WorldWideScience

Sample records for safeguards neutron counter

  1. Development of DUPIC safeguards neutron counter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Gil; Cha, Hong Ryul; Kim, Ho Dong; Hong, Jong Sook; Kang, Hee Young

    1999-08-01

    KAERI, in cooperation with LANL, developed DSNC (DUPIC Safeguards Neutron Counter) for safeguards implementing on DUPIC process which is under development by KAERI for direct use of spent PWR fuel in CANDU reactors. DSNC is a well-type neutron coincidence counter with substantial shielding to protect system from high gamma radiation of spent fuel. General development procedures in terms of design, manufacturing, fabrication, cold and hot test, performance test for DSNC authentication by KAERI-IAEA-LANL are described in this report. It is expected that the techniques related DSNC development and associated neutron detection and evaluation method could be applied for safeguards improvement. (Author). 20 refs., 16 tabs. 98 figs.

  2. Monte Carlo simulation of neutron counters for safeguards applications

    International Nuclear Information System (INIS)

    Looman, Marc; Peerani, Paolo; Tagziria, Hamid

    2009-01-01

    MCNP-PTA is a new Monte Carlo code for the simulation of neutron counters for nuclear safeguards applications developed at the Joint Research Centre (JRC) in Ispra (Italy). After some preliminary considerations outlining the general aspects involved in the computational modelling of neutron counters, this paper describes the specific details and approximations which make up the basis of the model implemented in the code. One of the major improvements allowed by the use of Monte Carlo simulation is a considerable reduction in both the experimental work and in the reference materials required for the calibration of the instruments. This new approach to the calibration of counters using Monte Carlo simulation techniques is also discussed.

  3. Preliminary calibration of the ACP safeguards neutron counter

    Science.gov (United States)

    Lee, T. H.; Kim, H. D.; Yoon, J. S.; Lee, S. Y.; Swinhoe, M.; Menlove, H. O.

    2007-10-01

    The Advanced Spent Fuel Conditioning Process (ACP), a kind of pyroprocess, has been developed at the Korea Atomic Energy Research Institute (KAERI). Since there is no IAEA safeguards criteria for this process, KAERI has developed a neutron coincidence counter to make it possible to perform a material control and accounting (MC&A) for its ACP materials for the purpose of a transparency in the peaceful uses of nuclear materials at KAERI. The test results of the ACP Safeguards Neutron Counter (ASNC) show a satisfactory performance for the Doubles count measurement with a low measurement error for its cylindrical sample cavity. The neutron detection efficiency is about 21% with an error of ±1.32% along the axial direction of the cavity. Using two 252Cf neutron sources, we obtained various parameters for the Singles and Doubles rates for the ASNC. The Singles, Doubles, and Triples rates for a 252Cf point source were obtained by using the MCNPX code and the results for the ft8 cap multiplicity tally option with the values of ɛ, fd, and ft measured with a strong source most closely match the measurement results to within a 1% error. A preliminary calibration curve for the ASNC was generated by using the point model equation relationship between 244Cm and 252Cf and the calibration coefficient for the non-multiplying sample is 2.78×10 5 (Doubles counts/s/g 244Cm). The preliminary calibration curves for the ACP samples were also obtained by using an MCNPX simulation. A neutron multiplication influence on an increase of the Doubles rate for a metal ingot and UO2 powder is clearly observed. These calibration curves will be modified and complemented, when hot calibration samples become available. To verify the validity of this calibration curve, a measurement of spent fuel standards for a known 244Cm mass will be performed in the near future.

  4. International safeguards: experience and prospects

    International Nuclear Information System (INIS)

    Keepin, G.R.; Menlove, H.O.

    1982-01-01

    IAEA safeguards have been applied to over 95% of the nuclear material and facilities outside of the nuclear weapon states. The present system of nonproliferation agreements implemented by IAEA safeguards likely will not be changed in the foreseeable future. Instruments used for nondestructive analysis are described: portable multichannel analyzer, high-level neutron coincidence counter, active well coincidence counter, and neutron coincidence collar. 7 figs

  5. Prototype fast neutron counter for the assay of impure plutonium

    International Nuclear Information System (INIS)

    Wachter, J.R.; Adams, E.L.; Ensslin, N.

    1987-01-01

    A fast coincident neutron counter using liquid scintillators and gamma-ray/neutron pulse-shape discrimination has been constructed for the analysis of plutonium samples with unknown self-multiplication and (α,n) production. The counter was used to measure plutonium-bearing materials that cover a range of masses and (α,n) reaction rates of importance to the safeguards community. Measured values of the 240 Pu effective mass differed, on average, from their declared values by 0.4% for plutonium oxides and by -2.2% for metal and MgO-loaded samples. Poorer results were obtained for materials with large (α,n) reaction rates and low self-multiplication such as plutonium ash and plutonium fluoride

  6. Simulations of Lithium-Based Neutron Coincidence Counter for Gd-Loaded Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cowles, Christian C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Siciliano, Edward R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-10-01

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Lithium-Based Alternative Neutron Detection Technology Coincidence Counting for Gd-loaded Fuels at Pacific Northwest National Laboratory for the development of a lithium-based neutron coincidence counter for nondestructively assaying Gd loaded nuclear fuel. This report provides results from MCNP simulations of a lithium-based coincidence counter for the possible measurement of Gd-loaded nuclear fuel. A comparison of lithium-based simulations and UNCL-II simulations with and without Gd loaded fuel is provided. A lithium-based model, referred to as PLNS3A-R1, showed strong promise for assaying Gd loaded fuel.

  7. A programme for Euratom safeguards inspectors, used in the assay of plutonium bearing materials by passive neutron interrogation

    International Nuclear Information System (INIS)

    Vocino, V.; Farese, N.; Maucq, T.; Nebuloni, M.

    1991-01-01

    The programme PECC (Passive Euratom Coincidence Counters) has been developed at the Joint Research Center, Ispra by the Euratom Safeguards Directorate, Luxembourg and the Safety Technology Institute, Ispra for the acquisition, evaluation, management and storage of measurements data originating from passive neutron assay of plutonium bearing materials. The software accommodates the implementation of the NDA (Non Destructive Assay) procedures for all types of passive neutron coincidence deployed by the Euratom Safeguards Directorate, Luxembourg

  8. A programme for Euratom safeguards inspectors, used in the assay of high enriched (H.E.U.) and low enriched (L.E.U.) uranium fuel materials by active neutron interrogation

    International Nuclear Information System (INIS)

    Vocino, V.; Farese, N.; Maucq, T.; Nebuloni, M.

    1991-01-01

    The programme AECC (Active Euratom Coincidence Counters) has been developed at the Joint Research Center, Ispra by the Euratom Safeguards Directorate, Luxembourg and the Safety Technology Institute, Ispra for the acquisition, evaluation, management and storage of measurement data originating from active neutron interrogation of HEU and LEU fuel materials. The software accommodates the implementation of the NDA (Non Destructive Assay) procedures for the Active Well Coincidence Counters and Active Neutron Coincidence Counters deployed by the Euratom Safeguards Directorate, Luxembourg

  9. A Neutron Rem Counter

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I Oe; Braun, J

    1964-01-15

    A neutron detector is described which measures the neutron dose rate in rem/h independently of the energy of the neutrons from thermal to 15 MeV. The detector consists of a BF{sub 3} proportional counter surrounded by a shield made of polyethylene and boron plastic that gives the appropriate amount of moderation and absorption to the impinging neutrons to obtain rem response. Two different versions have been developed. One model can utilize standard BF{sub 3} counters and is suitable for use in installed monitors around reactors and accelerators and the other model is specially designed for use in a portable survey instrument. The neutron rem counter for portable instruments has a sensitivity of 2.4 cps/mrem/h and is essentially nondirectional in response. With correct bias setting the counter is insensitive to gamma exposure up to 200 r/h from Co-60.

  10. MCNP modelling of a combined neutron/gamma counter

    CERN Document Server

    Bourva, L C A; Ottmar, H; Weaver, D R

    1999-01-01

    A series of Monte Carlo neutron calculations for a combined gamma/passive neutron coincidence counter has been performed. This type of device, part of a suite of non-destructive assay instruments utilised for the enforcement of the Euratom nuclear safeguards within the European Union, is to be used for high accuracy measurements of the plutonium content of small samples of nuclear materials. The multi-purpose Monte Carlo N-particle (MCNP) code version 4B has been used to model in detail the neutron coincidence detector and to investigate the leakage self-multiplication of PuO sub 2 and mixed U-Pu oxide (MOX) reference samples used to calibrate the instrument. The MCNP calculations have been used together with a neutron coincidence counting interpretative model to determine characteristic parameters of the detector. A comparative study to both experimental and previous numerical results has been performed. Sensitivity curves of the variation of the detector's efficiency, epsilon, to, alpha, the ratio of (alpha...

  11. Neutron techniques in Safeguards

    International Nuclear Information System (INIS)

    Zucker, M.S.

    1982-01-01

    An essential part of Safeguards is the ability to quantitatively and nondestructively assay those materials with special neutron-interactive properties involved in nuclear industrial or military technology. Neutron techniques have furnished most of the important ways of assaying such materials, which is no surprise since the neutronic properties are what characterizes them. The techniques employed rely on a wide selection of the many methods of neutron generation, detection, and data analysis that have been developed for neutron physics and nuclear science in general

  12. {sup 3}He Replacement for Nuclear Safeguards Applications- an integrated test program to compare alternative neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, H. O.; Henzlova, D.; Evans, L. G.; Swinhoe, M. T.; Marlow, J. B. [Los Alamos National Laboratory, Safeguards Science and Technology Group, Los Alamos, (United States)

    2011-12-15

    During the past several years, the demand for {sup 3}He gas has far exceeded the gas supply. This shortage of {sup 3}He gas is projected to continue into the foreseeable future. There is a need for alternative neutron detectors that do not require {sup 3}He gas. For more than four decades, neutron detection has played a fundamental role in the safeguarding and control of nuclear materials at production facilities, fabrication plants and storage sites worldwide. Neutron measurements for safeguards applications have requirements that are unique to the quantitative assay of special nuclear materials. These neutron systems measure the neutron multiplicity distributions from each spontaneous fission and/or induced fission event. The neutron time correlation counting requires that two or more neutrons from a single fission event be detected. The doubles and triples neutron counting rate depends on the detector efficiency to the 2nd and 3rd power, respectively, so low efficiency systems will not work for the coincidence measurements, and any detector instabilities are greatly amplified. In the current test program, we will measure the alternative detector properties including efficiency, die-away time, multiplicity precision, gamma sensitivity, dead-time, and we will also consider the detector properties that would allow commercial production to safeguards scale assay systems. This last step needs to be accomplished before the proposed technologies can reduce the demand on {sup 3}He gas in the safeguards world. This paper will present the methodology that includes MCNPX simulations for comparing divergent detector types such as {sup 10}B lined proportional counters with {sup 3}He gas based systems where the performance metrics focus on safeguards applications.

  13. The D-D Neutron Generator as an Alternative to Am(Li) Isotopic Neutron Source in the Active Well Coincidence Counter

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cleveland, Steven L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The 235U mass assay of bulk uranium items, such as oxide canisters, fuel pellets, and fuel assemblies, is not achievable by traditional gamma-ray assay techniques due to the limited penetration of the item by the characteristic 235U gamma rays. Instead, fast neutron interrogation methods such as active neutron coincidence counting must be used. For international safeguards applications, the most commonly used active neutron systems, the Active Well Coincidence Counter (AWCC), Uranium Neutron Collar (UNCL) and 252Cf Shuffler, rely on fast neutron interrogation using an isotopic neutron source [i.e., 252Cf or Am(Li)] to achieve better measurement accuracies than are possible using gamma-ray techniques for high-mass, high-density items. However, the Am(Li) sources required for the AWCC and UNCL systems are no longer manufactured, and newly produced systems rely on limited supplies of sources salvaged from disused instruments. The 252Cf shuffler systems rely on the use of high-output 252Cf sources, which while still available have become extremely costly for use in routine operations and require replacement every five to seven years. Lack of a suitable alternative neutron interrogation source would leave a potentially significant gap in the safeguarding of uranium processing facilities. In this work, we made use of Oak Ridge National Laboratory’s (ORNL’s) Large Volume Active Well Coincidence Counter (LV-AWCC) and a commercially available deuterium-deuterium (D-D) neutron generator to examine the potential of the D-D neutron generator as an alternative to the isotopic sources. We present the performance of the LV-AWCC with D-D generator for the assay of 235U based on the results of Monte Carlo N-Particle (MCNP) simulations and measurements of depleted uranium (DU), low enriched uranium (LEU), and highly enriched uranium (HEU) items.

  14. Integrated neutron/gamma-ray portal monitors for nuclear safeguards

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1994-01-01

    Radiation monitoring is one nuclear-safeguards measure used to protect against the theft of special nuclear materials (SNM) by pedestrians departing from SNM access areas. The integrated neutron/gamma-ray portal monitor is an ideal radiation monitor for the task when the SNM is plutonium. It achieves high sensitivity for detecting both bare and shielded plutonium by combining two types of radiation detector. One type is a neutron-chamber detector, comprising a large, hollow, neutron moderator that contains a single thermal-neutron proportional counter. The entrance wall of each chamber is thin to admit slow neutrons from plutonium contained in a moderating shield, while the other walls are thick to moderate fast neutrons from bare or lead-shielded plutonium so that they can be detected. The other type of detector is a plastic scintillator that is primarily for detecting gamma rays from small amounts of unshielded plutonium. The two types of detector are easily integrated by making scintillators part of the thick back wall of each neutron chamber or by inserting them into each chamber void. The authors compared the influence of the two methods of integration on detecting neutrons and gamma rays, and they examined the effectiveness of other design factors and the methods for signal detection as well

  15. Experimental Assessment of a New Passive Neutron Multiplication Counter for Partial Defect Verification of LWR Fuel Assemblies

    International Nuclear Information System (INIS)

    LaFleur, A.; Menlove, H.; Park, S.-H.; Lee, S. K.; Oh, J.-M.; Kim, H.-D.

    2015-01-01

    The development of non-destructive assay (NDA) capabilities to improve partial defect verification of spent fuel assemblies is needed to improve the timely detection of the diversion of significant quantities of fissile material. This NDA capability is important to the implementation of integrated safeguards for spent fuel verification by the International Atomic Energy Agency (IAEA) and would improve deterrence of possible diversions by increasing the risk of early detection. A new NDA technique called Passive Neutron Multiplication Counter (PNMC) is currently being developed at Los Alamos National Laboratory (LANL) to improve safeguards measurements of LightWater Reactor (LWR) fuel assemblies. The PNMC uses the ratio of the fast-neutron emission rate to the thermalneutron emission rate to quantify the neutron multiplication of the item. The fast neutrons versus thermal neutrons are measured using fission chambers (FC) that have differential shielding to isolate fast and thermal energies. The fast-neutron emission rate is directly proportional to the neutron multiplication in the spent fuel assembly; whereas, the thermalneutron leakage is suppressed by the fissile material absorption in the assembly. These FCs are already implemented in the basic Self-Interrogation Neutron Resonance Densitometry (SINRD) detector package. Experimental measurements of fresh and spent PWR fuel assemblies were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using a hybrid PNMC and SINRD detector. The results from these measurements provides valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies. (author)

  16. A new neutron counter for fission research

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, B., E-mail: benoit.laurent@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Granier, T.; Bélier, G.; Chatillon, A.; Martin, J.-F.; Taieb, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Hambsch, F.-J. [EC-JRC Institute for Reference Materials and Measurements (IRMM), Retieseweg, 2440 Geel (Belgium); Tovesson, F.; Laptev, A.B.; Haight, R.C.; Nelson, R.O.; O' Donnell, J.M. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2014-05-01

    A new neutron counter for research experiments on nuclear fission has been developed. This instrument is designed for the detection of prompt fission neutrons within relatively high levels of gamma and neutron background. It is composed of a set of {sup 3}He proportional counters arranged within a block of polyethylene which serves as moderator. The detection properties have been studied by means of Monte Carlo simulations and experiments with radioactive sources. These properties are confirmed by an experiment on neutron-induced fission of {sup 238}U at the WNR facility of the Los Alamos Neutron Science Center during which the mean prompt fission neutron multiplicity, or ν{sup ¯} has been measured from 1 to 20 MeV of incident neutron energy.

  17. Neutron dosimetry using proportional counters with tissue equivalent walls

    International Nuclear Information System (INIS)

    Kerviller, H. de

    1965-01-01

    The author reminds the calculation method of the neutron absorbed dose in a material and deduce of it the conditions what this material have to fill to be equivalent to biological tissues. Various proportional counters are mode with walls in new tissue equivalent material and filled with various gases. The multiplication factor and neutron energy response of these counters are investigated and compared with those obtained with ethylene lined polyethylene counters. The conditions of working of such proportional counters for neutron dosimetry in energy range 10 -2 to 15 MeV are specified. (author) [fr

  18. Recoil-proton fast-neutron counter telescope

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R. (Padua Univ. (Italy). Ist. di Fisica); Galeazzi, G.; Bressanini, G.

    1981-12-01

    A recoil-proton neutron counter telescope is described composed of a solid-state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time of flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV.

  19. Recoil-proton fast-neutron-counter telescope

    Energy Technology Data Exchange (ETDEWEB)

    Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Bressanini, G.

    1981-01-01

    A proton-recoil neutron counter telescope is described composed of a solid state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time-of-flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV, presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV.

  20. Real‑time, fast neutron detection for stimulated safeguards assay

    International Nuclear Information System (INIS)

    Joyce, Malcolm J.; Adamczyk, Justyna; Plenteda, Romano; Aspinall, Michael D.; Cave, Francis D.

    2015-01-01

    The advent of low‑hazard organic liquid scintillation detectors and real‑time pulse‑shape discrimination (PSD) processing has suggested a variety of modalities by which fast neutrons, as opposed to neutrons moderated prior to detection, can be used directly to benefit safeguards needs. In this paper we describe a development of a fast‑neutron based safeguards assay system designed for the assessment of 235 U content in fresh fuel. The system benefits from real‑time pulse‑shape discrimination processing and auto‑calibration of the detector system parameters to ensure a rapid and effective set‑up protocol. These requirements are essential in optimising the speed and limit of detection of the fast neutron technique, whilst minimising the intervention needed to perform the assay.

  1. A high-sensitivity neutron counter and waste-drum counting with the high-sensitivity neutron instrument

    International Nuclear Information System (INIS)

    Hankins, D.E.; Thorngate, J.H.

    1993-04-01

    At Lawrence Livermore National Laboratory (LLNL), a highly sensitive neutron counter was developed that can detect and accurately measure the neutrons from small quantities of plutonium or from other low-level neutron sources. This neutron counter was originally designed to survey waste containers leaving the Plutonium Facility. However, it has proven to be useful in other research applications requiring a high-sensitivity neutron instrument

  2. Performance Evaluation of the Neutron Coincidence Counter for the Advanced Spent Fuel Conditioning Process

    International Nuclear Information System (INIS)

    Lee, S.Y.; Li, T.K.; Menlove, Howard O.; Kim, H.D.; Ko, W.I.; Park, S.W.

    2005-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is a pyrochemical dry reprocessing technique to convert oxide-type spent nuclear fuel into a metallic form. The Korea Atomic Energy Research Institute (KAERI) has been developing this technology for the purpose of spent fuel management and is planning to perform a lab-scale demonstration in 2006. With this technology, a significant reduction of the volume and heat load of spent fuel is expected, which could decrease the burden of safety and economics. In this study, MCNPX code calculations were carried out to estimate the performance of a neutron coincidence counter designed for measruement of the process materials in the pilot-scale ACP facility. To verify the design requirement, the singles and doubles counting rates of the detectors were simulated with the latest coincidence capability of the MCNPX code. Then, the precision of the coincidence measurements were evaluated on various process materials from the ACP. It was verified that the performance of the neutron coincidence counter could meet the design criteria for all samples in the ACP, and the material accounting system for the pilot-scale ACP facility could meet the IAEA safeguards goals.

  3. A recoil-proton fast-neutron counter telescope

    International Nuclear Information System (INIS)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Galeazzi, G.; Bressanini, G.

    1981-01-01

    A recoil-proton neutron counter telescope is described composed of a solid-state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time of flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV. (author)

  4. Neutron resonance analysis for nuclear safeguards and security applications

    Science.gov (United States)

    Paradela, Carlos; Heyse, Jan; Kopecky, Stefan; Schillebeeckx, Peter; Harada, Hideo; Kitatani, Fumito; Koizumi, Mitsuo; Tsuchiya, Harufumi

    2017-09-01

    Neutron-induced reactions can be used to study the properties of nuclear materials of interest in the fields of nuclear safeguards and security. The elemental and isotopic composition of these materials can be determined by using the presence of resonance structures. This idea is the basis of two non-destructive analysis techniques which have been developed at the GELINA neutron time-of-flight facility at JRC-Geel: Neutron Resonance Capture Analysis (NRCA) and Neutron Resonance Transmission Analysis (NRTA). A combination of NRTA and NRCA has been proposed for the characterisation of particle-like debris of melted fuel formed in severe nuclear accidents. In this work, we present a quantitative validation of the NRTA technique which was used to determine the areal densities of Pu enriched reference samples used for safeguards applications. Less than 2% bias has been obtained for the fissile isotopes, with well-known total cross sections.

  5. DEVELOPMENT OF HETEROGENEOUS PROPORTIONAL COUNTERS FOR NEUTRON DOSIMETRY.

    Science.gov (United States)

    Forouzan, Faezeh; Waker, Anthony J

    2018-01-10

    The use of a custom-made cylindrical graphite proportional counter (Cy-GPC) along with a cylindrical tissue equivalent proportional counter (TEPC) for neutron-gamma mixed-field dosimetry has been studied in the following steps: first, the consistency of the gamma dose measurement between the Cy-TEPC and the Cy-GPC was investigated over a range of 20 keV (X-ray) to 0.661 MeV (Cs-137 gamma ray). Then, with both the counters used simultaneously, the neutron and gamma ray doses produced by a P385 Neutron Generator (Thermo Fisher Scientific) together with a Cs-137 gamma source were determined. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. A semiconductor counter telescope for neutron reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Lalovic, B I; Ajdacic, V S [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1963-12-15

    A counter telescope consisting of two or three semiconductor counters for {delta}E/{delta}x vs. E analysis was made for studying nuclear reactions induced by 14.4 MeV neutrons. Various factors important for the telescope performance are discussed in details and some solutions for getting an optimum resolution and a low background are given. Protons, deuterons and alpha particles resulting from scattering and reactions of 14.4 MeV neutrons on deuterium, tritium, praseodymium and niobium were detected, and pulses from the counters recorded on a two-dimensional analyzer. These experiments have shown that the telescope compares favorably with other types of telescopes with regards to the upper limit of neutron flux which can be used, (DELTADELTA)x and E resolution, versatility and compactness (author)

  7. Development of a lithium fluoride zinc sulfide based neutron multiplicity counter

    Science.gov (United States)

    Cowles, Christian; Behling, Spencer; Baldez, Phoenix; Folsom, Micah; Kouzes, Richard; Kukharev, Vladislav; Lintereur, Azaree; Robinson, Sean; Siciliano, Edward; Stave, Sean; Valdez, Patrick

    2018-04-01

    The feasibility of a full-scale lithium fluoride zinc sulfide (LiF/ZnS) based neutron multiplicity counter has been demonstrated. The counter was constructed of modular neutron detecting stacks that each contain five sheets of LiF/ZnS interleaved between six sheets of wavelength shifting plastic with a photomultiplier tube on each end. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high-density polyethylene blocks in the corners to reflect high-energy neutrons and capture low-energy neutrons. The final system design was optimized via modeling and small-scale test. Measuring neutrons from a 252Cf source, the counter achieved a 36% neutron detection efficiency (ɛ) and an 11 . 7 μs neutron die-away time (τ) for a doubles figure-of-merit (ɛ2 / τ) of 109. This is the highest doubles figure-of-merit measured to-date for a 3He-free neutron multiplicity counter.

  8. An extended range neutron rem counter

    International Nuclear Information System (INIS)

    Birattari, C.; Nuccetelli, C.; Pelliccioni, M.; Silari, M.

    1990-01-01

    Extensive Monte Carlo calculations have been carried out to assess the possibility of extending the sensitivity of a neutron rem counter of the Andersson-Braun type up to several hundred MeV. The validity of the model adopted has first been checked by comparing with experimental data the calculated response curve and the angular dependence of the sensitivity for a well known commercial rem counter. Next, a number of modifications to the configuration of the moderator-attenuator have been investigated. The response functions and angular distributions produced by two simple solutions yielding an instrument with a sensitivity extended up to 400 MeV are presented. The response of the original rem counter and of its two modified versions to nine test spectra has also been calculated. The resulting instrument is transportable rather than portable, but the availability of an extended range neutron survey meter would be of great advantage at medium and high energy particle accelerator facilities. (orig.)

  9. Performance of a Boron-Coated-Straw-Based HLNCC for International Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Angela T. [ORNL; Croft, Stephen [ORNL; McElroy, Robert Dennis [ORNL; Sun, Liang [Proportional Technologies Inc.; Hayward, Jason P. [ORNL

    2017-08-01

    3He gas has been used in various scientific and security applications for decades, but it is now in short supply. Alternatives to 3He detectors are currently being integrated and tested in neutron coincidence counter designs, of a type which are widely used in nuclear safeguards for nuclear materials assay. A boron-coated-straw-based design, similar to the High-Level Neutron Coincidence Counter-II, was built by Proportional Technologies Inc., and has been tested by the Oak Ridge National Laboratory (ORNL) at both the JRC in Ispra and ORNL. Characterization measurements, along with nondestructive assays of various plutonium samples, have been conducted to determine the performance of this coincidence counter replacement in comparison with other similar counters. This paper presents results of these measurements.

  10. A portable neutron coincidence counter

    Energy Technology Data Exchange (ETDEWEB)

    Peurrung, A.J.; Bowyer, S.M.; Craig, R.A.; Dudder, G.B.; Knopf, M.A.; Panisko, M.E.; Reeder, P.L.; Stromswold, D.C.; Sunberg, D.S.

    1996-11-01

    Pacific Northwest National Laboratory has designed and constructed a prototype portable neutron coincidence counter intended for use in a variety of applications, such as the verification and inspection of weapons components, safety measurements for novel and challenging situations, portable portal deployment to prevent the transportation of fissile materials, uranium enrichment measurements in hard-to-reach locations, waste assays for objects that cannot be measured by existing measurement systems, and decontamination and decommissioning. The counting system weighs less than 40 kg and is composed of parts each weighing no more than 5 kg. In addition, the counter`s design is sufficiently flexible to allow rapid, reliable assembly around containers of nearly arbitrary size and shape. The counter is able to discern the presence of 1 kg of weapons-grade plutonium within an ALR-8 (30-gal drum) in roughly 100 seconds and 10 g in roughly 1000 seconds. The counter`s electronics are also designed for maximum adaptability, allowing operation under a wide variety of circumstances, including exposure to gamma-ray fields of 1 R/h. This report provides a detailed review of the design and construction process. Finally, preliminary experimental measurements that confirm the performance capabilities of this counter are discussed. 6 refs., 18 figs., 3 tabs.

  11. The side-on response of a standard long counter to fast neutrons

    International Nuclear Information System (INIS)

    Johnson, F.A.

    1979-01-01

    The response of a standard long counter to neutrons incident into its front face relative to its response to those incident into its side was measured for a range of neutron energies, and an increasing sensitivity to high-energy neutrons incident into the side was evident. The effect of a shadow bar in contributing to an initial degradation in energy of neutrons which then scatter from the surroundings into the counter was suggested by the response of the counter in the side-on orientation as a function of the separation distance of the bar from a source. (Auth.)

  12. Simulation and preliminary experimental results for an active neutron counter using a neutron generator for a fissile material accounting

    International Nuclear Information System (INIS)

    Ahn, Seong-Kyu; Lee, Tae-Hoon; Shin, Hee-Sung; Kim, Ho-Dong

    2009-01-01

    An active neutron coincidence counter using a neutron generator as an interrogation source has been suggested. Because of the high energy of the interrogation neutron source, 2.5 MeV, the induced fission rate is strongly affected by the moderator design. MCNPX simulation has been performed to evaluate the performance achieved with these moderators. The side- and bottom-moderator are significantly important to thermalize neutrons to induce fission. Based on the simulation results, the moderators are designed to be adapted to the experimental system. Their preliminary performance has been tested by using natural uranium oxide powder samples. For a sample of up to 3.5 kg, which contains 21.7 g of 235 U, 2.64 cps/g- 235 U coincidence events have been measured. Mean background error was 9.57 cps and the resultant coincidence error was 13.8 cps. The experimental result shows the current status of an active counting using a neutron generator which still has some challenges to overcome. However, the controllability of an interrogation source makes this system more applicable for a variety of combinations with other non-destructive methods like a passive coincidence counting especially under a harsh environment such as a hot cell. More precise experimental setup and tests with higher enriched samples will be followed to develop a system to apply it to an active measurement for the safeguards of a spent fuel treatment process.

  13. Neutron coincidence counter for MOX fuel pins in storage trays: users' manual

    International Nuclear Information System (INIS)

    Cowder, L.; Menlove, H.

    1982-08-01

    The neutron coincidence counter for measurement of mixed-oxide fuel pins in storage trays is described. The special detector head has been designed so that the detectors, high-voltage junction boxes, and electronics are interchangeable with those of the high-level neutron coincidence counter system. This manual describes the system components and the operation and maintenance of the counter. The counter was developed at Los Alamos National Laboratory for in-plant inspection applications by the International Atomic Energy Agency

  14. Novel fast-neutron activation counter for high repetition rate measurements

    International Nuclear Information System (INIS)

    Mahmood, S.; Springham, S. V.; Zhang, T.; Rawat, R. S.; Tan, T. L.; Krishnan, M.; Beg, F. N.; Lee, S.; Schmidt, H.; Lee, P.

    2006-01-01

    A fast-neutron beryllium activation counter has been constructed for neutron measurements on a high repetition rate deuterium plasma focus. Beryllium activation is especially suitable for measurements of DD neutron yields. The cross section for the relevant reaction, 9 Be(n,α) 6 He, results in a maximum sensitivity at the characteristic energy of the DD neutrons (∼2.5 MeV) and practically no sensitivity to neutrons with energies 6 He enabled the shot-to-shot neutron yield from the plasma focus to be measured for repetition rates from 0.2 to 3 Hz (and for a range of deuterium gas pressures). With careful analysis, the shot-to-shot yield can be measured up to a maximum repetition rate of 3 Hz, beyond which the pileup of counts from the previous shots reduces the accuracy of the measurements to an unacceptable level. This new beryllium activation counter has been cross-checked against an indium activation counter to obtain absolute neutron yields. At a charging voltage of 12.5 kV (bank energy of 2.2 kJ), the average neutron yield was found to be (7.9±0.7)x10 7 per shot (standard deviation of 4x10 7 ). It was found that activation of the plasma focus construction materials (especially aluminum) must be taken into account

  15. Novel concept for neutron detection: proportional counter filled with 10B nanoparticle aerosol

    Science.gov (United States)

    Amaro, F. D.; Monteiro, C. M. B.; dos Santos, J. M. F.; Antognini, A.

    2017-01-01

    The high neutron detection efficiency, good gamma-ray discrimination and non-toxicity of 3He made of proportional counters filled with this gas the obvious choice for neutron detection, particularly in radiation portal monitors (RPM), used to control the illicit transport of nuclear material, of which neutron detectors are key components. 3He is very rare and during the last decade this gas has become increasingly difficult to acquire. With the exception of BF3, which is toxic, no other gas can be used for neutron detection in proportional counters. We present an alternative where the 3He atoms are replaced by nanoparticles made of another neutron sensitive material, 10B. The particles are dispersed in a gaseous volume, forming an aerosol with neutron sensitive properties. A proportional counter filled with such aerosol was exposed to a thermal neutron beam and the recorded response indicates that the neutrons have interacted with the particles in the aerosol. This original technique, which transforms a standard proportional gas mixture into a neutron sensitive aerosol, is a breakthrough in the field of radiation detection and has the potential to become an alternative to the use of 3He in proportional counters. PMID:28181520

  16. Calibration and Monte Carlo modelling of neutron long counters

    CERN Document Server

    Tagziria, H

    2000-01-01

    The Monte Carlo technique has become a very powerful tool in radiation transport as full advantage is taken of enhanced cross-section data, more powerful computers and statistical techniques, together with better characterisation of neutron and photon source spectra. At the National Physical Laboratory, calculations using the Monte Carlo radiation transport code MCNP-4B have been combined with accurate measurements to characterise two long counters routinely used to standardise monoenergetic neutron fields. New and more accurate response function curves have been produced for both long counters. A novel approach using Monte Carlo methods has been developed, validated and used to model the response function of the counters and determine more accurately their effective centres, which have always been difficult to establish experimentally. Calculations and measurements agree well, especially for the De Pangher long counter for which details of the design and constructional material are well known. The sensitivit...

  17. Universal Fast Breeder Reactor Subassembly Counter manual

    International Nuclear Information System (INIS)

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications

  18. Calibration methodology for proportional counters applied to yield measurements of a neutron burst

    Energy Technology Data Exchange (ETDEWEB)

    Tarifeño-Saldivia, Ariel, E-mail: atarifeno@cchen.cl, E-mail: atarisal@gmail.com; Pavez, Cristian; Soto, Leopoldo [Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago (Chile); Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Santiago (Chile); Departamento de Ciencias Fisicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Republica 220, Santiago (Chile); Mayer, Roberto E. [Instituto Balseiro and Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and Universidad Nacional de Cuyo, San Carlos de Bariloche R8402AGP (Argentina)

    2014-01-15

    This paper introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. This methodology is to be applied when single neutron events cannot be resolved in time by nuclear standard electronics, or when a continuous current cannot be measured at the output of the counter. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from the detection of the burst of neutrons. The model is developed and presented in full detail. For the measurement of fast neutron yields generated from plasma focus experiments using a moderated proportional counter, the implementation of the methodology is herein discussed. An experimental verification of the accuracy of the methodology is presented. An improvement of more than one order of magnitude in the accuracy of the detection system is obtained by using this methodology with respect to previous calibration methods.

  19. Calibration methodology for proportional counters applied to yield measurements of a neutron burst

    International Nuclear Information System (INIS)

    Tarifeño-Saldivia, Ariel; Pavez, Cristian; Soto, Leopoldo; Mayer, Roberto E.

    2014-01-01

    This paper introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. This methodology is to be applied when single neutron events cannot be resolved in time by nuclear standard electronics, or when a continuous current cannot be measured at the output of the counter. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from the detection of the burst of neutrons. The model is developed and presented in full detail. For the measurement of fast neutron yields generated from plasma focus experiments using a moderated proportional counter, the implementation of the methodology is herein discussed. An experimental verification of the accuracy of the methodology is presented. An improvement of more than one order of magnitude in the accuracy of the detection system is obtained by using this methodology with respect to previous calibration methods

  20. Passive and Active Fast-Neutron Imaging in Support of Advanced Fuel Cycle Initiative Safeguards Campaign

    International Nuclear Information System (INIS)

    Blackston, Matthew A.; Hausladen, Paul

    2010-01-01

    Results from safeguards-related passive and active coded-aperture fast-neutron imaging measurements of plutonium and highly enriched uranium (HEU) material configurations performed at Idaho National Laboratory s Zero Power Physics Reactor facility are presented. The imaging measurements indicate that it is feasible to use fast neutron imaging in a variety of safeguards-related tasks, such as monitoring storage, evaluating holdup deposits in situ, or identifying individual leached hulls still containing fuel. The present work also presents the first demonstration of imaging of differential die away fast neutrons.

  1. Development of a lithium fluoride zinc sulfide based neutron multiplicity counter

    Energy Technology Data Exchange (ETDEWEB)

    Cowles, Christian; Behling, Spencer; Baldez, Phoenix; Folsom, Micah; Kouzes, Richard; Kukharev, Vladislav; Lintereur, Azaree; Robinson, Sean; Siciliano, Edward; Stave, Sean; Valdez, Patrick

    2018-04-01

    Past 3He shortages led to investigations into replacement options for neutron detectors in systems that previously used 3He-based technologies. The goal of this research was to investigate the feasibility of a full-scale lithium fluoride with silver activated zinc sulfide (LiF/ZnS) based neutron multiplicity counter. The LiF/ZnS based neutron multiplicity counter (LiNMC) was developed based on an iterative process between modeling and experimental measurements. Each active region of the LiNMC contains five sheets of LiF/ZnS sandwiched between six sheets of wavelength shifting plastic to form neutron detection stacks. The wavelength shifted scintillation light was collected by photomultiplier tubes located on each end of the stacks. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high density polyethylene blocks in the corners to reflect high energy neutrons and capture low energy neutrons. Preliminary calibration with a 252Cf neutron source showed that the LiNMC was able to achieve 36% neutron detection efficiency (ε) and an 11.7 μs neutron die-away time (τ) for a doubles Figure-of-merit (ε2/ τ) of 109. This is the highest doubles Figure-of-merit performance measured to-date for a 3He-free neutron multiplicity counter system. By the end of this project, the LiNMC’s basic components were integrated into a single laboratory scale system capable of proof-of-concept measurements.

  2. Universal Fast Breeder Reactor Subassembly Counter manual

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications.

  3. Introduction to Neutron Coincidence Counter Design Based on Boron-10

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2012-01-22

    The Department of Energy Office of Nonproliferation Policy (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is ultimately to design, build and demonstrate a boron-lined proportional tube based alternative system in the configuration of a coincidence counter. This report, providing background information for this project, is the deliverable under Task 1 of the project.

  4. Ideal response function of a 3He proportional counter to thermal neutrons determined by different length counters

    International Nuclear Information System (INIS)

    Takeda, Naoto; Kudo, Katsuhisa; Kobayashi, Katsuhei; Yoshimoto, Takaaki

    2000-01-01

    The relative gas multiplication along the cylindrical axis of three 3 He proportional counters with different length were measured by using a thermal neutron beam at the Kyoto University Reactor and an ideal response function by taking into account the difference of pulse height spectra were measured by different length counters. The three 3 He proportional counters (model type of P4-0806, P4-0806 and P4-0808 manufactured by Reuter-Stokes) prepared for relative gas multiplication measurements had identical structure having cylindrical outer shells of 304 stainless steel except for different sensitive lengths of 10 cm, 15 cm and 20 cm, respectively. All counters were filled with 400 kPa of 3 He gas and 200 kPa of Ar gas. The pulse height distributions were measured by moving the counter in the direction of it's cylindrical axis perpendicular to the thermal neutron beam. The measured pulse heights corresponding to the full energy peaks at various entrance points were normalized to that of the whole counter irradiation. The results as a function of the distance from the bottom edge of the stainless steel cylinder are shown. The total transition region of gas gain corresponded to about 23 %, 15 % and 10 % of each nominal sensitive region corresponding to shot, middle and long counters. The ideal pulse height spectrum (dots) obtained by using proportional counters of 10 cm and 20 cm in nominal sensitive length to thermal neutron beam is shown in the paper in comparison to simulated one which was calculated assuming the constant gain within the sensitive region and zero gas gain outside the sensitive regions. The simulation realized the ideal response function fairly well. (S.Y.)

  5. A helium-3 proportional counter technique for estimating fast and intermediate neutrons

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Nakazawa, Masaharu; Sekiguchi, Akira; Wakabayashi, Hiroaki.

    1976-11-01

    3 He proportional counter was employed to determine the fast and intermediate neutron spectra of wide energy region. The mixed gas ( 3 He, Kr) type counter response and the spectrum unfolding code were prepared and applied to some neutron fields. The counter response calculation was performed by using the Monte Carlo code, paying regards to dealing of the particle range calculation of the mixed gas. An experiment was carried out by using the van de Graaff accelerator to check the response function. The spectrum unfolding code was prepared so that it may have the function of automatic evaluation of the higher energy spectrum's effect to the pulse hight distribution of the lower energy region. The neutron spectra of the various neutron fields were measured and compared with the calculations such as the discrete ordinate Sn calculations. It became clear that the technique developed here can be applied to the practical use in the neutron energy range from about 150 KeV to 5 MeV. (auth.)

  6. High-level neutron coincidence counter (HLNCC): users' manual

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.

    1979-06-01

    This manual describes the portable High-Level Neutron Coincidence Counter (HLNCC) developed at the Los Alamos Scientific Laboratory (LASL) for the assay of plutonium, particularly by inspectors of the International Atomic Energy Agency (IAEA). The counter is designed for the measurement of the effective 240 Pu mass in plutonium samples which may have a high plutonium content. The following topics are discussed: principle of operation, description of the system, operating procedures, and applications

  7. Evaluation of in-plant neutron coincidence counters for the measurement of molten salt extraction residues

    International Nuclear Information System (INIS)

    Langner, D.G.; Russo, P.A.; Wachter, J.R.

    1993-01-01

    Americium is extracted from plutonium by a molten salt extraction (MSE) process. The residual americium-laden salts are a significant waste stream in this pyrochemical purification process. Rapid assay of MSE residues is desirable to minimize the exposure of personnel to these often high-level emissions. However, the quantitative assay of plutonium in MSE residues is difficult. Variable, unknown (a,n) rates and variable emitted-neutron energy spectra preclude the use of standard neutron coincidence counting techniques with old-generation neutron coincidence counters. Gamma-ray assay methods have not been successful with some residues because of random lumps of plutonium metal. In this paper, we present measurements of MSE residues with two state-of-the-art neutron coincidence counters at the Los Alamos Plutonium Processing Facility: an in-line counter built for the assay of bulk waste material and the pyrochemical multiplicity counter that underwent test and evaluation at that facility. Both of these counters were designed to minimize the effects on measurements of variations in the sample geometry and variable energy spectra of emitted neutrons. These results are compared to measurements made with an HLNCII and with a 20-yr-old in-line well counter. The latter two counters are not optimized in ft sense. We conclude that the newer counters provide significantly improved assay results. The pyrochemical multiplicity counter operated in the conventional coincidence mode provided the best assays overall

  8. Efficiency simulation of long neutron counter

    International Nuclear Information System (INIS)

    Hu Qingyuan; Li Bojun; Zhang De; Guo Hongsheng; Wang Dong; Yang Gaozhao; Si Fenni; Liu Jian

    2008-01-01

    In order to achieve the high efficiency and uniform sensitivity for neutrons with widely different energies, the efficiency of long boron trifluoride proportional counter imbedded in polyethylene moderator was simulated by MCNP code. The result shows that detective efficiency would increase with increasing moderator radius and response curve at higher energy would be ameliorated through adjusting the thickness of front moderator. Also we calculated the relative efficiencies for different energy of a detector whose efficiencies were calibrated on an accelerator. The simulated efficiency for D-D neutrons (2.4 MeV) is 75% of the efficiency for D-T neutrons (14.1 MeV), which is approximately agreed with experimental data, 61%. The validity of the simulated model was proved by the consistent results between calculation and experiment data. (authors)

  9. Study on the neutron dosimetric characteristics of Tissue Equivalent Proportional Counter

    Energy Technology Data Exchange (ETDEWEB)

    Nunomiya, T.; Kim, E.; Kurosawa, T.; Taniguchi, S.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Tsujimura, N.; Momose, T.; Shinohara, K. [Japan Nuclear Cycle Development Inst., Environment and Safety Division, Tokai Works, Tokai, Ibaraki (Japan)

    1999-03-01

    The neutron dosimetric characteristics of TEPC (Tissue Equivalent Proportional Counter) has been investigated under a cooperative study between Tohoku University and JNC since 1997. This TEPC is a spherical, large volume, single-wire proportional counter (the model LETSW-5, manufactured by Far West Technology, Inc.) and filled with a tissue equivalent gas in a spherical detector of the A-150 tissue equivalent plastic. The TEPC can measure the spectra of absorbed dose in LET and easily estimate the tissue equivalent dose to neutron. This report summarizes the dosimetric characteristics of TEPC to the monoenergetic neutrons with energy from 8 keV to 15 MeV. It is found that TEPC can estimate the ambient dose equivalent, H*(10), with an accuracy from 0.9 to 2 to the neutron above 0.25 MeV and TEPC has a good counting efficiency enough to measure neutron doses with low dose rate at the stray neutron fields. (author)

  10. FB-line neutron multiplicity counter operation manual

    International Nuclear Information System (INIS)

    Langner, D.G.; Sweet, M.R.; Salazar, S.D.; Kroncke, K.E.

    1998-01-01

    This manual describes the design features, performance, and operating characteristics for the FB-Line Neutron Multiplicity Counter (FBLNMC). The FBLNMC counts neutron multiplicities to quantitatively assay plutonium in many forms, including impure scrap and waste. Monte Carlo neutronic calculations were used to design the high-efficiency (57%) detector that has 113 3 H tubes in a high-density polyethylene body. The new derandomizer circuit is included in the design to reduce deadtime. The FBLNMC can be applied to plutonium masses in the range from a few tens of grams to 5 kg; both conventional coincidence counting and multiplicity counting can be used as appropriate. This manual gives the performance data and preliminary calibration parameters for the FBLNMC

  11. The application of safeguards design principles to the spent fuel bundle counter for 600 MW

    International Nuclear Information System (INIS)

    Stirling, A.J.; Allen, V.H.

    1978-10-01

    The irradiated fuel bundle counters for CANDU 600 MW reactors provide the IAEA with a secure and independent means of estimating the inventory of the spent fuel storage bay at each inspection. Their function is straightforward: to count the bundles entering the storage area through the normal transfer ports. However, location, reliability, security and operating requirements make them highly ΣintelligentΣ instruments which have required a major development program. Moreover, the bundle counters incorporate principles which apply to many unattended safeguards instruments. For example, concealing the operating status from potential diverters eases reliability specifications, continuous self-checking gives the inspector confidence in the readout, independence from continuous station services improves tamper resistance, and the detailed data display provides tamper indication and a high level of credibility. Each irradiated fuel bundle counter uses four Geiger counters to detect the passage of fuel bundles as they pass sequentially through the field-of-view. A Microprocessor analyzes the sequence of the Geiger counter signals and determines the number and direction of bundles transferred. The readout for IAEA inspectors includes both a tally and a printed log. The printer is also used to alert the inspector to abnomal fuel movements, tampering, Geiger counter failures and contamination of the fuel transfer mechanism. (author)

  12. Use of curium neutron flux from head-end pyroprocessing subsystems for the High Reliability Safeguards methodology

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, R.A., E-mail: r.angelo.borrelli@gmail.com

    2014-10-01

    The deployment of nuclear energy systems (NESs) is expanding around the world. Nations are investing in NESs as a means to establish energy independence, grow national economies, and address climate change. Transitioning to the advanced nuclear fuel cycle can meet growing energy demands and ensure resource sustainability. However, nuclear facilities in all phases of the advanced fuel cycle must be ‘safeguardable,’ where safety, safeguards, and security are integrated into a practical design strategy. To this end, the High Reliability Safeguards (HRS) approach is a continually developing safeguardability methodology that applies intrinsic design features and employs a risk-informed approach for systems assessment that is safeguards-motivated. Currently, a commercial pyroprocessing facility is used as the example system. This paper presents a modeling study that investigates the neutron flux associated with processed materials. The intent of these studies is to determine if the neutron flux will affect facility design, and subsequently, safeguardability. The results presented in this paper are for the head-end subsystems in a pyroprocessing facility. The collective results from these studies will then be used to further develop the HRS methodology.

  13. Calibration methodology for proportional counters applied to yield measurements of a neutron burst

    International Nuclear Information System (INIS)

    Tarifeño-Saldivia, Ariel; Pavez, Cristian; Soto, Leopoldo; Mayer, Roberto E

    2015-01-01

    This work introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from detection of the burst of neutrons. An improvement of more than one order of magnitude in the accuracy of a paraffin wax moderated 3 He-filled tube is obtained by using this methodology with respect to previous calibration methods. (paper)

  14. Variable dead time counters: 2. A computer simulation

    International Nuclear Information System (INIS)

    Hooton, B.W.; Lees, E.W.

    1980-09-01

    A computer model has been developed to give a pulse train which simulates that generated by a variable dead time counter (VDC) used in safeguards determination of Pu mass. The model is applied to two algorithms generally used for VDC analysis. It is used to determine their limitations at high counting rates and to investigate the effects of random neutrons from (α,n) reactions. Both algorithms are found to be deficient for use with masses of 240 Pu greater than 100g and one commonly used algorithm is shown, by use of the model and also by theory, to yield a result which is dependent on the random neutron intensity. (author)

  15. Application of Whole Body Counter to Neutron Dose Assessment in Criticality Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, O.; Tsujimura, N.; Takasaki, K.; Momose, T.; Maruo, Y. [Japan Nuclear Cycle Development Institute, Tokai (Japan)

    2001-09-15

    Neutron dose assessment in criticality accidents using Whole Body Counter (WBC) was proved to be an effective method as rapid neutron dose estimation at the JCO criticality accident in Tokai-mura. The 1.36MeV gamma-ray of {sup 24}Na in a body can be detected easily by a germanium detector. The Minimum Detectable Activity (MDA) of {sup 24}Na is approximately 50Bq for 10minute measurement by the germanium-type whole body counter at JNC Tokai Works. Neutron energy spectra at the typical shielding conditions in criticality accidents were calculated and the conversion factor, whole body activity-to-organ mass weighted neutron absorbed dose, corresponding to each condition were determined. The conversion factor for uncollied fission spectrum is 7.7 [(Bq{sup 24}Na/g{sup 23}Na)/mGy].

  16. Advances in passive neutron instruments for safeguards use

    International Nuclear Information System (INIS)

    Menlove, H.O.; Krick, M.S.; Langner, D.G.; Miller, M.C.; Stewart, J.E.

    1994-01-01

    Passive neutron and other nondestructive assay techniques have been used extensively by the International Atomic Energy Agency to verify plutonium metal, powder, mixed oxide, pellets, rods, assemblies, scrap, and liquids. Normally, the coincidence counting rate is used to measure the 240 Pu-effective mass and gamma-ray spectrometry or mass spectrometry is used to verify the plutonium isotopic ratios. During the past few years, the passive neutron detectors have been installed in plants and operated in the unattended/continuous mode. These radiation data with time continuity have made it possible to use the totals counting rate to monitor the movement of nuclear material. Monte Carlo computer codes have been used to optimize the detector designs for specific applications. The inventory sample counter (INVS-III) has been designed to have a higher efficiency (43%) and a larger uniform counting volume than the original INVS. Data analyses techniques have been developed, including the ''known alpha'' and ''known multiplication'' methods that depend on the sample. For scrap and other impure or poorly characterized samples, we have developed multiplicity counting, initially implemented in the plutonium scrap multiplicity counter. For large waste containers such as 200-L drums, we have developed the add-a-source technique to give accurate corrections for the waste-matrix materials. This paper summarizes recent developments in the design and application of passive neutron assay systems

  17. Performance of an active well coincidence counter for HEU samples

    International Nuclear Information System (INIS)

    Ferrari, Francesca; Peerani, Paolo

    2010-01-01

    Neutron coincidence counting is the reference NDA technique used in nuclear safeguards to measure the mass of nuclear material in samples. For high-enriched uranium (HEU) samples active neutron interrogation is generally performed and the most common device used by nuclear inspectors is the Active Well Coincidence Counter (AWCC). Within her master thesis at the Polytechnic of Milan, the first author performed an intensive study on the characteristics and performances of the AWCC in order to assess the 235 U mass in HEU oxide samples at the PERLA laboratory of JRC. The work has been summarised in this paper that starts with the optimisation of the use of AWCC for nuclear safeguards, describing the calibration procedure, reporting results of a series of verification measurements, summarising the performances that can be obtained with this instruments during inspections at fuel production plants and concluding with the discussion of uncertainties related to these measurements.

  18. Use of the helium-3 proportional counter for neutron spectrometry

    International Nuclear Information System (INIS)

    Vialettes, H.; Le Thanh, P.

    1967-01-01

    Up to now, two methods have been mainly used for neutron spectrometry near nuclear installations: - photographic emulsion spectrometry - the so-called, 'multisphere' technique spectrometry. The first method, which is fairly difficult to apply, has a threshold energy of about 500 keV; this is a big disadvantage for an apparatus which has to be used for spectrometry around nuclear installations where the neutron radiation is very much degraded energetically. The second method does not suffer from this disadvantage but the results which it yields are only approximate. In order to extend the energy range of the neutron spectra studied with sufficient accuracy the use of a helium-3 proportional counter has been considered. This report presents the principles of operation of the helium-3 spectrometer, and the calculation methods which make it possible to take into account the two main effects tending to deform the spectra obtained: - energy absorption by the walls of the counter, - energy loss of the incident neutrons due to elastic collisions with helium-3 nuclei. As an example of the application, the shape of the neutron spectrum emitted by a polonium-lithium source is given; the results obtained are in excellent agreement with theoretical predictions. (authors) [fr

  19. Application of safeguards design principles to the spent-fuel bundle counters for 600-MW CANDU reactors

    International Nuclear Information System (INIS)

    Stirling, A.J.; Allen, V.H.

    1979-01-01

    The irradiated fuel bundle counters for CANDU 600-MW reactors provide the IAEA with a secure and independent means of estimating the inventory of the spent-fuel storage bay at each inspection. Their function is straightforward - to count the bundles entering the storage area through the normal transfer ports. However, location, reliability, security and operating requirements make them highly ''intelligent'' instruments which have required a major development programme. Moreover, the bundle counters incorporate principles which apply to many unattended safeguards instruments. For example, concealing the operating status from potential diverters eases reliability specifications, continuous self-checking gives the inspector confidence in the readout, independence from continuous station services improves tamper-resistance, and the detailed data display provides tamper indication and a high level of credibility. Each irradiated fuel-bundle counter uses four Geiger counters to detect the passage of fuel bundles as they pass sequentially through the field-of-view. A microprocessor analyses the sequence of the Geiger counter signals and determines the number and direction of bundles transferred. The readout for IAEA inspectors includes both a tally and a printed log. The printer is also used to alert the inspector to abnormal fuel movements, tampering, Geiger counter failures and contamination of the fuel transfer mechanism. (author)

  20. Los Alamos safeguards program overview and NDA in safeguards

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1988-01-01

    Over the years the Los Alamos safeguards program has developed, tested, and implemented a broad range of passive and active nondestructive analysis (NDA) instruments (based on gamma and x-ray detection and neutron counting) that are now widely employed in safeguarding nuclear materials of all forms. Here very briefly, the major categories of gamma ray and neutron based NDA techniques, give some representative examples of NDA instruments currently in use, and cite a few notable instances of state-of-the-art NDA technique development. Historical aspects and a broad overview of the safeguards program are also presented

  1. The neutron long counter NERO for studies of β-delayed neutron emission in the r-process

    International Nuclear Information System (INIS)

    Pereira, J.; Hosmer, P.; Lorusso, G.; Santi, P.; Couture, A.; Daly, J.; Del Santo, M.; Elliot, T.

    2010-01-01

    The neutron long counter NERO was built at the National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, for measuring β-delayed neutron-emission probabilities. The detector was designed to work in conjunction with a β-delay implantation station, so that β decays and β-delayed neutrons emitted from implanted nuclei can be measured simultaneously. The high efficiency of about 40%, for the range of energies of interest, along with the small background, are crucial for measuring β-delayed neutron emission branchings for neutron-rich r-process nuclei produced as low intensity fragmentation beams in in-flight separator facilities.

  2. Calibration of the neutron scintillation counter threshold

    International Nuclear Information System (INIS)

    Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.

    1978-01-01

    A method for calibrating the threshold of a neutron counter in the form of a 10x10x40 cm plastic scintillator is described. The method is based on the evaluation of the Compton boundary of γ-spectrum from the discrimination curve of counter loading. The results of calibration using 60 Co and 24 Na γ-sources are given. In order to eValuate the Compton edge rapidly, linear extrapolation of the linear part of the discrimination curve towards its intersection with the X axis is recommended. Special measurements have shown that the calibration results do not practically depend on the distance between the cathode of a photomultiplier and the place where collimated γ-radiation of the calibration source reaches the scintillator

  3. Manual for the Portable Handheld Neutron Counter (PHNC) for Neutron Survey and the Measurement of Plutonium Samples

    International Nuclear Information System (INIS)

    Menlove, H.O.

    2005-01-01

    We have designed a portable neutron detector for passive neutron scanning measurement and coincidence counting of bulk samples of plutonium. The counter will be used for neutron survey applications as well as the measurement of plutonium samples for portable applications. The detector uses advanced design 3 He tubes to increase the efficiency and battery operated shift register electronics. This report describes the hardware, performance, and calibration for the system

  4. Calibration of a large multi-element neutron counter in the energy range 85-430 MeV

    CERN Document Server

    Strong, J A; Esterling, R J; Garvey, J; Green, M G; Harnew, N; Jane, M R; Jobes, M; Mawson, J; McMahon, T; Robertson, A W; Thomas, D H

    1978-01-01

    Describes the calibration of a large 60 element neutron counter with a threshold of 2.7 MeV equivalent electron energy. The performance of the counter has been measured in the neutron kinetic energy range 8.5-430 MeV using a neutron beam at the CERN Synchrocyclotron. The results obtained for the efficiency as a function of energy are in reasonable agreement with a Monte Carlo calculation. (7 refs).

  5. Response matrix of a multisphere neutron spectrometer with an 3 He proportional counter

    International Nuclear Information System (INIS)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Mercado S, G.A.

