphasized. Therefore, a management system is needed urgently to manage the safety of nuclear facilities and to enhance the efficiency of nuclear information. We have established ISP (Information Strategy Planning) for the Integrated Information System of nuclear facility and safety management. The purpose of this paper is to develop a management system for nuclear safety. Therefore, we developed the Advanced Nuclear Safety Information Management system (hereinafter referred to as the 'ANSIM system'). The ANSIM system has been designed and implemented to computerize nuclear safety information for standardization, integration, and sharing in real-time. Figure 1 shows the main home page of the ANSIM system. In this paper, we describe the design requirements, contents, configurations, and utilizations of the ANSIM system

  18. NASA's Aviation Safety and Modeling Project

    Science.gov (United States)

    Chidester, Thomas R.; Statler, Irving C.

    2006-01-01

    The Aviation Safety Monitoring and Modeling (ASMM) Project of NASA's Aviation Safety program is cultivating sources of data and developing automated computer hardware and software to facilitate efficient, comprehensive, and accurate analyses of the data collected from large, heterogeneous databases throughout the national aviation system. The ASMM addresses the need to provide means for increasing safety by enabling the identification and correcting of predisposing conditions that could lead to accidents or to incidents that pose aviation risks. A major component of the ASMM Project is the Aviation Performance Measuring System (APMS), which is developing the next generation of software tools for analyzing and interpreting flight data.

  19. Application of software to development of reactor-safety codes

    International Nuclear Information System (INIS)

    Wilburn, N.P.; Niccoli, L.G.

    1980-09-01

    Over the past two-and-a-half decades, the application of new techniques has reduced hardware cost for digital computer systems and increased computational speed by several orders of magnitude. A corresponding cost reduction in business and scientific software development has not occurred. The same situation is seen for software developed to model the thermohydraulic behavior of nuclear systems under hypothetical accident situations. For all cases this is particularly noted when costs over the total software life cycle are considered. A solution to this dilemma for reactor safety code systems has been demonstrated by applying the software engineering techniques which have been developed over the course of the last few years in the aerospace and business communities. These techniques have been applied recently with a great deal of success in four major projects at the Hanford Engineering Development Laboratory (HEDL): 1) a rewrite of a major safety code (MELT); 2) development of a new code system (CONACS) for description of the response of LMFBR containment to hypothetical accidents, and 3) development of two new modules for reactor safety analysis

  20. Advanced Messaging Concept Development Basic Safety Message

    Data.gov (United States)

    Department of Transportation — Contains all Basic Safety Messages (BSMs) collected during the Advanced Messaging Concept Development (AMCD) field testing program. For this project, all of the Part...

  1. A review of significant events analysed in general practice: implications for the quality and safety of patient care

    Directory of Open Access Journals (Sweden)

    Bradley Nick

    2009-09-01

    Full Text Available Abstract Background Significant event analysis (SEA is promoted as a team-based approach to enhancing patient safety through reflective learning. Evidence of SEA participation is required for appraisal and contractual purposes in UK general practice. A voluntary educational model in the west of Scotland enables general practitioners (GPs and doctors-in-training to submit SEA reports for feedback from trained peers. We reviewed reports to identify the range of safety issues analysed, learning needs raised and actions taken by GP teams. Method Content analysis of SEA reports submitted in an 18 month period between 2005 and 2007. Results 191 SEA reports were reviewed. 48 described patient harm (25.1%. A further 109 reports (57.1% outlined circumstances that had the potential to cause patient harm. Individual 'error' was cited as the most common reason for event occurrence (32.5%. Learning opportunities were identified in 182 reports (95.3% but were often non-specific professional issues not shared with the wider practice team. 154 SEA reports (80.1% described actions taken to improve practice systems or professional behaviour. However, non-medical staff were less likely to be involved in the changes resulting from event analyses describing patient harm (p Conclusion The study provides some evidence of the potential of SEA to improve healthcare quality and safety. If applied rigorously, GP teams and doctors in training can use the technique to investigate and learn from a wide variety of quality issues including those resulting in patient harm. This leads to reported change but it is unclear if such improvement is sustained.

  2. Nuclear safety culture in Finland and Sweden - Developments and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, T.; Pietikaeinen, E. (Technical Research Centre of Finland, VTT (Finland)); Kahlbom, U. (RiskPilot AB (Sweden)); Rollenhagen, C. (Royal Institute of Technology (KTH) (Sweden))

    2011-02-15

    The project aimed at studying the concept of nuclear safety culture and the Nordic nuclear branch safety culture. The project also aimed at looking how the power companies and the regulators view the current responsibilities and role of subcontractors in the Nordic nuclear safety culture as well as to inspect the special demands for safety culture in subcontracting chains. Interview data was collected in Sweden (n = 14) and Finland (n = 16) during 2009. Interviewees represented the major actors in the nuclear field (regulators, power companies, expert organizations, waste management organizations). Results gave insight into the nature and evaluation of safety culture in the nuclear industry. Results illustrated that there is a wide variety of views on matters that are considered important for nuclear safety within the Nordic nuclear community. However, the interviewees considered quite uniformly such psychological states as motivation, mindfulness, sense of control, understanding of hazards and sense of responsibility as important for nuclear safety. Results also gave insight into the characteristics of Nordic nuclear culture. Various differences in safety cultures in Finland and Sweden were uncovered. In addition to the differences, historical reasons for the development of the nuclear safety cultures in Finland and Sweden were pointed out. Finally, results gave implications that on the one hand subcontractors can bring new ideas and improvements to the plants' practices, but on the other hand the assurance of necessary safety attitudes and competence of the subcontracting companies and their employees is considered as a challenge. The report concludes that a good safety culture requires a deep and wide understanding of nuclear safety including the various accident mechanisms of the power plants as well as a willingness to continuously develop one's competence and understanding. An effective and resilient nuclear safety culture has to foster a constant

  3. Safety studies project on waste management. Final report. Chapters 2 and 3

    International Nuclear Information System (INIS)

    1985-01-01

    The report presents, in summary form, a mode of procedure for accident analysis in nuclear waste management facilities. New instruments for safety analysis have been developed and tested. The report describes exemplary safety analyses with the new instrumentation. The safety analyses were carried out in surface systems, i.e. reprocessing and waste treatment systems, and in underground nuclear waste storage road and rail transport of radioactive materials have been investigated. (EF) [de

  4. Preliminary safety evaluation for CSR1000 with passive safety system

    International Nuclear Information System (INIS)

    Wu, Pan; Gou, Junli; Shan, Jianqiang; Zhang, Bo; Li, Xiang

    2014-01-01

    Highlights: • The basic information of a Chinese SCWR concept CSR1000 is introduced. • An innovative passive safety system is proposed for CSR1000. • 6 Transients and 3 accidents are analysed with system code SCTRAN. • The passive safety systems greatly mitigate the consequences of these incidents. • The inherent safety of CSR1000 is enhanced. - Abstract: This paper describes the preliminary safety analysis of the Chinese Supercritical water cooled Reactor (CSR1000), which is proposed by Nuclear Power Institute of China (NPIC). The two-pass core design applied to CSR1000 decreases the fuel cladding temperature and flattens the power distribution of the core at normal operation condition. Each fuel assembly is made up of four sub-assemblies with downward-flow water rods, which is favorable to the core cooling during abnormal conditions due to the large water inventory of the water rods. Additionally, a passive safety system is proposed for CSR1000 to increase the safety reliability at abnormal conditions. In this paper, accidents of “pump seizure”, “loss of coolant flow accidents (LOFA)”, “core depressurization”, as well as some typical transients are analysed with code SCTRAN, which is a one-dimensional safety analysis code for SCWRs. The results indicate that the maximum cladding surface temperatures (MCST), which is the most important safety criterion, of the both passes in the mentioned incidents are all below the safety criterion by a large margin. The sensitivity analyses of the delay time of RCPs trip in “loss of offsite power” and the delay time of RMT actuation in “loss of coolant flowrate” were also included in this paper. The analyses have shown that the core design of CSR1000 is feasible and the proposed passive safety system is capable of mitigating the consequences of the selected abnormalities

  5. Suggestions on the Development of Safety Culture Assessment Method

    International Nuclear Information System (INIS)

    Choi, Young Sung; Choi, Kwang Sik; Kim, Woong Sik

    2006-01-01

    Several efforts have been made to assess safety culture of organization that operates nuclear power plants in Korea. The MOST and KINS played a major role to develop assessment methods and KHNP applied them to its NPPs. This paper explains the two methods developed by KINS briefly and presents the insights obtained from the two different applications. It concludes with some suggestions for safety culture assessment based on the insights

  6. Development of ABWR-2 and its safety design

    International Nuclear Information System (INIS)

    Takafumi, Anegawa; Kenji, Tateiwa

    2002-01-01

    This paper reports the current status of development project on ABWR-II, a next generation reactor design based on ABWR, and its safety design. This project was initiated over a decade ago and has completed three phases to date. In Phase I (1991-92), basic design requirements were discussed and several plant concepts were studied. In Phase II (1993-95), key design features were selected in order to establish a reference reactor concept. In Phase III (1996-2000), based on the reference reactor concept, modifications and improvements were made to fulfill the design requirements. By adopting large electric output (1 700 MW), large fuel bundle, modified ECCS, and passive heat removal systems, among other design features, we achieved a design concept capable of increasing both economic competitiveness and safety performance. Main focus of this paper will be on the safety design, safety performance, and further research needs related to safety. (authors)

  7. Generic Safety Requirements for Developing Safe Insulin Pump Software

    Science.gov (United States)

    Zhang, Yi; Jetley, Raoul; Jones, Paul L; Ray, Arnab

    2011-01-01

    Background The authors previously introduced a highly abstract generic insulin infusion pump (GIIP) model that identified common features and hazards shared by most insulin pumps on the market. The aim of this article is to extend our previous work on the GIIP model by articulating safety requirements that address the identified GIIP hazards. These safety requirements can be validated by manufacturers, and may ultimately serve as a safety reference for insulin pump software. Together, these two publications can serve as a basis for discussing insulin pump safety in the diabetes community. Methods In our previous work, we established a generic insulin pump architecture that abstracts functions common to many insulin pumps currently on the market and near-future pump designs. We then carried out a preliminary hazard analysis based on this architecture that included consultations with many domain experts. Further consultation with domain experts resulted in the safety requirements used in the modeling work presented in this article. Results Generic safety requirements for the GIIP model are presented, as appropriate, in parameterized format to accommodate clinical practices or specific insulin pump criteria important to safe device performance. Conclusions We believe that there is considerable value in having the diabetes, academic, and manufacturing communities consider and discuss these generic safety requirements. We hope that the communities will extend and revise them, make them more representative and comprehensive, experiment with them, and use them as a means for assessing the safety of insulin pump software designs. One potential use of these requirements is to integrate them into model-based engineering (MBE) software development methods. We believe, based on our experiences, that implementing safety requirements using MBE methods holds promise in reducing design/implementation flaws in insulin pump development and evolutionary processes, therefore improving

  8. Thermal-hydraulics technological strategy roadmap for LWR safety improvement and development

    International Nuclear Information System (INIS)

    Nakamura, Hideo; Arai, Kenji; Oikawa, Hirohide

    2015-01-01

    New version of the Thermal-Hydraulics Safety Evaluation Fundamental Technology Enhancement Strategy Roadmap (TH-RM) was developed by the Atomic Energy Society of Japan (AESJ) for LWR safety improvement and development. The 1st version of TH-RM was prepared in 2009 under collaboration of utilities, vendors, universities, research institutes and technical support organizations (TSO) for regulatory body. The revision was made by three sub-working groups (SWGs) by considering the lessons learned from the Fukushima Daiichi Accident. The 'safety assessment' SWG pursued development of computer codes for safety assessment. The 'fundamental technology' SWG pursued safety improvement and risk reduction via accident management (AM) measures by referring the technical map for severe accident (SA) established by the 'severe accident' SWG. Phenomena and components for counter-measures and/or proper prediction are identified by going through SA progression in both reactor and spent-fuel pool of PWR and BWR. Twelve important technology development subjects were identified, which include melt coolability enhancement to maintain integrity of containment vessel. Fact Sheet was developed to describe each of identified and selected R and D subjects. External hazards are also considered how to cope with from thermal-hydraulic safety point of view. This paper summarizes the revised TH-RM with several examples and future perspectives. (author)

  9. Developing software for safety-critical applications

    International Nuclear Information System (INIS)

    Chudleigh, M.

    1989-01-01

    The effective implementation of many safety-critical systems involves microprocessors running software which needs to be of very high integrity. This article describes some of the problems of producing such software and the place of software within the total system. A development strategy is proposed based on three principles: the goal of defect-free development, the use of mathematical formalism, and the use of an independent team for testing. (author)

  10. Safety activities and human resource development at NCA

    International Nuclear Information System (INIS)

    Kumanomido, Hironori; Sakurada, Koichi; Yanagisawa, Shigeru; Masuyama, Tadaharu

    2015-01-01

    Toshiba Nuclear Critical Assembly (NCA) has been safely operated since the first criticality in December 1963. The topics covered in this Yayoi Meeting Report are: (1) the outline of NCA, (2) the safety control situation mainly after the Great East Japan Earthquake in 2011, (3) educational training incorporates the lessons learned in this earthquake, and (4) human resource development during 2008-2015. Regarding safety control, facility maintenance has been conducted systematically according to the maintenance plan from the viewpoint of preventive maintenance. Regarding educational training, two disaster handling training based on the safety regulation and one nuclear emergency drill based on the emergency drill plan for licensee of nuclear energy activity based on the Act of Special Measures Concerning Nuclear Emergency Preparedness every year. Regarding human resource development, development training was given to 358 people including students. This year, training that does not require NCA operation was conducted including gamma-ray spectrum measurement of NCA fuel rod and neutron deceleration property measurement using 252 Cf neutron source. (S.K.)

  11. Charged-particle beam: a safety mandate

    International Nuclear Information System (INIS)

    Young, K.C.

    1983-01-01

    The Advanced Test Accelerator (ATA) is a recent development in the field of charged particle beam research at Lawrence Livermore National Laboratory. With this experimental apparatus, researchers will characterize intense pulses of electron beams propagated through air. Inherent with the ATA concept was the potential for exposure to hazards, such as high radiation levels and hostile breathing atmospheres. The need for a comprehensive safety program was mandated; a formal system safety program was implemented during the project's conceptual phase. A project staff position was created for a safety analyst who would act as a liaison between the project staff and the safety department. Additionally, the safety analyst would be responsible for compiling various hazards analyses reports, which formed the basis of th project's Safety Analysis Report. Recommendations for safety features from the hazards analysis reports were incorporated as necessary at appropriate phases in project development rather than adding features afterwards. The safety program established for the ATA project faciliated in controlling losses and in achieving a low-level of acceptable risk

  12. The Development of Laboratory Safety Questionnaire for Middle School Science Teachers

    Science.gov (United States)

    Akpullukcu, Simge; Cavas, Bulent

    2017-01-01

    The purpose of this paper is to develop a "valid and reliable laboratory safety questionnaire" which could be used to identify science teachers' understanding about laboratory safety issues during their science laboratory activities. The questionnaire was developed from a literature review and prior instruments developed on laboratory…

  13. A conceptual framework to development of construction safety culture in Indonesia

    Science.gov (United States)

    Armyn Machfudiyanto, Rossy; Latief, Yusuf

    2017-12-01

    Working accidents in the construction industry are among the highest in the world, affecting the three levels of both macro (National) mezzo (Enterprise) and micro (Projects) that need to be integrated in building a safety culture. The purpose of this research is to develop a conceptual framework in improving safety culture in the construction industry in Indonesia. The methodology was developed using literature study and deductive analysis which then performed expert validation to ensure the concept developed. The result of this research is that policy and institution as input to build safety culture which need to be followed up with increasing of company maturity which have implication to safety performance and construction project performance.

  14. New Possibilities for development of the internal health and safety organisation

    DEFF Research Database (Denmark)

    Hasle, Peter; Jensen, Per Langå

    2004-01-01

    Research from several countries indicates that the internal health and safety organisation in most companies is placed in an appendix position. A possibility for developing a stronger and more effective health and safety organisation is to introduce learning. This approach has been applied...... in a Danish network project with eleven companies. The results indicate that health and safety managers and safety representatives have difficulties in fulfilling the role as change agents in mastering such a development project. Only three of the eleven companies turned out to be able to implement successful...

  15. Safety analysis in subsurface repositories

    International Nuclear Information System (INIS)

    1985-06-01

    The development of mathematical models to represent the repository-geosphere-biosphere system, and the development of a structure for data acquisition, processing, and use to analyse the safety of subsurface repositories, are presented. To study the behavior of radionuclides in geosphere a laboratory to determine the hydrodynamic dispersion coefficient was constructed. (M.C.K.) [pt

  16. Status, results and usefulness of risk analyses for HTGR type reactors of different capacity accessory to planning

    International Nuclear Information System (INIS)

    Kroeger, W.; Mertens, J.

    1985-01-01

    As regards system-inherent risks, HTGR type reactors are evaluated with reference to the established light-water-moderated reactor types. Probabilistic HTGR risk analyses have shown modern HTGR systems to possess a balanced safety concept with a risk remaining distinctly below legally accepted values. Inversely, the development and optimization of the safety concepts have been (and are being) essentially co-determined by the probabilistic analyses, as it is technically sensible and economically necessary to render the specific safety-related HTGR properties eligible for licensing. (orig./HP) [de

  17. Efficacy and Safety Extrapolation Analyses for Atomoxetine in Young Children with Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Upadhyaya, Himanshu; Kratochvil, Christopher; Ghuman, Jaswinder; Camporeale, Angelo; Lipsius, Sarah; D'Souza, Deborah; Tanaka, Yoko

    2015-12-01

    This extrapolation analysis qualitatively compared the efficacy and safety profile of atomoxetine from Lilly clinical trial data in 6-7-year-old patients with attention-deficit/hyperactivity disorder (ADHD) with that of published literature in 4-5-year-old patients with ADHD (two open-label [4-5-year-old patients] and one placebo-controlled study [5-year-old patients]). The main efficacy analyses included placebo-controlled Lilly data and the placebo-controlled external study (5-year-old patients) data. The primary efficacy variables used in these studies were the ADHD Rating Scale-IV Parent Version, Investigator Administered (ADHD-RS-IV-Parent:Inv) total score, or the Swanson, Nolan and Pelham (SNAP-IV) scale score. Safety analyses included treatment-emergent adverse events (TEAEs) and vital signs. Descriptive statistics (means, percentages) are presented. Acute atomoxetine treatment improved core ADHD symptoms in both 6-7-year-old patients (n=565) and 5-year-old patients (n=37) (treatment effect: -10.16 and -7.42). In an analysis of placebo-controlled groups, the mean duration of exposure to atomoxetine was ∼ 7 weeks for 6-7-year-old patients and 9 weeks for 5-year-old patients. Decreased appetite was the most common TEAE in atomoxetine-treated patients. The TEAEs observed at a higher rate in 5-year-old versus 6-7-year-old patients were irritability (36.8% vs. 3.6%) and other mood-related events (6.9% each vs. atomoxetine may improve ADHD symptoms, but possibly to a lesser extent than in older children, with some adverse events occurring at a higher rate in 5-year-old patients.

  18. ELFR: The European Lead Fast Reactor. Design, Safety Approach and Safety Characteristics

    International Nuclear Information System (INIS)

    Alemberti, Alessandro

    2012-01-01

    • In the framework of the LEADER project, the safety approach for a Lead cooled fast reactor has been defined and, in particular, all the possible challenges to the main safety functions and their mechanisms have been specified, in order to better define the needed provisions. • On the basis of the above and taking into account the results of the safety analyses performed during previous project (ELSY), a reference configuration of the ELFR plant has been consolidated, by improving and updating the plant design features. In particular, the emerged safety concerns have been analyzed in the LEADER project and a new set of design options and safety provisions have been proposed. • The combination of favourable Lead coolant inherent characteristics and plant design features, specifically developed to face identified challenges, resulted in a very robust and forgiving design, even in very extreme conditions, as a Fukushima-like scenario

  19. Developing glovebox robotics to meet the national robot safety standard and nuclear safety criteria

    International Nuclear Information System (INIS)

    McMahon, T.T.; Sievers, R.H.

    1991-09-01

    Development of a glove box based robotic system by the Lawrence Livermore National Laboratory (LLNL) is reported. Safety issues addressed include planning to meet the special constraints of operations within a hazardous material glove box and with hostile environments, compliance with the current and draft national robotic system safety standards, and eventual satisfaction of nuclear material handling requirements. Special attention has been required for the revision to the robot and control system models which antedate adoption of the present national safety standard. A robotic test bed, using non-radioactive surrogates is being activated at the Lawrence Livermore National Laboratory to develop the material handling system and the process interfaces for future special nuclear material processing applications. Part of this effort is to define, test, and revise adequate safety controls to ensure success when the system is eventually deployed at a DOE site. The current system is primarily for demonstration and testing, but will evolve into the baseline configuration from which the production system is to be derived. This results in special hazards associated with research activities which may not be present on a production line. Nuclear safety is of paramount importance and has been successfully addressed for 50 years in the DOE weapons production complex. It carries its particular requirements for robot systems and manual operations, as summarized below: Criticality must be avoided (materials cannot consolidate or accumulate to approach a critical mass). Radioactive materials must be confined. The public and workers must be protected from accountable radiation exposure. Nuclear material must be readily retrievable. Nuclear safety must be conclusively demonstrated through hazards analysis. 7 refs

  20. Development of quantitative goals for inherent safety feature design and licensing

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.; Okrent, D.

    1987-01-01

    There is now considerable interest in the development of advanced fast reactors whose major focus is inherent safety. The achievement of inherent safety can be viewed from several aspects. In the Integral Fast Reactor Concept the approach is to utilize the intrinsic characteristics of pool-type liquid metal fast breeder reactors (LMFBRs) and the properties of metal fuels to integrate a high degree of inherent safety into the design. The PRISM and SAFR concepts focus on other inherent safety features. The reactors discussed above represent a radical departure from existing LWR designs as well as previous LMFBR designs (e.g., CRBRP) which are based, for the most part, on the General Design Criteria found in 10CFR50 Appendix. In view of these parallel developments (advanced reactors exploiting inherent safety and the use of quantitative goals to augment licensing), there appears to be a need to perform research on the development of methods for designing, assessing, and licensing inherent safety features in advanced reactors. The objectives of such research are outlined

  1. Safety and effective developing nuclear power to realize green and low-carbon development

    Directory of Open Access Journals (Sweden)

    Qi-Zhen Ye

    2016-03-01

    Full Text Available This paper analyzes the role of nuclear power of China's energy structure and industry system. Comparing with other renewable energy the nuclear power chain has very low greenhouse gas emission, so it will play more important role in China's low-carbon economy. The paper also discussed the necessity of nuclear power development to achieve emission reduction, energy structure adjustment, nuclear power safety, environmental protection, enhancement of nuclear power technology, nuclear waste treatment, and disposal, as well as nuclear power plant decommissioning. Based on the safety record and situation of the existing power plants in China, the current status of the development of world nuclear power technology, and the features of the independently designed advanced power plants in China, this paper aims to demonstrate the safety of nuclear power. A nuclear power plant will not cause harm either to the environment and nor to the public according to the real data of radioactivity release, which are obtained from an operational nuclear plant. The development of nuclear power technology can enhance the safety of nuclear power. Further, this paper discusses issues related to the nuclear fuel cycle, the treatment, and disposal strategies of nuclear waste, and the decommissioning of a nuclear power plant, all of which are issues of public concern.

