WorldWideScience

Sample records for safeguards include monitoring

  1. The potential use of domestic safeguards interior monitors in International Safeguards

    International Nuclear Information System (INIS)

    Williams, J.D.; Dupree, S.A.; Sonnier, C.S.

    1998-01-01

    An important future element of International Safeguards instrumentation is expected to be the merging of containment/surveillance and nondestructive assay equipment with domestic physical protection equipment into integrated systems, coupled with remote monitoring. Instrumentation would include interior monitoring and assessment and entry/exit monitoring. Of particular importance is the application of interior monitors in spaces of declared inactivity; for example, in nuclear material storage locations that are entered infrequently. The use of modern interior monitors in International Safeguards offers potential for improving effectiveness and efficiency. Within the context of increased cooperation, one can readily envision increased interaction between International Safeguards and Domestic Safeguards, including increased joint use of State System of Accounting and Control data

  2. Safeguards equipment of the future integrated monitoring systems and remote monitoring

    International Nuclear Information System (INIS)

    Sonnier, C.S.; Johnson, C.S.

    1994-01-01

    Becoming aware of the significant events of the past four years and their effect on the expectations to international safeguards, it is necessary to reflect on which direction the development of nuclear safeguards in a new era needs to take and the implications. The lime proven monitoring techniques, based on quantitative factor's and demonstrated universal application, have shown their merit. However, the new expectations suggest a possibility that a future IAEA safeguards system could rely more heavily on the value of a comprehensive, transparent and open implementation regime. Within such a regime, the associated measures need to be determined and technological support identified. This paper will identify the proven techniques which, with appropriate implementation support, could most quickly make available additional measures for a comprehensive, transparent and open implementation regime. In particular, it will examine the future of Integrated Monitoring Systems and Remote Monitoring in international safeguards, including technical and other related factors

  3. Tamper proofing of safeguards monitors

    International Nuclear Information System (INIS)

    Riley, R.J.

    1982-11-01

    The tamper proofing of safeguards monitors is essential if the data they produce is, and can be seen to be, reliable. This report discusses the problem of tamper proofing and gives guidance on when and how to apply tamper proofing techniques. The report is split into two parts. The first concerns the fundamental problem of how much tamper proofing to apply and the second describes methods of tamper proofing and discusses their usefulness. Both sections are applicable to all safeguards monitors although particular reference will be made to doorway monitors in some cases. The phrase 'tamper proofing' is somewhat misleading as it is impossible to completely tamper proof any device. Given enough time and resources, even the most elaborate tamper proofing can be overcome. In safeguards applications we are more interested in making the device tamper resistant and tamper indicating. That is, it should be able to resist a certain amount of tampering, and if tampering proves successful, that fact should be immediately obvious. Techniques of making a device tamper indicating and tamper resistant will be described below. The phrase tamper proofing will be used throughout this report as a generic term, including both tamper resistance and tamper indicating. (author)

  4. Safeguards equipment of the future: Integrated monitoring systems and remote monitoring

    International Nuclear Information System (INIS)

    Sonnier, C.S.; Johnson, C.S.

    1994-01-01

    From the beginning, equipment to support IAEA Safeguards could be characterized as that which is used to measure nuclear material, Destructive Assay (DA) and Non Destructive Assay (NDA), and that which is used to provide continuity of knowledge between inspection intervals, Containment ampersand Surveillance (C/S). C/S equipment has often been thought of as Cameras and Seals, with a limited number of monitors being employed as they became available. In recent years, technology has advanced at an extremely rapid rate, and continues to do so. The traditional film cameras are being replaced by video equipment, and fiber optic and electronic seals have come into rather widespread use. Perhaps the most interesting aspect of this evolution, and that which indicates the wave of the future without much question, is the integration of video surveillance and electronic seals with a variety of monitors. This is demonstrated by safeguards systems which are installed in several nuclear facilities in France, Germany, Japan, the UK, the USA, and elsewhere. The terminology of Integrated Monitoring Systems (IMS) has emerged, with the employment of network technology capable of interconnecting all desired elements in a very flexible manner. Also, the technology for transmission of a wide variety of information to off-site locations, termed Remote Monitoring, is in widespread industrial use, requiring very little adaptation for safeguards use. This paper examines the future of the Integrated Monitoring Systems and Remote Monitoring in International Safeguards, including technical and other related factors

  5. Remote monitoring: A global partnership for safeguards

    International Nuclear Information System (INIS)

    Bardsley, J.

    1996-01-01

    With increased awareness of the significant changes of the past several years and their effect on the expectations to international safeguards, it is necessary to reflect on the direction for development of nuclear safeguards in a new era and the resulting implications. The time proven monitoring techniques, based on quantitative factors and demonstrated universal application, have shown their merit. However, the new expectations suggest a possibility that a future IAEA safeguards system could rely more heavily on the value of a comprehensive, transparent, and open implementation regime. With the establishment of such a regime, it is highly likely that remote monitoring will play a significant role. Several states have seen value in cooperating with each other to address the many problems associated with the remote interrogation of integrated monitoring systems. As a consequence the International Remote Monitoring Project was organized to examine the future of remote monitoring in International Safeguards. This paper provides an update on the technical issues, the future plans, and the safeguards implications of cooperative programs relating to remote monitoring. Without providing answers to the policy questions involved, it suggests that it is timely to begin addressing these issues

  6. Process monitoring for reprocessing plant safeguards: a summary review

    International Nuclear Information System (INIS)

    Kerr, H.T.; Ehinger, M.H.; Wachter, J.W.; Hebble, T.L.

    1986-10-01

    Process monitoring is a term typically associated with a detailed look at plant operating data to determine plant status. Process monitoring has been generally associated with operational control of plant processes. Recently, process monitoring has been given new attention for a possible role in international safeguards. International Safeguards Project Office (ISPO) Task C.59 has the goal to identify specific roles for process monitoring in international safeguards. As the preliminary effort associated with this task, a review of previous efforts in process monitoring for safeguards was conducted. Previous efforts mentioned concepts and a few specific applications. None were comprehensive in addressing all aspects of a process monitoring application for safeguards. This report summarizes the basic elements that must be developed in a comprehensive process monitoring application for safeguards. It then summarizes the significant efforts that have been documented in the literature with respect to the basic elements that were addressed

  7. Enhanced safeguards via solution monitoring

    International Nuclear Information System (INIS)

    Burr, T.; Wangen, L.