    2005-01-01

    The response matrix of a Bonner sphere spectrometer was calculated by use of the MCNP code. As thermal neutron counter, the spectrometer has a 3.2 cm-diameter 3 He-filled proportional counter which is located at the center of a set of polyethylene spheres. The response was calculated for 0, 3, 5, 6, 8, 10, 12, and 16 inches-diameter polyethylene spheres for neutrons whose energy goes from 10 -9 to 20 MeV. The response matrix was compared with a set of responses measured with several monoenergetic neutron sources. In this comparison the calculated matrix agrees with the experimental results. The matrix was also compared with the response matrix calculated for the PTB C spectrometer. Even though that calculation was carried out using a detailed model to describe the proportional counter; both matrices do agree, but small differences are observed in the bare case because of the difference in the model used during calculations. Other differences are in some spheres for 14.8 and 20 MeV neutrons, probably due to the differences in the cross sections used during both calculations. (Author) 28 refs., 1 tab., 6 figs

  6. Discrimination of the wall effect in a thin counter with micro-gap structure for neutron position sensing

    Energy Technology Data Exchange (ETDEWEB)

    Sakae, Takeji; Manabe, Tohru; Kitamura, Yasunori; Nohtomi, Akihiro [Kyushu Univ., Fukuoka (Japan); Sakamoto, Sigeyasu

    1996-07-01

    Simulation by the Monte Carlo method is applied to estimate the wall effect in a thermal neutron counter having a new function for discriminating the effect. The counter is designed to have paralleled electrodes with micro-gap structure. A resistive anode is used for position sensing on the center of a set of the three electrode. The structure can be made by simple arrangement of anode and cathode wires on an insulator plane. The calculation shows discrimination of the wall effect can be achieved by coincident counting of two or three elements included in the counter. By using the coincident counting, the thickness of the neutron counter can be made into 1 mm with the information of the total energy created in the neutron detection. (author)

  7. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Louise G., E-mail: evanslg@ornl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Swinhoe, Martyn T.; Menlove, Howard O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Schwalbach, Peter; Baere, Paul De [European Commission, Euratom Safeguards Office (Luxembourg); Browne, Michael C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-11-21

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd{sub 2}O{sub 3}) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available {sup 241}AmLi (α,n) interrogation source strength of 5.7×10{sup 4} s{sup −1}. Furthermore, the calibration range of the new collar has been extended to verify {sup 235}U content in variable PWR fuel

  8. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    International Nuclear Information System (INIS)

    Evans, Louise G.; Swinhoe, Martyn T.; Menlove, Howard O.; Schwalbach, Peter; Baere, Paul De; Browne, Michael C.

    2013-01-01

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd 2 O 3 ) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241 AmLi (α,n) interrogation source strength of 5.7×10 4 s −1 . Furthermore, the calibration range of the new collar has been extended to verify 235 U content in variable PWR fuel designs in the presence of up to

  9. Development of a position-sensitive fission counter and measurement of neutron flux distributions

    International Nuclear Information System (INIS)

    Yamagishi, Hideshi; Soyama, Kazuhiko; Kakuta, Tsunemi

    2001-08-01

    A position-sensitive fission counter (PSFC) that operates in high neutron flux and high gamma-ray background such as at the side of a power reactor vessel has been developed. Neutron detection using the PSFC with a solenoid electrode is based on a delay-line method. The PSFC that has the outer diameter of 25 mm and the sensitive length of 1000 mm was manufactured for investigation of the performances. The PSFC provided output current pulses that were sufficiently higher than the alpha noise, though the PSFC has a solenoid electrode and large electrode-capacitance. The S/N ratio of PSFC outputs proved to be higher than that of ordinary fission counters with 200 mm sensitive length. A performance test to measure neutron flux distributions by a neutron measuring system with the PSFC was carried out by the side of a graphite pile, W2.4 x H1.4 x L1.2 m, with neutron sources, Am-Be 370 GBq x 2. It was confirmed that the neutron flux distribution was well measured with the system. (author)

  10. Fast-neutron coincidence-counter manual

    International Nuclear Information System (INIS)

    Ensslin, N.; Atwell, T.L.; Lee, D.M.; Erkkila, B.; Marshall, R.S.; Morgan, A.; Shonrock, C.; Tippens, B.; Van Lyssel, T.

    1982-03-01

    The fast neutron counter (FNC) described in this report is a computer-based assay system employing fast-pulse counting instrumentation. It is installed below a glove box in the metal electrorefining area of the Los Alamos National Laboratory Plutonium Processing Facility. The instrument was designed to assay plutonium salts and residues from this process and to verify the mass of electrorefined metal. Los Alamos National Laboratory Groups Q-1, Q-3, and CMB-11 carried out a joint test and evaluation plan of this instrument between May 1978 and May 1979. The results of that evaluation, a description of the FNC, and operating instructions for further use are given in this report

  11. High-level neutron coincidence counter maintenance manual

    International Nuclear Information System (INIS)

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included

  12. High-level neutron coincidence counter maintenance manual

    Energy Technology Data Exchange (ETDEWEB)

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included.

  13. Proton-recoil proportional-counter array for neutron-image construction

    International Nuclear Information System (INIS)

    Fink, C.L.; Eichholz, J.J.; DeVolpi, A.

    1984-01-01

    The fuel-motion measurement capability of the fast-neutron hodoscope has been upgraded by the addition of a 360-detector proton-recoil proportional-counter array, which detects high-energy fission neutrons. The current sensitive amplifier/discriminator module for each detector fits into a 12.7 by 12.7 by 102 mm package and cost less than $100 per module. It has a 50 ns rise time, a noise level of 100 nA, and a deadtime per event of 200 ns. Provision has been provided for the independent adjustment of the input current versus discriminator voltage for each module. The new proportional-counters cost approximately $400 each. Each detector has been tested to have the same gain versus voltage response. A space-charge model relating count-rate changes to space-charge effects has also been developed. The new detector array has been operational for approximately two years and has become the main detector system in fuel-motion analysis. It has significantly improved the linearity, stability, count-rate capability, and setup ease of the hodoscope

  14. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    International Nuclear Information System (INIS)

    Henzlova, Daniela; Kouzes, R.; McElroy, R.; Peerani, P.; Baird, K.; Bakel, A.; Borella, M.; Bourne, M.; Bourva, L.; Cave, F.; Chandra, R.; Chernikova, D.; Croft, S.; Dermody, G.; Dougan, A.; Ely, J.; Fanchini, E.; Finocchiaro, P.; Gavron, Victor; Kureta, M.; Ianakiev, Kiril Dimitrov; Ishiyama, K.; Lee, T.; Martin, Ch.; McKinny, K.; Menlove, Howard Olsen; Orton, Ch.; Pappalardo, A.; Pedersen, B.; Plenteda, R.; Pozzi, S.; Schear, M.; Seya, M.; Siciliano, E.; Stave, S.; Sun, L.; Swinhoe, Martyn Thomas; Tagziria, H.; Takamine, J.; Weber, A.-L.; Yamaguchi, T.; Zhu, H.

    2015-01-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3 He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3 He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3 He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3 He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3 He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3 He-alternative technologies.

  15. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kouzes, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peerani, P. [European Commission, Ispra (Italy). Joint Research Centre; Aspinall, M. [Hybrid Instruments Ltd., Birmingham (United Kingdom); Baird, K. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Bakel, A. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Borella, M. [SCK.CEN, Mol (Belgium); Bourne, M. [Univ. of Michigan, Ann Arbor, MI (United States); Bourva, L. [Canberra Ltd., Oxford (United Kingdom); Cave, F. [Hybrid Instruments Ltd., Birmingham (United Kingdom); Chandra, R. [Arktis Radiation Detectors Ltd., Zurich (Sweden); Chernikova, D. [Chalmers Univ. of Technology (Sweden); Croft, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dermody, G. [Symetrica Inc., Maynard, MA (United States); Dougan, A. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Ely, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fanchini, E. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Finocchiaro, P. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Gavron, Victor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kureta, M. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Ianakiev, Kiril Dimitrov [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ishiyama, K. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Lee, T. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Martin, Ch. [Symetrica Inc., Maynard, MA (United States); McKinny, K. [GE Reuter-Stokes, Twinsburg, OH (United States); Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Orton, Ch. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Pappalardo, A. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Pedersen, B. [European Commission, Ispra (Italy). Joint Research Centre; Peranteau, D. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Plenteda, R. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Pozzi, S. [Univ. of Michigan, Ann Arbor, MI (United States); Schear, M. [Symetrica Inc., Maynard, MA (United States); Seya, M. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Siciliano, E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sun, L. [Proportional Technologies Inc., Houston, TX (United States); Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tagziria, H. [European Commission, Ispra (Italy). Joint Research Centre; Vaccaro, S. [DG Energy (Luxembourg); Takamine, J. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Weber, A. -L. [Inst. for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses (France); Yamaguchi, T. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Zhu, H. [National Nuclear Security Administration (NNSA), Washington, DC (United States)

    2015-12-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency {IAEA}, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3

  16. A gaseous scintillation counter filled with He3 for neutron spectrometry

    International Nuclear Information System (INIS)

    Baldin, S.A.; Matveev, V.V.

    1962-01-01

    The paper describes a gas plant and gaseous scintillation counter, and gives the results of experiments on the recording and spectrometry of neutron beams using a gaseous scintillation counter filled with a mixture of 10% xenene and 90% helium-3 at an overall pressure of 20 ata. Data are given on the design of the gas plant, which makes it possible to operate the counter continuously over long periods of time, as well as providing the required gas mixtures at overall pressures of up to 60 atm and ensuring constant freedom of the gas from contamination. In addition, the paper presents the results of research on the counter's energy resolution and linearity at different energy levels and indicates its efficiency in gamma fields of intensity up to 3 r/h; the possibility of extending the working energy-range of gaseous scintillation counters filled with helium-3 is also considered. (author) [fr

  17. {sup 10}B multi-grid proportional gas counters for large area thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, K. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Bigault, T. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Birch, J. [Linköping University, SE-581, 83 Linköping (Sweden); Buffet, J. C.; Correa, J. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Hall-Wilton, R. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Hultman, L. [Linköping University, SE-581, 83 Linköping (Sweden); Höglund, C. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Linköping University, SE-581, 83 Linköping (Sweden); Guérard, B., E-mail: guerard@ill.fr [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Jensen, J. [Linköping University, SE-581, 83 Linköping (Sweden); Khaplanov, A. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Kirstein, O. [Linköping University, SE-581, 83 Linköping (Sweden); Piscitelli, F.; Van Esch, P. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Vettier, C. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden)

    2013-08-21

    {sup 3}He was a popular material in neutrons detectors until its availability dropped drastically in 2008. The development of techniques based on alternative convertors is now of high priority for neutron research institutes. Thin films of {sup 10}B or {sup 10}B{sub 4}C have been used in gas proportional counters to detect neutrons, but until now, only for small or medium sensitive area. We present here the multi-grid design, introduced at the ILL and developed in collaboration with ESS for LAN (large area neutron) detectors. Typically thirty {sup 10}B{sub 4}C films of 1 μm thickness are used to convert neutrons into ionizing particles which are subsequently detected in a proportional gas counter. The principle and the fabrication of the multi-grid are described and some preliminary results obtained with a prototype of 200 cm×8 cm are reported; a detection efficiency of 48% has been measured at 2.5 Å with a monochromatic neutron beam line, showing the good potential of this new technique.

  18. Safeguards and physics measurements

    International Nuclear Information System (INIS)

    Carchon, R.

    2002-01-01

    SCK-CEN's programme on safeguards and physics measurements involves gamma and neutron dosimetry, calibrations and irradiations, electronic support, metrology of various samples including internal contamination of human beings, of waste barrels and of fissile materials, neutron activation analysis, and radioisotope source preparation. The document reports on the main activities and achievements of the sections 'Instrumentation, Calibration and Dosimetry' and 'Safeguards and Nuclear Physics Measurements'

  19. Neutron dose equivalent next to the target shield of a neutron therapy facility using an LET counter

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Kuchnir, F.T.

    1981-01-01

    The use of a spherical tissue-equivalent proportional counter for measurements of the lineal energy (y) and derivations of the linear energy transfer (LET) for fast neutrons has the advantage of giving distributions of dose and dose equivalent as functions of either LET or y. A measurement next to the target shielding of the neutron therapy facility at the University of Chicago Hospitals and Clinics (UCHC) is described, and the data processing is outlined. The distributions are presented and compared to those from measurements in the neutron beam. The average quality factors are presented

  20. Handbook of nuclear data for safeguards

    International Nuclear Information System (INIS)

    Lammer, M.; Schwerer, O.

    1991-06-01

    This handbook contains nuclear data needed by safeguards users for their work. It was initiated by an IAEA working group, and the contents were defined by the relies to a questionnaire sent to safeguards specialists. This is a preliminary edition of the handbook for distribution to safeguards and nuclear data experts for review. The present edition of the handbook contains the following basic nuclear data: actinides: nuclear decay data, thermal neutron cross sections and resonance integrals, prompt neutron data, delayed neutron data; fission products: nuclear decay data, thermal neutron capture cross sections and resonance integrals; fission product yields. Also included are appendices that summarize the data requested by safeguards users, and that present a number of questions to them and to data experts on the data contained in this preliminary issue and about additional data for possible inclusion in future editions and updates of the handbook

  1. Neutron spectrometry with proton recoil proportional counters at the research and measurement reactor Braunschweig - status of the technique

    International Nuclear Information System (INIS)

    Knauf, K.; Wittstock, J.

    1987-07-01

    This status report is concerned with the facilities set up for neutron spectrometry at the Research and Measurement Reactor Braunschweig, based on proton recoil proportional counters. Cylindrical counters for irradiation by a neutron beam normal to the counter wire and commercial spherical counters are employed. They can be filled with hydrogen or a hydrogeneous gas up to a pressure of 1 MPa depending on their use. The filling method and the electronic pulse processing are described. The pulse analysis system includes a pulse shape discrimination branch in order to separate γ-ray induced pulses. Finally, experimental investigations with spherical counters are discussed regarding the region of proportionality and the influence of the counter voltage on the shape of the response function. (orig./HP) [de

  2. Dual-chamber/dual-anode proportional counter incorporating an intervening thin-foil solid neutron converter

    International Nuclear Information System (INIS)

    Boatner, Lynn A.; Neal, John S.; Blackston, Matthew A.; Kolopus, James A.; Ramey, Joanne O.

    2012-01-01

    A dual-chamber/dual-anode gas proportional counter utilizing thin solid 6 LiF or 10 B neutron converters coated on a 2-micon-thick Mylar film that is positioned between the two counter chambers and anodes has been designed, fabricated, and tested using a variety of fill gases—including naturally abundant helium. In this device, neutron conversion products emitted from both sides of the coated converter foil are detected—rather than having half of the products absorbed in the wall of a conventional tube-type counter where the solid neutron converter is deposited on the tube wall. Geant4-based radiation transport calculations were used to determine the optimum neutron converter coating thickness for both isotopes. Solution methods for applying these optimized-thickness coatings on a Mylar film were developed that were carried out at room temperature without any specialized equipment and that can be adapted to standard coating methods such as silk screen or ink jet printing. The performance characteristics of the dual-chamber/dual-anode neutron detector were determined for both types of isotopically enriched converters. The experimental performance of the 6 LiF-converter-based detector was described well by modeling results from Geant4. Additional modeling studies of multiple-foil/multiple-chamber/anode configurations addressed the basic issue of the relatively longer absorption range of neutrons versus the shorter range of the conversion products for 6 LiF and 10 B. Combined with the experimental results, these simulations indicate that a high-performance neutron detector can be realized in a single device through the application of these multiple-foil/solid converter, multiple-chamber detector concepts.

  3. Safeguards and physics measurements

    Energy Technology Data Exchange (ETDEWEB)

    Carchon, R

    2002-04-01

    SCK-CEN's programme on safeguards and physics measurements involves gamma and neutron dosimetry, calibrations and irradiations, electronic support, metrology of various samples including internal contamination of human beings, of waste barrels and of fissile materials, neutron activation analysis, and radioisotope source preparation. The document reports on the main activities and achievements of the sections 'Instrumentation, Calibration and Dosimetry' and 'Safeguards and Nuclear Physics Measurements'.

  4. Boron-Coated Straw Collar for Uranium Neutron Coincidence Collar Replacement

    International Nuclear Information System (INIS)

    Hu, Jianwei; Croft, Stephen; McElroy, Robert Dennis

    2017-01-01

    The objective of this project was to design and optimize, in simulation space, an active neutron coincidence counter (or collar) using boron-coated straws (BCSs) as a non- 3 He replacement to the Uranium Neutron Coincidence Collar (UNCL). UNCL has been used by the International Atomic Energy Agency (IAEA) and European Atomic Energy Community (Euratom) since the 1980s to verify the 235 U content in fresh light water reactor fuel assemblies for safeguards purposes. This report documents the design and optimization of the BCS collar.

  5. Proceedings of the symposium on measurements of neutron energy spectra using recoil proton proportional counters

    International Nuclear Information System (INIS)

    Urabe, Itsumasa

    1986-01-01

    This is a report of the symposium on measurements of neutron energy spectra using recoil proton proportional counters held at the Research Reactor Institute of Kyoto University on January 27 in 1986. An energy resolution, wall effects of response functions, n · γ discrimination methods and other fundamental properties of recoil proton counters are discussed for a new development of an application of this counter. (author)

  6. Safeguards resource management

    International Nuclear Information System (INIS)

    Strait, R.S.

    1986-01-01

    Protecting nuclear materials is a challenging problem for facility managers. To counter the broad spectrum of potential threats, facility managers rely on diverse safeguards measures, including elements of physical protection, material control and accountability, and human reliability programs. Deciding how to upgrade safeguards systems involves difficult tradeoffs between increased protection and the costs and operational impact of protection measures. Effective allocation of safeguards and security resources requires a prioritization of systems upgrades based on a relative measure of upgrade benefits to upgrade costs. Analytical tools are needed to help safeguards managers measure the relative benefits and cost and allocate their limited resources to achieve balanced, cost-effective protection against the full spectrum of threats. This paper presents a conceptual approach and quantitative model that have been developed by Lawrence Livermore National Laboratory to aid safeguards managers

  7. Some aspects of the use of proton recoil proportional counters for fast neutron personnel dosimeters

    International Nuclear Information System (INIS)

    Yule, T.J.; Bennett, E.F.

    1984-01-01

    Gas-filled proton recoil proportional counters have been used extensively for the measurement of neutron spectra in degraded fission-spectrum environments. Some considerations relating to the use of these counters for personnel dosimetry are here described. High sensitivity and good accuracy in the determination of dose-equivalent can be obtained if relatively high pressure hydrogen-filled proportional counters are used as the active element in a dosimeter system

  8. Variable dead time counters. 1 - theoretical responses and the effects of neutron multiplication

    International Nuclear Information System (INIS)

    Lees, E.W.; Hooton, B.W.

    1978-10-01

    A theoretical expression is derived for calculating the response of any variable dead time counter (VDC) used in the passive assay of plutonium by neutron counting of the natural spontaneous fission activity. The effects of neutron multiplication in the sample arising from interactions of the original spontaneous fission neutrons is shown to modify the linear relationship between VDC signal and Pu mass. Numerical examples are shown for the Euratom VDC and a systematic investigation of the various factors affecting neutron multiplication is reported. Limited comparisons between the calculations and experimental data indicate provisional validity of the calculations. (author)

  9. Boron-Coated Straw Collar for Uranium Neutron Coincidence Collar Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The objective of this project was to design and optimize, in simulation space, an active neutron coincidence counter (or collar) using boron-coated straws (BCSs) as a non-3He replacement to the Uranium Neutron Coincidence Collar (UNCL). UNCL has been used by the International Atomic Energy Agency (IAEA) and European Atomic Energy Community (Euratom) since the 1980s to verify the 235U content in fresh light water reactor fuel assemblies for safeguards purposes. This report documents the design and optimization of the BCS collar.

  10. Safeguards Considerations for the Design of a Future Fast Neutron Sodium Cooled Reactor

    International Nuclear Information System (INIS)

    Cazalet, J.; Raymond, P.; Masson, M.; Saturnin, A.

    2015-01-01

    Incorporating safeguards at an early stage of a reactor design is a way to increase the effectiveness and efficiency of safeguards measures minimizing the possibilities of misuse of the plant or nuclear material diversion. It also reduces the impact on the construction and operation cost. At the preliminary phase, the design will integrate: confinement, containment, surveillance features and non-destructive assay equipment. Taking into account these requirements will help the operator in the approval of the plant at the design phase by national and international authorities in charge of Nuclear Material accounting and safeguards. A large amount of work has been made by the GEN IV International Forum to assess the proliferation resistance of nuclear systems. The IAEA has developed guidelines on ''Safeguards by design'' describing reference requirements for future nuclear facilities. Based on these studies, this communication details implementation of safeguards in the design of a sodium cooled fast neutron reactor (SFR) currently studied in France. Specificities are the use of MOX fuel with high concentration of plutonium and the potential capacity of breeding. A great attention should be paid to avoid diversion of nuclear material contained in fresh or irradiated fuel. Scenarios of reactor misuse are analyzed. The identification of diversion pathways and requirements for nuclear material accountancy, leads to an approach of safeguards, specific to SFR: Material Balance Areas (MBA) and some key measurement points (KMP) are characterized. Specific instrumentation assay helping in the identification and/or characterization of fuel elements and the inventory of nuclear material is described. As concerns the fuel cycle, the safeguards of the reprocessing unit will be progressively increased through the development of materials monitoring and the implementation of these measures at strategic locations of buildings, thus providing real-time information

  11. Measurement of fast neutron spectra inside reactors with a Li{sup 6} semiconductor counter spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ajdacic, V S; Lalovic, B I; Petrovic, B P [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1963-12-15

    The possibility of using the Li{sup 6} semiconductor counter spectrometer for measuring fast neutron spectra inside reactors has been investigated in details and some solutions of the difficulties associated with the high interference of thermal neutrons in well-moderated reactors are suggested and checked experimentally (author)

  12. Monte Carlo calculations of the neutron coincidence gate utilisation factor for passive neutron coincidence counting

    CERN Document Server

    Bourva, L C A

    1999-01-01

    The general purpose neutron-photon-electron Monte Carlo N-Particle code, MCNP sup T sup M , has been used to simulate the neutronic characteristics of the on-site laboratory passive neutron coincidence counter to be installed, under Euratom Safeguards Directorate supervision, at the Sellafield reprocessing plant in Cumbria, UK. This detector is part of a series of nondestructive assay instruments to be installed for the accurate determination of the plutonium content of nuclear materials. The present work focuses on one aspect of this task, namely, the accurate calculation of the coincidence gate utilisation factor. This parameter is an important term in the interpretative model used to analyse the passive neutron coincidence count data acquired using pulse train deconvolution electronics based on the shift register technique. It accounts for the limited proportion of neutrons detected within the time interval for which the electronics gate is open. The Monte Carlo code MCF, presented in this work, represents...

  13. Annular shape silver lined proportional counter for on-line pulsed neutron yield measurement

    International Nuclear Information System (INIS)

    Dighe, P.M.; Das, D.

    2015-01-01

    An annular shape silver lined proportional counter is developed to measure pulsed neutron radiation. The detector has 314 mm overall length and 235 mm overall diameter. The central cavity of 150 mm diameter and 200 mm length is used for placing the neutron source. Because of annular shape the detector covers >3π solid angle of the source. The detector has all welded construction. The detector is developed in two halves for easy mounting and demounting. Each half is an independent detector. Both the halves together give single neutron pulse calibration constant of 4.5×10 4 neutrons/shot count. The detector operates in proportional mode which gives enhanced working conditions in terms of dead time and operating range compared to Geiger Muller based neutron detectors

  14. Design and characterisation of a pulsed neutron interrogation facility

    International Nuclear Information System (INIS)

    Favalli, A.; Pedersen, B.

    2007-01-01

    The Joint Research Centre recently obtained a license to operate a new experimental device intended for research in the field of nuclear safeguards. The research projects currently being planned for the new device includes mass determination of fissile materials in matrices and detection of contraband non-nuclear materials. The device incorporates a commercial pulsed neutron generator and a large graphite mantle surrounding the sample cavity. In this configuration, a relatively high thermal neutron flux with a long lifetime is achieved inside the sample cavity. By pulsing the neutron generator, a sample may be interrogated by a pure thermal neutron flux during repeated time periods. The paper reports on the design of the new device and the pulsed fast and thermal neutron source. The thermal neutron flux caused by the neutron generator and the graphite structure has been characterised by foil activation, fission chamber and 3 He proportional counter measurements. (authors)

  15. Safeguards resource management

    International Nuclear Information System (INIS)

    Strait, R.S.

    1986-01-01

    Protecting nuclear materials is a challenging problem for facility managers. To counter the broad spectrum of potential threats, facility managers rely on diverse safeguards measures, including elements of physical protection, material control and accountability, and human reliability programs. Deciding how to upgrade safeguards systems involves difficult tradeoffs between increased protection and the costs and operational impact of protection measures. Effective allocation of safeguards and security resources requires a prioritization of system upgrades based on a relative measure of upgrade benefits to upgrade costs. Analytical tools are needed to help safeguards managers measure the relative benefits and costs and allocate their limited resources to achieve balanced, cost-effective protection against the full spectrum of threats. This paper presents a conceptual approach and quantitative model that have been developed by Lawrence Livermore National Laboratory to aid safeguards managers. The model is in the preliminary stages of implementation, and an effort is ongoing to make the approach and quantitative model available for general use. The model, which is designed to complement existing nuclear safeguards evaluation tools, incorporates a variety of factors and integrates information on the likelihood of potential threats, safeguards capabilities to defeat threats, and the relative consequences if safeguards fail. The model uses this information to provide an overall measure for comparing safeguards upgrade projects at a facility

  16. Neutron measurements inside reactors with semiconductor counters; Apsolutno merenje neutronskih flukseva u jezgru reaktora RA visokim snagama

    Energy Technology Data Exchange (ETDEWEB)

    Ajdacic, V; Lalovic, B; Barucija, M; Petrovic, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku i dinamiku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1964-06-15

    A method of absolute in-core measurement of high neutron fluxes inside reactors operating in the megawatt region is described. In this method a semiconductor counter observes particles coming from neutron induced reactions in a target placed inside the reactor core through a long evacuated aluminum tube. The paper deals with factors which influence the accuracy of the method. Possible use of the long- tube method for neutron flux measurements in advanced reactors with neutron flux of 10{sup 15}-10{sup 16} n/cm{sup 2} sec is also discussed. The possibility of using the Li{sup 6} semiconductor counter spectrometer for measuring fast neutron spectra inside the zero power reactor at Vinca has been investigated. Great difficulties associated with the high interference of thermal neutrons have been encountered. The thermal neutron interference is almost completely suppressed by a new detector-target arrangement, in which only those products of the Li{sup 6} (n,alpha)T reactions whose mutual angle of emission is different from 180 deg are detected in coincidence. Resolution of the spectrometer as a function of the reactor power and correction factors of the spectrometer efficiency for various neutron energies are presented (author)

  17. A suspended boron foil multi-wire proportional counter neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Kyle A.; Edwards, Nathaniel S.; Hinson, Niklas J.; Wayant, Clayton D.; McGregor, Douglas S.

    2014-12-11

    Three natural boron foils, approximately 1.0 cm in diameter and 1.0 µm thick, were obtained from The Lebow Company and suspended in a multi-wire proportional counter. Suspending the B foils allowed the alpha particle and Li ion reaction products to escape simultaneously, one on each side of the foil, and be measured concurrently in the gas volume. The thermal neutron response pulse-height spectrum was obtained and two obvious peaks appear from the 94% and 6% branches of the {sup 10}B(n,α){sup 7}Li neutron reaction. Scanning electron microscope images were collected to obtain the exact B foil thicknesses and MCNP6 simulations were completed for those same B thicknesses. Pulse-height spectra obtained from the simulations were compared to experimental data and matched well. The theoretical intrinsic thermal–neutron detection efficiency for enriched {sup 10}B foils was calculated and is presented. Additionally, the intrinsic thermal neutron detection efficiency of the three natural B foils was calculated to be 3.2±0.2%.

  18. A suspended boron foil multi-wire proportional counter neutron detector

    Science.gov (United States)

    Nelson, Kyle A.; Edwards, Nathaniel S.; Hinson, Niklas J.; Wayant, Clayton D.; McGregor, Douglas S.

    2014-12-01

    Three natural boron foils, approximately 1.0 cm in diameter and 1.0 μm thick, were obtained from The Lebow Company and suspended in a multi-wire proportional counter. Suspending the B foils allowed the alpha particle and Li ion reaction products to escape simultaneously, one on each side of the foil, and be measured concurrently in the gas volume. The thermal neutron response pulse-height spectrum was obtained and two obvious peaks appear from the 94% and 6% branches of the 10B(n,α)7Li neutron reaction. Scanning electron microscope images were collected to obtain the exact B foil thicknesses and MCNP6 simulations were completed for those same B thicknesses. Pulse-height spectra obtained from the simulations were compared to experimental data and matched well. The theoretical intrinsic thermal-neutron detection efficiency for enriched 10B foils was calculated and is presented. Additionally, the intrinsic thermal neutron detection efficiency of the three natural B foils was calculated to be 3.2±0.2%.

  19. Nuclear safeguards research with the LASL 3. 75-MV Van de Graaff accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Krick, M.S.; Evans, A.E.

    1976-01-01

    The continued use of the Los Alamos Scientific Laboratory (LASL) 3.75-MV Van de Graaff accelerator for the nondestructive assay of nuclear material in support of nuclear safeguards is reviewed. A brief description of the accelerator facility and the small-sample assay station (SSAS) is provided. Factors affecting high-accuracy assay of small samples are outlined. Examples are provided for the assay of uranium--thorium mixtures, low-level uranium samples, and high-temperature gas-cooled reactor (HTGR) fuel rods. Research on delayed-neutron energy spectra, radiation damage to /sup 3/He proportional counters, and /sup 4/He gas scintillators is summarized.

  20. Neutron time-of-flight counters and spectrometers for diagnostics of burning fusion plasmas

    International Nuclear Information System (INIS)

    Elevant, T.; Olsson, M.

    1991-02-01

    Experiment with burning fusion plasmas in tokamaks will place particular requirements on neutron measurements from radiation resistance-, physics-, burn control- and reliability considerations. The possibility to meet these needs by measurements of neutron fluxes and energy spectra by means of time-of-flight techniques are described. Reference counters and spectrometers are proposed and characterized with respect to efficiency, count-rate capabilities, energy resolution and tolerable neutron and γ-radiation background levels. The instruments can be used in a neutron camera and are capable to operate in collimated neutron fluxes up to levels corresponding to full nuclear output power in the next generation of experiments. Energy resolutions of the spectrometers enables determination of ion temperatures from 3 (keV) through analysis of the Doppler broadening. Primarily, the instruments are aimed for studies of 14 (MeV) neutrons produced in (d,t)-plasmas but can, after minor modifications, be used for analysis of 2.45 (MeV) neutrons produced in (d,d)-plasma. (au) (33 refs.)

  1. Crate counter for normal operating loss

    International Nuclear Information System (INIS)

    Harlan, R.A.

    A lithium-loaded zinc sulfide scintillation counter to closely assay plutonium in waste packaged in 1.3 by 1.3 by 2.13m crates was built. In addition to assays for normal operating loss accounting, the counter will allow safeguards verification immediately before shipment of the crates for burial. The counter should detect approximately 10 g of plutonium in 1000 kg of waste

  2. ASNC upgrade for nuclear material accountancy of ACPF

    Science.gov (United States)

    Seo, Hee; Ahn, Seong-Kyu; Lee, Chaehun; Oh, Jong-Myeong; Yoon, Seonkwang

    2018-02-01

    A safeguards neutron coincidence counter for nuclear material accountancy of the Advanced spent-fuel Conditioning Process Facility (ACPF), known as the ACP Safeguards Neutron Counter (ASNC), was upgraded to improve its remote-handling and maintenance capabilities. Based on the results of the previous design study, the neutron counter was completely rebuilt, and various detector parameters for neutron coincidence counting (i.e., high-voltage plateau, efficiency profile, dead time, die-away time, gate length, doubles gate fraction, and stability) were experimentally determined. The measurement data showed good agreement with the MCNP simulation results. To the best of the authors' knowledge, the ASNC is the only safeguards neutron coincidence counter in the world that is installed and operated in a hot-cell. The final goals to be achieved were (1) to evaluate the uncertainty level of the ASNC in nuclear material accountancy of the process materials of the oxide-reduction process for spent fuels and (2) to evaluate the applicability of the neutron coincidence counting technique within a strong radiation field (e.g., in a hot-cell environment).

  3. The calculated neutron response of a sphere with the multi-counters

    International Nuclear Information System (INIS)

    Li Taosheng; Yang Lianzhen; Li Dongyu

    2004-01-01

    Based on the difference of the neutron distribution in the moderator, three position sensitive proportional counters which are perpendicular to each other are inserted into the moderator. The energy responses with six spherical moderators and six incidence directions have been calculated by MCNP4A code. The calculated results for two divided region methods in the radial of the spherical moderator have been analyzed and compared. (authors)

  4. Evaluation of B10Plus+* proportional detectors for neutron coincidence counting

    Energy Technology Data Exchange (ETDEWEB)

    Beddingfield, David H.; Yoon, Seokryung [International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, (Austria)

    2015-07-01

    GE-Reuter-Stokes (GERS) has developed a new line of neutron proportional counters, the B10Plus+* proportional counter. The detector design is intended to serve as a cost-effective alternative to traditional {sup 3}He proportional counters in a variety of applications. The detector is a hybrid design 10B-lined tube optimized with the addition of a small quantity of 3He gas to improve the detector performance and efficiency. As a demonstration of the B10Plus+* detector, GERS has constructed a Uranium Neutron Collar (UNCL) system consisting of B-10Plus+* proportional counters. GERS has designed and built a demonstration UNCL system intended to match the performance of a Type-I UNCL design in Pressurized Water Reactor (PWR) geometry operating in thermal mode. GERS offered their system on loan to the International Atomic Energy Agency (IAEA) Safeguards Division of Technical and Scientific Services for an assessment of the detector technology and the demonstration system. We have characterized the demonstration UNCL system and compared its performance with a traditional Type-I UNCL design in regular use by the IAEA. This paper summarizes our findings and observations during the characterization and testing activity. (authors)

  5. A deadtime reduction circuit for thermal neutron coincidence counters with Amptek preamplifiers

    International Nuclear Information System (INIS)

    Bourret, S.C.; Krick, M.S.

    1994-01-01

    We have developed a deadtime reduction circuit for thermal neutron coincidence counters using Amptek preamplifier/amplifier/discriminator circuits. The principle is to remove the overlap between the output pulses from the Amptek circuits by adding a derandomizer between the Amptek circuits and the shift-register coincidence electronics. We implemented the derandomizer as an Actel programmable logic array; the derandomizer board is small and can be mounted in the high-voltage junction box with the Amptek circuits, if desired. Up to 32 Amptek circuits can be used with one derandomizer. The derandomizer has seven outputs: four groups of eight inputs, two groups of 16 inputs, and one group of 32 inputs. We selected these groupings to facilitate detector ring-ratio measurements. The circuit was tested with the five-ring research multiplicity counter, which has five output signals-one for each ring. The counter's deadtime was reduced from 70 to 30 ns

  6. The Statistics of Emission and Detection of Neutrons and Photons from Fissile Samples for Safeguard Applications

    International Nuclear Information System (INIS)

    Enqvist, Andreas

    2008-03-01

    One particular purpose of nuclear safeguards, in addition to accounting for known materials, is the detection, identifying and quantifying unknown material, to prevent accidental and clandestine transports and uses of nuclear materials. This can be achieved in a non-destructive way through the various physical and statistical properties of particle emission and detection from such materials. This thesis addresses some fundamental aspects of nuclear materials and the way they can be detected and quantified by such methods. Factorial moments or multiplicities have long been used within the safeguard area. These are low order moments of the underlying number distributions of emission and detection. One objective of the present work was to determine the full probability distribution and its dependence on the sample mass and the detection process. Derivation and analysis of the full probability distribution and its dependence on the above factors constitutes the first part of the thesis. Another possibility of identifying unknown samples lies in the information in the 'fingerprints' (pulse shape distribution) left by a detected neutron or photon. A study of the statistical properties of the interaction of the incoming radiation (neutrons and photons) with the detectors constitutes the second part of the thesis. The interaction between fast neutrons and organic scintillation detectors is derived, and compared to Monte Carlo simulations. An experimental approach is also addressed in which cross correlation measurements were made using liquid scintillation detectors. First the dependence of the pulse height distribution on the energy and collision number of an incoming neutron was derived analytically and compared to numerical simulations. Then an algorithm was elaborated which can discriminate neutron pulses from photon pulses. The resulting cross correlation graphs are analyzed and discussed whether they can be used in applications to distinguish possible sample

  7. The Statistics of Emission and Detection of Neutrons and Photons from Fissile Samples for Safeguard Applications

    Energy Technology Data Exchange (ETDEWEB)

    Enqvist, Andreas

    2008-03-15

    One particular purpose of nuclear safeguards, in addition to accounting for known materials, is the detection, identifying and quantifying unknown material, to prevent accidental and clandestine transports and uses of nuclear materials. This can be achieved in a non-destructive way through the various physical and statistical properties of particle emission and detection from such materials. This thesis addresses some fundamental aspects of nuclear materials and the way they can be detected and quantified by such methods. Factorial moments or multiplicities have long been used within the safeguard area. These are low order moments of the underlying number distributions of emission and detection. One objective of the present work was to determine the full probability distribution and its dependence on the sample mass and the detection process. Derivation and analysis of the full probability distribution and its dependence on the above factors constitutes the first part of the thesis. Another possibility of identifying unknown samples lies in the information in the 'fingerprints' (pulse shape distribution) left by a detected neutron or photon. A study of the statistical properties of the interaction of the incoming radiation (neutrons and photons) with the detectors constitutes the second part of the thesis. The interaction between fast neutrons and organic scintillation detectors is derived, and compared to Monte Carlo simulations. An experimental approach is also addressed in which cross correlation measurements were made using liquid scintillation detectors. First the dependence of the pulse height distribution on the energy and collision number of an incoming neutron was derived analytically and compared to numerical simulations. Then an algorithm was elaborated which can discriminate neutron pulses from photon pulses. The resulting cross correlation graphs are analyzed and discussed whether they can be used in applications to distinguish possible

  8. A neutron well counter for plutonium assay in 200 l waste drums

    International Nuclear Information System (INIS)

    Eyrich, W.; Kuechle, M.; Shafiee, M.

    1979-05-01

    A neutron well counter is briefly described which will be used for monitoring the plutonium content of 200 l barrels in the waste treatment plant of the Kernforschungszentrum Karlsruhe. Measurements on simulated waste were made to study the influence of matrix material and non-homogeneous plutonium distribution. The variation in detection efficiency could be reduced from 28% to 10% when the signals from inner and outer neutron detectors in the polyethylene annulus are counted separately and a correction is applied, using this information. This method is superior to the source addition technique. Coincidence counting shows a larger variation which could not be reduced to below 18%. (orig.) [de

  9. The high-level neutron coincidence counter (HLNCC) family of detectors

    International Nuclear Information System (INIS)

    Ramalho, A.; Dahn, E.; Selleck, E.; Kupryashkin, V.; Dubreuil, A.

    1983-01-01

    A description of a group of detectors based on The High-Level Neutron Coincidence Counter (HLNCC) concept is presented. Experience in their utilization is summarized and the procedures followed in calibration and data treatment are described. Advantages of the use of this variety of detectors in simplifying the NDA verifications, reducing the interference with facility operators, and increasing the effectiveness of the inspectors' work are stressed. Likewise, remaining problems such as the need for a vigorous programme directed at achieving the best independent calibrations are emphasized. (author)

  10. The use of curium neutrons to verify plutonium in spent fuel and reprocessing wastes

    International Nuclear Information System (INIS)

    Miura, N.

    1994-05-01

    For safeguards verification of spent fuel, leached hulls, and reprocessing wastes, it is necessary to determine the plutonium content in these items. We have evaluated the use of passive neutron multiplicity counting to determine the plutonium content directly and also to measure the 240 Pu/ 244 Cm ratio for the indirect verification of the plutonium. Neutron multiplicity counting of the singles, doubles, and triples neutrons has been evaluated for measuring 240 Pu, 244 Cm, and 252 Cf. We have proposed a method to establish the plutonium to curium ratio using the hybrid k-edge densitometer x-ray fluorescence instrument plus a neutron coincidence counter for the reprocessing dissolver solution. This report presents the concepts, experimental results, and error estimates for typical spent fuel applications

  11. Passive assay of plutonium metal plates using a fast-neutron multiplicity counter

    Energy Technology Data Exchange (ETDEWEB)

    Di Fulvio, A., E-mail: difulvio@umich.edu [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Shin, T.H.; Jordan, T.; Sosa, C.; Ruch, M.L.; Clarke, S.D. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Chichester, D.L. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Pozzi, S.A. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-05-21

    We developed a fast-neutron multiplicity counter based on organic scintillators (EJ-309 liquid and stilbene). The system detects correlated photon and neutron multiplets emitted by fission reactions, within a gate time of tens of nanoseconds. The system was used at Idaho National Laboratory to assay a variety of plutonium metal plates. A coincidence counting strategy was used to quantify the {sup 240}Pu effective mass of the samples. Coincident neutrons, detected within a 40-ns coincidence window, show a monotonic trend, increasing with the {sup 240}Pu-effective mass (in this work, we tested the 0.005–0.5 kg range). After calibration, the system estimated the {sup 240}Pu effective mass of an unknown sample ({sup 240}Pu{sub eff} >50 g) with an uncertainty lower than 1% in a 4-min assay time.

  12. Safeguards and Non-destructive Assay

    International Nuclear Information System (INIS)

    Carchon, R.; Bruggeman, M.

    2001-01-01

    SCK-CEN's programme on safeguards and non-destructive assay includes: (1) various activities to assure nuclear materials accountancy; (2) contributes to the implementation of Integrated Safeguards measures in Belgium and to assist the IAEA through the Belgian Support Programme; (3) renders services to internal and external customers in the field of safeguards; (4) improves passive neutron coincidence counting techniques for waste assay and safeguards verification measurements by R and D on correlation algorithms implemented via software or dedicated hardware; (5) improves gamma assay techniques for waste assay by implementing advanced scanning techniques and different correlation algorithms; and (6) develops numerical calibration techniques. Major achievements in these areas in 2000 are reported

  13. Advanced Neutron Detection Methods: new Tools for Countering Nuclear Terrorism (412th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Vanier, Peter

    2006-01-01

    Acts of terrorism have become almost daily occurrences in the international news. Yet one of the most feared types of terrorism - nuclear terrorism - has not yet happened. One important way of preventing nuclear terrorism is to safeguard nuclear materials, and many people worldwide work continuously to achieve that goal. A second, vital defense is being developed: greatly improved methods of detecting material that a nuclear terrorist would need so that timely discovery of the material could become more probable. Special nuclear materials can emit neutrons, either spontaneously or when excited by a source of high-energy gamma rays, such as an electron accelerator. Traditional neutron detectors can sense these neutrons, but not the direction from which the neutrons come, or their energy. The odds against finding smuggled nuclear materials using conventional detectors are great. However, innovative designs of detectors are producing images that show the locations and even the shapes of man-made neutron sources, which stand out against the uniform background produced by cosmic rays. With the new detectors, finding needles in haystacks - or smuggled nuclear materials in a huge container among thousands of others in a busy port - suddenly becomes possible.

  14. Channel coincidence counter: version 1

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.

    1980-06-01

    A thermal neutron coincidence counter has been designed for the assay of fast critical assembly fuel drawers and plutonium-bearing fuel rods. The principal feature of the detector is a 7-cm by 7-cm by 97-cm detector channel, which provides a uniform neutron detection efficiency of 16% along the central 40 cm of the channel. The electronics system is identical to that used for the High-Level Neutron Coincidence Counter

  15. The extended range neutron rem counter LINUS: overview and latest developments

    International Nuclear Information System (INIS)

    Birattari, C.; Rancati, T.; Esposito, A.; Pelliccioni, M.; Ferrari, A.; Silari, M.

    1997-01-01

    The 'history' of the extended range neutron rem counter LINUS, since its first conception in 1990 is reviewed, along with the latest developments. These include the calibration of the initially cylindrical version with nearly monoenergetic neutrons in the energy range 34-66 MeV, a detailed evaluation of the anisotropy of its response function, the construction and calibration of an improved spherical version, and recent measurements in reference high energy stray radiation fields. The instrument can now be considered as being fully characterized. Similar monitors built by other laboratories following the present design have confirmed its performances. The instrument is now in semi-routine use at a number of particle accelerator facilities and is one of several devices used on-board of aircrafts for assessing the exposure to cosmic rays at commercial flight altitudes. (author)

  16. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    Science.gov (United States)

    Sunil, C.; Tyagi, Mohit; Biju, K.; Shanbhag, A. A.; Bandyopadhyay, T.

    2015-12-01

    The scarcity and the high cost of 3He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am-Be neutron source shows promise of being used as rem counter.

  17. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, C., E-mail: csunil11@gmail.com [Accelerator Radiation Safety Section, Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tyagi, Mohit [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Biju, K.; Shanbhag, A.A.; Bandyopadhyay, T. [Accelerator Radiation Safety Section, Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-12-11

    The scarcity and the high cost of {sup 3}He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am–Be neutron source shows promise of being used as rem counter.

  18. Determining {sup 252}Cf source strength by absolute passive neutron correlation counting

    Energy Technology Data Exchange (ETDEWEB)

    Croft, S. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6166 (United States); Henzlova, D., E-mail: henzlova@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-06-21

    Physically small, lightly encapsulated, radionuclide sources containing {sup 252}Cf are widely used for a vast variety of industrial, medical, educational and research applications requiring a convenient source of neutrons. For many quantitative applications, such as detector efficiency calibrations, the absolute strength of the neutron emission is needed. In this work we show how, by using a neutron multiplicity counter the neutron emission rate can be obtained with high accuracy. This provides an independent and alternative way to create reference sources in-house for laboratories such as ours engaged in international safeguards metrology. The method makes use of the unique and well known properties of the {sup 252}Cf spontaneous fission system and applies advanced neutron correlation counting methods. We lay out the foundation of the method and demonstrate it experimentally. We show that accuracy comparable to the best methods currently used by national bodies to certify neutron source strengths is possible.

  19. Detection of neutrons of intermediate energy using 10B, enclosed in a coaxial Ge(Li) counter

    International Nuclear Information System (INIS)

    Huck, A.; Klotz, G.; Walter, G.

    1976-01-01

    A neutron detector operating in the energy range 1keV to roughly 1MeV with a time response that is fast enough to be used in time-of-flight experiments, has been designed and built. The neutron is absorbed in boron-10, placed inside a coaxial Ge(Li) counter. Efficient detection of the 478keV line from 7 Li, resulting from 10 B(n,α) 7 Li*, is realized. At the same time, the measurement of accompanying γ radiations, emitted by the neutron source, can be performed. Examples of results, obtained using (p,nγ) reactions, are given [fr

  20. Errors in estimating neutron quality factor using lineal energy distributions measured in tissue-equivalent proportional counters

    International Nuclear Information System (INIS)

    Borak, T.B.; Stinchcomb, T.G.

    1982-01-01

    Neutron dose equivalent is obtained from quality factors which are defined in terms of LET. It is possible to estimate the dose averaged quality factor, antiQ, directly from distributions in lineal energy, y, that are measured in tissue-equivalent proportional counters. This eliminates a mathematical transformation of the absorbed dose from D(y) to D(L). We evaluate the inherent error in computing Q from D(y) rather than D(L) for neutron spectra below 4 MeV. The effects of neutron energy and simulated tissue diameters within a gas cavity are examined in detail. (author)

  1. Proton-recoil proportional counter tests at TREAT

    International Nuclear Information System (INIS)

    Fink, C.L.; Eichholz, J.J.; Burrows, D.R.; DeVolpi, A.

    1979-01-01

    A methane filled proton-recoil proportional counter will be used as a fission neutron detector in the fast-neutron hodoscope. To provide meaningful fuel-motion information the proportional counter should have: a linear response over a wide range of reactor powers background ratio (the number of high energy neutrons detected must be maximized relative to low energy neutrons, and gamma ray sensitivity must be kept small); and a detector efficiency for fission neutrons above 1 MeV of approximately 1%. In addition, it is desirable that the detector and the associated amplifier/discriminator be capable of operating at counting rates in excess of 500 kHz. This paper reports on tests that were conducted on several proportional counters at the TREAT reactor

  2. A New Neutron Multiplicity Counter for the Measurement of Impure Plutonium Metal at Westinghouse Savannah River Site

    International Nuclear Information System (INIS)

    Baker, L.B.; Faison, D.M.; Langner, D.G.; Sweet, M.R.; Salazar, S.D.; Kroncke, K.E.

    1998-07-01

    A new neutron multiplicity counter has been designed, fabricated, characterized, and installed for use in the assay of impure plutonium metal buttons from the FB-Line at the Westinghouse Savannah River Site (WSRS). This instrument incorporates the performance characteristics of the Pyrochemical or In-plant Multiplicity Counter with the package size of the Plutonium Scrap Multiplicity Counter. In addition, state-of-the art features such as the de-randomizer circuit and separate ring outputs have been added. The counter consists of 113, 71 cm active length 3He tubes in a polyethylene moderator. Its efficiency for 252Cf is 57.8 percent, the highest of any multiplicity counter to date. Its die-away time is 50.4 ms and its deadtime is 50 ns. In this paper we will present the characterization data for the counter and the results of preliminary metal measurements at WSRS. We will also discuss the new challenges the impure metal buttons from FB-Line are presenting to the multiplicity counting technique

  3. Development Of A Method For Measurement Of Total Neutron Cross Sections Based On The Neutron Transmission Method Using A He-3 Counter On Filtered Neutron Beams At Dalat Research Reactor

    International Nuclear Information System (INIS)

    Tran Tuan Anh; Dang Lanh; Nguyen Canh Hai; Nguyen Xuan Hai; Pham Kien; Nguyen Thuy Nham; Pham Ngoc Son; Ho Huu Thang

    2007-01-01

    Determination of total neutron cross sections and average resonance parameters in the energy range from tens keV to hundreds keV is important for fast reactors calculations and designs because this energy range gives the most output of all neutron induced reactions in the spectrum of fast reactors. Besides, the total neutron cross section measurement is also one of the methods for determination of s, p and d-wave neutron strength functions. The purpose of this project is to develop a method for measurement of total neutron cross sections based on the neutron transmission technique using a He-3 counter. The average total neutron cross sections of 238 U were obtained from neutron transmission measurements on filtered neutron beams of 55 keV and 144 keV at the horizontal channel No.4 of the Dalat research reactor. The present results have been compared with the previous measurements, and the evaluated data from ENDF/B-6.8 library. (author)

  4. Safeguarding uranium enrichment facilities. Review and analysis of the status of safeguards technology for uranium enrichment facilities

    International Nuclear Information System (INIS)

    1977-09-01

    The objective of this paper is to examine critically the diversion potential at uranium enrichment facilities and to outline a basic safeguards strategy which counters all identified hazards as completely as possible yet with a minimum of non-essential redundancy. Where existing technology does not appear to be adequate for effective safeguards, the limitations are examined, and suggestions for further R and D effort are made. Parts of this report are generally applicable to all currently known enrichment processes, while other parts are specifically directed toward facilities based on the gas centrifuge process. It is hoped that additional sections discussing a safeguards strategy for gas diffusion facilities can be added later. It should be emphasized that this is a technical report, and does not reflect any legal positions. The safeguards strategy and subsequent inspection procedures are intended as guidelines, not as negotiating positions

  5. Irradiated fuel bundle counter

    International Nuclear Information System (INIS)

    Campbell, J.W.; Todd, J.L.

    1975-01-01

    The design of a prototype safeguards instrument for determining the number of irradiated fuel assemblies leaving an on-power refueled reactor is described. Design details include radiation detection techniques, data processing and display, unattended operation capabilities and data security methods. Development and operating history of the bundle counter is reported

  6. Irradiated fuel bundle counter

    International Nuclear Information System (INIS)

    Campbell, J.W.; Todd, J.L.

    1975-01-01

    The design of a prototype safeguards instrument for determining the number of irradiated fuel assemblies leaving an on-power refueled reactor is described. Design details include radiation detection techniques, data processing and display, unattended operation capabilities and data security methods. Development and operating history of the bundle counter is reported. (U.S.)

  7. Advanced safeguards research and development plan with an emphasis on its impact on nuclear power-plant design

    International Nuclear Information System (INIS)

    Tobin, S.J.; Demuth, S.F.; Miller, M.C.; Swinhoe, M.T.; Thomas, K.E.

    2007-01-01

    One tool for reducing the concern of nuclear proliferation is enhanced safeguards. Present safeguards have evolved over the past 40 years, and future safeguards will grow from this strong base to implement new technologies for improving our ability to quantify nuclear material. This paper will give an overview of the advanced technology research and development plan for safeguarding. One of the research facilities planned by the Department of Energy is the Advanced Fuel Cycle Facility (AFCF), to develop a novel nuclear fuel recycling program. Since the Advanced Fuel Cycle Facility will receive and reprocess spent fuel and will fabricate fast-reactor fuel, a wide breadth of safeguards technologies is involved. A fundamental concept in safeguards is material control and accounting (MCA). 4 topics concerning MCA and requiring further research have been identified: 1) measuring spent fuel, 2) measuring the plutonium content in the electro-refiner with pyro-processing, 3) measuring plutonium in the presence of other actinides, and 4) measuring neptunium and americium in the presence of other actinides. As for the long-term research and development plan for the AFCF, it will include improving MCA techniques as well as introducing new techniques that are not related to MCA, for example, enhanced containment and surveillance, or enhanced process monitoring. The top priority will stay quantifying the plutonium as accurately as possible and to reach this purpose 4 relevant technologies have been identified: 1) the microcalorimeter, 2) the passive neutron-albedo reactivity, 3) list-mode data acquisition, and 4) a liquid-scintillator multiplicity counter. Incorporating safeguards into the initial design of AFCF (safeguards by design) is a central concept. As the technology research and development plan for the Advanced Fuel Cycle Facility is examined, particular attention will be given to safeguards technologies that may affect the physical design of nuclear power plants

  8. Detection of pulsed fast neutrons by a proportional counter boron-convered and enveloped in paraffin moderators

    International Nuclear Information System (INIS)

    Goncalez, O.L.; Yanagihara, L.S.; Veissid, V.L.C.P.; Herdade, S.B.

    1983-01-01

    The response to pulsed fast neutrons by a parafin moderated boron-lined proportional counter is investigated theoretically and experimentally. The neutrons pulses are generated by 60 MeV electrons from a linear accelerator. The calculation of the counting loss based on the detector dead time and on the exponential decresse of the thermal neutron population in the moderator is presented in detail. An analytical relation between the true counting rate and the reduced one, indicated by the detector, is found. In this formula three parameters appear: the decay constant of the thermal neutron population, the detector dead time and the pulse frequency of the neutron source. The decay constant is calculated by diffusion theory. The experimental results for six values of moderator thickness (between 2.5 to 12.5 cm) agree with our theoretical calculation within 20 per cent. (Author) [pt

  9. Development of NRESP98 Monte Carlo codes for the calculation of neutron response functions of neutron detectors. Calculation of the response function of spherical BF{sub 3} proportional counter

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, M.; Saito, K.; Ando, H. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-05-01

    The method to calculate the response function of spherical BF{sub 3} proportional counter, which is commonly used as neutron dose rate meter and neutron spectrometer with multi moderator system, is developed. As the calculation code for evaluating the response function, the existing code series NRESP, the Monte Carlo code for the calculation of response function of neutron detectors, is selected. However, the application scope of the existing NRESP is restricted, the NRESP98 is tuned as generally applicable code, with expansion of the geometrical condition, the applicable element, etc. The NRESP98 is tested with the response function of the spherical BF{sub 3} proportional counter. Including the effect of the distribution of amplification factor, the detailed evaluation of the charged particle transportation and the effect of the statistical distribution, the result of NRESP98 calculation fit the experience within {+-}10%. (author)

  10. Nuclear facility safeguards systems modeling using discrete event simulation

    International Nuclear Information System (INIS)

    Engi, D.

    1977-01-01

    The threat of theft or dispersal of special nuclear material at a nuclear facility is treated by studying the temporal relationships between adversaries having authorized access to the facility (insiders) and safeguards system events by using a GASP IV discrete event simulation. The safeguards system events--detection, assessment, delay, communications, and neutralization--are modeled for the general insider adversary strategy which includes degradation of the safeguards system elements followed by an attempt to steal or disperse special nuclear material. The performance measure used in the analysis is the estimated probability of safeguards system success in countering the adversary based upon a predetermined set of adversary actions. An exemplary problem which includes generated results is presented for a hypothetical nuclear facility. The results illustrate representative information that could be utilized by safeguards decision-makers

  11. The design of a high-efficiency neutron counter for waste drums to provide optimized sensitivity for plutonium assay

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, H.O.; Beddingfield, D.H.; Pickrell, M.M. [Los Alamos National Lab., NM (United States)] [and others

    1997-11-01

    An advanced passive neutron counter has been designed to improve the accuracy and sensitivity for the nondestructive assay of plutonium in scrap and waste containers. The High-Efficiency Neutron Counter (HENC) was developed under a Cooperative Research Development Agreement between the Los Alamos National Laboratory and Canberra Industries. The primary goal of the development was to produce a passive assay system for 200-L drums that has detectability limits and multiplicity counting features that are superior to previous systems. A detectability limit figure of merit (FOM) was defined that included the detector efficiency, the neutron die-away time, and the detector`s active volume and density that determine the cosmic-ray background. Monte Carlo neutron calculations were performed to determine the parameters to provide an optimum FOM. The system includes the {sup 252}Cf {open_quotes}add-a-source{close_quotes} feature to improve the accuracy as well as statistical filters to reduce the cosmic-ray spallation neutron background. The final decision gave an efficiency of 32% for plutonium with a detector {sup 3}He tube volume that is significantly smaller than for previous high-efficiency systems for 200-L drums. Because of the high efficiency of the HENC, we have incorporated neutron multiplicity counting for matrix corrections for those cases where the plutonium is localized in nonuniform hydrogenous materials. The paper describes the design and performance testing of the advanced system. 5 refs., 8 figs., 3 tabs.