  2. Operational safety at the FFTF

    International Nuclear Information System (INIS)

    Baird, Q.L.; Hagan, J.W.; Seeman, S.E.; Baker, S.M.

    1981-02-01

    An extensive operational nuclear safety program has been an integral part of the design, startup, and initial operating phases of the Fast Flux Test Facility (FFTF). During the design and construction of the facility, a program of independent safety overviews and analyses assured the provision of responsible safety margins within the plant, protective systems, and engineered safety features for protection of the public, operating staff, and the facility. The program is continuing through surveillance of operations to verify continued adherence to the established operating envelope and for timely identification of any trends potentially adverse to those margins. Experience from operation of FFTF is being utilized in the development of enhanced operational nuclear safety aids for application in follow-on breeder reactor power systems. The commendable plant and personnel safety experiences of FFTF through its startup and ascension to full power demonstrate the overall effectiveness of the FFTF operational nuclear safety program

  3. Development of the KINS Safety Culture Maturity Model for Self and Independent Assessment

    International Nuclear Information System (INIS)

    Sheen, C.; Choi, Y.S.

    2016-01-01

    Safety culture of an organization is cultivated and affected not only by societal and regulatory environment of the organization, but by its philosophies, policies, events and activities experienced in the process of accomplishing its mission. The safety culture would be continuously changed by the interactions between its members along with time as an organic entity. In order to perform a systematic self- or independent assessment of safety culture, a safety culture assessment model (SCAM) properly reflecting cultural characteristics should be necessary. In addition, a SCAM should be helpful not only to establish correct directions, goals, and strategies for safety culture development, but should anticipating obstacles against safety culture development in the implementation process derived from the assessment. In practical terms, a SCAM should be useful for deriving effective guidelines and implementing of corrective action programs for the evaluated organization. Korea Institute of Nuclear Safety (KINS) performed a research project for six years to develop a SCAM satisfying the above prerequisites for self- and independent assessment. The KINS SCAM was developed based on the five stage safety culture maturity model proposed by Professor Patrick Hudson and was modified into four stages to reflect existing safety culture assessment experiences at Korean nuclear power plants. In order to define the change mechanism of safety culture for development and reversion, the change model proposed by Prochaska and DiClemente was introduced into KINS SCAM and developed into the Spiral Change Model.

  4. Health and safety at DNE [Dounreay Nuclear Power Development Establishment

    International Nuclear Information System (INIS)

    Walford, J.G.; Tyler, G.R.

    1988-11-01

    This report reviews health and safety experience at the UKAEA's Dounreay Nuclear Power Development Establishment for 1986 and gives relevant data in the fields of health physics and general safety. It includes sections on: organization, policy and training; monitoring of the working environment; personnel monitoring; protection of the public; radiological incidents; and non-radiological health and safety. (author)

  5. Thermal hydraulic and safety analyses for Pakistan Research Reactor-1

    International Nuclear Information System (INIS)

    Bokhari, I.H.; Israr, M.; Pervez, S.

    1999-01-01

    Thermal hydraulic and safety analysis of Pakistan Research Reactor-1 (PARR-1) utilizing low enriched uranium (LEU) fuel have been performed using computer code PARET. The present core comprises of 29 standard and 5 control fuel elements. Results of the thermal hydraulic analysis show that the core can be operated at a steady-state power level of 10 MW for a flow rate of 950 m 3 /h, with sufficient safety margins against ONB (onset of nucleate boiling) and DNB (departure from nucleate boiling). Safety analysis has been carried out for various modes of reactivity insertions. The events studied include: start-up accident; accidental drop of a fuel element in the core; flooding of a beam tube with water; removal of an in-pile experiment during reactor operation etc. For each of these transients, time histories of reactor power, energy released and clad surface temperature etc. were calculated. The results indicate that the peak clad temperatures remain well below the clad melting temperature during these accidents. It is therefore concluded that the reactor can be safely operated at 10 MW without compromising safety. (author)

  6. Scale development of safety management system evaluation for the airline industry.

    Science.gov (United States)

    Chen, Ching-Fu; Chen, Shu-Chuan

    2012-07-01

    The airline industry relies on the implementation of Safety Management System (SMS) to integrate safety policies and augment safety performance at both organizational and individual levels. Although there are various degrees of SMS implementation in practice, a comprehensive scale measuring the essential dimensions of SMS is still lacking. This paper thus aims to develop an SMS measurement scale from the perspective of aviation experts and airline managers to evaluate the performance of company's safety management system, by adopting Schwab's (1980) three-stage scale development procedure. The results reveal a five-factor structure consisting of 23 items. The five factors include documentation and commands, safety promotion and training, executive management commitment, emergency preparedness and response plan and safety management policy. The implications of this SMS evaluation scale for practitioners and future research are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Influence of Ergonomics on Traffic Safety and Economy Development

    Directory of Open Access Journals (Sweden)

    Teodor Perić

    2004-09-01

    Full Text Available As an interdisciplinary science, ergonomics needs to makethe operating of traffic safer, faster and more reliable, for thesake of higher profitability and generally improved economiceffects. This is achieved by adapting and shaping the workplace,machines, transport means, equipment, physical environment,working process etc. according to experience abouthuman anatomic physica~ sociologica~ intellectual and otherminimal, average or maximal capabilities. Therefore, it is necessaryto analyse ergonomics from the standpoint of better productivenessof humans, greater safety (comfort and security ingeneral.

  8. The quantifying of road safety developments. Paper presented at the International Conference 'Road Safety in Europe', Birmingham, September 9-11, 1996.

    NARCIS (Netherlands)

    Koornstra, M.J.

    1996-01-01

    The evaluation of the effectiveness of road safety policies and measures must be based on quantative information in road safety developments and the relevant variables that influence that development. However, the concept of road safety itself is not well defined theoretically and quantatively. This

  9. Consideration of aging in probabilistic safety assessment

    International Nuclear Information System (INIS)

    Titina, B.; Cepin, M.

    2007-01-01

    Probabilistic safety assessment is a standardised tool for assessment of safety of nuclear power plants. It is a complement to the safety analyses. Standard probabilistic models of safety equipment assume component failure rate as a constant. Ageing of systems, structures and components can theoretically be included in new age-dependent probabilistic safety assessment, which generally causes the failure rate to be a function of age. New age-dependent probabilistic safety assessment models, which offer explicit calculation of the ageing effects, are developed. Several groups of components are considered which require their unique models: e.g. operating components e.g. stand-by components. The developed models on the component level are inserted into the models of the probabilistic safety assessment in order that the ageing effects are evaluated for complete systems. The preliminary results show that the lack of necessary data for consideration of ageing causes highly uncertain models and consequently the results. (author)

  10. Implementing Software Safety in the NASA Environment

    Science.gov (United States)

    Wetherholt, Martha S.; Radley, Charles F.

    1994-01-01

    Until recently, NASA did not consider allowing computers total control of flight systems. Human operators, via hardware, have constituted the ultimate safety control. In an attempt to reduce costs, NASA has come to rely more and more heavily on computers and software to control space missions. (For example. software is now planned to control most of the operational functions of the International Space Station.) Thus the need for systematic software safety programs has become crucial for mission success. Concurrent engineering principles dictate that safety should be designed into software up front, not tested into the software after the fact. 'Cost of Quality' studies have statistics and metrics to prove the value of building quality and safety into the development cycle. Unfortunately, most software engineers are not familiar with designing for safety, and most safety engineers are not software experts. Software written to specifications which have not been safety analyzed is a major source of computer related accidents. Safer software is achieved step by step throughout the system and software life cycle. It is a process that includes requirements definition, hazard analyses, formal software inspections, safety analyses, testing, and maintenance. The greatest emphasis is placed on clearly and completely defining system and software requirements, including safety and reliability requirements. Unfortunately, development and review of requirements are the weakest link in the process. While some of the more academic methods, e.g. mathematical models, may help bring about safer software, this paper proposes the use of currently approved software methodologies, and sound software and assurance practices to show how, to a large degree, safety can be designed into software from the start. NASA's approach today is to first conduct a preliminary system hazard analysis (PHA) during the concept and planning phase of a project. This determines the overall hazard potential of

  11. A concurrent diagnosis of microbiological food safety output and food safety management system performance: Cases from meat processing industries

    NARCIS (Netherlands)

    Luning, P.A.; Jacxsens, L.; Rovira, J.; Oses Gomez, S.; Uyttendaele, M.; Marcelis, W.J.

    2011-01-01

    Stakeholder requirements force companies to analyse their food safety management system (FSMS) performance to improve food safety. Performance is commonly analysed by checking compliance against preset requirements via audits/inspections, or actual food safety (FS) output is analysed by

  12. Safety and cost evaluation of nuclear waste management

    International Nuclear Information System (INIS)

    Vieno, T.; Hautojaervi, A.; Korhonen, R.

    1989-11-01

    The report introduces the results of the nuclear waste management safety and cost evaluation research carried out in the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) during the years 1984-1988. The emphasis is on the description of the state-of-art of performance and cost evaluation methods. The report describes VTT's most important assessment models. Development, verification and validation of the models has largely taken place within international projects, including the Stripa, HYDROCOIN, INTRACOIN, INTRAVAL, PSACOIN and BIOMOVS projects. Furthermore, VTT's other laboratories are participating in the Natural Analogue Working Group,k the CHEMVAL project and the CoCo group. Resent safety analyses carried out in the Nuclear Engineering Laboratory include a concept feasibility study of spent fuel disposal, safety analyses for the Preliminary Safety Analysis Reports (PSAR's) of the repositories to be constructed for low and medium level operational reactor waste at the Olkiluoto and Loviisa power plants as well as safety analyses of disposal of decommissioning wastes. Appendix 1 contains a comprehensive list of the most important publications and technical reports produced. They present the content and results of the research in detail

  13. Developing an OMERACT Core Outcome Set for Assessing Safety Components in Rheumatology Trials: The OMERACT Safety Working Group.

    Science.gov (United States)

    Klokker, Louise; Tugwell, Peter; Furst, Daniel E; Devoe, Dan; Williamson, Paula; Terwee, Caroline B; Suarez-Almazor, Maria E; Strand, Vibeke; Woodworth, Thasia; Leong, Amye L; Goel, Niti; Boers, Maarten; Brooks, Peter M; Simon, Lee S; Christensen, Robin

    2017-12-01

    Failure to report harmful outcomes in clinical research can introduce bias favoring a potentially harmful intervention. While core outcome sets (COS) are available for benefits in randomized controlled trials in many rheumatic conditions, less attention has been paid to safety in such COS. The Outcome Measures in Rheumatology (OMERACT) Filter 2.0 emphasizes the importance of measuring harms. The Safety Working Group was reestablished at the OMERACT 2016 with the objective to develop a COS for assessing safety components in trials across rheumatologic conditions. The safety issue has previously been discussed at OMERACT, but without a consistent approach to ensure harms were included in COS. Our methods include (1) identifying harmful outcomes in trials of interventions studied in patients with rheumatic diseases by a systematic literature review, (2) identifying components of safety that should be measured in such trials by use of a patient-driven approach including qualitative data collection and statistical organization of data, and (3) developing a COS through consensus processes including everyone involved. Members of OMERACT including patients, clinicians, researchers, methodologists, and industry representatives reached consensus on the need to continue the efforts on developing a COS for safety in rheumatology trials. There was a general agreement about the need to identify safety-related outcomes that are meaningful to patients, framed in terms that patients consider relevant so that they will be able to make informed decisions. The OMERACT Safety Working Group will advance the work previously done within OMERACT using a new patient-driven approach.

  14. Nuclear Analyses of Indian LLCB Test Blanket System in ITER

    Science.gov (United States)

    Swami, H. L.; Shaw, A. K.; Danani, C.; Chaudhuri, Paritosh

    2017-04-01

    Heading towards the Nuclear Fusion Reactor Program, India is developing Lead Lithium Ceramic Breeder (LLCB) tritium breeding blanket for its future fusion Reactor. A mock-up of the LLCB blanket is proposed to be tested in ITER equatorial port no.2, to ensure the overall performance of blanket in reactor relevant nuclear fusion environment. Nuclear analyses play an important role in LLCB Test Blanket System design & development. It is required for tritium breeding estimation, thermal-hydraulic design, coolants process design, radioactive waste management, equipment maintenance & replacement strategies and nuclear safety. The nuclear behaviour of LLCB test blanket module in ITER is predicated in terms of nuclear responses such as tritium production, nuclear heating, neutron fluxes and radiation damages. Radiation shielding capability of LLCB TBS inside and outside bio-shield was also assessed to fulfill ITER shielding requirements. In order to supports the rad-waste and safety assessment, nuclear activation analyses were carried out and radioactivity data were generated for LLCB TBS components. Nuclear analyses of LLCB TBS are performed using ITER recommended nuclear analyses codes (i.e. MCNP, EASY), nuclear cross section data libraries (i.e. FENDL 2.1, EAF) and neutronic model (ITER C-lite v.l). The paper describes a comprehensive nuclear performance of LLCB TBS in ITER.

  15. The development of safety cases for healthcare services: Practical experiences, opportunities and challenges

    International Nuclear Information System (INIS)

    Sujan, Mark; Spurgeon, Peter; Cooke, Matthew; Weale, Andy; Debenham, Philip; Cross, Steve

    2015-01-01

    There has been growing interest in the concept of safety cases for medical devices and health information technology, but questions remain about how safety cases can be developed and used meaningfully in the safety management of healthcare services and processes. The paper presents two examples of the development and use of safety cases at a service level in healthcare. These first practical experiences at the service level suggest that safety cases might be a useful tool to support service improvement and communication of safety in healthcare. The paper argues that safety cases might be helpful in supporting healthcare organisations with the adoption of proactive and rigorous safety management practices. However, it is also important to consider the different level of maturity of safety management and regulatory oversight in healthcare. Adaptations to the purpose and use of safety cases might be required, complemented by the provision of education to both practitioners and regulators. - Highlights: • Empirical description of safety case development at service level in healthcare. • Safety cases can support adoption of proactive and rigorous safety management. • Adaptation to purpose and use of safety cases might be required in healthcare. • Education should be provided to practitioners and regulators

  16. Reactor safety research and safety technology. Pt. 2

    International Nuclear Information System (INIS)

    Theenhaus, R.; Wolters, J.

    1987-01-01

    The state of HTR safety research work reached permits a comprehensive and reliable answer to be given to questions which have been raised by the reactor accident at Chernobyl, regarding HTR safety. Together with the probability safety analyses, the way to a safety concept suitable for an HTR is cleared; instructions are given for design optimisation with regard to safety technique and economy. The consequences of a graphite fire, the neutron physics design and the consequenes of the lack of a safety containment are briefly described. (DG) [de

  17. Development of generic soil profiles and soil data development for SSI analyses

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Josh, E-mail: jparker@nuscalepower.com [NuScale Power, 1000 NE Circle Boulevard, Suite 10310, Corvallis, OR 97330 (United States); Khan, Mohsin; Rajagopal, Raj [ARES Corporation, 1990N California Boulevard, Suite 500, Walnut Creek, CA 94596 (United States); Groome, John [NuScale Power, 1000 NE Circle Boulevard, Suite 10310, Corvallis, OR 97330 (United States)

    2014-04-01

    This paper presents the approach to developing generic soil profiles for the design of reactor building for small modular reactor (SMR) nuclear power plant developed by NuScale Power. The reactor building is a deeply embedded structure. In order to perform soil structure interaction (SSI) analyses, generic soil profiles are required to be defined for the standardized Nuclear Power Plant (NPP) designs for the United States Nuclear Regulatory Commission (NRC) in a design control document (DCD). The development of generic soil profiles is based on utilization of information on generic soil profiles from the new standardized nuclear power plant designs already submitted to the NRC for license certification. Eleven generic soil profiles have been recommended, and those profiles cover a wide range of parameters such as soil depth, shear wave velocity, unit weight, Poisson's ratio, water table, and depth to rock strata. The soil profiles are developed for a range of shear wave velocities between bounds of 1000 fps and 8000 fps as inferred from NRC Standard Review Plan (NUREG 0800) Sections 3.7.1 and 3.7.2. To account for the soil degradation due to seismic events, the strain compatible soil properties are based on the EPRI generic soil degradation curves. In addition, one dimensional soil dynamic response analyses were performed to study the soil layer input motions for performing the SSI analyses.

  18. Allowed outage time for test and maintenance - Optimization of safety

    International Nuclear Information System (INIS)

    Cepin, M.; Mavko, B.

    1997-01-01

    The main objective of the project is the development and application of methodologies for improvement and optimization of test and maintenance activities for safety related equipment in NPPs on basis of their enhanced safety. The probabilistic safety assessment serves as a base, which does not mean the replacement of the deterministic analyses but the consideration of probabilistic safety assessment results as complement to deterministic results. 15 refs, 2 figs

  19. Status, experience and future prospects for the development of probabilistic safety criteria

    International Nuclear Information System (INIS)

    1989-09-01

    During 27-31 January 1986 the IAEA held a Technical Committee Meeting on ''Status, Experience, and Future Prospects for the Development of Probabilistic Safety Criteria''. Participation included representation of essentially all countries with major developments in the area as well as the Nuclear Energy Agency of the OECD and CEC. Though it has to be recognized that in such a short time period it is impossible to resolve or even analyse all aspects of this complex issue, the present situation, the main problems and the directions for future work clearly emerged. This report was prepared by the members of the Technical Committee based on the opinions expressed and on the information available at the time of the meeting. The report also contains 20 papers presented at the meeting by participants. A separate abstract was prepared for each of these 20 papers. Refs, figs and tabs

  20. Understanding adolescent development: implications for driving safety.

    Science.gov (United States)

    Keating, Daniel P

    2007-01-01

    The implementation of Graduated Driver Licensing (GDL) programs has significantly improved the crash and fatality rates of novice teen drivers, but these rates remain unacceptably high. A review of adolescent development research was undertaken to identify potential areas of improvement. Research support for GDL was found to be strong, particularly regarding early acquisition of expertise in driving safety (beyond driving skill), and to limitations that reduce opportunities for distraction. GDL regimes are highly variable, and no US jurisdictions have implemented optimal regimes. Expanding and improving GDL to enhance acquisition of expertise and self-regulation are indicated for implementation and for applied research. Driver training that effectively incorporates safety goals along with driving skill is another target. The insurance industry will benefit from further GDL enhancements. Benefits may accrue to improved driver training, improved simulation devices during training, and automated safety feedback instrumentation.

  1. Development and validation of safety climate scales for mobile remote workers using utility/electrical workers as exemplar.

    Science.gov (United States)

    Huang, Yueng-Hsiang; Zohar, Dov; Robertson, Michelle M; Garabet, Angela; Murphy, Lauren A; Lee, Jin

    2013-10-01

    The objective of this study was to develop and test the reliability and validity of a new scale designed for measuring safety climate among mobile remote workers, using utility/electrical workers as exemplar. The new scale employs perceived safety priority as the metric of safety climate and a multi-level framework, separating the measurement of organization- and group-level safety climate items into two sub-scales. The question of the emergence of shared perceptions among remote workers was also examined. For the initial survey development, several items were adopted from a generic safety climate scale and new industry-specific items were generated based on an extensive literature review, expert judgment, 15-day field observations, and 38 in-depth individual interviews with subject matter experts (i.e., utility industry electrical workers, trainers and supervisors of electrical workers). The items were revised after 45 cognitive interviews and a pre-test with 139 additional utility/electrical workers. The revised scale was subsequently implemented with a total of 2421 workers at two large US electric utility companies (1560 participants for the pilot company and 861 for the second company). Both exploratory (EFA) and confirmatory factor analyses (CFA) were adopted to finalize the items and to ensure construct validity. Reliability of the scale was tested based on Cronbach's α. Homogeneity tests examined whether utility/electrical workers' safety climate perceptions were shared within the same supervisor group. This was followed by an analysis of the criterion-related validity, which linked the safety climate scores to self-reports of safety behavior and injury outcomes (i.e., recordable incidents, missing days due to work-related injuries, vehicle accidents, and near misses). Six dimensions (Safety pro-activity, General training, Trucks and equipment, Field orientation, Financial Investment, and Schedule flexibility) with 29 items were extracted from the EFA to

  2. General aviation crash safety program at Langley Research Center

    Science.gov (United States)

    Thomson, R. G.

    1976-01-01

    The purpose of the crash safety program is to support development of the technology to define and demonstrate new structural concepts for improved crash safety and occupant survivability in general aviation aircraft. The program involves three basic areas of research: full-scale crash simulation testing, nonlinear structural analyses necessary to predict failure modes and collapse mechanisms of the vehicle, and evaluation of energy absorption concepts for specific component design. Both analytical and experimental methods are being used to develop expertise in these areas. Analyses include both simplified procedures for estimating energy absorption capabilities and more complex computer programs for analysis of general airframe response. Full-scale tests of typical structures as well as tests on structural components are being used to verify the analyses and to demonstrate improved design concepts.

  3. Developments in safety standards and regulation

    International Nuclear Information System (INIS)

    Harbison, S.A.