    1996-09-01

    Solution monitoring is defined as the essentially continuous monitoring of solution level, density, and temperature in all tanks in the process that contain, or could contain, safeguards-significant quantities of nuclear material. This report describes some of the enhancements that solution monitoring could make to international safeguards. The focus is on the quantifiable benefits of solution monitoring, but qualitatively, solution monitoring can be viewed as a form of surveillance. Quantitatively, solution monitoring can in some cases improve diversion detection probability. For example, the authors show that under certain assumptions, solution monitoring can be used to reduce the standard deviation of the annual material balance, σ MB , from approximately 17 kg to approximately 4 kg. Such reduction in σ MB will not always be possible, as they discuss. However, in all cases, solution monitoring would provide assurance that the measurement error models are adequate so that one has confidence in his estimate of σ MB . Some of the results in this report were generated using data that were simulated with prototype solution monitoring software that they are developing. An accompanying document describes that software

  8. The integration of process monitoring for safeguards

    International Nuclear Information System (INIS)

    Cipiti, Benjamin B.; Zinaman, Owen R.

    2010-01-01

    The Separations and Safeguards Performance Model is a reprocessing plant model that has been developed for safeguards analyses of future plant designs. The model has been modified to integrate bulk process monitoring data with traditional plutonium inventory balances to evaluate potential advanced safeguards systems. Taking advantage of the wealth of operator data such as flow rates and mass balances of bulk material, the timeliness of detection of material loss was shown to improve considerably. Four diversion cases were tested including both abrupt and protracted diversions at early and late times in the run. The first three cases indicated alarms before half of a significant quantity of material was removed. The buildup of error over time prevented detection in the case of a protracted diversion late in the run. Some issues related to the alarm conditions and bias correction will need to be addressed in future work. This work both demonstrates the use of the model for performing diversion scenario analyses and for testing advanced safeguards system designs.

  9. Implementation of remove monitoring in facilities under safeguards with unattended systems

    International Nuclear Information System (INIS)

    Beddingfield, David H.; Nordquist, Heather A.; Umebayaashi, Eiji

    2009-01-01

    Remote monitoring is being applied by the International Atomic Energy Agency (IAEA) at nuclear facilities around the world. At the Monju Reactor in Japan we have designed, developed and implemented a remote monitoring approach that can serve as a model for applying remote monitoring to facilities that are already under full-scope safeguards using unattended instrumentation. Remote monitoring implementations have historically relied upon the use of specialized data collection hardware and system design features that integrate remote monitoring into the safeguards data collection system. The integration of remote monitoring and unattended data collection increases the complexity of safeguards data collection systems. This increase in complexity necessarily produces a corresponding reduction of system reliability compared to less-complex unattended monitoring systems. At the Monju facility we have implemented a remote monitoring system that is decoupled from the activity of safeguards data collection. In the completed system the function of remote data transfer is separated from the function of safeguards data collection. As such, a failure of the remote monitoring function cannot produce an associated loss of safeguards data, as is possible with integrated remote-monitoring implementations. Currently, all safeguards data from this facility is available to the IAEA on a 24/7 basis. This facility employs five radiation-based unattended systems, video surveillance and numerous optical seal systems. The implementation of remote monitoring at this facility, while increasing the complexity of the safeguards system, is designed to avoid any corresponding reduction in reliability of the safeguards data collection systems by having decoupled these functions. This design and implementation can serve as a model for implementation of remote monitoring at nuclear facilities that currently employ unattended safeguards systems.

  10. Current status of process monitoring for IAEA safeguards

    International Nuclear Information System (INIS)

    Koroyasu, M.

    1987-06-01

    Based on literature survey, this report tries to answer some of the following questions on process monitoring for safeguards purposes of future large scale reprocessing plants: what is process monitoring, what are the basic elements of process monitoring, what kinds of process monitoring are there, what are the basic problems of process monitoring, what is the relationship between process monitoring and near-real-time materials accountancy, what are actual results of process monitoring tests and what should be studied in future. A brief description of Advanced Safeguards Approaches proposed by the four states (France, U.K., Japan and U.S.A.), the approach proposed by the U.S.A., the description of the process monitoring, the main part of the report published as a result of one of the U.S. Support Programmes for IAEA Safeguards and an article on process monitoring presented at an IAEA Symposium held in November 1986 are given in the annexes. 24 refs, 20 figs, tabs

  11. Fully integrated safeguards and security for reprocessing plant monitoring

    International Nuclear Information System (INIS)

    Duran, Felicia Angelica; Ward, Rebecca; Cipiti, Benjamin B.; Middleton, Bobby D.

    2011-01-01

    Nuclear fuel reprocessing plants contain a wealth of plant monitoring data including material measurements, process monitoring, administrative procedures, and physical protection elements. Future facilities are moving in the direction of highly-integrated plant monitoring systems that make efficient use of the plant data to improve monitoring and reduce costs. The Separations and Safeguards Performance Model (SSPM) is an analysis tool that is used for modeling advanced monitoring systems and to determine system response under diversion scenarios. This report both describes the architecture for such a future monitoring system and present results under various diversion scenarios. Improvements made in the past year include the development of statistical tests for detecting material loss, the integration of material balance alarms to improve physical protection, and the integration of administrative procedures. The SSPM has been used to demonstrate how advanced instrumentation (as developed in the Material Protection, Accounting, and Control Technologies campaign) can benefit the overall safeguards system as well as how all instrumentation is tied into the physical protection system. This concept has the potential to greatly improve the probability of detection for both abrupt and protracted diversion of nuclear material.

  12. Remote monitoring in international safeguards

    International Nuclear Information System (INIS)

    Dupree, S.A.; Sonnier, C.S.; Johnson, C.S.