  12. The design of a high-efficiency neutron counter for waste drums to provide optimized sensitivity for plutonium assay

    International Nuclear Information System (INIS)

    Menlove, H.O.; Beddingfield, D.H.; Pickrell, M.M.

    1997-01-01

    An advanced passive neutron counter has been designed to improve the accuracy and sensitivity for the nondestructive assay of plutonium in scrap and waste containers. The High-Efficiency Neutron Counter (HENC) was developed under a Cooperative Research Development Agreement between the Los Alamos National Laboratory and Canberra Industries. The primary goal of the development was to produce a passive assay system for 200-L drums that has detectability limits and multiplicity counting features that are superior to previous systems. A detectability limit figure of merit (FOM) was defined that included the detector efficiency, the neutron die-away time, and the detector's active volume and density that determine the cosmic-ray background. Monte Carlo neutron calculations were performed to determine the parameters to provide an optimum FOM. The system includes the 252 Cf open-quotes add-a-sourceclose quotes feature to improve the accuracy as well as statistical filters to reduce the cosmic-ray spallation neutron background. The final decision gave an efficiency of 32% for plutonium with a detector 3 He tube volume that is significantly smaller than for previous high-efficiency systems for 200-L drums. Because of the high efficiency of the HENC, we have incorporated neutron multiplicity counting for matrix corrections for those cases where the plutonium is localized in nonuniform hydrogenous materials. The paper describes the design and performance testing of the advanced system. 5 refs., 8 figs., 3 tabs

  13. Directional epithermal neutron detector

    International Nuclear Information System (INIS)

    Givens, W.W.; Mills, W.R. Jr.

    1986-01-01

    A borehole tool for epithermal neutron die-away logging of subterranean formations surrounding a borehole is described which consists of: (a) a pulsed source of fast neutrons for irradiating the formations surrounding a borehole, (b) at least one neutron counter for counting epithermal neutrons returning to the borehole from the irradiated formations, (c) a neutron moderating material, (d) an outer thermal neutron shield providing a housing for the counter and the moderating material, (e) an inner thermal neutron shield dividing the housing so as to provide a first compartment bounded by the inner thermal neutron shield and a first portion of the outer thermal neutron shield and a second compartment bounded by the inner thermal neutron shield and a second portion of the outer thermal neutron shield, the counter being positioned within the first compartment and the moderating material being positioned within the second compartment, and (f) means for positioning the borehole tool against one side of the borehole wall and azimuthally orienting the borehole tool such that the first chamber is in juxtaposition with the borehole wall, the formation epithermal neutrons penetrating into the first chamber through the first portion of the outer thermal neutron shield are detected by the neutron counter for die-away measurement, thereby maximizing the directional sensitivty of the neutron counter to formation epithermal neutrons, the borehole fluid epithermal neutrons penetrating into the second chamber through the second chamber through the second portion of the outer thermal neutron shield are largely slowed down and lowered in energy by the moderating material and absorbed by the inner thermal neutron shield before penetrating into the first chamber, thereby minimizing the directional sensitivity of the neutron counter to borehole fluid epithermal neutrons

  14. Measurement of highly enriched uranium metal buttons with the high-level neutron coincidence counter operating in the active mode

    International Nuclear Information System (INIS)

    Foley, J.E.

    1980-10-01

    The portable High-Level Neutron Coincidence Counter is used in the active mode with the addition of AmLi neutron sources to assay the 235 U content of highly enriched metal pieces or buttons. It is concluded that the portable instrument is a practical instrument for assaying uranium metal buttons with masses in the range 1.5 to 4 kg

  15. Proposal for Analysis of the Safeguarded Nuclear Materials 235U and 239Pu by Delayed Neutrons Technique

    International Nuclear Information System (INIS)

    El-Mongy, S.A.

    2000-01-01

    This paper introduces, describes and initiates a very sensitive and rapid non-destructive technique to be used for analysis of the safeguarded nuclear materials 235 U and 239 Pu. The technique is based on fission of the nuclear material by neutrons and then measuring the delayed neutrons produced from the neutron rich fission products. By this technique, fissile isotope content ( 235 U) can be determined in the presence of the other fissile (e.g. 239 Pu) or fertile isotopes (e.g. 238 U) in fresh and spent fuel. The time consumed for analysis of bulk materials by this technique is only 4 minutes. The method is also used for analysis of uranium in rock, sediment, soil, meteorites, lunar, biological, urine, archaeological, zircon sand and seawater samples. The method enables uranium in a sample to be measured without respect to its oxidation state, organic and inorganic elements

  16. Design of an extended range long counter using super Monte Carlo simulation

    International Nuclear Information System (INIS)

    Mazunga, Mohamed; Li, Taosheng; Li, Yanan; Hong, Bing; Wang, Yongfeng; Ji, Xiang

    2017-01-01

    We have designed an extended range neutron long counter on the basis of work optimized using SuperMC code. The problem of the existing traditional long counters is that their response function falls rapidly above 5 MeV. We proposed a new designed by adding two layers of converter material inside the polyethylene moderator. The relatively low density chromium and high density lead metals convert high energy neutron by (n, xn) spallation reaction. This produces more neutrons of lower energies, which have higher probability of being detected by thermal 3 He-counter. The response function at lower neutron energies was improved by inserting small polyethylene cylinder in front of 3 He counter. In this design we achieved to extent the flat response function of the long counter from few keV up to 150 MeV. The total fluctuation of response curve is less than ±9% over the entire energy range. The designed long counter is suitable to be used as neutron monitor for monitoring neutron fluence at high-energy neutron source. (authors)

  17. Mathematical model and computer programme for theoretical calculation of calibration curves of neutron soil moisture probes with highly effective counters

    International Nuclear Information System (INIS)

    Kolev, N.A.

    1981-07-01

    A mathematical model based on the three group theory for theoretical calculation by means of computer of the calibration curves of neutron soil moisture probes with highly effective counters, is described. Methods for experimental correction of the mathematical model are discussed and proposed. The computer programme described allows the calibration of neutron probes with high or low effective counters, and central or end geometry, with or without linearizing of the calibration curve. The use of two calculation variants and printing of output data gives the possibility not only for calibration, but also for other researches. The separate data inputs for soil and probe temperature allow the temperature influence analysis. The computer programme and calculation examples are given. (author)

  18. Use of the helium-3 proportional counter for neutron spectrometry; Utilisation du compteur proportionnel a helium 3 pour la spectrometrie des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Vialettes, H; Le Thanh, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    Up to now, two methods have been mainly used for neutron spectrometry near nuclear installations: - photographic emulsion spectrometry - the so-called, 'multisphere' technique spectrometry. The first method, which is fairly difficult to apply, has a threshold energy of about 500 keV; this is a big disadvantage for an apparatus which has to be used for spectrometry around nuclear installations where the neutron radiation is very much degraded energetically. The second method does not suffer from this disadvantage but the results which it yields are only approximate. In order to extend the energy range of the neutron spectra studied with sufficient accuracy the use of a helium-3 proportional counter has been considered. This report presents the principles of operation of the helium-3 spectrometer, and the calculation methods which make it possible to take into account the two main effects tending to deform the spectra obtained: - energy absorption by the walls of the counter, - energy loss of the incident neutrons due to elastic collisions with helium-3 nuclei. As an example of the application, the shape of the neutron spectrum emitted by a polonium-lithium source is given; the results obtained are in excellent agreement with theoretical predictions. (authors) [French] Jusqu'ici deux methodes ont ete utilisees principalement pour la spectrometrie des neutrons autour des installations nucleaires: - la spectrometrie par emulsions photographiques - la spectrometrie par la technique dite des multispheres. La premiere methode, d'un emploi assez delicat presente un seuil en energie d'environ 500 keV qui est un obstacle serieux a la spectrometrie autour des installations nucleaires ou le rayonnement neutronique est tres degrade en energie. La deuxieme methode ne presente pas cet inconvenient mais les resultats qu'elle permet d'obtenir ne sont qu'approches. Pour etendre la gamme d'energie des spectres de neutrons etudies avec une precision suffisante, l'utilisation du

  19. Cosmic Ray Background Analysis For A Cargo Container Counter

    International Nuclear Information System (INIS)

    Ensslin, Norbert; Geist, W.H.; Lestone, J.P.; Mayo, D.R.; Menlove, Howard O.

    2001-01-01

    We have developed a new model for calculating the expected yield of cosmic-ray spallation neutrons in a Cargo Container Counter, and we have benchmarked the model against measurements made with several existing large neutron counters. We also developed two versions of a new measurement uncertainty prediction code based on Microsoft Excel spreadsheets. The codes calculate the minimum detectability limit for the Cargo Container Counter for either neutron singles or doubles counting, and also propagate the uncertainties associated with efficiency normalization flux monitors and cosmic ray flux monitors. This paper will describe the physics basis for this analysis, and the results obtained for several different counter designs.

  20. Australian Safeguards and Non-Proliferation Office, Annual Report 2001-2002

    International Nuclear Information System (INIS)

    2002-01-01

    During the year Australian Safeguards and Non-Proliferation Office (ASNO) continued our substantial contribution to the development and strengthening of international verification regimes concerned with weapons of mass destruction (WMD). Domestically, ASNO conducted, or contributed to, review of WMD- related legislation and administration, amending permits to enhance security arrangements, and beginning development of supporting legislative changes. Another major area of work is the replacement research reactor project, where ASNO has been closely involved through safeguards and security aspects. This year has been dominated by the terrorist attacks of 11 September 2001 on the United States, and ongoing consequences. These events, and the concern that terrorists would use WMD if they were able to acquire them, have served to emphasise the importance of effective counter-proliferation and counter-terrorism measures to complement the non-proliferation regimes. They have also focused attention on the need to deal with non- compliance with WMD treaty commitments. The key achivements reported for the year under review include: 1. All treaty and statutory requirements met in respect of: nuclear material and nuclear items in Australia, Australian uranium exports (Australian Obligated Nuclear Material), chemicals covered by the CWC (Chemical Weapons Convention) and establishment of CTBT(Comprehensive Nuclear-Test-Ban Treaty) monitoring stations; 2. Effective contribution to strengthening non-proliferation verification regimes and counter terrorism initiatives: ongoing support for IAEA safeguards development, regional outreach on IAEA safeguards, CWC implementation and encouraging CTBT ratification, ANSTO security upgraded; security plan approved for construction of replacement research reactor, review, with other responsible authorities, of security of CWC related chemicals, and radiation sources

  1. Test of the rem-counter WENDI-II from Eberline in different energy-dispersed neutron fields

    International Nuclear Information System (INIS)

    Gutermuth, F.; Radon, T.; Fehrenbacher, G.; Siekmann, R.

    2004-03-01

    The neutron rem-counter WENDI-II from Eberline was tested in high-energy particle accelerator produced neutron fields. A radioactive 241 Am-Be(αn) source was used as a reference. The experimentally determined responses are compared to Monte-Carlo simulations of the response function done by R. H. Olsher et al. (2000). The energy spectra of the accelerator produced neutron fields were determined employing Monte-Carlo simulations, too. According to the simulations done by C. Birattari et al. (1998) and in this work these neutron fields exhibit large contributions to the ambient dose equivalent resulting from neutrons with kinetic energy of more than 20 MeV up to a few 100 MeV. The WENDI-II detector proved to show a response of approximately 3.10 9 pulses per Sievert ambient dose equivalent. Considering the experimental and statistical uncertainties the results are consistent with the assumption that the dose response of the WENDI-II reproduces quite accurately the function for the ambient dose equivalent of the ICRP 74

  2. Safeguards and Physics Measurements: Neutron Dosimetry

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2000-01-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations as well as to investigate the charcteristics of bubble detectors in order to be able to use them as direct-readiong neutron dosemeters

  3. Constant sensitivity circuit for solid state nuclear radiation counters

    International Nuclear Information System (INIS)

    Kronenberg, S.; Erkkila, B.

    1985-01-01

    The utilization of solid state counters in tactical radiological instruments for measuring intensities and doses of fallout gamma rays offers advantages over Geiger-Mueller (GM) counters such as a much wider dynamic range and low operating voltages. Their very small size is suitable for use in miniaturized equipment. However, these devices have a serious problem if used in a mixed, fast neutron/gamma environment such as is encountered e.g. in a battlefield where tactical nuclear weapons are used and neutrons, prompt, initial gammas and fallout gammas are killing factors of comparable importance. Exposure to fast neutrons reduces seriously their sensitivity. This makes the solid state counters at this time unacceptable for use in Army tactical surveillance equipment and in other applications where according to requirements the performance must not be impaired by exposure to fast neutrons. It seems to be possible to reduce to some extent this neutron generated damage by improving the crystal counters

  4. The Development of Advanced Processing and Analysis Algorithms for Improved Neutron Multiplicity Measurements

    International Nuclear Information System (INIS)

    Santi, P.; Favalli, A.; Hauck, D.; Henzl, V.; Henzlova, D.; Ianakiev, K.; Iliev, M.; Swinhoe, M.; Croft, S.; Worrall, L.

    2015-01-01

    One of the most distinctive and informative signatures of special nuclear materials is the emission of correlated neutrons from either spontaneous or induced fission. Because the emission of correlated neutrons is a unique and unmistakable signature of nuclear materials, the ability to effectively detect, process, and analyze these emissions will continue to play a vital role in the non-proliferation, safeguards, and security missions. While currently deployed neutron measurement techniques based on 3He proportional counter technology, such as neutron coincidence and multiplicity counters currently used by the International Atomic Energy Agency, have proven to be effective over the past several decades for a wide range of measurement needs, a number of technical and practical limitations exist in continuing to apply this technique to future measurement needs. In many cases, those limitations exist within the algorithms that are used to process and analyze the detected signals from these counters that were initially developed approximately 20 years ago based on the technology and computing power that was available at that time. Over the past three years, an effort has been undertaken to address the general shortcomings in these algorithms by developing new algorithms that are based on fundamental physics principles that should lead to the development of more sensitive neutron non-destructive assay instrumentation. Through this effort, a number of advancements have been made in correcting incoming data for electronic dead time, connecting the two main types of analysis techniques used to quantify the data (Shift register analysis and Feynman variance to mean analysis), and in the underlying physical model, known as the point model, that is used to interpret the data in terms of the characteristic properties of the item being measured. The current status of the testing and evaluation of these advancements in correlated neutron analysis techniques will be discussed

  5. filled neutron detectors

    Indian Academy of Sciences (India)

    Boron trifluoride (BF3) proportional counters are used as detectors for thermal neutrons. They are characterized by high neutron sensitivity and good gamma discriminating properties. Most practical BF3 counters are filled with pure boron trifluoride gas enriched up to 96% 10B. But BF3 is not an ideal proportional counter ...

  6. High energy neutron dosimeter

    International Nuclear Information System (INIS)

    Rai, K.S.F.

    1994-01-01

    A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures

  7. Safeguards management inspection procedures

    International Nuclear Information System (INIS)

    Barth, M.J.; Dunn, D.R.

    1984-08-01

    The objective of this inspection module is to independently assess the contributions of licensee management to overall safeguards systems performance. The inspector accomplishes this objective by comparing the licensee's safeguards management to both the 10 CFR, parts 70 and 73, requirements and to generally accepted management practices. The vehicle by which this comparison is to be made consists of assessment questions and key issues which point the inspector to areas of primary concern to the NRC and which raise additional issues for the purpose of exposing management ineffectiveness. Further insight into management effectiveness is obtained through those assessment questions specifically directed toward the licensee's safeguards system performance. If the quality of the safeguards is poor, then the inspector should strongly suspect that management's role is ineffective and should attempt to determine management's influence (or lack thereof) on the underlying safeguards deficiencies. (The converse is not necessarily true, however.) The assessment questions in essence provide an opportunity for the inspector to identify, to single out, and to probe further, questionable management practices. Specific issues, circumstances, and concerns which point to questionable or inappropriate practices should be explicitly identified and referenced against the CFR and the assessment questions. The inspection report should also explain why the inspector feels certain management practices are poor, counter to the CFR, and/or point to ineffecive management. Concurrent with documenting the inspection results, the inspector should provide recommendations for alleviating observed management practices that are detrimental to effective safeguards. The recommendations could include: specific changes in the practices of the licensee, followup procedures on the part of NRC, and proposed license changes

  8. Design of integrated safeguards systems for nuclear facilities

    International Nuclear Information System (INIS)

    de Montmollin, J.M.; Walton, R.B.

    1976-01-01

    Safeguards systems that are capable of countering postulated threats to nuclear facilities must be closely integrated with plant layout and processes if they are to be effective and if potentially severe impacts on plant operations are to be averted. A facilities safeguards system suitable for a production plant is described in which the traditional elements of physical protection and periodic material-balance accounting are extended and augmented to provide close control of material flows. Discrete material items are subjected to direct, overriding physical control where appropriate. Materials in closely coupled process streams are protected by on-line NDA and weight measurements, with rapid computation of material balances to provide immediate indication of large-scale diversion. The system provides an information and actions at the safeguards/operations interface

  9. Design of integrated safeguards systems for nuclear facilities

    International Nuclear Information System (INIS)

    de Montmollin, J.M.; Walton, R.B.

    1978-06-01

    Safeguards systems that are capable of countering postulated threats to nuclear facilities must be closely integrated with plant layout and processes if they are to be effective and if potentially-severe impacts on plant operations are to be averted. This paper describes a facilities safeguards system suitable for production plant, in which the traditional elements of physical protection and periodic material-balance accounting are extended and augmented to provide close control of material flows. Discrete material items are subjected to direct, overriding physical control where appropriate. Materials in closely-coupled process streams are protected by on-line NDA and weight measurements, with rapid computation of material balances to provide immediate indication of large-scale diversion. The system provides information and actions at the safeguards/operations interface

  10. Microdosimetry of intermediate energy neutrons in fast neutron fields

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.

    1988-01-01

    A coaxial double cylindrical proportional counter has been constructed for microdosimetry of intermediate energy neutrons in mixed fields. Details are given of the measured gas gain and resolution characteristics of the counter for a wide range of anode voltages. Event spectra due to intermediate neutrons in any desired energy band is achieved by an appropriate choice of thickness of the common dividing wall in the counter and by appropriate use of the coincidence, anticoincidence pulse counting arrangements. Calculated estimates indicate that the dose contribution by fast neutrons to the energy deposition events in the intermediate neutron range may be as large as 25%. Empirical procedures being investigated aim to determine the necessary corrections to be applied to the microdose distributions, with a precision of 10%. (author)

  11. Response functions of the Andersson-Braun and extended range rem counters for neutron energies from thermal to 10 GeV

    CERN Document Server

    Mares, V; Schraube, H

    2002-01-01

    This work is devoted to the calculation of responses as functions of neutron energy for a paired set of Andersson-Braun rem counters, which is commercially available. Different Monte Carlo codes such as MCNP, LAHET, HADRON and MCNPX were applied in the calculations. The study extended to frontal, lateral and isotropic neutron incidence. For an estimation of the contribution of charged high-energy particles to the reading, the responses to protons and pions were also determined. The results obtained give good bases for the practical use of the new instrument in high-energy neutron fields.

  12. Smart unattended systems for plutonium safeguards

    International Nuclear Information System (INIS)

    Menlove, H.O.; Abhold, M.; Eccleston, G.; Puckett, J.M.

    1996-01-01

    During the past decade, IAEA inspectors, national inspectors, and facility operators have used neutron coincidence counters and gamma-ray isotopics measurements extensively to measure the plutonium content of various forms of nuclear materials in the fuel cycle. Large automated facilities for fabricating plutonium fuel present both difficulties and challenges for improved accounting of nuclear materials. The traditional methods of sample measurements, requiring the transfer of the sample from the production line to the assay measurement station, are not possible in automated facilities. A bilateral safeguards agreement between the US Department of Energy (DOE) and Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan was signed to develop and implement nondestructive assay (NDA) systems to provide continuous safeguards measurements for material accountancy in the robot-automated Plutonium Fuel Fabrication Facility (PFFF). The PFFF assay systems were required to operate in unattended mode with a size and fuel mass capability to match the robotics fuel manipulators. Unattended assay systems reduce the requirement for inspector''s oversight of measurement operations, reduce the inspector''s workload, and improve inspection efficiencies. In addition, unattended measurements become essential when facility constraints limit the access of inspectors to the operations area during material processing. Authentication techniques were incorporated into the NDA systems so that data obtained form unattended assays could be used by independent inspectors such as the IAEA. The standardized containers and robot-controlled fuel movements in automated facilities enable more accurate nondestructive assay (NDA) measurements than are possible in conventional nonautomated facilities. The NDA instrumentation can be custom designed and optimized for the particular measurement goal in the automated facility

  13. Advanced Safeguards Approaches for New Fast Reactors

    International Nuclear Information System (INIS)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-01-01

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to 'breed' nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and 'burn' actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is 'fertile' or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing 'TRU'-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II 'EBR-II' at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line--a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors

  14. An annular BF3 counter of large sensitive volume

    International Nuclear Information System (INIS)

    Janardhanan, S.; Swaminathan, N.

    1975-01-01

    An annular neutron counter having a large sensitive volume with inner and outer diameter 31 cms with multiple electrode system fabricated especially to measure the neutron output from fissile region of standard fast reactor fuel of length nearly equivalent to 500 cms is described. The counter efficiency is nearly 0.3% for neutron and sensitivity 0.0018 counts/neutron for (alpha, neutron) and spontaneous fission source. Its other potential applications which are indicated are : (1) quality control of fast reactor fuel pins (2) fuel inventory (3) assessing radioactivity of solid waste packets containing PuO 2 (4) uniformity of fuel loading of a reactor and (5) neutron monitoring in a fuel plant. (M.G.B.)

  15. Application of thin-film breakdown counters for characterization of neutron field of the VESUVIO instrument at the ISIS spallation source

    Science.gov (United States)

    Smirnov, A. N.; Pietropaolo, A.; Prokofiev, A. V.; Rodionova, E. E.; Frost, C. D.; Ansell, S.; Schooneveld, E. M.; Gorini, G.

    2012-09-01

    The high-energy neutron field of the VESUVIO instrument at the ISIS facility has been characterized using the technique of thin-film breakdown counters (TFBC). The technique utilizes neutron-induced fission reactions of natU and 209Bi with detection of fission fragments by TFBCs. Experimentally determined count rates of the fragments are ≈50% higher than those calculated using spectral neutron flux simulated with the MCNPX code. This work is a part of the project to develop ChipIr, a new dedicated facility for the accelerated testing of electronic components and systems for neutron-induced single event effects in the new Target Station 2 at ISIS. The TFBC technique has shown to be applicable for on-line monitoring of the neutron flux in the neutron energy range 1-800 MeV at the position of the device under test (DUT).

  16. Application of thin-film breakdown counters for characterization of neutron field of the VESUVIO instrument at the ISIS spallation source

    International Nuclear Information System (INIS)

    Smirnov, A.N.; Pietropaolo, A.; Prokofiev, A.V.; Rodionova, E.E.; Frost, C.D.; Ansell, S.; Schooneveld, E.M.; Gorini, G.

    2012-01-01

    The high-energy neutron field of the VESUVIO instrument at the ISIS facility has been characterized using the technique of thin-film breakdown counters (TFBC). The technique utilizes neutron-induced fission reactions of nat U and 209 Bi with detection of fission fragments by TFBCs. Experimentally determined count rates of the fragments are ≈50% higher than those calculated using spectral neutron flux simulated with the MCNPX code. This work is a part of the project to develop ChipIr, a new dedicated facility for the accelerated testing of electronic components and systems for neutron-induced single event effects in the new Target Station 2 at ISIS. The TFBC technique has shown to be applicable for on-line monitoring of the neutron flux in the neutron energy range 1–800 MeV at the position of the device under test (DUT).

  17. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    CERN Document Server

    Murazaki, M; Uno, Y

    2003-01-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of +-13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, alpha, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and sup 3 He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, ...

  18. Response of a carbon-walled proportional counter to 14 MeV neutrons

    International Nuclear Information System (INIS)

    Lewis, K.D.

    1982-01-01

    The response of a carbon-walled spherical proportional counter filled with a methane-based tissue-equivalent gas mixture at low pressure and irradiated with 14 MeV neutrons is first measured experimentally and is then calculated theoretically by using an analytical model. The model, called the CISS model, is derived from a consideration of four basic modes of interaction of charged particles generated in neutron-nucleus reactions with the spherical cavity of the detector. Since several quantities which have application in neutron dosimetry, radiation protection, and radiation biology make direct use of such spectra, it is desirable to have the ability to theoretically predict what is expected experimentally. Thus, a comparison between the two response curves is made. The discrepancy between them is investigated by considering several physical phenomena occurring within the detector wall which tend to distort the experimental response curve. In particular, the C(n,n',3α) reaction occurring in the detector wall gives rise to multiple events, originating from a single neutron interaction in the wall simultaneously strike the detector cavity, and are recorded as a single larger event in an experimental spectra. In the analytic model, the simultaneous entry of two charged particles into the cavity is scored as two separate smaller events, uncorrelated in their production. In this work, an effort is made to modify the analytic model prediction of the response curve by correcting for the multiple events which occur. Finally, the CISS model is used to compute mass stopping power corrections for this inhomogeneous detector

  19. Application of thin-film breakdown counters for characterization of neutron field of the VESUVIO instrument at the ISIS spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.N. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation); Pietropaolo, A., E-mail: antonino.pietropaolo@roma2.infn.it [CNISM UdR Tor Vergata, and Centro NAST Roma, Italy Scientifica 1 I-00133 Roma Italy (Italy); Prokofiev, A.V. [The Svedberg Laboratory, Uppsala University, Uppsala (Sweden); Rodionova, E.E. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation); Frost, C.D.; Ansell, S.; Schooneveld, E.M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton (United Kingdom); Gorini, G. [Dipartimento di Fisica ' G. Occhialini,' Universita degli Studi di Milano-Bicocca, Milano (Italy)

    2012-09-21

    The high-energy neutron field of the VESUVIO instrument at the ISIS facility has been characterized using the technique of thin-film breakdown counters (TFBC). The technique utilizes neutron-induced fission reactions of {sup nat}U and {sup 209}Bi with detection of fission fragments by TFBCs. Experimentally determined count rates of the fragments are Almost-Equal-To 50% higher than those calculated using spectral neutron flux simulated with the MCNPX code. This work is a part of the project to develop ChipIr, a new dedicated facility for the accelerated testing of electronic components and systems for neutron-induced single event effects in the new Target Station 2 at ISIS. The TFBC technique has shown to be applicable for on-line monitoring of the neutron flux in the neutron energy range 1-800 MeV at the position of the device under test (DUT).

  20. UK Safeguards R and D Project progress report for the period July 1983 - April 1984

    International Nuclear Information System (INIS)

    Adams, J.M.

    1984-10-01

    Progress reports are presented on the following projects: centrifuge enrichment plant safeguards; stores safeguards and general accounting techniques; generic programmes (projects underlying many instrument systems (e.g. tamper proofing and indication; neutron interrogation systems); system studies); FBR fuel cycle safeguards; service programmes (services to the IAEA); exploratory and short projects. (U.K.)

  1. Advanced Safeguards Approaches for New Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  2. Development of a Neutron Long Counter Detector for (α, n) Cross Section Measurements at Ohio University

    Science.gov (United States)

    Brandenburg, Kristyn; Meisel, Zach; Brune, Carl R.; Massey, Thomas; Soltesz, Doug; Subedi, Shiv

    2017-01-01

    The origin of the elements from roughly zinc-to-tin (30 determined. The neutron-rich neutrino driven wind of core collapse supernova (CCSN) is a proposed site for the nucleosynthesis of these elements. However, a significant source of uncertainty exists in elemental abundance yields from astrophysics model calculations due to the uncertainty for (α , n) reaction rates, as most of the relevant cross sections have yet to be measured. We are developing a neutron long counter tailored to measure neutrons for (α , n) reaction measurements performed at The Ohio University Edwards Accelerator Laboratory. The detector design will be optimized using the Monte-Carlo N-Particle transport code (MCNP6). Details of the optimization process, as well as the present status of the detector design will be provided. The plans for first (α , n) cross section measurements will also be briefly discussed. This work was supported in part by the US Department of Energy under Grant Number DE-FG02-88ER40387.

  3. Behavior of 241Am in fast reactor systems - a safeguards perspective

    International Nuclear Information System (INIS)

    Beddingfield, David H.; Lafleur, Adrienne M.

    2009-01-01

    Advanced fuel-cycle developments around the world currently under development are exploring the possibility of disposing of 241 Am from spent fuel recycle processes by burning this material in fast reactors. For safeguards practitioners, this approach could potentially complicate both fresh- and spent-fuel safeguards measurements. The increased (α,n) production in oxide fuels from the 241 Am increases the uncertainty in coincidence assay of Pu in MOX assemblies and will require additional information to make use of totals-based neutron assay of these assemblies. We have studied the behavior of 241 Am-bearing MOX fuel in the fast reactor system and the effect on neutron and gamma-ray source-terms for safeguards measurements. In this paper, we will present the results of simulations of the behavior of 241 Am in a fast breeder reactor system. Because of the increased use of MOX fuel in thermal reactors and advances in fuel-cycle designs aimed at americium disposal in fast reactors, we have undertaken a brief study of the behavior of americium in these systems to better understand the safeguards impacts of these new approaches. In this paper we will examine the behavior of 241 Am in a variety of nuclear systems to provide insight into the safeguards implications of proposed Am disposition schemes.

  4. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Murazaki, Minoru; Uno, Yuichi; Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of {+-}13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, {alpha}, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and {sup 3}He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, calculated value agreed well with measurement data of PSPC without Cd cover. (author)

  5. International safeguards for spent fuel storage

    International Nuclear Information System (INIS)

    Kratzer, M.; Wonder, E.; Immerman, W.; Crane, F.

    1981-08-01

    This report analyzes the nonproliferation effectiveness and political and economic acceptability of prospective improvements in international safeguard techniques for LWR spent fuel storage. Although the applicability of item accounting considerably eases the safeguarding of stored spent fuel, the problem of verification is potentially serious. A number of simple gamma and neutron nondestructive assay techniques were found to offer considerable improvements, of a qualitative rather than quantitative nature, in verification-related data and information, and possess the major advantage of intruding very little on facility operations. A number of improved seals and monitors appear feasible as well, but improvements in the timeliness of detection will not occur unless the frequency of inspection is increased or a remote monitoring capability is established. Limitations on IAEA Safeguards resources and on the integration of results from material accounting and containment and surveillance remain problems

  6. A Direction Sensitive Fast Neutron Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Antolkovic, B; Holmqvist, B; Wiedling, T

    1964-06-15

    A direction sensitive fast neutron monitor is described and its properties are discussed in some detail. The counter is a modification of the standard long counter of the Hanson and McKibben type. Directional sensitivity is obtained by increasing the shielding of the counter and providing it with a 70 cm long collimator channel. The behaviour of this long counter monitor is compared with that of a standard long counter when both are used in neutron experiments.

  7. Use of fuel reprocessing plant instrumentation for international safeguards

    International Nuclear Information System (INIS)

    Ayers, A.L.

    1977-01-01

    The International Atomic Energy Agency has a program for developing instrumentation to be used by safeguards inspectors at reprocessing facilities. These instruments have generally been individual pieces of equipment for improving the accuracy of existing measurement instrumentation or equipment to perform nondestructive assay on a selected basis. It is proposed that greater use be made of redundant plant instrumentation and data recovery systems that could augment plant instrumentation to verify the validity of plant measurements. Use of these methods for verfication must be proven as part of an operating plant before they can be relied upon for safeguards surveillance. Inspectors must be qualified in plant operations, or have ready access to those so qualified, if the integrity of the operation is to be properly assessed. There is an immediate need for the development and in-plant proof testing of an integrated gamma, passive neutron, and active neutron measurement system for drum quantities of radioactive trash. The primary safeguards effort should be limited to plutonium and highly enriched uranium

  8. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device.

    Science.gov (United States)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J

    2015-09-11

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n) 3 He and D(d,n) 3 He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9 Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  9. Symposium on international safeguards: Addressing verification challenges. Book of extended synopses

    International Nuclear Information System (INIS)

    2006-01-01

    A safeguards symposium has traditionally been organized by the Safeguards Department approximately every four years. The 2006 symposium addresses challenges to IAEA safeguards that have emerged or grown more serious since 2001. The increase in size and flexibility of uranium enrichment plants, for instance, and the spread of enrichment technology to a wider circle of States, pose challenges to traditional safeguards approaches. The procurement and supply networks discovered in 2004, dealing in sensitive nuclear technology and information, have serious implications for the future effectiveness of IAEA safeguards. The symposium will provide an opportunity for the IAEA and Member States to discuss options for dealing constructively with trade in sensitive nuclear technology. Reflecting developments since 2001, the 2006 symposium will focus on current challenges to the safeguards system, improving collection and analysis of safeguards information (analysis, processing tools, satellite imagery), advances in safeguards techniques and technology (future technology, neutron techniques, spent fuel verification, reprocessing, environmental sampling, containment and surveillance), further strengthening safeguards practices and approaches (safeguards approaches, integrated safeguards, R/SSAC, destructive analysis, non-destructive analysis, enrichment, reprocessing, spent fuel transfer) and future challenges. This publication contains 183 extended synopses, each of them was indexed separately

  10. Symposium on international safeguards: Addressing verification challenges. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A safeguards symposium has traditionally been organized by the Safeguards Department approximately every four years. The 2006 symposium addresses challenges to IAEA safeguards that have emerged or grown more serious since 2001. The increase in size and flexibility of uranium enrichment plants, for instance, and the spread of enrichment technology to a wider circle of States, pose challenges to traditional safeguards approaches. The procurement and supply networks discovered in 2004, dealing in sensitive nuclear technology and information, have serious implications for the future effectiveness of IAEA safeguards. The symposium will provide an opportunity for the IAEA and Member States to discuss options for dealing constructively with trade in sensitive nuclear technology. Reflecting developments since 2001, the 2006 symposium will focus on current challenges to the safeguards system, improving collection and analysis of safeguards information (analysis, processing tools, satellite imagery), advances in safeguards techniques and technology (future technology, neutron techniques, spent fuel verification, reprocessing, environmental sampling, containment and surveillance), further strengthening safeguards practices and approaches (safeguards approaches, integrated safeguards, R/SSAC, destructive analysis, non-destructive analysis, enrichment, reprocessing, spent fuel transfer) and future challenges. This publication contains 183 extended synopses, each of them was indexed separately.

  11. Multiple channel programmable coincidence counter

    Science.gov (United States)

    Arnone, Gaetano J.

    1990-01-01

    A programmable digital coincidence counter having multiple channels and featuring minimal dead time. Neutron detectors supply electrical pulses to a synchronizing circuit which in turn inputs derandomized pulses to an adding circuit. A random access memory circuit connected as a programmable length shift register receives and shifts the sum of the pulses, and outputs to a serializer. A counter is input by the adding circuit and downcounted by the seralizer, one pulse at a time. The decoded contents of the counter after each decrement is output to scalers.

  12. The impact of gate width setting and gate utilization factors on plutonium assay in passive correlated neutron counting

    International Nuclear Information System (INIS)

    Henzlova, D.; Menlove, H.O.; Croft, S.; Favalli, A.; Santi, P.

    2015-01-01

    In the field of nuclear safeguards, passive neutron multiplicity counting (PNMC) is a method typically employed in non-destructive assay (NDA) of special nuclear material (SNM) for nonproliferation, verification and accountability purposes. PNMC is generally performed using a well-type thermal neutron counter and relies on the detection of correlated pairs or higher order multiplets of neutrons emitted by an assayed item. To assay SNM, a set of parameters for a given well-counter is required to link the measured multiplicity rates to the assayed item properties. Detection efficiency, die-away time, gate utilization factors (tightly connected to die-away time) as well as optimum gate width setting are among the key parameters. These parameters along with the underlying model assumptions directly affect the accuracy of the SNM assay. In this paper we examine the role of gate utilization factors and the single exponential die-away time assumption and their impact on the measurements for a range of plutonium materials. In addition, we examine the importance of item-optimized coincidence gate width setting as opposed to using a universal gate width value. Finally, the traditional PNMC based on multiplicity shift register electronics is extended to Feynman-type analysis and application of this approach to Pu mass assay is demonstrated

  13. The impact of gate width setting and gate utilization factors on plutonium assay in passive correlated neutron counting

    Energy Technology Data Exchange (ETDEWEB)

    Henzlova, D., E-mail: henzlova@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Menlove, H.O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Croft, S. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Favalli, A.; Santi, P. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-10-11

    In the field of nuclear safeguards, passive neutron multiplicity counting (PNMC) is a method typically employed in non-destructive assay (NDA) of special nuclear material (SNM) for nonproliferation, verification and accountability purposes. PNMC is generally performed using a well-type thermal neutron counter and relies on the detection of correlated pairs or higher order multiplets of neutrons emitted by an assayed item. To assay SNM, a set of parameters for a given well-counter is required to link the measured multiplicity rates to the assayed item properties. Detection efficiency, die-away time, gate utilization factors (tightly connected to die-away time) as well as optimum gate width setting are among the key parameters. These parameters along with the underlying model assumptions directly affect the accuracy of the SNM assay. In this paper we examine the role of gate utilization factors and the single exponential die-away time assumption and their impact on the measurements for a range of plutonium materials. In addition, we examine the importance of item-optimized coincidence gate width setting as opposed to using a universal gate width value. Finally, the traditional PNMC based on multiplicity shift register electronics is extended to Feynman-type analysis and application of this approach to Pu mass assay is demonstrated.

  14. Administrative Measures against Foreign Fighters: In Search of Limits and Safeguards

    Directory of Open Access Journals (Sweden)

    Bérénice Boutin.

    2016-12-01

    Full Text Available This Research Paper analyses the increasing use of administrative measures, such as travel bans and control orders, in the counter-terrorism context. On the basis of a review of the use of these measures in three selected states (the United Kingdom, France, and the Netherlands, the paper provides a critical assessment of the use of administrative measures in counter-terrorism. It identifies in which situations it might be justified to use administrative measures, and assesses the impact of the use of these measures on the protection of human rights. In conclusion, the paper recommends to establish limits and safeguards around the use of administrative measures in counter-terrorism.

  15. Neutron microdosimetry at RARAF

    International Nuclear Information System (INIS)

    Kliauga, P.

    1986-01-01

    A comprehensive series of measurements of neutron microdosimetry spectra is underway at the RARAF facility. The neutrons generated at RARAF are semi-monoenergetic to monoenergetic, depending on energy. Thus far, measurements have concentrated on 15 MeV, with a few measurements done at 6 MeV. One of the main reasons for undertaking this project is dissatisfaction with the state of accuracy of microdosimetric measurements of neutrons, not only previous measurements done at RARAF, but reports in the literature from all over the world. Only a relatively modest amount of data has been taken for neutrons, as compared to photons, and the survey of dose mean lineal energy values done for the recent ICRU Report No. 36 (December 1983) reveals a spread of values far in excess of accepted estimates of statistical uncertainty (5-10%). One of the major motivations in undertaking this project, therefore, was to elucidate some of the factors, including experimental artifacts, which are important in contributing to systematic errors in measurements. Among the methods being employed are determination of the effect of various counter parameters on neutron spectra, and electronic parameters, also. Another important method of obtaining information is a comparison between different counters. This laboratory has access to perhaps a greater variety of microdosimetric proportional counters than any in the world, from the standard Rossi counter, to various wall-less types of differing geometries. Controlled comparisons of spectra from such differing counters using the same analysis technique can yield much information on the effect of counter geometry on the microdosimetric spectrum

  16. Design of neutron diagnostic for MTX

    International Nuclear Information System (INIS)

    Ogawa, Toshihide; Oasa, Kazumi; Hoshino, Katsumichi; Odajima, Kazuo; Maeda, Hikosuke

    1990-07-01

    A neutron diagnostic system was designed for the Microwave Tokamak Experiment being carried out at the lawrence Livermore National Laboratory. High speed measurements are important to this experiment. Plastic scintillator is used for this fast response detection of neutron. Proportional counters and fission counters are used for the total neutron emission rate measurements. (author)

  17. A neutron detector for measurement of total neutron production cross sections

    International Nuclear Information System (INIS)

    Sekharan, K.K.; Laumer, H.; Kern, B.D.; Gabbard, F.

    1976-01-01

    A neutron detector has been constructed and calibrated for the accurate measurement of total neutron production cross sections. The detector consists of a polyethylene sphere of 60 cm diameter in which eight 10 BF 3 counters have been installed radially. The relative efficiency of this detector has been determined for average neutron energies from 30 keV to 1.5 MeV by counting neutrons from 7 Li(p, n) 7 Be. By adjusting the radial positions of the BF 3 counters in the polyethylene sphere the efficiency for neutron detection was made nearly constant for this energy range. Measurement of absolute efficiency for the same neutron energy range has been done by counting the neutrons from 51 V(p, n) 51 Cr and 57 Fe(p, n) 57 Co reactions and determining the absolute number of residual nuclei produced during the measurement of neutron yield. Details of absolute efficiency measurements and the use of the detector for determination of neutron production cross sections are given. (Auth.)

  18. Networking of safeguards systems

    International Nuclear Information System (INIS)

    Chare, P.; Dutrannois, A.; Kloeckner, W.; Swinhoe, M.

    1995-01-01

    This paper discusses the design of a safeguards system that can be incorporated into a plant during the final phase of its construction to permit the acquisition and transmission of data during plant operation in the absence of an inspector. The system is an example of a networked data system of weighing, identity, and NDA information. It collects all of its non-surveillance data produced by safeguards equipment in a fuel fabrication plant. The data collection and transfer tasks are carried out by two software packages: NEGUS, a redundant data acquisition system designed to record neutron coincidence data, high-resolution gamma spectra, and sensor data for the NDA information and associated barcode identity information, and BRANCH, which deals with weighing and associated identity information. These processes collect data from local electronics using an ethernet network and provide information to the main review program

  19. Determination of plutonium content in TRR spent fuel by nondestructive neutron counting

    International Nuclear Information System (INIS)

    Chen, Y.-F.; Sheu, R.-J.; Chiao, L.-H.; Yuan, M.-C.; Jiang, S.-H.

    2010-01-01

    For the nuclear safeguard purpose, this work aims to nondestructively determine the plutonium content in the Taiwan Research Reactor (TRR) spent fuel rods in the storage pool before the stabilization process, which transforms the metal spent fuel rods into oxide powder. A SPent-fuel-Neutron-Counter (SPNC) system was designed and constructed to carry out underwater scan measurements of neutrons emitting from the spent fuel rod, from which the 240 Pu mass in the fuel rod will be determined. The SAS2 H control module of the SCALE 5.1 code package was applied to calculate the 240 Pu-to-Pu mass ratio in the TRR spent fuel rod according to the given power history. This paper presents the methodology and design of our detector system as well as the measurements of four TRR spent fuel rods in the storage pool and the comparison of the measured results with the facility declared values.

  20. Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiative’s Plutonium Assay Challenge

    Energy Technology Data Exchange (ETDEWEB)

    J. W. Sterbentz; D. L. Chichester

    2010-12-01

    This is an end-of-year report for a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The first-year goals for this project were modest and included: 1) developing a zero-order MCNP model for the NRTA technique, simulating data results presented in the literature, 2) completing a preliminary set of studies investigating important design and performance characteristics for the NRTA measurement technique, and 3) documentation of this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes a nine month period of work.

  1. Evaluation of response function of moderating-type neutron detector and application to environmental neutron measurement

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Nakamura, Takashi; Iwai, Satoshi; Katsuki, Shinji; Kamata, Masashi.

    1983-08-01

    The energy-dependent response function of a multi-cylinder moderating-type BF 3 counter, so-called Bonner counter, was calculated by the time-dependent multi-group Monte Carlo code, TMMCR. The calculated response function was evaluated experimentally for neutron energy below about 50 keV down to epithermal energy by the time-of-flight method combining with a large lead pile at the Nuclear Engineering Research Laboratory, University of Tokyo and also above 50 keV by using the monoenergetic neutron standard field a t the Electrotechnical Laboratory. The time delay in the polyethylene moderator of the Bonner counter due to multiple collisions with hydrogen was analyzed by the TMMCR code and used for the time-spectrum analysis of the time-of-flight measurement. The response function obtained by these two experiments showed good agreement with the calculated results. This Bonner counter having a response function evaluated from thermal to MeV energy range was used for spectrometry and dosimetry of environmental neutrons around some nuclear facilities. The neutron spectra and dose measured in the environment around a 252 Cf fission source, fast neutron source reactor and electron synchrotron were all in good agreement with the calculated results and the measured results with other neutron detectors. (author)

  2. Sealed drift tube cosmic ray veto counters

    International Nuclear Information System (INIS)

    Rios, R.; Tatar, E.; Bacon, J.D.; Bowles, T.J.; Hill, R.; Green, J.A.; Hogan, G.E.; Ito, T.M.; Makela, M.; Morris, C.L.; Mortenson, R.; Pasukanics, F.E.; Ramsey, J.; Saunders, A.; Seestrom, S.J.; Sondheim, W.E.; Teasdale, W.; Saltus, M.; Back, H.O.; Cottrell, C.R.

    2011-01-01

    We describe a simple drift tube counter that has been used as a cosmic ray veto for the UCNA experiment, a first-ever measurement of the neutron beta-asymmetry using ultra-cold neutrons. These detectors provide an inexpensive alternative to more conventional scintillation detectors for large area cosmic ray anticoincidence detectors.

  3. Data acquisition systems for uses of multi-counter time analyzer and one-dimensional PSD pulse height analyzer to neutron scattering measurements

    International Nuclear Information System (INIS)

    Ono, Masayoshi; Tasaki, Seiji; Okamoto, Sunao

    1989-01-01

    A data acquisition system having the various modern electronic devices was designed and tested for practical use of neutron time-of-flight (TOF) measurements with multiple counters. The system is principally composed of TOF logic units (load-able up to 128 units) with a control unit and a conventional micro-computer. The TOF logic unit (main memory, 2048 ch, 24 bits/ch) demonstrates about 1.7 times higher efficiency for neutron counting rate per channel than the one by a conventional TOF logic unit. Meanwhile, some data-access functions of the TOF logic unit were applied to position sensitive analyzer of one-dimensional neutron PSD for small angle scattering. The analyzer was tested with use of pulse generator. The result shows good linearity. (author)

  4. A neutron detector for measurement of total neutron production cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Sekharan, K K; Laumer, H; Kern, B D; Gabbard, F [Kentucky Univ., Lexington (USA). Dept. of Physics and Astronomy

    1976-03-01

    A neutron detector has been constructed and calibrated for the accurate measurement of total neutron production cross sections. The detector consists of a polyethylene sphere of 60 cm diameter in which eight /sup 10/BF/sub 3/ counters have been installed radially. The relative efficiency of this detector has been determined for average neutron energies from 30 keV to 1.5 MeV by counting neutrons from /sup 7/Li(p, n)/sup 7/Be. By adjusting the radial positions of the BF/sub 3/ counters in the polyethylene sphere the efficiency for neutron detection was made nearly constant for this energy range. Measurement of absolute efficiency for the same neutron energy range has been done by counting the neutrons from /sup 51/V(p, n)/sup 51/Cr and /sup 57/Fe(p, n)/sup 57/Co reactions and determining the absolute number of residual nuclei produced during the measurement of neutron yield. Details of absolute efficiency measurements and the use of the detector for determination of neutron production cross sections are given.

  5. Separations and safeguards model integration.

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin B.; Zinaman, Owen

    2010-09-01

    Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

  6. Neutron producing reactions in PuBe neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Bagi, János [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU) (Germany); Lakosi, László; Nguyen, Cong Tam [Centre for Energy Research, Hungarian Academy of Sciences, Budapest (Hungary)

    2016-01-01

    There are a plenty of out-of-use plutonium–beryllium neutron sources in Eastern Europe presenting both nuclear safeguards and security issues. Typically, their actual Pu content is not known. In the last couple of years different non-destructive methods were developed for their characterization. For such methods detailed knowledge of the nuclear reactions taking place within the source is necessary. In this paper we investigate the role of the neutron producing reactions, their contribution to the neutron yield and their dependence on the properties of the source.

  7. Effects of the inversion layer thickness and 10B distribution in it on the characteristics of ion-doped semiconductor neutron counters

    International Nuclear Information System (INIS)

    Diasamidze, Eh.M.; Solov'ev, Yu.A.; Shmakov, A.N.

    1984-01-01

    The technique for calculating the dependence of energy spectrum of the 10 B(n, α) 7 Li reaction products in the thickness of the inversion layer in a semiconductor counter fabricated using the diffusion method is proposed. The inversion layer is formed as a result of the 10 B ion implantation into n-type silicon. The cases of uniform and Gaussian distributions of 10 B impurity are considered. Corrections for neutron fluence calculation by α-peak, taking into account α-particle absorption in the inversion layer are obtained. It is concluded that the suggested calculational technique can be used for semiconductor counters fabricated by the diffusion method

  8. Safeguarding on-power fuelled reactors - instrumentation and techniques

    International Nuclear Information System (INIS)

    Waligura, A.; Konnov, Y.; Smith, R.M.; Head, D.A.

    1977-01-01

    Instrumentation and techniques applicable to safeguarding reactors that are fuelled on-power, particularly the CANDU type, have been developed. A demonstration is being carried out at the Douglas Point Nuclear Generating Station in Canada. Irradiated nuclear materials in certain areas - the reactor and spent fuel storage bays - are monitored using photographic and television cameras, and seals. Item accounting is applied by counting spent-fuel bundles during transfer from the reactor to the storage bay and by placing these spent-fuel bundles in a sealed enclosure. Provision is made for inspection and verification of the bundles before sealing. The reactor's power history is recorded by a track-etch power monitor. Redundancy is provided so that the failure of any single piece of equipment does not invalidate the entire safeguards system. Several safeguards instruments and devices have beeen developed and evaluated. These include a super-8 mm surveillance camera system, a television surveillance system, a spent-fuel bundle counter, a device to detect dummy fuel bundles, a cover for enclosing a stack of spent-fuel bundles, and a seal suitable for underwater installation and ultrasonic interrogation. The information provided by these different instruments should increase the effectiveness of Agency safeguards and, when used in combination with other measures, will facilitate inspection at reactor sites

  9. Past, present and future of safeguards implementation for the on-load RMBK-1500 reactors in Ignalina

    International Nuclear Information System (INIS)

    Zendel, M.; Yim, S.; Monticone, C.; Kurselis, S.

    1999-01-01

    The on-load refueled RBMKs ('Reactor Bolshoy Moschnosti Kanalniy - Large Power Channel Type Reactor') are very different from all other power reactors which the Agency has been safeguarding over the past decades. Distinct differences in fuel properties and handling necessitated the formulation of separate, facility specific approaches. The spent fuel management at the RBMKs in Ignalina uses hot cells to cut each spent fuel assembly into two subassemblies. A large number of subassemblies are subsequently stored in large capacity, compact storage baskets at the spent fuel storage ponds adjacent to the reactor hall. The development of the safeguards approach is presented considering limitation in core access, technological feasibility, operation mode and financial as well as human resources of the Agency. The safeguards approach is based on a quarterly inspection scheme using Containment and Surveillance (C/S) measures, verification of fresh and spent fuel by Non Destructive Assay (NDA), establishing of flow balances to complement the material accountancy and the application of neutron/gamma monitors in a continuous, unattended mode. The implementation of these safeguards measures is discussed and actual inspection experience with an emphasis on the application of the neutron/gamma monitors is given. The neutron/gamma monitors serve multiple safeguards functions, such as monitoring shipments of waste from cutting operations for irradiated fuel in the hot cells, confirming the unloading history for the on-load reactors, complementing C/S by detecting movements of irradiated fuel materials in the reactor halls and verifying the operational status and the power output of the reactors. Actual measurement results are presented to demonstrate their effectiveness. Power Considerations are given for future safeguards implementation matters at Ignalina Nuclear plant (INPP) including measures for the Strengthened Safeguards System (SSS). (author)

  10. Energy and angular distributions of neutrons from 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Vasil'ev, Yu.A.; Sidorov, L.V.; Vasil'eva, N.K.

    1982-01-01

    Some results from a first series of measurements of energy and angular distributions of neutrons from 252 Cf spontaneous fission using a spectrometer with high neutron detection efficiency, i.e. a 4π neutron time-of-flight spectrometer, were already presented. Subsequently, a second series of measurements was performed using a more sophisticated technique. For this second series, we used a more intense 252 Cf layer (25,000 spontaneous fissions per second). The angular resolution was improved by a factor of 2-3 by combining the hexahedral counter modules, placed at the same angle with respect to the direction of motion of the fragments, in new panoramic counters. The neutron counters were calibrated against the average 252 Cf neutron spectrum at several positions of the axis of the fragment detector with respect to the neutron counters. In the spectrum measurements and calibration work, the scattered neutron background was not determined theoretically, as in the first series of measurements, but experimentally using four extra scintillation counters with scatter cones; the counters were set up at 60 deg., 80 deg., 100 deg., and 120 deg. to the direction of separation of the fragments

  11. Fast Enrichment Screening for Safeguards Applications

    International Nuclear Information System (INIS)

    Simpson, A.; McElhaney, S.

    2010-01-01

    Methods for rapid non-destructive uranium enrichment classification of large containers are of importance to safeguards and counter-terrorism agencies. There is a need to quickly categorize and segregate suspect items as 'depleted' or 'enriched' on a 'Go/No Go' basis. Recent improvements in gamma spectroscopy technologies have provided the capability to perform rapid field analysis using portable and hand-held devices such as battery-operated medium and high resolution detectors (including lanthanum halide and high purity germanium). Furthermore a new generation of portal monitors are currently under development with advanced spectroscopic capabilities. Instruments and technologies that were previously the domain of complex lab systems are now widely available as touch-screen 'off-the-shelf' units. Despite such advances, the task of enrichment analysis remains a complex exercise. This is particularly so when surveying large items such as drums and crates containing debris of unknown density and composition contaminated with uranium. The challenge is equally applicable to safeguards inspectors evaluating large items and for interdiction of illicit special nuclear materials in mass transport e.g. shipping containers at ports and borders. The variable shielding, container size, lack of matrix knowledge, wall thickness and self-shielding compound this problem. Performing an accurate assessment within the short count time window demanded of the field operative, leads to the need for a reliable method that can adapt to such conditions and is robust to a wide dynamic range of counting statistics. Several methods are evaluated with reference to the performance metrics defined in applicable standards. The primary issue is to minimize the bias that can result from attenuation effects, particularly as the gamma emissions from U235 are low energy and therefore highly susceptible to absorption in large containers with metal scrap. Use of other radiometric signatures such as

  12. Nuclear fission and nuclear safeguards: Common technologies and challenges

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1989-01-01

    Nuclear fission and nuclear safeguards have much in common, including the basic physical phenomena and technologies involved as well as the commitments and challenges posed by expanding nuclear programs in many countries around the world. The unique characteristics of the fission process -- such as prompt and delayed neutron and gamma ray emission -- not only provide the means of sustaining and controlling the fission chain reaction, but also provide unique ''signatures'' that are essential to quantitative measurement and effective safeguarding of key nuclear materials (notably 239 Pu and 235 U) against theft, loss, or diversion. In this paper, we trace briefly the historical emergence of safeguards as an essential component of the expansion of the nuclear enterprise worldwide. We then survey the major categories of passive and active nondestructive assay techniques that are currently in use or under development for rapid, accurate measurement and verification of safe-guarded nuclear materials in the many forms in which they occur throughout the nuclear fuel cycle. 23 refs., 14 figs

  13. Interactive hypermedia training manual for spent-fuel bundle counters

    International Nuclear Information System (INIS)

    Basso, R.A.

    1990-07-01

    Spent-fuel bundle counters, developed by the Canadian Safeguards Support Program for the International Atomic Energy Agency, provide a secure and independent means of counting the number of irradiated fuel bundles discharged into the fuel storage bays at CANDU nuclear power stations. Paper manuals have been traditionally used to familiarize IAEA inspectors with the operation, maintenance and extensive reporting capabilities of the bundle counters. To further assist inspectors, an interactive training manual has been developed on an Apple Macintosh computer using hypermedia software. The manual uses interactive animation and sound, in conjunction with the traditional text and graphics, to simulate the underlying operation and logic of the bundle counters. This paper presents the key features of the interactive manual and highlights the advantages of this new technology for training

  14. Fuel cycle of nuclear power plants and safeguards system of nuclear weapon nonproliferation

    International Nuclear Information System (INIS)

    Malek, Z.