    1994-01-01

    This paper explains, in broad terms, how regulatory control is exercised over licensed nuclear installations in the UK and how HSE has developed its safety standards to support its regulatory approach. It first sets out the scope of HSE's regulatory responsibilities, which NII exercises on its behalf, and briefly describes the licensing process and compliance monitoring through inspection over the life of a nuclear plant. It also refers to the role of assessment in NII's decision-making processes, and the part played in this by the consideration of costs and safety benefits. It then moves on to consider the challenges that HSE/NII are likely to face from the changing nuclear industry in the second half of the 1990s. (author)

  4. An Integrated Development Tool for a safety application using FBD language

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Jun; Lee, Jang Soo; Lee, Dong Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Regarding digitalizing the Nuclear Instrumentation and Control Systems, the application program responsible for the safety functions of Nuclear I and C Systems shall ensure the robustness of the safety function through development, testing, and validation roles for a life cycle process during software development. The importance of software in nuclear systems increases continuously. The integrated engineering tools to develop, test, and validate safety application programs require increasingly more complex parts among a number of components within nuclear digital I and C systems. This paper introduces the integrated engineering tool (SafeCASE-PLC) developed by our project. The SafeCASE-PLC is a kind of software engineering tool to develop, test, and validate the nuclear application program performed in an automatic controller

  5. Development and validation of a remote home safety protocol.

    Science.gov (United States)

    Romero, Sergio; Lee, Mi Jung; Simic, Ivana; Levy, Charles; Sanford, Jon

    2018-02-01

    Environmental assessments and subsequent modifications conducted by healthcare professionals can enhance home safety and promote independent living. However, travel time, expense and the availability of qualified professionals can limit the broad application of this intervention. Remote technology has the potential to increase access to home safety evaluations. This study describes the development and validation of a remote home safety protocol that can be used by a caregiver of an elderly person to video-record their home environment for later viewing and evaluation by a trained professional. The protocol was developed based on literature reviews and evaluations from clinical and content experts. Cognitive interviews were conducted with a group of six caregivers to validate the protocol. The final protocol included step-by-step directions to record indoor and outdoor areas of the home. The validation process resulted in modifications related to safety, clarity of the protocol, readability, visual appearance, technical descriptions and usability. Our final protocol includes detailed instructions that a caregiver should be able to follow to record a home environment for subsequent evaluation by a home safety professional. Implications for Rehabilitation The results of this study have several implications for rehabilitation practice The remote home safety evaluation protocol can potentially improve access to rehabilitation services for clients in remote areas and prevent unnecessary delays for needed care. Using our protocol, a patient's caregiver can partner with therapists to quickly and efficiently evaluate a patient's home before they are released from the hospital. Caregiver narration, which reflects a caregiver's own perspective, is critical to evaluating home safety. In-home safety evaluations, currently not available to all who need them due to access barriers, can enhance a patient's independence and provide a safer home environment.

  6. Safety climate and culture: Integrating psychological and systems perspectives.

    Science.gov (United States)

    Casey, Tristan; Griffin, Mark A; Flatau Harrison, Huw; Neal, Andrew

    2017-07-01

    Safety climate research has reached a mature stage of development, with a number of meta-analyses demonstrating the link between safety climate and safety outcomes. More recently, there has been interest from systems theorists in integrating the concept of safety culture and to a lesser extent, safety climate into systems-based models of organizational safety. Such models represent a theoretical and practical development of the safety climate concept by positioning climate as part of a dynamic work system in which perceptions of safety act to constrain and shape employee behavior. We propose safety climate and safety culture constitute part of the enabling capitals through which organizations build safety capability. We discuss how organizations can deploy different configurations of enabling capital to exert control over work systems and maintain safe and productive performance. We outline 4 key strategies through which organizations to reconcile the system control problems of promotion versus prevention, and stability versus flexibility. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Safety analyses for transient behavior of plasma and in-vessel components during plasma abnormal events in fusion reactor

    International Nuclear Information System (INIS)

    Honda, Takuro; Okazaki, Takashi; Bartels, H.W.; Uckan, N.A.; Seki, Yasushi.

    1997-01-01

    Safety analyses on plasma abnormal events have been performed using a hybrid code of a plasma dynamics model and a heat transfer model of in-vessel components. Several abnormal events, e.g., increase in fueling rate, were selected for the International Thermonuclear Experimental Reactor (ITER) and transient behavior of the plasma and the invessel components during the events was analyzed. The physics model for safety analysis was conservatively prepared. In most cases, the plasma is terminated by a disruption or it returns to the original operation point. When the energy confinement improves by a factor of 2.0 in the steady state, which is a hypothetical assumption under the present plasma data, the maximum fusion power reaches about 3.3 GW at about 3.6 s and the plasma is terminated due to a disruption. However, the results obtained in this study show the confinement boundary of ITER can be kept almost intact during the abnormal plasma transients, as long as the cooling system works normally. Several parametric studies are needed to comprehend the overpower transient including structure behavior, since many uncertainties are connected to the filed of the plasma physics. And, future work will need to discuss the burn control scenario considering confinement mode transition, system specifications, experimental plans and safety regulations, etc. to confirm the safety related to the plasma anomaly. (author)

  8. Development of French technical safety regulations: safety fundamental rules

    International Nuclear Information System (INIS)

    Lebouleux, P.

    1982-09-01

    The technical regulation related to nuclear safety in France is made of a set of regulation texts, of a different nature, that define the requirements for the construction, commissioning and operations of nuclear facilities. Simultaneously, the safety authorities (Service Central de Surete des Installations Nucleaires: SCSIN) issue recommendations or guides which are not strictly speaking regulations in the juridical sense; they are called ''Regles Fondamentales de Surete'' (RFS). The RFS set up and detail the conditions, the respect of which is deemed to be complying with the French regulation pratice, for the subject to which they relate. Their purpose is to make known rules judged acceptable by safety authorities, thus making the safety review easier. The RFS program is described. A RFS -or a letter- can also give the result of the examination of the constructor and operator code (RCC) by safety authorities

  9. Development of French technical safety regulations: safety fundamental rules

    International Nuclear Information System (INIS)

    Lebouleux, P.

    1983-01-01

    The technical regulation related to nuclear safety in France is made of a set of regulation texts, of a different nature, that define the requirements for the construction, commissioning and operating of nuclear facilities. Simultaneously, the safety authorities (Service Central de Surete des Installations Nucleaires: SCSIN) issue recommendations or guides which are not strictly speaking regulations in the juridicial sense; they are called Regles Fondamentales de Surete (RFS). The RFS set up and detail the conditions, the respect of which is deemed to be complying with the French regulation practice, for the subject to which they relate. Their purpose is to make known rules judged acceptable by safety authorities, thus making the safety review easier. The RFS program is described. A RFS - or a letter - can also give the result of the examination of the constructor and operator codes (RCC) by safety authorities

  10. Development Trends in Nuclear Technology and Related Safety Aspects

    International Nuclear Information System (INIS)

    Kuczera, B.; Juhn, P.E.; Fukuda, K.

    2002-01-01

    The IAEA Safety Standards Series include, in a hierarchical manner, the categories of Safety Fundamentals, Safety Requirements and Safety Guides, which define the elements necessary to ensure the safety of nuclear installations. In the same way as nuclear technology and scientific knowledge advance continuously, also safety requirements may change with these advances. Therefore, in the framework of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) one important aspect among others refers to user requirements on the safety of innovative nuclear installations, which may come into operation within the next fifty years. In this respect, the major objectives of the INPRO sub-task 'User Requirements and Nuclear Energy Development Criteria in the Area of Safety' have been: a. to overview existing national and international requirements in the safety area, b. to define high level user requirements in the area of safety of innovative nuclear technologies, c. to compile and to analyze existing innovative reactor and fuel cycle technology enhancement concepts and approaches intended to achieve a high degree of safety, and d. to identify the general areas of safety R and D needs for the establishment of these technologies. During the discussions it became evident that the application of the defence in depth strategy will continue to be the overriding approach for achieving the general safety objective in nuclear power plants and fuel cycle facilities, where the emphasis will be shifted from mitigation of accident consequences more towards prevention of accidents. In this context, four high level user requirements have been formulated for the safety of innovative nuclear reactors and fuel cycles. On this basis safety strategies for innovative reactor designs are highlighted in each of the five levels of defence in depth and specific requirements are discussed for the individual components of the fuel cycle. (authors)

  11. Safety assessment as basis for the decision making process

    International Nuclear Information System (INIS)

    Ilie, P.; Didita, L.; Danchiv, A.

    2005-01-01

    This paper deals with the safety assessment for a new near surface repository, particularly for the early stage of repository development using ISAM (Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities) safety assessment methodology. In this stage of the repository life cycle the main purpose of the safety assessment is to demonstrate that the plant is capable to be constructed and operated safely. The paper is based on development of the ASAM (Application of the Safety Assessment Methodologies for Near-Surface Disposal Facilities) Decision Support Subgroup of the Common Aspects Working Group. The implications of decision making for the application of the ISAM methodology on post-closure safety assessment are analysed. Some important elements of the decision-making process with impact on key components of the ISAM process are described. Following the development of Decision Support Subgroup of the ASAM Common Aspects Working Group the proposed change of ISAM methodology is analysed. This approach puts all activities in a decision context where the first iteration of the safety assessment is based on the existing state of knowledge and the initial engineering design. Confidence in the process is accomplished through the direct inclusion of all decision makers and stakeholders in the formulation of decisions, the definition of the state of knowledge, and decision making activities. The decision process is developed in context of undertaking assessments with little site-specific information, this situation is specifically for new planned repository. Limited site-specific information can result in a high degree of uncertainty, therefore it is important first of all to identify the sources of uncertainty arising from the limited nature of the site-specific information and then to apply appropriate approaches to manage the uncertainties and to determine whether the uncertainties are important to the overall safety of the disposal facility

  12. Development of an evaluation framework for African-European hospital patient safety partnerships.

    Science.gov (United States)

    Rutter, Paul; Syed, Shamsuzzoha B; Storr, Julie; Hightower, Joyce D; Bagheri-Nejad, Sepideh; Kelley, Edward; Pittet, Didier

    2014-04-01

    Patient safety is recognised as a significant healthcare problem worldwide, and healthcare-associated infections are an important aspect. African Partnerships for Patient Safety is a WHO programme that pairs hospitals in Africa with hospitals in Europe with the objective to work together to improve patient safety. To describe the development of an evaluation framework for hospital-to-hospital partnerships participating in the programme. The framework was structured around the programme's three core objectives: facilitate strong interhospital partnerships, improve in-hospital patient safety and spread best practices nationally. Africa-based clinicians, their European partners and experts in patient safety were closely involved in developing the evaluation framework in an iterative process. The process defined six domains of partnership strength, each with measurable subdomains. We developed a questionnaire to measure these subdomains. Participants selected six indicators of hospital patient safety improvement from a short-list of 22 based on their relevance, sensitivity to intervention and measurement feasibility. Participants proposed 20 measures of spread, which were refined into a two-part conceptual framework, and a data capture tool created. Taking a highly participatory approach that closely involved its end users, we developed an evaluation framework and tools to measure partnership strength, patient safety improvements and the spread of best practice.

  13. Safety balance: Analysis of safety systems

    International Nuclear Information System (INIS)

    Delage, M.; Giroux, C.

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses

  14. Development of small reactor safety criteria in Canada

    International Nuclear Information System (INIS)

    Ernst, P.C.; French, P.M.; Axford, D.J.; Snell, V.G.

    1990-01-01

    A number of new small reactor designs have been proposed in Canada over the last several years and some have reached the stage where licensing discussions have been initiated with the Atomic Energy Control Board (AECB). An inter-organizational Small Reactor Criteria (SRC) working group was formed in 1988 to propose safety and licensing criteria for these small reactors. Two levels of criteria are proposed. The first level forms a safety philosophy and the second is a set of criteria for specific reactor applications. The safety philosophy consists of three basic safety objectives together with evaluation criteria, and fourteen fundamental principles measured by specific criteria, which must be implemented to meet the safety objectives. Two of the fourteen principles are prime: defence in depth, and safety culture; the other twelve principles can be seen as deriving from them. A benefit of this approach is that the concepts of defence in depth and safety culture become well-defined. The objectives and principles are presented in the paper and their criteria are summarized. The second level of criteria, under development, will form a safety application set and will provide small reactor criteria in a number of general areas, such as regulatory process and safety assessment, as well as for specific reactor life-cycle activities, from siting through to decommissioning. The criteria are largely deterministic. However, the frequencies and consequences of postulated accidents are assessed against numerical criteria to assist in judging the acceptability of plant design, operation, and proposed siting. All criteria proposed are designed to be testable in some evidentiary fashion, readily enabling an assessment of compliance for a given proposal

  15. System safety engineering in the development of advanced surface transportation vehicles

    Science.gov (United States)

    Arnzen, H. E.

    1971-01-01

    Applications of system safety engineering to the development of advanced surface transportation vehicles are described. As a pertinent example, the paper describes a safety engineering efforts tailored to the particular design and test requirements of the Tracked Air Cushion Research Vehicle (TACRV). The test results obtained from this unique research vehicle provide significant design data directly applicable to the development of future tracked air cushion vehicles that will carry passengers in comfort and safety at speeds up to 300 miles per hour.

  16. Take Effective Measures to Promote the Development of Food Safety Science

    Directory of Open Access Journals (Sweden)

    Zongming Li

    2014-04-01

    Full Text Available Food safety concerns people's health, life, even social harmony and stability. Also, it is an important scientific problem of the development of mankind. How could we strengthen our national food security? Firstly, a long-lasting scientific system of food safety should be formed. Only by enhancing the construction of this scientific system, building up the development platform of food safety, improving the science and technology level in this field, carrying out the rapid detection skills of food safety, controlling technology research, forming a joint force of government regulation and public surveillance, we could ensure food security fundamentally. Secondly, we need form a management system with strict legal liability and clear public responsibility, and need establish a food safety warning system and risk assessment system, strengthen the food information construction, improve the international standards of food quality, and constantly increase the level of food safety, so as to control the food pollution, reduce the foodborne diseases, and ensure the consumer’s health.

  17. Risk analyses in nuclear engineerig, their value in terms of information, and their limits in terms of applicability

    International Nuclear Information System (INIS)

    Heuser, F.W.

    1983-01-01

    This contribution first briefly explains the main pillars of the deterministic safety concept as developed in nuclear engineering, and some basic ideas on risk analyses in general. This is followed by an outline of the methodology and main purposes of risk analyses. The German Risk Study is taken as an example to discuss selected aspects with regard to information value and limits of risk analyses. The main conclusions state that risk analyses are a valuable instrument for quantitative safety evaluation, leading to a better understanding of safety problems and their prevention, and allowing a comparative assessment of various safety measures. They furthermore allow a refined evaluation of a variety of accident parameters and other impacts determining the risk emanating from accidents. The current state of the art in this sector still leaves numerous uncertainties so that risk analyses yield information for assessments rather than for definite predictions. However, the urge for quantifying the lack of knowledge leads to a better and more precise determination of the gaps still to be filled up by researchers and engineers. Thus risk analyses are a useful help in defining suitable approaches and setting up standards, showing the tasks to be fulfilled in safety research in general. (orig./HSCH) [de

  18. Coupling of channel thermalhydraulics and fuel behaviour in ACR-1000 safety analyses

    International Nuclear Information System (INIS)

    Huang, F.L.; Lei, Q.M.; Zhu, W.; Bilanovic, Z.

    2008-01-01

    Channel thermalhydraulics and fuel thermal-mechanical behaviour are interlinked. This paper describes a channel thermalhydraulics and fuel behaviour coupling methodology that has been used in ACR-1000 safety analyses. The coupling is done for all 12 fuel bundles in a fuel channel using the channel thermalhydraulics code CATHENA MOD-3.5d/Rev 2 and the transient fuel behaviour code ELOCA 2.2. The coupling approach can be used for every fuel element or every group of fuel elements in the channel. Test cases are presented where a total of 108 fuel element models are set up to allow a full coupling between channel thermalhydraulics and detailed fuel analysis for a channel containing a string of 12 fuel bundles. An additional advantage of this coupling approach is that there is no need for a separate detailed fuel analysis because the coupling analysis, once done, provides detailed calculations for the fuel channel (fuel bundles, pressure tube, and calandria tube) as well as all the fuel elements (or element groups) in the channel. (author)

  19. Incorporation of advanced accident analysis methodology into safety analysis reports

    International Nuclear Information System (INIS)

    2003-05-01

    The IAEA Safety Guide on Safety Assessment and Verification defines that the aim of the safety analysis should be by means of appropriate analytical tools to establish and confirm the design basis for the items important to safety, and to ensure that the overall plant design is capable of meeting the prescribed and acceptable limits for radiation doses and releases for each plant condition category. Practical guidance on how to perform accident analyses of nuclear power plants (NPPs) is provided by the IAEA Safety Report on Accident Analysis for Nuclear Power Plants. The safety analyses are performed both in the form of deterministic and probabilistic analyses for NPPs. It is customary to refer to deterministic safety analyses as accident analyses. This report discusses the aspects of using the advanced accident analysis methods to carry out accident analyses in order to introduce them into the Safety Analysis Reports (SARs). In relation to the SAR, purposes of deterministic safety analysis can be further specified as (1) to demonstrate compliance with specific regulatory acceptance criteria; (2) to complement other analyses and evaluations in defining a complete set of design and operating requirements; (3) to identify and quantify limiting safety system set points and limiting conditions for operation to be used in the NPP limits and conditions; (4) to justify appropriateness of the technical solutions employed in the fulfillment of predetermined safety requirements. The essential parts of accident analyses are performed by applying sophisticated computer code packages, which have been specifically developed for this purpose. These code packages include mainly thermal-hydraulic system codes and reactor dynamics codes meant for the transient and accident analyses. There are also specific codes such as those for the containment thermal-hydraulics, for the radiological consequences and for severe accident analyses. In some cases, codes of a more general nature such

  20. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    William E. Kastenberg; Edward Blandford; Lance Kim

    2009-03-31

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public.

  1. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    International Nuclear Information System (INIS)

    Kastenberg, William E.; Blandford, Edward; Kim, Lance

    2009-01-01

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public

  2. A scale for consumer confidence in the safety of food

    NARCIS (Netherlands)

    Jonge, de J.; Trijp, van J.C.M.; Lans, van der I.A.; Renes, R.J.; Frewer, L.J.

    2008-01-01

    The aim of this study was to develop and validate a scale to measure general consumer confidence in the safety of food. Results from exploratory and confirmatory analyses indicate that general consumer confidence in the safety of food consists of two distinct dimensions, optimism and pessimism,

  3. Development of safety evaluation methods and analysis codes applied to the safety regulations for the design and construction stage of fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The purposes of this study are to develop the safety evaluation methods and analysis codes needed in the design and construction stage of fast breeder reactor (FBR). In JFY 2012, the following results are obtained. As for the development of safety evaluation methods needed in the safety examination conducted for the reactor establishment permission, development of the analysis codes, such as core damage analysis code, were carried out following the planned schedule. As for the development of the safety evaluation method needed for the risk informed safety regulation, the quantification technique of the event tree using the Continuous Markov chain Monte Carlo method (CMMC method) were studied. (author)

  4. Job safety and awareness analysis of safety implementation among electrical workers in airport service company

    Directory of Open Access Journals (Sweden)

    Putra Perdana Suteja

    2018-01-01

    Full Text Available Electrical is a fundamental process in the company that has high risk and responsibility especially in public service company such as an airport. Hence, the company that operates activities in the airport has to identify and control the safety activities of workers. On the safety implementation, the lack of workers’ awareness is fundamental aspects to the safety failure. Therefore, this study aimed to analyse the safety awareness and identify risk in the electrical workplace. Safety awareness questionnaires are distributed to ten workers in order to analyse their awareness. Job safety analysis method used to identify the risk in the electrical workplace. The preliminary study stated that workers were not aware of personal protective equipment usage so that the awareness and behavioural need to be analysed. The result is the hazard was found such as electrical shock and noise for various intensity in the workplace. While electrical workers were aware of safety implementation but less of safety behaviour. Furthermore, the recommendation can be implemented are the implementation of behaviour-based safety (BBS, 5S implementation and accident report list.

  5. Mathematical modeling of efficacy and safety for anticancer drugs clinical development.

    Science.gov (United States)

    Lavezzi, Silvia Maria; Borella, Elisa; Carrara, Letizia; De Nicolao, Giuseppe; Magni, Paolo; Poggesi, Italo

    2018-01-01

    Drug attrition in oncology clinical development is higher than in other therapeutic areas. In this context, pharmacometric modeling represents a useful tool to explore drug efficacy in earlier phases of clinical development, anticipating overall survival using quantitative model-based metrics. Furthermore, modeling approaches can be used to characterize earlier the safety and tolerability profile of drug candidates, and, thus, the risk-benefit ratio and the therapeutic index, supporting the design of optimal treatment regimens and accelerating the whole process of clinical drug development. Areas covered: Herein, the most relevant mathematical models used in clinical anticancer drug development during the last decade are described. Less recent models were considered in the review if they represent a standard for the analysis of certain types of efficacy or safety measures. Expert opinion: Several mathematical models have been proposed to predict overall survival from earlier endpoints and validate their surrogacy in demonstrating drug efficacy in place of overall survival. An increasing number of mathematical models have also been developed to describe the safety findings. Modeling has been extensively used in anticancer drug development to individualize dosing strategies based on patient characteristics, and design optimal dosing regimens balancing efficacy and safety.

  6. Interim summary report of the safety case 2009

    International Nuclear Information System (INIS)

    2010-03-01

    Following the guidelines set forth by the Ministry of Trade and Industry (now Ministry of Employment and Economy), Posiva is preparing to submit a construction license application for the final disposal spent nuclear fuel at the Olkiluoto site, Finland, by the end of the year 2012. Disposal will take place in a geological repository implemented according to the KBS-3 method. The long-term safety section supporting the license application will be based on a safety case that, according to the internationally adopted definition, will be a compilation of the evidence, analyses and arguments that quantify and substantiate the safety and the level of expert confidence in the safety of the planned repository. The present Interim Summary Report represents a major contribution to the development of this safety case. The report has been compiled in accordance with Posiva's current plan for preparing this safety case. A full safety case for the KBS-3V variant will be developed to support the Preliminary Safety Assessment Report (PSAR) in 2012. The report outlines the current design and safety concept for the planned repository. It summarises the approach used to formulate scenarios for the evolution of the disposal system over time, describes these scenarios and presents the main models and computer codes used to analyse them. It also discusses compliance with Finnish regulatory requirements for long-term safety of a geological repository and gives the main evidence, arguments and analyses that lead to confidence, on the part of Posiva, in the long-term safety of the planned repository. Current understanding of the evolution of the disposal system indicates that, except a few unlikely circumstances affecting a small number of canisters, spent fuel will remain isolated, and the radionuclides contained within the canisters, for hundreds of thousands of years or more, in accordance with the base scenario. Confidence in this base scenario derives, in the first place, from the

  7. Safety requirements and safety experience of nuclear facilities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schnurer, H.L.

    1977-01-01

    Peaceful use of nuclear energy within the F.R.G. is rapidly growing. The Energy Programme of the Federal Government forecasts a capacity of up to 50.000 MW in 1985. Whereas most of this capacity will be of the LWR-Type, other activities are related to LMFBR - and HTGR - development, nuclear ships, and facilities of the nuclear fuel cycle. Safety of nuclear energy is the pacemaker for the realization of nuclear programmes and projects. Due to a very high population - and industrialisation density, safety has the priority before economical aspects. Safety requirements are therefore extremely stringent, which will be shown for the legal, the technical as well as for the organizational area. They apply for each nuclear facility, its site and the nuclear energy system as a whole. Regulatory procedures differ from many other countries, assigning executive power to state authorities, which are supervised by the Federal Government. Another particularity of the regulatory process is the large scope of involvement of independent experts within the licensing procedures. The developement of national safety requirements in different countries generates a necessity to collaborate and harmonize safety and radiation protection measures, at least for facilities in border areas, to adopt international standards and to assist nuclear developing countries. However, different nationally, regional or local situations might raise problems. Safety experience with nuclear facilities can be concluded from the positive construction and operation experience, including also a few accidents and incidents and the conclusions, which have been drawn for the respective factilities and others of similar design. Another tool for safety assessments will be risk analyses, which are under development by German experts. Final, a scope of future problems and developments shows, that safety of nuclear installations - which has reached a high performance - nevertheless imposes further tasks to be solved

  8. Development and formation of safety cultures

    International Nuclear Information System (INIS)

    Merry, M.W.J.; Rycraft, H.S.