    1996-01-01

    In recent years, technology that permits the integration of monitoring sensors and instruments into a coherent network has become available. Such integrated monitoring systems provide a means for the automatic collection and assessment of sensor signals and instrument readings and for processing such signals and readings in near real time. To gain experience with the new monitoring system technology, the US Department of energy, through bilateral agreements with its international partners, has initiated a project to emplace demonstration systems in various nuclear facilities and conduct field trials of the technology. This effort is the International Remote Monitoring Project. Under this project, remote monitoring systems are being deployed around the world in an incremental manner. Each deployment is different and each offers lessons for improving the performance and flexibility of the technology. Few problems were encountered with the operation of the installations to date, and much has been learned about the operation and use of the new technology. In the future, the authors believe systems for safeguards applications should be capable of being monitored remotely, emphasize the use of sensors, and utilize selective triggering for recording of images. Remote monitoring across national borders can occur only in the context of a cooperative, nonadversarial implementation regime. However, significant technical and policy work remains to be done before widespread safeguards implementation of remote monitoring should be considered. This paper shows that an abundance of technology supports the implementation of integrated and remote monitoring systems. Current field trials of remote monitoring systems are providing practical data and operational experience to aid in the design of tomorrow's systems

  13. Sequential probability ratio controllers for safeguards radiation monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Coop, K.L.; Nixon, K.V.

    1984-01-01

    Sequential hypothesis tests applied to nuclear safeguards accounting methods make the methods more sensitive to detecting diversion. The sequential tests also improve transient signal detection in safeguards radiation monitors. This paper describes three microprocessor control units with sequential probability-ratio tests for detecting transient increases in radiation intensity. The control units are designed for three specific applications: low-intensity monitoring with Poisson probability ratios, higher intensity gamma-ray monitoring where fixed counting intervals are shortened by sequential testing, and monitoring moving traffic where the sequential technique responds to variable-duration signals. The fixed-interval controller shortens a customary 50-s monitoring time to an average of 18 s, making the monitoring delay less bothersome. The controller for monitoring moving vehicles benefits from the sequential technique by maintaining more than half its sensitivity when the normal passage speed doubles

  14. Survey of special nuclear material vehicle monitors for domestic and international safeguards

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Atwater, H.F.; Caldwell, J.T.; Shunk, E.R.

    1979-01-01

    Special nuclear materials vehicle monitors, including gateside vehicle monitors, hand-held personnel-vehicle monitors, and a new tunnel monitor concept for very large vehicles, are discussed. The results of a comparison of effectiveness of monitors for domestic application are presented. The results of calculations and small scale prototype measurements are given for a tunnel-like neutron monitor for monitoring at the perimeter of an enrichment plant subjected to International Safeguards

  15. Technology of remote nuclear activity monitoring for national safeguards

    International Nuclear Information System (INIS)

    Kwack, Eun Ho; Kim, B. K.; Kim, J. S.; Yoon, W. K.; Kim, J. S.; Kim, J. S.; Cha, H. R.; Na, W. W.; Choi, Y. M.

    2001-07-01

    This project mainly focused on technical development on remote monitoring. It covers optical fiber scintillator to be used as NDA sensor to targets to be applied. Optical fiber scintillator was tested at the high radioactive environment. It is the first try in its kind for spent fuel measurement. It is confirmed that optical fiber sensor can be used for safeguards verification. Its feasibility for spent fuel storage silo at Wolsong reactor was studied. And to optimize remote transmission cost which can be regarded as a major barrier, virtual private network was studied for possible application for safeguards purpose. It can drastically reduce transmission cost and upgrade information surety. As target for remote monitoring, light water reactor and heavy water reactor were feasibly studied. Especially heavy water reactor has much potential for reduction of inspection efforts if remote monitoring is introduced. In overall remote monitoring can play a pivotal role to streamline safeguards inspection

  16. Remote monitoring for international safeguards

    International Nuclear Information System (INIS)

    Dupree, S.A.; Sonnier, C.S.

    1999-01-01

    Remote monitoring is not a new technology, and its application to safeguards-relevant activities has been examined for a number of years. On behalf of the U.S. Department of Energy and international partners, remote monitoring systems have been emplaced in nuclear facilities and laboratories in various parts of the world. The experience gained from these Geld trials of remote monitoring systems has shown the viability of the concept of using integrated monitoring systems. Although a wide variety of sensors has been used in the remote monitoring field trials conducted to date, the possible range of instrumentation that might be used has scarcely been touched. As the technology becomes widespread, large amounts of data will become available to inspectors responsible for safeguards activities at the sites. Effective use of remote monitoring will require processing, archiving, presenting, and assessing of these data. To provide reasonable efficiency in the application of this technology, data processing should be done in a careful and organized manner. The problem will be not an issue of poring over scant records but of surviving under a deluge of information made possible by modern technology Fortunately, modem technology, which created the problem of the data glut, is available to come to the assistance of those inundated by data. Apart from the technological problems, one of the most important aspects of remote monitoring is the potential constraint related to the transmission of data out of a facility or beyond national borders. Remote monitoring across national borders can be seriously considered only in the context of a comprehensive, transparent, and open implementation regime. (author)

  17. Safeguard Application Options for the Laser-Based Item Monitoring System (LBIMS)

    International Nuclear Information System (INIS)

    Laughter, Mark D

    2008-01-01

    Researchers at Oak Ridge National Laboratory (ORNL) are developing a Laser-Based Item Monitoring System (LBIMS) for advanced safeguards at nuclear facilities. LBIMS uses a low-power laser transceiver to monitor the presence and position of items with retroreflective tags. The primary advantages of LBIMS are its scalability to continuously monitor a wide range of items, its ability to operate unattended, its low cost of implementation, and its inherent information security due to its line-of-sight and non-broadcasting operation. The primary proposed safeguard application of LBIMS is described in its name: item monitoring. LBIMS could be implemented in a storage area to continuously monitor containers of nuclear material and the area in which they are stored. The system could be configured to provide off-site notification if any of the containers are moved or removed or if the area is accessed. Individual tags would be used to monitor storage containers, and additional tags could be used to record information regarding secondary storage units and room access. The capability to register small changes in tag position opens up the possibility of several other uses. These include continuously monitoring piping arrangements for design information verification or recording equipment positions for other safeguards systems, such as tracking the opening and closing of autoclaves as part of a cylinder tracking system or opening and closing valves on a sample or product take-off line. Combined with attribute tags, which transmit information from any kind of sensor by modulating the laser signal, LBIMS provides the capability to wirelessly and securely collect safeguards data, even in areas where radio-frequency or other wireless communication methods are not practicable. Four application types are described in this report: static item monitoring, in-process item monitoring with trigger tags, multi-layered integration with trigger tags, and line-of-sight data transfer with