    1980-10-01

    The international safeguard system of nuclear weapon nonproliferation and the IAEA safeguard system are briefly described. In Czechoslovakia, a decree was issued in 1977 governing the accounting for and control of nuclear materials. The contents of the decree are presented. Described are computer processing of accounting data, technical criteria for the safeguard system application, containment and inspection in the IAEA safeguard system. The method is shown of the control of and accounting for nuclear materials in nuclear power plants and in fuel manufacturing, reprocessing and enrichment plants. Nondestructive and destructive methods of nuclear materials analysis are discussed. Nondestructive methods used include gamma spectrometry, neutron techniques, X-ray fluores--cence techniques. (J.P.)

  15. Nondestructive Neutron And Gamma-Ray Technologies Applied To GNEP And Safeguards

    International Nuclear Information System (INIS)

    Dougan, A D; Snyderman, N; Ham, Y; Nakae, L; Dietrich, D; Kerr, P; Wang, T; Stoeffl, W; Choi, J S

    2007-01-01

    In recent years, LLNL has developed methods for diagnosing significant quantities of special nuclear material (SNM). Homeland security problems have recently focused our attention on detection of shielded highly enriched uranium (HEU), which is a weak signal problem. Current and advanced safeguards applications will require working in the opposite extreme of strong but buried signals. We will review some of the technologies that have been developed at LLNL for homeland security applications and discuss how they might be used in support of international safeguards

  16. Experimental evaluation of the extended Dytlewski-style dead time correction formalism for neutron multiplicity counting

    Science.gov (United States)

    Lockhart, M.; Henzlova, D.; Croft, S.; Cutler, T.; Favalli, A.; McGahee, Ch.; Parker, R.

    2018-01-01

    Over the past few decades, neutron multiplicity counting has played an integral role in Special Nuclear Material (SNM) characterization pertaining to nuclear safeguards. Current neutron multiplicity analysis techniques use singles, doubles, and triples count rates because a methodology to extract and dead time correct higher order count rates (i.e. quads and pents) was not fully developed. This limitation is overcome by the recent extension of a popular dead time correction method developed by Dytlewski. This extended dead time correction algorithm, named Dytlewski-Croft-Favalli(DCF), is detailed in reference Croft and Favalli (2017), which gives an extensive explanation of the theory and implications of this new development. Dead time corrected results can then be used to assay SNM by inverting a set of extended point model equations which as well have only recently been formulated. The current paper discusses and presents the experimental evaluation of practical feasibility of the DCF dead time correction algorithm to demonstrate its performance and applicability in nuclear safeguards applications. In order to test the validity and effectiveness of the dead time correction for quads and pents, 252Cf and SNM sources were measured in high efficiency neutron multiplicity counters at the Los Alamos National Laboratory (LANL) and the count rates were extracted up to the fifth order and corrected for dead time. In order to assess the DCF dead time correction, the corrected data is compared to traditional dead time correction treatment within INCC. The DCF dead time correction is found to provide adequate dead time treatment for broad range of count rates available in practical applications.

  17. A training and educational tool for neutron coincidence measurements

    International Nuclear Information System (INIS)

    Huszti, J.; Bagi, J.; Langner, D.

    2009-01-01

    Neutron coincidence counting techniques are widely used for nuclear safeguards inspection. They are based on the detection of time correlated neutrons created from spontaneous or induced fission of plutonium and some other actinides. IAEA inspectors are trained to know and to use this technique, but it is not easy to illustrate and explain the basics of the neutron coincidence counting. The traditional shift registers or multiplicity counters give only multiplicity distributions and the singles, doubles and triples count rates. Using the list mode method for the recording and evaluation of neutron coincidence data makes it easier to teach this technique. List mode acquisition is a relatively new way to collect data in neutron coincidence counting. It is based on the recording of the follow-up times of neutron pulses originating from a neutron detector into a file. The recorded pulse train can be evaluated with special software after the measurement. Hardware and software for list mode neutron coincidence acquisition have been developed in the Institute of Isotopes and is called a Pulse Train Reader. A system called Virtual Source for replaying pulse trains registered with the list mode device has also been developed. The list mode device and the pulse train 're-player' together build a good educational tool for teaching the basics of neutron coincidence counting. Some features of the follow-up time, multiplicity and Rossi-alpha distributions can be well demonstrated by replaying artificially generated or pre-recorded pulse trains. The choice of real sources is stored on DVD. There is no need to transport and maintain real sources for the training. Virtual sources also give the possibility of investigating rare sources that trainees would not have access to otherwise. (authors)

  18. A neutron portal monitor for vehicles

    International Nuclear Information System (INIS)

    Coop, K.L.; Fehlau, P.E.; Atwater, H.F.

    1987-01-01

    We have designed and built a portal vehicle monitoring systems for detecting neutron-emitting special nuclear material (SNM) such as plutonium. Monte Carlo calculations were used to optimize the design of the 15-cm-deep x 122-cm-high x 244-cm-long detector chambers, which utilize 3 He proportional counters inside a hollow polyethylene box. Results for a variety of parametric studies, including polyethylene thickness and detector number, are described. Our experimental measurements are in good agreement with the computer calculations. The monitor's decision logic uses the Sequential Probability Ratio Test (SPRT) on Poisson distributed counting data, which is superior to other statistical tests in many applications. We performed computer simulations of the SPRT logic to determine expected false-positive decision rates. A controller unit of our design that uses this SPRT was built commercially. The cost of the complete monitoring system is similar to that of vehicle portal monitors that detect gamma rays. This new neutron monitor can serve as an addition to standard gamma-ray vehicle portals or as a stand-alone portal monitor in particular safeguards monitoring situations. The monitor is being tested at Los Alamos and is scheduled for in-plant evaluation of another DOE facility in 1987. 7 refs

  19. Analysis of experimental measurements of PWR fresh and spent fuel assemblies using Self-Interrogation Neutron Resonance Densitometry

    Energy Technology Data Exchange (ETDEWEB)

    LaFleur, Adrienne M., E-mail: alafleur@lanl.gov; Menlove, Howard O., E-mail: hmenlove@lanl.gov

    2015-05-01

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is a new NDA technique that was developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for LWR fuel assemblies. The SINRD detector consists of four fission chambers (FCs) wrapped with different absorber filters to isolate different parts of the neutron energy spectrum and one ion chamber (IC) to measure the gross gamma rate. As a result, two different techniques can be utilized using the same SINRD detector unit and hardware. These techniques are the Passive Neutron Multiplication Counter (PNMC) method and the SINRD method. The focus of the work described in this paper is the analysis of experimental measurements of fresh and spent PWR fuel assemblies that were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using the SINRD detector. The purpose of these experiments was to assess the following capabilities of the SINRD detector: 1) reproducibility of measurements to quantify systematic errors, 2) sensitivity to water gap between detector and fuel assembly, 3) sensitivity and penetrability to the removal of fuel rods from the assembly, and 4) use of PNMC/SINRD ratios to quantify neutron multiplication and/or fissile content. The results from these simulations and measurements provide valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies. - Highlights: • Experimental measurements of PWR fresh and spent FAs were performed with SINRD. • Good agreement of MCNPX and measured results confirmed accuracy of SINRD model. • For fresh fuel, SINRD and PNMC ratios were not sensitive to water gaps of ≤5-mm. • Practical use of SINRD would be in Fork detector to reduce systematic uncertainties.

  20. A neutron calibration technique for detectors with low neutron/high photon sensitivity

    International Nuclear Information System (INIS)

    Jahr, R.; Guldbakke, S.; Cosack, M.; Dietze, G.; Klein, H.

    1978-03-01

    The neutron response of a detector with low neutron-/high photon sensitivity is given by the difference of two terms: the response to the mixed neutron-photon field, measured directly, and the response to the photons, deduced from additional measurements with a photon spectrometer. The technique is particularly suited for use in connection with targets which consist of a thick backing and thin layer of neutron producing material such as T, D, Li nuclei. Then the photon component of the mixed field is very nearly the same as the pure photon field from a 'phantom target', being identical with the neutron producing target except for the missing neutron producing material. Using this technique in connection with a T target (Ti-T-layer on silver backing) and the corresponding phantom target (Ti-layer on silver backing), a GM counter was calibrated at a neutron energy of 2.5 MeV. Possibilities are discussed to subsequently calibrate the GM counter at other neutron energies without the use of the photon spectrometer. (orig./HP) [de

  1. Passive neutron coincidence counting with plastic scintillators for the characterization of radioactive waste drums

    Energy Technology Data Exchange (ETDEWEB)

    Deyglun, C.; Simony, B.; Perot, B.; Carasco, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Saurel, N.; Colas, S. [CEA, DAM, Valduc, F-21120 Is-sur-Tille (France); Collot, J. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Grenoble Alpes, CNRS/IN2P3, Grenoble (France)

    2015-07-01

    The quantification of radioactive material is essential in the fields of safeguards, criticality control of nuclear processes, dismantling of nuclear facilities and components, or radioactive waste characterization. The Nuclear Measurement Laboratory (LMN) of CEA is involved in the development of time-correlated neutron detection techniques using plastic scintillators. Usually, 3He proportional counters are used for passive neutron coincidence counting owing to their high thermal neutron capture efficiency and gamma insensitivity. However, the global {sup 3}He shortage in the past few years has made these detectors extremely expensive. In addition, contrary to {sup 3}He counters for which a few tens of microseconds are needed to thermalize fast neutrons, in view to maximize the {sup 3}He(n,p){sup 3}H capture cross section, plastic scintillators are based on elastic scattering and therefore the light signal is formed within a few nanoseconds, correlated pulses being detected within a few dozen- or hundred nanoseconds. This time span reflects fission particles time of flight, which allows reducing accordingly the duration of the coincidence gate and thus the rate of random coincidences, which may totally blind fission coincidences when using {sup 3}He counters in case of a high (α,n) reaction rate. However, plastic scintillators are very sensitive to gamma rays, requiring the use of a thick metallic shield to reduce the corresponding background. Cross talk between detectors is also a major issue, which consists on the detection of one particle by several detectors due to elastic or inelastic scattering, leading to true but undesired coincidences. Data analysis algorithms are tested to minimize cross-talk in simultaneously activated detectors. The distinction between useful fission coincidences and the correlated background due to cross-talk, (α,n) and induced (n,2n) or (n,n'γ) reactions, is achieved by measuring 3-fold coincidences. The performances of a

  2. Realisation and qualification of a tissue equivalent proportional counter with a multi-cellular geometry for the individual neutron dosimetry

    International Nuclear Information System (INIS)

    Hoflack, Ch.

    1999-01-01

    The present day dosimetry means for radiations with a strong ionization density cannot fulfill the future radioprotection regulations which will require an individual dosimetry with active dosemeters. The aim of this work is the study and development of an individual dosemeter based on a tissue equivalent proportional counter and with a multi-cellular geometry allowing to reach a sensibility equivalent to environmental dosemeters. A pressure regulation bench has been added to the detector in order to reduce the degassing of the detector parts and to reach a sufficient service life for the implementation of the characterization tests. The hole counter system has been adopted for the first prototypes in order to reduce the sensibility of the wires multiplication system with respect to mechanical vibrations. Tests performed with an internal alpha source have shown that a better electrical efficiency can be reached when more severe mechanical limits are adopted during the construction. The dose equivalent response of the prototype for mono-energy neutrons of 144 keV to 2.5 MeV is analyzed experimentally and by simulation. During experiments with normal incidence neutrons, the prototype fulfills the requirements of the CEI N O 1323 standard for energies comprised between 400 keV and 2.5 MeV, while the simulation indicates a satisfactory response up to 200 keV. A preliminary study of the behaviour of the detector with respect to the neutrons incidence indicates that the multi-cellular geometry is efficient for large angles (the sensibility of the prototype is increased by a factor 3). Finally, simulation studies have to be made to optimize the electrical operation and the geometry of the next prototype. (J.S.)

  3. Accuracy of neutron dose evaluation in the area monitoring for LHD experiments

    CERN Document Server

    Yamanishi, H; Uda, T; Tanahashi, S; Saitou, M; Handa, H

    2000-01-01

    The error in the evaluation of neutron dose during calculation of the neutron field around the large helical device (LHD) in D-D operation is discussed. The expected neutron dose at each monitoring point was derived from the dose conversion factor and neutron fluence data, which was calculated with the radiation transport code DOT-3.5. In contrast, the detected dose at the neutron counter was obtained from the fluence data and the detector response given by calculation with MCNP-4b. The neutron counter used in these calculations consisted of a helium-3 proportional counter with a cylindrical polyethylene moderator. According to the results of the calculations, the ratio of the detected dose to the expected dose was found to lie in the range 1.0-3.0 on the outdoor monitoring points. Since the response of a single neutron counter may lead to inconsistencies in the dose conversion factor, we attempted to minimize these inconsistencies by using a pair of counters with moderators of different thickness. The ratio ...

  4. Improving Neutron Measurement Capabilities; Expanding the Limits of Correlated Neutron Counting

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Geist, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dougan, Arden [National Nuclear Security Administration (NNSA), Washington, DC (United States)

    2015-11-05

    A number of technical and practical limitations exist within the neutron correlated counting techniques used in safeguards, especially within the algorithms that are used to process and analyze the detected neutron signals. A multi-laboratory effort is underway to develop new and improved analysis and data processing algorithms based on fundamental physics principles to extract additional or more accurate information about nuclear material bearing items.

  5. Monte Carlo calculations of the neutron coincidence gate utilisation factor for passive neutron coincidence counting

    International Nuclear Information System (INIS)

    Bourva, L.C.A.; Croft, S.

    1999-01-01

    The general purpose neutron-photon-electron Monte Carlo N-Particle code, MCNP TM , has been used to simulate the neutronic characteristics of the on-site laboratory passive neutron coincidence counter to be installed, under Euratom Safeguards Directorate supervision, at the Sellafield reprocessing plant in Cumbria, UK. This detector is part of a series of nondestructive assay instruments to be installed for the accurate determination of the plutonium content of nuclear materials. The present work focuses on one aspect of this task, namely, the accurate calculation of the coincidence gate utilisation factor. This parameter is an important term in the interpretative model used to analyse the passive neutron coincidence count data acquired using pulse train deconvolution electronics based on the shift register technique. It accounts for the limited proportion of neutrons detected within the time interval for which the electronics gate is open. The Monte Carlo code MCF, presented in this work, represents a new evaluation technique for the estimation of gate utilisation factors. It uses the die-away profile of a neutron coincidence chamber generated either by MCNP TM , or by other means, to simulate the neutron detection arrival time pattern originating from independent spontaneous fission events. A shift register simulation algorithm, embedded in the MCF code, then calculates the coincidence counts scored within the electronics gate. The gate utilisation factor is then deduced by dividing the coincidence counts obtained with that obtained in the same Monte Carlo run, but for an ideal detection system with a coincidence gate utilisation factor equal to unity. The MCF code has been benchmarked against analytical results calculated for both single and double exponential die-away profiles. These results are presented along with the development of the closed form algebraic expressions for the two cases. Results of this validity check showed very good agreement. On this

  6. Safeguarding on-power fuelled reactors - instrumentation and techniques

    International Nuclear Information System (INIS)

    Waligura, A.; Konnov, Y.; Smith, R.M.; Head, D.A.

    1977-05-01

    Instrumentation and techniques applicable to safeguarding reactors that are fuelled on-power, particularly the CANDU type, have been developed. A demonstration is being carried out at the Douglas Point Nuclear Generating Station in Canada. Irradiated nuclear materials in certain areas - the reactor and spent fuel storage bays - are monitored using photographic and television cameras, and seals. Item accounting is applied by counting spent-fuel bundles during transfer from the reactor to the storage bay and by placing these spent-fuel bundles in a sealed enclosure. Provision is made for inspection and verification of the bundles before sealing. The reactor's power history is recorded by a Track-Etch power monitor. Redundancy is provided so that the failure of any single piece of equipment does not invalidate the entire safeguards system. Several safeguards instruments and devices have been developed and evaluated. These include a super-8-mm surveillance camera system, a television surveillance system, a spent-fuel bundle counter, a device to detect dummy fuel bundles, a cover for enclosing a stack of spent-fuel bundles, and a seal suitable for underwater installation and ultrasonic interrogation. (author)

  7. A high-efficiency neutron coincidence counter for small samples

    International Nuclear Information System (INIS)

    Miller, M.C.; Menlove, H.O.; Russo, P.A.

    1991-01-01

    The inventory sample coincidence counter (INVS) has been modified to enhance its performance. The new design is suitable for use with a glove box sample-well (in-line application) as well as for use in the standard at-line mode. The counter has been redesigned to count more efficiently and be less sensitive to variations in sample position. These factors lead to a higher degree of precision and accuracy in a given counting period and allow for the practical use of the INVS counter with gamma-ray isotopics to obtain a plutonium assay independent of operator declarations and time-consuming chemicals analysis. A calculation study was performed using the Los Alamos transport code MCNP to optimize the design parameters. 5 refs., 7 figs., 8 tabs

  8. Safeguards Culture

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2012-07-01

    The concepts of nuclear safety and security culture are well established; however, a common understanding of safeguards culture is not internationally recognized. Supported by the National Nuclear Security Administration, the authors prepared this report, an analysis of the concept of safeguards culture, and gauged its value to the safeguards community. The authors explored distinctions between safeguards culture, safeguards compliance, and safeguards performance, and evaluated synergies and differences between safeguards culture and safety/security culture. The report concludes with suggested next steps.

  9. Analysis of neutron propagation from the skyshine port of a fusion neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Wakisaka, M. [Hokkaido University, Kita-8, Nishi-5, Kita-ku, Sapporo 080-8628 (Japan); Kaneko, J. [Hokkaido University, Kita-8, Nishi-5, Kita-ku, Sapporo 080-8628 (Japan)]. E-mail: kin@qe.eng.hokudai.ac.jp; Fujita, F. [Hokkaido University, Kita-8, Nishi-5, Kita-ku, Sapporo 080-8628 (Japan); Ochiai, K. [Japan Atomic Energy Institute, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Nishitani, T. [Japan Atomic Energy Institute, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Yoshida, S. [Tokai University, 1117 Kitakaname, Hirastuka, Kanagawa-ken 259-1292 (Japan); Sawamura, T. [Hokkaido University, Kita-8, Nishi-5, Kita-ku, Sapporo 080-8628 (Japan)

    2005-12-01

    The process of neutron leaking from a 14MeV neutron source facility was analyzed by calculations and experiments. The experiments were performed at the Fusion Neutron Source (FNS) facility of the Japan Atomic Energy Institute, Tokai-mura, Japan, which has a port on the roof for skyshine experiments, and a {sup 3}He counter surrounded with a polyethylene moderator of different thicknesses was used to estimate the energy spectra and dose distributions. The {sup 3}He counter with a 3-cm-thick moderator was also used for dose measurements, and the doses evaluated by the counter counts and the calculated count-to-dose conversion factor agreed with the calculations to within {approx}30%. The dose distribution was found to fit a simple analytical expression, D(r)=Q{sub D}exp(-r/{lambda}{sub D})r and the parameters Q{sub D} and {lambda}{sub D} are discussed.

  10. Position-sensitive proportional counters using resistance-capacitance position encoding

    International Nuclear Information System (INIS)

    Kopp, M.K.; Borkowski, C.J.

    1975-12-01

    A new method was developed for encoding the position of individual photons, neutrons, or charged particles in proportional counters by using the distributed RC line characteristics of these counters. The signal processing is described and guidelines for the design and operation of these position sensitive proportional counters (PSPCs) are given. Using these guidelines, several prototypic PSPCs were constructed to improve the spatial resolution and shorten the signal processing time; for example, the intrinsic spatial uncertainty was reduced to 28 μ fwhm for alpha particles and 100 μ fwhm for low-energy x rays (2 to 6 keV). Also, the signal processing time was reduced to 0.6 μsec without seriously degrading the spatial resolution. These results have opened new fields of application of the RC position encoding method in imaging distributions of photons, charged particles, or neutrons in nuclear medicine, physics, and radiography

  11. Neutron activation probe for measuring the presence of uranium in ore bodies

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Smith, R.C.

    1979-01-01

    A neutron activation proble comprises a pulsed neutron source in series with a plurality of delayed neutron detectors for measuring radioactivity in a well borehole together with a NaI (Tl) counter for measuring the high energy 2.62 MeV gamma line from thorium. The neutron source emits neutrons which produce fission in uranium and thorium in the ore body and the delayed neutron detectors measure the delayed neutrons produced from such fission while the NaI (Tl) counter measures the 2.62 MeV gamma line from the undisturbed thorium in the ore body. The signal from the NaI (Tl) counter is processed and subtracted from the signal from the delayed neutron detectors with the result being indicative of the amount of uranium present in the ore body

  12. Non-destructive isotopic uranium assay by multiple delayed neutron measurements

    International Nuclear Information System (INIS)

    Papadopoulos, N.N.; Tsagas, N.F.

    1991-01-01

    The high accuracy and precision required in nuclear safeguards measurements can be achieved by an improved neutron activation technique based on multiple delayed fission neutron counting under various experimental conditions. For the necessary ultrahigh counting statistics required, cyclic activation of multiple subsamples has been applied. The home-made automated flexible analytical system with neutron flux and spectrum differentiation by irradiation position adjustment and cadmium screening, permits the non-destructive determination of the U235 abundance and the total U element concentration needed in nuclear safeguards sample analysis, with a high throughout and a low operational cost. Careful experimental optimization led to considerable improvement of the results

  13. The Neutron Spectrometry System Using 3He Counter

    International Nuclear Information System (INIS)

    Dang Lanh; Pham Ngoc Tuan; Tuong Thi Thu Huong; Nguyen Nhi Dien; Nguyen Van Hung

    2011-01-01

    A spectrometry system was designed for neutron counting at the horizontal channels of Dalat nuclear reactor. The system is able to interface to PC via EZ-USB with full speed. The designed system can be installed for operation not only at the channel No. 4 of the reactor, but also operated with the neutron Howitzer system installed at the Training Center of Nuclear Research Institute for training purposes. Almost results can be achieved effectively while choosing the shaping time of 2 μs of amplifier unit; and an appropriate preamplifier is used to measure neutron spectra. In this work, the multi-channel spectrometer for measuring neutron was designed and tested. (author)

  14. Absolute calibration of TFTR helium proportional counters

    International Nuclear Information System (INIS)

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Loughlin, M.

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments

  15. The optimum choice of gate width for neutron coincidence counting

    Energy Technology Data Exchange (ETDEWEB)

    Croft, S., E-mail: crofts@ornl.gov [Safeguards and Security Technology (SST), Global Nuclear Security Technology Divisions, PO Box 2008, Building 5700, MS-6166, Oak Ridge, TN 37831-6166 (United States); Henzlova, D.; Favalli, A.; Hauck, D.K.; Santi, P.A. [Safeguards Science and Technology Group (NEN-1), Nuclear Engineering and Nonproliferation Division, MS-E540, Los Alamos, NM 87545 (United States)

    2014-11-11

    In the measurement field of international nuclear safeguards, passive neutron coincidence counting is used to quantify the spontaneous fission rate of certain special nuclear materials. The shift register autocorrelation analysis method is the most commonly used approach. However, the Feynman-Y technique, which is more commonly applied in reactor noise analysis, provides an alternative means to extract the correlation information from a pulse train. In this work we consider how to select the optimum gate width for each of these two time-correlation analysis techniques. The optimum is considered to be that which gives the lowest fractional precision on the net doublets rate. Our theoretical approach is approximate but is instructional in terms of revealing the key functional dependence. We show that in both cases the same performance figure of merit applies so that common design criteria apply to the neutron detector head. Our prediction is that near optimal results, suitable for most practical applications, can be obtained from both techniques using a common gate width setting. The estimated precision is also comparable in the two cases. The theoretical expressions are tested experimentally using {sup 252}Cf spontaneous fission sources measured in two thermal well counters representative of the type in common use by international inspectorates. Fast accidental sampling was the favored method of acquiring the Feynman-Y data. Our experimental study confirmed the basic functional dependences predicted although experimental results when available are preferred. With an appropriate gate setting Feynman-Y analysis provides an alternative to shift register analysis for safeguards applications which is opening up new avenues of data collection and data reduction to explore.

  16. The international safeguards and domestic safeguards and security interface

    International Nuclear Information System (INIS)

    Whitworth, A.

    1996-01-01

    The International Safeguards Division, in conjunction with the Office of Safeguards and Security, organized a workshop on the international safeguards/domestic safeguards and security interface that was held in March 1996. The purpose of the workshop was to identify and resolve domestic safeguards and security issues associated with the implementation of International Atomic Energy Agency (IAEA) safeguards in the Department of Energy (DOE) complex. The workshop drew heavily upon lessons learned in the application of IAEA safeguards at storage facilities in oak Ridge, Hanford, and Rocky Flats. It was anticipated that the workshop would facilitate a consistent DOE safeguards and security approach for the implementation of IAEA safeguards in the DOE complex. This paper discusses the issues and resolutions of several issues raised at the workshop that involve primarily the domestic material control and accountability program

  17. Fast critical assembly safeguards: NDA methods for highly enriched uranium. Summary report, October 1978-September 1979

    International Nuclear Information System (INIS)

    Bellinger, F.O.; Winslow, G.H.

    1980-12-01

    Nondestructive assay (NDA) methods, principally passive gamma measurements and active neutron interrogation, have been studied for their safeguards effectiveness and programmatic impact as tools for making inventories of highly enriched uranium fast critical assembly fuel plates. It was concluded that no NDA method is the sole answer to the safeguards problem, that each of those emphasized here has its place in an integrated safeguards system, and that each has minimum facility impact. It was found that the 185-keV area, as determined with a NaI detector, was independent of highly-enriched uranium (HEU) plate irradiation history, though the random neutron driver methods used here did not permit accurate assay of irradiated plates. Containment procedures most effective for accurate assaying were considered, and a particular geometry is recommended for active interrogation by a random driver. A model, pertinent to that geometry, which relates the effects of multiplication and self-absorption, is described. Probabilities of failing to detect that plates are missing are examined

  18. Facility Safeguardability Analysis in Support of Safeguards by Design

    International Nuclear Information System (INIS)

    Wonder, E.F.

    2010-01-01

    The idea of 'Safeguards-by-Design' (SBD) means designing and incorporating safeguards features into new civil nuclear facilities at the earliest stages in the design process to ensure that the constructed facility is 'safeguardable,' i.e. will meet national and international nuclear safeguards requirements. Earlier consideration of safeguards features has the potential to reduce the need for costly retrofits of the facility and can result in a more efficient and effective safeguards design. A 'Facility Safeguardability Analysis' (FSA) would be a key step in Safeguards-by-Design that would link the safeguards requirements with the 'best practices', 'lessons learned', and design of the safeguards measures for implementing those requirements. The facility designer's nuclear safeguards experts would work closely with other elements of the project design team in performing FSA. The resultant analysis would support discussions and interactions with the national nuclear regulator (i.e. State System of Accounting for and Control of Nuclear Material - SSAC) and the IAEA for development and approval of the proposed safeguards system. FSA would also support the implementation of international safeguards by the IAEA, by providing them with a means to analyse and evaluate the safeguardability of facilities being designed and constructed - i.e. by independently reviewing and validating the FSA as performed by the design team. Development of an FSA methodology is part of a broader U.S. National Nuclear Security Administration program to develop international safeguards-by-design tools and guidance documents for use by facility designers. The NNSA NGSI -sponsored project team is looking, as one element of its work, at how elements of the methodology developed by the Generation IV International Forum's Working Group on Proliferation Resistance and Physical Protection can be adapted to supporting FSA. (author)

  19. Facility Safeguardability Analysis In Support of Safeguards-by-Design

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Roald Wigeland; Robert Bari; Trond Bjornard; John Hockert; Michael Zentner

    2010-07-01

    The following report proposes the use of Facility Safeguardability Analysis (FSA) to: i) compare and evaluate nuclear safeguards measures, ii) optimize the prospective facility safeguards approach, iii) objectively and analytically evaluate nuclear facility safeguardability, and iv) evaluate and optimize barriers within the facility and process design to minimize the risk of diversion and theft of nuclear material. As proposed by the authors, Facility Safeguardability Analysis would be used by the Facility Designer and/or Project Design Team during the design and construction of the nuclear facility to evaluate and optimize the facility safeguards approach and design of the safeguards system. Through a process of “Safeguards-by-Design” (SBD), this would be done at the earliest stages of project conceptual design and would involve domestic and international nuclear regulators and authorities, including the International Atomic Energy Agency (IAEA). The benefits of the Safeguards-by-Design approach is that it would clarify at a very early stage the international and domestic safeguards requirements for the Construction Project Team, and the best design and operating practices for meeting these requirements. It would also minimize the risk to the construction project, in terms of cost overruns or delays, which might otherwise occur if the nuclear safeguards measures are not incorporated into the facility design at an early stage. Incorporating nuclear safeguards measures is straight forward for nuclear facilities of existing design, but becomes more challenging with new designs and more complex nuclear facilities. For this reason, the facility designer and Project Design Team require an analytical tool for comparing safeguards measures, options, and approaches, and for evaluating the “safeguardability” of the facility. The report explains how preliminary diversion path analysis and the Proliferation Resistance and Physical Protection (PRPP) evaluation

  20. Measurements Matter in Nuclear Safeguards & Security

    International Nuclear Information System (INIS)

    Aregbe, Y.; Jakopic, R.; Richter, S.; Schillebeeckx, P.; Hult, M.

    2015-01-01

    The deliverable of any laboratory is a measurement result with stated uncertainty and traceability (ISO/IEC 17025: 2005). Measurement results, particularly in safeguards, have to be accurate, comparable and traceable to a stated reference, preferably to the SI. Results provided by operator-, safeguards- or network laboratories have to be in compliance with specific quality goals for nuclear material and environmental sample analysis. Metrological quality control tools are prerequisites to build up confidence in measurement results that have to be translated into meaningful safeguards conclusions or to demonstrate conformity of findings with declared processes. The European Commission—Joint Research Centre (EC–JRC) has dedicated facilities, laboratories and projects to provide certified nuclear reference materials (CRM), to develop reference methods and to organize inter-laboratory comparisons (ILC) in compliance with ISO Guide 34, ISO17025 and ISO17043, including respective training. Recent examples are: – cooperation with the JAEA to investigate on the application of Neutron Resonance Densitometry (NRD) to quantify the amount of special nuclear material in particlelike debris of melted fuel as formed in the nuclear accident in Fukushima – training in metrology and gamma-ray spectrometry for EURATOM safeguards inspectors – development of uranium reference particle standards under a new EC support task to the IAEA. Currently, the JRC puts major efforts in producing CRMs and conformity assessment tools for “age-dating” of uranium and plutonium samples. They are needed for method validation in determining the date of the last chemical separation of uranium or plutonium from their daughter nuclides. These type of CRMs are not only needed in nuclear safeguards and forensics, but could support in the future a possible new type of “verification mechanism” as part of the Fissile Material Cut-off Treaty (FMCT), since measurements and measurement standards

  1. Safeguards effectiveness criteria and safeguards efficiency

    International Nuclear Information System (INIS)

    Stein, G.; Canty, M.J.; Knapp, U.; Munch, E.

    1983-01-01

    A critical examination of current tendencies in quantification, assessment and enhancement of the effectiveness of international safeguards is undertaken. It is suggested that the present narrow and overly technical interpretation of some elements of international safeguards is both impractical and detrimental. A pragmatic, case-bycase approach is called for to implement the provisions of safeguards agreements in a more balanced, efficient way

  2. EURATOM safeguards. Safeguards verifications in reprocessing plants

    International Nuclear Information System (INIS)

    Heppleston, M.

    1999-01-01

    This paper provides a brief historical view of the legal basis for EURATOM. The specific application of safeguards to large scale reprocessing plants, from the theoretical model to the practical application of inspection is considered. The challenge to adequately safeguard major commercial reprocessing facilities has led to many novel approaches being developed. These lessons will also benefit other safeguard projects as a result. Good cooperation between the operator and regulator is essential for the satisfactory installation of adequate safeguard controls. The use of modern data processing technology combined with other diverse monitoring techniques has shown that a major industrial scale reprocessing plant can be controlled under international safeguards to provide a high level of assurance [ru

  3. Investigation of the Pulse Height Distribution of Boron Trifluoride Proportional Counters

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I Oe; Malmskog, S

    1962-08-15

    The report describes a theoretical and experimental investigation of the factors that determine the pulse height distribution of BF{sub 3}, proportional counters irradiated by thermal neutrons. The branching ratio of the {sup 10}B (n,{alpha}) {sup 7}Li reaction for thermal neutrons has been measured.

  4. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To

  5. Neutron measurements in search of cold fusion

    International Nuclear Information System (INIS)

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T.

    1990-01-01

    We have conducted a research for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 145 neutrons in 500-μs intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also to lead to long-term ''neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observe neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior. 13 refs., 14 figs

  6. Little Boy neutron spectrum below 3 MeV

    International Nuclear Information System (INIS)

    Evans, A.E.; Bennett, E.F.; Yule, T.J.

    1984-01-01

    The leakage neutron spectrum from the Little Boy replica has been measured from 12 keV to 3 MeV using a high-resolution 3 He ionization chamber, and from 1 keV to 3 MeV using proton-recoil proportional counters. The 3 He-spectrometer measurements were made at distances of 0.75 and 2.0 m from the active center and at angles of 0 0 , 45 0 , and 90 0 with respect to the axis of the assembly. Proton-recoil measurments were made at 90 0 to the assembly axis at distances of 0.75 and 2.0 m, with a shielded measurement made at 2.0 m to estimate background due to scattering. The 3 He spectrometer was calibrated at Los Alamos using monoenergetic 7 Li(p,n) 7 Be neutrons to generate a family of response functions. The proton-recoil counters were calibrated at Argonne by studying the capture of thermal neutrons by nitrogen in the counters, by observation of the 24-keV neutron resonance in iron, and by relating to the known hydrogen content of the counters. The neutron spectrum from Little Boy was found to be highly structured, with peaks corresponding to minima in the iron total neutron cross section. In particular, influence of the 24-keV iron window was evident in both sets of spectra. The measurements provide information for dosimetry calculations and also a valuable intercomparison of neutron spectrometry using the two different detector types. Spectra measured with both detectors are in essential agreement. 8 references, 7 figures, 2 tables

  7. Tests of BF3 counters with getter

    International Nuclear Information System (INIS)

    Comte, R.; Dauphin, G.

    1968-01-01

    BF 3 counters with addition of a getter have been developed to improve operation characteristics of these detectors in presence of strong gamma flows. The getter is made of an active coal deposit on the cathode. As noticed by other studies, the degradation of these counters is related to the exposure to strong neutron flows and to gamma radiations. The authors report tests performed on these counters with a brief presentation of the counters, and a presentation of the test installation. A threshold curve and an amplitude spectrum are obtained, and counting is performed for a fixed threshold before and after the exposure of detectors to variable doses of γ radiation. The results after a first 2 hour long irradiation, a 230 hour long second irradiation, and a third irradiation under high voltage (2100 V) are discussed. Thermal tests are then performed and commented

  8. INL Active Interrogation Testing In Support of the GNEP Safeguards Campaign

    International Nuclear Information System (INIS)

    David L. Chichester

    2008-01-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. Work at Idaho National Laboratory (INL) in the area of active interrogation, using neutron and photon sources, has been under way for many years to develop methods for detecting and quantifying nuclear material for national and homeland security research areas. This research knowledge base is now being extended to address nuclear safeguards and process monitoring issues related to the Global Nuclear Energy Partnership (GNEP). As a first step in this area preliminary scoping studies have been performed to investigate the usefulness of using active neutron interrogation, with a low-power electronic neutron generator, to assay Department of Transportation 6M shipping drums containing uranium oxide fuel rodlets from INL's zero power physics reactor. Using the paired-counting technique during the die-away time period of interrogation, a lower detection limit of approximately 4.2 grams of enriched uranium (40% 235U) was calculated for a 40 minute measurement using a field portable 2.5 MeV neutron source and an array of 16 moderated helium-3 neutron tubes. Future work in this area, including the use of a more powerful neutron source and a better tailored detector array, would likely improve this limit to a much lower level. Further development work at INL will explore the applicability of active interrogation in association with the nuclear safeguards and process monitoring needs of the advanced GNEP facilities under consideration. This work, which will include both analyses and field demonstrations, will be performed in collaboration with colleagues at INL and elsewhere that have expertise in nuclear fuel reprocessing as well as active interrogation and its use for nuclear material analyses

  9. 4π-spectrometer technique for measurements of secondary neutron average number in nuclear fission by 252Cf neutrons

    International Nuclear Information System (INIS)

    Vasil'ev, Yu.A.; Barashkov, Yu.A.; Golovanov, O.A.; Sidorov, L.V.

    1977-01-01

    A method for determining the average number of secondary neutrons anti ν produced in nuclear fission by the neutrons of the 252 Cf fission spectra by means of a 4π time-of-flight spectrometer is described. Layers of 252 Cf and an isotope studied are placed close to each other; if the isotope layer density is 1 mg/cm 2 probability of its fission is about 10 -5 per one spontaneous fission of californium. Fission fragments of 252 Cf and the isotope investigated have been detected by two surface-barrier counters with an efficiency close to 100%. The layers and the counters are situated in a measuring chamber placed in the center of the 4π time-of-flight spectrometer. The latter is utilized as a neutron counter because of its fast response. The method has been verified by carrying out measurements for 235 U and 239 Pu. A comparison of the experimental and calculated results shows that the method suggested can apply to determine the number of secondary neutrons in fission of isotopes that have not been investigated yet

  10. A coaxial double cylindrical TEPC for the microdosimetry of selected neutron energy bands in mixed fields of fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Saion, E.B.; Watt, D.E. (Saint Andrews Univ. (UK). Dept. of Physics); East, B.W. (Scottish Universities Research and Reactor Centre, Glasgow (UK)); Colautti, P. (Istituto Nazionale di Fisica Nucleare, Padua (Italy))

    1990-01-01

    A new low pressure tissue-equivalent proportional counter (TEPC) in a coaxial double cylindrical form has been developed to measure separately the microdose spectrum from any desired energy band of neutrons in the presence of mixed fields of faster neutrons, by selecting the thickness of the common TE dividing wall to be equivalent to the corresponding maximum proton ranges and by appropriate use of coincidence/anti-coincidence pulse arrangements. This thickness ensures charged particle equilibrium for the relevant neutron energy. Event spectra due to recoils generated by faster neutrons which interact with both the counters are removed completely by anti-coincidence techniques, thereby optimising the sensitivity of the inner microdosemeter to the event spectra of interest. The ability of this counter to discriminate in favour of events due to neutrons of energy <850 keV was achieved in microdosimetric measurements from mixed fields of a nuclear reactor. Mean values of lineal energy and quality factor for neutrons of energy <850 keV from a nuclear reactor were determined from the anti-coincidence spectrum. Good discrimination against {gamma} ray induced events is also achieved for the spectrum recorded in the anti-coincidence mode. This is an advantageous feature for other applications and requires further investigation. (author).

  11. A coaxial double cylindrical TEPC for the microdosimetry of selected neutron energy bands in mixed fields of fast neutrons

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.; Colautti, P.

    1990-01-01

    A new low pressure tissue-equivalent proportional counter (TEPC) in a coaxial double cylindrical form has been developed to measure separately the microdose spectrum from any desired energy band of neutrons in the presence of mixed fields of faster neutrons, by selecting the thickness of the common TE dividing wall to be equivalent to the corresponding maximum proton ranges and by appropriate use of coincidence/anti-coincidence pulse arrangements. This thickness ensures charged particle equilibrium for the relevant neutron energy. Event spectra due to recoils generated by faster neutrons which interact with both the counters are removed completely by anti-coincidence techniques, thereby optimising the sensitivity of the inner microdosemeter to the event spectra of interest. The ability of this counter to discriminate in favour of events due to neutrons of energy <850 keV was achieved in microdosimetric measurements from mixed fields of a nuclear reactor. Mean values of lineal energy and quality factor for neutrons of energy <850 keV from a nuclear reactor were determined from the anti-coincidence spectrum. Good discrimination against γ ray induced events is also achieved for the spectrum recorded in the anti-coincidence mode. This is an advantageous feature for other applications and requires further investigation. (author)

  12. Safeguards by design - The early consideration of safeguards concepts

    International Nuclear Information System (INIS)

    Killeen, T.; Moran, B.; Pujol, E.

    2009-01-01

    Full-text: The IAEA Department of Safeguards is in the process of formalizing its approach to long-range strategic planning. As a result of this activity new endeavours are being identified. One of these endeavours is to develop a concept known as Safeguards by Design. Safeguarding nuclear material and facilities can be made more effective and cost efficient by improving the safeguardability of the system. By taking into account design features that facilitate the implementation of international safeguards early in the design phase, a concept known as safeguards by design, the proliferation resistance of the system can be improved. This improvement process requires an understanding by designers and operators of safeguards and its underlying principles. To advance the safeguards by design approach, the IAEA determined that there is a need to develop written guidance. This guidance would help the major stakeholders - the designers, operators, owners, and regulatory bodies - to better understand how a facility could be designed, built and operated in such a way that effective safeguards could be implemented at reduced cost and with minimal burden to facility operations. By enlisting the cooperation of Member States through the support programme structure, the IAEA is working to first develop a document that describes the basic principles of safeguards, and the fundamental design features and measures that facilitate the implementation of international safeguards. Facility-specific guidance will then be developed utilizing the resources, expertise and experience of the IAEA and its Member States. This paper will review the foundation for the development of this task, describe the progress that has been made and outline the path forward. (author)

  13. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    International Nuclear Information System (INIS)

    Mandal, Krishna

    2017-01-01

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3 He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3 He will be very desirable. To address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron ( 10 B) and enriched lithium ( 6 Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (t g ~ 85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10 -24 cm 2 ), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure.

  14. Body counter

    International Nuclear Information System (INIS)

    Koeppe, P.

    1975-01-01

    The paper gives a survey on some applications of the whole body counter in clinical practice and a critical study of its application as a routine testing method. Remarks on the necessary precautions are followed by a more detailed discussion of the determination of the natural potassium content, the iron metabolism, the vitamin B12 test, investigations of the metabolism of the bone using 47 Ca and 85 Sr, investigations with iodine and iodine-labelled substances, clearance investigations (in particular the 51 Cr EDTA clearance test), as well as the possibilities of neutron activation in vivo. (ORU/AK) [de

  15. System to detect nuclear materials by active neutron method

    International Nuclear Information System (INIS)

    Koroev, M.; Korolev, Yu.; Lopatin, Yu.; Filonov, V.

    1999-01-01

    The report presents the results of the development of the system to detect nuclear materials by active neutron method measuring delayed neutrons. As the neutron source the neutron generator was used. The neutron generator was controlled by the system. The detectors were developed on the base of the helium-3 counters. Each detector consist of 6 counters. Using a number of such detectors it is possible to verify materials stored in different geometry. There is an spectrometric scintillator detector in the system which gives an additional functional ability to the system. The system could be used to estimate the nuclear materials in waste, to detect the unauthorized transfer of the nuclear materials, to estimate the material in tubes [ru

  16. Transportable type neutron level indicators

    International Nuclear Information System (INIS)

    Khatskevich, M.V.; Kalinin, O.V.; Moskovkin, V.N.; Molchanov, A.V.; Bobkov, A.D.; Rabotnov, Yu.A.

    1979-01-01

    Some peculiarities of designing level neutron converters (LNC) for portable indicators or level neutron relays are considered. The effect of the LNC geometry and other factors on measurement errors has been studied. Calibration results of the LNC with a neutron reflector and without it are presented. It is shown that the problem of level monitoring with the help of portable indicators can be solved practically for any volume, provided two LNC modifications with reflectors are available: the NPU-G modification with horizontal location of a counter for large volumes and the NPU-V with vertical location of a counter for lesser volumes. A possibility of perfecting LNC performances by shielding the counter with thermal neutron absorbers has been studied. The design of the NPU-V modification for the NIUP-2 level indicator is described. It is intended for tubes and cylinders 30-100 mm in diameter. Measurements carried out on different steel and aluminium vessels with a diameter ranging from 300 to 100 mm and a wall thickness of up to 16 mm with the help of the NPU-V and NPU-G modifications proved the efficiency of the LNC to control a variety of products (kerosine, gasoline, oils, acids, alkalis) [ru

  17. Evolution of the Nuclear Safeguards Performance Laboratory PERLA on the Ispra Site of the Institute for Transuranium Elements

    International Nuclear Information System (INIS)

    Berndt, R.; Abbas, K.; Berthou, V.; De Almeida Carrapico, C.; Forcina, V.; Mayorov, V.; Mortreau, P.; Mosconi, M.; Pedersen, B.; Peerani, P.; Rosas, F.; Tagziria, H.; Tomanin, A.; Rozite, A.; Marin-Ferrer, M.; Crochemore, J.-M.; Roesgen, E.; Janssens, W.A.M.; )

    2015-01-01

    Based upon the experience of many years of operation, the safeguards Performance Laboratory PERLA will be reshaped in the near future (and relocated on the Ispra site such as not to interfere with decommissioning activities). During almost 30 years of successfully operating nuclear facilities in Ispra for supporting nuclear safeguards inspectorates with R&D, equipment development and training for in the meantime more than 1250 trainees, this laboratory is the main work-horse in this field and has functioned very frequently in the last years as easily accessible nuclear laboratory for external users. Even if a constant evolution took place in the last years, and additional facilities like the active neutron laboratory PUNITA or the ITRAP test laboratory for nuclear security R&D, testing and training have been taken in service, this step-change will allow refiguring the laboratory to face also new user expectations. NDA for safeguards continues to be a cornerstone of the measurement capacities complemented by experimental and advanced approaches, such as using active neutron interrogation, automation of measurements, complemented by Monte-Carlo simulations for neutron and gamma radiation. The tendency is also to integrate multiple plant signals (not only NDA measurements) in an overall assessment scheme and we envisage offering training and exercising capabilities for the inspectors also in this direction in the future. This paper will thus provide some insight in the concepts for the future use of the nuclear facilities on the Ispra site, which is complementary to two other contributions to this symposium, i.e., one describing the activities of our sister unit in Karlsruhe on NDA Safeguards Training and another on the new Advanced Safeguards Measurement, Monitoring and Modelling Laboratory (AS3ML) being built currently in Ispra. (author)

  18. Contribution of the 'safeguarded' to the development of safeguards

    International Nuclear Information System (INIS)

    Anderson, A.R.

    1977-01-01

    The development of an efficient system of international safeguards requires close and detailed interaction between the safeguarding authority and those being safeguarded, i.e. the plant operator and the State System to which he belongs. Such interaction is found in other control systems but the degree of international collaboration involved in safeguards is perhaps unique and it is valuable to review and analyse the contributions which have arisen from prudent management considerations. The familiar ''Blue Book'' (INFCIRC 153) recognizes clearly the need for an effective State's System of accounting for and control of nuclear materials as a necessary pre-requisite for the development and implementation of an effective IAEA system of safeguards. It is therefore helpful to summarize the relevant contributions from the 'safeguarded' in terms of the components of the State's System specified in paragraph 32 of the Blue Book. This paper reviews the continuing contributions stemming from plant and national experience, with particular emphasis on the development of measurement systems and physical inventory procedures relevant to safeguards. Attention is also drawn to those areas where the specific objectives of IAEA Safeguards lead to requirements additional to those required for management purposes. (author)

  19. Evaluation of waste crate counter

    International Nuclear Information System (INIS)

    Wachter, J.R.; Shaw, S.W.

    1994-01-01

    A novel nondestructive measurement system has been developed to perform combined gamma-ray, passive neutron, and active neutron analyses of radioactive waste packaged in large crates. The system will be used to examine low level and transuranic waste at the Waste Receiving and Processing facility at Westinghouse-Hanford Corp. Prior to delivery of the system, an extensive evaluation of its performance characteristics will be conducted. The evaluation is to include an assessment of the mechanical properties of the system, gamma-ray attenuation correction algorithms, instrument response as a function of source positions, performance of the high resolution gamma-ray detector for ''hot spot'' and isotopic analyses, active and passive neutron counter response, instrument sensitivity, matrix effects, and packaging effects. This report will discuss the findings of the evaluation program, to date, and indicate future directions for the program

  20. Steps of Ukrainian SSAC to Integrated Safeguards

    International Nuclear Information System (INIS)

    Lopatin, S.

    2010-01-01

    accounting of items containing less than one gram of nuclear material (like smoke detectors, neutron detectors and sources) comparing at all nuclear activities of Ukraine. Also it is impossible to apply traditional safeguards to Chernobyl Shelter and in the terms of AP it has to be treated as a location of high-level waste containing nuclear material. Nevertheless, we believe that Ukraine is ready for application of integrated safeguards. (author)

  1. Photon and neutron dose discrimination using low pressure proportional counters with graphite and A150 walls

    International Nuclear Information System (INIS)

    Kylloenen, J.; Lindborg, L.

    2005-01-01

    Full text: The determination of both the low- and high-LET components of ambient dose equivalent in mixed fields is possible with microdosimetric methods. With the multiple-event microdosimetric variance covariance method the sum of those components are directly obtained also in pulsed beams. However, if the value of each dose component is needed a more extended analysis is required. The use of a graphite walled proportional detector in combination with a tissue-equivalent proportional counter in combination with the variance covariance method was here investigated. MCNP simulations were carried out for relevant energies to investigate the photon and neutron responses of the two detectors. The combined graphite and TEPC system, the Sievert instrument, was used for measurements at IRSN, Cadarache, in the workplace calibration fields of CANEL+, SIGMA, a Cf-252 and a moderated Cf(D 2 O,Cd) radiation field. The response of the instrument in various monoenergetic neutron fields is also known from measurements at PTB. The instrument took part in the measurement campaigns in workplace fields in the nuclear industry organized within the EVIDOS contract. The results are analyzed and the method of using a graphite detector compared with alternative methods of analysis is discussed. (author)

  2. PFPF canister counter for foreign plutonium (PCAS-3) hardware operations and procedures manual

    International Nuclear Information System (INIS)

    Menlove, H.O.; Baca, J.; Kroncke, K.E.; Miller, M.C.; Takahashi, S.; Seki, S.; Inose, S.; Yamamoto, T.

    1993-01-01

    A neutron coincidence counter has been designed for the measurement of plutonium powder contained in tall storage canisters. The counter was designed for installation in the Plutonium Fuel Production Facility fabrication plant. Each canister contains from one to five cans of PuO 2 . The neutron counter measures the spontaneous-fission rate from the plutonium and, when this is combined with the plutonium isotopic ratios, the plutonium mass is determined. The system can accommodate plutonium loadings up to 12 kg, with 10 kg being a typical loading. Software has been developed to permit the continuous operation of the system in an unattended mode. Authentication techniques have been developed for the system. This manual describes the system and its operation and gives performance and calibration parameters for typical applications

  3. Proportional counter with a wire-anode lying on the dielectric surface

    International Nuclear Information System (INIS)

    Strelkov, A.V.

    1983-01-01

    Proportional coUnter with wire-anode lying on the dielectric surface is described. The result of the accumulation of charges on the dielectric surface immediately near the wire-anode surface is that such a counter possesses electrostatic memory relative to distribution of the gas amplification coefficient along the anode. SUch a distribution can be received for example by means of irradiation by the neutrons or the γ-rays. The disposition of the wire-anode on the convex dielectric surface allows one to make the ring-shaped counters or the nonplane proportional chambers practically of any profile. However, the energy resolution of the counter with anode on the dielectric is worse than the resolution of counter with free anode particularly at the large gas amplification coefficient

  4. International safeguards 1979

    International Nuclear Information System (INIS)

    Fischer, D.

    1979-01-01

    First, the nature of the nuclear proliferation problem is reviewed. Afterward, the extent to which the risk of further horizontal proliferation of nuclear weapons is being contained by international agreements and by the application of the IAEA's safeguards under these agreements is investigated. The geographical scope of such safeguards, the gaps in safeguards coverage, and the political and technical effectiveness of such safeguards are examined. In conclusion, it is pointed out that IAEA safeguards are the cutting edge of almost every nonproliferation measure that has so far been applied or put forward. Safeguards would also play a part in any international scheme for limiting vertical proliferation. If the cutting edge of safeguards is blunted or if, for one reason or another, safeguards cannot be or are not being applied, the nonproliferation regime will suffer commensurate damage

  5. Neutron spectra measuring by magnetless hadron spectrometer

    International Nuclear Information System (INIS)

    Bayukov, Yu.D.; Buklej, A.E.; Gavrilov, V.B.

    1980-01-01

    The energy resolution, efficiency and background conditions of neutron recording in inclusive nuclear reactions by a magnetless hadron spectrometer (MHS) in the 8-300 MeV energy range. The scheme of apparatus lay-out for measuring neutron recording efficiency is shown. For recording colliding particles with the 3 GeV/c momentum four beam scintillation counters, the latter of which of 30x40 mm dimensions and 1 mm thickness defines the working beam range in the target centre, are used. Targets of the 80 mm diameter made of C and Pb (2.08 g/cm 2 and 3.04 g/cm 2 thickness, respectively) are located at the 45 deg angle in respect to the beam direction. Secondary particles escaping at the 90 deg angle are recorded by two telescopes of the scintillation counters. For neutron and γ quanta recording the special scintillation detector of the 20 cm thickness encircled by an anticoincidence counter is used. The neutron recording efficiency is determined on the basis of comparison of the neutron production differential cross sections of the π +- 12 C 6 → nX reactions and of proton production in isotopically symmetric reactions π +- 12 C 6 → pX. The experimental data are in good agreement with the calculation data [ru

  6. Project Report on Development of a Safeguards Approach for Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean

    2010-09-01

    The Idaho National Laboratory has undertaken an effort to develop a standard safeguards approach for international commercial pyroprocessing facilities. This report details progress for the fiscal year 2010 effort. A component by component diversion pathway analysis has been performed, and has led to insight on the mitigation needs and equipment development needed for a valid safeguards approach. The effort to develop an in-hot cell detection capability led to the digital cloud chamber, and more importantly, the significant potential scientific breakthrough of the inverse spectroscopy algorithm, including the ability to identify energy and spatial location of gamma ray emitting sources with a single, non-complex, stationary radiation detector system. Curium measurements were performed on historical and current samples at the FCF to attempt to determine the utility of using gross neutron counting for accountancy measurements. A solid cost estimate of equipment installation at FCF has been developed to guide proposals and cost allocations to use FCF as a test bed for safeguards measurement demonstrations. A combined MATLAB and MCNPX model has been developed to perform detector placement calculations around the electrorefiner. Early harvesting has occurred wherein the project team has been requested to provide pyroprocessing technology and safeguards short courses.

  7. Safeguard management for operation security in nuclear power plants (NPPs)

    International Nuclear Information System (INIS)

    Woo, Tae-Ho; Lee, Un-Chul

    2011-01-01

    Safeguard modeling is conducted for the successful operations in the nuclear power plants (NPPs). The characteristics of the secure operation in NPPs are investigated using the network effect method which is quantified by the Monte-Carlo algorithm. Fundamentally, it is impossible to predict the exact time of a terror incident. So, the random sampling for the event frequency is a reasonable method, including the characteristics of network effect method such as the zero-sum quantification. The performance of operation with safeguard is the major concern of this study. There are three kinds of considerations as the neutronics, thermo-hydraulics, and safeguard properties which are organized as an aspect of safeguard considerations. The result, therefore, can give the stability of the operations when the power is decided. The maximum value of secure operation is 12.0 in the third month and the minimum value is 1.0 in the 18th and 54th months, in a 10 years period. Thus, the stability of the secure power operation increases 12 times higher than the lowest value according to this study. This means that the secure operation is changeable in the designed NPPs and the dynamical situation of the secure operation can be shown to the operator.

  8. Contribution of the ''safeguarded'' to the development of safeguards

    International Nuclear Information System (INIS)

    Anderson, A.R.

    1977-01-01

    The development of an efficient system of international safeguards requires close and detailed interaction between the safeguarding authority and those being safeguarded, i.e. the plant operator and the State System to which he belongs. Such interaction is found in other control systems but the degree of international collaboration involved in Safeguards is perhaps unique and it is valuable to review and analyse the contributions which have arisen from prudent management considerations. Management has many reasons to exercise stringent control of nuclear materials stemming from the value and hazardous nature of the materials being used, and the requirements of relevant national legislation. Because systems at a plant and within a State are generally designed to control quantities of nuclear materials within limits smaller than those specified in the I.A.E.A.'s Safeguards objectives, experience at the plant level has contributed significantly to the development of International Safeguards procedures. In making such contributions, plant management and the national authorities have a common objective with that of the I.A.E.A. in developing a Safeguards system which is both technically-effective and cost-effective. The pursuit of this objective requires that implementation of the Safeguards system can be modified in the light of relevant practical experience of plant operators and of the I.A.E.A. The familiar Blue Book (INFCIRC 153) recognises clearly the need for an effective State's System of accounting for and control of nuclear materials as a necessary pre-requisite for the development and implementation of an effective I.A.E.A. system of Safeguards. It is therefore helpful to review the relevant contributions from the 'Safeguarded' in terms of the components of the State's System specified in paragraph 32 of the Blue Book. This paper reviews the continuing contributions stemming from plant and national experience, with particular emphasis on the development of

  9. A neutron monitor for D-T neutron generator in the PGNAA-based online measurement system

    Science.gov (United States)

    Shan, Qing; Shengnan, Chu; Yongsheng, Ling; Pingkun, Cai; Wenbao, Jia

    2017-06-01

    A new type of neutron detector, which consists of polyethylene, an EJ200 plastic scintillator and fused silica, was proposed and optimized by the GEANT4 Monte Carlo simulation toolkit in our previous studies. The calculation method was also described for calculating the neutron flux in the preset condition. This paper reports the manufacturing of the prototype detector. Experiments are conducted to validate the feasibility of this detector. A D-T neutron generator and a 60Co gamma-ray source are used in the experiments. The designed detector and a He-3 proportional counter are simultaneously used to monitor the yield of the D-T neutron generator. A more universal calculation method is developed to enable the application of this detector to common conditions. The experimental results show that the performance of the designed detector is comparable to that of the He-3 proportional counter. The relative deviations between their normalized counts are less than 5%.