    1995-01-01

    The Thermal Oxide Reprocessing Plant (THORP) is the largest project ever undertaken by British Nuclear Fuels plc (BNFL) and its success is important for the future of the company. The company recognised at the planning stage that to be profitable, THORP had to operate both safely and with a smaller workforce. The establishment of an appropriate culture which saw safety and productivity as essential and complimentary at the beginning of the life of the plant was therefore vital for the future success of THORP The key factors in the THORP Culture formation were : The recruitment policy; the training policy; measures taken to ensure participation from the workforce; teamworking support; communication initiatives; clear statement of cultural principles; clear and demonstrable leadership. The current stage of evolution has seen some positive results namely: A clear commitment to involving all personnel in problem solving and task organisation, including safety; a confident workforce with an improved ability to communicate; the capability of the majority of the workforce to work as a team; safety awareness of the workforce is generally high along with an awareness of environmental, commercial and (political) external issues affecting the THORP business; a commitment to continuous improvement. The development of the safety culture within THORP has also had challenges, some as a result of the composite nature of the workforce, and others as side effects of the culture shaping measures. Management have recognised these, and using the results of attitude surveys, are working with the workforce to overcome their effects. Clear recognition has been achieved that the establishment of positive behaviours is a key. step in generating the culture required summarising, there is recognition that the design of safety management systems and improvement programmes, should be based on the principles of human psychology and behaviour. which includes wide participation by the workforce

  9. Safety

    International Nuclear Information System (INIS)

    2001-01-01

    This annual report of the Senior Inspector for the Nuclear Safety, analyses the nuclear safety at EDF for the year 1999 and proposes twelve subjects of consideration to progress. Five technical documents are also provided and discussed concerning the nuclear power plants maintenance and safety (thermal fatigue, vibration fatigue, assisted control and instrumentation of the N4 bearing, 1300 MW reactors containment and time of life of power plants). (A.L.B.)

  10. Neutronic analyses and tools development efforts in the European DEMO programme

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U., E-mail: ulrich.fischer@kit.edu [Association KIT-Euratom, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Bachmann, C. [European Fusion Development Agreement (EFDA), Garching (Germany); Bienkowska, B. [Association IPPLM-Euratom, IPPLM Warsaw/INP Krakow (Poland); Catalan, J.P. [Universidad Nacional de Educación a Distancia (UNED), Madrid (Spain); Drozdowicz, K.; Dworak, D. [Association IPPLM-Euratom, IPPLM Warsaw/INP Krakow (Poland); Leichtle, D. [Association KIT-Euratom, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Fusion for Energy (F4E), Barcelona (Spain); Lengar, I. [MESCS-JSI, Ljubljana (Slovenia); Jaboulay, J.-C. [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Lu, L. [Association KIT-Euratom, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Moro, F. [Associazione ENEA-Euratom, ENEA Fusion Division, Frascati (Italy); Mota, F. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Sanz, J. [Universidad Nacional de Educación a Distancia (UNED), Madrid (Spain); Szieberth, M. [Budapest University of Technology and Economics (BME), Budapest (Hungary); Palermo, I. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Pampin, R. [Fusion for Energy (F4E), Barcelona (Spain); Porton, M. [Euratom/CCFE Fusion Association, Culham Science Centre for Fusion Energy (CCFE), Culham (United Kingdom); Pereslavtsev, P. [Association KIT-Euratom, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Ogando, F. [Universidad Nacional de Educación a Distancia (UNED), Madrid (Spain); Rovni, I. [Budapest University of Technology and Economics (BME), Budapest (Hungary); and others

    2014-10-15

    Highlights: •Evaluation of neutronic tools for application to DEMO nuclear analyses. •Generation of a DEMO model for nuclear analyses based on MC calculations. •Nuclear analyses of the DEMO reactor equipped with a HCLL-type blanket. -- Abstract: The European Fusion Development Agreement (EFDA) recently launched a programme on Power Plant Physics and Technology (PPPT) with the aim to develop a conceptual design of a fusion demonstration reactor (DEMO) addressing key technology and physics issues. A dedicated part of the PPPT programme is devoted to the neutronics which, among others, has to define and verify requirements and boundary conditions for the DEMO systems. The quality of the provided data depends on the capabilities and the reliability of the computational tools. Accordingly, the PPPT activities in the area of neutronics include both DEMO nuclear analyses and development efforts on neutronic tools including their verification and validation. This paper reports on first neutronics studies performed for DEMO, and on the evaluation and further development of neutronic tools.

  11. Neutronic analyses and tools development efforts in the European DEMO programme

    International Nuclear Information System (INIS)

    Fischer, U.; Bachmann, C.; Bienkowska, B.; Catalan, J.P.; Drozdowicz, K.; Dworak, D.; Leichtle, D.; Lengar, I.; Jaboulay, J.-C.; Lu, L.; Moro, F.; Mota, F.; Sanz, J.; Szieberth, M.; Palermo, I.; Pampin, R.; Porton, M.; Pereslavtsev, P.; Ogando, F.; Rovni, I.

    2014-01-01

    Highlights: •Evaluation of neutronic tools for application to DEMO nuclear analyses. •Generation of a DEMO model for nuclear analyses based on MC calculations. •Nuclear analyses of the DEMO reactor equipped with a HCLL-type blanket. -- Abstract: The European Fusion Development Agreement (EFDA) recently launched a programme on Power Plant Physics and Technology (PPPT) with the aim to develop a conceptual design of a fusion demonstration reactor (DEMO) addressing key technology and physics issues. A dedicated part of the PPPT programme is devoted to the neutronics which, among others, has to define and verify requirements and boundary conditions for the DEMO systems. The quality of the provided data depends on the capabilities and the reliability of the computational tools. Accordingly, the PPPT activities in the area of neutronics include both DEMO nuclear analyses and development efforts on neutronic tools including their verification and validation. This paper reports on first neutronics studies performed for DEMO, and on the evaluation and further development of neutronic tools

  12. Experience of Tecnatom in Developing a Strong Leadership for Safety and Performance

    International Nuclear Information System (INIS)

    González, F.; Villadóniga, J. I.

    2016-01-01

    This paper presents experience and insights of Tecnatom in the support of internal and external clients to develop a strong Leadership for Safety. Several cases are presented briefly: (a) The leadership and culture change activities for a utility, a radwaste company, and for Tecnatom itself. One important characteristic of the work performed is the detailed consideration of the underlying organizational culture that underpins the safety culture. Measurable improvements have been achieved and some of the key insights are shared in this paper. (b) The development and implementation of a leadership model with 17 competencies, including safety explicitly. One benefit of this model is that allows to perform a quantitative assessment of leadership effectiveness, something vital to be able to ensure that leadership development actions are truly supporting safety. The model uses an approach to development oriented to strengths and the use of companion competencies to further develop leadership. Moreover it aims to produce significant improvements on safety but also on performance, since both are not competing goals when the proper leadership model is selected. The training material prepared was shortlisted in the 2014 Nuclear Training Awards. (c) The design and implementation of a training development program on Safety Culture, and required competencies of Leadership, for Top Managers of the nuclear industry, as part of the project NUSHARE of the European Commission’s 7th research framework program. The program is sensible to the reduced time availability of Top Managers and uses a combination of learning approaches (webinars, micro-elearnings, web meetings) that provide higher flexibility for the learner, but complemented with other proven methods (group dialog, journaling, mentoring, etc.) to ensure that the program is effective. All these experiences reveal that to improve the organizational Safety Culture we need to enhance Leadership for Safety and Performance

  13. The impact of nursing leadership on patient safety in a developing country.

    Science.gov (United States)

    Stewart, Lee; Usher, Kim

    2010-11-01

    This article is a report of a study to identify the ways nursing leaders and managers in a developing country have an impact on patient safety. The attempt to address the problem of patient safety in health care is a global issue. Literature addressing the significant impact that nursing leadership has on patient safety is extensive and focuses almost exclusively on the developed world. A critical ethnography was conducted with senior registered nursing leaders and managers throughout the Fiji Islands, specifically those in the Head Office of the Fiji Ministry of Health and the most senior nurse in a hospital or community health service. Semi-structured interviews were conducted with senior nursing leaders and managers in Fiji. Thematic analysis of the interviews was undertaken from a critical theory perspective, with reference to the macro socio-political system of the Fiji Ministry of Health. Four interrelated issues regarding the nursing leaders and managers' impact on patient safety emerged from the study. Empowerment of nursing leaders and managers, an increased focus on the patient, the necessity to explore conditions for front-line nurses and the direct relationship between improved nursing conditions and increased patient safety mirrored literature from developed countries. The findings have significant implications for developing countries and it is crucial that support for patient safety in developing countries become a focus for the international nursing community. Nursing leaders and managers' increased focus on their own place in the hierarchy of the health care system and on nursing conditions as these affect patient safety could decrease adverse patient outcomes. The findings could assist the global nursing community to better support developing countries in pursuing a patient safety agenda. © 2010 Blackwell Publishing Ltd.

  14. Integrated risk management of safety and development on transportation corridors

    International Nuclear Information System (INIS)

    Thekdi, Shital A.; Lambert, James H.

    2015-01-01

    Prioritization of investments to protect safety and performance of multi-regional transportation networks from adjacent land development is a key concern for infrastructure agencies, land developers, and other stakeholders. Despite ample literature describing relationships between transportation and land use, no evidence-based methods exist for monitoring corridor needs on a large scale. Risk analysis is essential to the preservation of system safety and capacity, including avoidance of costly retrofits, regret, and belated action. This paper introduces the Corridor Trace Analysis (CTA) for prioritizing corridor segments that are vulnerable to adjacent land development. The method integrates several components: (i) estimation of likelihood of adjacent land development, using influence diagram and rule-based modeling, (ii) characterization of access point density using geospatial methods, and (iii) plural-model evaluation of corridors, monitoring indices of land development likelihood, access point densities, and traffic volumes. The results inform deployment of options that include closing access points, restricting development, and negotiation of agencies and developers. The CTA method is demonstrated on a region encompassing 6000 centerline miles (about 10,000 km) of transportation corridors. The method will be of interest to managers investing in safety and performance of infrastructure systems, balancing safety, financial, and other criteria of concern for diverse stakeholders. - Highlights: • The Corridor Trace Analysis (CTA) method for prioritizing transportation corridors. • The CTA method studies corridors vulnerable to adjacent land development. • The CTA method quantifies the influence of risk scenarios on agency priorities. • The CTA method is demonstrated on 6000 miles of critical transportation corridor

  15. Developing patient safety in dentistry.

    Science.gov (United States)

    Pemberton, M N

    2014-10-01

    Patient safety has always been important and is a source of public concern. Recent high profile scandals and subsequent reports, such as the Francis report into the failings at Mid Staffordshire, have raised those concerns even higher. Mortality and significant morbidity associated with the practice of medicine has led to many strategies to help improve patient safety, however, with its lack of associated mortality and lower associated morbidity, dentistry has been slower at systematically considering how patient safety can be improved. Recently, several organisations, researchers and clinicians have discussed the need for a patient safety culture in dentistry. Strategies are available to help improve patient safety in healthcare and deserve further consideration in dentistry.

  16. The role of safety analyses in site selection. Some personal observations based on the experience from the Swiss site selection process

    Energy Technology Data Exchange (ETDEWEB)

    Zuidema, Piet [Nagra, Wettingen (Switzerland)

    2015-07-01

    geological barrier (host rock and confining units); long-term stability (erosion, differential movements, etc.); reliability of geological information (explorability; predictability); technical feasibility (sufficient space for allocating the disposal rooms; depth of repository; rock strength, etc.). For some of these issues, rather detailed quantitative analyses are made (e.g. for erosion). Besides long-term safety, also operational safety is considered. This is done to ensure that suitable sites are chosen for the surface infrastructure (waste acceptance facilities, entrance to access to underground). The main emphasis is on external events (e.g. very severe flooding) that need to be avoided. The involvement of society in the site selection process is also very important. This requires that the scientific information needed (and wanted) by society is delivered in a format understandable to them. This helps society develop an understanding of the question ''why here and not there'' in the siting decision; something that is considered essential to get the necessary support for the siting decision.

  17. The role of safety analyses in site selection. Some personal observations based on the experience from the Swiss site selection process

    International Nuclear Information System (INIS)

    Zuidema, Piet

    2015-01-01

    geological barrier (host rock and confining units); long-term stability (erosion, differential movements, etc.); reliability of geological information (explorability; predictability); technical feasibility (sufficient space for allocating the disposal rooms; depth of repository; rock strength, etc.). For some of these issues, rather detailed quantitative analyses are made (e.g. for erosion). Besides long-term safety, also operational safety is considered. This is done to ensure that suitable sites are chosen for the surface infrastructure (waste acceptance facilities, entrance to access to underground). The main emphasis is on external events (e.g. very severe flooding) that need to be avoided. The involvement of society in the site selection process is also very important. This requires that the scientific information needed (and wanted) by society is delivered in a format understandable to them. This helps society develop an understanding of the question ''why here and not there'' in the siting decision; something that is considered essential to get the necessary support for the siting decision.

  18. Agility in Development of Safety-Critical Software: A Conceptual Model

    DEFF Research Database (Denmark)

    Tordrup Heeager, Lise; Nielsen, Peter Axel

    2018-01-01

    Safety-critical information systems are being used increasingly as we see applications in new areas such as personal medical devices, traffic control and detection of pathogens. A current research debate is whether safety-critical systems must be developed with traditional waterfall processes...

  19. Approach to developing a ground-motion design basis for facilities important to safety at Yucca Mountain

    International Nuclear Information System (INIS)

    King, J.L.

    1990-01-01

    This paper discusses a methodology for developing a ground-motion design basis for prospective facilities at Yucca Mountain that are important to safety. The methodology utilizes a guasi-deterministic construct called the 10,000-year cumulative-slip earthquake that is designed to provide a conservative, robust, and reproducible estimate of ground motion that has a one-in-ten chance of occurring during the preclosure period. This estimate is intended to define a ground-motion level for which the seismic design would ensure minimal disruption to operations engineering analyses to ensure safe performance are included

  20. Development of Manitoba Hydro's public water safety around dams management guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Dave; McPhail, Gord; Murphy, Shayla; Schellenberg, Gord [KGS Acres, Winnipeg, (Canada); Read, Nick [Manitoba Hydro, Winnipeg, (Canada)

    2010-07-01

    Several drowning fatalities and safety incidents have occurred around dams in Ontario, Manitoba and other jurisdictions in Canada. Following these incidents, Manitoba Hydro implemented several measures to improve public safety around its dams with the development of a warning signs manual. Manitoba Hydro found that a standard centralized approach to the process of improving public safety is better for ensuring compliance and consistency, even though they have safety measures in place. This paper described the process that Manitoba Hydro has followed in developing a formal set of public water safety around dams (PWSD) guidelines and a program for implementing these guidelines. This program was developed with the intent of providing a high standard of public protection and continuous improvement and monitoring on par with the effect spent on similar dam safety type programs. This paper focused on the development of the pilot PWSD management plan for Pine Falls generating station in order to test the effectiveness and usability of the guidelines.

  1. Contemporary Approaches to Safety Culture: Lessons from Developing a Regulatory Oversight Approach

    International Nuclear Information System (INIS)

    Goebel, V.; Heppell-Masys, K.

    2016-01-01

    The Canadian Nuclear Safety Commission (CNSC) regulates the use of nuclear energy and materials to protect health, safety, security and the environment, and to implement Canada’s international commitments on the peaceful use of nuclear energy; and to disseminate objective scientific, technical and regulatory information to the public. In the late 1990s, the CNSC conducted research into an Organization and Management (O&M) assessment method. Based on this research the CNSC conducted O&M assessments at all Canadian nuclear power plants and conducted additional assessments of nuclear research and uranium mine and mill operations. The results of these assessments were presented to licencees and used to inform their ongoing actions related to safety culture. Additional safety culture outreach and oversight activities provided licencees with opportunities to develop effective safety culture assessment methods, to share best practices across industry, and to strive for continual improvement of their organizations. Recent changes to the Canadian Standards Association (CSA) management system standard have resulted in the inclusion of requirements associated to safety culture and human performance. Representatives from several sectors of Canada’s nuclear industry, as well as participation from regulators such as the CNSC took part to the development of this consensus standard. Specifically, these requirements focus on monitoring and understanding safety culture, integrating safety into all of the requirements of the management system, committing workers to adhere to the management system and supporting excellence in workers’ performance. The CNSC is currently developing a regulatory document on safety culture which includes key concepts applicable to all licencees and specific requirements related to self-assessment, and additional guidance for nuclear power plants. Developing a regulatory document on safety culture requires consultation and fact finding initiatives at

  2. Safety Basis Report

    International Nuclear Information System (INIS)

    R.J. Garrett

    2002-01-01

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities

  3. Safety Basis Report

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2002-01-14

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  4. 10CFR50.59 safety evaluation training and expert system development

    International Nuclear Information System (INIS)

    Kline, S.W.; Dickinson, D.B.

    1988-01-01

    10CFR50.59 permits utilities to make changes to and conduct tests or experiments on operating nuclear power plants without prior US Nuclear Regulatory Commission (NCR) approval unless the proposed change, test, or experiment (i.e, the proposed activity) involves a change to the plant technical specifications or an unreviewed safety question (USQ). To provide guidance to their engineers for making the determination of whether a proposed activity involves a USQ. Bechtel has developed a safety evaluation training program. This training program incorporates the guidance in and NRC comments to the November 1987 draft Nuclear Management and Resources Council safety evaluation guidance document, NRC statements contained in inspection reports and other documents, and the experience of senior Bechtel engineers. To further develop the question and concerns that need to be addressed in a safety evaluation in a systematic manner, Bechtel is incorporating the training program guidance and other information into an IBM PC-AT-based working model of an expert system using the NEXPERT expert system development tool. The development and use of this expert system working model are being undertaken to provide consistency and completeness to the thought process used and the output provided by Bechtel engineers when performing a safety evaluation

  5. Safety of High Speed Ground Transportation Systems : Analytical Methodology for Safety Validation of Computer Controlled Subsystems : Volume 2. Development of a Safety Validation Methodology

    Science.gov (United States)

    1995-01-01

    This report describes the development of a methodology designed to assure that a sufficiently high level of safety is achieved and maintained in computer-based systems which perform safety cortical functions in high-speed rail or magnetic levitation ...

  6. Cultivating and Development — 30 Years Practice of Safety Culture in China

    International Nuclear Information System (INIS)

    Hu, L.; Zhang, Y.; Zhang, W.; Xu, G.

    2016-01-01

    The safety culture has been cultivated and promoted in China since its very beginning by IAEA. The 1st stage—stage of start and exploration—was from 1984 to 2007, in which the international concept of safety culture was imported and studied, with the process of combination and convergence with the positive elements of Chinese traditional culture. The basic ideas, such as the principles and directing ideas for the nuclear safety, were established in China. The 2nd stage — stage of practice and growing — was from 2007 to 2014, where safety culture was promoted by the Government, and the regulatory body NNSA established its basic supervision value based on the safety culture. The Chinese nuclear industry was encouraged to develop their of safety culture in a vivid form of presenting. The 3rd stage — stage of fast development — is from 2014 to now. The Chinese president Xi announce the Chinese Nuclear Safety View in The Hague in March 2014, showing the states position regarding the nuclear safety and safety culture. The policy declaration was issued and the nuclear safety promotion special action was carried out by NNSA. Safety culture is widely accepted and acknowledged by the nuclear and radioactivity relevant industry. (author)

  7. Progress in the development of methodology for fusion safety systems studies

    International Nuclear Information System (INIS)

    Ho, S.K.; Cambi, G.; Ciattaglia, S.; Fujii-e, Y.; Seki, Y.

    1994-01-01

    The development of fusion safety systems-study methodology, including the aspects of schematic classification of overall fusion safety system, qualitative assessment of fusion system for identification of critical accident scenarios, quantitative analysis of accident consequences and risk for safety design evaluation, and system-level analysis of accident consequences and risk for design optimization, by a consortium of international efforts is presented. The potential application of this methodology into reactor design studies will facilitate the systematic assessment of safety performance of reactor designs and enhance the impacts of safety considerations on the selection of design configurations

  8. Probabilistic safety assessment for research reactors

    International Nuclear Information System (INIS)

    1986-12-01

    Increasing interest in using Probabilistic Safety Assessment (PSA) methods for research reactor safety is being observed in many countries throughout the world. This is mainly because of the great ability of this approach in achieving safe and reliable operation of research reactors. There is also a need to assist developing countries to apply Probabilistic Safety Assessment to existing nuclear facilities which are simpler and therefore less complicated to analyse than a large Nuclear Power Plant. It may be important, therefore, to develop PSA for research reactors. This might also help to better understand the safety characteristics of the reactor and to base any backfitting on a cost-benefit analysis which would ensure that only necessary changes are made. This document touches on all the key aspects of PSA but placed greater emphasis on so-called systems analysis aspects rather than the in-plant or ex-plant consequences

  9. Provisional safety analyses for SGT stage 2 -- Models, codes and general modelling approach

    International Nuclear Information System (INIS)

    2014-12-01

    In the framework of the provisional safety analyses for Stage 2 of the Sectoral Plan for Deep Geological Repositories (SGT), deterministic modelling of radionuclide release from the barrier system along the groundwater pathway during the post-closure period of a deep geological repository is carried out. The calculated radionuclide release rates are interpreted as annual effective dose for an individual and assessed against the regulatory protection criterion 1 of 0.1 mSv per year. These steps are referred to as dose calculations. Furthermore, from the results of the dose calculations so-called characteristic dose intervals are determined, which provide input to the safety-related comparison of the geological siting regions in SGT Stage 2. Finally, the results of the dose calculations are also used to illustrate and to evaluate the post-closure performance of the barrier systems under consideration. The principal objective of this report is to describe comprehensively the technical aspects of the dose calculations. These aspects comprise: · the generic conceptual models of radionuclide release from the solid waste forms, of radionuclide transport through the system of engineered and geological barriers, of radionuclide transfer in the biosphere, as well as of the potential radiation exposure of the population, · the mathematical models for the explicitly considered release and transport processes, as well as for the radiation exposure pathways that are included, · the implementation of the mathematical models in numerical codes, including an overview of these codes and the most relevant verification steps, · the general modelling approach when using the codes, in particular the generic assumptions needed to model the near field and the geosphere, along with some numerical details, · a description of the work flow related to the execution of the calculations and of the software tools that are used to facilitate the modelling process, and · an overview of the

  10. Provisional safety analyses for SGT stage 2 -- Models, codes and general modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-12-15

    In the framework of the provisional safety analyses for Stage 2 of the Sectoral Plan for Deep Geological Repositories (SGT), deterministic modelling of radionuclide release from the barrier system along the groundwater pathway during the post-closure period of a deep geological repository is carried out. The calculated radionuclide release rates are interpreted as annual effective dose for an individual and assessed against the regulatory protection criterion 1 of 0.1 mSv per year. These steps are referred to as dose calculations. Furthermore, from the results of the dose calculations so-called characteristic dose intervals are determined, which provide input to the safety-related comparison of the geological siting regions in SGT Stage 2. Finally, the results of the dose calculations are also used to illustrate and to evaluate the post-closure performance of the barrier systems under consideration. The principal objective of this report is to describe comprehensively the technical aspects of the dose calculations. These aspects comprise: · the generic conceptual models of radionuclide release from the solid waste forms, of radionuclide transport through the system of engineered and geological barriers, of radionuclide transfer in the biosphere, as well as of the potential radiation exposure of the population, · the mathematical models for the explicitly considered release and transport processes, as well as for the radiation exposure pathways that are included, · the implementation of the mathematical models in numerical codes, including an overview of these codes and the most relevant verification steps, · the general modelling approach when using the codes, in particular the generic assumptions needed to model the near field and the geosphere, along with some numerical details, · a description of the work flow related to the execution of the calculations and of the software tools that are used to facilitate the modelling process, and · an overview of the

  11. Workforce perceptions of hospital safety culture: development and validation of the patient safety climate in healthcare organizations survey.