  18. Safeguards and nuclear forensics

    International Nuclear Information System (INIS)

    Gangotra, Suresh

    2016-01-01

    Nuclear Safeguards is the detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons, or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by early detection. Safeguards implementation involves nuclear material accounting and containment and surveillance measures. The safeguards are implemented in nuclear facilities by the states, or agencies and International Atomic Energy Agency (IAEA). The measures for the safeguards include nuclear material Accounting (NUMAC) and Containment and surveillance systems. In recent times, there have been advances in safeguards like Near Real Time Monitoring (NRTM), Dynamic Nuclear Material Accounting (DNMA), Safeguards-by-Design (SBD), satellite imagery, information from open sources, remote monitoring etc

  19. Validation of safeguards monitoring systems and their simulations

    International Nuclear Information System (INIS)

    Standley, V.; Boeck, H.; Villa, M.

    2001-01-01

    Research is underway at the Atominstitut in Vienna Austria where the objective is to design and validate quantitatively a safeguards monitoring system (SMS) and its simulation. The work is novel because the simulation is also used as the basis for automated evaluation of SMS data. Preliminary results indicate that video and radiation data can be automatically interpreted using this approach. Application of the technique promises that an investment in a simulation supports directly the safeguards objective, which is to catch diversion of nuclear material. Consequently, it is easier for a safeguards agency to also realize other benefits associated with simulation-based acquisition, in addition to having a quantitative method for validation

  20. Data analysis for remote monitoring of safeguarded facilities

    International Nuclear Information System (INIS)

    DeLand, S.M.

    1997-01-01

    The International Remote Monitoring Project (IRMP) sponsored by the US DOE allows DOE and its international partners to gain experience with the remote collection, transmission, and interpretation of safeguards-relevant data. This paper focuses on the interpretation of the data from these remote monitoring systems. Users of these systems need to be able to ascertain that the remote monitoring system is functioning as expected and that the events generated by the sensors are consistent with declared activity. The initial set of analytical tools being provided for IRMP installations this year include a suite of automatically generated views of user-selected data. The baseline set of tools, with illustrative examples, will be discussed. Plans for near-term enhancements will also be discussed. Finally, the applicability of more advanced analytical techniques such as expert systems will be discussed

  1. A perspective on safeguarding and monitoring of excess military plutonium

    International Nuclear Information System (INIS)

    Sutcliffe, W.G.

    1994-01-01

    The purpose of this paper is to provide a perspective and framework for the development of safeguarding and monitoring procedures for the various stages of disposition of excess military plutonium. The paper briefly outlines and comments on some of the issues involved in safeguarding and monitoring excess military plutonium as it progresses from weapons through dismantlement, to fabrication as reactor fuel, to use in a reactor, and finally to storage and disposal as spent fuel. open-quotes Militaryclose quotes refers to ownership, and includes both reactor-grade and weapon-grade plutonium. open-quotes Excessclose quotes refers to plutonium (in any form) that a government decides is no longer needed for military use and can be irrevocably removed from military stockpiles. Many of the issues and proposals presented in this paper are based on, or are similar to, those mentioned in the National Academy of Sciences (NAS) report on excess military plutonium. Safeguards for plutonium disposition are discussed elsewhere in terms of requirements established by the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission (NRC), and the International Atomic Energy Agency (IAEA). Here, the discussion is less specific. The term open-quotes safeguardingclose quotes is used broadly to refer to materials control and accountancy (MC ampersand A), containment and surveillance (C ampersand S), and physical protection of nuclear materials by the state that possesses those materials. This is also referred to as material protection, control, and accountancy (MPCA). The term open-quotes safeguardingclose quotes was chosen for brevity and to distinguish MPCA considered in this paper from international or IAEA safeguards. open-quotes Monitoringclose quotes is used to refer to activities designed to assure another party (state or international organization) that the nuclear materials of the host state (the United States or Russia) are secure and not subject to unauthorized

  2. Safeguards document (INFCIRC/153) and the new safeguards system

    International Nuclear Information System (INIS)

    Haginoya, Tohru

    1997-01-01

    INFCIRC/153. The NPT covers nuclear weapons and nuclear explosive devices but not other military uses of nuclear materials. The NPT safeguards applies all nuclear materials including undeclared nuclear materials. The protection of commercially sensitive information is important. The new safeguards system. The Model protocol amends INFCIRC/153 (the Protocol prevails). Apply nuclear fuel cycle related activities with no nuclear material. The environmental monitoring is an important measure, but non-weapon countries have no such technology. Impact and benefit from the new system. Simplification of the conventional safeguards. Could possibly define three categories of plutonium. (author)

  3. Safeguards for nuclear material transparency monitoring

    International Nuclear Information System (INIS)

    MacArthur, D.A.; Wolford, J.K.