  10. The design of the DUPIC spent fuel bundle counter

    International Nuclear Information System (INIS)

    Menlove, H.O.; Rinard, P.M.; Kroncke, K.E.; Lee, Y.G.

    1997-05-01

    A neutron coincidence detector had been designed to measure the amount of curium in the fuel bundles and associated process samples used in the direct use of plutonium in Canadian deuterium-uranium (CANDU) fuel cycle. All of the sample categories are highly radioactive from the fission products contained in the pressurized water reactor (PWR) spent fuel feed stock. Substantial shielding is required to protect the He-3 detectors from the intense gamma rays. The Monte Carlo neutron and photon calculational code has been used to design the counter with a uniform response profile along the length of the CANDU-type fuel bundle. Other samples, including cut PWR rods, process powder, waste, and finished rods, can be measured in the system. This report describes the performance characteristics of the counter and support electronics. 3 refs., 23 figs., 6 tabs

  11. Nonproliferation and safeguarding via ionization detection

    International Nuclear Information System (INIS)

    Koster, J.E.; Johnson, J.P.; Steadman, P.

    1995-01-01

    A significant signature of the presence of special nuclear material (SNM) is ionizing radiation. SNM naturally decays with the emission of alpha particles, gamma rays, and neutrons. Detecting and monitoring these emissions is an important capability for international safeguards. A new detection method collects the ions produced by such radiation in ambient air. Alpha particles in particular are specific to heavy nuclei but have very short range. The ions produced by an alpha, however, can be transported tens of meters to an ion detector. These new monitors are rugged, very sensitive, respond in real time, and in most cases are quite portable

  12. Neutron absorbers and detector types for spent fuel verification using the self-interrogation neutron resonance densitometry

    International Nuclear Information System (INIS)

    Rossa, Riccardo; Borella, Alessandro; Labeau, Pierre-Etienne; Pauly, Nicolas; Meer, Klaas van der

    2015-01-01

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive non-destructive assay (NDA) technique that is proposed for the direct measurement of 239 Pu in a spent fuel assembly. The insertion of neutron detectors wrapped with different neutron absorbing materials, or neutron filters, in the central guide tube of a PWR fuel assembly is envisaged to measure the neutron flux in the energy region close to the 0.3 eV resonance of 239 Pu. In addition, the measurement of the fast neutron flux is foreseen. This paper is focused on the determination of the Gd and Cd neutron filters thickness to maximize the detection of neutrons within the resonance region. Moreover, several detector types are compared to identify the optimal condition and to assess the expected total neutron counts that can be obtained with the SINRD measurements. Results from Monte Carlo simulations showed that ranges between 0.1–0.3 mm and 0.5–1.0 mm ensure the optimal conditions for the Gd and Cd filters, respectively. Moreover, a 239 Pu fission chamber is better suited to measure neutrons close to the 0.3 eV resonance and it has the highest sensitivity to 239 Pu, in comparison with a 235 U fission chamber, with a 3 He proportional counter, and with a 10 B proportional counter. The use of a thin Gd filter and a thick Cd filter is suggested for the 239 Pu and 235 U fission chambers to increase the total counts achieved in a measurement, while a thick Gd filter and a thin Cd filter are envisaged for the 3 He and 10 B proportional counters to increase the sensitivity to 239 Pu. We concluded that an optimization process that takes into account measurement time, filters thickness, and detector size is needed to develop a SINRD detector that can meet the requirement for an efficient verification of spent fuel assemblies

  13. Neutron absorbers and detector types for spent fuel verification using the self-interrogation neutron resonance densitometry

    Energy Technology Data Exchange (ETDEWEB)

    Rossa, Riccardo, E-mail: rrossa@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium); Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Borella, Alessandro, E-mail: aborella@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium); Labeau, Pierre-Etienne, E-mail: pelabeau@ulb.ac.be [Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Pauly, Nicolas, E-mail: nipauly@ulb.ac.be [Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Meer, Klaas van der, E-mail: kvdmeer@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium)

    2015-08-11

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive non-destructive assay (NDA) technique that is proposed for the direct measurement of {sup 239}Pu in a spent fuel assembly. The insertion of neutron detectors wrapped with different neutron absorbing materials, or neutron filters, in the central guide tube of a PWR fuel assembly is envisaged to measure the neutron flux in the energy region close to the 0.3 eV resonance of {sup 239}Pu. In addition, the measurement of the fast neutron flux is foreseen. This paper is focused on the determination of the Gd and Cd neutron filters thickness to maximize the detection of neutrons within the resonance region. Moreover, several detector types are compared to identify the optimal condition and to assess the expected total neutron counts that can be obtained with the SINRD measurements. Results from Monte Carlo simulations showed that ranges between 0.1–0.3 mm and 0.5–1.0 mm ensure the optimal conditions for the Gd and Cd filters, respectively. Moreover, a {sup 239}Pu fission chamber is better suited to measure neutrons close to the 0.3 eV resonance and it has the highest sensitivity to {sup 239}Pu, in comparison with a {sup 235}U fission chamber, with a {sup 3}He proportional counter, and with a {sup 10}B proportional counter. The use of a thin Gd filter and a thick Cd filter is suggested for the {sup 239}Pu and {sup 235}U fission chambers to increase the total counts achieved in a measurement, while a thick Gd filter and a thin Cd filter are envisaged for the {sup 3}He and {sup 10}B proportional counters to increase the sensitivity to {sup 239}Pu. We concluded that an optimization process that takes into account measurement time, filters thickness, and detector size is needed to develop a SINRD detector that can meet the requirement for an efficient verification of spent fuel assemblies.

  14. Preparations for the start-up of a research program in nuclear safeguards at Chalmers - Stage 2

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Yasunori; Pazsit, Imre

    2004-12-01

    This report gives an account of the work performed at the Dept. of Reactor Physics at Chalmers Univ. of Technology in the second stage of the preparations for the start-up of a research program in nuclear safeguards and nuclear material management. The program is aimed at utilizing the experimental facilities as well as the experience in reactor physics, criticality safety, signal processing and unfolding, and experimental nuclear techniques, in tackling problems in non-destructive assay (NDA) of nuclear materials. During the present project, the following three main subjects were dealt with: first tests and pilot measurements were performed with one of the two newly acquired {sup 252}Cf detectors that were obtained from JNC Japan; the second exercise of the ESARDA benchmark. which consisted of the evaluation of the pulse train generated by Los Alamos Laboratory for multiplicity counting was performed and reported to the organisers of the benchmark; the modified Monte-Carlo code MCNP-PoliMi was installed, tested and work started for generating (although outside the ESARDA benchmark), pulse train data as obtained from various neutron sources with or without the presence of fissile material, as detected with an Active Well Coincidence Counter.

  15. Preparations for the start-up of a research program in nuclear safeguards at Chalmers - Stage 2

    International Nuclear Information System (INIS)

    Kitamura, Yasunori; Pazsit, Imre

    2004-12-01

    This report gives an account of the work performed at the Dept. of Reactor Physics at Chalmers Univ. of Technology in the second stage of the preparations for the start-up of a research program in nuclear safeguards and nuclear material management. The program is aimed at utilizing the experimental facilities as well as the experience in reactor physics, criticality safety, signal processing and unfolding, and experimental nuclear techniques, in tackling problems in non-destructive assay (NDA) of nuclear materials. During the present project, the following three main subjects were dealt with: first tests and pilot measurements were performed with one of the two newly acquired 252 Cf detectors that were obtained from JNC Japan; the second exercise of the ESARDA benchmark. which consisted of the evaluation of the pulse train generated by Los Alamos Laboratory for multiplicity counting was performed and reported to the organisers of the benchmark; the modified Monte-Carlo code MCNP-PoliMi was installed, tested and work started for generating (although outside the ESARDA benchmark), pulse train data as obtained from various neutron sources with or without the presence of fissile material, as detected with an Active Well Coincidence Counter

  16. Safeguards

    International Nuclear Information System (INIS)

    Carchon, R.

    1998-01-01

    Safeguards activities at the Belgian Nuclear Research Centre SCK/CEN answer internal needs, support the Belgian authorities, and support the IAEA. The main objectives of activities concerning safeguards are: (1) to contribute to a prevention of the proliferation of nuclear materials by maintaining an up-to-date expertise in the field of safeguards and providing advice and guidance as well as scientific and technical support to the Belgian authorities and nuclear industry; (2) to improve the qualification and quantification of nuclear materials via nondestructive assay. The main achievements for 1997 are described

  17. Summary of neutron measurements for the Viking Program

    International Nuclear Information System (INIS)

    Anderson, M.E.

    1975-01-01

    The results of neutron measurements for 238 Pu-fueled, 683-W (thermal) capsules fabricated for the Viking Program (Mars Lander) are presented. These results include, for each capsule, the total neutron emission rate and neutron multiplication and, for one capsule, the neutron energy spectrum. A precision long counter was used for the neutron emission rate measurements and a single stilbene crystal for the neutron spectrum measurement. (U.S.)

  18. A Safeguardability Check-List for Safeguards by Design

    Energy Technology Data Exchange (ETDEWEB)

    Sevini, F. [European Commission - Joint Research Centre, Institute for Transuranium Elements, Nuclear Security Unit, Ispra (Italy); Renda, G. [European Commission, DG Energy, Directorate E ' Nuclear Safeguards' , Unit 4 ' Inspections: reactors, storages and others facilities, Luxembourg (Luxembourg); Sidlova, V. [European Commission - Joint Research Centre, Institute for Transuranium Elements, Nuclear Security Unit, Ispra (Italy)

    2011-12-15

    Safeguards by design is a complex step-by-step interactive decision process involving various stake-holders and design choices to be made over a certain period of time. The resulting plant design should be a compromise among economical, safety, security and safeguards implementation constraints. Access to technology and equipment, as well as to the nuclear fuel cycle, determines the basic choices that the designer has to make. Once the boundary conditions for a given facility have been fixed, the designer still faces the challenge of setting several design and operational parameters that will require various trade-offs . Concerning safeguards, these can be seen in three groups, i.e. those related to the general design and its intrinsic proliferation resistance; those related to the specific lay-out and planning; those related to the actual safeguards instrumentation, its effectiveness and efficiency. The paper aims at describing a model for a phased, or 'layered' approach to safeguards-by-design, focusing on the example of off-load reactors.

  19. Analysis on approach of safeguards implementation at research reactor handling item count and bulk material

    International Nuclear Information System (INIS)

    Kim, Hyun Jo; Lee, Sung Ho; Lee, Byung Doo; Jung, Juang

    2016-01-01

    KiJang research reactor (KJRR) will be constructed to produce the radioisotope such as Mo-99 etc., provide the neutron transmutation doping (NTD) service of silicon, and develop the core technologies of research reactor. In this paper, the features of the process and nuclear material flow are reviewed and the material balance area (MBA) and key measurement point (KMP) are established based on the nuclear material flow. Also, this paper reviews the approach on safeguards and nuclear material accountancy at the facility level for Safeguards-by-Design at research reactor handling item count and bulk material. In this paper, MBA and KMPs are established through the analysis on facility features and major process at KJRR handling item count and bulk material. Also, this paper reviews the IAEA safeguards implementation and nuclear material accountancy at KJRR. It is necessary to discuss the safeguards approach on the fresh FM target assemblies and remaining uranium in the intermediate level liquid wastes

  20. Analysis on approach of safeguards implementation at research reactor handling item count and bulk material

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jo; Lee, Sung Ho; Lee, Byung Doo; Jung, Juang [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    KiJang research reactor (KJRR) will be constructed to produce the radioisotope such as Mo-99 etc., provide the neutron transmutation doping (NTD) service of silicon, and develop the core technologies of research reactor. In this paper, the features of the process and nuclear material flow are reviewed and the material balance area (MBA) and key measurement point (KMP) are established based on the nuclear material flow. Also, this paper reviews the approach on safeguards and nuclear material accountancy at the facility level for Safeguards-by-Design at research reactor handling item count and bulk material. In this paper, MBA and KMPs are established through the analysis on facility features and major process at KJRR handling item count and bulk material. Also, this paper reviews the IAEA safeguards implementation and nuclear material accountancy at KJRR. It is necessary to discuss the safeguards approach on the fresh FM target assemblies and remaining uranium in the intermediate level liquid wastes.

  1. Promoting Safeguards Best Practice through the Asia-Pacific Safeguards Network (APSN)

    International Nuclear Information System (INIS)

    Floyd, R.; Everton, C.; Lestari, S.

    2015-01-01

    There is a growing international focus on effective regulatory oversight of nuclear energy across the three pillars of nuclear safety, security and safeguards. Regarding nuclear safeguards, States in the Asia-Pacific region recognize the importance of cooperation and sharing of experiences to ensure that this is implemented to high international standards. For this reason the Asia-Pacific Safeguards Network (APSN) was formed in 2009 - an informal network of departments, agencies and regulatory authorities with safeguards responsibilities from some 15 countries across the Asia-Pacific region. The objective of APSN it to bring States in the region together to develop practical measures for enhancing effective safeguards implementation, through workshops, sharing experiences and other safeguards projects. APSN works closely with the IAEA to achieve these objectives. This paper will outline the role and objectives of APSN and provide examples of how APSN work together to enhance safeguards effectiveness and raise awareness. The paper will also explore how this model of a broad community of States working together on safeguards could enhance implementation and awareness in other regions of the world. (author)

  2. Safeguards and Physics Measurements: Neutron Activation Analysis with k0-standardisation

    International Nuclear Information System (INIS)

    Pomme, S.

    2000-01-01

    SCK-CEN's programme on Neutron Activation Analysis with k 0 -standardisation concentrates on the improvement of the standardisation method and the characterisation of the neutron field as well as on the improvement of the statistical control on neutron activation analysis. Main achievements in 2000 are reported

  3. Neutron detection gamma ray sensitivity criteria

    International Nuclear Information System (INIS)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Mace, Emily K.; Stephens, Daniel L.; Woodring, Mitchell L.

    2011-01-01

    The shortage of 3 He has triggered the search for effective alternative neutron detection technologies for national security and safeguards applications. Any new detection technology must satisfy two basic criteria: (1) it must meet a neutron detection efficiency requirement, and (2) it must be insensitive to gamma-ray interference at a prescribed level, while still meeting the neutron detection requirement. It is the purpose of this paper to define measureable gamma ray sensitivity criteria for neutron detectors. Quantitative requirements are specified for: intrinsic gamma ray detection efficiency and gamma ray absolute rejection. The gamma absolute rejection ratio for neutrons (GARRn) is defined, and it is proposed that the requirement for neutron detection be 0.9 3 He based neutron detector is provided showing that this technology can meet the stated requirements. Results from tests of some alternative technologies are also reported.

  4. Safeguards activities in Japan

    International Nuclear Information System (INIS)

    Osabe, Takeshi

    1998-01-01

    Current Japanese State System for Accountancy and Control (SSAC) has been developing and fully satisfies requirements of both IAEA Safeguards and bilateral partners. However, the public attention on the national and international safeguards activities were increased and the safeguards authorities were required to promote the objective assessment of safeguards implementation to avoid mistrust in safeguards activities which directly influence the public acceptance of nuclear energy in itself. Additionally, since Japan has promoted to complete nuclear fuel cycle including spent fuel reprocessing, enrichment and mixed oxide fuel fabrication this would require further assurance of Japanese non-proliferation commitment. Japan supports the introduction of strengthened safeguards. In this context it is particularly important to strengthen the relationship between national and the IAEA safeguards to contribute actively to the IAEA safeguards in development and utilization of new technologies towards more effective and efficient IAEA safeguards

  5. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Krishna [Univ. of South Carolina, Columbia, SC (United States)

    2017-09-29

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3He will be very desirable. To address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron (10B) and enriched lithium (6Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (tg ~ 85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10-24 cm2), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure.

  6. Technology development for DUPIC process safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J S; Kim, H D; Lee, Y G; Kang, H Y; Cha, H R; Byeon, K H; Park, Y S; Choi, H N [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    As the strategy for DUPIC(Direct Use of spent PWR fuel In CANDU reactor) process safeguards, the neutron detection method was introduced to account for nuclear materials in the whole DUPIC process by selectively measuring spontaneous fission neutron signals from {sup 244}Cm. DSNC was designed and manufactured to measure the account of curium in the fuel bundle and associated process samples in the DUPIC fuel cycle. The MCNP code had response profile along the length of the CANDU type fuel bundle. It was found experimentally that the output signal variation due to the overall azimuthal asymmetry was less than 0.2%. The longitudinal detection efficiency distribution at every position including both ends was kept less than 2% from the average value. Spent fuel standards almost similar to DUPIC process material were fabricated from a single spent PWR fuel rod and the performance verification of the DSNC is in progress under very high radiation environment. The results of this test will be eventually benchmarked with other sources such as code simulation, chemical analysis and gamma analysis. COREMAS-DUPIC has been developed for the accountability management of nuclear materials treated by DUPIC facility. This system is able to track the controlled nuclear materials maintaining the material inventory in near-real time and to generate the required material accountability records and reports. Concerning the containment and surveillance technology, a focused R and D effort is given to the development of unattended continuous monitoring system. Currently, the component technologies of radiation monitoring and surveillance have been established, and continued R and D efforts are given to the integration of the components into automatic safeguards diagnostics. (author).

  7. The measurement of gamma ray induced heating in a mixed neutron and gamma ray environment

    International Nuclear Information System (INIS)

    Chiu, H.K.

    1991-10-01

    The problem of measuring the gamma heating in a mixed DT neutron and gamma ray environment was explored. A new detector technique was developed to make this measurement. Gamma heating measurements were made in a low-Z assembly irradiated with 14-Mev neutrons and (n, n') gammas produced by a Texas Nuclear Model 9400 neutron generator. Heating measurements were made in the mid-line of the lattice using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition mode. The neutron-induced signal was separated from the gamma-induced signal by exploiting the signal rise-time differences inherent to radiations of different linear energy transfer coefficient, which are observable in a proportional counter. The operating limits of this measurement technique were explored by varying the counter position in the low-Z lattice, hence changing the irradiation spectrum observed. The experiment was modelled numerically to help interpret the measured results. The transport of neutrons and gamma rays in the assembly was modelled using the one- dimensional radiation transport code ANISN/PC. The cross-section set used for these calculations was derived from the ENDF/B-V library using the code MC 2 -2 for the case of DT neutrons slowing down in a low-Z material. The calculated neutron and gamma spectra in the slab and the relevant mass-stopping powers were used to construct weighting factors which relate the energy deposition in the counter fill-gas to that in the counter wall and in the surrounding material. The gamma energy deposition at various positions in the lattice is estimated by applying these weighting factors to the measured gamma energy deposition in the counter at those locations

  8. Development of new type boron-coating proportional counter and its experimental investigation and simulation calculation

    International Nuclear Information System (INIS)

    Zhang Zixia; Wei Zhiyong; Fang Meihua; Qiang Peng; Zhu Li; Chen Guoyun

    2015-01-01

    Three materials wherein suitable proportion of isotope enriched 10 B powder, 1, 2-ethylene dichloride and formvar resin were blended to make 10 B neutron sensitive coating by oneself. A new type proportional counter that coated with 10 B neutron sensitive coating was made. Furthermore, in order to increase the character and quality of the neutron detector, a set of 14 annulus epoxy sheets which were sided with 10 B film were placed in the tube. A series performance tests were done by 241 Am-Be neutron source. The tests of 3.7 × 10 9 Bq 211 Am-Be neutron source show that the plateau length of detector is 150 V from 750 V to 900 V, while the plateau slope is 8.2%/100 V. When the working voltage is 800 V, the count rate of new type boron-coating proportional counter is 50 s -1 . The level of sensitivity is 0.71 cm 2 . Compared with the detector only coated with 10 B film in the inner walls of detector, neutron sensitivity area of the new detector increases to 3.15 times. The results show that the plateau length increases from 80 V to 150 V, and the plateau slope is improved from 12.4%/100 V to 7.58%/100 V, while the neutron sensitivity increases to 2.63 times. Using Geant4 software based on Monte Carlo method, this paper presented the response and detection efficiency of new type boron-coating proportional counter, which was covered with φ55 mm × 250 mm cylinder high density polyethylene moderator material. The simulation results of Geant4 are in agreement with the results of 241 Am-Be neutron source experiment. It shows the reliability of simulation application. (authors)

  9. Near Real-Time Nondestructive Active Inspection Technologies Utilizing Delayed γ-Rays and Neutrons for Advanced Safeguards

    International Nuclear Information System (INIS)

    Hunt, Alan; Tobin, S. J.

    2015-01-01

    In this two year project, the research team investigated how delayed γ-rays from short-lived fission fragments detected in the short interval between irradiating pulses can be exploited for advanced safeguards technologies. This program contained experimental and modeling efforts. The experimental effort measured the emitted spectra, time histories and correlations of the delayed γ-rays from aqueous solutions and solid targets containing fissionable isotopes. The modeling effort first developed and benchmarked a hybrid Monte Carlo simulation technique based on these experiments. The benchmarked simulations were then extended to other safeguards scenarios, allowing comparisons to other advanced safeguards technologies and to investigate combined techniques. Ultimately, the experiments demonstrated the possible utility of actively induced delayed γ-ray spectroscopy for fissionable material assay.

  10. Near Real-Time Nondestructive Active Inspection Technologies Utilizing Delayed γ-Rays and Neutrons for Advanced Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Alan [Idaho State Univ., Pocatello, ID (United States). Idaho Accelerator Center, Dept. of Physics; Reedy, E. T.E. [Idaho State Univ., Pocatello, ID (United States). Dept. of Phyics, Idaho Accelerator Center; Mozin, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tobin, S. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Nonproliferation

    2015-02-12

    In this two year project, the research team investigated how delayed γ-rays from short-lived fission fragments detected in the short interval between irradiating pulses can be exploited for advanced safeguards technologies. This program contained experimental and modeling efforts. The experimental effort measured the emitted spectra, time histories and correlations of the delayed γ-rays from aqueous solutions and solid targets containing fissionable isotopes. The modeling effort first developed and benchmarked a hybrid Monte Carlo simulation technique based on these experiments. The benchmarked simulations were then extended to other safeguards scenarios, allowing comparisons to other advanced safeguards technologies and to investigate combined techniques. Ultimately, the experiments demonstrated the possible utility of actively induced delayed γ-ray spectroscopy for fissionable material assay.

  11. Secondary standard neutron detector for measuring total reaction cross sections

    International Nuclear Information System (INIS)

    Sekharan, K.K.; Laumer, H.; Gabbard, F.

    1975-01-01

    A neutron detector has been constructed and calibrated for the accurate measurement of total neutron-production cross sections. The detector consists of a polyethylene sphere of 24'' diameter in which 8- 10 BF 3 counters have been installed radially. The relative efficiency of this detector has been determined for average neutron energies, from 30 keV to 1.5 MeV by counting neutrons from 7 Li(p,n) 7 Be. By adjusting the radial positions of the BF 3 counters in the polyethylene sphere the efficiency for neutron detection was made nearly constant for this energy range. Measurement of absolute efficiency for the same neutron energy range has been done by counting the neutrons from 51 V(p,n) 51 Cr and 57 Fe(p,n) 57 Co reactions and determining the absolute number of residual nuclei produced during the measurement of neutron yield. Details of absolute efficiency measurements and the use of the detector for measurement of total neutron yields from neutron producing reactions such as 23 Na(p,n) 23 Mg are given

  12. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS

    International Nuclear Information System (INIS)

    JOE, J.

    2007-01-01

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders

  13. Neutron-induced charged-particle emission studies below 100 MeV at WNR

    Energy Technology Data Exchange (ETDEWEB)

    Haight, R.C.; Lee, T.M.; Sterbenz, S.M. [and others

    1994-07-01

    Charged-particles produced by neutron bombardment of selected targets with Z=5 through 53 have been studied for neutron energies from 1 MeV to about 100 MeV using the spallation neutron source at WNR/LAMPF. Particle detection with energy measurement and particle identification is accomplished by two-element {Delta}E-E counters, three-element {Delta}E{sub l}-{Delta}E{sub 2}-E counters or with pulse-shape discrimination using scintillators directly in the neutron beam. The experimental techniques for these measurements are described and comparisons made among the different approaches. This presentation introduces five papers contributed to this conference.

  14. Neutron-induced charged-particle emission studies below 100 MeV at WNR

    International Nuclear Information System (INIS)

    Haight, R.C.; Lee, T.M.; Sterbenz, S.M.

    1994-01-01

    Charged-particles produced by neutron bombardment of selected targets with Z=5 through 53 have been studied for neutron energies from 1 MeV to about 100 MeV using the spallation neutron source at WNR/LAMPF. Particle detection with energy measurement and particle identification is accomplished by two-element ΔE-E counters, three-element ΔE l -ΔE 2 -E counters or with pulse-shape discrimination using scintillators directly in the neutron beam. The experimental techniques for these measurements are described and comparisons made among the different approaches. This presentation introduces five papers contributed to this conference

  15. Preliminary characterization of the passive neutron dose equivalent monitor with TLDs

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Norio; Kanai, Katsuta; Momose, Takumaro; Hayashi, Naomi [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan); Chen Erhu [Beijing Institute of Nuclear Engineering, Beijing (China)

    2001-02-01

    The passive neutron dose equivalent monitor with TLDs is composed of a cubic polyethylene moderator and TLDs at the center of moderator. This monitor was originally designed for measurements of neutron doses over long-term period of time around the nuclear facilities. In this study, the energy response of this monitor was calculated by Monte Carlo methods and experimentally obtained under {sup 241}Am-Be, {sup 252}Cf and moderated {sup 252}Cf neutron irradiation. Additionally, the responses of two types of conventional neutron dose equivalent meters (rem counters) were also investigated as comparison. The authors concluded that this passive neutron monitor with TLDs had a good energy response similar to conventional rem counters and could evaluate neutron doses within 10% of accuracy to the moderated fission spectra. (author)

  16. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    International Nuclear Information System (INIS)

    Pepper, S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

    2009-01-01

    Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agency's (IAEA's) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNL's International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

  17. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pepper,S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

    2009-07-12

    Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agency’s (IAEA’s) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNL’s International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

  18. Assay of low-enriched uranium using spontaneous fission neutrons

    International Nuclear Information System (INIS)

    Zucker, M.S.; Fainberg, A.

    1980-01-01

    Low-enriched uranium oxide in bulk containers can be assayed for safeguards purposes, using the neutrons from spontaneous fission of 238 U as a signature, to complement enrichment and mass measurement. The penetrability of the fast fission neutrons allows the inner portion of bulk samples to register. The measurement may also be useful for measuring moisture content, of significance in process control. The apparatus used can be the same as for neutron correlation counting for Pu assay. The neutron multiplication observed in 238 U is of intrinsic interest

  19. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pepper,S.; Rosenthal, M.; Fishbone, L.; Occhiogrosso, D.; Carroll, C.; Dreicer, M.; Wallace, R.; Rankhauser, J.

    2008-10-22

    In 2007, the National Nuclear Security Administration's Office of Nonproliferation and International Security (NA-24) completed a yearlong review of the challenges facing the international safeguards system today and over the next 25 years. The study found that without new investment in international safeguards, the U.S. safeguards technology base, and our ability to support International Atomic Energy Agency (IAEA) safeguards, will continue to erode and soon may be at risk. To reverse this trend, the then U.S. Secretary of Energy, Samuel Bodman, announced at the 2007 IAEA General Conference that the Department of Energy (DOE) would launch the Next Generation Safeguards Initiative (NGSI). He stated 'IAEA safeguards must be robust and capable of addressing proliferation threats. Full confidence in IAEA safeguards is essential for nuclear power to grow safely and securely. To this end, the U.S. Department of Energy will seek to ensure that modern technology, the best scientific expertise, and adequate resources are available to keep pace with expanding IAEA responsibilities.' To meet this goal, the NGSI objectives include the recruitment of international safeguards experts to work at the U.S. national laboratories and to serve at the IAEA's headquarters. Part of the latter effort will involve enhancing our existing efforts to place well-qualified Americans in a sufficient number of key safeguards positions within the IAEA's Department of Safeguards. Accordingly, the International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards (ERIS) on October 22 and 23, 2008. The ISPO used a workshop format developed earlier with Sonalysts, Inc., that was followed at the U.S. Support Program's (USSP's) technology road-mapping sessions. ISPO invited participants from the U.S. DOE, the IAEA, the U.S. national laboratories, private industry, academia, and

  20. Safeguards effectiveness evaluations in safeguards planning

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.

    1987-01-01

    This paper describes analytic tools we developed to quantify the effectiveness of safeguards against theft of special nuclear material by insiders. These tools help identify vulnerabilities in existing safeguards, suggest potential improvements, and help assess the benefits of these upgrades prior to implementation. Alone, these tools are not sufficient for safeguards planning, since the cost of implementing all suggested upgrades almost always exceeds the available resources. This paper describes another tool we developed to allow comparsion of benefits of various upgrades to identify those upgrade packages that achieve the greatest improvement in protection for a given cost and to provide a priority ranking among cost-effective packages, thereby helping decision-makers select the upgrades to implement and highlight the mount of residual risk. 5 refs., 3 figs

  1. Nuclear Safeguards Culture

    International Nuclear Information System (INIS)

    Findlay, T.

    2015-01-01

    The paper will consider safeguards culture both at the IAEA and among member states. It will do so through the lens of organizational culture theory and taking into account developments in safeguards since the Iraq case of the early 1990s. The study will seek to identify the current characteristics of safeguards culture and how it has evolved since the 93+2 programme was initiated, as well as considering the roles of the most important purveyors of such culture, including member states and their national safeguards authorities, the General Conference and Board of Governors, the Director General, the Secretariat as a whole, the Safeguards Department and the inspectorate. The question of what might be an optimal safeguards culture at the Agency and among member states will be investigated, along with the issue of how such a culture might be engendered or encouraged. (author)

  2. Construction of a self-supporting tissue-equivalent dividing wall and operational characteristics of a coaxial double-cylindrical tissue-equivalent proportional counter

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.

    1994-01-01

    An additional feature incorporated in a coaxial double-cylindrical tissue-equivalent proportional counter, is the presence of a common tissue-equivalent dividing wall between the inner and outer counters of thickness equivalent to the corresponding maximum range of protons at the energy of interest. By appropriate use of an anti-coincidence arrangement with the outer counter, the inner counter could be used to discriminate microdosimetric spectra of neutrons at the desired low energy range from those of the faster neutrons. The construction of an A-150 self-supporting tissue-equivalent dividing wall and an anti-coincidence unit are described. Some operational characteristic tests have been performed to determine the operation of the new microdosimeter. (author)

  3. Neutron detector for detecting rare events of spontaneous fission

    International Nuclear Information System (INIS)

    Ter-Akop'yan, G.M.; Popeko, A.G.; Sokol, E.A.; Chelnokov, L.P.; Smirnov, V.I.; Gorshkov, V.A.

    1981-01-01

    The neutron detector for registering rare events of spontaneous fission by detecting multiple neutron emission is described. The detector represents a block of plexiglas of 550 mm diameter and 700 mm height in the centre of which there is a through 160 mm diameter channel for the sample under investigation. The detector comprises 56 3 He filled counters (up to 7 atm pressure) with 1% CO 2 addition. The counters have a 500 mm length and a 32 mm diameter. The sampling of fission events is realized by an electron system which allows determining the number of detected neutrons, numbers of operated counters, signal amplitude and time for fission event detecting. A block diagram of a neutron detector electron system is presented and its operation principle is considered. For protection against cosmic radiation the detector is surronded by a system of plastic scintillators and placed behind the concrete shield of 6 m thickness. The results of measurements of background radiation are given. It has been found that the background radiation of single neutron constitutes about 150 counts per hour, the detecting efficiency of single neutron equals 0.483 +- 0.005, for a 10l detector sensitive volume. By means of the detector described the parameters of multiplicity distribution of prompt neutrons for 256 Fm spontaneous fission are measured. The average multiplicity equals 3.59+-0.06 the dispersion being 2.30+-0.65

  4. Measurement of uranium enrichment by 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    Rezende, H.R.

    1987-01-01

    a non-destructive technique for the determination of uranium in UO 2 samples was developed, making use of the change in the fission cross section of a nuclide with the neutron energy. The active interrogation method was used by irradiating the samples with pulsed 14 MeV neutrons and further detection of delayed fission neutrons. In order to discriminate U-238 from U-235 the neutron energy was tailored by means of two concentric cylinders of lead and paraffin/poliethylene, 11 and 4 cm thick. Between neutron pulses, delayed neutrons from fission were detected by a long counter built with five BF 3 proportional counters. Calibration curves for enrichment and total mass versus delayed neutron response were obtained using available UO 2 pellets of known enrichment. Enrichment detection limit, obtained with 95% confidence level by the Student distribution was estimated to be 0.33%. The minimal detectable mass was estimated to be 4.4 g. (author) [pt

  5. Measure of uranium enrichment by 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    Rezende, H.R.

    1987-01-01

    A non-destructive technique for the determination of uranium in UO 2 samples was developed, marking use of the change in the fission cross of a nuclide with the neutron energy. The active interrogation method was used by irradiating the samples with pulsed 14 MeV neutrons and furtherdetection of delayed fission neutrons. In order to descriminated U-238 from U-235 the neutron energy was tailored by means of two concentric cylinders of lead and paraffin/poliethylene, 11 and 4 cm thick. Between neutron pulses, delayed neutrons from fission were detected by a long counter built with five BF 3 proportional counters. Calibration curves for enrichment and total mass versus delayed neutron response were obtained using available UO 2 pellets of Known enrichment. Enrichment detection limit, obtained with 95% confidence level by the the Student distribution was estimated to be 0.33%. The minimal detectable mass was estimated to be 4.4 g. (Author) [pt

  6. Research Projects at Chulalongkorn University for the Master Degree Programme in Nuclear Security and Safeguard

    International Nuclear Information System (INIS)

    Nilsuwankosit, S.

    2015-01-01

    The Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Thailand, began its master degree programme in nuclear security and safeguard in November 2013 with the support from the CBRN-Center of Excellence, European Union. This programme was planned as a way to raise the awareness of various local agencies in ASEAN countries regarding the threat of CBRN events. In the long run, the programme will also serve as the platform to develop the human resource and to provide the professional assistance required to counter such threat in the region. The programme closely follows the guideline as given by the IAEA and employs its materials as the main source of references. The first batch of 20 students came from countries in the ASEAN community. Due to the nature of the program, each student is required to conduct the research and a thesis based on such research is to be submitted as part of the requirement for the graduation. Currently, the research subjects that are readily available to the students can be classified into 5 categories: 1. subjects with neutron generator, 2. subjects with nuclear electronics and instruments, 3. subjects with industrial applications, 4. subjects with computer simulations, and 5. subjects with policy research. (author)

  7. Building safeguards infrastructure

    International Nuclear Information System (INIS)

    Stevens, Rebecca S.; McClelland-Kerr, John

    2009-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of these three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the growth of nuclear power, and the infrastructure that supports them should be strengthened. The focus of this paper will be on the role safeguards plays in the 3S concept and how to support the development of the infrastructure necessary to support safeguards. The objective of this paper has been to provide a working definition of safeguards infrastructure, and to discuss xamples of how building safeguards infrastructure is presented in several models. The guidelines outlined in the milestones document provide a clear path for establishing both the safeguards and the related infrastructures needed to support the development of nuclear power. The model employed by the INSEP program of engaging with partner states on safeguards-related topics that are of current interest to the level of nuclear development in that state provides another way of approaching the concept of building safeguards infrastructure. The Next Generation Safeguards Initiative is yet another approach that underscored five principal areas for growth, and the United States commitment to working with partners to promote this growth both at home and abroad.

  8. Safeguards '85

    International Nuclear Information System (INIS)

    Gruemm, H.

    1981-01-01

    IAEA safeguards watch over the pledge of those non-nuclear weapon countries, which are signatories to the NPT, to refrain from using nuclear installations for military purposes. At present, some 700 installations are inspected in 50 countries, among them 117 nuclear power plants. Further advancement of these safeguards measures serves to develop new methods and equipment for safeguards inspection, ensure that the growing numbers of new plants are inspected, and achieve complete coverage of the eleven countries not signatories to the NPT. However, the long term effectiveness of safeguards will depend on progress being made in the contractual obligations fur nuclear disarmament and in assuring the continuity of supply to non-nuclear weapon countries by the atomic powers and the supplier countries. (orig.) [de

  9. IAEA safeguards

    International Nuclear Information System (INIS)

    1985-01-01

    IAEA safeguards are a system of technical measures within the framework of international non-proliferation policy entrusted to the IAEA in its Statute and by other treaties. About 98% of the world's nuclear installations outside the nuclear-weapon countries are now under safeguards. This paper gives a review of IAEA activities in this field: objectives, agreements, work and development of staff of the IAEA's Department of Safeguards, instruments and techniques for direct measurement and verification of nuclear material. (author)

  10. Safeguards Implementation Practices Guide on Establishing and Maintaining State Safeguards Infrastructure

    International Nuclear Information System (INIS)

    2015-01-01

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreements. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This

  11. Safeguards Implementation at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juang; Lee, Sung Ho; Lee, Byung-Doo; Kim, Hyun-Sook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The main objective of the safeguards implementation activities is to assure that there are no diversions of declared nuclear material and/or no undeclared activity. The purpose of safeguards implementation activities is the assistance facility operators to meet the safeguards criteria set forth by the Atomic Energy Safety Acts and Regulations. In addition, the nuclear material and technology control team has acted as a contact point for domestic and international safeguards inspection activities and for the relevant safeguards cooperation. Domestic inspections were successfully carried out at the KAERI nuclear facilities pursuant to the domestic laws and regulations in parallel with the IAEA safeguards inspections. It is expected that safeguards work will be increased due to the pyro-related facilities such as PRIDE, ACPF and DUPIC, for which the IAEA is making an effort to establish safeguards approach. KAERI will actively cope with the plan of the NSSC by changing its domestic inspection regulations on the accounting and control of nuclear materials.

  12. Measurement of plutonium oxalate in thermal neutron coincidence counters

    International Nuclear Information System (INIS)

    Marshall, R.S.; Erkkila, B.H.

    1979-01-01

    A coincidence neutron counting method has been developed for assaying batches of plutonium oxalate. Using counting data from two concentric rings of 3 He detectors, corrections are made for the effects that water has on the coincidence neutron count rate. Batches of plutonium oxalate varying from 750 to 1000 g of plutonium and from 34 to 54% water are assayed with an average accuracy of +-3%

  13. Safeguards on nuclear waste

    International Nuclear Information System (INIS)

    Crawford, D.W.

    1995-01-01

    Safeguards and security policies within the Department of Energy (DOE) have been implemented in a graded fashion for the protection, control and accountability of nuclear materials. This graded philosophy has meant that safeguards on low-equity nuclear materials, typically considered of low diversion attractiveness such as waste, has been relegated to minimal controls. This philosophy has been and remains today an acceptable approach for the planning and implementation of safeguards on this material. Nuclear waste protection policy and guidance have been issued due to a lack of clear policy and guidance on the identification and implementation of safeguards controls on waste. However, there are issues related to safe-guarding waste that need to be clarified. These issues primarily stem from increased budgetary and resource pressures to remove materials from safeguards. Finally, there may be an unclear understanding, as to the scope and content of vulnerability assessments required prior to terminating safeguards on waste and other discardable materials and where the authority should lie within the Department for making decisions regarding safeguards termination. This paper examines these issues and the technical basis for Departmental policy for terminating safeguards on waste

  14. Safeguarding the atom

    International Nuclear Information System (INIS)

    Fischer, D.; Szasz, P.

    1985-01-01

    Safeguards play a key role in verifying the effectiveness of restraints on the spread of nuclear weapons. This book is a study of the safeguards system of the International Atomic Energy Agency, an important element of the non-proliferation regime. It focuses on the politics of safeguards, especially the political problems of the IAEA and of the day-to-day application of safeguards. It contains a critical appraisal and proposals for ways of improving existing procedures and of adapting them to the political and technological changes of recent years. IAEA safeguards represent the world's first and so far only attempt to verify an arms control agreement by systematic on-site inspection, and their applicability to other arms control measures is examined. (author)

  15. Methods of calculus for neutron spectrometry in proportional counters

    International Nuclear Information System (INIS)

    Butragueno, J.L.; Blazquez, J.B.; Barrado, J.M.

    1976-01-01

    Response functions for cylindrical proportional counters with hidrogenated gases have been determined, taking in account only wall effect, by means of two independent calculus methods. One of them is a Montecarlo application and the other one analytical at all. Results of both methods have been compared. (author) [es

  16. Methods of calculus for neutron spectrometry in proportional counters

    International Nuclear Information System (INIS)

    Butragueno Casado, J.L.; Blazquez Martinez, J.B.; Barrado Menendez, J.M.

    1976-01-01

    Response functions for cylindrical proportional counters with hydrogenated gases have been determined, taking in account only wall effect, by means of two independent calculus methods. One of them is a Monte Carlo application and the other one analytica at all. Results of both methods have been compared. (Author)

  17. Personnel neutron dose assessment upgrade: Volume 2, Field neutron spectrometer for health physics applications

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Reece, W.D.; Miller, S.D.

    1988-07-01

    Both the (ICRP) and the (NCPR) have recommended an increase in neutron quality factors and the adoption of effective dose equivalent methods. The series of reports entitled Personnel Neutron Dose Assessment Upgrade (PNL-6620) addresses these changes. Volume 1 in this series of reports (Personnel Neutron Dosimetry Assessment) provided guidance on the characteristics, use, and calibration of personnel neutron dosimeters in order to meet the new recommendations. This report, Volume 2: Field Neutron Spectrometer for Health Physics Applications describes the development of a portable field spectrometer which can be set up for use in a few minutes by a single person. The field spectrometer described herein represents a significant advance in improving the accuracy of neutron dose assessment. It permits an immediate analysis of the energy spectral distribution associated with the radiation from which neutron quality factor can be determined. It is now possible to depart from the use of maximum Q by determining and realistically applying a lower Q based on spectral data. The field spectrometer is made up of two modules: a detector module with built-in electronics and an analysis module with a IBM PC/reg sign/-compatible computer to control the data acquisition and analysis of data in the field. The unit is simple enough to allow the operator to perform spectral measurements with minimal training. The instrument is intended for use in steady-state radiation fields with neutrons energies covering the fission spectrum range. The prototype field spectrometer has been field tested in plutonium processing facilities, and has been proven to operate satisfactorily. The prototype field spectrometer uses a 3 He proportional counter to measure the neutron energy spectrum between 50 keV and 5 MeV and a tissue equivalent proportional counter (TEPC) to measure absorbed neutron dose

  18. Neutron spectrometry measurements in iron

    International Nuclear Information System (INIS)

    Perlini, G.; Acerbis, S.; Carter, M.

    1988-01-01

    A compact structure was prepared for use in making measurements of neutron penetration in iron which could serve as reference data and as a check for computer codes. About 30 iron plates were put together giving a useful overall length of 130 cm. At various depths along the central axis of the iron block, measurements were made with liquid scintillator spectrometers and proton recoil proportional counters. The energy band explored was between 14 KeV and 10 MeV. Here we report the original spectra of the impulses and the neutron spectra found by the NE213 code based on the differential method and by unfolding with the SPEC4 code for liquid scintillation counters and proton recoil spectrometers, respectively. 12 figs., 60 tabs., 6 refs

  19. Inventory of safeguards software

    International Nuclear Information System (INIS)

    Suzuki, Mitsutoshi; Horino, Koichi

    2009-03-01

    The purpose of this survey activity will serve as a basis for determining what needs may exist in this arena for development of next-generation safeguards systems and approaches. 23 software tools are surveyed by JAEA and NMCC. Exchanging information regarding existing software tools for safeguards and discussing about a next R and D program of developing a general-purpose safeguards tool should be beneficial to a safeguards system design and indispensable to evaluate a safeguards system for future nuclear fuel facilities. (author)

  20. The n,{gamma} discrimination in recoil-proton proportional counters. Application to the measurement of fast neutron spectra; Discrimination n,{gamma} dans les compteurs proportionnels a protons de recul. Application a la mesure des spectres de neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Jeandidier, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    A description is given of a spectrometry chain working in the energy range of a few keV to 1 MeV, and designed for measurement of fast neutron spectra. It consists of detectors, recoil proton proportional counters built especially for this work by R. COMTE (DEG/SER) and which make it possible to cover the energy range and also associated electronic equipment. A brief description is first given of the physical processes involved: (n,p) collisions in the gas, influence of {gamma} radiation; the method of discrimination is then presented. It is based on the difference in the rise-times of the pulses. In the experiments described here the use of a bi-parametric system made it possible to employ the most simple discrimination device, based on the fact that the high frequency gamma pulse components are, at a given energy, weaker than those of the neutron pulses. Results are given of measurements carried out on the Van der Graaff (mono-energetic neutrons for testing the linearity of the chain and the resolving power of the counters), and of those made in a sub-critical system Hug at Cadarache. (author) [French] On decrit une chaine de spectrometrie travaillant dans le domaine d'energie de quelques keV a 1 MeV destinee a la mesure des spectres de neutrons rapides. Elle comprend les detecteurs, compteurs proportionnels a protons de recul, realises specialement pour cette etude par M. R. COMTE (DEG/SER), permettant de couvrir la gamme d'energie et l'electronique associee. Apres un rappel des processus physiques mis en jeu: chocs (n,p) dans les gaz, influence des rayonnements {gamma}, on expose la methode de discrimination utilisee. Celle-ci est basee sur la difference des temps de montee des impulsions. Au cours des experiences rapportees ici, la mise en oeuvre d'un ensemble bi-parametrique a permis d'utiliser le dispositif de discrimination le plus simple, base sur la remarque que les composantes a haute frequence des impulsions {gamma} sont, a energie egale, plus faibles

  1. The n,{gamma} discrimination in recoil-proton proportional counters. Application to the measurement of fast neutron spectra; Discrimination n,{gamma} dans les compteurs proportionnels a protons de recul. Application a la mesure des spectres de neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Jeandidier, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    A description is given of a spectrometry chain working in the energy range of a few keV to 1 MeV, and designed for measurement of fast neutron spectra. It consists of detectors, recoil proton proportional counters built especially for this work by R. COMTE (DEG/SER) and which make it possible to cover the energy range and also associated electronic equipment. A brief description is first given of the physical processes involved: (n,p) collisions in the gas, influence of {gamma} radiation; the method of discrimination is then presented. It is based on the difference in the rise-times of the pulses. In the experiments described here the use of a bi-parametric system made it possible to employ the most simple discrimination device, based on the fact that the high frequency gamma pulse components are, at a given energy, weaker than those of the neutron pulses. Results are given of measurements carried out on the Van der Graaff (mono-energetic neutrons for testing the linearity of the chain and the resolving power of the counters), and of those made in a sub-critical system Hug at Cadarache. (author) [French] On decrit une chaine de spectrometrie travaillant dans le domaine d'energie de quelques keV a 1 MeV destinee a la mesure des spectres de neutrons rapides. Elle comprend les detecteurs, compteurs proportionnels a protons de recul, realises specialement pour cette etude par M. R. COMTE (DEG/SER), permettant de couvrir la gamme d'energie et l'electronique associee. Apres un rappel des processus physiques mis en jeu: chocs (n,p) dans les gaz, influence des rayonnements {gamma}, on expose la methode de discrimination utilisee. Celle-ci est basee sur la difference des temps de montee des impulsions. Au cours des experiences rapportees ici, la mise en oeuvre d'un ensemble bi-parametrique a permis d'utiliser le dispositif de discrimination le plus simple, base sur la remarque que les composantes a haute frequence des impulsions {gamma} sont, a

  2. Safeguards Technology Development Program 1st Quarter FY 2018 Report

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Manoj K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-10

    LLNL will evaluate the performance of a stilbene-based scintillation detector array for IAEA neutron multiplicity counting (NMC) applications. This effort will combine newly developed modeling methodologies and recently acquired high-efficiency stilbene detector units to quantitatively compare the prototype system performance with the conventional He-3 counters and liquid scintillator alternatives.

  3. Proliferation resistance of the lithium reduction process

    International Nuclear Information System (INIS)

    Ko, W. I.; Ha, J. H.; Lee, S. Y.; Song, D. Y.; Kim, H. D.; Park, S. W.

    2002-01-01

    This paper addresses the characteristics of proliferation resistance of the lithium reduction process and international domestic safeguarding methods. In addition to dealing with qualitative features of the proliferation resistance, this study is emphasizing on the quantitative analysis of radiation barrier, which could be a significant accessibility barrier if the field is high enough to force a theft to shield the object during a theft. From the radiation barrier analysis, it is indicated that whole-body radiation dose is about 20 rem/hr at one meter of smelt and ingot metal of 40 kgHM, which could be considered to be a significant reduction in risk of theft. For safeguarding of this process, we propose a NDA concept for nuclear material accounting which is to measure the amount of curium in the reduction metal and associated process samples using a neutron coincidence counter and then to convert the curium mass into special nuclear material with predetermined curium ratios. For this, a well-type neutron coincidence counter with substantial shielding to protect the system from high gamma radiation is conceptually designed

  4. A 4π scintillation counter-optical spark chamber system for neutral particles

    International Nuclear Information System (INIS)

    Demarzo, C.; Distante, A.; Guerriero, L.; Niccolini, C.; Posa, F.; Walder, F.; Chen, G.T.Y.; Fletcher, C.R.; Lanou, R.E. Jr.; Thornton, R.K.; Barton, D.S.; Lyons, T.; Marx, M.; Rosenson, L.; Thern, R.

    1975-01-01

    The authors describe a scintillation counter-optical spark chamber system developed for the detection of high energy gamma rays and neutrons. They describe the system components and their use in two completed experiments. (Auth.)

  5. The safeguards options study

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D. [Los Alamos National Lab., NM (United States); Olsen, A.P.; Roche, C.T.; Rudolph, R.R. [Argonne National Lab., IL (United States); Bieber, A.M.; Lemley, J. [Brookhaven National Lab., Upton, NY (United States); Filby, E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq`s obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state.

  6. The safeguards options study

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D.; Olsen, A.P.; Roche, C.T.; Rudolph, R.R.; Bieber, A.M.; Lemley, J.; Filby, E.

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq's obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state

  7. Safeguards and nuclear forensics

    International Nuclear Information System (INIS)

    Gangotra, Suresh

    2016-01-01

    Nuclear Safeguards is the detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons, or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by early detection. Safeguards implementation involves nuclear material accounting and containment and surveillance measures. The safeguards are implemented in nuclear facilities by the states, or agencies and International Atomic Energy Agency (IAEA). The measures for the safeguards include nuclear material Accounting (NUMAC) and Containment and surveillance systems. In recent times, there have been advances in safeguards like Near Real Time Monitoring (NRTM), Dynamic Nuclear Material Accounting (DNMA), Safeguards-by-Design (SBD), satellite imagery, information from open sources, remote monitoring etc

  8. IAEA safeguards for geological repositories

    International Nuclear Information System (INIS)

    Moran, B.W.

    2005-01-01

    In September. 1988, the IAEA held its first formal meeting on the safeguards requirements for the final disposal of spent fuel and nuclear material-bearing waste. The consensus recommendation of the 43 participants from 18 countries at this Advisory Group Meeting was that safeguards should not terminate of spent fuel even after emplacement in, and closure of, a geologic repository.' As a result of this recommendation, the IAEA initiated a series of consultants' meetings and the SAGOR Programme (Programme for the Development of Safeguards for the Final Disposal of Spent Fuel in Geologic Repositories) to develop an approach that would permit IAEA safeguards to verify the non-diversion of spent fuel from a geologic repository. At the end of this process, in December 1997, a second Advisory Group Meeting, endorsed the generic safeguards approach developed by the SAGOR Programme. Using the SAGOR Programme results and consultants' meeting recommendations, the IAEA Department of Safeguards issued a safeguards policy paper stating the requirements for IAEA safeguards at geologic repositories. Following approval of the safeguards policy and the generic safeguards approach, the Geologic Repository Safeguards Experts Group was established to make recommendations on implementing the safeguards approach. This experts' group is currently making recommendations to the IAEA regarding the safeguards activities to be conducted with respect to Finland's repository programme. (author)

  9. Evolution of safeguards systems design

    International Nuclear Information System (INIS)

    Shipley, J.P.; Christensen, E.L.; Dietz, R.J.

    1979-01-01

    Safeguards systems play a vital detection and deterrence role in current nonproliferation policy. These safeguards systems have developed over the past three decades through the evolution of three essential components: the safeguards/process interface, safeguards performance criteria, and the technology necessary to support effective safeguards. This paper discusses the background and history of this evolutionary process, its major developments and status, and the future direction of safeguards system design

  10. Measurement of fast neutron spectra. 1-2

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    1976-01-01

    The present status of the techniques for the measurement of fast neutron spectra is reviewed with particular attention to the recent activities in Japan. The first section of this report defines the energy range of fast neutrons, and various techniques are classified into four groups. In the following sections, recent development in each group is reviewed. The first part is the integral method represented mainly by the activation method. The variation of this method is shortly reviewed, and some results of the spectrum measurement for JRR-4 (a thermal research reactor) and YAYOI (a fast neutron source reactor) are presented together with the results of computed spectra. The second part is the method of proton recoil. The improvement of a proportional counter by Ichimori is shortly reviewed. The use of liquid scintillator is also discussed together with the experimental and computational results of YAYOI benchmark spectra of fast neutrons transmitted through the layers of iron. The utilization of n-α or n-p reaction as a sandwitch counter is discussed in the third part. Measured and calculated spectra in the FCA (a fast critical assembly) core are presented as examples. The method of time-of-flight is discussed in the fourth part. Recent developments in Japan such as the method with a double-scintillation counter are shortly presented together with its block diagram. (Aoki, K.)

  11. Measuring Safeguards Culture

    International Nuclear Information System (INIS)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-01-01

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  12. International safeguards

    International Nuclear Information System (INIS)

    Sanders, B.; Ha Vinh Phuong

    1976-01-01

    Since the start of the post-war era, international safeguards were considered essential to ensure that nuclear materials should not be diverted to unauthorised uses. In parallel, it was proposed to set up an international atomic energy agency within the United Nations through which international cooperation in nuclear matters would be channelled and controlled. Created in 1957, the IAEA was authorized to administer safeguards in connection with any assistance it provided as well as at the request of Member State and of any party to bilateral or multilateral arrangements in its ambit. Today, there are two international treaties requiring that its parties should accept Agency safeguards unilaterally, the Latin America Tlatelolco Treaty of 1967, and the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), operative since 1970, which requires in particular that non-nuclear weapon states should accept Agency safeguards on its peaceful nuclear activities. Thus while NPT covers peaceful nuclear activities indiscriminately in a country, the Agency's original safeguards system is applied according to specific agreements and to given facilities. A basic conflict has now emerged between commercial interests and the increasing wish that transfer of nuclear equipment and know-how should not result in proliferation of military nuclear capacity; however, serious efforts are currently in progress to ensure universal application of IAEA safeguards and to develop them in step with the uses of nuclear energy. (N.E.A.) [fr

  13. Neutron coincidence counting with digital signal processing

    International Nuclear Information System (INIS)

    Bagi, Janos; Dechamp, Luc; Dransart, Pascal; Dzbikowicz, Zdzislaw; Dufour, Jean-Luc; Holzleitner, Ludwig; Huszti, Joseph; Looman, Marc; Marin Ferrer, Montserrat; Lambert, Thierry; Peerani, Paolo; Rackham, Jamie; Swinhoe, Martyn; Tobin, Steve; Weber, Anne-Laure; Wilson, Mark

    2009-01-01

    Neutron coincidence counting is a widely adopted nondestructive assay (NDA) technique used in nuclear safeguards to measure the mass of nuclear material in samples. Nowadays, most neutron-counting systems are based on the original-shift-register technology, like the (ordinary or multiplicity) Shift-Register Analyser. The analogue signal from the He-3 tubes is processed by an amplifier/single channel analyser (SCA) producing a train of TTL pulses that are fed into an electronic unit that performs the time- correlation analysis. Following the suggestion of the main inspection authorities (IAEA, Euratom and the French Ministry of Industry), several research laboratories have started to study and develop prototypes of neutron-counting systems with PC-based processing. Collaboration in this field among JRC, IRSN and LANL has been established within the framework of the ESARDA-NDA working group. Joint testing campaigns have been performed in the JRC PERLA laboratory, using different equipment provided by the three partners. One area of development is the use of high-speed PCs and pulse acquisition electronics that provide a time stamp (LIST-Mode Acquisition) for every digital pulse. The time stamp data can be processed directly during acquisition or saved on a hard disk. The latter method has the advantage that measurement data can be analysed with different values for parameters like predelay and gate width, without repeating the acquisition. Other useful diagnostic information, such as die-away time and dead time, can also be extracted from this stored data. A second area is the development of 'virtual instruments.' These devices, in which the pulse-processing system can be embedded in the neutron counter itself and sends counting data to a PC, can give increased data-acquisition speeds. Either or both of these developments could give rise to the next generation of instrumentation for improved practical neutron-correlation measurements. The paper will describe the

  14. Fast neutron dosimetry: Progress summary

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.