    Science.gov (United States)

    Singer, Sara; Meterko, Mark; Baker, Laurence; Gaba, David; Falwell, Alyson; Rosen, Amy

    2007-10-01

    To describe the development of an instrument for assessing workforce perceptions of hospital safety culture and to assess its reliability and validity. Primary data collected between March 2004 and May 2005. Personnel from 105 U.S. hospitals completed a 38-item paper and pencil survey. We received 21,496 completed questionnaires, representing a 51 percent response rate. Based on review of existing safety climate surveys, we developed a list of key topics pertinent to maintaining a culture of safety in high-reliability organizations. We developed a draft questionnaire to address these topics and pilot tested it in four preliminary studies of hospital personnel. We modified the questionnaire based on experience and respondent feedback, and distributed the revised version to 42,249 hospital workers. We randomly divided respondents into derivation and validation samples. We applied exploratory factor analysis to responses in the derivation sample. We used those results to create scales in the validation sample, which we subjected to multitrait analysis (MTA). We identified nine constructs, three organizational factors, two unit factors, three individual factors, and one additional factor. Constructs demonstrated substantial convergent and discriminant validity in the MTA. Cronbach's alpha coefficients ranged from 0.50 to 0.89. It is possible to measure key salient features of hospital safety climate using a valid and reliable 38-item survey and appropriate hospital sample sizes. This instrument may be used in further studies to better understand the impact of safety climate on patient safety outcomes.

  12. Calculating the cost of research and Development in nuclear and radiation safety

    International Nuclear Information System (INIS)

    Matsulevich, N.Je.; Nosovs'ka, A.A.

    2010-01-01

    Methodological support assessing the cost of research and development in the area of nuclear and radiation safety regulation is considered. Basic methodological recommendations for determining labor expenditures for research and development in nuclear and radiation safety are provided.

  13. SEAFP and SEAL: safety and environmental aspects

    International Nuclear Information System (INIS)

    Gulden, W.; Raeder, J.; Cook, I.

    2000-01-01

    The Safety and Environmental Assessment of Fusion Power (SEAFP) programme undertaken in the period 1992-1995 formed part of the ongoing effort in the European Fusion Programme to consider the safety and environmental aspects of fusion power. The assessment started with the development of a tokamak fusion power plant model of 3000 MW of fusion power. The analyses of safety included detailed consideration of effluents from normal operation, occupational doses, accidents (concentrating on the worst possible), and waste management. SEAFP was also the starting point for the Safety and Environmental Assessment of Fusion Power -- Long Term Programme (SEAL) initiated within the European Fusion Programme in 1995. SEAL aims at broadening the scope and elaborating selected aspects in more detail. SEAFP and SEAL confirmed the favourable safety and environmental characteristics of fusion power. They also confirmed the need to support these characteristics by dedicated materials development and safety-related design decisions. Recently, a new study on fusion safety (SEAFP-2) has been launched, defined for the time period 1997-1998, using SEAFP and SEAL findings as starting points

  14. Operational safety - the IAEA response

    International Nuclear Information System (INIS)

    Rosen, M.

    1984-01-01

    Nuclear safety is an international issue. The role of the International Atomic Energy Agency is growing because it offers a centre for contact and exchange between East and West, North and South. New initiatives are under way to intensify international co-operative safety efforts through exchange of information on abnormal events at nuclear power plants, and through greater sharing of safety research results. Emergency preparedness also lends itself to international co-operation. A report has been prepared on the need for establishing mutual emergency assistance. By analysing possible constraints to bilateral or multinational efforts in advance, a basis for agreement at the time of an emergency is being worked out. Safety standards have been developed in several areas. The NUSS Codes and Guides, now almost complete, make available to countries starting a nuclear power programme a coherent set of nuclear safety standards. A revised set of Basic Safety Standards for Radiation Protection has been issued in 1982. (author)

  15. Is road safety management linked to road safety performance?

    Science.gov (United States)

    Papadimitriou, Eleonora; Yannis, George

    2013-10-01

    This research aims to explore the relationship between road safety management and road safety performance at country level. For that purpose, an appropriate theoretical framework is selected, namely the 'SUNflower' pyramid, which describes road safety management systems in terms of a five-level hierarchy: (i) structure and culture, (ii) programmes and measures, (iii) 'intermediate' outcomes'--safety performance indicators (SPIs), (iv) final outcomes--fatalities and injuries, and (v) social costs. For each layer of the pyramid, a composite indicator is implemented, on the basis of data for 30 European countries. Especially as regards road safety management indicators, these are estimated on the basis of Categorical Principal Component Analysis upon the responses of a dedicated road safety management questionnaire, jointly created and dispatched by the ETSC/PIN group and the 'DaCoTA' research project. Then, quasi-Poisson models and Beta regression models are developed for linking road safety management indicators and other indicators (i.e. background characteristics, SPIs) with road safety performance. In this context, different indicators of road safety performance are explored: mortality and fatality rates, percentage reduction in fatalities over a given period, a composite indicator of road safety final outcomes, and a composite indicator of 'intermediate' outcomes (SPIs). The results of the analyses suggest that road safety management can be described on the basis of three composite indicators: "vision and strategy", "budget, evaluation and reporting", and "measurement of road user attitudes and behaviours". Moreover, no direct statistical relationship could be established between road safety management indicators and final outcomes. However, a statistical relationship was found between road safety management and 'intermediate' outcomes, which were in turn found to affect 'final' outcomes, confirming the SUNflower approach on the consecutive effect of each layer

  16. Development and initial validation of an Aviation Safety Climate Scale.

    Science.gov (United States)

    Evans, Bronwyn; Glendon, A Ian; Creed, Peter A

    2007-01-01

    A need was identified for a consistent set of safety climate factors to provide a basis for aviation industry benchmarking. Six broad safety climate themes were identified from the literature and consultations with industry safety experts. Items representing each of the themes were prepared and administered to 940 Australian commercial pilots. Data from half of the sample (N=468) were used in an exploratory factor analysis that produced a 3-factor model of Management commitment and communication, Safety training and equipment, and Maintenance. A confirmatory factor analysis on the remaining half of the sample showed the 3-factor model to be an adequate fit to the data. The results of this study have produced a scale of safety climate for aviation that is both reliable and valid. This study developed a tool to assess the level of perceived safety climate, specifically of pilots, but may also, with minor modifications, be used to assess other groups' perceptions of safety climate.

  17. Patient safety climate profiles across time: Strength and level of safety climate associated with a quality improvement program in Switzerland—A cross-sectional survey study

    Science.gov (United States)

    Mascherek, Anna C.

    2017-01-01

    Safety Climate has been acknowledged as an unspecific factor influencing patient safety. However, studies rarely provide in-depth analysis of climate data. As a helpful approach, the concept of “climate strength” has been proposed. In the present study we tested the hypotheses that even if safety climate remains stable on mean-level across time, differences might be evident in strength or shape. The data of two hospitals participating in a large national quality improvement program were analysed for differences in climate profiles at two measurement occasions. We analysed differences on mean-level, differences in percent problematic response, agreement within groups, and frequency histograms in two large hospitals in Switzerland at two measurement occasions (2013 and 2015) applying the Safety Climate Survey. In total, survey responses of 1193 individuals were included in the analyses. Overall, small but significant differences on mean-level of safety climate emerged for some subgroups. Also, although agreement was strong at both time-points within groups, tendencies of divergence or consensus were present in both hospitals. Depending on subgroup and analyses chosen, differences were more or less pronounced. The present study illustrated that taking several measures into account and describing safety climate from different perspectives is necessary in order to fully understand differences and trends within groups and to develop interventions addressing the needs of different groups more precisely. PMID:28753633

  18. Sensitivity studies for 3-D rod ejection analyses on axial power shape

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min-Ho; Park, Jin-Woo; Park, Guen-Tae; Ryu, Seok-Hee; Um, Kil-Sup; Lee, Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)

    2015-10-15

    The current safety analysis methodology using the point kinetics model combined with numerous conservative assumptions result in unrealistic prediction of the transient behavior wasting huge margin for safety analyses while the safety regulation criteria for the reactivity initiated accident are going strict. To deal with this, KNF is developing a 3-D rod ejection analysis methodology using the multi-dimensional code coupling system CHASER. The CHASER system couples three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST using message passing interface (MPI). A sensitivity study for 3-D rod ejection analysis on axial power shape (APS) is carried out to survey the tendency of safety parameters by power distributions and to build up a realistic safety analysis methodology while maintaining conservatism. The currently developing 3-D rod ejection analysis methodology using the multi-dimensional core transient analysis code system, CHASER was shown to reasonably reflect the conservative assumptions by tuning up kinetic parameters.

  19. Developing guidance in the nuclear criticality safety assessment for fuel cycle facilities

    International Nuclear Information System (INIS)

    Galet, C.; Evo, S.

    2012-01-01

    In this poster IRSN (Institute for radiation protection and nuclear safety) presents its safety guides whose purpose is to transmit the safety assessment know-how to any 'junior' staff or even to give a view of the safety approach on the overall risks to any staff member. IRSN has written a first version of such a safety guide for fuel cycle facilities and laboratories. It is organized into several chapters: some refer to types of assessments, others concern the types of risks. Currently, this guide contains 13 chapters and each chapter consists of three parts. In parallel to the development of criticality chapter of this guide, the IRSN criticality department has developed a nuclear criticality safety guide. It follows the structure of the three parts fore-mentioned, but it presents a more detailed first part and integrates, in the third part, the experience feedback collected on nuclear facilities. The nuclear criticality safety guide is online on the IRSN's web site

  20. An Innovative Hybrid Loop-Pool SFR Design and Safety Analysis Methods: Today and Tomorrow

    International Nuclear Information System (INIS)

    Hongbin Zhang; Haihua Zhao; Vincent Mousseau

    2008-01-01

    Investment in commercial sodium cooled fast reactor (SFR) power plants will become possible only if SFRs achieve economic competitiveness as compared to light water reactors and other Generation IV reactors. Toward that end, we have launched efforts to improve the economics and safety of SFRs from the thermal design and safety analyses perspectives at Idaho National Laboratory. From the thermal design perspective, an innovative hybrid loop-pool SFR design has been proposed. This design takes advantage of the inherent safety of a pool design and the compactness of a loop design to further improve economics and safety. From the safety analyses perspective, we have initiated an effort to develop a high fidelity reactor system safety code

  1. Safety and environmental requirements and design targets for TIBER-II

    International Nuclear Information System (INIS)

    Piet, S.J.

    1987-09-01

    A consistent set of safety and environmental requirements and design targets was proposed and adopted for the TIBER-II (Tokamak Ignition/Burn Experimental Reactor) design effort. TIBER-II is the most recent US version of a fusion experimental test reactor (ETR). These safety and environmental design targets were one contribution of the Fusion Safety Program in the TIBER-II design effort. The other contribution, safety analyses, is documented in the TIBER-II design report. The TIBER-II approach, described here, concentrated on logical development of, first, a complete and consistent set of safety and environmental requirements that are likely appropriate for an ETR, and, second, an initial set of design targets to guide TIBER-II. Because of limited time in the TIBER-II design effort, the iterative process only included one iteration - one set of targets and one design. Future ETR design efforts should therefore build on these design targets and the associated safety analyses. 29 refs., 5 figs., 3 tabs

  2. The critical issue of nuclear power plant safety in developing countries

    International Nuclear Information System (INIS)

    Rosen, M.

    1977-01-01

    A little more than a decade from now, large commercial nuclear power facilities will be in operation in almost 40 countries, of which approximately one-half are presently considered industrially less developed. Ambitious nuclear programmes coupled with minimal and frequently under-staffed regulatory and utility organizations are only one aspect of the difficulties related to the safety of nuclear plants that face these developing countries. Inherent problems of meeting current safety standards and requirements for the significantly non-standard nuclear power plant exports can be compounded by financial considerations that may lead to purchases of reactors of various types, from more than one supplier country and with different safety standards and requirements. An examination of these issues points to the necessity and opportunity for effective action which could include provision for adequate funding for safety considerations in the purchase contract, and for sufficient regulatory assistance and training from the developed countries. The article will introduce the topic, discuss specific examples, and offer some suggestions. (author)

  3. Safety climate and firefighting: Focus group results.

    Science.gov (United States)

    DeJoy, David M; Smith, Todd D; Dyal, Mari-Amanda

    2017-09-01

    Firefighting is a hazardous occupation and there have been numerous calls for fundamental changes in how fire service organizations approach safety and balance safety with other operational priorities. These calls, however, have yielded little systematic research. As part of a larger project to develop and test a model of safety climate for the fire service, focus groups were used to identify potentially important dimensions of safety climate pertinent to firefighting. Analyses revealed nine overarching themes. Competency/professionalism, physical/psychological readiness, and that positive traits sometimes produce negative consequences were themes at the individual level; cohesion and supervisor leadership/support at the workgroup level; and politics/bureaucracy, resources, leadership, and hiring/promotion at the organizational level. A multi-level perspective seems appropriate for examining safety climate in firefighting. Safety climate in firefighting appears to be multi-dimensional and some dimensions prominent in the general safety climate literature also seem relevant to firefighting. These results also suggest that the fire service may be undergoing transitions encompassing mission, personnel, and its fundamental approach to safety and risk. These results help point the way to the development of safety climate measures specific to firefighting and to interventions for improving safety performance. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  4. A new approach to determine the environmental qualification requirements for the safety related equipment

    International Nuclear Information System (INIS)

    Hasnaoui, C.; Parent, G.

    2000-01-01

    The objective of the environmental qualification of safety related equipment is to ensure that the plant defense-in-depth is not compromised by common mode failures following design basis accidents with a harsh environment. A new approach based on safety functions has been developed to determine what safety-related equipment is required to function during and after a design basis accident, as well as their environmental qualification requirements. The main feature of this approach is to use auxiliary safety functions established from safety requirements as credited in the safety analyses. This approach is undertaken in three steps: identification of the auxiliary safety functions of each main safety function; determination of the main equipment groups required for each auxiliary safety function; and review of the safety analyses for design basis accidents in order to determine the credited auxiliary safety functions and their mission times for each accident scenario. Some of the benefits of the proposed approach for the determination of the safety environmental qualification requirements are: a systematic approach for the review of safety analyses based on a safety function check list, and the insurance, with the availability of the safety functions, that Gentilly-2 defense-in-depth would not be compromised by design basis accidents with a harsh environment. (author)

  5. Safety assessment of high consequence robotics system

    International Nuclear Information System (INIS)

    Robinson, D.G.; Atcitty, C.B.

    1996-01-01

    This paper outlines the use of a failure modes and effects analysis for the safety assessment of a robotic system being developed at Sandia National Laboratories. The robotic system, the weigh and leak check system, is to replace a manual process for weight and leakage of nuclear materials at the DOE Pantex facility. Failure modes and effects analyses were completed for the robotics process to ensure that safety goals for the systems have been met. Due to the flexible nature of the robot configuration, traditional failure modes and effects analysis (FMEA) were not applicable. In addition, the primary focus of safety assessments of robotics systems has been the protection of personnel in the immediate area. In this application, the safety analysis must account for the sensitivities of the payload as well as traditional issues. A unique variation on the classical FMEA was developed that permits an organized and quite effective tool to be used to assure that safety was adequately considered during the development of the robotic system. The fundamental aspects of the approach are outlined in the paper

  6. Development of the reactor safety film

    International Nuclear Information System (INIS)

    Sheheen, N.N.; Hodson, P.J.

    1981-01-01

    The first computer-generated film of LASL's Reactor Safety efforts was developed using the ANIMATE framework, a program that adds visual capabilities to MAPPER. Numerous software limitations had to be overcome within a very limited production schedule. A significant achievement was the 15,000-vector-per-frame sequence depicting a pressurized water reactor core with parts flashing while pumps circulate fluid through the system

  7. The Dynamics of Agile Practices for Safety-Critical Software Development

    DEFF Research Database (Denmark)

    Nielsen, Peter Axel; Tordrup Heeager, Lise

    2017-01-01

    This short paper reports from a case study of the agile development of safety-critical software. It utilizes a framework of dynamic relationships between agile practices with the purpose of demonstrating the utility of the framework to understand a case in its context, and it shows significant...... dynamics. The study is concluded by pointing at which further research on the framework is required to use the framework in managing the agile development of safety-critical software....

  8. Factor Analysis and Framework Development for Incorporating Public Trust on Nuclear Safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seongkyung; Lee, Gyebong [The Myongji Univ., Seoul (Korea, Republic of); Lee, Gihyung; Lee, Gyehwi; Jeong, Jina [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    The Korea Institute of Nuclear Safety (KINS), a regulatory expert organization in charge of nuclear safety in Korea, realized that a more fundamental and systematic analysis of activities is needed to actively meet the greater variety of concerns people have and increase the reliability of the results of regulation. Nuclear safety, a highly specialized field, has previously been discussed primarily from the viewpoint of the engineers who deal with the technology, but now 'public trust in nuclear safety' has to be viewed from the standpoint of the general public and from the socio-cultural perspective. Specific measures must be taken to examine which factors affect public trust and how we can secure and reproduce those factors to gain it. Also, an efficient system for incorporating public trust in nuclear safety must be established. In this study, various case studies were examined to identify the factors that affect public trust in nuclear safety. First, nuclear safety laws and information disclosure systems of major countries were examined by investigating data and conducting in-depth interviews. To explore a public framework concerning nuclear safety, big data of social media were analyzed. Also, Q methodology was used to analyze the risk schemata of the opinion leaders living in areas near nuclear power plants. Several surveys were conducted to analyze the amount of trust the public had in nuclear safety as well as their awareness of nuclear safety issues. Based on these analyses, factors affecting public trust in nuclear safety were extracted, and measures to build systems incorporating public trust in nuclear safety were proposed. This study addresses the public trust in nuclear safety on condition that the safety is ensured technically and mechanically.

  9. Factor Analysis and Framework Development for Incorporating Public Trust on Nuclear Safety issues

    International Nuclear Information System (INIS)

    Cho, Seongkyung; Lee, Gyebong; Lee, Gihyung; Lee, Gyehwi; Jeong, Jina

    2014-01-01

    The Korea Institute of Nuclear Safety (KINS), a regulatory expert organization in charge of nuclear safety in Korea, realized that a more fundamental and systematic analysis of activities is needed to actively meet the greater variety of concerns people have and increase the reliability of the results of regulation. Nuclear safety, a highly specialized field, has previously been discussed primarily from the viewpoint of the engineers who deal with the technology, but now 'public trust in nuclear safety' has to be viewed from the standpoint of the general public and from the socio-cultural perspective. Specific measures must be taken to examine which factors affect public trust and how we can secure and reproduce those factors to gain it. Also, an efficient system for incorporating public trust in nuclear safety must be established. In this study, various case studies were examined to identify the factors that affect public trust in nuclear safety. First, nuclear safety laws and information disclosure systems of major countries were examined by investigating data and conducting in-depth interviews. To explore a public framework concerning nuclear safety, big data of social media were analyzed. Also, Q methodology was used to analyze the risk schemata of the opinion leaders living in areas near nuclear power plants. Several surveys were conducted to analyze the amount of trust the public had in nuclear safety as well as their awareness of nuclear safety issues. Based on these analyses, factors affecting public trust in nuclear safety were extracted, and measures to build systems incorporating public trust in nuclear safety were proposed. This study addresses the public trust in nuclear safety on condition that the safety is ensured technically and mechanically

  10. Perspective on Secure Development Activities and Features of Safety I and C Systems

    International Nuclear Information System (INIS)

    Kang, Youngdoo; Yu, Yeong Jin; Kim, Hyungtae; Kwon, Yong il; Park, Yeunsoo; Choo, Jaeyul; Son, Jun Young; Jeong, Choong Heui

    2015-01-01

    The Enforcement Decree of the Act on Physical Protection and Radiological Emergency (ED-APPRE) was revised December 2013 to include security requirements on computer systems at nuclear facilities to protect those systems against malicious cyber-attacks. It means Cyber-Security-related measures, controls and activities of safety I and C systems against cyber-attacks shall meet the requirements of ED-APPRE. Still regulation upon inadvertent access or non-malicious modifications to the safety I and C systems is covered under the Nuclear Safety Act. The objective of this paper is to propose KINS' regulatory perspective on secure development and features against non-malicious access or modification of safety I and C systems. Secure development activities and features aim to prevent inadvertent and non-malicious access, and to prevent unwanted action from personnel or connected systems for ensuring reliable operation of safety I and C systems. Secure development activities of safety I and C systems are life cycle activities to ensure unwanted, unneeded and undocumented code is not incorporated into the systems. Secure features shall be developed, verified and qualified throughout the development life cycle

  11. Perspective on Secure Development Activities and Features of Safety I and C Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Youngdoo; Yu, Yeong Jin; Kim, Hyungtae; Kwon, Yong il; Park, Yeunsoo; Choo, Jaeyul; Son, Jun Young; Jeong, Choong Heui [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    The Enforcement Decree of the Act on Physical Protection and Radiological Emergency (ED-APPRE) was revised December 2013 to include security requirements on computer systems at nuclear facilities to protect those systems against malicious cyber-attacks. It means Cyber-Security-related measures, controls and activities of safety I and C systems against cyber-attacks shall meet the requirements of ED-APPRE. Still regulation upon inadvertent access or non-malicious modifications to the safety I and C systems is covered under the Nuclear Safety Act. The objective of this paper is to propose KINS' regulatory perspective on secure development and features against non-malicious access or modification of safety I and C systems. Secure development activities and features aim to prevent inadvertent and non-malicious access, and to prevent unwanted action from personnel or connected systems for ensuring reliable operation of safety I and C systems. Secure development activities of safety I and C systems are life cycle activities to ensure unwanted, unneeded and undocumented code is not incorporated into the systems. Secure features shall be developed, verified and qualified throughout the development life cycle.