    1999-01-01

    The US and the Russian Federation are currently engaged in negotiating or implementing several nuclear arms and nuclear material control agreements. These involve placing nuclear material in specially designed containers within controlled facilities. Some of the agreements require the removal of nuclear components from stockpile weapons. These components are placed in steel containers that are then sealed and tagged. Current strategies for monitoring the agreements involve taking neutron and gamma radiation measurements of components in their containers to monitor the presence, mass, and composition of plutonium or highly enriched uranium, as well as other attributes that indicate the use of the material in a weapon. If accurate enough to be useful, these measurements will yield data containing information about the design of the weapon being monitored. In each case, the design data are considered sensitive by one or both parties to the agreement. To prevent the disclosure of this information in a bilateral or trilateral inspection scenario, so-called information barriers have evolved. These barriers combine hardware, software, and procedural safeguards to contain the sensitive data within a protected volume, presenting to the inspector only the processed results needed for verification. Interlocks and volatile memory guard against disclosure in case of failure. Implementing these safeguards requires innovation in radiation measurement instruments and data security. Demonstrating their reliability requires independent testing to uncover any flaws in design. This study discusses the general problem and gives a proposed solution for a high resolution gamma ray detection system. It uses historical examples to illustrate the evolution of other successful systems

  4. Safeguarding the Plutonium Fuel Cycle

    International Nuclear Information System (INIS)

    Johnson, S.J.; Lockwood, D.

    2013-01-01

    In developing a Safeguards Approach for a plutonium process facility, two general diversion and misuse scenarios must be addressed: 1) Unreported batches of undeclared nuclear material being processed through the plant and bypassing the accountancy measurement points, and 2) The operator removing plutonium at a rate that cannot be detected with confidence due to measurement uncertainties. This paper will look at the implementation of international safeguards at plutonium fuel cycle facilities in light of past lessons learned and current safeguards approaches. It will then discuss technical areas which are currently being addressed as future tools to improve on the efficiency of safeguards implementation, while maintaining its effectiveness. The discussion of new improvements will include: safeguards by design (SBD), process monitoring (PM), measurement and monitoring equipment, and data management. The paper is illustrated with the implementation of international safeguards at the Rokkasho Reprocessing Plant in Japan and its accountancy structure is detailed. The paper is followed by the slides of the presentation

  5. Performance monitoring of safeguards equipment

    International Nuclear Information System (INIS)

    Sirisena, K.; Peltoranta, M.; Goussarov, V.; Vodrazka, P.

    1999-01-01

    SGTCS is responsible for monitoring and reporting the performance of the SG equipment. Performance monitoring (PM) has been implemented in most important safeguards equipment operating unattended in nuclear facilities. Inspectors acquire equipment performance data in facilities. After inspection, the data package is submitted to SGTCS for processing and analysis. The performance data is used for identification of systems or components, which should be changed in the field and for identification of modules which, should be diagnosed at HQ in order to determine the cause of failure. Moreover, the performance data is used for preventive maintenance and spares distribution planning, and to provide statistics for official reports and management decision making. An important part of the performance monitoring is reporting. Equipment performance reports contain information about equipment inventory, utilization, failure types, failure distribution, and reliability. Trends in performance are given in graphical form in cases, where past data is available. Reliability estimates such as expected times between failures are provided. The automated reporting tools are obtainable through EMIS database application. (author)

  6. The process monitoring computer system an integrated operations and safeguards surveillance system

    International Nuclear Information System (INIS)

    Liester, N.A.

    1995-01-01

    The use of the Process Monitoring Computer System (PMCS) at the Idaho Chemical Processing Plant (ICPP) relating to Operations and Safeguards concerns is discussed. Measures taken to assure the reliability of the system data are outlined along with the measures taken to assure the continuous availability of that data for use within the ICPP. The integration of process and safeguards information for use by the differing organizations is discussed. The PMCS successfully demonstrates the idea of remote Safeguards surveillance and the need for sharing of common information between different support organizations in an operating plant

  7. Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation

    International Nuclear Information System (INIS)

    Boyer, Brian David; Erpenbeck, Heather H.; Miller, Karen A.; Ianakiev, Kiril D.; Reimold, Benjamin A.; Ward, Steven L.; Howell, John

    2010-01-01

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and 235 U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

  8. Radiation detectors as surveillance monitors for IAEA safeguards

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Dowdy, E.J.

    1980-10-01

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development

  9. Radiation detectors as surveillance monitors for IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Fehlau, P.E.; Dowdy, E.J.

    1980-10-01

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development.

  10. Smarter radiation monitors for safeguards and security

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Pratt, J.C.; Markin, J.T.; Scurry, T. Jr.

    1983-01-01

    Radiation monitors for nuclear safeguards and security depend on internal control circuits to determine when diversion of special nuclear materials is taking place. Early monitors depended on analog circuits for this purpose, subsequently, digital logic controllers made better monitoring methods possible. Now, versatile microprocessor systems permit new, more efficient, and more useful monitoring methods. One such method is simple stepwise monitoring, which has variable alarm levels to expedite monitoring where extended monitoring periods are required. Another method, sequential probability ratio logic, tests data as it accumulates against two hypothesis - background, or background plus a transient diversion signal - and terminates monitoring as soon as a decision can be made that meets false-alarm and detection confidence requirements. A third method, quantitative monitoring for personnel, calculates count ratios of high- to low-energy gamma-ray regions to predict whether the material detected is a small quantity of bare material or a larger quantity of shielded material. In addition, microprocessor system subprograms can assist in detector calibration and trouble-shooting. Examples of subprograms are a variance analysis technique to set bias levels in plastic scintillators and a state-of-health routine for detecting malfunctions in digital circuit components

  11. Development of solution monitoring software for enhanced safeguards at a large scale reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Van Handenhove, Carl; Breban, Domnica; Creusot, Christophe [International Atomic Energy Agency, Vienna (Austria); Dransart, Pascal; Dechamp, Luc [Joint Research Centre, European Commission, Ispra, Varese, (Italy); Jarde, Eric [Euriware, Equeurdreville (France)

    2011-12-15

    The implementation of an effective and efficient IAEA safeguards approach at large scale reprocessing facilities with large throughput and continuous flow of nuclear material requires the introduction of enhanced safeguards measures to provide added assurance about the absence of diversion of nuclear material and confirmation that the facility is operated as declared. One of the enhanced safeguards measures, a Solution Monitoring and Measurement System (SMMS), comprising data collection instruments, data transmission equipment and an advanced Solution Monitoring Software (SMS), is being implemented at a large scale reprocessing plant in Japan. SMS is designed as a tool to enable automatic calculations of volumes, densities and flow-rates in selected process vessels, including most of the vessels of the main nuclear material stream. This software also includes automatic features to support the inspectorate in verifying inventories and inventory changes. The software also enables one to analyze the flows of nuclear material within the process and of specified 'cycles' of operation, and, in order to provide assurance that the facility is being operated as declared to compare these with those expected (reference signatures). The configuration and parameterization work (especially the analytical and comparative work) for the implementation and configuration of the SMS has been carried out jointly between the IAEA, Euriware-France (the software developer) and the Joint Research Centre (JRC)-Ispra. This paper describes the main features of the SMS, including the principles underlying the automatic analysis functionalities. It then focuses on the collaborative work performed by the JRC-Ispra, Euriware and the IAEA for the parameterization of the software (vessels and cycles of operation), including the current status and the future challenges.