    1988-01-01

    The purpose was to investigate the radiological physics and biology of very low energy photons derived from a 1-GeV electron synchrotron storage ring. An extensive beam line and irradiation apparatus was designed, developed, and constructed. Dosimetry measurements required invention and testing of a miniature absolute calorimeter and a cell irradiation fixture suitable for scanning exposures under computer control. Measurements of the kerma factors of oxygen, aluminum and silicon for 14-20 MeV neutrons. Custom designed miniature proportional counters of cylindrical symmetry were employed in these determinations. The oxygen kerma factor was found significantly lower than values calculated from microscopic cross sections. We also tested Mg and Fe walled conventional spherical counters. The direct neutron-counting gas interaction is significant enough for these counters that a correction is needed. We also investigated the application of Nuclear Magnetic Resonance spectroscopy to radiation dosimetry. Our purpose was to take advantage of recent development of very high-field magnets, complex RF-pulse techniques for solvent suppression, and improved spectral analysis techniques

  15. Safeguards techniques and equipment. 2003 ed

    International Nuclear Information System (INIS)

    2003-01-01

    -destructive analysis (NDA) techniques, and compare their findings with the declared figures and the operator's records. The next level of verification has the aim of detecting whether a fraction of a declared amount is missing (partial defect) and may involve the weighing of items and measurements with NDA techniques such as neutron counting or gamma-ray spectrometry. For detecting bias defects, which would arise if small amounts of material were diverted over a protracted length of time, it is necessary to sample some of the items and to apply physical and chemical analysis techniques having the highest possible accuracy, typically less than one per cent. In order to apply these destructive analysis (DA) techniques, the IAEA requires access to laboratories which use such accurate techniques on a routine basis. Containment and surveillance (C/S) techniques, which are complementary to nuclear material accountancy techniques, are applied in order to maintain continuity of the knowledge gained through IAEA verification, by giving assurance that nuclear material follows predetermined routes, that the integrity of its containment remains unimpaired and that the material is accounted for at the correct measurement points. They also lead to savings in the safeguards inspection effort, e.g. by reducing the frequency of accountancy verification. A variety of C/S techniques are used, primarily optical surveillance and sealing. In remote monitoring, the unattended equipment transmits the data off-site. For unattended and remote monitoring, additional criteria must be met, including high reliability and authentication of the data source. Data communication costs have dropped dramatically in recent years. Data security is an important feature of unattended and remote monitoring systems. Environmental sampling, which allows detection of minute traces of nuclear material, was added to the IAEA's verification measures in the early 1990s as a powerful tool for detecting indications of undeclared

  16. Neutron emission during lithium deuteride hydration in heavy water

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Kezerashvili, G.Ya.; Muratov, V.V.; Sinitskij, S.L.

    1989-01-01

    An experiment on neutron detection during lithium deuteride hydration in heavy water using a system of SNM-17 or SNM-18 gas counters was set up. Signals were simultaneously detected by 6 counters and the data were stored in a computer. At the same time the temperature of the reaction ampule external surface was measured. It was found that the neutron number per 1 gram of lithium deuteride reacted with water in the ampule was equal to several dozens if their initial energy was about 2.5 MeV. 4 refs.; 2 figs

  17. The evolution of IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make `quantum jump` into new phase characterized by the IAEA as the `Strengthened Safeguards System`. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  18. The evolution of IAEA safeguards

    International Nuclear Information System (INIS)

    1998-01-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make 'quantum jump' into new phase characterized by the IAEA as the 'Strengthened Safeguards System'. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  19. Response of six neutron survey meters in mixed fields of fast and thermal neutrons.

    Science.gov (United States)

    Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S

    2013-10-01

    Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.

  20. Survey of special nuclear material vehicle monitors for domestic and international safeguards

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Atwater, H.F.; Caldwell, J.T.; Shunk, E.R.

    1979-01-01

    Special nuclear materials vehicle monitors, including gateside vehicle monitors, hand-held personnel-vehicle monitors, and a new tunnel monitor concept for very large vehicles, are discussed. The results of a comparison of effectiveness of monitors for domestic application are presented. The results of calculations and small scale prototype measurements are given for a tunnel-like neutron monitor for monitoring at the perimeter of an enrichment plant subjected to International Safeguards

  1. Radiation protection metrology at a high-energy neutron therapy facility

    International Nuclear Information System (INIS)

    Bonnett, D.E.; Sherwin, A.G.; More, B.R.

    1991-01-01

    A radiation protection survey has been carried out at a high-energy neutron therapy facility using a combination of different detectors and counters. Included in the survey were measurements with a tissue equivalent proportional counter (TEPC), a rem meter, a large volume ionisation chamber (LVI) and a Geiger counter. Dose equivalent rates, normalised to a proton beam current of 25 μA, of between 1 μSv.h -1 and 0.7 Sv.h -1 were recorded depending on the location. In general the results confirm the tendency of the rem meter to over-read in fields consisting mainly of low energy neutrons and illustrate the advantages of the diagnostic and gamma discriminating properties of the TEPC. The LVI-Geiger system was found to be the least favourable combination of dosemeters, substantially under-reading and being unable to estimate the neutron dose rate at levels below about 32 μGy.h -1 . (author)

  2. IAEA Safeguards: Status and prospects

    International Nuclear Information System (INIS)

    Gruemm, H.

    1983-01-01

    The IAEA has just celebrated its 25th anniversary, and the first safeguards inspections were performed twenty years ago. Counting only since 1978, some 5100 inspections had been performed up to mid-1982, using a staff which now includes about 130 inspectors. Despite these impressive figures, and the fact that the IAEA has never detected any apparent diversion of nuclear materials, there are increasing public allegations that safeguards lack effectiveness. After briefly reviewing the nature of IAEA safeguards agreements, the paper examines the political and technical objectives of safeguards together with some of the criticisms which have been voiced. Allocation of limited safeguards resources is examined in terms of the sometimes conflicting allocation criteria which are contained in various safeguards documents. The paper argues that the credibility and deterrent effect of IAEA safeguards should not be underestimated. It should be of greater concern that a few States are known to be operating or constructing non-safeguarded nuclear facilities capable of producing weapons-grade nuclear materials. Thus the risk of safeguards would appear to be greatest at exactly the point where safeguards end. (author)

  3. Manual for the Epithermal Neutron Multiplicity Detector (ENMC) for Measurement of Impure MOX and Plutonium Samples

    International Nuclear Information System (INIS)

    Menlove, H. O.; Rael, C. D.; Kroncke, K. E.; DeAguero, K. J.

    2004-01-01

    We have designed a high-efficiency neutron detector for passive neutron coincidence and multiplicity counting of dirty scrap and bulk samples of plutonium. The counter will be used for the measurement of impure plutonium samples at the JNC MOX fabrication facility in Japan. The counter can also be used to create working standards from bulk process MOX. The detector uses advanced design "3He tubes to increase the efficiency and to shorten the neutron die-away time. The efficiency is 64% and the die-away time is 19.1 ?s. The Epithermal Neutron Multiplicity Counter (ENMC) is designed for high-precision measurements of bulk plutonium samples with diameters of less than 200 mm. The average neutron energy from the sample can be measured using the ratio of the inner ring of He-3 tubes to the outer ring. This report describes the hardware, performance, and calibration for the ENMC.

  4. Optimization of combined delayed neutron and differential die-away prompt neutron signal detection for characterization of spent nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Blanc, Pauline; Tobin, Stephen J.; Croft, Stephen; Menlove, Howard O.; Swinhoe, M.; Lee, T.

    2010-01-01

    The Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy (DOE) has funded multiple laboratories and universities to develop a means to accurately quantify the Plutonium (Pu) mass in spent nuclear fuel assemblies and ways to also detect potential diversion of fuel pins. Delayed Neutron (DN) counting provides a signature somewhat more sensitive to 235 U than Pu while Differential Die-Away (DDA) is complementary in that it has greater sensitivity to Pu. The two methods can, with care, be combined into a single instrument which also provides passive neutron information. Individually the techniques cannot robustly quantify the Pu content but coupled together the information content in the signatures enables Pu quantification separate to the total fissile content. The challenge of merging DN and DDA, prompt neutron (PN) signal, capabilities in the same design is the focus of this paper. Other possibilities also suggest themselves, such as a direct measurement of the reactivity (multiplication) by either the boost in signal obtained during the active interrogation itself or by the extension of the die-away profile. In an early study, conceptual designs have been modeled using a neutron detector comprising fission chambers or 3He proportional counters and a ∼14 MeV neutron Deuterium-Tritium (DT) generator as the interrogation source. Modeling was performed using the radiation transport code Monte Carlo N-Particles eXtended (MCNPX). Building on this foundation, the present paper quantifies the capability of a new design using an array of 3 He detectors together with fission chambers to optimize both DN and PN detections and active characterization, respectively. This new design was created in order to minimize fission in 238 U (a nuisance DN emitter), to use a realistic neutron generator, to reduce the cost and to achieve near spatial interrogation and detection of the DN and PN, important for detection of diversion, all within the constraints of

  5. Towards Compact Antineutrino Detectors for Safeguarding Nuclear Reactors

    International Nuclear Information System (INIS)

    Meijer, R.J. de; Smit, F.D.; Woertche, H.J.

    2010-01-01

    In 2008 the IAEA Division of Technical Support convened a Workshop on Antineutrino Detection for Safeguards Applications. Two of the recommendations expressed that IAEA should consider antineutrino detection and monitoring in its current R and D program for safeguarding bulk-process reactors, and consider antineutrino detection and monitoring in its Safeguards by Design approaches for power and fissile inventory monitoring of new and next generation reactors. The workshop came to these recommendations after having assessed the results obtained at the San Onofre Nuclear Generator Station (SONGS) in California. A 600 litre, 10% efficiency detector, placed at 25m from the core was shown to record 300 net antineutrino events per day. The 2*2.5*2.5 m 3 footprint of the detector and the required below background operation, prevents an easy deployment at reactors. Moreover it does not provide spatial information of the fissile inventory and, because of the shape of a PBMR reactor, would not be representative for such type of reactor. A solution to this drawback is to develop more efficient detectors that are less bulky and less sensitive to cosmic and natural radiation backgrounds. Antineutrino detection in the SONGS detector is based on the capture of antineutrinos by a proton resulting in a positron and neutron. In the SONGS detector the positron and neutron are detected by secondary gamma-rays. The efficiency of the SONGS detector is largely dominated by the low efficiency for gamma detection high background sensitivity We are investigating two methods to resolve this problem, both leading to more compact detectors, which in a modular set up also will provide spatial information. One is based on detecting the positrons on their slowdown signal and the neutrons by capturing in 10 B or 6 Li, resulting in alpha-emission. The drawback for standard liquid scintillators doped with e.g. B is the low flame point of the solvent and the strong quenching of the alpha signal. Our

  6. Non-periodic multi-slit masking for a single counter rotating 2-disc chopper and channeling guides for high resolution and high intensity neutron TOF spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowiak, M.; Hofmann, T.; Stüßer, N.

    2017-02-01

    Energy resolution is an important design goal for time-of-flight instruments and neutron spectroscopy. For high-resolution applications, it is required that the burst times of choppers be short, going down to the µs-range. To produce short pulses while maintaining high neutron flux, we propose beam masks with more than two slits on a counter-rotating 2-disc chopper, behind specially adapted focusing multi-channel guides. A novel non-regular arrangement of the slits ensures that the beam opens only once per chopper cycle, when the masks are congruently aligned. Additionally, beam splitting and intensity focusing by guides before and after the chopper position provide high intensities even for small samples. Phase-space analysis and Monte Carlo simulations on examples of four-slit masks with adapted guide geometries show the potential of the proposed setup.

  7. Measuring Safeguards Culture

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-07-19

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  8. Development of high efficiency neutron detectors

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Menlove, H.O.

    1993-01-01

    The authors have designed a novel neutron detector system using conventional 3 He detector tubes and composites of polyethylene and graphite. At this time the design consists entirely of MCNP simulations of different detector configurations and materials. These detectors are applicable to low-level passive and active neutron assay systems such as the passive add-a-source and the 252 Cf shuffler. Monte Carlo simulations of these neutron detector designs achieved efficiencies of over 35% for assay chambers that can accommodate 55-gal. drums. Only slight increases in the number of detector tubes and helium pressure are required. The detectors also have reduced die-away times. Potential applications are coincident and multiplicity neutron counting for waste disposal and safeguards. The authors will present the general design philosophy, underlying physics, calculation mechanics, and results

  9. Absolute measurement and international intercomparison of 0.1-0.8 MeV monoenergetic neutron fluence rate

    International Nuclear Information System (INIS)

    Ma Hongchang; Lu Hanlin; Rong Chaofan

    1988-01-01

    The methods for absolute measurement of 0.1-18MeV monoenergetic neutron fluence rate are described. Which include proton recoil telescope, semicoducetor telescope, hydrogen filled proportional counter and associated particale method. A long counter used as secondary recent international intercomparison of neutron fluence rate organized by BIPM, and the results were given

  10. Effect of different materials in soil on the neutron moisture gauge readings

    International Nuclear Information System (INIS)

    Abdul-Majid, S.

    1991-01-01

    Neutron moisture gauges that depend on scattering and thermalization of neutrons have been in use for a long time. The hydrogen in water is the effective element in thermalizing the neutrons coming from a neutron source, where they are detected by neutron detector such as B F 3 counter or boron lined counter. The high cross-section of boron for thermal neutrons makes detectors containing boron ideal for this application. There are always some possibility that some materials exist in soil other than water which can moderate and hence introduce false results in moisture contents measurements. For example, materials such as hydrocarbons, asphalt, wood, etc., contain both hydrogen and carbon. These elements are good neutron moderators. The effects of the existence of such materials in the soil on the gauge readings were examined. Elements of high neutron cross-section such as boron can be a source of large error as well, since they absorb thermal neutrons giving low moisture content value. The effect of such materials as part of the soil constituent on the gauge reading was also examined.3 fig

  11. An acoustical bubble counter for superheated drop detectors

    International Nuclear Information System (INIS)

    Taylor, C.; Montvila, D.; Flynn, D.; Brennan, C.; D'Errico, F.

    2006-01-01

    A new bubble counter has been developed based on the well-established approach of detecting vaporization events acoustically in superheated drop detectors (SDDs). This counter is called the Framework Scientific ABC 1260, and it represents a major improvement over prior versions of this technology. By utilizing advanced acoustic pattern recognition software, the bubble formation event can be differentiated from ambient background noise, as well as from other acoustic signatures. Additional structural design enhancements include a relocation of the electronic components to the bottom of the device; thus allowing for greater stability, easier access to vial SDDs without exposure to system electronics. Upgrades in the electronics permit an increase in the speed of bubble detection by almost 50%, compared with earlier versions of the counters. By positioning the vial on top of the device, temperature and sound insulation can be accommodated for extreme environments. Lead shells can also be utilized for an enhanced response to high-energy neutrons. (authors)

  12. An acoustical bubble counter for superheated drop detectors.

    Science.gov (United States)

    Taylor, Chris; Montvila, Darius; Flynn, David; Brennan, Christopher; d'Errico, Francesco

    2006-01-01

    A new bubble counter has been developed based on the well-established approach of detecting vaporization events acoustically in superheated drop detectors (SDDs). This counter is called the Framework Scientific ABC 1260, and it represents a major improvement over prior versions of this technology. By utilizing advanced acoustic pattern recognition software, the bubble formation event can be differentiated from ambient background noise, as well as from other acoustic signatures. Additional structural design enhancements include a relocation of the electronic components to the bottom of the device; thus allowing for greater stability, easier access to vial SDDs without exposure to system electronics. Upgrades in the electronics permit an increase in the speed of bubble detection by almost 50%, compared with earlier versions of the counters. By positioning the vial on top of the device, temperature and sound insulation can be accommodated for extreme environments. Lead shells can also be utilized for an enhanced response to high-energy neutrons.

  13. Simulation of neutron fluxes around the W7-X Stellarator

    International Nuclear Information System (INIS)

    Andersson, Jenny

    1999-12-01

    A new fusion experiment, the WENDELSTEIN 7-X Stellarator (W7-X), will be undertaken in Greifswald in Germany. Measurements of the neutron flux will provide information on fusion reaction rates and possibly also on ion temperatures as function of time. For this purpose moderating neutron counters will be designed, tested, calibrated and eventually used at W7-X. Extensive Monte-Carlo simulations have been performed in order to select the most suitable detector and moderator combination with a flat response function and highest achievable efficiency. Different detector configurations with different moderating materials have been tried out, showing that a 32 cm thick graphite moderating BF 3 -counter gives the desired flat response and sufficient efficiency. Neutron spectra calculations have been made for different torus models and the influence of floor, walls and ceiling (i.e. reactor hall) have been investigated. Presented results suggest that a more detailed torus model significantly reduces the number of neutron counts at the detector. Calculations including the reactor hall indicate a tendency of shifting the neutron spectra towards the thermal region. The main part of the scattered neutrons are back-scattered from the floor. Finally, calculations on the graphite moderating BF 3 -counter in the detailed torus environment were performed in order to assess the absolute response function under the influence of the reactor hall. The results show that the detector count rate will increase by only 5-7 % when the reactor hall is taken into account. With a stellarator generating 10 12 to 10 16 neutrons per second the detector count rate will be 2x10 5 to 2x10 9 neutrons per second

  14. Simulation of neutron fluxes around the W7-X Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jenny

    1999-12-01

    A new fusion experiment, the WENDELSTEIN 7-X Stellarator (W7-X), will be undertaken in Greifswald in Germany. Measurements of the neutron flux will provide information on fusion reaction rates and possibly also on ion temperatures as function of time. For this purpose moderating neutron counters will be designed, tested, calibrated and eventually used at W7-X. Extensive Monte-Carlo simulations have been performed in order to select the most suitable detector and moderator combination with a flat response function and highest achievable efficiency. Different detector configurations with different moderating materials have been tried out, showing that a 32 cm thick graphite moderating BF{sub 3} -counter gives the desired flat response and sufficient efficiency. Neutron spectra calculations have been made for different torus models and the influence of floor, walls and ceiling (i.e. reactor hall) have been investigated. Presented results suggest that a more detailed torus model significantly reduces the number of neutron counts at the detector. Calculations including the reactor hall indicate a tendency of shifting the neutron spectra towards the thermal region. The main part of the scattered neutrons are back-scattered from the floor. Finally, calculations on the graphite moderating BF{sub 3} -counter in the detailed torus environment were performed in order to assess the absolute response function under the influence of the reactor hall. The results show that the detector count rate will increase by only 5-7 % when the reactor hall is taken into account. With a stellarator generating 10{sup 12} to 10{sup 16} neutrons per second the detector count rate will be 2x10{sup 5} to 2x10{sup 9} neutrons per second.

  15. Safeguards document (INFCIRC/153) and the new safeguards system

    International Nuclear Information System (INIS)

    Haginoya, Tohru

    1997-01-01

    INFCIRC/153. The NPT covers nuclear weapons and nuclear explosive devices but not other military uses of nuclear materials. The NPT safeguards applies all nuclear materials including undeclared nuclear materials. The protection of commercially sensitive information is important. The new safeguards system. The Model protocol amends INFCIRC/153 (the Protocol prevails). Apply nuclear fuel cycle related activities with no nuclear material. The environmental monitoring is an important measure, but non-weapon countries have no such technology. Impact and benefit from the new system. Simplification of the conventional safeguards. Could possibly define three categories of plutonium. (author)

  16. Nuclear safeguards policy

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Claims have been made that Australia's nuclear safeguards policy, announced in 1977, has changed. However, examination of the texts of nuclear safeguards agreements negotiated by Australia shows that the policy has been implemented and adhered to. The purpose of these agreements is to obtain assurance that uranium exported is used exclusively for peaceful purposes. The questions of reprocessing, transfer to third countries and the application of IAEA safeguards are discussed

  17. Measurement of radiation skyshine with D-T neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S.; Nishitani, T. E-mail: nisitani@naka.jaeri.go.jp; Ochiai, K.; Kaneko, J.; Hori, J.; Sato, S.; Yamauchi, M.; Tanaka, R.; Nakao, M.; Wada, M.; Wakisaka, M.; Murata, I.; Kutsukake, C.; Tanaka, S.; Sawamura, T.; Takahashi, A

    2003-09-01

    The D-T neutron skyshine experiments have been carried out at the Fusion Neutronics Source (FNS) of JAERI with the neutron yield of {approx}1.7x10{sup 11} n/s. The concrete thickness of the roof and the wall of a FNS target room are 1.15 and 2 m, respectively. The FNS skyshine port with a size of 0.9x0.9 m{sup 2} was open during the experimental period. The radiation dose rate outside the target room was measured a maximum distance of 550 m from the D-T target point with a spherical rem-counter. Secondary gamma-rays were measured with high purity Ge detectors and NaI scintillation counters. The highest neutron dose was about 9x10{sup -22} Sv/(source neutron) at a distance of 30 m from the D-T target point and the dose rate was attenuated to 4x10{sup -24} Sv/(source neutron) at a distance of 550 m. The measured neutron dose distribution was analyzed with Monte Carlo code MCNP-4B and a simple line source model. The MCNP calculation overestimates the neutron dose in the distance range larger than 230 m. The line source model agrees well with the experimental results within the distance of 350 m.

  18. New safeguards system and JNC's activities in the new safeguards system

    International Nuclear Information System (INIS)

    Iwanaga, Masayuki

    2000-01-01

    The Japan Nuclear Fuel Cycle Development Institute (JNC) has been developing the various area of the technology in the nuclear fuel cycle more than 30 years, as the leading organization. Standing on the accumulated experiences through those activities, JNC will construct the new fuel cycle concept based on the principle for safety, environment, economy and nonproliferation. In this process, evaluation of the specific nonproliferation features with the nuclear material control methods taking in to account of the safegurdability might have one of the major importance. On the other hand, recently, in addition to the conventional safeguards (INFCIRC153), an additional protocol (INFCIRC540) which defines the activities that complement the integrity of a member country's declaration has come into effect in several countries, including Japan. IAEA and other international organizations are now discussing the safeguards concept, which integrates the conventional as well as new safeguards measures. In JNC's efforts to construct the new fuel cycle concept, it is necessary to give sufficient consideration to reflect the integrated safeguards concept. In the process of implementing the concept of the new integrated safeguards system, we presume that changes will have to be made in the traditional approach, which mainly deals with nuclear material. It will become necessary to develop a concrete method and approach in order to analyze and evaluate information, and work will have to be undertaken to optimize such a method based on its effects and efficiency. JNC will make contributions to international society by making the best use of its experience and technological infrastructure to reflect further safeguards development program in JNC so that the new IAEA safeguards can be firmly established. Related to this point of view, the following two subjects is to be introduced on the whole; 1. JNC's experiences and expertise of the development of safeguards technology with the fuel

  19. Nuclear safeguards in challenging times [Experts on nuclear safeguards and verification assess the global picture

    International Nuclear Information System (INIS)

    Park, W.S.; Hillerman, J.

    2007-01-01

    Meeting at the IAEA's International Safeguards Symposium in October 2006, more than 500 experts from 60-plus countries and organizations addressed current and future challenges related to safeguards concepts, approaches, technologies, and experience. Sessions addressed five main issues driving developments: Current challenges to the safeguards system; Further strengthening safeguards practices and approaches; Improving the collection and analysis of safeguards information; Advances in safeguards techniques and technology; and Future challenges. Every four to five years, the IAEA brings together safeguards experts from all over the world at international symposia. In October 2001, they met in the shadow of 9/11 and the symposium included a special session on the prevention of nuclear terrorism

  20. Proton recoil spectra in spherical proportional counters calculated with finite element and Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Benmosbah, M. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Groetz, J.E. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France)], E-mail: jegroetz@univ-fcomte.fr; Crovisier, P. [Service de Protection contre les Rayonnements, CEA Valduc, 21120 Is/Tille (France); Asselineau, B. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN, Cadarache BP3, 13115 St Paul-lez-Durance (France); Truffert, H.; Cadiou, A. [AREVA NC, Etablissement de la Hague, DQSSE/PR/E/D, 50444 Beaumont-Hague Cedex (France)

    2008-08-11

    Proton recoil spectra were calculated for various spherical proportional counters using Monte Carlo simulation combined with the finite element method. Electric field lines and strength were calculated by defining an appropriate mesh and solving the Laplace equation with the associated boundary conditions, taking into account the geometry of every counter. Thus, different regions were defined in the counter with various coefficients for the energy deposition in the Monte Carlo transport code MCNPX. Results from the calculations are in good agreement with measurements for three different gas pressures at various neutron energies.

  1. Safeguards systems analysis research and development and the practice of safeguards at DOE facilities

    International Nuclear Information System (INIS)

    Zack, N.R.; Thomas, K.E.; Markin, J.T.; Tape, J.W.

    1991-01-01

    Los Alamos Safeguards Systems Group personnel interact with Department of Energy (DOE) nuclear materials processing facilities in a number of ways. Among them are training courses, formal technical assistance such as developing information management or data analysis software, and informal ad hoc assistance especially in reviewing and commenting on existing facility safeguards technology and procedures. These activities are supported by the DOE Office of Safeguards and Security, DOE Operations Offices, and contractor organizations. Because of the relationships with the Operations Office and facility personnel, the Safeguards Systems Group research and development (R and D) staff have developed an understanding of the needs of the entire complex. Improved safeguards are needed in areas such as materials control activities, accountability procedures and techniques, systems analysis and evaluation methods, and material handling procedures. This paper surveys the generic needs for efficient and cost effective enhancements in safeguards technologies and procedures at DOE facilities, identifies areas where existing safeguards R and D products are being applied or could be applied, and sets a direction for future systems analysis R and D to address practical facility safeguards needs

  2. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Schultz, W.E.; Smith, H.D.; Smith, M.P.

    1980-01-01

    An improved method and apparatus are described for simultaneously measuring the porosity and thermal neutron capture cross section of earth formations in situ in the vicinity of a well borehole using pulsed neutron well logging techniques. The logging tool which is moved through the borehole consists of a 14 MeV pulsed neutron source, an epithermal neutron detector and a combination gamma ray and fast neutron detector. The associated gating systems, counters and combined digital computer are sited above ground. (U.K.)

  3. Neutron yield measurements on a TMX endplug

    International Nuclear Information System (INIS)

    Slaughter, D.R.

    1980-01-01

    Neutron yield measurements were made on the east endplug of TMX using a calibrated recoil proton counter. The detector consists of a liquid scintillator (NE 213) with a pulse shape discrimination property that allows for identifying photon and neutron interactions. An energy threshold is established to suppress the response to scattered neutrons with energies lower than 1 to 2 MeV. Results indicate there are typical neutron yields of 2 to 3 x 10 11 n/s during a 25-ms discharge with 200 A of 20-keV neutral beam injection into the endplug

  4. A neutron dose equivalent meter at CAEP

    International Nuclear Information System (INIS)

    Tian Shihai; Lu Yan; Wang Heyi; Yuan Yonggang; Chen Xu

    2012-01-01

    The measurement of neutron dose equivalent has been a widespread need in industry and research. In this paper, aimed at improving the accuracy of neutron dose equivalent meter: a neutron dose counter is simulated with MCNP5, and the energy response curve is optimized. The results show that the energy response factor is from 0.2 to 1.8 for neutrons in the energy range of 2.53×10 -8 MeV to 10 MeV Compared with other related meters, it turns that the design of this meter is right. (authors)

  5. IAEA safeguards assessments

    International Nuclear Information System (INIS)

    Gruemm, H.; Parisick, R.; Pushkarjov, V.; Shea, T.; Brach, E.

    1981-01-01

    This paper describes the safeguards program administered by the IAEA, which must provide assurance to the international community that agency safeguards have the capacity to deter diversion, if contemplated, to detect diversion, if undertaken, and to provide assurance that no diversions have occurred when none are detected. This assurance to the international community is based upon the capability of the Agency's safeguards program to detect diversion and its complementary effect of deterrance

  6. Safeguards as an evolutionary system

    International Nuclear Information System (INIS)

    Carlson, J.

    1998-01-01

    NPT safeguards pursuant to INFCIRC/153 retain a strong emphasis on materials accountancy, and are primarily concerned with verifying nuclear activities as declared by the State - the correctness of States' declarations. This decade, failure to adequately address the possibility of undeclared nuclear activities - the issue of the completeness of States' declarations - has been recognized as a major shortcoming in the safeguards system. Since the 'classical' safeguards system is unable to provide credible assurance of the absence of clandestine nuclear activities, substantial efforts are being made to strengthen the IAEA's capabilities in this regard. Agreement has been reached on a Model Protocol substantially extending the Agency's authority, and good progress has been made in developing the new approaches, technologies and techniques required to ensure this authority is used effectively. Increasingly, safeguards will involve more qualitative judgements. Transparency will be very important - without a clear understanding by Member States of how the Agency goes about its new tasks and reaches its conclusions about the absence of undeclared activities, the safeguards system will not fulfil its vital confidence-building role. A major theme in current safeguards thinking is integration, the rationalization of classical safeguards with the new safeguards strengthening measures. As part of the rationalization process, it is timely to re-assess traditional safeguards implementation practices. One of these is uniformity in the way safeguards activities are implemented in different States. Another is whether the traditional concept of safeguards confidentiality is consistent with the increasing importance of transparency. (author)

  7. The potential use of domestic safeguards interior monitors in International Safeguards

    International Nuclear Information System (INIS)

    Williams, J.D.; Dupree, S.A.; Sonnier, C.S.

    1998-01-01

    An important future element of International Safeguards instrumentation is expected to be the merging of containment/surveillance and nondestructive assay equipment with domestic physical protection equipment into integrated systems, coupled with remote monitoring. Instrumentation would include interior monitoring and assessment and entry/exit monitoring. Of particular importance is the application of interior monitors in spaces of declared inactivity; for example, in nuclear material storage locations that are entered infrequently. The use of modern interior monitors in International Safeguards offers potential for improving effectiveness and efficiency. Within the context of increased cooperation, one can readily envision increased interaction between International Safeguards and Domestic Safeguards, including increased joint use of State System of Accounting and Control data

  8. Monte carlo calculation of energy-dependent response of high-sensitive neutron monitor, HISENS

    International Nuclear Information System (INIS)

    Imanaka, Tetsuji; Ebisawa, Tohru; Kobayashi, Keiji; Koide, Hiroaki; Seo, Takeshi; Kawano, Shinji

    1988-01-01

    A highly sensitive neutron monitor system, HISENS, has been developed to measure leakage neutrons from nuclear facilities. The counter system of HISENS contains a detector bank which consists of ten cylindrical proportional counters filled with 10 atm 3 He gas and a paraffin moderator mounted in an aluminum case. The size of the detector bank is 56 cm high, 66 cm wide and 10 cm thick. It is revealed by a calibration experiment using an 241 Am-Be neutron source that the sensitivity of HISENS is about 2000 times as large as that of a typical commercial rem-counter. Since HISENS is designed to have a high sensitivity in a wide range of neutron energy, the shape of its energy dependent response curve cannot be matched to that of the dose equivalent conversion factor. To estimate dose equivalent values from neutron counts by HISENS, it is necessary to know the energy and angular characteristics of both HISENS and the neutron field. The area of one side of the detector bank is 3700 cm 2 and the detection efficiency in the constant region of the response curve is about 30 %. Thus, the sensitivity of HISENS for this energy range is 740 cps/(n/cm 2 /sec). This value indicates the extremely high sensitivity of HISENS as compared with exsisting highly sensitive neutron monitors. (Nogami, K.)

  9. In Situ Object Counting System (ISOCS) Technique: Cost-Effective Tool for NDA Verification in IAEA Safeguards

    International Nuclear Information System (INIS)

    Braverman, E.; Lebrun, A.; Nizhnik, V.; Rorif, F.

    2010-01-01

    Uranium materials measurements using the ISOCS technique play an increasing role in IAEA verification activities. This methodology provides high uranium/plutonium sensitivity and a low detection limit together with the capability to measure items with different shapes and sizes. In addition, the numerical absolute efficiency calibration of a germanium detector which is used by the technique does not require any calibration standards or reference materials. ISOCS modelling software allows performing absolute efficiency calibration for items of arbitrary container shape and wall material, matrix chemical composition, material fill-height, uranium or plutonium weight fraction inside the matrix and even nuclear material/matrix non-homogeneous distribution. Furthermore, in a number of cases, some key parameters such as matrix density and U/Pu weight fraction can be determined along with analysis of nuclear material mass and isotopic composition. These capabilities provide a verification solution suitable for a majority of cases where quantitative and isotopic analysis should be performed. Today, the basic tool for uranium and plutonium mass measurement used in Safeguards verification activities is the neutron counting technique which employs neutron coincidence and multiplicity counters. In respect to the neutron counting technique, ISOCS calibrated detectors have relatively low cost. Taking into account its advantages, this methodology becomes a cost-effective solution for nuclear material NDA verification. At present, the Agency uses ISOCS for quantitative analysis in a wide range of applications: - Uranium scrap materials; - Uranium contaminated solid wastes; - Uranium fuel elements; - Some specific verification cases like measurement of Pu-Be neutron sources, quantification of fission products in solid wastes etc. For uranium hold-up measurements, ISOCS the only available methodology for quantitative and isotopic composition analysis of nuclear materials deposited

  10. Beyond Human Capital Development: Balanced Safeguards Workforce Metrics and the Next Generation Safeguards Workforce

    International Nuclear Information System (INIS)

    2014-01-01

    Since its establishment in 2008, the Next Generation Safeguards Initiative (NGSI) has achieved a number of objectives under its five pillars: concepts and approaches, policy development and outreach, international nuclear safeguards engagement, technology development, and human capital development (HCD). As a result of these efforts, safeguards has become much more visible as a critical U.S. national security interest across the U.S. Department of Energy (DOE) complex. However, limited budgets have since created challenges in a number of areas. Arguably, one of the more serious challenges involves NGSI's ability to integrate entry-level staff into safeguards projects. Laissez fair management of this issue across the complex can lead to wasteful project implementation and endanger NGSI's long-term sustainability. The authors provide a quantitative analysis of this problem, focusing on the demographics of the current safeguards workforce and compounding pressures to operate cost-effectively, transfer knowledge to the next generation of safeguards professionals, and sustain NGSI safeguards investments.

  11. U.S. safeguards history and the evolution of safeguards research and development

    International Nuclear Information System (INIS)

    Brenner, L.M.; McDowell, S.C.T.

    1989-01-01

    In discussing the U.S. safeguards history and the evolution of safeguards research and development, five significant eras are identified. The period ending January 1, 1947, may be called the first era. Safeguards as known today did not exist and the classic military approach of security protection applied. The second era covers the period from 1947 to 1954 (when the Atomic Energy Act was completely rewritten to accommodate the then foreseen Civil uses Program and international cooperation in peaceful uses of nuclear energy), and the first steps were taken by the Atomic Energy Commission to establish material accounting records for all source and fissionable materials on inventory. The third era covers the period 1954 through 1968, which focused on nuclear safeguards in its domestic activities and made major policy changes in its approach to material control and accountability. The fourth era, 1968 to 1972 saw a quantum jump in the recognition and need for a significant safeguards research and development program, answered by the formation of a safeguards technical support organization at Brookhaven National Laboratory and a safeguards Laboratory at Los Alamos Scientific Laboratory for the development and application of non-destructive assay technology. The fifth era had its beginning in 1972 with the burgeoning of international terrorism. The corresponding need for a strong physical protection research and development support program was responded to by the Sandia National Laboratory

  12. Non-proliferation of nuclear weapons and nuclear security. IAEA safeguards agreements and additional protocols

    International Nuclear Information System (INIS)

    Lodding, Jan; Kinley, David III

    2002-09-01

    One of the most urgent challenges facing the International Atomic Energy Agency (IAEA) is to strengthen the Agency's safeguards system for verification in order to increase the likelihood of detecting any clandestine nuclear weapons programme in breach of international obligations. The IAEA should be able to provide credible assurance not only about declared nuclear material in a State but also about the absence of undeclared material and activities. Realising the full potential of the strengthened system will require that all States bring into force their relevant safeguards agreements, as well as additional protocols thereto. Today, 45 years after the Agency's foundation, its verification mission is as relevant as ever. This is illustrated by the special challenges encountered with regard to verification in Iraq and North Korea in the past decade. Moreover, the horrifying events of 11 September 2001 demonstrated all too well the urgent need to strengthen worldwide control of nuclear and other radioactive material. The IAEA will continue to assist States in their efforts to counter the spread of nuclear weapons and to prevent, detect and respond to illegal uses of nuclear and radioactive material. Adherence by as many States as possible to the strengthened safeguards system is a crucial component in this endeavour

  13. Recent advances in safeguards operations

    International Nuclear Information System (INIS)

    Agu, B.; Iwamoto, H.

    1983-01-01

    The facilities and nuclear materials under IAEA safeguards have steadily increased in the past few years with consequent increases in the manpower and effort required for the implementation of effective international safeguards. To meet this challenge, various techniques and instruments have been developed with the assistance, support and cooperation of the Member States. Improved NDA equipment now permits accurate verification of plutonium and HEU bearing items; and optical and TV surveillance systems have improved remarkably. Experience in safeguarding nuclear facilities now includes fast-reactor fuel reprocessing and enrichment plants, even though the Hexapartite Safeguards Project is yet to define an agreed approach for safeguarding enrichment plants. The establishment of field offices now enables the IAEA to adequately implement safeguards at important facilities and also with more effective use of manpower. Closer cooperation with Member States via liaison or similar committees makes for effective safeguards implementation and the speedy solution of attendant problems. The technical support programmes from the Member States continue to provide the basis of the recent advances in safeguards techniques and instrumentation. (author)

  14. The Canadian safeguards program

    International Nuclear Information System (INIS)

    Zarecki, C.W.; Smith, R.M.

    1981-12-01

    In support of the Treaty on the Non-Proliferation of Nuclear Weapons Canada provides technical support to the International Atomic Energy Agency for the development of safeguards relevant to Canadian designed and built nuclear facilities. Some details of this program are discussed, including the philosophy and development of CANDU safeguards systems; the unique equipment developed for these systems; the provision of technical experts; training programs; liaison with other technical organizations; research and development; implementation of safeguards systems at various nuclear facilities; and the anticipated future direction of the safeguards program

  15. IAEA safeguards glossary

    International Nuclear Information System (INIS)

    1980-01-01

    An unambiguous definition and rationalization of many of the terms for the purpose of IAEA safeguards are given, with a view to improving the common understanding of such terms within the international community. The glossary focuses only on safeguards meanings in general, and IAEA meanings in particular, of the terms discussed. Terms belong to the following problems: nuclear and non-nuclear material, nuclear equipment, design of the safeguards approach, nuclear material accountancy, physical standards, sampling, measurements, statistical concepts and others

  16. Subthreshold neutron interrogator for detection of radioactive materials

    Science.gov (United States)

    Evans, Michael L.; Menlove, Howard O.; Baker, Michael P.

    1980-01-01

    A device for detecting fissionable material such as uranium in low concentrations by interrogating with photoneutrons at energy levels below 500 keV, and typically about 26 keV. Induced fast neutrons having energies above 500 keV by the interrogated fissionable material are detected by a liquid scintillator or recoil proportional counter which is sensitive to the induced fast neutrons. Since the induced fast neutrons are proportional to the concentration of fissionable material, detection of induced fast neutrons indicate concentration of the fissionable material.

  17. Implementation of the CNEN's safeguards laboratory

    International Nuclear Information System (INIS)

    Almeida, S.G. de

    1986-01-01

    The International Safeguards Agreements between Brazil and others countries has been concluded with the participation of the International Atomic Energy Agency (AIEA), and involve the Physical Protection and Control of Nuclear Material activities, which set up the National Safeguards System. The Safeguards Laboratory was constructed to the implementation and maintenance of this National Safeguards System, under responsability of CNEN's Safeguards Division, in order to carry out measurements of nuclear materials under safeguards. Technical requirements applied to the construction, setting up and operation of the laboratory are showed. The first results refer to the implementation of safeguards methods and techniques, as well as its participation within international scientific and technical co-operation programs in the safeguards area, through of them we wait its credencement by the AIEA as Regional Safeguards Laboratory for every countries of the Latin America. (Author) [pt

  18. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  19. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  20. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  1. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  2. Nuclear safeguards technology handbook

    International Nuclear Information System (INIS)

    1977-12-01

    The purpose of this handbook is to present to United States industrial organizations the Department of Energy's (DOE) Safeguards Technology Program. The roles and missions for safeguards in the U.S. government and application of the DOE technology program to industry safeguards planning are discussed. A guide to sources and products is included

  3. Experimental validation of GADRAS's coupled neutron-photon inverse radiation transport solver

    International Nuclear Information System (INIS)

    Mattingly, John K.; Mitchell, Dean James; Harding, Lee T.

    2010-01-01

    Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.

  4. Fast neutron flux and intracranial dose distribution at a neutron irradiation facility

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo; Aizawa, Otohiko; Nozaki, Tetsuya

    1981-01-01

    A head phantom filled with water was used to measure the fast neutron flux using 115 In(n, n')sup(115m)In and 103 Rh(n, n')sup(103m)Rh reactions. γ-ray from sup(115m)In and x-ray from sup(103m)Rh were detected by a Ge(Li) and a Na(Tl)I counter, respectively. TLD was used to investigate the γ-dose rate distribution inside the phantom. Flux of fast neutron inside the phantom was about 1 x 10 6 n/cm 2 sec, which was 3 order smaller than that of thermal neutron. The fast neutron flux decreased to 1/10 at 15 cm depth, and γ-dose rate was about 200 R/h at 100 kW inside the phantom. Total dose at the surface was 350 rad/h, to which, fast neutrons contributed more than γ-rays. The rate of fast neutron dose was about 10% of thermal neutron's in Kerma dose unit (rad), however, the rate was highly dependent on RBE value. (Nakanishi, T.)

  5. Miniature proportional counter for compression measurements of laser-fusion targets

    International Nuclear Information System (INIS)

    Lane, S.M.; Dellis, J.H.; Bennett, C.K.; Campbell, E.M.

    1981-10-01

    Direct drive laser fusion targets consisting of DT gas encapsulated in glass microshells produce 14.1 MeV neutrons that can interact with silicon-28 nuclei in the glass to produce a 2.2 minute aluminum-28 activity. From the number of 28 Al nuclei created and the neutron yield, the compressed glass areal density can be found. To determine the number of activated atoms created, we collect approximately one-half of the target debris on a thin metal foil which is transferred to our beta-gamma coincidence detector. This detector consists of a 25 cm x 25 cm NaI(Tl) crystal having a 5 cm x 15 cm well. We have recently built a miniature proportional counter that fits into this well and is used to detect beta particles. It is constructed of .025 cm thick copper and has nine separate chambers through which methane flows. The coincidence background is 0.14 cpm and the measured beta efficiency is 45%. We are now building a .0125 cm thick counter made of aluminum having a predicted efficiency of > 90%

  6. Nuclear safeguards technology handbook

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    The purpose of this handbook is to present to United States industrial organizations the Department of Energy's (DOE) Safeguards Technology Program. The roles and missions for safeguards in the U.S. government and application of the DOE technology program to industry safeguards planning are discussed. A guide to sources and products is included. (LK)

  7. Safeguards Culture: lesson learned

    International Nuclear Information System (INIS)

    Frazar, S.; Mladineo, S.V.

    2010-01-01

    After the discovery of Iraq's clandestine nuclear program in 1991, the international community developed new tools for evaluating and demonstrating states' nuclear intentions. The International Atomic Energy Agency (IAEA) developed a more holistic approach toward international safeguards verification to garner more complete information about states' nuclear activities. This approach manifested itself in State Level Evaluations, using information from a variety of sources, including the implementation of integrated safeguards in Member States, to reach a broader conclusion. Those wishing to exhibit strong nonproliferation postures to a more critical international community took steps to demonstrate their nonproliferation 'bona fides'. As these Member States signed and brought into force the Additional Protocol, submitted United Nations Security Council Resolution 1540 reports and strengthened their export control laws, the international community began to consider the emergence of so-called safeguards cultures. Today, safeguards culture can be a useful tool for measuring nonproliferation postures, but so far its impact on the international safeguards regime has been under appreciated. There is no agreed upon definition for safeguards culture nor agreement on how it should be measured.

  8. Detection of explosives by neutron scattering

    International Nuclear Information System (INIS)

    Brooks, F.D.; Buffler, A.; Allie, M.S.; Nchodu, M.R.; Bharuth-Ram, K.

    1998-01-01

    For non-intrusive detection of hidden explosives or other contraband such as narcotics a fast neutron scattering analysis (FNSA) technique is proposed. An experimental arrangement uses a collimated, pulsed beam of neutrons directed at the sample. Scattered neutrons are detected by liquid scintillation counters at different scattering angles. A scattering signature is derived from two-parameter data, counts vs pulse height and time-of-flight measured for each element (H, C, N or O) at each of two scattering angles and two neutron energies. The elemental signatures are very distinctive and constitute a good response matrix for unfolding elemental components from the scattering signatures measured for different compounds

  9. Development of precise measurement method of neutron energy for plasma temperature diagnostics in thermonuclear fusion

    International Nuclear Information System (INIS)

    Mori, Chizuo; Gotoh, Junichi; Uritani, Akira; Miyahara, Hiroshi; Ikeda, Yuichiro; Kasugai, Yoshimi; Kaneko, Junichi

    1998-01-01

    There are many types of fast neutron spectrometers for plasma temperature diagnostics, 28 Si(n,α) 25 Mg reaction giving the energy resolution of 2.2% for 14 MeV neutrons, the 12 C(n,α) 9 Be reaction giving the resolution of 2.15%. These detectors, however suffer from radiation damage, which demands to exchange the detector to a new one in every a few month depending on the usage. Recoil proton method has also been developed by using liquid scintillator or plastic scintillator, as a neutron-to-proton converter in front of a Si-detector, which is called counter telescope type, giving a resolution of 4.0%. This type of spectrometer can reduce radiation damage by placing Si-detector at outside Neutron beam. The scintillator can measure the lost energy of protons in the converter (i.e. the scintillator) and the measured energy loss can be used for improving the energy resolution. However, the energy resolution of organic scintillator itself is generally not so good. We proposed to use a proportional counter with CH 4 as counting gas and also as a neutron-proton converter, which has far better energy resolution than plastic scintillators, although the time resolution of counting in proportional counters is generally inferior to that in organic scintillation counters. The characteristics of the new spectrometer were experimentally studied and also were simulated with analytical calculation. (author)

  10. Notes on neutron flux measurement

    International Nuclear Information System (INIS)

    Alcala Ruiz, F.

    1984-01-01

    The main purpose of this work is to get an useful guide to carry out topical neutron flux measurements. Although the foil activation technique is used in the majority of the cases, other techniques, such as those based on fission chambers and self-powered neutron detectors, are also shown. Special interest is given to the description and application of corrections on the measurement of relative and absolute induced activities by several types of detectors (scintillators, G-M and gas proportional counters). The thermal arid epithermal neutron fluxes, as determined in this work, are conventional or effective (West cots fluxes), which are extensively used by the reactor experimentalists; however, we also give some expressions where they are related to the integrated neutron fluxes, which are used in neutron calculations. (Author) 16 refs

  11. Study of neutron rich nuclei by delayed neutron decay using the Tonnerre multidetector; Etude de la decroissance par neutrons retardes de noyaux legers riches en neutrons avec le multidetecteur tonnerre

    Energy Technology Data Exchange (ETDEWEB)

    Timis, C.N

    2001-07-01

    A new detection array for beta delayed neutrons was built. It includes up to 32 plastic scintillation counters 180 cm long located at 120 cm from the target. Neutron energy spectra are measured by time-of-flight in the 300 keV-15 MeV range with good energy resolution. The device was tested with several known nuclei. Its performances are discussed in comparison with Monte Carlo simulations. They very high overall detection efficiency on the TONNERRE array made it possible to study one and two neutron emission of {sup 11}Li. A complete decay scheme was obtained. The {sup 33}Mg and {sup 35}Al beta decays were investigated for the first time by neutron and gamma spectroscopy. Complete decay schemes were established and compared to large scale shell-model calculations. (authors)

  12. Absolute calibration of TFTR neutron detectors for D-T plasma operation

    International Nuclear Information System (INIS)

    Jassby, D.L.; Johnson, L.C.; Roquemore, A.L.; Strachan, J.D.; Johnson, D.W.; Medley, S.S.; Young, K.M.

    1995-03-01

    The two most sensitive TFTR fission-chamber detectors were absolutely calibrated in situ by a D-T neutron generator (∼5 x 10 7 n/s) rotated once around the torus in each direction, with data taken at about 45 positions. The combined uncertainty for determining fusion neutron rates, including the uncertainty in the total neutron generator output (±9%), counting statistics, the effect of coil coolant, detector stability, cross-calibration to the current mode or log Campbell mode and to other fission chambers, and plasma position variation, is about ±13%. The NE-451 (ZnS) scintillators and 4 He proportional counters that view the plasma in up to 10 collimated sightlines were calibrated by scanning. the neutron generator radially and toroidally in the horizontal midplane across the flight tubes of 7 cm diameter. Spatial integration of the detector responses using the calibrated signal per unit chord-integrated neutron emission gives the global neutron source strength with an overall uncertainty of ±14% for the scintillators and ±15% for the 4 He counters

  13. Introduction of Counter-Proliferation Capabilities in Development States

    International Nuclear Information System (INIS)

    Caulfield, P.; Edwards, T.; Witkin, A.; Elgebaly, A.

    2010-01-01

    In recent history we have seen a number of States develop their indigenous industrial skills to a point suitable for the manufacture of nuclear components. Private individuals unbeknown to the State have then utilized this capability to supply directly into proliferation networks - potentially reducing international confidence in such a State. To combat this possibility, a developing State must recognize the challenges that are raised by its emerging skills and take action to introduce measures that not only help the State identify proliferation activities but also ensure the national security of the State. One of those measures might be to develop a capability within the State to recognize and counter the activities of would-be-proliferators. In many States this capability is managed and applied through a dedicated counter-proliferation unit that has strong links with border controls and customs organizations. A counter-proliferation unit, once established could show dramatic returns for a modest investment. The activities of such a Unit could save the State political embarrassment by hindering and narrowing the chances of unintentional proliferation activities. The Unit should not be introduced as part of a Safeguards agreement or as part of a non proliferation treaty. It should rather be established as an act by the State to protect and control its emerging technologies from being involved, willingly or unwittingly, in proliferation activities. This is a sovereign act of the State - solely for its benefit and should not be imposed by any external power. Today's would-be-proliferators around the world cooperate and act together; similarly emerging counter-proliferation units should act and work together in order to be a step ahead of the proliferators. Improved world-wide cooperation should increase the detection rate of proliferation incidents which will in turn curtail the spread of nuclear weapons - for the benefit of all. (author)

  14. Safeguard sleuths

    International Nuclear Information System (INIS)

    Lowry, D.

    1989-01-01

    A report of the conference of the European Safeguards Research and Development Association, which tries to prevent the diversion of nuclear materials to military uses is given. Some of the problems encountered by safeguards inspectors are mentioned, such as being able to follow the material through the maze of piping in a reprocessing plant, the linguistic difficulties if the inspector does not speak the operator's language, the difference between precision and accuracy and the necessity of human inspection, containment and surveillance systems. Unexplained outages at a reprocessing plant are always treated as suspicious, as are power failures which prevent normal surveillance. The UK practice of allocating civil fuel temporarily to military use at Harwell also makes safeguard policing more difficult. (UK)

  15. Analysis on safeguard approach of radioactive waste at KIJANG research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jo; Lee, Sung Ho; Lee, Byung Doo; Kim, In Chul; Kim, Hyun Sook; Jung, Juang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    KIJANG Research Reactor (KJRR) will be constructed in Busan in order to provide the self-sufficiency of RI demand including Mo-99, to increase the neutron transmutation doping (NTD) capacity and to develop and validate technologies related to the research reactor. Considering the categorization of nuclear facility such as item counting and bulk facility, HANARO which is another research reactors in Korea is item counting facility because physical/chemical forms of nuclear material are not changes. During the dissolving process, radioactive wastes containing nuclear material are occurred at KJRR. In this paper, the features of the KJRR are described and safeguards approach on the radioactive wastes containing nuclear material occurred at KJRR are reviewed. This paper reviews the safeguards approach on radioactive wastes containing nuclear materials occurred during FM production at KJRR. Most uranium dissolved during FM production process are collected in U filter cakes and very tiny amount of uranium will be remained in the ILLW.

  16. Study of the number of neutrons produced by fission of {sup 239}Pu; Etude du nombre de neutrons produits par la fission de {sup 239}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Study of the number of neutrons produced by fission of {sup 239}Pu. The counting by coincidence of fissions and neutrons produced by these fissions allows the study of the variation of the mean number of neutrons emitted by {nu} fission. In the first chapter, it studied the variation of the mean number of neutrons emitted by {sup 239}Pu fission with the energy of the incident neutron. A description of the experiment is given: a spectrometer with a crystal of sodium chloride or beryllium (mounted on a goniometer) is used, a fission chamber containing 10 mg of {sup 239}Pu and the neutron detection system constituted of BF{sub 3} counters which are enriched in {sup 10}B. In the second part, the counting by coincidence of fissions and neutrons produced by the same fission and received by two different groups of counters allow the determination of a relationship between the root mean square and the average of neutron number produced by fission. The variation of the mean number of neutrons emitted by fission of {sup 239}Pu is studied when we change from a thermal spectra of neutrons to a fission spectra of incident neutrons. Finally, when separating in two different part the fission chamber, it is possible to measure the mean number of neutrons emitted from fission of two different sources. It compared the mean number of neutrons emitted by fission of {sup 239}Pu and {sup 233}U. (M.P.)

  17. Neutron personal dosimetry in criticality accidents

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Mauricio, C.L.P.

    1996-01-01

    In the present work an innovating method is proposed to estimate the absorbed dose received by individuals irradiated with neutrons in an accident, even in the case that the victim is not using any kind of neutron dosemeter. The method combines direct measurements of 24 Na and 32 P activated in the human body. The calculation method was developed using data taken from previously published papers and experimental measurements. Other irradiations results in different neutron spectra prove the validity of the method here proposed. Using a whole body counter to measure 24 Na activity, it is possible to evaluate neutron absorbed doses in the order of 140 μ Gy of very soft (thermal) spectra. For fast neutron fields, the lower limit for neutron dose detection increases, but the present method continues to be very useful in accidents, with higher neutron doses. (author)

  18. Neutron background measurements in the underground laboratory of Modane

    International Nuclear Information System (INIS)

    Chazal, V.; Chambon, B.; De Jesus, M.; Drain, D.; Pastor, C.; Vagneron, L.; Brissot, R.; Cavaignac, J.F.; Stutz, A.; Giraud-Heraud, Y.

    1997-07-01

    Measurements of the background neutron environment, at a depth of 1780 m (4800 mWe) in the Underground Laboratory of Modane (L.S.M) are reported. Using a 6 Li liquid scintillator, the energy spectrum of the fast neutron flux has been determined. Monte-Carlo calculations of the (α,n) and spontaneous fission processes in the surrounding rock has been performed and compared to the experimental result. In addition, using two 3 He neutron counters, the thermal neutron flux has been measured. (author)

  19. IAEA symposium on international safeguards

    International Nuclear Information System (INIS)

    1999-01-01

    The eighth IAEA Symposium on International Safeguards was organized by the IAEA in cooperation with the Institute of Nuclear Materials Management and the European Safeguards Research and Development Association. It was attended by over 350 specialists and policy makers in the field of nuclear safeguards and verification from more than 50 countries and organizations. The purpose of the Symposium was to foster a broad exchange of information on concepts and technologies related to important developments in the areas of international safeguards and security. For the first time in the history of the symposia, the IAEA is issuing proceedings free of charge to participants on CD-ROM. The twenty-two plenary, technical, and poster sessions featured topics related to technological and policy aspects from national, regional and global perspectives. The theme of the Symposium: Four Decades of Development - Safeguarding into the New Millennium set the stage for the commemoration of a number of significant events in the annals of safeguards. 1997 marked the Fortieth Anniversary of the IAEA, the Thirtieth Anniversary of the Tlatelolco Treaty, and the Twentieth Anniversary of the Department of Safeguards Member State Support Programmes. There were special events and noted presentations featuring these anniversaries and giving the participants an informative retrospective view of safeguards development over the past four decades. The proceedings of this symposium provide the international community with a comprehensive view of where nuclear safeguards and verification stood in 1997 in terms of the growing demands and expectations. The Symposium offered thoughtful perspectives on where safeguards are headed within the broader context of verification issues. As the world of international nuclear verification looks towards the next millennium, the implementation of the expanding and strengthened safeguards system presents formidable challenges

  20. The resonant detector and its application to epithermal neutron spectroscopy

    International Nuclear Information System (INIS)

    Gorini, G.; Perelli-Cippo, E.; Tardocchi, M.; Andreani, C.; D'Angelo, A.; Pietropaolo, A.; Senesi, R.; Imberti, S.; Bracco, A.; Previtali, E.; Pessina, G.; Rhodes, N.J.; Schooneveld, E.M.