  12. Development of an approach for the analysis of network technologies in safety related instrumentation and control systems with respect to the propagation and effect of postulated failures; Entwicklung eines Ansatzes zur Analyse der Netzwerktechnologien in sicherheitsrelevanten Leittechniksystemen hinsichtlich Verbreitung und Auswirkung postulierter Fehler

    Energy Technology Data Exchange (ETDEWEB)

    Herb, Joachim; Jopen, Manuela; Lindner, Falk; Piljugin, Ewgenij; Vogt, Pascal

    2015-06-15

    So far, safety related instrumentation and control (I and C) functions in nuclear power plants, such as controlling of safety systems, were mostly performed by conventional (analog) I and C equipment. For some years now, I and C systems and equipment in nuclear power plants worldwide, but also in Germany, are modernized by computer-based I and C systems. In signal processing of the computer-based I and C systems, modern network technologies are used both for internal and external communication, whereas the reliability and safety for information transfer and processing plays an important role. National and interna-tional operational experience shows a significant influence of communication in a net-worked I and C system on its reliability. The aim of the GRS within the project 361R01351 ''Development of an approach for an analysis of network technologies in safety related I and C systems in view of distribution and effect of postulated failures'' was to improve the expertise in the field of network communication, to investigate phenomenologically potential sources of failures and fault propagation paths (Network failures) in a generic I and C system as well as to develop methodic approaches for analyses of propagation and effect of postulated failures in typical networks. The GRS conducted extensive research in the field of ''Data communication in digital I and C systems''. In this report, the basic principles of data communication of computer-based I and C systems are presented. This includes, among other things, network topolo-gies, communication protocols and standards as well as generic failures. Additionally, the properties of different analysis methods and its applicability for reliability analyses of network communication in computer-based I and C systems are discussed. Based on state of the art evaluation, an analysis approach was developed, which takes into account the specific properties of network communication and

  13. Lessons learned - development of the tritium facilities 5480.23 safety analysis report and technical safety requirements

    International Nuclear Information System (INIS)

    Cappucci, A.J. Jr.; Bowman, M.E.; Goff, L.

    1997-01-01

    A review was performed which identified open-quotes Lessons Learnedclose quotes from the development of the 5480.23 Tritium Safety Analysis Report (SAR) and the Technical Safety Requirements (TSR) for the Tritium Facilities (TF). The open-quotes Lessons Learnedclose quotes were based on an evaluation of the use of the SRS procedures, processes, and work practices which contributed to the success or lack thereof. This review also identified recommendations and suggestions for improving the development of SARs and TSRs at SRS. The 5480.23 SAR describes the site for the TF, the various process systems in the process buildings, a complete hazards and accident analysis of the most significant hazards affecting the nearby offsite population, and the selection of safety systems, structures, and components to protect both the public and site workers. It also provides descriptions of important programs and processes which add defense in depth to public and worker protection

  14. Development of a British Road Safety Education Support Materials Curriculum.

    Science.gov (United States)

    Bouck, Linda H.

    Road safety education needs to be a vital component in the school curriculum. This paper describes a planned road safety education support materials curriculum developed to aid educators in the Wiltshire County (England) primary schools. Teaching strategies include topic webs, lecture, class discussion, group activities, and investigative learning…

  15. Development of Safety Grade PLC (POSAFE-Q) and Performance Test Results

    International Nuclear Information System (INIS)

    Kim, Chang Hwoi; Park, Won Man; Choi, Jong Gyun; Lee, Dong Young; No, Young Hun; Song, Seung Hwan

    2006-01-01

    The safety grade PLC (POSAFE-Q) is being developed in the Korea Nuclear Instrumentation and Control System (KNICS) R and D project. The PLC satisfies Safety Class 1E, Quality Class 1, and Seismic Category I. The software such as the RTOS and firmware are being developed according to the safety critical software life cycle. Especially, the formal method is applied to design the SRS (Software Requirement Spec.) and the SDS (Software Design Specification.) to be error-free. The POSAFE-Q has several modules such as processor module, input and output modules, communication modules, redundant processor module, redundant power modules, etc,. To verify the function and performance, several tests such as CT, IT and ST were performed. And also, the equipment qualification test for environment, EMI and EMC, and seismic ware performed. All tests are satisfied with the requirements and specification for safety grade PLC, and the criteria for safety system in nuclear power plants

  16. Development of Safety Grade PLC (POSAFE-Q) and Performance Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hwoi; Park, Won Man; Choi, Jong Gyun; Lee, Dong Young [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); No, Young Hun; Song, Seung Hwan [POSCON, Seoul (Korea, Republic of)

    2006-07-01

    The safety grade PLC (POSAFE-Q) is being developed in the Korea Nuclear Instrumentation and Control System (KNICS) R and D project. The PLC satisfies Safety Class 1E, Quality Class 1, and Seismic Category I. The software such as the RTOS and firmware are being developed according to the safety critical software life cycle. Especially, the formal method is applied to design the SRS (Software Requirement Spec.) and the SDS (Software Design Specification.) to be error-free. The POSAFE-Q has several modules such as processor module, input and output modules, communication modules, redundant processor module, redundant power modules, etc,. To verify the function and performance, several tests such as CT, IT and ST were performed. And also, the equipment qualification test for environment, EMI and EMC, and seismic ware performed. All tests are satisfied with the requirements and specification for safety grade PLC, and the criteria for safety system in nuclear power plants.

  17. Preliminary Safety Analysis Report for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Motloch, C.G.; Bonney, R.F.; Levine, J.D.; Masson, L.S.; Commander, J.C.

    1995-04-01

    This Preliminary Safety Analysis Report (PSAR), includes an indication of the magnitude of facility hazards, complexity of facility operations, and the stage of the facility life-cycle. It presents the results of safety analyses, safety assurance programs, identified vulnerabilities, compensatory measures, and, in general, the rationale describing why the Tokamak Physics Experiment (TPX) can be safely operated. It discusses application of the graded approach to the TPX safety analysis, including the basis for using Department of Energy (DOE) Order 5480.23 and DOE-STD-3009-94 in the development of the PSAR

  18. Analysis of international approaches which are used at development of theoperational safety performance indicators

    International Nuclear Information System (INIS)

    Lyigots'kij, O.Yi.; Nosovs'kij, A.V.; Chemeris, Yi.O.

    2009-01-01

    Description of international approaches and experience of the use of theoperational safety performance indicators system is provided for estimationof current status and making a decision on corrections in the operationpractice. The state of development of the operational safety performanceindicators system by the operating organization is overviewed. Thepossibility of application of international approaches during development ofthe integral safety performance indicators system is analyzed. Aims and tasksof future researches are formulated in relation to development of theintegral safety performance indicators system.

  19. Development of a Safety Management Web Tool for Horse Stables.

    Science.gov (United States)

    Leppälä, Jarkko; Kolstrup, Christina Lunner; Pinzke, Stefan; Rautiainen, Risto; Saastamoinen, Markku; Särkijärvi, Susanna

    2015-11-12

    Managing a horse stable involves risks, which can have serious consequences for the stable, employees, clients, visitors and horses. Existing industrial or farm production risk management tools are not directly applicable to horse stables and they need to be adapted for use by managers of different types of stables. As a part of the InnoEquine project, an innovative web tool, InnoHorse, was developed to support horse stable managers in business, safety, pasture and manure management. A literature review, empirical horse stable case studies, expert panel workshops and stakeholder interviews were carried out to support the design. The InnoHorse web tool includes a safety section containing a horse stable safety map, stable safety checklists, and examples of good practices in stable safety, horse handling and rescue planning. This new horse stable safety management tool can also help in organizing work processes in horse stables in general.

  20. Modeling the Relationship between Safety Climate and Safety Performance in a Developing Construction Industry: A Cross-Cultural Validation Study.

    Science.gov (United States)

    Zahoor, Hafiz; Chan, Albert P C; Utama, Wahyudi P; Gao, Ran; Zafar, Irfan

    2017-03-28

    This study attempts to validate a safety performance (SP) measurement model in the cross-cultural setting of a developing country. In addition, it highlights the variations in investigating the relationship between safety climate (SC) factors and SP indicators. The data were collected from forty under-construction multi-storey building projects in Pakistan. Based on the results of exploratory factor analysis, a SP measurement model was hypothesized. It was tested and validated by conducting confirmatory factor analysis on calibration and validation sub-samples respectively. The study confirmed the significant positive impact of SC on safety compliance and safety participation , and negative impact on number of self-reported accidents/injuries . However, number of near-misses could not be retained in the final SP model because it attained a lower standardized path coefficient value. Moreover, instead of safety participation , safety compliance established a stronger impact on SP. The study uncovered safety enforcement and promotion as a novel SC factor, whereas safety rules and work practices was identified as the most neglected factor. The study contributed to the body of knowledge by unveiling the deviations in existing dimensions of SC and SP. The refined model is expected to concisely measure the SP in the Pakistani construction industry, however, caution must be exercised while generalizing the study results to other developing countries.

  1. Safety performance of preliminary KALIMER conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Hahn Dohee; Kim Kyoungdoo; Kwon Youngmin; Chang Wonpyo; Suk Soodong [Korea atomic Energy Resarch Inst., Taejon (Korea)

    1999-07-01

    The Korea Atomic Energy Research Institute (KAERI) is developing KALIMER (Korea Advanced Liquid Metal Reactor), which is a sodium cooled, 150 MWe pool-type reactor. The safety design of KALIMER emphasizes accident prevention by using passive processes, which can be accomplished by the safety design objectives including the utilization of inherent safety features. In order to assess the effectiveness of the inherent safety features in achieving the safety design objectives, a preliminary evaluation of ATWS performance for the KALIMER design has been performed with SSC-K code, which is a modified version of SSC-L code. KAERI's modification of the code includes development of reactivity feedback models for the core and a pool model for KALIMER reactor vessel. This paper describes the models for control rod driveline expansion, gas expansion module and the thermal hydraulic model for reactor pool and the results of preliminary analyses for unprotected loss of flow and loss o heat sink. (author)

  2. Safety performance of preliminary KALIMER conceptual design

    International Nuclear Information System (INIS)

    Hahn Dohee; Kim Kyoungdoo; Kwon Youngmin; Chang Wonpyo; Suk Soodong

    1999-01-01

    The Korea Atomic Energy Research Institute (KAERI) is developing KALIMER (Korea Advanced Liquid Metal Reactor), which is a sodium cooled, 150 MWe pool-type reactor. The safety design of KALIMER emphasizes accident prevention by using passive processes, which can be accomplished by the safety design objectives including the utilization of inherent safety features. In order to assess the effectiveness of the inherent safety features in achieving the safety design objectives, a preliminary evaluation of ATWS performance for the KALIMER design has been performed with SSC-K code, which is a modified version of SSC-L code. KAERI's modification of the code includes development of reactivity feedback models for the core and a pool model for KALIMER reactor vessel. This paper describes the models for control rod driveline expansion, gas expansion module and the thermal hydraulic model for reactor pool and the results of preliminary analyses for unprotected loss of flow and loss o heat sink. (author)

  3. Challenges in developing competency-based training curriculum for food safety regulators in India

    Directory of Open Access Journals (Sweden)

    Anitha Thippaiah

    2014-01-01

    Full Text Available Context: The Food Safety and Standards Act have redefined the roles and responsibilities of food regulatory workforce and calls for highly skilled human resources as it involves complex management procedures. Aims: 1 Identify the competencies needed among the food regulatory workforce in India. 2 Develop a competency-based training curriculum for food safety regulators in the country. 3 Develop training materials for use to train the food regulatory workforce. Settings and Design: The Indian Institute of Public Health, Hyderabad, led the development of training curriculum on food safety with technical assistance from the Royal Society for Public Health, UK and the National Institute of Nutrition, India. The exercise was to facilitate the implementation of new Act by undertaking capacity building through a comprehensive training program. Materials and Methods: A competency-based training needs assessment was conducted before undertaking the development of the training materials. Results: The training program for Food Safety Officers was designed to comprise of five modules to include: Food science and technology, Food safety management systems, Food safety legislation, Enforcement of food safety regulations, and Administrative functions. Each module has a facilitator guide for the tutor and a handbook for the participant. Essentials of Food Hygiene-I (Basic level, II and III (Retail/ Catering/ Manufacturing were primarily designed for training of food handlers and are part of essential reading for food safety regulators. Conclusion: The Food Safety and Standards Act calls for highly skilled human resources as it involves complex management procedures. Despite having developed a comprehensive competency-based training curriculum by joint efforts by the local, national, and international agencies, implementation remains a challenge in resource-limited setting.

  4. Development of E-Learning Materials for Machining Safety Education

    Science.gov (United States)

    Nakazawa, Tsuyoshi; Mita, Sumiyoshi; Matsubara, Masaaki; Takashima, Takeo; Tanaka, Koichi; Izawa, Satoru; Kawamura, Takashi

    We developed two e-learning materials for Manufacturing Practice safety education: movie learning materials and hazard-detection learning materials. Using these video and sound media, students can learn how to operate machines safely with movie learning materials, which raise the effectiveness of preparation and review for manufacturing practice. Using these materials, students can realize safety operation well. Students can apply knowledge learned in lectures to the detection of hazards and use study methods for hazard detection during machine operation using the hazard-detection learning materials. Particularly, the hazard-detection learning materials raise students‧ safety consciousness and increase students‧ comprehension of knowledge from lectures and comprehension of operations during Manufacturing Practice.

  5. Improving occupational safety and health by integration into product development

    DEFF Research Database (Denmark)

    Broberg, Ole

    1996-01-01

    A cross-sectional case study was performed in a large company producing electro-mechanical products for industrial application. The objectives were: (i) to study the product development process and the role of key actors', (ii) to identify current practice on integrating occupational safety and h...... and studies of documents. A questionnaire regarding product development tasks and occupational safety and health were distributed to 30 design and production engineers. A total of 27 completed the questionnaire corresponding to a response rate of 90 per cent.......A cross-sectional case study was performed in a large company producing electro-mechanical products for industrial application. The objectives were: (i) to study the product development process and the role of key actors', (ii) to identify current practice on integrating occupational safety...... and health into the development process, especially the efforts and attitudes of design and production engineers', and (iii) to identify key actors'reflections on how to improve this integration. The study was based on qualitative as well as quantitative methods including interviews, questionnaires...

  6. Requirements of safety and reliability

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1977-01-01

    The safety strategy for nuclear power plants is characterized by the fact that the high level of safety was attained not as a result of experience, but on the basis of preventive accident analyses and the findings derived from such analyses. Although, in these accident analyses, the deterministic approach is predominant it is supplemented by reliability analyses. The accidents analyzed in nuclear licensing procedures cover a wide spectrum from minor incidents to the design basis accidents which determine the design of the safety devices. The initial and boundary conditions, which are essential for accident analyses, and the determination of the loads occuring in various states during regular operation and in accidents flow into the design of the individual systems and components. The inevitable residual risk and its origins are discussed. (orig./HP) [de

  7. Resolving the Ferrocyanide Safety Issue at the Hanford Site

    International Nuclear Information System (INIS)

    Meacham, J.E.; Cash, R.J.; Babad, H.

    1994-02-01

    Considerable data have been obtained on the chemical and physical properties of ferrocyanide waste stored in Hanford Site single-shell tanks (SSTs). Theoretical analyses and ferrocyanide waste simulant studies have led to the development of fuel, moisture, and temperature criteria that define continued safe storage. Developing the criteria provides the technical basis for closing the Ferrocyanide Unreviewed Safety Question (USQ). Using the safety criteria, the ferrocyanide tanks have been ranked into one of three safety categories: Safe, Conditionally Safe, and Unsafe. All the ferrocyanide tanks are currently ranked in either the Safe or Conditionally Safe categories. Analyses of core samples taken from three ferrocyanide tanks have shown cyanide concentrations about a factor of ten lower than predicted by the original flowsheets. Hydrolytic and radiolytic destruction (aging) of the ferrocyanide matrix has occurred during the 35 plus years the waste has been stored at the Hanford Site. Because of waste aging, it is possible that all of the ferrocyanide tanks may now contain less than the 8 wt % sodium nickel ferrocyanide specified in the fuel criterion for the Safe category. Ferrocyanide tanks that remain in the Conditionally Safe category may require monitoring and surveillance to verify that the waste remains in an unreactive state. Further characterization of the tanks by core sampling and analyses should lead to resolution of the Ferrocyanide Safety Issue by September 1997

  8. Development of safety enhancement technology of containment building

    International Nuclear Information System (INIS)

    Seo, Jeong Moon; Choun, Y. S.; Choi, I. K.

    2002-04-01

    This study consists of four research areas, (1) Seismic safety assessment, (2) Aging assessment of a containment building, (3) Prediction of long-term behavior and analysis of a containment building, (4) Performance verification of a containment building. In the seismic safety assessment area, responses of a containment building were monitored and the analysis method was verified. Also performed are the identification of earthquake characteristics and improvement of the seismic fragility analysis method. In the area of aging assessment of a containment building, we developed aging management code SLMS and database. Aging tests were performed for containment building materials and aging models were developed. Techniques for investigation, detection, and evaluation of aging were developed. In the area of prediction of long-term behavior and analysis of a containment building, we developed a non-linear structural analysis code NUCAS and material models. In the area of performance verification of a containment building, we analyzed the crack behavior of a containment wall and the behavior of the containment under internal pressure. We also improved the ISI methods for prestressed containment

  9. The development of NPP operational safety training courses

    International Nuclear Information System (INIS)

    Lee, Chang Kun; Lee, Duk Sun; Lee, Byung Sun; Lee, Won Koo; Juhn, Heng Run; Moon, Byung Soo; Cho, Min Sik; Lee, Han Young; Moon, Hak Won; Seo, Yeon Ho

    1987-12-01

    The objective of the project is to develop a training course text for the betterment of reactor operation and assurance of its safety in general by providing training materials of the advanced compact nuclear simulator which will become operation in September 1988. Main scope and contents of the project are as follows: - compilation of basic data related to simulator operation and maintenance as well as the comparative analysis with respect to simulator materials in foreign countries - method of training by simulator - review the training status by simulator in foreign countries - development of training course in the field of reactor safety It is expected that the results will be reflected to the actual training and retraining of the reactor operating crew so as to improve and update their capabilities in training fashion. (Author)

  10. Updated safety analysis of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Neill, E-mail: neill.taylor@iter.org [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Baker, Dennis; Ciattaglia, Sergio; Cortes, Pierre; Elbez-Uzan, Joelle; Iseli, Markus; Reyes, Susana; Rodriguez-Rodrigo, Lina; Rosanvallon, Sandrine; Topilski, Leonid [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2011-10-15

    An updated version of the ITER Preliminary Safety Report has been produced and submitted to the licensing authorities. It is revised and expanded in response to requests from the authorities after their review of an earlier version in 2008, to reflect enhancements in ITER safety provisions through design changes, to incorporate new and improved safety analyses and to take into account other ITER design evolution. The updated analyses show that changes to the Tokamak cooling water system design have enhanced confinement and reduced potential radiological releases as well as removing decay heat with very high reliability. New and updated accident scenario analyses, together with fire and explosion risk analyses, have shown that design provisions are sufficient to minimize the likelihood of accidents and reduce potential consequences to a very low level. Taken together, the improvements provided a stronger demonstration of the very good safety performance of the ITER design.

  11. Updated safety analysis of ITER

    International Nuclear Information System (INIS)

    Taylor, Neill; Baker, Dennis; Ciattaglia, Sergio; Cortes, Pierre; Elbez-Uzan, Joelle; Iseli, Markus; Reyes, Susana; Rodriguez-Rodrigo, Lina; Rosanvallon, Sandrine; Topilski, Leonid

    2011-01-01

    An updated version of the ITER Preliminary Safety Report has been produced and submitted to the licensing authorities. It is revised and expanded in response to requests from the authorities after their review of an earlier version in 2008, to reflect enhancements in ITER safety provisions through design changes, to incorporate new and improved safety analyses and to take into account other ITER design evolution. The updated analyses show that changes to the Tokamak cooling water system design have enhanced confinement and reduced potential radiological releases as well as removing decay heat with very high reliability. New and updated accident scenario analyses, together with fire and explosion risk analyses, have shown that design provisions are sufficient to minimize the likelihood of accidents and reduce potential consequences to a very low level. Taken together, the improvements provided a stronger demonstration of the very good safety performance of the ITER design.

  12. Review of accident analyses performed at Mochovce NPP

    International Nuclear Information System (INIS)

    Siko, D.

    2000-01-01

    In this paper the review of accident analysis performed in NPP Mochovce V-1 is presented. The scope of these safety measures was defined and development in the T SSM for NPP Mochovce Nuclear Safety Improvements Report' issued in July 1995. The main objectives of these safety measures were the followings: (a) to establish the criteria for selection and classification of accidental events, as well as defining the list of initiating events to be analysed. Accident classification to the individual groups must be performed in accordance with RG 1.70 and IAEA recommendations 'Guidelines for Accidental Analysis of WWER NPP' (IAEA-EBR-WWER-01) to select boundary cases to be calculated from the scope of initiating events; (b ) to elaborate the accident analysis methodology that also includes acceptance criteria for their result evaluation, initial and boundary conditions, assumption related with the application of the single failure criteria, requirements on the analysis quality, used computer codes, as well as NPP models and input data for the accident analysis; (c) to perform the accident analysis for the Pre-operational Safety Report (POSAR); (d) to provide a synthetic report addressing the validity range of codes models and correlations, the assessment against relevant tests results, the evidence of the user qualification, the modernisation and nodding scheme for the plant and the justification of used computer codes. Analyses results showed that all acceptance criteria were met with satisfactory margin and design of the NPP Mochovce is accurate. (author)

  13. The Impact of Occupational Safety on Logistics and Automation in Industrial Plants

    OpenAIRE

    Botti, Lucia

    2017-01-01

    Research on workplace health and safety analyses the integration of work practices with safety, health and wealth of people at work. The aim of occupational safety is to realize a safe and health work environment, eliminating or reducing the risks for workers' safety and health. The objective of this thesis is the study, integration, development and application of innovative approaches and models for decision-making support in the context of occupational safety in industrial plants and lo...