  12. EURATOM safeguards. Safeguards verifications in reprocessing plants

    International Nuclear Information System (INIS)

    Heppleston, M.

    1999-01-01

    This paper provides a brief historical view of the legal basis for EURATOM. The specific application of safeguards to large scale reprocessing plants, from the theoretical model to the practical application of inspection is considered. The challenge to adequately safeguard major commercial reprocessing facilities has led to many novel approaches being developed. These lessons will also benefit other safeguard projects as a result. Good cooperation between the operator and regulator is essential for the satisfactory installation of adequate safeguard controls. The use of modern data processing technology combined with other diverse monitoring techniques has shown that a major industrial scale reprocessing plant can be controlled under international safeguards to provide a high level of assurance [ru

  13. Update on Monitoring Technologies for International Safeguards and Fissile Material Verification

    International Nuclear Information System (INIS)

    Croessmann, C. Dennis; Glidewell, Don D.; Mangan, Dennis L.; Smathers, Douglas C.

    1999-01-01

    Monitoring technologies are playing an increasingly important part in international safeguards and fissile material verification. The developments reduce the time an inspector must spend at a site while assuring continuity of knowledge. Monitoring technologies' continued development has produced new seal systems and integrated video surveillance advances under consideration for Trilateral Initiative use. This paper will present recent developments for monitoring systems at Embalse, Argentina, VNHEF, Sarov, Russian, and Savannah River Site, Aiken, South Carolina

  14. Enhancing Efficiency of Safeguards at Facilities that are Shutdown or Closed-Down, including those being Decommissioned

    Energy Technology Data Exchange (ETDEWEB)

    Moran, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stern, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Colley, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marzo, M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-15

    International Atomic Energy Agency (IAEA) safeguards involves verification activities at a wide range of facilities in a variety of operational phases (e.g., under construction, start-up, operating, shutdown, closed-down, and decommissioned). Safeguards optimization for each different facility type and operational phase is essential for the effectiveness of safeguards implementation. The IAEA’s current guidance regarding safeguards for the different facility types in the various lifecycle phases is provided in its Design Information Examination (DIE) and Verification (DIV) procedure. 1 Greater efficiency in safeguarding facilities that are shut down or closed down, including those being decommissioned, could allow the IAEA to use a greater portion of its effort to conduct other verification activities. Consequently, the National Nuclear Security Administration’s Office of International Nuclear Safeguards sponsored this study to evaluate whether there is an opportunity to optimize safeguards approaches for facilities that are shutdown or closed-down. The purpose of this paper is to examine existing safeguards approaches for shutdown and closed-down facilities, including facilities being decommissioned, and to seek to identify whether they may be optimized.

  15. IAEA safeguards: Staying ahead of the game

    International Nuclear Information System (INIS)

    2007-07-01

    What are nuclear safeguards and why are they important? Answers are provided in the booklet, describing and explaining the fundamentals of the IAEA safeguards system and its role as a key element of international security, and addressing the system's implementation, costs, requirements, resources and historical development, with an emphasis on trends and strengthening measures over the past 10-15 years. Topics discussed include the safeguards State evaluation process and and the key requirements of the safeguards system including information sources (open source information, commercial satellite imagery and nuclear trade related information) and the state of the art equipment, techniques and technology (unattended and remote monitoring equipment, environmental sampling, etc.)

  16. Solution Monitoring Evaluated by Proliferation Risk Assessment and Fuzzy Optimization Analysis for Safeguards in a Reprocessing Process

    Directory of Open Access Journals (Sweden)

    Mitsutoshi Suzuki

    2013-01-01

    Full Text Available Solution monitoring (SM has been used in a nuclear reprocessing plant as an additional measure to provide assurance that the plant is operated as declared. The inline volume and density monitoring equipment with dip tubes is important for safety and safeguards purposes and is a typical example of safeguards by design (SBD. Recently safety, safeguards, and security by design (3SBD are proposed to promote an efficient and effective generation of nuclear energy. In 3SBD, proliferation risk assessment has the potential to consider likelihood of the incidence and proliferation risk in safeguards. In this study, risk assessment methodologies for safeguards and security are discussed and several mathematical methods are presented to investigate risk notion applied to intentional acts of facility misuse in an uncertainty environment. Proliferation risk analysis with the Markov model, deterrence effect with the game model, and SBD with fuzzy optimization are shown in feasibility studies to investigate the potential application of the risk and uncertainty analyses in safeguards. It is demonstrated that the SM is an effective measurement system using risk-informed and cost-effective SBD, even though there are inherent difficulties related to the possibility of operator’s falsification.

  17. Introduction to nuclear material safeguards

    International Nuclear Information System (INIS)

    Kuroi, Hideo

    1986-01-01

    This article is aimed at outlining the nuclear material safeguards. The International Atomic Energy Agency (IAEA) was established in 1957 and safeguards inspection was started in 1962. It is stressed that any damage resulting from nuclear proliferation would be triggered by a human intentional act. Various measures have been taken by international societies and nations, of which the safeguards are the only means which relay mainly on technical procedures. There are two modes of diversing nuclear materials to military purposes. One would be done by national intension while the other by indivisulas or expert groups, i.e., sub-national intention. IAEA is responsible for the prevention of diversification by nations, for which the international safeguards are being used. Measures against the latter mode of diversification are called nuclear protection, for which each nation is responsible. The aim of the safeguards under the Nonproliferation Treaty is to detect the diversification of a significant amount of nuclear materials from non-military purposes to production of nuclear explosion devices such as atomic weapons or to unidentified uses. Major technical methods used for the safeguards include various destructive and non-destructive tests as well as containment and monitoring techniques. System techniques are to be employed for automatic containment and monitoring procedures. Appropriate nuclear protection system techniques should also be developed. (Nogami, K.)