    2004-01-01

    New perspectives for epithermal neutron spectroscopy are being opened by the development of the resonant detector (RD) and its use on inverse geometry time of flight spectrometers at spallation sources. The RD was first proposed in the 1980s and was recently brought to a performance level exceeding conventional neutron-sensitive Li-glass scintillator detectors. It features a photon counter coupled to a neutron analyzer foil. Resonant neutron absorption in the foil results in the emission of prompt gamma rays that are detected in the photon counter. The dimensions of the RD set the spatial resolution that can be achieved, ranging from a fraction of a cm to several cm. It can thus be tailored to the construction of detector arrays of different geometry. The main results of the research on this kind of detector are reported leading to the present optimized RD design based on a combination of YAP scintillation photon counter and uranium or gold analyzer foils. This detector has already been selected for application in the upgrade of the VESUVIO spectrometer on ISIS. A special application is the Very Low Angle Detector (VLAD) bank, which will extend the kinematical region for neutron scattering to low momentum transfer ( -1 ) whilst still keeping energy transfer >1 eV, thus allowing new experimental studies in condensed matter systems. The first results of tests made with prototype VLAD detectors are presented, confirming the usefulness of the RD for measurements at scattering angles as low as 2-5 deg

  1. Simulations for the neutron detector TETRA with MCNP

    International Nuclear Information System (INIS)

    Testov, D.; Kuznetsova, E.; Wilson, Jh.

    2013-01-01

    To study the nuclear structure of β-delayed neutron precursors at ALTO ISOL-facility at IPN (Orsay), the high efficiency 4π neutron detector TETRA with 3 He filled counters built at JINR (Dubna) was modified. The MCNP simulations to optimize the future configuration were necessary. The details of the calculations and the major results obtained are discussed

  2. Safeguards on MOX assemblies at LWRs

    International Nuclear Information System (INIS)

    Arenas Carrasco, J.; Koulikov, I.; Heinonen, O.J.; Arlt, R.; Grigoleit, K.; Clarke, R.; Swinhoe, M.

    2000-01-01

    Operating within the framework of the New Partnership Approach (NPA) for unirradiated MOX fuel assemblies in LWRs, the IAEA and EURATOM have gained experience in safeguarding 13 LWRs licensed to operate with MOX assemblies. In order to fulfil SIR requirements, verification methods and techniques capable of measuring MOX assemblies under water have been and are still being developed. These encompass both qualitative tests for the detection of plutonium (gross attribute tests) and quantitative tests for the measurement of the amount of plutonium (partial defect tests) and are based on gamma and neutron detection techniques. There are nine PWR and two BWR where the reactor and the spent fuel pond can be covered by the same surveillance device. These are Type I reactors where the reactor and the pond are located in the same hall. In these types of facilities relying on surveillance during the MOX refuelling is especially difficult at the BWRs due to the depth of the core pond. There are two PWR type facilities where the reactor and the spent fuel pond are located in different halls and cannot be covered by the same surveillance device (Type II). An open core camera has not been installed during refuelling and therefore indirect surveillance is currently used to survey MOX loading. Improvements are therefore required and are under consideration. After receipt at the facility, there are a few facilities which must keep the received fresh MOX fuel in wet storage, not only for a short period prior to refuelling, but for more than a year, until the next refuelling campaign. In these cases timely inspections for direct use fresh nuclear material require considerable inspection effort. Additionally, where human surveillance of core loading and finally core closure are necessary there is also a large demand for manpower. Either an agreement should be reached with the operators to delay the MOX loading until the end of the fuelling campaign, or alternative approaches should be

  3. Evaluation of the Neutron Detector Response for Cosmic Ray Energy Spectrum by Monte Carlo Transport Simulation

    International Nuclear Information System (INIS)

    Pazianotto, Mauricio T.; Carlson, Brett V.; Federico, Claudio A.; Gonzalez, Odair L.

    2011-01-01

    Neutrons generated by the interaction of cosmic rays with the atmosphere make an important contribution to the dose accumulated in electronic circuits and aircraft crew members at flight altitude. High-energy neutrons are produced in spallation reactions and intranuclear cascade processes by primary cosmic-ray particle interactions with atoms in the atmosphere. These neutrons can produce secondary neutrons and also undergo a moderation process due to atmosphere interactions, resulting in a wider energy spectrum, ranging from thermal energies (0.025 eV) to energies of several hundreds of MeV. The Long-Counter (LC) detector is a widely used neutron detector designed to measure the directional flux of neutrons with about constant response over a wide energy range (thermal to 20 MeV). ). Its calibration process and the determination of its energy response for the wide-energy of cosmic ray induced neutron spectrum is a very difficult process due to the lack of installations with these capabilities. The goal of this study is to assess the behavior of the response of a Long Counter using the Monte Carlo (MC) computational code MCNPX (Monte Carlo N-Particle eXtended). The dependence of the Long Counter response on the angle of incidence, as well as on the neutron energy, will be carefully investigated, compared with the experimental data previously obtained with 241 Am-Be and 252 Cf neutron sources and extended to the neutron spectrum produced by cosmic rays. (Author)

  4. Technology development for safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Kang, H. Y.; Song, D. Y. [and others

    2005-04-01

    The objective of this project are to establish the safeguards technology of the nuclear proliferation resistance to the facilities which handle with high radioactivity nuclear materials like the spent fuel, to provide the foundation of the technical independency for the establishment of the effective management of domestic spent fuels, and to construct the base of the early introduction of the key technology relating to the back-end nuclear fuel cycle through the development of the safeguards technology of the DFDF of the nuclear non-proliferation. The essential safeguards technologies of the facility such as the measurement and account of nuclear materials and the C/S technology were carried out in this stage (2002-2004). The principal results of this research are the development of error reduction technology of the NDA equipment and a new NDA system for the holdup measurement of process materials, the development of the intelligent surveillance system based on the COM, the evaluation of the safeguardability of the Pyroprocessing facility which is the core process of the nuclear fuel cycle, the derivation of the research and development items which are necessary to satisfy the safeguards criteria of IAEA, and the presentation of the direction of the technology development relating to the future safeguards of Korea. This project is the representative research project in the field of the Korea's safeguards. The safeguards technology and equipment developed while accomplishing this project can be applied to other nuclear fuel cycle facilities as well as DFDF and will be contributed to increase the international confidence in the development of the nuclear fuel cycle facility of Korea and its nuclear transparency.

  5. In-wire measurement of the neutron dose rate on patients with 238Pu pacemakers implanted

    International Nuclear Information System (INIS)

    Piesch, E.; Burgkhardt, B.; Kollmeier, W.

    1975-01-01

    In-vivo measurements of the neutron dose on Medtronic pacemakers have been performed by using a proportional counter and a scintillation counter. The paper discusses the technique of free air and phantom calibration and the method of in-vivo measurement of the neutron fluence and the estimation of the dose equivalent. The neutron dose equivalent rate measured on seven patients with 238 Pu pacemakers implanted were found to be (5.6+-0.1) mRem/h at the surface of the pacemaker in 1.25 cm distance from the center of the source corresponding to a neutron emission rate of 940 ns -1 . The results are in good agreement with results of other methods reported by different authors. (Auth.)

  6. DOE/ABACC safeguards cooperation

    International Nuclear Information System (INIS)

    Whitaker, J.M.; Toth, P.; Rubio, J.

    1995-01-01

    In 1994, the US Department of Energy (DOE) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) signed a safeguards cooperation agreement. The agreement provides for cooperation in the areas of nuclear material control, accountancy, verification, and advanced containment and surveillance technologies for international safeguards applications. ABACC is an international safeguards organization responsible for verifying the commitments of a 1991 bilateral agreement between Argentina and Brazil in which both countries agreed to submit all nuclear material in all nuclear activities to a Common System of Accounting and Control of Nuclear Materials (SCCC). DOE provides critical assistance (including equipment and training) through the Office of Nonproliferation and National Security to countries and international organizations to enhance their capabilities to control and verify nuclear material inventories. Specific activities initiated under the safeguards agreement include: (1) active US participation in ABACC's safeguards training courses, (2) joint development of specialized measurement training workshops, (3) characterization of laboratory standards, and (4) development and application of an extensive analytical laboratory comparison program. The results realized from these initial activities have been mutually beneficial in regard to strengthening the application of international safeguards in Argentina and Brazil

  7. Scintillation Counters for Neutron Scattering Experiments; Compteurs a scintillations pour les experiences de diffusion neutronique; Stsintillyatsionnye schetchiki dlya ehksperimentov s rasseyaniem nejtronov; Contadores de centelleo para experimentos de dispersion neutronica.

    Energy Technology Data Exchange (ETDEWEB)

    Harris, D; Duffil, C [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada); Wraight, L A [Aere, Harwell, Didcot, Berks (United Kingdom)

    1963-01-15

    Scintillation counters discussed in this paper are of two types : (i) UP or B{sub 2}O{sub 3} fixed with zinc sulphide in varving composition, (ii) Li containing glasses of varying composition. The ideal composition of each rype for neutron scattering experiments and their relative sensitivity tae neutrons and {gamma}-rays are considered. The ZnS type can be used with a {gamma}-ray pulse shape discriminator and practical experience of its use in a multi-counter time-of-flight experiment is described. The Li glass has higher {gamma}-background but also higher neutron efficiency. Performance figures of a scintillator containing 25% by wt. Li{sub 2}O and 1 mm thick will be given. (author) [French] Les compteurs a scintillations etudies sont de deux types : i) LiF ou B{sub 2}O{sub 3} fixe par du sulfure de zinc en composition variable, ii) verres contenant du lithium en composition variable. Les auteurs examinent la composition ideale de chaque type de compteur pour les experiences de diffusion de neutrons, ainsi que leur sinsibilite rrelative aux neutrons et aux rayons gamma. On peut utiliser le compteur a ZnS avec un discriminates de forme pour rayons gamma; les auteurs decrivent l'experience qu'ils ont de son emploi dans une experience de temps de vol a plusieurs compteurs. Le compteur verre-Li a un mouvement propre plus eleve pour les rayons gamma mais une meilleure efficacite vis-a-vis des neutrons. Les auteurs donnent quelques chiffres concernant le fonctionnement d'un scintillateur contenant 25% en poids de Li{sub 2}O et ayant une epaisseur de un millimetre. (author) [Spanish] Los contadores de centelleo examinados en esta memoria son de dos tipos : a) de LiF o B{sub 2}O{sub 3} mezclado con sulfuro de cinc en proporciones variables; b) de vidrios litiados de diversas composiciones. Los autores estudian la composicion ideal de cada tipo para experimentos de dispersion neutronica, asi como su sensibilidad relativa a los neutrones y a los rayos gamma. El tio de Zn

  8. Sequential measurements of spectrum and dose for cosmic-ray neutrons on the ground

    International Nuclear Information System (INIS)

    Hirabayashi, N.; Nunomiya, T.; Suzuki, H.; Nakamura, T.

    2002-01-01

    The earth is continually bathed in high-energy particles that come from outside the solar system, known as galactic cosmic rays. When these particles penetrate the magnetic fields of the solar system and the Earth and reach the Earth's atmosphere, they collide with atomic nuclei in air and secondary cosmic rays of every kind. On the other hand, levels of accumulation of the semiconductor increase recently, and the soft error that the cosmic-ray neutrons cause has been regarded as questionable. There have been long-term measurements of cosmic-ray neutron fluence at several places in the world, but no systematic study on cosmic-ray neutron spectrum measurements. This study aimed to measure the cosmic-ray neutron spectrum and dose on the ground during the solar maximum period of 2000 to 2002. Measurements have been continuing in a cabin of Tohoku University Kawauchi campus, by using five multi-moderator spectrometers (Bonner sphere), 12.7 cm diam by 12.7 cm long NE213 scintillator, and rem counter. The Bonner sphere uses a 5.08 cm diam spherical 3 He gas proportional counter and the rem counter uses a 12.7 cm diam 3 He gas counter. The neutron spectra were obtained by unfolding from the count rates measured with the Bonner sphere using the SAND code and the pulse height spectra measured with the NE213 scintillator using the FORIST code . The cosmic- ray neutron spectrum and ambient dose rates have been measured sequentially from April 2001. Furthermore, the correlation between ambient dose rate and the atmospheric pressure was investigated with a barometer. We are also very much interested in the variation of neutron spectrum following big solar flares. From the sequential measurements, we found that the cosmic-ray neutron spectrum has two peaks at around 1 MeV and at around 100 MeV, and the higher energy peak increases with a big solar flare

  9. Proliferation Resistance and Safeguards by Design: The Safeguardability Assessment Tool Provided by the INPRO Collaborative Project ''INPRO'' (Proliferation Resistance and Safeguardability Assessment)

    International Nuclear Information System (INIS)

    Haas, E.; Chang, H.-L.; Phillips, J.R.; Listner, C.

    2015-01-01

    Since the INPRO Collaborative Project on Proliferation Resistance and Safeguardability Assessment Tools (PROSA) was launched in 2011, Member State experts have worked with the INPRO Section and the IAEA Department of Safeguards to develop a revised methodology for self-assessment of sustainability in the area of proliferation resistance of a nuclear energy system (NES). With the common understanding that there is ''no proliferation resistance without safeguards'' the revised approach emphasizes the evaluation of a new 'User Requirement' for ''safeguardability'', that combines metrics of effective and efficient implementation of IAEA Safeguards including ''Safeguards-by-Design'' principles. The assessment with safeguardability as the key issue has been devised as a linear process evaluating the NES against a ''Basic Principle'' in the area of proliferation resistance, answering fundamental questions related to safeguards: 1) Do a State's legal commitments, policies and practices provide credible assurance of the exclusively peaceful use of the NES, including a legal basis for verification activities by the IAEA? 2) Does design and operation of the NES facilitate the effective and efficient implementation of IAEA safeguards? To answer those questions, a questionnaire approach has been developed that clearly identifies gaps and weaknesses. Gaps include prospects for improvements and needs for research and development. In this context, the PROSA approach assesses the safeguardability of a NES using a layered ''Evaluation Questionnaire'' that defines Evaluation Parameters (EP), EP-related questions, Illustrative Tests and Screening Questions to present and structure the evidence of findings. An integral part of the assessment process is Safeguards-by-Design, the identification of potential diversion, misuse and concealment strategies (coarse diversion path

  10. How safe are nuclear safeguards

    International Nuclear Information System (INIS)

    Sullivan, E.

    1979-01-01

    Reports of weaknesses in IAEA safeguards have alarmed the US and since September 1977, US officials have refused to certify that the IAEA can adequately safeguard nuclear material the US exports. For political reasons, the IAEA safeguards system cannot perform an actual policing role or physically protect strategic material. The IAEA can only send out inspectors to verify bookkeeping and install cameras to sound the alarm should a diversion occur. Based on these IAEA reports and on interviews with scientists and US officials, the following serious problems hampering the Agency's safeguards effort can be identified: no foolproof safeguards for commercial reprocessing plants, uranium enrichment facilities, or fast breeder reactors; equipment failure and unreliable instruments; faulty accounting methods; too few well-trained inspectors; restrictions on where inspectors can go; commercial conflicts. Programs by the US, Canada, West Germany, Japan, and developing nations devised to better safeguards are briefly discussed. Some experts question whether international safeguards can be improved quickly enough to successfully deter nuclear weapons proliferation, given the rapid spread of nuclear technology to the third world

  11. Some developments in safeguards techniques

    International Nuclear Information System (INIS)

    Beets, C.

    1977-01-01

    The fundamental principles of safeguards and the research and development of safeguards techniques are described. Safeguard accountancy based upon the partition of the fuel cycle into suitable material balance areas will be further improved. Implementation of international safeguards in the European fuel fabrication and reprocessing facilities is described. The effectiveness of a material accounting system depends on the quality of the quantitative data. The allocation of the tasks in the framework of an integrated safeguards is concerned with R and D work only and has no bearing on the allocation of the implementation costs. Bulk measurements, sampling and destructive or non-destructive analysis of samples are described for the determination of batch data. Testing of the safeguards techniques as a keystone in relation to plant instrumentation programmes are still being developed throughout the world. In addition to accountancy and control, it also includes an effective physical security program. The system of international safeguards that prevailed in the sixties has been re-modelled to comply with the new requirements of the Non-Proliferation Treaty and with the growth of nuclear energy

  12. Structure of safeguards systems

    International Nuclear Information System (INIS)

    Shipley, J.P.

    1978-06-01

    An effective safeguards system for domestic nuclear fuel cycle facilities consists of several important subsystems that must coordinate their functions with plant management and process control. The safeguards system must not unnecessarily disrupt plant operations, compromise safety requirements, or infringe on employee working conditions. This report describes concepts, which have been developed with the cooperation of the nuclear industry and the safeguards community, for achieving these objectives

  13. Novel technologies for safeguards

    International Nuclear Information System (INIS)

    Annese, C.; Monteith, A.; Whichello, J.

    2009-01-01

    Full-text: The International Atomic Energy Agency (IAEA) Novel Technologies Project is providing access to a wider range of methods and instruments, as well as establishing a systematic mechanism to analyse gaps in the inspectorate's technical support capabilities. The project also targets emerging and future inspectorate needs in the areas of verification and the detection of undeclared nuclear activities, materials, and facilities, providing an effective pathway to technologies in support of safeguards implementation. The identification of safeguards-useful nuclear fuel cycle (NFC) indicators and signatures (I and S) is a fundamental sub-task within the Project. It interfaces with other IAEA efforts currently underway to develop future safeguards approaches through undertaking an in-depth review of NFC processes. Primarily, the sub-task aims to identify unique and safeguards-useful 'indicators', which identify the presence of a particular process, and 'signatures', which emanate from that process when it is in operation. The matching of safeguards needs to detection tool capabilities facilitates the identification of gaps where no current method or instrument exists. The Project has already identified several promising technologies based on atmospheric gas sampling and analysis, laser spectrometry and optically stimulated luminescence. Instruments based on these technologies are presently being developed through support programme tasks with Member States. This paper discusses the IAEA's project, Novel Technologies for the Detection of Undeclared Nuclear Activities, Materials and Facilities and its goal to develop improved methods and instruments. The paper also describes the method that has been devised within the Project to identify safeguards-useful NFC I and S and to determine how the sub-task interfaces with other IAEA efforts to establish emerging safeguards approaches. As with all safeguards-targeted research and development (R and D), the IAEA depends

  14. The Agency's Safeguards System (1965)

    International Nuclear Information System (INIS)

    1965-01-01

    On 28 September 1965 the Board of Governors approved the Agency's revised safeguards system which is set forth in this document for the information of all Members. For ease of reference the revised system may be cited as 'The Agency's Safeguards System (1965)' to distinguish it from the original system - 'The Agency's Safeguards System (1961)'- and from the original system as extended to large reactor facilities - 'The Agency's Safeguards System (1961, as Extended in 1964)'

  15. Experience with confirmatory measurements at the Savannah River Plant

    International Nuclear Information System (INIS)

    Deason, P.T.; Cadieux, J.R.; Denard, C.D.

    1985-01-01

    Confirmatory measurements are performed on all category I and II plutonium shipments to the Savannah River Plant (SRP). The primary technique employed has been neutron coincidence counting using three instruments; two slab counters, and a well counter. These measurements have provided the required safeguards features to support the physical security measures already in place for inter-site shipments of special nuclear material (SNM). Similar confirmatory measurements have also been performed on a variety of scrap mixed-oxide materials stored at SRP for later processing. The data handling and results for several categories of material will be examined in addition to planned uses of the Rocky Flats Plant (RFP)/SRP Confirmatory Measurements Counter (CMC). 2 refs., 4 figs

  16. Leakage monitoring equipment of fuel element by delayed neutron method

    International Nuclear Information System (INIS)

    Ji Changsong; Zhang Shulan; Zhang Shuheng

    1999-01-01

    Based on monitoring results of delayed neutrons from reactor first circle water, the leakage of reactor fuel elements is monitored. A monitoring equipment consisted of an array of 3 He proportional counter tubes with 75 s delay has been developed. The neutron detection efficiency of 6.1% is obtained

  17. Thickness optimization of various moderator materials for maximization of thermal neutron fluence

    International Nuclear Information System (INIS)

    Dhang, Prosenjit; Verma, Rishi; Shyam, Anurag

    2015-01-01

    Plasma focus device is widely being used as pulsed neutron source for variety of applications. Measurements of neutron yield by largely preferred Helium-3 proportional counter and Silver activation counter are mainly sensitive to thermal neutrons and are typically used with a neutron moderator. Thermalization of neutron is based on scattering reaction and hydrogenous materials are the best thermalizing medium. The efficiency of aforementioned neutron detectors is considerably affected by physical and geometrical properties of thermalizing medium i.e. moderator material, its thickness and shape. In view of the same, simulations have been performed to explore the effective utilization of Polyethylene, Perspex and Light water as moderating mediums for cylindrical and spherical geometry. In this study, estimated thermal fluence value up to 0.5 eV has been considered as the benchmark factor for comparing efficient thermalization by specific material, its thickness and shape. In either of the shapes being cylindrical or spherical, use of Polyethylene as moderating medium has resulted in minimum optimum thickness along with highest thermal fluence. (author)

  18. Safeguards for geological repositories

    International Nuclear Information System (INIS)

    Fattah, A.

    2000-01-01

    Direct disposal of spent nuclear fuel in geological repositories is a recognised option for closing nuclear fuel cycles. Geological repositories are at present in stages of development in a number of countries and are expected to be built and operated early next century. A State usually has an obligation to safely store any nuclear material, which is considered unsuitable to re-enter the nuclear fuel cycle, isolated from the biosphere. In conjunction with this, physical protection has to be accounted for to prevent inadvertent access to such material. In addition to these two criteria - which are fully under the State's jurisdiction - a third criterion reflecting international non-proliferation commitments needs to be addressed. Under comprehensive safeguards agreements a State concedes verification of nuclear material for safeguards purposes to the IAEA. The Agency can thus provide assurance to the international community that such nuclear material has been used for peaceful purposes only as declared by the State. It must be emphasised that all three criteria mentioned constitute a 'unit'. None can be sacrificed for the sake of the other, but compromises may have to be sought in order to make their combination as effective as possible. Based on comprehensive safeguards agreements signed and ratified by the State, safeguards can be terminated only when the material has been consumed or diluted in such a way that it can no longer be utilised for any nuclear activities or has become practicably irrecoverable. As such safeguards for nuclear material in geological repositories have to be continued even after the repository has been back-filled and sealed. The effective application of safeguards must assure continuity-of-knowledge that the nuclear material in the repository has not been diverted for an unknown purpose. The nuclear material disposed in a geological repository may eventually have a higher and long term proliferation risk because the inventory is

  19. 5th symposium on neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, F

    1985-03-01

    The symposium was held in Neuherberg near Munich on September 17-20, 1984 and was attended by 200 specialists from 20 coutries. The participants discussed the following areas of neutron dosimetry: basic concept and analysis of irradiation, basic data, proportional counters in radiation protection, detector response and spectrometry, enviromental monitoring, radiobiology and biophysical models, analysis of neutron fields, thermoluminescent detectors, personnel monitoring, calibration, measurement in the environment of /sup 252/Cf sources, analysis of fields and detector response, standardization dosimetry, ionization chambers, planning of therapeutical irradiation study of depth dose distribution, facilities for neutron therapy and international comparison. (E.S.).

  20. 5th symposium on neutron dosimetry

    International Nuclear Information System (INIS)

    Spurny, F.

    1985-01-01

    The symposium was held in Neuherberg near Munich on September 17-20, 1984 and was attended by 200 specialists from 20 coutries. The participants discussed the following areas of neutron dosimetry: basic concept and analysis of irradiation, basic data, proportional counters in radiation protection, detector response and spectrometry, enviromental monitoring, radiobiology and biophysical models, analysis of neutron fields, thermoluminescent detectors, personnel monitoring, calibration, measurement in the environment of 252 Cf sources, analysis of fields and detector response, standardization dosimetry, ionization chambers, planning of therapeutical irradiation study of depth dose distribution, facilities for neutron therapy and international comparison. (E.S.)

  1. Strengthening regional safeguards

    International Nuclear Information System (INIS)

    Palhares, L.; Almeida, G.; Mafra, O.

    1996-01-01

    Nuclear cooperation between Argentina and Brazil has been growing since the early 1980's and as it grew, so did cooperation with the US Department of Energy (DOE). The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was formed in December 1991 to operate the Common System of Accounting and Control of Nuclear Materials (SCCC). In April 1994, ABACC and the DOE signed an Agreement of Cooperation in nuclear material safeguards. This cooperation has included training safeguards inspectors, exchanging nuclear material measurement and containment and surveillance technology, characterizing reference materials, and studying enrichment plant safeguards. The goal of the collaboration is to exchange technology, evaluate new technology in Latin American nuclear facilities, and strengthen regional safeguards. This paper describes the history of the cooperation, its recent activities, and future projects. The cooperation is strongly supported by all three governments: the Republics of Argentina and Brazil and the United States

  2. Recent advances in IAEA safeguards systems analysis

    International Nuclear Information System (INIS)

    Bahm, W.; Ermakov, S.; Kaniewski, J.; Lovett, J.; Pushkarjov, V.; Rosenthal, M.D.

    1983-01-01

    Efficient implementation of effective safeguards, the objective of the IAEA's Department of Safeguards, would be unthinkable without carrying out systematic studies on many different problems related to technical and other aspects of safeguards. The System Studies Section of the Department concentrates its efforts on such studies with the purpose of elaborating concepts, criteria, approaches and rules for the implementation of safeguards. In particular, the Section elaborates concepts and approaches for applying safeguards at the complex facilities that are expected to enter under safeguards in the future, develops approaches and rules in the areas where the Agency is still gaining experience, and assists in the implementation of safeguards whenever problems requiring non-routine solutions arise. This paper presents examples of the present activities of the System Studies Section: development of guidelines for use by facility designers in order to make safeguards easier and more effective, studies on near-real-time material accountancy, preparation of safeguards approaches for specific facility types, preparation of model inspection activity lists for different facility types and alternative safeguards approaches and preparation of safeguards policy papers containing the rules and regulations to be followed in the design and implementation of safeguards. (author)

  3. Development of a drift tissue equivalent proportional counter for radiation protection personnel dosimetry

    International Nuclear Information System (INIS)

    Bordy, J.M.

    1992-04-01

    A new multicellular geometry for proportional counter has been developed. It is made of several drift regions which are some holes drilled in the cathode in front of anodes wires. The present work is made of 3 parts: 1) A theoretical evaluation of the multicellular counter characteristics: the sensitivity increases by a factor 15 vs the Tinelli Merlin-Gerin counter; the chord length distribution study shows the possibility to use a Dirac function for the dosimetry calculations; a tissue equivalent gas mixture based on argon and propane is designed. 2) The production of a monocellular prototype made of a hole and a needle shaped anode. 3) An experimental study of the prototype electrical characteristics and a computation of the electrical field in the counter. The focalization and the electron drift into the hole, the proportional operating mode are shown. Irradiations in front of photon and neutron sources verify these results

  4. Nuclear safeguards research and development

    Science.gov (United States)

    Henry, C. N.

    1981-11-01

    The status of a nuclear safeguard research and development program is presented. Topics include nondestructive assay technology development and applications, international safeguards, training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  5. Implementation of Safeguards in Thailand

    International Nuclear Information System (INIS)

    Rueanngoen, A.; Changkrueng, K.; Srijittawa, L.; Mungpayaban, H.; Wititteeranon, A.

    2015-01-01

    Thailand is a non-nuclear weapon state. The non-nuclear activities are mainly medical, agricultural, and industrial. Therefore, Thailand ratified the Nuclear Non-Proliferation Treaty (NPT) since 1972 and has been entry into force of the Comprehensive Safeguards Agreement (INFCIRC 241) since 1974. Based on the INFCIRC 153, Thailand established a system of accounting for and control of all nuclear material subject to safeguards under the Agreement. In order to ensure the peaceful use of nuclear in Thailand the Nuclear-Non- Proliferation Center of Office of Atoms for Peace (NPC, OAP) was established to act as State level Safeguards. NPC is responsible for keeping records and providing information under requirement of Comprehensive Safeguards Agreement. In addition, the strengthening of cooperation and good coordination between Thailand and IAEA are indeed important and necessary to implementation safeguards in country. Based on the report of IAEA safeguards statement, there is no indication of the diversion of nuclear materials or misuse of the facility or the items in Thailand. Up to present, nuclear activities in Thailand are peaceful without diversion of using. This paper reviews the current status of the implementation Safeguards in Thailand. (author)

  6. IAEA safeguard system

    International Nuclear Information System (INIS)

    Pontes, B.C.

    1987-01-01

    The intents of IAEA safeguards, analysing into the IAEA statutes, are presented. The different types of safeguard agreements; the measurements of accounting, containment and caution used by the operator and; the information to be provided and the verification to be developed by IAEA are described. (M.C.K.) [pt

  7. Performance of B-10 based detectors

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, Mathieu; Anderson, Tom; Johnson, Nathan; Mckinny, Kevin; Mcpheeters, Matthew [GE Measurement and Control - Reuter-Stokes, Twinsburg, Ohio (United States)

    2015-07-01

    Helium-3 gas-filled detectors have been used in nuclear safeguards applications, in homeland security neutron detection modules and in research for over 30 years. With the current shortage of {sup 3}He gas, GE's Reuter-Stokes business developed a {sup 10}B lined proportional counter and a {sup 10}B hybrid detector, in which a small amount of {sup 3}He is added to a 10B detector to enhance the neutron sensitivity. In 2010, GE's Reuter-Stokes successfully developed a commercial alternative to 3He gas-filled detectors for homeland security neutron detection modules based on 10B lined proportional counters. We will present the concept behind the {sup 10}B neutron detection modules, as drop-in replacement to existing 3He neutron detection modules deployed, and the timeline and development needed to get a fully commercial application. To ensure the highest quality, each {sup 10}B neutron detection unit is put through a series of tests: temperature cycles from -40 deg. C to +55 deg. C, vibration testing at levels up to 2.5 g from 10 Hz to 50 Hz in every direction, neutron sensitivity reaching up to 4.5 cps/(ng {sup 252}CF at 2 m), and gamma insensitivity with field reaching 1 Sv/hr. In 2013, GE's Reuter-Stokes developed the B10Plus+{sup R} detector, in which a small amount of {sup 3}He is added to a {sup 10}B lined proportional counter. Depending on the amount of {sup 3}He added, the B10Plus+{sup R} can more than double the neutron sensitivity compared to a {sup 10}B lined proportional counter. {sup 10}B lined proportional counters and B10Plus+{sup R} have excellent gamma rejection and excellent performance even at very high neutron flux. The gamma rejection and high neutron flux performance of these detectors are comparable, if not better, than traditional {sup 3}He proportional counters. GE's Reuter-Stokes business modelled, designed, built and tested prototype coincidence counters using the {sup 10}B lined detectors and the {sup 10}B hybrid

  8. Current technical issues in international safeguards

    International Nuclear Information System (INIS)

    Bennett, C.A.

    1977-01-01

    Safeguards systems, and the associated need for technical and systems development, reflect changing conditions and concerns associated with the nuclear fuel cycle and the safety and security of nuclear materials and facilities. In particular, the implementation of international safeguards has led to the recognition of certain technical issues, both old and new, which are in need of resolution. These are: 1. The grading of nuclear materials and facilities with respect to their relative safeguards significance. 2. The extension and upgrading of safeguards techniques to maintain adequate protection in view of constantly increasing amounts of material to be safeguarded. 3. The balance between safeguards mechanisms based on physical protection and material accounting, and the role of surveillance and containment in each case. 4. The role of information systems as a basis for both analytical feedback and the determination of the factors affecting system effectiveness and their interrelationship. 5. A determination of the degree to which the overall technical effectiveness of international inspection activities can be quantified. Each of these technical issues must be considered in light of the specific objectives of international safeguards, which differ from domestic safeguards in terms of the level of the threat, the safeguards mechanisms available, and the diversion strategies assumed. Their resolution in this international context is essential if the effectiveness and viability of international safeguards are to be maintained

  9. Development and Characterization of a High Sensitivity Segmented Fast Neutron Spectrometer (FaNS-2).

    Science.gov (United States)

    Langford, T J; Beise, E J; Breuer, H; Heimbach, C R; Ji, G; Nico, J S

    2016-01-01

    We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3 He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3 He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252 Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2.

  10. Safeguarding the Plutonium Fuel Cycle

    International Nuclear Information System (INIS)

    Johnson, S.J.; Lockwood, D.

    2013-01-01

    In developing a Safeguards Approach for a plutonium process facility, two general diversion and misuse scenarios must be addressed: 1) Unreported batches of undeclared nuclear material being processed through the plant and bypassing the accountancy measurement points, and 2) The operator removing plutonium at a rate that cannot be detected with confidence due to measurement uncertainties. This paper will look at the implementation of international safeguards at plutonium fuel cycle facilities in light of past lessons learned and current safeguards approaches. It will then discuss technical areas which are currently being addressed as future tools to improve on the efficiency of safeguards implementation, while maintaining its effectiveness. The discussion of new improvements will include: safeguards by design (SBD), process monitoring (PM), measurement and monitoring equipment, and data management. The paper is illustrated with the implementation of international safeguards at the Rokkasho Reprocessing Plant in Japan and its accountancy structure is detailed. The paper is followed by the slides of the presentation

  11. Safeguards agreements - Their legal and conceptual basis

    International Nuclear Information System (INIS)

    Sanders, B.; Rainer, R.H.

    1977-01-01

    The application of Agency safeguards requires treaty arrangements (Safeguards Agreements) between the State or States concerned and the Agency. The authority for the Agency to conclude such agreements and to implement them is provided for in the Agency's Statute. On the basis of the statutory provisions safeguards principles and procedures have been elaborated. These have been laid down in: The Agency's Safeguards System 1965, extended in 1966 and 1968; and the basis for negotiating safeguards agreements with NNWS pursuant to NPT. The verification of the undertaking by the State concerned not to use items subject to safeguards for purposes contrary to the terms of the agreement is ensured through the application of various safeguards measures. Containment and surveillance measures are expected to play an increasingly important role. One of the specific features of NPT Safeguards Agreements is the establishment of national systems of accounting and control of nuclear material. The majority of the agreements concluded under the non-NPT safeguards agreements implement obligations undertaken under co-operation agreements between States for peaceful uses of nuclear energy. These agreements naturally reflect approaches adopted by the parties, in particular regarding the circumstances under which safeguards should be applied. Thus, the concepts used in the non-NPT safeguards agreements and the Safeguards System document, which is incorporated in these agreements by reference, are in continuous evolution. The Agency's Safeguards System document (INFCIRC/66/Rev.2) continues to be supplemented in practical application and through explicit decision by the Board. The non-NPT safeguards agreements contain, besides technical safeguards provisions from this document, and further provision for notification, inventories and financial matters, legal and political provisions such as sanctions in the case of non-compliance, and privileges and immunities. The paper discusses the

  12. A neutron survey meter with sensitivity extended up to 400 MeV

    International Nuclear Information System (INIS)

    Birattari, C.; Silari, M.

    1992-01-01

    The well-known Andersson-Braun rem counter is widely employed for radiation protection purposes, but its efficiency shows a marked decrease for neutron energies above about 10 MeV. Since the availability of a survey meter with a good sensitivity to higher energies can be very useful, for instance, at many particle accelerator facilities, a neutron monitor with a response function extended up to 400 MeV has been achieved by modifying the structure of the moderator-attenuator of a commercial instrument. The first experimental tests carried out to verify the response of the new monitor both to low and high energy neutrons are reported. A comparison with the response function of three conventional commercial rem counters is presented. (author)

  13. IAEA safeguards for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement ofregional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards.

  14. Study of the number of neutrons produced by fission of 239Pu

    International Nuclear Information System (INIS)

    Jacob, M.

    1958-01-01

    Study of the number of neutrons produced by fission of 239 Pu. The counting by coincidence of fissions and neutrons produced by these fissions allows the study of the variation of the mean number of neutrons emitted by ν fission. In the first chapter, it studied the variation of the mean number of neutrons emitted by 239 Pu fission with the energy of the incident neutron. A description of the experiment is given: a spectrometer with a crystal of sodium chloride or beryllium (mounted on a goniometer) is used, a fission chamber containing 10 mg of 239 Pu and the neutron detection system constituted of BF 3 counters which are enriched in 10 B. In the second part, the counting by coincidence of fissions and neutrons produced by the same fission and received by two different groups of counters allow the determination of a relationship between the root mean square and the average of neutron number produced by fission. The variation of the mean number of neutrons emitted by fission of 239 Pu is studied when we change from a thermal spectra of neutrons to a fission spectra of incident neutrons. Finally, when separating in two different part the fission chamber, it is possible to measure the mean number of neutrons emitted from fission of two different sources. It compared the mean number of neutrons emitted by fission of 239 Pu and 233 U. (M.P.)

  15. Ultra Wide Band RFID Neutron Tags for Nuclear Materials Monitoring

    International Nuclear Information System (INIS)

    Nekoogar, F.; Dowla, F.; Wang, T.

    2010-01-01

    Recent advancements in the ultra-wide band Radio Frequency Identification (RFID) technology and solid state pillar type neutron detectors have enabled us to move forward in combining both technologies for advanced neutron monitoring. The LLNL RFID tag is totally passive and will operate indefinitely without the need for batteries. The tag is compact, can be directly mounted on metal, and has high performance in dense and cluttered environments. The LLNL coin-sized pillar solid state neutron detector has achieved a thermal neutron detection efficiency of 20% and neutron/gamma discrimination of 1E5. These performance values are comparable to a fieldable 3 He based detector. In this paper we will discuss features about the two technologies and some potential applications for the advanced safeguarding of nuclear materials.

  16. Safeguards systems parameters

    International Nuclear Information System (INIS)

    Avenhaus, R.; Heil, J.

    1979-01-01

    In this paper analyses are made of the values of those parameters that characterize the present safeguards system that is applied to a national fuel cycle; those values have to be fixed quantitatively so that all actions of the safeguards authority are specified precisely. The analysis starts by introducing three categories of quantities: The design parameters (number of MBAs, inventory frequency, variance of MUF, verification effort and false-alarm probability) describe those quantities whose values have to be specified before the safeguards system can be implemented. The performance criteria (probability of detection, expected detection time, goal quantity) measure the effectiveness of a safeguards system; and the standards (threshold amount and critical time) characterize the magnitude of the proliferation problem. The means by which the values of the individual design parameters can be determined with the help of the performance criteria; which qualitative arguments can narrow down the arbitrariness of the choice of values of the remaining parameters; and which parameter values have to be fixed more or less arbitrarily, are investigated. As a result of these considerations, which include the optimal allocation of a given inspection effort, the problem of analysing the structure of the safeguards system is reduced to an evaluation of the interplay of only a few parameters, essentially the quality of the measurement system (variance of MUF), verification effort, false-alarm probability, goal quantity and probability of detection

  17. Licensee safeguards contingency plans

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The Nuclear Regulatory Commission is amending its regulations to require that licensees authorized to operate a nuclear reactor (other than certain research and test reactors), and those authorized to possess strategic quantities of plutonium, uranium-233, or uranium-235 develop and implement acceptable plans for responding to threats, thefts, and industrial sabotage of licensed nuclear materials and facilities. The plans will provide a structured, orderly, and timely response to safeguards contingencies and will be an important segment of NRC's contingency planning programs. Licensee safeguards contingency plans will result in organizing licensee's safeguards resources in such a way that, in the unlikely event of a safeguards contingency, the responding participants will be identified, their several responsibilities specified, and their responses coordinated

  18. Safeguards challenges of Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Ko, H. S.

    2010-01-01

    Although the safeguards system of Sodium Fast Reactor (SFR) seems similar to that of Light Water Reactor (LWR), it was raised safeguards challenges of SFR that resulted from the visual opacity of liquid sodium, chemical reactivity of sodium and other characteristics of fast reactor. As it is the basic concept stage of the safeguards of SFR in Korea, this study tried to analyze the latest similar study of safeguards issues of the Fast Breeder Reactor (FBR) at Joyo and Monju in Japan. For this reason, this study is to introduce some potential safeguards challenges of Fast Breeder Reactor. With this analysis, future study could be to address the safeguards challenges of SFR in Korea

  19. Three-dimensional neutron dose distribution in the environment around a 1-GeV electron synchrotron facility at INS

    International Nuclear Information System (INIS)

    Uwamino, Y.; Nakamura, T.

    1987-01-01

    The three-dimensional (surface and altitude) skyshine neutron-dose-equivalent distribution around the 1-GeV electron synchrotron (ES) of the Institute for Nuclear Study, University of Tokyo, was measured with a high-sensitivity dose-equivalent counter. The neutron spectrum in the environment was also measured with a multimoderator spectrometer incorporating a 3 He counter. The dose-equivalent distribution and the leakage neutron spectrum at the surface of the ES building were measured with a Studsvik 2202D counter and the multimoderator spectrometer, including an indium activation detector. Skyshine neutron transport calculations, beginning with the photoneutron spectrum and yielding the dose-equivalent distribution in the environment, were performed with the DOT3.5 code and two Monte Carlo codes, MMCR-2 and MMCR-3, using the DLC-87/HILO group cross sections. The calculated neutron spectra at the top surface of the concrete ceiling and at a point 111 m from the ES agreed well with the measured results, and the calculated three-dimensional dose-equivalent distribution also agreed. The dose value increased linearly with altitude, and the slope was estimated for neutron-producing facilities. (author)

  20. The next generation safeguards initiative

    International Nuclear Information System (INIS)

    Tobey, William

    2008-01-01

    NGSI or the Next Generation Safeguards Initiative is designed to revitalize the U.S. safeguards technical base, as well as invest in human resources, and to mobilize our primary asset - the U.S. National Laboratories - as well as industry and academia to restore capabilities. While NGSI is a U.S. effort it is intended to serve as a catalyst for a much broader commitment to international safeguards in partnership with the IAEA and other countries. Initiatives over the last years include such as the Proliferation Security Initiative, UN Security Council Resolution 1540, the Global Initiative to Combat Nuclear Terrorism, and initiatives of the G-8 and NSG to discourage the spread of enrichment and reprocessing. NGSI augments this agenda by providing a means to strengthen the technical and political underpinnings of IAEA safeguards. Priorities and envisioned activities under NGSI are the following. (1) Cooperation with IAEA and others to promote universal adoption of safeguards agreements and the Additional Protocol including greater information sharing between member states and the IAEA, investigation of weaponization and procurement activities, and options to strengthen the state-level approach to safeguards. (2) NGSI anticipates the deployment of new types of reactors and fuel cycle facilities, as well as the need to use limited safeguards resources effectively and efficiently, especially in plants that pose the largest burden specifically complex, bulk-handling facilities. (3) NGSI will encourage a generational improvement in current safeguards technologies including improvement of precision and speed of nuclear measurements, performance of real-time process monitoring and surveillance in unattended mode, enabling in-field, pre-screening and analysis of nuclear and environmental samples, and collection, integration, analysis and archiving safeguards-relevant information from all available sources.(4) NGSI will address human capital management. Training and

  1. Microdosimetry of monoenergetic neutrons

    International Nuclear Information System (INIS)

    Srdoc, D.; Marino, S.A.

    1993-01-01

    Tissue spheres 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0 μm in diameter were simulated using a wall-less spherical counter filled with a propane-based tissue-equivalent gas. Microdosimetric spectra corresponding to these site sizes were measured for five neutron energies (0.22, 0.44, 1.5, 6, and 14 MeV) and the related mean values bar Y F and bar Y D were calculated for several site sizes and neutron energies. An elaborate calibration technique combining soft x-rays, a 55 Fe photon source, and a 244 Cm collimated source of alpha particles was used throughout the measurement. The spectra and their mean values are compared with theoretically calculated values for ICRU tissue. The agreement between the calculated and the measured data is good in spite of a systematic discrepancy, which could be attributed, in part, to the difference in elemental composition between the tissue-equivalent gas and plastic used in the counter, and the ICRU standard tissue used in the calculations

  2. Safeguards can not operate alone

    International Nuclear Information System (INIS)

    Martikka, E.; Honkamaa, T.; Haemaelaeinen, M.; Okko, O.

    2013-01-01

    There are around 20 new states which are planning to use nuclear energy in the near future. Globally there are several nuclear power plants under construction and they will be bigger than ever. Also new type of nuclear facility, final disposal facility for spent nuclear fuel, will be constructed and in operation in Finland and Sweden in ca. 10 years time. It is evident that the nuclear world is changing much and quickly. After the Additional Protocol, safeguards are no longer only about accounting and control of nuclear materials, but also about verifying that there are no undeclared nuclear materials and activities in the state. It is not possible or effective anymore to implement safeguards without taking into account of the nuclear safety and security. The safeguards should not be isolated. The synergy between safeguards, security and safety exist, when implementing nationally that there are no undeclared nuclear materials or activities. In safeguards we could not do our duties effectively if we ignore some of those other S's. Safeguards by Design process does not work properly if only international safeguards and security requirements has been taken into account, it urges all 3S to be taken care at the same time. Safeguards should operate also with other synergetic regimes and organisations like CTBTO, Fissile Material Cut-off, disarmament, export control, border control,... The paper is followed by the slides of the presentation

  3. A Bragg curve counter with an internal production target for the measurement of the double-differential cross-section of fragment production induced by neutrons at energies of tens of MeV

    International Nuclear Information System (INIS)

    Sanami, T.; Hagiwara, M.; Oishi, T.; Hosokawa, M.; Kamada, S.; Tanaka, Su.; Iwamoto, Y.; Nakashima, H.; Baba, M.

    2009-01-01

    A Bragg curve counter equipped with an internal production target was developed for the measurements of double-differential cross-sections of fragment production induced by neutrons at energies of tens of MeV. The internal target permitted a large detection solid angle and thus the registration of processes at low production rates. In this specific geometry, the detection solid angle depends on the emission angle and the range of the particle. Therefore the energy, atomic number, and angle of trajectory of the particle have to be taken into account for the determination of the solid angle. For the selection of events with tracks confined within a defined cylindrical volume around the detector axis, a segmented anode was applied. The double-differential cross-sections for neutron-induced production of lithium, beryllium, and boron fragments from a carbon target were measured at 0 deg. for 65 MeV neutrons. The results are in good agreement with theoretical calculation using PHITS code with GEM and ISOBAR model.

  4. IAEA safeguards for the 21st century

    International Nuclear Information System (INIS)

    1999-01-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement of regional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards

  5. Application of safeguards procedures

    International Nuclear Information System (INIS)

    1977-01-01

    The earliest applications of safeguards procedures took place in a political and technical climate far different from that of today. In the early 1960's there was a fear of the proliferation possibilities which could arise as more and more countries acquired nuclear power plants. Today nuclear power is being produced in some 20 countries without resulting in nuclear weapons proliferation. The export of equipment and technology for the nuclear fuel cycle, however, has become the subject of current concern. In view of these developments, it is not surprising that techniques in the application of safeguards have also changed. In order to appreciate the nature of these changes, it is important to be aware of the original general attitude towards the technical problems of safeguards applications. Originally, the common attitude was that the objectives of safeguards were self-evident and the methods, while in need of development, were known at least in outline. Today, it has become evident that before a safeguards procedure can be applied, the objectives must first be carefully defined, and the criteria against which success in meeting those objectives can be measured must also be developed. In line with this change, a significant part of the effort of the safeguards inspectorate is concerned with work preliminary and subsequent to the actual inspection work in the field. Over the last two years, for example, a considerable part of the work of experienced safeguards staff has been spent in analysing the possibilities of diverting material at each facility to be safeguarded. These analyses are carried out in depth by a 'facility officer' and are subjected to constructive criticism by teams composed of staff responsible for similar types of facilities as well as other technical experts. The analyses consider the measures currently considered practicable, to meet the diversion possibilities and where necessary list the development work needed to overcome any present

  6. Safeguards by Design Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-13

    The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA’s limited budget. Dose to workers should always be as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).

  7. Safeguards by Design Challenge

    International Nuclear Information System (INIS)

    Alwin, Jennifer Louise

    2016-01-01

    The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA's limited budget. Dose to workers should always be as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).

  8. Needle counter

    International Nuclear Information System (INIS)

    Fujita, Yuzo

    1977-01-01

    Needle counter had been devised by Geiger about 60 years ago before the present GM counter appeared. It is suitable for the detection of weak radiation because it is limited in effective volume, if the background due to mainly cosmic ray is proportional to the effective volume of the counter. Recently the very low β detector having a needle counter as the main detector has been developed. It showed highly excellent performance in the measurements of small area samples, about ten times sensitive as compared with other detectors. The counter is installed in the very low radiation measuring well at Nokogiriyama, Chiba Prefecture, using a NaI scintillator as its guard counter. D. H. Wilkinson first treated a gas amplification counter theoretically and quantitatively. The authors have obtained good results in the comparison with the experiments of the counter using a generalized form of Wilkinson theory. The findings obtained through this study seem to be applicable to the electrode arrangement which is important for the counter design. It was found that the excellent rise time of induced pulses in a gas amplification counter was achieved in larger amplification factor and smaller convolution effect. In the detection of charged particles with small obstructing capability such as γ ray, faster rise time and higher pulses can be obtained with needle counters than wire counters. (Wakatsuki, Y.)

  9. Lanthanides separation by counter - current electrophoretic using α - hydroxyisobutyric acid

    International Nuclear Information System (INIS)

    Alleluia, I.B.

    1975-01-01

    Studies about counter-current electrophoretic separation of rare earth metal ions using α-hydroxyisobutyric acid as complexing electrolyte are discussed. La, Pr, Nd, Sm and Eu were separated and fractions with purities better than 99,9% were obtained, using neutron activation analysis. A relation between the first stability constant of the α-hydroxyisobutyrate/lanthanide complexes and their migration velocities were observed. (M.J.C.) [pt

  10. IAEA safeguards approaches and goals

    International Nuclear Information System (INIS)

    Khlebnikov, Nikolai

    2001-01-01

    IAEA safeguards provide a technical means of verifying that political obligations undertaken by States party to international agreements relating to the peaceful uses of nuclear energy are being honored. The Agency assures the international community that States party to Safeguards Agreements are complying with their undertaking not to use facilities and divert nuclear materials from peaceful uses to the manufacture of nuclear explosive devices. The task of IAEA safeguards can be summed up as to detect diversion of nuclear materials committed to peaceful uses of nuclear energy, or the misuse of equipment or facilities subject to certain safeguards agreements, and to deter such diversion or misuse through the risk of early detection. This lecture concentrates on the factors the Agency takes into account in designing and implementing safeguards approaches at facilities. (author)

  11. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Goto, Yasushi; Mitsubori, Minehisa; Ohashi, Kazunori.

    1997-01-01

    The present invention provides a neutron flux monitoring device for preventing occurrence of erroneous reactor scram caused by the elevation of the indication of a start region monitor (SRM) due to a factor different from actual increase of neutron fluxes. Namely, judgement based on measured values obtained by a pulse counting method and a judgment based on measured values obtained by a Cambel method are combined. A logic of switching neutron flux measuring method to be used for monitoring, namely, switching to an intermediate region when both of the judgements are valid is adopted. Then, even if the indication value is elevated based on the Cambel method with no increase of the counter rate in a neutron source region, the switching to the intermediate region is not conducted. As a result, erroneous reactor scram such as 'shorter reactor period' can be avoided. (I.S.)

  12. MCNP-REN: a Monte Carlo tool for neutron detector design

    International Nuclear Information System (INIS)

    Abhold, M.E.; Baker, M.C.

    2002-01-01

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo code developed at Los Alamos National Laboratory, Monte Carlo N-Particle (MCNP), was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP-Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program, predicts neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of mixed oxide fresh fuel were taken with the Underwater Coincidence Counter, and measurements of highly enriched uranium reactor fuel were taken with the active neutron interrogation Research Reactor Fuel Counter and compared to calculation. Simulations completed for other detector design applications are described. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions

  13. Addressing Safeguards Challenges for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Majali, Raed; Yim, Man-Sung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    IAEA safeguard system is considered the corner stone of the international nuclear nonproliferation regime. Effective implementation of this legal instrument enables the IAEA to draw a conclusion with a high degree of confidence on the peaceful use of nuclear material and activities in the state. This paper aims to provide an opportunity to address various challenges encountered by IAEA. Strengthening safeguards system for verification is one of the most urgent challenges facing the IAEA. The IAEA should be able to provide credible assurance not only about declared use of nuclear material and facilities but also about the absence of undeclared material and activities. Implementation of IAEA safeguards continue to play a vital role within the nuclear non-proliferation regime. IAEA must move towards more enhanced safeguards system that is driven by the full use of all the safeguards available relevant information. Safeguards system must be responsive to evolving challenges and continue innovation through efficient implementations of more effective safeguards.

  14. Nuclear safeguards

    International Nuclear Information System (INIS)

    Estrampres, J.

    2010-01-01

    Close cooperation with the Ministry of Industry with representation from the UNESA Safeguards Group, has meant that, after almost two years of intense meetings and negotiations, Spain has a specific plant to plant agreement for the application of Safeguards under this new method. This is an agreement which aims to be a benchmark for all other EU countries, as the IAEA tends to apply a generic agreement that, in many cases, majority interferes in the nuclear power plants own processes. (Author).

  15. Implementing Safeguards-by-Design

    International Nuclear Information System (INIS)

    Bjornard, Trond; Bean, Robert; Durst, Phillip Casey; Hockert, John; Morgan, James

    2010-01-01

    Excerpt Safeguards-by-Design (SBD) is an approach to the design and construction of nuclear facilities whereby safeguards are designed-in from the very beginning. It is a systematic and structured approach for fully integrating international and national safeguards (MC and A), physical security, and other proliferation barriers into the design and construction process for nuclear facilities. SBD is primarily a project management or project coordination challenge, and this report focuses on that aspect of SBD. The present report continues the work begun in 2008 and focuses specifically on the design process, or project management and coordination - the planning, definition, organization, coordination, scheduling and interaction of activities of the safeguards experts and stakeholders as they participate in the design and construction of a nuclear facility. It delineates the steps in a nuclear facility design and construction project, in order to provide the project context within which the safeguards design activities take place, describes the involvement of safeguards experts in the design process, the nature of their analyses, interactions and decisions, as well as describing the documents created and how they are used. Designing and constructing a nuclear facility is an extremely complex undertaking. The stakeholders in an actual project are many - owner, operator, State regulators, nuclear facility primary contractor, subcontractors (e.g. instrument suppliers), architect engineers, project management team, safeguards, safety and security experts, in addition to the IAEA and its team. The purpose of the present report is to provide a common basis for discussions amongst stakeholders to collaboratively develop a SBD approach that will be both practically useful and mutually beneficial. The principal conclusions from the present study are: (1) In the short term, the successful implementation of SBD is principally a project management problem. (2) Life-cycle cost

  16. Implementing The Safeguards-By-Design Process

    International Nuclear Information System (INIS)

    Whitaker, J. Michael; McGinnis, Brent; Laughter, Mark D.; Morgan, Jim; Bjornard, Trond; Bean, Robert; Durst, Phillip; Hockert, John; DeMuth, Scott; Lockwood, Dunbar

    2010-01-01

    The Safeguards-by-Design (SBD) approach incorporates safeguards into the design and construction of nuclear facilities at the very beginning of the design process. It is a systematic and structured approach for fully integrating international and national safeguards for material control and accountability (MC and A), physical protection, and other proliferation barriers into the design and construction process for nuclear facilities. Implementing SBD is primarily a project management or project coordination challenge. This paper focuses specifically on the design process; the planning, definition, organization, coordination, scheduling and interaction of the safeguards experts and stakeholders as they participate in the design and construction of a nuclear facility. It delineates the steps in a nuclear facility design and construction project in order to provide the project context within which the safeguards design activities take place, describes the involvement of the safeguards experts in the design process, the nature of their analyses, interactions and decisions, and describes the documents created and how they are used. This report highlights the project context of safeguards activities, and identifies the safeguards community (nuclear facility operator, designer/builder, state regulator, SSAC and IAEA) must accomplish in order to implement SBD within the project.

  17. Multilayer detector for operative estimation of spectral composition of neutron fields

    CERN Document Server

    Dedenko, G L; Kaplun, A A; Kolesnikov, S V; Samosadnyj, A V; Samosadnyj, V T

    2002-01-01

    Paper describes measuring and control equipment to detect and to identify neutron sources. The equipment comprises two multilayer detectors based on sup 3 He-counters of slow neutron and poly ethylene moderator of fast neutrons, as well as, intensifiers-signal shapers, power multichannel intensifies, power unit, 8-bit microprocessor base information acquisition and processing system. Paper contains the results of measurements of energy dependence of sensitivity of neutron recording by detector layers with application of monoenergetic neutron fluxes. Difference of the experimental data and the Monte Carlo method base calculation results is 10% maximum

  18. Assess How Changes in Fuel Cycle Operation Impact Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Stephen Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division; Adigun, Babatunde John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division; Fugate, Michael Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division; Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division; Sprinkle, James K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division

    2016-10-31

    Since the beginning of commercial nuclear power generation in the 1960s, the ability of researchers to understand and control the isotopic content of spent fuel has improved. It is therefore not surprising that both fuel assembly design and fuel assembly irradiation optimization have improved over the past 50+ years. It is anticipated that the burnup and isotopics of the spent fuel should exhibit less variation over the decades as reactor operators irradiate each assembly to the optimum amount. In contrast, older spent fuel is anticipated to vary more in burnup and resulting isotopics for a given initial enrichment. Modern fuel therefore should be more uniform in composition, and thus, measured safeguards results should be easier to interpret than results from older spent fuel. With spent fuel ponds filling up, interim and long-­term storage of spent fuel will need to be addressed. Additionally after long periods of storage, spent fuel is no longer self-­protecting and, as such, the IAEA will categorize it as more attractive; in approximately 20 years many of the assemblies from early commercial cores will no longer be considered self-­protecting. This study will assess how more recent changes in the reactor operation could impact the interpretation of safeguards measurements. The status quo for spent fuel assay in the safeguards context is that the overwhelming majority of spent fuel assemblies are not measured in a quantitative way except for those assemblies about to be loaded into a difficult or impossible to access location (dry storage or, in the future, a repository). In other words, when the assembly is still accessible to a state actor, or an insider, when it is cooling in a pool, the inspectorate does not have a measurement database that could assist them in re-­verifying the integrity of that assembly. The spent fuel safeguards regime would be strengthened if spent fuel assemblies were measured from discharge to loading into a difficult or impossible

  19. Optimizing IAEA Safeguards

    International Nuclear Information System (INIS)

    Varjoranta, Tero

    2016-01-01

    IAEA safeguards make a vital contribution to international security. Through safeguards, the IAEA deters the spread of nuclear weapons and provides credible assurance that States are honouring their international obligations to use nuclear material only for peaceful purposes. Its independent verification work allows the IAEA to facilitate building international confidence and strengthening collective security for all.