  14. Preliminary safety analysis for key design features of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, D. H.; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, S. O.; Lee, Y. B.; Jeong, K. S

    2000-07-01

    KAERI is currently developing the conceptual design of a liquid metal reactor, KALIMER(Korea Advanced Liquid Metal Reactor) under the long-term nuclear R and D program. In this report, descriptions of the KALIMER safety design features and safety analyses results for selected ATWS accidents are presented. First, the basic approach to achieve the safety goal is introduced in chapter 1, and the safety evaluation procedure for the KALIMER design is described in chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events. In chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure design performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram(ATWS) have been performed to investigate the KALIMER system response to the events. They are categorized as bounding events(BEs) because of their low probability of occurrence. In chapter 4, the design of the KALIMER containment dome and the results of its performance analysis are presented. The designs of the existing LMR containment and the KALIMER containment dome have been compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core kinetics and hydraulic behavior during HCDA in chapter 5. Mathematical formulations have been developed in the framework of the modified bethe-tait method, and scoping analyses have been performed for the KALIMER core behavior during super-prompt critical excursions.

  15. Role of management in the development of safety culture at the operating organization

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, W [International Atomic Energy Agency, Vienna (Austria)

    1997-09-01

    Role of management in the development of safety culture at the operating organization to offer practical suggestions to assist in the development or improvement of a progressive safety culture. 2 figs.

  16. Role of management in the development of safety culture at the operating organization

    International Nuclear Information System (INIS)

    Zhong, W.

    1997-01-01

    Role of management in the development of safety culture at the operating organization to offer practical suggestions to assist in the development or improvement of a progressive safety culture. 2 figs

  17. Boron analyses in the reactor coolant system of French PWR by acid-base titration ([B]) and ICP-MS (10B atomic %): key to NPP safety

    International Nuclear Information System (INIS)

    Jouvet, Fabien; Roux, Sylvie; Carabasse, Stephanie; Felgines, Didier

    2012-09-01

    Boron is widely used by Nuclear Power Plants and especially by EDF Pressurized Water Reactors to ensure the control of the neutron rate in the reactor coolant system and, by this way, the fission reaction. The Boron analysis is thus a major factor of safety which enables operators to guarantee the permanent control of the reactor. Two kinds of analyses carried out by EDF on the Boron species, recently upgraded regarding new method validation standards and developed to enhance the measurement quality by reducing uncertainties, will be discussed in this topic: Acid-Base titration of Boron and Boron isotopic composition by Inductively Coupled Plasma Mass Spectrometer - ICP MS. (authors)

  18. Development of FPGA-based safety-related I and C systems

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Y.; Oda, N.; Miyazaki, T.; Hayashi, T.; Sato, T.; Igawa, S. [08, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); 1, Toshiba-cho, Fuchu, Tokyo 183-8511 (Japan)

    2006-07-01

    Toshiba has developed Non-rewritable (NRW) Field Programmable Gate Array (FPGA)-based safety-related Instrumentation and Control (I and C) system [1]. Considering application to safety-related systems, nonvolatile and non-rewritable FPGA which is impossible to be changed after once manufactured has been adopted in Toshiba FPGA-based system. FPGA is a device which consists only of defined digital circuit: hardware, which performs defined processing. FPGA-based system solves issues existing both in the conventional systems operated by analog circuits (analog-based system) and the systems operated by central processing unit (CPU-based system). The advantages of applying FPGA are to keep the long-life supply of products, improving testability (verification), and to reduce the drift which may occur in analog-based system. The system which Toshiba developed this time is Power Range Monitor (PRM). Toshiba is planning to expand application of FPGA-based technology by adopting this development method to the other safety-related systems from now on. (authors)

  19. ITER safety

    International Nuclear Information System (INIS)

    Raeder, J.; Piet, S.; Buende, R.

    1991-01-01

    As part of the series of publications by the IAEA that summarize the results of the Conceptual Design Activities for the ITER project, this document describes the ITER safety analyses. It contains an assessment of normal operation effluents, accident scenarios, plasma chamber safety, tritium system safety, magnet system safety, external loss of coolant and coolant flow problems, and a waste management assessment, while it describes the implementation of the safety approach for ITER. The document ends with a list of major conclusions, a set of topical remarks on technical safety issues, and recommendations for the Engineering Design Activities, safety considerations for siting ITER, and recommendations with regard to the safety issues for the R and D for ITER. Refs, figs and tabs

  20. Defence-in-depth and development of safety requirements for advanced nuclear reactors

    International Nuclear Information System (INIS)

    Carnino, A.; Gasparini, M.

    2002-01-01

    The paper addresses a general approach for the preparation of the design safety requirements using the IAEA Safety Objectives and the strategy of defence-in-depth. It proposes a general method (top-down approach) to prepare safety requirements for a given kind of reactor using the IAEA requirements for nuclear power plants as a starting point through a critical interpretation and application of the strategy of defence-in-depth. The IAEA has recently developed a general methodology for screening the defence-in-depth of nuclear power plants starting from the fundamental safety objectives as proposed in the IAEA Safety Fundamentals. This methodology may provide a useful tool for the preparation of safety requirements for the design and operation of any kind of reactor. Currently the IAEA is preparing the technical basis for the development of safety requirements for Modular High Temperature Gas Reactors, with the aim of showing the viability of the method. A draft TECDOC has been prepared and circulated among several experts for comments. This paper is largely based on the content of the draft TECDOC. (authors)

  1. The patient safety climate in healthcare organizations (PSCHO) survey: Short-form development.

    Science.gov (United States)

    Benzer, Justin K; Meterko, Mark; Singer, Sara J

    2017-08-01

    Measures of safety climate are increasingly used to guide safety improvement initiatives. However, cost and respondent burden may limit the use of safety climate surveys. The purpose of this study was to develop a 15- to 20-item safety climate survey based on the Patient Safety Climate in Healthcare Organizations survey, a well-validated 38-item measure of safety climate. The Patient Safety Climate in Healthcare Organizations was administered to all senior managers, all physicians, and a 10% random sample of all other hospital personnel in 69 private sector hospitals and 30 Veterans Health Administration hospitals. Both samples were randomly divided into a derivation sample to identify a short-form subset and a confirmation sample to assess the psychometric properties of the proposed short form. The short form consists of 15 items represented 3 overarching domains in the long-form scale-organization, work unit, and interpersonal. The proposed short form efficiently captures 3 important sources of variance in safety climate: organizational, work-unit, and interpersonal. The short-form development process was a practical method that can be applied to other safety climate surveys. This safety climate short form may increase response rates in studies that involve busy clinicians or repeated measures. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  2. A Server-Client-Based Graphical Development Environment for Physics Analyses (VISPA)

    International Nuclear Information System (INIS)

    Bretz, H-P; Erdmann, M; Fischer, R; Hinzmann, A; Klingebiel, D; Komm, M; Müller, G; Rieger, M; Steffens, J; Steggemann, J; Urban, M; Winchen, T

    2012-01-01

    The Visual Physics Analysis (VISPA) project provides a graphical development environment for data analysis. It addresses the typical development cycle of (re-)designing, executing, and verifying an analysis. We present the new server-client-based web application of the VISPA project to perform physics analyses via a standard internet browser. This enables individual scientists to work with a large variety of devices including touch screens, and teams of scientists to share, develop, and execute analyses on a server via the web interface.

  3. Perspectives on the development of next generation reactor systems safety analysis codes

    International Nuclear Information System (INIS)

    Zhang, H.

    2015-01-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  4. Perspectives on the development of next generation reactor systems safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H., E-mail: Hongbin.Zhang@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States)

    2015-07-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  5. LWR safety studies. Analyses and further assessments relating to the German Risk Assessment Study on Nuclear Power Plants. Vol. 3

    International Nuclear Information System (INIS)

    1983-01-01

    Critical review of the analyses of the German Risk Assessment Study on Nuclear Power Plants (DRS) concerning the reliability of the containment under accident conditions and the conditions of fission product release (transport and distribution in the environment). Main point of interest in this context is an explosion in the steam section and its impact on the containment. Critical comments are given on the models used in the DRS for determining the accident consequences. The analyses made deal with the mathematical models and database for propagation calculations, the methods of dose computation and assessment of health hazards, and the modelling of protective and safety measures. Social impacts of reactor accidents are also considered. (RF) [de

  6. Confidence in the long-term safety of deep geological repositories. Its development and communication

    International Nuclear Information System (INIS)

    1999-01-01

    The technical aspects of confidence have been the subject of considerable debate, especially the concept of model validation. The safety case that is provided at a particular stage in the planning, construction, operation or closure of a deep geological repository is a part of a broader decision basis that guides the repository-development process. The basic steps for deriving the safety case at various stages of repository development involve: a safety assessment; and the documentation of the safety assessment, a statement of confidence in the safety indicated by the assessment, and the confirmation of the appropriateness of the safety strategy. The approaches to establish confidence in the evaluation of safety should aim to ensure that the decisions taken within the incremental process of repository development are well-founded. Various aspects of confidence in the evaluation of safety, and their integration within a safety case, are presented in detail in the present report. When communicating confidence in the findings of a safety assessment, clarity in the communication of concepts is always required. Consistent with this requirement, key concepts are specifically defined in the main text of the report. (R.P.)

  7. Technology and Tool Development to Support Safety and Mission Assurance

    Science.gov (United States)

    Denney, Ewen; Pai, Ganesh

    2017-01-01

    The Assurance Case approach is being adopted in a number of safety-mission-critical application domains in the U.S., e.g., medical devices, defense aviation, automotive systems, and, lately, civil aviation. This paradigm refocuses traditional, process-based approaches to assurance on demonstrating explicitly stated assurance goals, emphasizing the use of structured rationale, and concrete product-based evidence as the means for providing justified confidence that systems and software are fit for purpose in safely achieving mission objectives. NASA has also been embracing assurance cases through the concepts of Risk Informed Safety Cases (RISCs), as documented in the NASA System Safety Handbook, and Objective Hierarchies (OHs) as put forth by the Agency's Office of Safety and Mission Assurance (OSMA). This talk will give an overview of the work being performed by the SGT team located at NASA Ames Research Center, in developing technologies and tools to engineer and apply assurance cases in customer projects pertaining to aviation safety. We elaborate how our Assurance Case Automation Toolset (AdvoCATE) has not only extended the state-of-the-art in assurance case research, but also demonstrated its practical utility. We have successfully developed safety assurance cases for a number of Unmanned Aircraft Systems (UAS) operations, which underwent, and passed, scrutiny both by the aviation regulator, i.e., the FAA, as well as the applicable NASA boards for airworthiness and flight safety, flight readiness, and mission readiness. We discuss our efforts in expanding AdvoCATE capabilities to support RISCs and OHs under a project recently funded by OSMA under its Software Assurance Research Program. Finally, we speculate on the applicability of our innovations beyond aviation safety to such endeavors as robotic, and human spaceflight.

  8. Review of TSOs technical needs in safety research and development

    International Nuclear Information System (INIS)

    Rintamaa, R.; Bruna, G.

    2012-01-01

    ETSON is the network of European Technical Safety Organizations. The ETSON members have elaborated together a position paper which identifies and ranks the main research and development fields of endeavor in a short, mid and long term perspective. The main research areas and major needs are grouped in 7 areas: 1) safety assessment methods, 2) multi-physics safety approach (several disciplines, macroscopic and microscopic level), 3) Ageing of materials, 4) fuel behaviour, 5) human and organisational factors, 6) instrumentation and control, 7) Severe accidents: phenomenology and methodology, and severe accidents: crisis preparedness and major needs. ETSON has coordinated the activities with other European platforms and has widely contributed to the NUGENIA (Nuclear Generation 2 and 3 Association) topic research and development areas. The next step will be a prioritization of these needs

  9. Designing and Developing an Effective Safety Program for a Student Project Team

    Directory of Open Access Journals (Sweden)

    John Catton

    2018-05-01

    Full Text Available In the workplace, safety must be the first priority of all employers and employees alike. In order to maintain the safety and well-being of their employees, employers must demonstrate due diligence and provide the appropriate safety training to familiarize employees with the hazards within the workplace. Although, a student “project team” is not a business, the work done by students for their respective teams is synonymous with the work done in a place of business and thus requires that similar safety precautions and training be administered to students by their team leads and faculty advisors. They take on the role of supervisors within the team dynamic. Student teams often utilize the guidelines and policies that their universities or colleges have developed in order to build a set of standard operating procedures and safety training modules. These guidelines aid in providing a base for training for the team, however, they are no substitute for training specific to the safety risks associated with the work the team is doing. In order to comply with these requirements, a full analysis of the workplace is required to be completed. A variety of safety analysis techniques need to be applied to define the hazards within the workplace and institute appropriate measures to mitigate them. In this work, a process is developed for establishing a safety training program for a student project team, utilizing systems safety management techniques and the aspect of gamification to produce incentives for students to continue developing their skills. Although, systems safety management is typically applied to the design of active safety components or systems, the techniques for identifying and mitigating hazards can be applied in the same fashion to the workplace. They allow one to analyze their workplace and determine the hazards their employees might encounter, assign appropriate hazard ratings and segregate each respective hazard by their risks. In so

  10. Verification of reactor safety codes

    International Nuclear Information System (INIS)

    Murley, T.E.

    1978-01-01

    The safety evaluation of nuclear power plants requires the investigation of wide range of potential accidents that could be postulated to occur. Many of these accidents deal with phenomena that are outside the range of normal engineering experience. Because of the expense and difficulty of full scale tests covering the complete range of accident conditions, it is necessary to rely on complex computer codes to assess these accidents. The central role that computer codes play in safety analyses requires that the codes be verified, or tested, by comparing the code predictions with a wide range of experimental data chosen to span the physical phenomena expected under potential accident conditions. This paper discusses the plans of the Nuclear Regulatory Commission for verifying the reactor safety codes being developed by NRC to assess the safety of light water reactors and fast breeder reactors. (author)

  11. Development of a methodology for the safety assessment of near surface disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Simon, I.; Cancio, D.; Alonso, L.F.; Agueero, A.; Lopez de la Higuera, J.; Gil, E.; Garcia, E.

    2000-01-01

    The Project on the Environmental Radiological Impact in CIEMAT is developing, for the Spanish regulatory body Consejo de Seguridad Nuclear (CSN), a methodology for the Safety Assessment of near surface disposal facilities. This method has been developed incorporating some elements developed through the participation in the IAEA's ISAM Programme (Improving Long Term Safety Assessment Methodologies for Near Surface Radioactive Waste Disposal Facilities). The first step of the approach is the consideration of the assessment context, including the purpose of the assessment, the end-Points, philosophy, disposal system, source term and temporal scales as well as the hypothesis about the critical group. Once the context has been established, and considering the peculiarities of the system, an specific list of features, events and processes (FEPs) is produced. These will be incorporated into the assessment scenarios. The set of scenarios will be represented in the conceptual and mathematical models. By the use of mathematical codes, calculations are performed to obtain results (i.e. in terms of doses) to be analysed and compared against the criteria. The methodology is being tested by the application to an hypothetical engineered disposal system based on an exercise within the ISAM Programme, and will finally be applied to the Spanish case. (author)

  12. Safety study application guide

    International Nuclear Information System (INIS)

    1993-07-01

    Martin Marietta Energy Systems, Inc., (Energy Systems) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Included are analyses of existing facilities done under the aegis of the Safety Analysis Report Upgrade Program, and analyses of new and modified facilities. A graded approach is used wherein the level of analysis and documentation for each facility is commensurate with the magnitude of the hazard(s), the complexity of the facility and the stage of the facility life cycle. Safety analysis reports (SARs) for hazard Category 1 and 2 facilities are usually detailed and extensive because these categories are associated with public health and safety risk. SARs for Category 3 are normally much less extensive because the risk to public health and safety is slight. At Energy Systems, safety studies are the name given to SARs for Category 3 (formerly open-quotes lowclose quotes) facilities. Safety studies are the appropriate instrument when on-site risks are limited to irreversible consequences to a few people, and off-site consequences are limited to reversible consequences to a few people. This application guide provides detailed instructions for performing safety studies that meet the requirements of DOE Orders 5480.22, open-quotes Technical Safety Requirements,close quotes and 5480.23, open-quotes Nuclear Safety Analysis Reports.close quotes A seven-chapter format has been adopted for safety studies. This format allows for discussion of all the items required by DOE Order 5480.23 and for the discussions to be readily traceable to the listing in the order. The chapter titles are: (1) Introduction and Summary, (2) Site, (3) Facility Description, (4) Safety Basis, (5) Hazardous Material Management, (6) Management, Organization, and Institutional Safety Provisions, and (7) Accident Analysis

  13. Safety assessment of a robotic system handling nuclear material

    International Nuclear Information System (INIS)

    Atcitty, C.B.; Robinson, D.G.

    1996-01-01

    This paper outlines the use of a Failure Modes and Effects Analysis for the safety assessment of a robotic system being developed at Sandia National Laboratories. The robotic system, The Weigh and Leak Check System, is to replace a manual process at the Department of Energy facility at Pantex by which nuclear material is inspected for weight and leakage. Failure Modes and Effects Analyses were completed for the robotics process to ensure that safety goals for the system had been meet. These analyses showed that the risks to people and the internal and external environment were acceptable

  14. Research and development program in reactor safety for NUCLEBRAS

    International Nuclear Information System (INIS)

    Pinheiro, R.B.; Resende Lobo, A.A. de; Horta, J.A.L.; Avelar Esteves, F. de; Lepecki, W.P.S.; Mohr, K.; Selvatici, E.

    1984-01-01

    With technical assistance from the IAEA, it was established recently an analytical and experimental Research and Development Program for NUCLEBRAS in the area of reactor safety. The main objectives of this program is to make possible, with low investments, the active participation of NUCLEBRAS in international PWR safety research. The analytical and experimental activities of the program are described with some detail, and the main results achieved up to now are presented. (Author) [pt

  15. Status of the safety concept and safety demonstration for an HLW repository in salt. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Bollingerfehr, W.; Buhmann, D.; Filbert, W.; and others

    2013-12-15

    Salt formations have been the preferred option as host rocks for the disposal of high level radioactive waste in Germany for more than 40 years. During this period comprehensive geological investigations have been carried out together with a broad spectrum of concept and safety related R and D work. The behaviour of an HLW repository in salt formations, particularly in salt domes, has been analysed in terms of assessment of the total system performance. This was first carried out for concepts of generic waste repositories in salt and, since 1998, for a repository concept with specific boundary conditions, taking the geology of the Gorleben salt dome as an example. Suitable repository concepts and designs were developed, the technical feasibility has been proven and operational and long-term safety evaluated. Numerical modelling is an important input into the development of a comprehensive safety case for a waste repository. Significant progress in the development of numerical tools and their application for long-term safety assessment has been made in the last two decades. An integrated approach has been used in which the repository concept and relevant scientific and engineering data are combined with the results from iterative safety assessments to increase the clarity and the traceability of the evaluation. A safety concept that takes full credit of the favourable properties of salt formations was developed in the course of the R and D project ISIBEL, which started in 2005. This concept is based on the safe containment of radioactive waste in a specific part of the host rock formation, termed the containment providing rock zone, which comprises the geological barrier, the geotechnical barriers and the compacted backfill. The future evolution of the repository system will be analysed using a catalogue of Features, Events and Processes (FEP), scenario development and numerical analysis, all of which are adapted to suit the safety concept. Key elements of the

  16. EDUCATION IN THE FIELD safety of human life AND THE SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. A. Kartavykh

    2016-01-01

    Full Text Available The publication purpose - pedagogical design of education of bachelors in the field safety of human life in the context of ideas of a sustainable development as one of the modern and perspective directions of the higher education. Philosophical and methodological, scientific and technical and pedagogical aspects of provisions of the concept of a sustainable development are opened. It is shown that the greatest potential for realization of ideas of a sustainable development the invariant subject matter the " Safety of human life " studied by future bachelors irrespective of the direction and a profile of preparation possesses. The fundamental principles of education in the field safety of human life of future bachelors are formulated. Key functions of education of bachelors in the field of health and safety are defined: valuable and orientation, teoretiko-world outlook, it is constructive - activity, it is reflexive - estimated. The methodical tasks approaching the project to specific sociocultural and pedagogical conditions are opened: definition of target reference points, modular structuring content of education, development of procedural and technological features of creation of educational activity; diagnostics of results. The idea of a didactic cycle at development of the content of education in the field safety of human life is proved and opened. The educations of future bachelors got in the course of approbation results in the field safety of human life in the context of ideology of sustainable (safe development allow to speak about efficiency of the chosen scientific and methodological and organizational and technological bases and to project new models of practical experience in conditions of providing optimum ways of productive pedagogical interaction.

  17. Software safety analysis techniques for developing safety critical software in the digital protection system of the LMR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Soo; Cheon, Se Woo; Kim, Chang Hoi; Sim, Yun Sub

    2001-02-01

    This report has described the software safety analysis techniques and the engineering guidelines for developing safety critical software to identify the state of the art in this field and to give the software safety engineer a trail map between the code and standards layer and the design methodology and documents layer. We have surveyed the management aspects of software safety activities during the software lifecycle in order to improve the safety. After identifying the conventional safety analysis techniques for systems, we have surveyed in details the software safety analysis techniques, software FMEA(Failure Mode and Effects Analysis), software HAZOP(Hazard and Operability Analysis), and software FTA(Fault Tree Analysis). We have also surveyed the state of the art in the software reliability assessment techniques. The most important results from the reliability techniques are not the specific probability numbers generated, but the insights into the risk importance of software features. To defend against potential common-mode failures, high quality, defense-in-depth, and diversity are considered to be key elements in digital I and C system design. To minimize the possibility of CMFs and thus increase the plant reliability, we have provided D-in-D and D analysis guidelines.

  18. Software safety analysis techniques for developing safety critical software in the digital protection system of the LMR

    International Nuclear Information System (INIS)

    Lee, Jang Soo; Cheon, Se Woo; Kim, Chang Hoi; Sim, Yun Sub

    2001-02-01

    This report has described the software safety analysis techniques and the engineering guidelines for developing safety critical software to identify the state of the art in this field and to give the software safety engineer a trail map between the code and standards layer and the design methodology and documents layer. We have surveyed the management aspects of software safety activities during the software lifecycle in order to improve the safety. After identifying the conventional safety analysis techniques for systems, we have surveyed in details the software safety analysis techniques, software FMEA(Failure Mode and Effects Analysis), software HAZOP(Hazard and Operability Analysis), and software FTA(Fault Tree Analysis). We have also surveyed the state of the art in the software reliability assessment techniques. The most important results from the reliability techniques are not the specific probability numbers generated, but the insights into the risk importance of software features. To defend against potential common-mode failures, high quality, defense-in-depth, and diversity are considered to be key elements in digital I and C system design. To minimize the possibility of CMFs and thus increase the plant reliability, we have provided D-in-D and D analysis guidelines

  19. Possibilities and limitations of the development and the quantification of safety objectives

    International Nuclear Information System (INIS)

    Vinck, W.; Reijen, G. van

    1983-01-01

    In a number of European Community (EC) countries quantified reliability analysis of structures and systems is increasingly being developed. In a limited and flexible way an attempt is made to fix specific reliability values for certain types of equipment (e.g. reactor shutdown systems) which are important for safety. Likewise, an attempt is made to quantify risk and to introduce the risk concept into safety evaluation and the licensing process. Here, the overall risk of installations and even of complete fuel cycles is generally evaluated. A corollary of this development is the comparison of risks of different energy sources and putting these risks into the perspective of other individual and societal risks. Quantification of reliability and risk led from the beginning to more transparency of safety and has given an overall view of the relative importance of different systems in complex installations. More and more frequently attention is now being paid to the development of specific and overall safety objectives. For a comprehensive comparison such safety objectives have to be quantified. The main difficulty here is that establishing reasonable quantitative safety objectives may not be easy; it may be even more difficult to verify whether complex installations or fuel cycles will fulfil such objectives. The lack of sufficiently precise reliability data and the influence of human factors will be the main problems and efforts are underway to solve them. A harmonized approach in the establishment of safety objectives is an important problem, in particular for the EC in view of its geographic configuration where accidents can have consequences for the population across national frontiers. The development of divergent safety objectives between countries may also result in levels of protection which are too unbalanced to be considered acceptable. (author)

  20. 75 FR 56112 - Integrated Food Safety System Online Collaboration Development-Cooperative Agreement With the...