  18. Validation of gamma-ray detection techniques for safeguards monitoring at natural uranium conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dewji, S.A., E-mail: dewjisa@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6335, Oak Ridge, TN 37831-6335 (United States); Lee, D.L.; Croft, S. [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6335, Oak Ridge, TN 37831-6335 (United States); Hertel, N.E. [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6335, Oak Ridge, TN 37831-6335 (United States); Nuclear and Radiological Engineering Program, Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States); Chapman, J.A.; McElroy, R.D.; Cleveland, S. [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6335, Oak Ridge, TN 37831-6335 (United States)

    2016-07-01

    Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO{sub 2}(NO{sub 3}){sub 2}) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10–90 g U/L of natural uranyl nitrate are presented. A range of

  19. Tracking and position recognition applied to remote monitoring to be used in integrated safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, Anibal D; Perez, Adrian C; Krimer, Mario J; Teira, Ruben O; Vigile, Rodolfo S; Valentino, Lucia I; Giordano, Luis A; Ferro, Juan M [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    2001-07-01

    In the framework of the Strengthening and integrated Safeguards Systems new measures and tools are available to meet the safeguards objective. The credible assurance on the absence of undeclared nuclear material and activities derived from the implementation of the Additional Protocol has an impact on the current safeguards approach to declared facilities thus their through review is advisable. Among these tools, a more intensive use of unattended systems and remote transmission of safeguards relevant information are considered, specifically for On Load Reactors (ORLs). A Remote Monitoring Systems (RMS) to cover the transfers of spent fuels from the ponds to a dry storage is being tested at Embalse nuclear power plant. In connection with the RMS, this paper describes some of the technologies involved: the Global Position System (GPS) and the Radio Frequency IDentification (RFID), which were implemented due to the requirement to ascertain the position of valuable elements. The main objective of this design aimed at safeguarding the spent fuels transfers from the welding cell to the silos field by a strict surveillance of the whereabouts. The bases for the development were settled by the specifications imposed by the integrated Safeguards of the Nuclear Regulatory Authority in Argentina. The resultant tracking and position recognition system is based on GPS receivers operating in Differential Mode, with the aid of Radio Frequency Identification. In compliance with the safeguard requirement the whole system is able to operate in a continuous and remote mode, what means without human being attention. (author)

  20. Symposium on international safeguards: Verification and nuclear material security. Book of extended synopses

    International Nuclear Information System (INIS)

    2001-01-01

    The symposium covered the topics related to international safeguards, verification and nuclear materials security, namely: verification and nuclear material security; the NPT regime: progress and promises; the Additional Protocol as an important tool for the strengthening of the safeguards system; the nuclear threat and the nuclear threat initiative. Eighteen sessions dealt with the following subjects: the evolution of IAEA safeguards (including strengthened safeguards, present and future challenges; verification of correctness and completeness of initial declarations; implementation of the Additional Protocol, progress and experience; security of material; nuclear disarmament and ongoing monitoring and verification in Iraq; evolution of IAEA verification in relation to nuclear disarmament); integrated safeguards; physical protection and illicit trafficking; destructive analysis for safeguards; the additional protocol; innovative safeguards approaches; IAEA verification and nuclear disarmament; environmental sampling; safeguards experience; safeguards equipment; panel discussion on development of state systems of accountancy and control; information analysis in the strengthened safeguard system; satellite imagery and remote monitoring; emerging IAEA safeguards issues; verification technology for nuclear disarmament; the IAEA and the future of nuclear verification and security

  1. Symposium on international safeguards: Verification and nuclear material security. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The symposium covered the topics related to international safeguards, verification and nuclear materials security, namely: verification and nuclear material security; the NPT regime: progress and promises; the Additional Protocol as an important tool for the strengthening of the safeguards system; the nuclear threat and the nuclear threat initiative. Eighteen sessions dealt with the following subjects: the evolution of IAEA safeguards (including strengthened safeguards, present and future challenges; verification of correctness and completeness of initial declarations; implementation of the Additional Protocol, progress and experience; security of material; nuclear disarmament and ongoing monitoring and verification in Iraq; evolution of IAEA verification in relation to nuclear disarmament); integrated safeguards; physical protection and illicit trafficking; destructive analysis for safeguards; the additional protocol; innovative safeguards approaches; IAEA verification and nuclear disarmament; environmental sampling; safeguards experience; safeguards equipment; panel discussion on development of state systems of accountancy and control; information analysis in the strengthened safeguard system; satellite imagery and remote monitoring; emerging IAEA safeguards issues; verification technology for nuclear disarmament; the IAEA and the future of nuclear verification and security.

  2. Advanced Safeguards Technology Road-map for the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Miller, M.C.; Tobin, S.; Smith, L.E.; Ehinger, M.; Dougan, A.; Cipiti, B.; Bakel, A.; Bean, R.

    2008-01-01

    Strengthening the nonproliferation regime, including advanced safeguards, is a cornerstone of the Global Nuclear Energy Partnership (GNEP). To meet these challenges, the Safeguards Campaign was formed, whose mission is to provide research and technology development for the foundation of next generation safeguards systems for implementation in U.S. GNEP facilities. The Safeguards Campaign works closely with the Nuclear Nonproliferation and International Security department (NA-24) of NNSA (National Nuclear Safety Administration) to ensure that technology developed for domestic safeguards applications are optimum with respect to international safeguards use. A major milestone of the program this year has been the development of the advanced safeguards technology road-map. This paper will broadly describe the road-map, which provides a path to next generation safeguards systems including advanced instrumentation; process monitoring; data integration, protection, and analysis; and system level evaluation and knowledge extraction for real time applications. (authors)

  3. Monitoring, controlling and safeguarding radiochemical streams at spent fuel reprocessing facilities with optical and gamma-ray spectroscopic methods

    International Nuclear Information System (INIS)

    Schwantes, J.M.; Bryan, S.A.; Orton, C.R.; Levitskaia, T.G.; Fraga, C.G.