  20. IAEA safeguards in new nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Catton, A. [International Atomic Energy Agency, Vienna (Austria); Durbin, K. [United States Department of Energy, Washington, D.C. (United States); Hamilton, A. [International Atomic Energy Agency, Vienna (Austria); Martikka, E. [STUK, Helsinki (Finland); Poirier, S.; Sprinkle, J. K.; Stevens, R. [International Atomic Energy Agency, Vienna (Austria); Whitlock, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The inclusion of international safeguards early in the design of nuclear facilities offers an opportunity to reduce project risk. It also has the potential to minimize the impact of safeguards activities on facility operations. Safeguards by design (SBD) encourages stakeholders to become familiar with the requirements of their safeguards agreements and to decide when and how they will fulfil those requirements. As one example, modular reactors are at a design stage where SBD can have a useful impact. Modular reactors might be turnkey projects where the operator takes ownership after commissioning. This comes with a legal obligation to comply with International Atomic Energy Agency (IAEA) safeguards requirements. Some of the newcomer countries entering the reactor market have little experience with IAEA safeguards and the associated non-proliferation obligations. To reduce delays or cost increments, one can embed safeguards considerations in the bid and design phases of the project, along with the safety and security considerations. SBD does not introduce any new requirements - it is a process whereby facility designers facilitate the implementation of the existing safeguards requirements. In short, safeguards experts share their expertise with the designers and vice versa. Once all parties understand the fundamentals of all of the operational constraints, they are better able to decide how best to address them. This presentation will provide an overview of SBD activities. (author)

  1. Quantification of transuranic elements by time interval correlation spectroscopy of the detected neutrons

    Science.gov (United States)

    Baeten; Bruggeman; Paepen; Carchon

    2000-03-01

    The non-destructive quantification of transuranic elements in nuclear waste management or in safeguards verifications is commonly performed by passive neutron assay techniques. To minimise the number of unknown sample-dependent parameters, Neutron Multiplicity Counting (NMC) is applied. We developed a new NMC-technique, called Time Interval Correlation Spectroscopy (TICS), which is based on the measurement of Rossi-alpha time interval distributions. Compared to other NMC-techniques, TICS offers several advantages.

  2. Safeguard Vulnerability Analysis Program (SVAP)

    International Nuclear Information System (INIS)

    Gilman, F.M.; Dittmore, M.H.; Orvis, W.J.; Wahler, P.S.

    1980-01-01

    This report gives an overview of the Safeguard Vulnerability Analysis Program (SVAP) developed at Lawrence Livermore National Laboratory. SVAP was designed as an automated method of analyzing the safeguard systems at nuclear facilities for vulnerabilities relating to the theft or diversion of nuclear materials. SVAP addresses one class of safeguard threat: theft or diversion of nuclear materials by nonviolent insiders, acting individually or in collusion. SVAP is a user-oriented tool which uses an interactive input medium for preprocessing the large amounts of safeguards data. Its output includes concise summary data as well as detailed vulnerability information

  3. Calculation of neutron die-away times in a large-vehicle portal monitor

    International Nuclear Information System (INIS)

    Lillie, R.A.; Santoro, R.T.; Alsmiller, R.G. Jr.

    1980-05-01

    Monte Carlo methods have been used to calculate neutron die-away times in a large-vehicle portal monitor. These calculations were performed to investigate the adequacy of using neutron die-away time measurements to detect the clandestine movement of shielded nuclear materials. The geometry consisted of a large tunnel lined with He 3 proportional counters. The time behavior of the (n,p) capture reaction in these counters was calculated when the tunnel contained a number of different tractor-trailer load configurations. Neutron die-away times obtained from weighted least squares fits to these data were compared. The change in neutron die-away time due to the replacement of cargo in a fully loaded truck with a spherical shell containing 240 kg of borated polyethylene was calculated to be less than 3%. This result together with the overall behavior of neutron die-away time versus mass inside the tunnel strongly suggested that measurements of this type will not provide a reliable means of detecting shielded nuclear materials in a large vehicle. 5 figures, 4 tables

  4. Commercial bacterial colony counter for semiautomatic track counting

    International Nuclear Information System (INIS)

    Griffith, R.V.; McMahon, T.A.; Espinosa, G.

    1983-01-01

    Bacterial colony counters have not been widely used for track counting. However, they do provide an economical alternative to sophisticated optical analyzers for applications that require reproducible track density measurements for large numbers of samples. Simple measurements of size characteristics can be made when there is little need for high resolutions. Such systems are particularly well suited for neutron and alpha dosimetry work, particularly if electrochemical etching or some other track enhancement method has been used. 5 refs., 3 figs

  5. Nuclear safeguards: a perspective

    International Nuclear Information System (INIS)

    Walske, C.

    1975-01-01

    Safeguards, both international and domestic, are discussed from the industrial viewpoint. Anti-criminal measures are considered in more detail. Areas of anti-criminal safeguards which need improvement are pointed out; they include communications, recovery force, and accounting

  6. The Safeguards Analytical Laboratory (SAL) in the Agency's safeguards measurement system activity in 1990

    International Nuclear Information System (INIS)

    Bagliano, G.; Cappis, J.; Deron, S.; Parus, J.L.

    1991-05-01

    The IAEA applies Safeguards at the request of a Member State to whole or part of its nuclear materials. The verification of nuclear material accountability still constitutes the fundamental method of control, although sealing and surveillance procedures play an important complementary and increasing role in Safeguards. A small fraction of samples must still be analyzed at independent analytical laboratories using conventional Destructive Analytical (DA) methods of highest accuracy in order to verify that small potential biases in the declarations of the State are not masking protracted diversions of significant quantities of fissile materials. The Safeguards Analytical Laboratory (SAL) is operated by the Agency's Laboratories at Seibersdorf to provide to the Department of Safeguards and its inspectors such off-site Analytical Services, in collaboration with the Network of Analytical Laboratories (NWAL) of the Agency. In the last years SAL and the Safeguards DA Services have become more directly involved in the qualification and utilization of on-site analytical instrumentation such as K-edge X-Ray absorptiometers and quadrupole mass spectrometers. The nature and the origin of the samples analyzed, the measurements usually requested by the IAEA inspectors, the methods and the analytical techniques available at SAL and at the Network of Analytical Laboratories (NWAL) with the performances achieved during the past years are described and discussed in several documents. This report gives an evaluation compared with 1989 of the volume and the quality of the analyses reported in 1990 by SAL and by the NWAL in reply to requests of IAEA Safeguards inspectors. The reports summarizes also on-site DA developments and support provided by SAL to the Division of Safeguards Operation and special training courses to the IAEA Safeguards inspectors. 55 refs, 7 figs, 15 tabs

  7. MCNPX Simulation Study of STRAW Neutron Detectors - Summary Paper

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Mitchell, Stephen

    2010-01-01

    A novel prototype fission meter is being designed at National Security Technologies, LLC, using a thin uniform coating (only 1 micron thick) of 10 B as a neutron converter inside a large array of thin (4 mm diameter) copper tubes. The copper tubes are only 2 mils thick, and each holds the stretched anode wire under tension and high voltage. The tubes are filled with proportional counter gas (a mixture of 90%/10% of Ar/CO 2 ). The tubes operate in proportional counter mode and attract mobile charged particles (α's) created in the nuclear interaction 10 B(n, 4 He) 7 Li. However, a single tube has about 1/7th the sensitivity of a 3 He tube. Modeling is required to determine if enough such tubes could be placed in a neutron detection assembly of the current size to give comparable sensitivity to 3 He. Detectors lined with 10 B lie between 3 He and 10 BF 3 proportional counters and fission chambers in terms of neutron detection efficiency and gamma ray insensitivity. The mean free path of thermal neutrons in 10 B is about 18 (micro)m. It takes about 60 (micro)m of 10 B layer to completely stop thermal neutrons, but the energetic α-particles generated in the reaction have a range of only 3.3 (micro)m in 10 B environment - hence the thin layer of boron coating on the copper tube. The prototype design is shown in Figure 1. It consists of two panels of three staggered rows of 500-mm-long, 4-mm-diameter straws, with 20 in each row, embedded in 30-mm-thick high density polyethylene (HDPE). The project demonstrates a new application of thin neutron and gamma converter technique (1 micron thin 10 B coated copper tube). It exploits fast timing from multiple straw detectors to count multiplicity of both gamma and neutrons from fissioning materials. The objective is to find a near-term replacement of 3 He gas in neutron detection and measurement (with a very large neutron detection area). All the solid-state detectors developed thus far are small and inefficient. The thin size

  8. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  9. Dual-Particle Imaging System with Neutron Spectroscopy for Safeguard Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, Michael C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weber, Thomas M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    A dual-particle imager (DPI) has been designed that is capable of detecting gamma-ray and neutron signatures from shielded SNM. The system combines liquid organic and NaI(Tl) scintillators to form a combined Compton and neutron scatter camera. Effective image reconstruction of detected particles is a crucial component for maximizing the performance of the system; however, a key deficiency exists in the widely used iterative list-mode maximum-likelihood estimation-maximization (MLEM) image reconstruction technique. For MLEM a stopping condition is required to achieve a good quality solution but these conditions fail to achieve maximum image quality. Stochastic origin ensembles (SOE) imaging is a good candidate to address this problem as it uses Markov chain Monte Carlo to reach a stochastic steady-state solution. The application of SOE to the DPI is presented in this work.

  10. Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications.

    Science.gov (United States)

    Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C

    2016-09-01

    Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Low energy neutron background in deep underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Best, Andreas, E-mail: andreas.best@lngs.infn.it [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Görres, Joachim [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Junker, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Kratz, Karl-Ludwig [Department for Biogeochemistry, Max-Planck-Institute for Chemistry, 55020 Mainz (Germany); Laubenstein, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Long, Alexander [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nisi, Stefano [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Smith, Karl; Wiescher, Michael [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2016-03-11

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of {sup 3}He counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  12. Combined SAFE/SNAP approach to safeguards evaluation

    International Nuclear Information System (INIS)

    Engi, D.; Chapman, L.D.; Grant, F.H.; Polito, J.

    1980-01-01

    The scope of a safeguards evaluation model can efficiently address one of two issues: (1) global safeguards effectiveness or (2) vulnerability analysis for individual scenarios. The Safeguards Automated Facility Evaluation (SAFE) focuses on the first issue, while the Safeguards Network Analysis Procedure (SNAP) is directed towards the second. A combined SAFE/SNAP approach to the problem of safeguards evaluation is described and illustrated through an example. 4 refs

  13. Procedures for measurement of anisotropy factor of neutron sources

    International Nuclear Information System (INIS)

    Creazolla, P.G.; Camargo, A.; Astuto, A.; Silva, F.; Pereira, W.W.

    2017-01-01

    Radioisotope sources of neutrons allow the production of reference fields for calibration of neutron measurement devices for radioprotection and analysis purposes. When the emission rate of these sources is isotropic, no correction is necessary. However, variations in the source capsule material and variations in the concentration of the emitting material may produce differences in its neutron emission rate relative to the source axis, this effect is called anisotropy. A proposed procedure for measuring the anisotropy factor of the sources belonging to the IRD/LNMRI/LN Neutron Metrology Laboratory using a Precision Long Counter (PLC) detector will be presented

  14. Building safeguards infrastructure

    International Nuclear Information System (INIS)

    McClelland-Kerr, J.; Stevens, J.

    2010-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the clean and safe growth of nuclear power, and the infrastructure that supports these three areas should be robust. The focus of this paper will be on the development of the infrastructure necessary to support safeguards, and the integration of safeguards infrastructure with other elements critical to ensuring nuclear energy security

  15. Overview of the Facility Safeguardability Analysis (FSA) Process

    Energy Technology Data Exchange (ETDEWEB)

    Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Scott J.; Wigeland, Roald; Zentner, Michael D.

    2012-08-01

    Executive Summary The safeguards system of the International Atomic Energy Agency (IAEA) is intended to provide the international community with credible assurance that a State is fulfilling its safeguards obligations. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of IAEA safeguards as those safeguards evolve towards a “State-Level approach.” The Safeguards by Design (SBD) concept can facilitate the implementation of these effective and cost-efficient facility-level safeguards (Bjornard, et al. 2009a, 2009b; IAEA, 1998; Wonder & Hockert, 2011). This report, sponsored by the National Nuclear Security Administration’s Office of Nuclear Safeguards and Security, introduces a methodology intended to ensure that the diverse approaches to Safeguards by Design can be effectively integrated and consistently used to cost effectively enhance the application of international safeguards.

  16. Safeguards instrumentation: a computer-based catalog

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available

  17. Safeguards instrumentation: a computer-based catalog

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available.

  18. Setting priorities for safeguards upgrades

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.; Judd, B.R.; Patenaude, C.J.; Sicherman, A.

    1987-01-01

    This paper describes an analytic approach and a computer program for setting priorities among safeguards upgrades. The approach provides safeguards decision makers with a systematic method for allocating their limited upgrade resources. The priorities are set based on the upgrades cost and their contribution to safeguards effectiveness. Safeguards effectiveness is measured by the probability of defeat for a spectrum of potential insider and outsider adversaries. The computer program, MI$ER, can be used alone or as a companion to ET and SAVI, programs designed to evaluate safeguards effectiveness against insider and outsider threats, respectively. Setting the priority required judgments about the relative importance (threat likelihoods and consequences) of insider and outsider threats. Although these judgments are inherently subjective, MI$ER can analyze the sensitivity of the upgrade priorities to these weights and determine whether or not they are critical to the priority ranking. MI$ER produces tabular and graphical results for comparing benefits and identifying the most cost-effective upgrades for a given expenditure. This framework provides decision makers with an explicit and consistent analysis to support their upgrades decisions and to allocate the safeguards resources in a cost-effective manner

  19. Nuclear safeguards implementations in Taiwan

    International Nuclear Information System (INIS)

    Hou, R-H.; Chang, C-K.; Lin, C-R.; Gone, J-K.; Chen, W-L.; Yao, D.

    2006-01-01

    Full text: Now with six Nuclear Power Plant (NPP) units in operation, two Advanced Boiling Water Reactor (ABWR) units under construction, and other peaceful applications of nuclear and radiation technology expanding in great pace, the Atomic Energy Council (AEC) has been focused on reactor safety regulation, radiation protection, radioactive waste administration, environmental monitoring and R and D for technology development and other civilian nuclear applications. Despite Taiwan's departure from the United Nations and therefore its family member International Atomic Energy Agency (IAEA) in 1971, Taiwan remains its commitment to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). To date, Taiwan is still part of the international nuclear safeguards system and accepts IAEA's inspections in accordance with its regulations on nuclear safeguards. In 1998, Taiwan further agreed, through exchange of letters between the AEC and IAEA, to implementation of the measures provided for in the model Protocol Additional to its safeguards agreement. In this paper, we will introduce Taiwan's nuclear safeguards history and describe some highlights of safeguards implementation in recent years, such as complementary accesses, transparency visits, remote monitoring inspections, unannounced inspections, facility attachment termination for the decommissioned facilities, and annual safeguards implementation meeting with IAEA

  20. Geiger-Mueller counter for mixed neutron-gamma beam dosimetry

    International Nuclear Information System (INIS)

    McDonald, J.C.; Ma, I.-C.

    1978-01-01

    A Geiger-Mueller (G-M) dosimeter has been constructed and employed to measure the gamma-ray component of absorbed dose in a cyclotron produced fast neutron field. This instrument is waterproof for measurements in a liquid medium, and read-out is accompanied with any standard scaler. (Auth.)

  1. Atlantic Richfield Hanford Company californium multiplier/delayed neutron counter safety analysis

    International Nuclear Information System (INIS)

    Zimmer, W.H.

    1976-08-01

    The Californium Multiplier (CFX) is a subcritical assembly of uranium surrounding 252 Cf spontaneously fissioning neutron sources; its function is to multiply the neutron flux to a level useful for activation analysis. This document summarizes the safety analysis aspects of the CFX, DNC, pneumatic transfer system, and instrumentation and to detail all the aspects of the total facility as a starting point for the ARHCO Safety Analysis Review. Recognized hazards and steps already taken to neutralize them are itemized

  2. Microdosimetry for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Maughan, R.L.; Kota, C.

    2000-01-01

    The specific aims of the research proposal were as follows: (1) To design and construct small volume tissue equivalent proportional counters for the dosimetry and microdosimetry of high intensity thermal and epithermal neutron beams used in BNCT, and of modified fast neutron beams designed for boron neutron capture enhanced fast neutron therapy (BNCEFNT). (2) To develop analytical methods for estimating the biological effectiveness of the absorbed dose in BNCT and BNCEFNT based on the measured microdosimetric spectra. (3) To develop an analytical framework for comparing the biological effectiveness of different epithermal neutron beams used in BNCT and BNCEFNT, based on correlated sets of measured microdosimetric spectra and radiobiological data. Specific aims (1) and (2) were achieved in their entirety and are comprehensively documented in Jay Burmeister's Ph.D. dissertation entitled ''Specification of physical and biologically effective absorbed dose in radiation therapies utilizing the boron neutron capture reaction'' (Wayne State University, 1999). Specific aim (3) proved difficult to accomplish because of a lack of sufficient radiobiological data

  3. Agreement of 10 September 1991 between the International Atomic Energy Agency and the Government of the Islamic Republic of Pakistan for the application of safeguards in connection with the supply of a miniature neutron source reactor from the People's Republic of China

    International Nuclear Information System (INIS)

    1991-10-01

    The document reproduces the text of the Agreement of 10 September 1991, between the Government of the Islamic Republic of Pakistan and the International Atomic Energy Agency for the application of safeguards in connection with the supply of a miniature neutron source reactor from the People's Republic of China. The Agreement was approved by the Agency's Board of Governors on 20 February 1990 and entered into force upon signature on 10 September 1991

  4. Symposium on International Safeguards: Preparing for Future Verification Challenges

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of the symposium is to foster dialogue and information exchange involving Member States, the nuclear industry and members of the broader nuclear non-proliferation community to prepare for future verification challenges. Topics addressed during the 2010 symposium include the following: - Supporting the global nuclear non-proliferation regime: Building support for strengthening international safeguards; Enhancing confidence in compliance with safeguards obligations; Legal authority as a means to enhance effectiveness and efficiency; Verification roles in support of arms control and disarmament. - Building collaboration and partnerships with other international forums: Other verification and non-proliferation regimes; Synergies between safety, security and safeguards regimes. - Improving cooperation between IAEA and States for safeguards implementation: Strengthening State systems for meeting safeguards obligations; Enhancing safeguards effectiveness and efficiency through greater cooperation; Lessons learned: recommendations for enhancing integrated safeguards implementation. - Addressing safeguards challenges in an increasingly interconnected world: Non-State actors and covert trade networks; Globalization of nuclear information and technology. - Preparing for the global nuclear expansion and increasing safeguards workload: Furthering implementation of the State-level concept and integrated safeguards; Information-driven safeguards; Remote data-driven safeguards inspections; Safeguards in States without comprehensive safeguards agreements. - Safeguarding advanced nuclear facilities and innovative fuel cycles: Proliferation resistance; Safeguards by design; Safeguards approaches for advanced facilities. - Advanced technologies and methodologies: For verifying nuclear material and activities; For detecting undeclared nuclear material and activities; For information collection, analysis and integration. - Enhancing the development and use of safeguards

  5. Safeguards agreements - their legal and conceptual basis

    International Nuclear Information System (INIS)

    Sanders, B.; Rainer, R.

    1977-01-01

    The application of Agency safeguards requires treaty arrangements (''Safeguards Agreements'') between the State or States concerned and the Agency. The authority for the Agency to conclude such agreements and to implement them is provided for in the Agency's Statute (Articles II, III A.5 and XII). On the basis of the statutory provisions safeguards principles and procedures have been elaborated. These have been laid down in: (a) The Agency's Safeguards System 1965, extended in 1966 and 1968 (INFCIRC/66/Rev.2); and (b) The basis for negotiating safeguards agreements with NNWS pursuant to NPT (INFCIRC/153). The verification of the undertaking by the State concerned not to use items subject to safeguards for purposes contrary to the terms of the agreement is verified through the application of various safeguards measures (design review, records, reports and inspection). Containment and surveillance measures are expected to play an increasingly important role. NPT Safeguards Agreements foresee as one of their specific features the establishment of national systems of accounting and control of nuclear material. The majority of the agreements concluded under document INFCIRC/66/Rev.2 - i.e. the non-NPT safeguards agreements - implement obligations undertaken under co-operation agreements between States for peaceful uses of nuclear energy. These agreements naturally reflect approaches adopted by the parties, in particular as to the circumstances under which safeguards should be applied. Thus, the concepts used in the non-NPT safeguards agreements and the safeguards system of document INFCIRC/66/Rev.2 which is incorporated in these agreements by reference are in continuous evolution. Document INFCIRC/66/Rev.2 continues to be supplemented in practical application and through explicit decision by the Board. The non-NPT safeguards agreements contain, besides technical safeguards provisions from document INFCIRC/66/Rev.2, and further provision for notification, inventories

  6. Results of neutron dose measurements at the Rossendorf research reactors taking the actual neutron spectra into account

    International Nuclear Information System (INIS)

    Rimpler, A.; Kneschke, H.

    1985-01-01

    Based on a systematic evaluation of area dose studies at the beginning of the seventies, no individual routine neutron monitoring has been performed at the Rossendorf research reactors. To check this decision, a limited number of persons has been monitored with solid-state nuclear track detectors for several years. The dosemeters were calibrated on the basis of neutron spectra determined at the working places by means of the Bonner sphere method. Intermediate neutrons with a 1/E/sup α/ Fermi distribution were dominating. The fraction of fast neutrons was practically negligible. The obtained spectra, radiation, field quantities and results of individual dose measurements are presented. The dosemeter most appropriate for such neutron fields would be a 12-inch Bonner sphere rem counter. As the mean annual neutron exposure of research workers at the reactor amounted to only 2% of the maximum permissible dose, individual routine monitoring will, also in the future, not be neccessary. (author)

  7. Safeguards Strategy in Physical Protection System for Nuclear Installation

    International Nuclear Information System (INIS)

    Ade lndra B; Kasturi; Tatang Eryadi

    2004-01-01

    Safeguards strategy is directed at efforts of eliminating theft of nuclear materials and sabotage of nuclear installation. For achieving the above objective, it is necessary to set up safeguards strategy in physical protection of nuclear materials and installation. The safeguards strategy starts from anticipated security condition, list of thefts, planning referred to as safeguards planning. Safeguards planning are implemented in safeguards implementation, followed up then by evaluation. Results of evaluation are equipped with results of safeguards survey already developed. Safeguards' planning is made from these results and serve as guidelines for next safeguards implementation and is repeated to form a safeguard cycle. One safeguard cycle is made on a periodical basis, at least annually. (author)

  8. Fast critical assembly safeguards. Summary report, October 1978-September 1979

    International Nuclear Information System (INIS)

    Winslow, G.H.; Bellinger, F.O.; Scharping, R.A.; Rusch, G.K.; Groh, E.F.

    1980-09-01

    The effectiveness of a neutron well correlation counter (NWCC) and a random driver (RD) for plutonium-containing item assay and loss detection has been studied. The items were 4 in. x 2 in. x 1/4 in. stainless steel-clad metal plates and 6 in. x 3/8 in. stainless steel-clad oxide rods, each in two types of containment. It was found that absorption by dummies increases one's chance of detecting substitution over the chance of detecting simple removal. In all the loss-detection tests, however, there was only one failure to detect a loss. The NWCC did not separate out (α,n) neutrons well enough that one could use a calibration made with plates to assay for rods. The RD was found to have minimal usefulness for the assay of irradiated plates

  9. Safeguards technology: present posture and future impact

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1976-01-01

    With widespread and growing concern over the issues of nuclear safeguards, international nuclear trade and nuclear weapons proliferation, the full development of the world's nuclear energy potential could well depend on how effectively the strategic nuclear materials that fuel nuclear power are controlled and safeguarded. The broad U.S. program in nuclear safeguards and security is directed toward a balanced safeguards system incorporating the two major components of physical security and materials control. The current posture of modern safeguards technology, its impact on plant operations, and the key role it must play in the implementation of stringent cost-effective safeguards systems in facilities throughout the nuclear fuel cycle are outlined

  10. A view to the new safeguards system

    International Nuclear Information System (INIS)

    Tsuboi, Hiroshi

    2000-01-01

    The Additional Protocol to the Safeguards Agreement between Japan and the IAEA entered into force on 16 December 1999. An initial declaration of the expanded information will be provided to the IAEA by next June in accordance with the Additional Protocol. In Japan the new integrated safeguards system, which strengthens the effectiveness and improves efficiency of IAEA Safeguards, is considered to be very important issue. The establishment of a permanent and universal safeguards system including application of safeguards in Nuclear Weapon States also is an important issue from the view-point of not only non-proliferation but also nuclear disarmament. Safeguards are expected to have an increasingly important role. (author)

  11. Neutron generator (HIRRAC) and dosimetry study.

    Science.gov (United States)

    Endo, S; Hoshi, M; Takada, J; Tauchi, H; Matsuura, S; Takeoka, S; Kitagawa, K; Suga, S; Komatsu, K

    1999-12-01

    Dosimetry studies have been made for neutrons from a neutron generator at Hiroshima University (HIRRAC) which is designed for radiobiological research. Neutrons in an energy range from 0.07 to 2.7 MeV are available for biological irradiations. The produced neutron energies were measured and evaluated by a 3He-gas proportional counter. Energy spread was made certain to be small enough for radiobiological studies. Dose evaluations were performed by two different methods, namely use of tissue equivalent paired ionization chambers and activation of method with indium foils. Moreover, energy deposition spectra in small targets of tissue equivalent materials, so-called lineal energy spectrum, were also measured and are discussed. Specifications for biological irradiation are presented in terms of monoenergetic beam conditions, dose rates and deposited energy spectra.

  12. New Beta-delayed Neutron Measurements in the Light-mass Fission Group

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt, J. [Instituto de Física Corpuscular, CSIC-Univ. Valencia, Apdo. Correos 22085, E-46071 Valencia (Spain); García, A.R. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, E-28040 Madrid (Spain); Algora, A. [Instituto de Física Corpuscular, CSIC-Univ. Valencia, Apdo. Correos 22085, E-46071 Valencia (Spain); Äystö, J. [University of Jyväskylä, FI-40014 Jyväskyä (Finland); Caballero-Folch, R.; Calviño, F. [Secció d' Enginyeria Nuclear, Universitat Politécnica de Catalunya, E-08028 Barcelona (Spain); Cano-Ott, D. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, E-28040 Madrid (Spain); Cortés, G. [Secció d' Enginyeria Nuclear, Universitat Politécnica de Catalunya, E-08028 Barcelona (Spain); Domingo-Pardo, C. [Instituto de Física Corpuscular, CSIC-Univ. Valencia, Apdo. Correos 22085, E-46071 Valencia (Spain); Eronen, T. [University of Jyväskylä, FI-40014 Jyväskyä (Finland); Gelletly, W. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Gómez-Hornillos, M.B. [Secció d' Enginyeria Nuclear, Universitat Politécnica de Catalunya, E-08028 Barcelona (Spain); and others

    2014-06-15

    A new accurate determination of beta-delayed neutron emission probabilities from nuclei in the low mass region of the light fission group has been performed. The measurements were carried out using the BELEN 4π neutron counter at the IGISOL-JYFL mass separator in combination with a Penning trap. The new results significantly improve the uncertainties of neutron emission probabilities for {sup 91}Br, {sup 86}As, {sup 85}As, and {sup 85}Ge nuclei.

  13. Safeguards: Modelling of the Detection and Characterization of Nuclear Materials

    International Nuclear Information System (INIS)

    Enqvist, Andreas

    2010-01-01

    Nuclear safeguards is a collective term for the tools and methods needed to ensure nonproliferation and safety in connection to utilization of nuclear materials. It encompasses a variety of concepts from legislation to measurement equipment. The objective of this thesis is to present a number of research results related to nuclear materials control and accountability, especially the area of nondestructive assay. Physical aspects of nuclear materials are often the same as for materials encountered in everyday life. One special aspect though is that nuclear materials also emit radiation allowing them to be qualitatively and quantitatively measured without direct interaction with the material. For the successful assay of the material, the particle generation and detection needs to be well understood, and verified with measurements, simulations and models. Four topics of research are included in the thesis. First the generation and multiplication of neutrons and gamma rays in a fissile multiplying sample is treated. The formalism used enables investigation of the number of generated, absorbed and detected particles, offering understanding of the different processes involved. Secondly, the issue of relating the coincident detector signals, generated by both neutrons and gamma rays, to sample parameters is dealt with. Fission rate depends directly on the sample mass, while parameters such as neutron generation by alpha decay and neutron leakage multiplication are parameters that depend on the size, composition and geometry of the sample. Artificial neural networks are utilized to solve the inverse problem of finding sample characteristics from the measured rates of particle multiples. In the third part the interactions between neutrons and organic scintillation detectors are treated. The detector material consists of hydrogen and carbon, on which the neutrons scatter and transfer energy. The problem shares many characteristics with the area of neutron moderation found in

  14. Spent Nuclear Fuel Cask and Storage Monitoring with {sup 4}He Scintillation Fast Neutron Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hee jun; Kelley, Ryan P; Jordan, Kelly A [Univ. of Florida, Florida (United States); Lee, Wanno [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chung, Yong Hyun [Yonsei Univ., Wonju (Korea, Republic of)

    2014-10-15

    With this increasing quantity of spent nuclear fuel being stored at nuclear plants across S. Korea, the demand exists for building a long-term disposal facility. However, the Korean government first requires a detailed plan for the monitoring and certification of spent fuel. Several techniques have been developed and applied for the purpose of spent fuel monitoring, including the digital Cerenkov viewing device (DCVD), spent fuel attribute tester (SFAT), and FORK detector. Conventional gamma measurement methods, however, suffer from a lack of nuclear data and interfering background radiation. To date, the primary method of neutron detection for spent fuel monitoring has been through the use of thermal neutron detectors such as {sup 3}He and BF{sub 3} proportional counters. Unfolding the neutron spectrum becomes extremely complicated. In an attempt to overcome these difficulties, a new fast neutron measurement system is currently being developed at the University of Florida. This system is based on the {sup 4}He scintillation detector invented by Arktis Radiation Detectors Ltd. These detectors are a relatively new technological development and take advantage of the high {sup 4}He cross-section for elastic scattering at fast neutron energies, particularly the resonance around 1 MeV. This novel {sup 4}He scintillation neutron detector is characterized by its low electron density, leading to excellent gamma rejection. This detector also has a fast response time on the order of nanoseconds and most importantly, preserves some neutron energy information since no moderator is required. Additionally, these detectors rely on naturally abundant {sup 4}He as the fill gas. This study proposes a new technique using the neutron spectroscopy features of {sup 4}He scintillation detectors to maintain accountability of spent fuel in storage. This research will support spent fuel safeguards and the detection of fissile material, in order to minimize the risk of nuclear proliferation

  15. Safeguards for nuclear material transparency monitoring

    International Nuclear Information System (INIS)

    MacArthur, D.A.; Wolford, J.K.

    1999-01-01

    The US and the Russian Federation are currently engaged in negotiating or implementing several nuclear arms and nuclear material control agreements. These involve placing nuclear material in specially designed containers within controlled facilities. Some of the agreements require the removal of nuclear components from stockpile weapons. These components are placed in steel containers that are then sealed and tagged. Current strategies for monitoring the agreements involve taking neutron and gamma radiation measurements of components in their containers to monitor the presence, mass, and composition of plutonium or highly enriched uranium, as well as other attributes that indicate the use of the material in a weapon. If accurate enough to be useful, these measurements will yield data containing information about the design of the weapon being monitored. In each case, the design data are considered sensitive by one or both parties to the agreement. To prevent the disclosure of this information in a bilateral or trilateral inspection scenario, so-called information barriers have evolved. These barriers combine hardware, software, and procedural safeguards to contain the sensitive data within a protected volume, presenting to the inspector only the processed results needed for verification. Interlocks and volatile memory guard against disclosure in case of failure. Implementing these safeguards requires innovation in radiation measurement instruments and data security. Demonstrating their reliability requires independent testing to uncover any flaws in design. This study discusses the general problem and gives a proposed solution for a high resolution gamma ray detection system. It uses historical examples to illustrate the evolution of other successful systems

  16. Design innovations in neutron and gamma detectors

    International Nuclear Information System (INIS)

    Prasad, K.R.

    2003-01-01

    Neutron and gamma radiation needs to be monitored in most nuclear installations since it is highly penetrating. On-line monitoring of these radiations is very important for the safe and controlled operation of nuclear reactors, accelerators etc. Several design innovations have been carried out on gas ionisation detectors such as boron-lined proportional counters and ion chambers, fission detectors, gamma ion chambers as well as self-powered detectors. The use of additional structures within boron-lined detectors has enhanced their neutron sensitivity without a corresponding increase in the unwanted gamma sensitivity. The neutron sensitivity of fission counters can be enhanced by designing them as transmission line devices. Ion chambers with two and six pairs of electrodes have been developed for monitoring pulsed x-ray background at accelerator areas. Ion chambers have been employed at gamma fields up to 80 kR/h by deriving the exposure levels on-line using microcontroller devices programmed on the basis of theoretical and empirical formulas. The use of gas electron multiplier foils is proposed for charge multiplication in ion chambers. Self-powered detectors with new emitter materials like Hi, Ni and Inconel have been developed. (author)

  17. Savannah River Site delayed neutron instruments for safeguards measurements

    International Nuclear Information System (INIS)

    Studley, R.V.

    1992-01-01

    The Savannah River Site (SRS) includes a variety of nuclear production facilities that, since 1953, have processed special nuclear materials (SNM) including highly-enriched uranium (>90% 235 U), recycled enriched uranium (∼50% 235 U + 40% 236 U), low burnup plutonium (> 90% 239 Pu + 240 Pu ) and several other nuclear materials such as heat source plutonium ( 238 Pu). DOE Orders, primarily 5633.3, require all nuclear materials to be safeguarded through accountability and material control. Accountability measurements determine the total amount of material in a facility, balancing inventory changes against receipts and shipments, to provide assurance (delayed) that all material was present. Material control immediately detects or deters theft or diversion by assuring materials remain in assigned locations or by impeding unplanned movement of materials within or from a material access area. Goals for accountability or material control, and, therefore, the design of measurement systems, are distinctly different. Accountability measurements are optimized for maximum precision and accuracy, usually for large amounts of special nuclear material. Material control measurements are oriented more toward security features and often must be optimized for sensitivity, to detect small amounts of materials where none should be

  18. Distributed performance counters

    Science.gov (United States)

    Davis, Kristan D; Evans, Kahn C; Gara, Alan; Satterfield, David L

    2013-11-26

    A plurality of first performance counter modules is coupled to a plurality of processing cores. The plurality of first performance counter modules is operable to collect performance data associated with the plurality of processing cores respectively. A plurality of second performance counter modules are coupled to a plurality of L2 cache units, and the plurality of second performance counter modules are operable to collect performance data associated with the plurality of L2 cache units respectively. A central performance counter module may be operable to coordinate counter data from the plurality of first performance counter modules and the plurality of second performance modules, the a central performance counter module, the plurality of first performance counter modules, and the plurality of second performance counter modules connected by a daisy chain connection.

  19. Passive neutron interrogation in systems with a poorly characterized detection efficiency

    International Nuclear Information System (INIS)

    Dubi, Chen; Oster, Elad; Ocherashvilli, Aharon; Pedersen, Bent; Hutszy, Janus

    2014-01-01

    Passive neutron interrogation for fissile mass estimation, relying on neutrons coming from spontaneous fission events, is considered a standard NDT procedure in the nuclear safeguard and safety community. Since most structure materials are (relatively) transparent to neutron radiation, passive neutron interrogation is considered highly effective in the analysis of dirty, poorly characterized samples. On the other hand, since a typical passive interrogation assembly is based on 3He detectors, neutrons from additional neutron sources (mainly (α,n) reactions and induced fissions in the tested sample) cannot be separated from the main spontaneous fission source through energetic spectral analysis. There for, applying the passive interrogation methods the implementation of Neutron Multiplicity Counting (NMC) methods for separation between the main fission source and the additional sources. Applying NMC methods requires a well characterized system, in the sense that both system die away time and detection efficiency must be well known (and in particular, independent of the tested sample)

  20. Safeguards training at Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Dickman, D.A.

    1986-10-01

    Safeguarding our country's nuclear materials against theft or diversion is extremely important due to their significantly strategic value. In addition, nuclear materials also have an extremely high monetary value. The term ''safeguards'' is defined as an integrated system of physical protection, accountability, and material control measures designed to deter, prevent, detect, and respond to unauthorized possession and use of special nuclear materials. An aggressive Safeguards program, therefore, employs both good security measures and a strong material control and accountability system. For effective internal control of nuclear materials, having people qualified in the many aspects of safeguards and accountability is essential. At Pacific Northwest Laboratory (PNL), this goal is accomplished through a Laboratory-wide Safeguards Awareness Program. All PNL staff members receive a level of Safeguards training appropriate to their particular function within the Laboratory. This paper presents an overview of the unique training opportunities this topic provides and how the training goals are accomplished through the various training courses given to the staff members

  1. Applications of Boron Loaded Scintillating Fibers as NDA Tools for Nuclear Safeguards

    International Nuclear Information System (INIS)

    Mayo, D.R.; Ensslin, N.; Grazioso, R.F.; Heger, A.S.; Mercer, D.J.; Miller, M.C.; Russo, P.A.; Sweet, M.R.

    1997-01-01

    Nuclear safeguards and nonproliferation rely on nondestructive analytical tools for prompt and noninvasive detection, verification, and quantitative analysis of nuclear materials in demanding environments. A new tool based on the detection of correlated neutrons in narrow time windows is being investigated to fill the niche created by the current limitations of the existing methods based on polyethylene moderated 3 He gas proportional tubes. Commercially produced Boron-loaded ( 10 B) plastic scintillating fibers are one such technology under consideration. The fibers can be configured in a system to have high efficiency, short neutron die-away, pulse height sensitivity, and mechanical flexibility. Various configurations of the fibers with high density polyethylene have been considered which calculationally result in high efficiency detectors with short die-away times. A discussion of the design considerations and calculations of the detector efficiency, die-away time, and simulated pulse height spectra along with preliminary test results are presented

  2. Applications of boron-loaded scintillating fibers as NDA tools for nuclear safeguards

    International Nuclear Information System (INIS)

    Mayo, Douglas R.; Ensslin, Norbert; Mercer, David J.; Miller, Michael C.; Russo, Phyllis A.; Sweet, Martin R.; Grazioso, Ronald F.; Heger, A. Sharif

    1998-01-01

    Nuclear safeguards and nonproliferation rely on nondestructive analytical tools for prompt and noninvasive detection, verification, and quantitative analysis of nuclear materials in demanding environments. A new tool based on the detection of correlated neutrons in narrow time windows is being investigated to fill the niche created by the current limitations of the existing methods based on polyethylene moderated 3 He gas proportional tubes. Commercially produced Boron-loaded ( 10 B) plastic scintillating fibers are one such technology under consideration. The fibers can be configured in a system to have high efficiency, short neutron die-away, pulse height sensitivity, and mechanical flexibility. Various configurations of the fibers with high density polyethylene have been considered which calculationally result in high efficiency detectors with short die-away times. A discussion of the design considerations and calculations of the detector efficiency, die-away time, and simulated pulse height spectra along with preliminary test results are presented

  3. A compact neutron counter telescope with thick radiator (COTETRA) for fusion experiment

    International Nuclear Information System (INIS)

    Osakabe, M.; Itoh, S.; Gotoh, Y.; Sasao, M.; Fujita, J.

    1993-01-01

    A new type of neutron spectrometer, based on recoil proton measurement, has been developed for diagnosing a DT fusion plasma. This spectrometer has such advantages as: 1. direct measurement of the neutron energy without the unfolding procedure, 2. relatively high detection efficiency for 14 MeV neutrons, 3. a wide dynamic range of counting rate, and 4. perfect n-γ discrimination. To examine the performance of this spectrometer, we developed a Monte Carlo simulation code. It predicts that we may achieve energy resolution up to 3 % with a detection efficiency of 10 -5 [count cm 2 /n] if we could successfully adjust the condition of the spectrometer. A prototype spectrometer was constructed and was compared with the Monte Carlo prediction. The energy resolution of 5.3 ± 0.7 % for 14 MeV neutron was obtained for the prototype spectrometer and the calculation agrees with the experimental results within its margin of error if we take into account the intrinsic energy resolution of the detector that is used in the prototype. (author)

  4. A measurement of the efficiency for the detection of neutrons in the momentum range 200 to 3200 MeV/c, in large volume liquid scintillation counters

    International Nuclear Information System (INIS)

    Brown, R.M.; Clark, A.G.; Duke, P.J.

    1976-04-01

    A description is given of a system of 194 large volume liquid scintillation counters designed to detect neutrons in an experiment on the reaction π - p → π 0 n in the resonance region. The detection efficiency of the system has been determined, as a function of neutron momentum, in three separate measurements, covering the range 200 to 3200 MeV/c. Below 400 MeV/c the efficiency shows the expected momentum dependence near threshold, rising to a maximum of 50% near 300 MeV/c and then falling to 43% near 400 MeV/c. In the region 400 to 700 MeV/c the efficiency rises to 47% near 600 MeV/c and falls again to 43%, an effect not seen before; the efficiency was expected to be almost momentum independent in this region. Above the threshold for inelastic processes in nucleon-nucleon collision (approximately 800 MeV/c) the efficiency rises significantly reaching a maximum value of 65% above 1700 MeV/c. (author)

  5. The evolution of safeguards

    International Nuclear Information System (INIS)

    Heinonen, O.

    1999-01-01

    The Agency's safeguards system has demonstrated a flexibility capable of responding to the verification demands of its Member States. It is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The Agency is in the process of strengthening safeguards in its verification of declared activities. Since the early 1990's the Board of Governors took up the issue of strengthening measures such as inspections at undeclared locations, the early provision of design information, a system of universal reporting on nuclear material and certain nuclear-related equipment and non-nuclear material. Following the Agency's 'Programme 93+2', a major step forward was the adoption by the Board of Governors of the Additional Protocol in May 1997. This included important strengthened safeguards measures based on greater access to information and locations. A number of member states have already indicated their willingness to participate in this system by signing the Additional Protocol and this is now in the early stages of implementation for a few states. (author)

  6. Safeguards on nuclear materials

    International Nuclear Information System (INIS)

    Cisar, V.; Keselica, M.; Bezak, S.

    2001-01-01

    The article describes the implementation of IAEA safeguards for nuclear materials in the Czech and Slovak Republics, the establishment and development of the State System of Accounting for and Control of Nuclear Material (SSAC) at the levels of the state regulatory body and of the operator, particularly at the Dukovany nuclear power plant. A brief overview of the historical development is given. Attention is concentrated on the basic concepts and legal regulation accepted by the Czech and Slovak Republics in accordance with the new approach to create a complete legislative package in the area of nuclear energy uses. The basic intention is to demonstrate the functions of the entire system, including safeguards information processing and technical support of the system. Perspectives of the Integrated Safeguards System are highlighted. The possible ways for approximation of the two national systems to the Safeguards System within the EU (EURATOM) are outlined, and the necessary regulatory and operators' roles in this process are described. (author)

  7. Kalman filter analysis of delayed neutron nondestructive assay measurements

    International Nuclear Information System (INIS)

    Aumeier, S. E.

    1998-01-01

    The ability to nondestructively determine the presence and quantity of fissile and fertile nuclei in various matrices is important in several nuclear applications including international and domestics safeguards, radioactive waste characterization and nuclear facility operations. Material irradiation followed by delayed neutron counting is a well known and useful nondestructive assay technique used to determine the fissile-effective content of assay samples. Previous studies have demonstrated the feasibility of using Kalman filters to unfold individual isotopic contributions to delayed neutron measurements resulting from the assay of mixes of uranium and plutonium isotopes. However, the studies in question used simulated measurement data and idealized parameters. We present the results of the Kalman filter analysis of several measurements of U/Pu mixes taken using Argonne National Laboratory's delayed neutron nondestructive assay device. The results demonstrate the use of Kalman filters as a signal processing tool to determine the fissile and fertile isotopic content of an assay sample from the aggregate delayed neutron response following neutron irradiation

  8. Construction of 144, 565 keV and 5.0 MeV monoenergetic neutron calibration fields at JAERI.

    Science.gov (United States)

    Tanimura, Y; Yoshizawa, M; Saegusa, J; Fujii, K; Shimizu, S; Yoshida, M; Shibata, Y; Uritani, A; Kudo, K

    2004-01-01

    Monoenergetic neutron calibration fields of 144, 565 keV and 5.0 MeV have been developed at the Facility of Radiation Standards of JAERI using a 4 MV Pelletron accelerator. The 7Li(p,n)7Be and 2H(d,n)3He reactions are employed for neutron production. The neutron energy was measured by the time-of-flight method with a liquid scintillation detector and calculated with the MCNP-ANT code. A long counter is employed as a neutron monitor because of the flat response. The monitor is set up where the influence of inscattered neutrons from devices and their supporting materials at a calibration point is as small as possible. The calibration coefficients from the monitor counts to the neutron fluence at a calibration point were obtained from the reference fluence measured with the transfer instrument of the primary standard laboratory (AIST), a 24.13 cm phi Bonner sphere counter. The traceability of the fields to AIST was established through the calibration.

  9. The effect of albedo neutrons on the neutron multiplication of small plutonium oxide samples in a PNCC chamber

    CERN Document Server

    Bourva, L C A; Weaver, D R

    2002-01-01

    This paper describes how to evaluate the effect of neutrons reflected from parts of a passive neutron coincidence chamber on the neutron leakage self-multiplication, M sub L , of a fissile sample. It is shown that albedo neutrons contribute, in the case of small plutonium bearing samples, to a significant part of M sub L , and that their effect has to be taken into account in the relationship between the measured coincidence count rates and the sup 2 sup 4 sup 0 Pu effective mass of the sample. A simple one-interaction model has been used to write the balance of neutron gains and losses in the material when exposed to the re-entrant neutron flux. The energy and intensity profiles of the re-entrant flux have been parameterised using Monte Carlo MCNP sup T sup M calculations. This technique has been implemented for the On Site Laboratory neutron/gamma counter within the existing MEPL 1.0 code for the determination of the neutron leakage self-multiplication. Benchmark tests of the resulting MEPL 2.0 code with MC...

  10. Defining and Measuring Safeguards Culture

    International Nuclear Information System (INIS)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2010-01-01

    In light of the shift toward State Level Evaluations and information driven safeguards, this paper offers a refined definition of safeguards culture and a set of metrics for measuring the extent to which a safeguards culture exists in a state. Where the IAEA is able to use the definition and metrics to come to a positive conclusion about the country, it may help reduce the burden on the Agency and the state.

  11. IAEA Safeguards Information System (ISIS)

    International Nuclear Information System (INIS)

    1984-10-01

    Publication of this technical document should serve for better understanding of the technical and functional features of the IAEA Safeguards Information System (ISIS) within the Agency, as well as in the National Systems of accounting for and control of nuclear material. It will also serve as a foundation for further development and improvement of the design and modifications of the Safeguards Information System and its services as a function of Safeguards implementation

  12. Neutronic spectrometry measurements in sodium

    International Nuclear Information System (INIS)

    Perlini, G.; Acerbis, S.

    1987-01-01

    Measurements were made of neutronic penetration in sodium, which could serve as a reference and as a benchmark for computer codes. The model employed consisted of an assembly of 7 containers full of sodium for a total of 10 tons and a useful length of almost 4 metres. Measurements were performed at various depths along the central axis of the structure with proton recoil proportional counters. The energy band explored was between 100 and 650 keV. Here we report not only the original spectra of the impulses but also the neutronic spectra found by unfolding with the SPEC-4 code

  13. The basis for the strengthening of safeguards

    International Nuclear Information System (INIS)

    Goldschmidt, P.

    1999-01-01

    For the past 30 years, the International Atomic Energy Agency's safeguards system has contributed to the international non-proliferation regime, by providing, inter alia, assurances regarding the peaceful uses of declared nuclear material. However, the discovery of a clandestine nuclear weapons programme in Iraq in 1991 drew world-wide attention to the need to strengthen the system to address the absence of undeclared nuclear material and activities. Efforts to strengthen the IAEA's safeguards system began in 1991 and culminated in 1997 when the IAEA's Board of Governors approved a Model Protocol Additional to IAEA Safeguards Agreements which greatly expands the legal basis and scope of IAEA safeguards. Within this strengthened system it is expected that the IAEA be able to provide assurance not only of the absence of diversion of declared nuclear material but also on the absence of undeclared nuclear material and activities. This is to be done within a safeguards system that uses an optimal combination of all safeguards measures available, thereby achieving maximum effectiveness and efficiency within the available resources. This paper will summarize the evolution of the safeguards system, describe strengthened safeguards, report on the status of implementing the strengthening measures, and outline plans for integrating all available safeguards measures. (author)

  14. Information-Driven Safeguards: A Country Officer's Perspective

    International Nuclear Information System (INIS)

    Gyane, E.

    2010-01-01

    Since the transition from 'traditional' to strengthened safeguards, the evaluation and analysis of information has played an increasingly important role in the Agency's safeguards activities. During the State evaluation process, the Agency utilizes all available information for drawing credible safeguards conclusions. Besides State declared information and data gathered during inspections, a large number of information sources are reviewed for any indications of safeguards relevance. The State level approach - in contrast to the facility-based approach under traditional safeguards - considers the acquisition paths available to a State and adjusts safeguards intensity accordingly. An additional protocol widens the information base available to the Agency for analysis and evaluation and it extends the Agency's access rights in the field. The use of information for determining safeguards activities is often referred to as 'information-driven safeguards'. Country officers are inspectors in the Department of Safeguards Operations Divisions who are responsible for States and thus form the base of the Agency's information chain. The information-driven safeguards approach has led to a significant change in the role of inspector country officers: While the verification of declared nuclear material remains the cornerstone of the IAEA Safeguards System, country officers are now not only expected to be knowledgeable about the inspection-related aspects in their countries. They also need to act on information on their States coming from a variety of sources on an ongoing basis, in order to identify proliferation indicators at an early stage. Country officers thus analyse developments in their States as well as their States' relations with other States. They review scientific literature for research that could potentially be of safeguards relevance. They observe their States' nuclear facilities from satellite imagery. They evaluate reports on nuclear trade between their States

  15. International inspection activity impacts upon DOE safeguards requirements

    International Nuclear Information System (INIS)

    Zack, N.R.

    1995-01-01

    The US has placed certain special nuclear materials declared excess to their strategic needs under international safeguards through the International Atomic Energy Agency (IAEA). This Presidential initiative has obligated materials at several Department of Energy (DOE) facilities for these safeguards activities to demonstrate the willingness of the US to ban production or use of nuclear materials outside of international safeguards. However, IAEA inspection activities generally tend to be intrusive in nature and are not consistent with several domestic safeguards procedures implemented to reduce worker radiation exposures and increase the cost-effectiveness and efficiency of accounting for and storing of special nuclear materials. To help identify and provide workable solutions to these concerns, the Office of Safeguards and Security has conducted a program to determine possible changes to the DOE safeguards and security requirements designed to help facilities under international safeguards inspections more easily comply with domestic safeguards goals during international inspection activities. This paper will discuss the impact of international inspection activities on facility safeguards operations and departmental safeguards procedures and policies

  16. Calculation of efficiency of high-energy neutron detection by plastic scintillators

    International Nuclear Information System (INIS)

    Telegin, Yu.N.

    1977-01-01

    A computer was used to calculate neutron (5-30O MeV) registration effeciencies with plastic scintillators 2,5,10, 20,30,40 and 50 cm thick. The results are shown in the form of tables. The contributions to efficiency of various processes have been analysed. The calculation results may be used in planning experiments with neutron counters

  17. Passive neutron design study for 200-L waste drums

    International Nuclear Information System (INIS)

    Menlove, H.O.; Beddingfield, D.B.; Pickrell, M.M.

    1997-09-01

    We have developed a passive neutron counter for the measurement of plutonium in 200-L drums of scrap and waste. The counter incorporates high efficiency for the multiplicity counting in addition to the traditional coincidence counting. The 252 Cf add-a-source feature is used to provide an accurate assay over a wide range of waste matrix materials. The room background neutron rate is reduced by using 30 cm of external polyethylene shielding and the cosmic-ray background is reduced by statistical filtering techniques. Monte Carlo Code calculations were used to determine the optimum detector design, including the gas pressure, size, number, and placement of the 3 He tubes in the moderator. Various moderators, including polyethylene, plastics, teflon, and graphite, were evaluated to obtain the maximum efficiency and minimum detectable mass of plutonium

  18. Neutron detectors for nuclear reactor control

    International Nuclear Information System (INIS)

    Duchene, Jean; Verdant, Robert.

    1974-01-01

    In view of the importance of in-core measurements the distinction is made between detectors used outside and inside the core. In the former case proportional counters, fission chambers and boron chambers are reviewed in turn. The only in-core detectors considered are those giving a direct measurement, i.e. supplying an electric signal representative of the neutron fluence rate while in the measurement position at the point given. Two kinds of detectors are used for direct measurements: miniature fission chambers and collectors, known also as neutron-electron converters [fr

  19. Radioactive waste package assay facility. Volume 2. Investigation of active neutron and active gamma interrogation

    International Nuclear Information System (INIS)

    Bailey, M.; Bunce, L.J.; Findlay, D.J.S.; Jolly, J.E.; Parsons, T.V.; Sene, M.R.; Swinhoe, M.T.

    1992-01-01

    Volume 2 of this report describes the theoretical and experimental work carried out at Harwell on active neutron and active gamma interrogation of 500 litre cemented intermediate level waste drums. The design of a suitable neutron generating target in conjunction with a LINAC was established. Following theoretical predictions of likely neutron responses, an experimental assay assembly was built. Responses were measured for simulated drums of ILW, based on CAGR, Magnox and PCM wastes. Good correlations were established between quantities of 235 -U, nat -U and D 2 O contained in the drums, and the neutron signals. Expected sensitivities are -1g of fissile actinide and -100g of total actinide. A measure of spatial distribution is obtainable. The neutron time spectra obtained during neutron interrogation were more complex than expected, and more analysis is needed. Another area of discrepancy is the difference between predicted and measured thermal neutron flux in the drum. Clusters of small 3 He proportional counters were found to be much superior for fast neutron detection than larger diameter counters. It is necessary to ensure constancy of electron beam position relative to target(s) and drum, and prudent to measure the target neutron or gamma output as appropriate. 59 refs., 77 figs., 11 tabs

  20. Safeguards approach for conditioning facility for spent fuel

    International Nuclear Information System (INIS)

    Younkin, J.M.; Barham, M.; Moran, B.W.

    1999-01-01

    A safeguards approach has been developed for conditioning facilities associated with the final disposal of spent fuel in geologic repositories. The proposed approach is based on a generic conditioning facility incorporating common features of conditioning facility designs currently proposed. The generic facility includes a hot cell for consolidation of spent fuel pins and repackaging of spent fuel items such as assemblies and cans of pins. The consolidation process introduces safeguards concerns which have not previously been addressed in traditional safeguards approaches. In developing the safeguards approach, diversion of spent fuel was assessed in terms of potential target items, operational activities performed on the items, containment of the items, and concealment activities performed on the items. The combination of these factors defines the potential diversion pathways. Diversion pathways were identified for spent fuel pellets, pins, assemblies, canisters, and casks. Diversion activities provide for opportunities of detection along the diversion paths. Potential detection methods were identified at several levels of diversion activities. Detection methods can be implemented through safeguards measures. Safeguards measures were proposed for each of the primary safeguards techniques of design information verification (DIV), containment and surveillance (C/S), and material accountancy. Potential safeguards approaches were developed by selection of appropriate combinations of safeguards measures. For all candidate safeguards approaches, DIV is a fundamental component. Variations in the approaches are mainly in the degree of C/S measures and in the types and numbers of material accountancy verification measures. The candidate safeguards approaches were evaluated toward the goal of determining a model safeguards approach. This model approach is based on the integrated application of selected safeguards measures to use International Atomic Energy Agency resources