    Science.gov (United States)

    2010-09-15

    ... FDA to meet the White House Food Safety Working Group recommendation that the Federal government... development of an integrated food safety system, and the development and implementation of a sustainable model... levels. NCFPD also has past experience directly supporting the White House Food Safety Working Group...

  1. Development of the methodology and approaches to validate safety and accident management

    International Nuclear Information System (INIS)

    Asmolov, V.G.

    1997-01-01

    The article compares the development of the methodology and approaches to validate the nuclear power plant safety and accident management in Russia and advanced industrial countries. It demonstrates that the development of methods of safety validation is dialectically related to the accumulation of the knowledge base on processes and events during NPP normal operation, transients and emergencies, including severe accidents. The article describes the Russian severe accident research program (1987-1996), the implementation of which allowed Russia to reach the world level of the safety validation efforts, presents future high-priority study areas. Problems related to possible approaches to the methodological accident management development are discussed. (orig.)

  2. Thermal hydraulic analyses of LVR-15 research reactor with IRT-M fuel

    International Nuclear Information System (INIS)

    Macek, J.

    1997-01-01

    The LVR-15 pool-type research reactor has been in operation at the Nuclear Research Institute at Rez since 1955. Following a number of reconstructions and redesigning, the current reactor power is 15 MW. Thermal hydraulic analyses to demonstrate that the core heat will be safely removed during operation as well as in accident situations were performed based on methodology which had been specifically developed for the LVR-15 research reactor. This methodology was applied to stationary thermal hydraulic computations, as well as to transients, particularly with reactivity failure and loss of circulation pumps emergencies. The applied methodology and the core configuration as used in the Safety Report are described. The initial and boundary conditions are then considered and the summary of the calculated failures with regard to the defined safety limits is presented. The results of the core configuration analyses are also discussed with respect to meeting the safety limits and to the applicability of the methodology to this purpose

  3. Implementing national nuclear safety plan at the preliminary stage of nuclear power project development

    International Nuclear Information System (INIS)

    Xue Yabin; Cui Shaozhang; Pan Fengguo; Zhang Lizhen; Shi Yonggang

    2014-01-01

    This study discusses the importance of nuclear power project design and engineering methods at the preliminary stage of its development on nuclear power plant's operational safety from the professional view. Specifically, we share our understanding of national nuclear safety plan's requirement on new reactor accident probability, technology, site selection, as well as building and improving nuclear safety culture and strengthening public participation, with a focus on plan's implications on preliminary stage of nuclear power project development. Last, we introduce China Huaneng Group's work on nuclear power project preliminary development and the experience accumulated during the process. By analyzing the siting philosophy of nuclear power plant and the necessity of building nuclear safety culture at the preliminary stage of nuclear power project development, this study explicates how to fully implement the nuclear safety plan's requirements at the preliminary stage of nuclear power project development. (authors)

  4. Meeting the global demand of sports safety: the intersection of science and policy in sports safety.

    Science.gov (United States)

    Timpka, Toomas; Finch, Caroline F; Goulet, Claude; Noakes, Tim; Yammine, Kaissar

    2008-01-01

    Sports and physical activity are transforming, and being transformed by, the societies in which they are practised. From the perspectives of both competitive and non-competitive sports, the complexity of their integration into today's society has led to neither sports federations nor governments being able to manage the safety problem alone. In other words, these agencies, whilst promoting sport and physical activity, deliver policy and practices in an uncoordinated way that largely ignores the need for a concurrent overall policy for sports safety. This article reviews and analyses the possibility of developing an overall sports safety policy from a global viewpoint. Firstly, we describe the role of sports in today's societies and the context within which much sport is delivered. We then discuss global issues related to injury prevention and safety in sports, with practical relevance to this important sector, including an analysis of critical policy issues necessary for the future development of the area and significant safety gains for all. We argue that there is a need to establish the sports injury problem as a critical component of general global health policy agendas, and to introduce sports safety as a mandatory component of all sustainable sports organizations. We conclude that the establishment of an explicit intersection between science and policy making is necessary for the future development of sports and the necessary safety gains required for all participants around the world. The Safe Sports International safety promotion programme is outlined as an example of an international organization active within this arena.

  5. Reactor safety research and development in Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Nitheanandan, T. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Atomic Energy of Canada Limited's Chalk River Laboratories provides three different services to stakeholders and customers. The first service provided by the laboratory is the implementation of Research and Development (R&D) programs to provide the underlying technological basis of safe nuclear power reactor designs. A significant portion of the Canadian R&D capability in reactor safety resides at Atomic Energy of Canada Limited's Chalk River Laboratories, and this capability was instrumental in providing the science and technology required to aid in the safety design of CANDU power reactors. The second role of the laboratory has been in supporting nuclear facility licensees to ensure the continued safe operation of nuclear facilities, and to develop safety cases to justify continued operation. The licensing of plant life extension is a key industry objective, requiring extensive research on degradation mechanisms, such that safety cases are based on the original safety design data and valid and realistic assumptions regarding the effect of ageing and management of plant life. Recently, Chalk River Laboratories has been engaged in a third role in research to provide the technical basis and improved understanding for decision making by regulatory bodies. The state-of-the-art test facilities in Chalk River Laboratories have been contributing to the R&D needs of all three roles, not only in Canada but also in the international community, thorough Canada's participation in cooperative programs lead by International Atomic Energy Agency and the OECD's Nuclear Energy Agency. (author)

  6. Trends in food safety standards and regulation implications for developing countries

    OpenAIRE

    Caswell, Julie A.

    2003-01-01

    "Food safety is affected by the decisions of producers, processors, distributors, food service operators, and consumers, as well as by government regulations. In developed countries, the demand for higher levels of food safety has led to the implementation of regulatory programs that address more types of safety-related attributes (such as bovine spongiform encephalopathy (BSE), microbial pathogens, environmental contaminants, and animal drug and pesticide residues) and impose stricter standa...

  7. RECOMMENDED TRITIUM OXIDE DEPOSITION VELOCITY FOR USE IN SAVANNAH RIVER SITE SAFETY ANALYSES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, P.; Murphy, C.; Viner, B.; Hunter, C.; Jannik, T.

    2012-04-03

    The Defense Nuclear Facilities Safety Board (DNFSB) has recently questioned the appropriate value for tritium deposition velocity used in the MELCOR Accident Consequence Code System Ver. 2 (Chanin and Young 1998) code when estimating bounding dose (95th percentile) for safety analysis (DNFSB 2011). The purpose of this paper is to provide appropriate, defensible values of the tritium deposition velocity for use in Savannah River Site (SRS) safety analyses. To accomplish this, consideration must be given to the re-emission of tritium after deposition. Approximately 85% of the surface area of the SRS is forested. The majority of the forests are pine plantations, 68%. The remaining forest area is 6% mixed pine and hardwood and 26% swamp hardwood. Most of the path from potential release points to the site boundary is through forested land. A search of published studies indicate daylight, tritiated water (HTO) vapor deposition velocities in forest vegetation can range from 0.07 to 2.8 cm/s. Analysis of the results of studies done on an SRS pine plantation and climatological data from the SRS meteorological network indicate that the average deposition velocity during daylight periods is around 0.42 cm/s. The minimum deposition velocity was determined to be about 0.1 cm/s, which is the recommended bounding value. Deposition velocity and residence time (half-life) of HTO in vegetation are related by the leaf area and leaf water volume in the forest. For the characteristics of the pine plantation at SRS the residence time corresponding to the average, daylight deposition velocity is 0.4 hours. The residence time corresponding to the night-time deposition velocity of 0.1 cm/s is around 2 hours. A simple dispersion model which accounts for deposition and re-emission of HTO vapor was used to evaluate the impact on exposure to the maximally exposed offsite individual (MOI) at the SRS boundary (Viner 2012). Under conditions that produce the bounding, 95th percentile MOI exposure

  8. Safety Assessment in Installation of Precast Concrete

    Directory of Open Access Journals (Sweden)

    Yashrri S.N.

    2014-03-01

    Full Text Available This study was carried out to identify the safety aspects and the level of safety during the installation process in construction sites. A questionnaire survey and interviews were done to provide data on safety requirements in precast concrete construction. All of the interviews and the research questionnaire survey were conducted among contractors that are registered as class 1 to class 7 with the Construction Industry Development Board (CIDB and class A to class G with Pusat Khidmat Kontraktor (PKK in Penang. Returned questionnaires were analysed with the use of simple percentages and the Likert Scale analysis method to identify safety aspects of precast construction. The results indicate that the safety aspect implemented by companies involved in the precast construction process is at a good level in the safety aspect during bracing, propping, welding and grouting processes and at a very good level of safety in general aspects and safety aspects during lifting processes.

  9. Developing safety culture in nuclear activities. Practical suggestions to assist progress

    International Nuclear Information System (INIS)

    2000-01-01

    The term 'safety culture' was introduced by the International Nuclear Safety Advisory Group (INSAG) in Summary Report on the Post-Accident Review Meeting on the Chernobyl Accident published by the IAEA as Safety Series No. 75-INSAG-1 in 1986, and expanded in Basic Safety Principles for Nuclear Power Plants, Safety Series No. 75-INSAG-3 in 1988. This publication supplements INSAG-4 published in 1991 which includes the definition and concept of safety culture describing practices valuable in establishing and maintaining a sound safety culture in a number of countries. It is intended for those who design, construct, manufacture, operate, maintain or decommission nuclear facilities. It should be practically useful for all those involved in operating nuclear facilities. It will also provide a reference for groups such as regulators who have an interest in developing, improving and evaluating safety culture training and individuals engaged in nuclear activities, and for bodies such as ethics review committees who should take into account safety culture issues for certifying professional excellence in the medical field

  10. Developing safety culture in nuclear activities. Practical suggestions to assist progress

    International Nuclear Information System (INIS)

    1998-01-01

    The term 'safety culture' was introduced by the International Nuclear Safety Advisory Group (INSAG) in Summary Report on the Post-Accident Review Meeting on the Chernobyl Accident published by IAEA as safety Series No. 75-INSAG-1 in 1986, and expanded in Basic Safety principles for Nuclear Power Plants, Safety Series No. 75-INSAG-3 in 1988. This publication supplements INSAG-4 published in 1991 which includes the definition and concept of safety culture describing practices valuable in establishing and maintaining a sound safety culture in a number of countries. It is intended for those who design, construct, manufacture, operate, maintain or decommission nuclear facilities. It should be practically useful for all those involved in operating nuclear facilities. It will also provide a reference for groups such as regulators who have an interest in developing, improving and evaluating safety culture training and individuals engaged in nuclear activities, and for bodies such as ethics review committees who should take into account safety culture issues for certifying professional excellence in the medical field

  11. Safety climate in OHSAS 18001-certified organisations: antecedents and consequences of safety behaviour.

    Science.gov (United States)

    Fernández-Muñiz, Beatriz; Montes-Peón, José Manuel; Vázquez-Ordás, Camilo José

    2012-03-01

    The occupational health and safety standard OHSAS 18001 has gained considerable acceptance worldwide, and firms from diverse sectors and of varying sizes have implemented it. Despite this, very few studies have analysed safety management or the safety climate in OHSAS 18001-certified organisations. The current work aims to analyse the safety climate in these organisations, identify its dimensions, and propose and test a structural equation model that will help determine the antecedents and consequences of employees' safety behaviour. For this purpose, the authors carry out an empirical study using a sample of 131 OHSAS 18001-certified organisations located in Spain. The results show that management's commitment, and particularly communication, have an effect on safety behaviour and on safety performance, employee satisfaction, and firm competitiveness. These findings are particularly important for management since they provide evidence about the factors that should be encouraged to reduce risks and improve performance in this type of organisation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Final report-passive safety optimization in liquid sodium-cooled reactors

    International Nuclear Information System (INIS)

    Cahalana, J. E.; Hahn, D.

    2007-01-01

    This report summarizes the results of a three-year collaboration between Argonne National Laboratory (ANL) and the Korea Atomic Energy Research Institute (KAERI) to identify and quantify the performance of innovative design features in metallic-fueled, sodium-cooled fast reactor designs. The objective of the work was to establish the reliability and safety margin enhancements provided by design innovations offering significant potential for construction, maintenance, and operating cost reductions. The project goal was accomplished with a combination of advanced model development (Task 1), analysis of innovative design and safety features (Tasks 2 and 3), and planning of key safety experiments (Task 4). Task 1--Computational Methods for Analysis of Passive Safety Design Features: An advanced three-dimensional subassembly thermal-hydraulic model was developed jointly and implemented in ANL and KAERI computer codes. The objective of the model development effort was to provide a high-accuracy capability to predict fuel, cladding, coolant, and structural temperatures in reactor fuel subassemblies, and thereby reduce the uncertainties associated with lower fidelity models previously used for safety and design analysis. The project included model formulation, implementation, and verification by application to available reactor tests performed at EBR-II. Task 2--Comparative Analysis and Evaluation of Innovative Design Features: Integrated safety assessments of innovative liquid metal reactor designs were performed to quantify the performance of inherent safety features. The objective of the analysis effort was to identify the potential safety margin enhancements possible in a sodium-cooled, metal-fueled reactor design by use of passive safety mechanisms to mitigate low-probability accident consequences. The project included baseline analyses using state-of-the-art computational models and advanced analyses using the new model developed in Task 1. Task 3--Safety

  13. Activation and Shielding Analyses in Support of the GUINEVERE Project

    International Nuclear Information System (INIS)

    Serikov, A.; Fischer, U.; Mercatali, L.; Baeten, P.; Vittiglio, G.

    2008-01-01

    The GUINEVERE facility (Generator of Uninterrupted Intense Neutrons at the lead Venus Reactor) must satisfy the nuclear safety criteria required by the Belgian safety authority to be licensed. The radiation dose and activation analyses for the nuclear safety assessment of the GUINEVERE project were performed at FZK. The concerted efforts of several European institutions were concentrated on the development and construction of a subcritical fast lead core based on the Venus water moderated reactor at the SCK-CEN site in Mol, Belgium. A Monte Carlo (MC) MCNP5 model was developed in accordance with the current design of the GUINEVERE fast lead core. The analytical MC method does not work for shielding analysis of the GUINEVERE building because of the large size of the rooms and thick concrete walls and floors. MC variance reduction techniques, such as particles splitting, Russian roulette, and point detectors were therefore applied. The JEFF-3.1 nuclear data library was used for radiation transport calculations. The activation analyses for the lead core and building materials were performed with the FISPACT-2005 inventory code and the EAF-2005 library. The neutron and photon dose rate maps were produced using MCNP track-length estimations, point detectors, and a mesh tally superimposed over the GUINEVERE geometry. The effects of D-D and D-T fusion neutron sources were estimated. (authors)

  14. Activation and Shielding Analyses in Support of the GUINEVERE Project

    Energy Technology Data Exchange (ETDEWEB)

    Serikov, A.; Fischer, U.; Mercatali, L. [Association FZK-EURATOM, KIT, Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Baeten, P.; Vittiglio, G. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2008-07-01

    The GUINEVERE facility (Generator of Uninterrupted Intense Neutrons at the lead Venus Reactor) must satisfy the nuclear safety criteria required by the Belgian safety authority to be licensed. The radiation dose and activation analyses for the nuclear safety assessment of the GUINEVERE project were performed at FZK. The concerted efforts of several European institutions were concentrated on the development and construction of a subcritical fast lead core based on the Venus water moderated reactor at the SCK-CEN site in Mol, Belgium. A Monte Carlo (MC) MCNP5 model was developed in accordance with the current design of the GUINEVERE fast lead core. The analytical MC method does not work for shielding analysis of the GUINEVERE building because of the large size of the rooms and thick concrete walls and floors. MC variance reduction techniques, such as particles splitting, Russian roulette, and point detectors were therefore applied. The JEFF-3.1 nuclear data library was used for radiation transport calculations. The activation analyses for the lead core and building materials were performed with the FISPACT-2005 inventory code and the EAF-2005 library. The neutron and photon dose rate maps were produced using MCNP track-length estimations, point detectors, and a mesh tally superimposed over the GUINEVERE geometry. The effects of D-D and D-T fusion neutron sources were estimated. (authors)

  15. Preliminary safety analysis for key design features of KALIMER with breakeven core

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, Y. B.; Jeong, K. S

    2001-06-01

    KAERI is currently developing the conceptual design of a Liquid Metal Reactor, KALIMER (Korea Advanced Liquid MEtal Reactor) under the Long-term Nuclear R and D Program. KALIMER addresses key issues regarding future nuclear power plants such as plant safety, economics, proliferation, and waste. In this report, descriptions of safety design features and safety analyses results for selected ATWS accidents for the breakeven core KALIMER are presented. First, the basic approach to achieve the safety goal is introduced in Chapter 1, and the safety evaluation procedure for the KALIMER design is described in Chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events.In Chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure benign performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram (ATWS) have been performed to investigate the KALIMER system response to the events. In Chapter 4, the design of the KALIMER containment dome and the results of its performance analyses are presented. The design of the existing containment and the KALIMER containment dome are compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core energetics behavior during HCDA in Chapter 5. Sensitivity analyses have been performed for the KALIMER core behavior during super-prompt critical excursions, using mathematical formulations developed in the framework of the Modified Bethe-Tait method. Work energy potential was then calculated based on the isentropic fuel expansion model.

  16. User-Centered Collaborative Design and Development of an Inpatient Safety Dashboard.

    Science.gov (United States)

    Mlaver, Eli; Schnipper, Jeffrey L; Boxer, Robert B; Breuer, Dominic J; Gershanik, Esteban F; Dykes, Patricia C; Massaro, Anthony F; Benneyan, James; Bates, David W; Lehmann, Lisa S

    2017-12-01

    Patient safety remains a key concern in hospital care. This article summarizes the iterative participatory development, features, functions, and preliminary evaluation of a patient safety dashboard for interdisciplinary rounding teams on inpatient medical services. This electronic health record (EHR)-embedded dashboard collects real-time data covering 13 safety domains through web services and applies logic to generate stratified alerts with an interactive check-box function. The technological infrastructure is adaptable to other EHR environments. Surveyed users perceived the tool as highly usable and useful. Integration of the dashboard into clinical care is intended to promote communication about patient safety and facilitate identification and management of safety concerns. Copyright © 2017 The Joint Commission. All rights reserved.

  17. Developing the health, safety and environment excellence instrument.

    Science.gov (United States)

    Mohammadfam, Iraj; Saraji, Gebraeil Nasl; Kianfar, Ali; Mahmoudi, Shahram

    2013-01-07

    Quality and efficiency are important issues in management systems. To increase quality, to reach best results, to move towards the continuous improvement of system and also to make the internal and external customers satisfied, it is necessary to consider the system performance measurement. In this study the Health, Safety and Environment Excellence Instrument was represented as a performance measurement tool for a wide range of health, safety and environment management systems. In this article the development of the instrument overall structure, its parts, and its test results in three organizations are presented. According to the results, the scores ranking was the managership organization, the manufacturing company and the powerhouse construction project, respectively. The results of the instrument test in three organizations show that, on the whole, the instrument has the ability to measure the performance of health, safety and environment management systems in a wide range of organizations.

  18. A root cause analysis project in a medication safety course.

    Science.gov (United States)

    Schafer, Jason J

    2012-08-10

    To develop, implement, and evaluate team-based root cause analysis projects as part of a required medication safety course for second-year pharmacy students. Lectures, in-class activities, and out-of-class reading assignments were used to develop students' medication safety skills and introduce them to the culture of medication safety. Students applied these skills within teams by evaluating cases of medication errors using root cause analyses. Teams also developed error prevention strategies and formally presented their findings. Student performance was assessed using a medication errors evaluation rubric. Of the 211 students who completed the course, the majority performed well on root cause analysis assignments and rated them favorably on course evaluations. Medication error evaluation and prevention was successfully introduced in a medication safety course using team-based root cause analysis projects.

  19. Developing and Testing the Health Care Safety Hotline: A Prototype Consumer Reporting System for Patient Safety Events.

    Science.gov (United States)

    Schneider, Eric C; Ridgely, M Susan; Quigley, Denise D; Hunter, Lauren E; Leuschner, Kristin J; Weingart, Saul N; Weissman, Joel S; Zimmer, Karen P; Giannini, Robert C

    2017-06-01

    This article describes the design, development, and testing of the Health Care Safety Hotline, a prototype consumer reporting system for patient safety events. The prototype was designed and developed with ongoing review by a technical expert panel and feedback obtained during a public comment period. Two health care delivery organizations in one metropolitan area collaborated with the researchers to demonstrate and evaluate the system. The prototype was deployed and elicited information from patients, family members, and caregivers through a website or an 800 phone number. The reports were considered useful and had little overlap with information received by the health care organizations through their usual risk management, customer service, and patient safety monitoring systems. However, the frequency of reporting was lower than anticipated, suggesting that further refinements, including efforts to raise awareness by actively soliciting reports from subjects, might be necessary to substantially increase the volume of useful reports. It is possible that a single technology platform could be built to meet a variety of different patient safety objectives, but it may not be possible to achieve several objectives simultaneously through a single consumer reporting system while also establishing trust with patients, caregivers, and providers.

  20. Methods and Effects of Safety Enhancement in Korean PSR

    International Nuclear Information System (INIS)

    Kim, Young Gab; Park, Jong Woon

    2009-01-01

    Periodic Safety Review (PSR) is a comprehensive study on a nuclear power plant safety, taking into account aspects such as operational history, ageing, safety analyses and advances in code and standards since the time of construction. In Korea, PSRs have been performed for 20 units and have been effectively used to obtain an overall view of actual plant safety to determine reasonable and practical modifications that should be made in order to obtain a higher level of safety approaching that of modern plants. Among many safety enhancements achieved from Korean PSRs, new safety analyses are the important methods to confirm plant safety by increasing safety margin for specific safety issues. Methods and effects of safety enhancements applied in Korean PSRs are reviewed in this paper in light of new safety analyses to obtain additional safety margins