    2013-01-01

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of weapons-usable nuclear material are not diverted from these facilities. For large throughput nuclear facilities, it is difficult to satisfy the IAEA safeguards accountancy goal for detection of abrupt diversion. Currently, methods to verify material control and accountancy (MCA) at these facilities require time-consuming and resource intensive destructive assay (DA). Leveraging new on-line non-destructive assay (NDA) process monitoring techniques in conjunction with the traditional and highly precise DA methods may provide an additional measure to nuclear material accountancy which would potentially result in a more timely, cost-effective and resource efficient means for safeguards verification at such facilities. By monitoring process control measurements (e.g. flowrates, temperatures, or concentrations of reagents, products or wastes), abnormal plant operations can be detected. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies based upon gamma-ray and optical spectroscopic measurements to potentially reduce the time and resource burden associated with current techniques. The Multi-Isotope Process (MIP) Monitor uses gamma spectroscopy and multivariate analysis to identify off-normal conditions in process streams. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major stable flowsheet reagents using UV-Vis, Near IR and Raman spectroscopy. Multi-variate analysis is also applied to the optical measurements in order to quantify concentrations of analytes of interest within a complex array of radiochemical streams. This paper will provide an overview of these methods and reports on-going efforts to develop

  4. Acoustic techniques in nuclear safeguards

    International Nuclear Information System (INIS)

    Olinger, C.T.; Sinha, D.N.

    1995-01-01

    Acoustic techniques can be employed to address many questions relevant to current nuclear technology needs. These include establishing and monitoring intrinsic tags and seals, locating holdup in areas where conventional radiation-based measurements have limited capability, process monitoring, monitoring containers for corrosion or changes in pressure, and facility design verification. These acoustics applications are in their infancy with respect to safeguards and nuclear material management, but proof-of-principle has been demonstrated in many of the areas listed

  5. Safeguards research at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Dunn, D.R.; Huebel, J.G.; Poggio, A.J.

    1980-01-01

    The LLL safeguards research program includes inspection methods, facility assessment methodologies, value-impact analysis, vulnerability analysis of accounting systems, compliance with regulations, process monitoring, etc. Each of those projects is described as are their goals and progress

  6. Safeguards Envelope Progress FY08

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Richard Metcalf; Aaron Bevill

    2008-09-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant’s large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis.

  7. Safeguards Envelope Progress FY08

    International Nuclear Information System (INIS)

    Bean, Robert; Metcalf, Richard; Bevill, Aaron

    2008-01-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant's large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis

  8. The remote monitoring systems LOVER and RECOVER for international safeguards technical, economic and legal aspects

    International Nuclear Information System (INIS)

    Lauppe, W.D.; Stein, G.; Rezniczek, A.; Stienen, U.

    1983-12-01

    The electronic remote monitoring systems RECOVER and LOVER were developed to comply with the IAEA's tasks concerning international nuclear materials safeguards with the aim of reducing the inspection expenditure and enhancing control effectiveness. The present study on the technical, economic and legal aspects of an application of these systems is intended to show possible implications and provide argumentation aids for discussions on the application of these systems. RECOVER and LOVER offer the possibility of establishing a direct communication path between containment and surveillance system (c/s), instruments at the site of application and a central monitoring station. The demonstration versions of both systems have shown that remote interrogation of data under safeguards-specific boundary conditions (e.g. requirement of tamper safety) will be technically feasible. (orig./HP)

  9. The next generation safeguards initiative

    International Nuclear Information System (INIS)

    Tobey, William

    2008-01-01

    NGSI or the Next Generation Safeguards Initiative is designed to revitalize the U.S. safeguards technical base, as well as invest in human resources, and to mobilize our primary asset - the U.S. National Laboratories - as well as industry and academia to restore capabilities. While NGSI is a U.S. effort it is intended to serve as a catalyst for a much broader commitment to international safeguards in partnership with the IAEA and other countries. Initiatives over the last years include such as the Proliferation Security Initiative, UN Security Council Resolution 1540, the Global Initiative to Combat Nuclear Terrorism, and initiatives of the G-8 and NSG to discourage the spread of enrichment and reprocessing. NGSI augments this agenda by providing a means to strengthen the technical and political underpinnings of IAEA safeguards. Priorities and envisioned activities under NGSI are the following. (1) Cooperation with IAEA and others to promote universal adoption of safeguards agreements and the Additional Protocol including greater information sharing between member states and the IAEA, investigation of weaponization and procurement activities, and options to strengthen the state-level approach to safeguards. (2) NGSI anticipates the deployment of new types of reactors and fuel cycle facilities, as well as the need to use limited safeguards resources effectively and efficiently, especially in plants that pose the largest burden specifically complex, bulk-handling facilities. (3) NGSI will encourage a generational improvement in current safeguards technologies including improvement of precision and speed of nuclear measurements, performance of real-time process monitoring and surveillance in unattended mode, enabling in-field, pre-screening and analysis of nuclear and environmental samples, and collection, integration, analysis and archiving safeguards-relevant information from all available sources.(4) NGSI will address human capital management. Training and

  10. Symposium on international safeguards: Verification and nuclear material security. Book of extended synopses. Addendum

    International Nuclear Information System (INIS)

    2001-01-01

    The symposium covered the topics related to international safeguards, verification and nuclear materials security, namely: verification and nuclear material security; the NPT regime: progress and promises; the Additional Protocol as an important tool for the strengthening of the safeguards system; the nuclear threat and the nuclear threat initiative. Eighteen sessions dealt with the following subjects: the evolution of IAEA safeguards ( including strengthened safeguards, present and future challenges; verification of correctness and completeness of initial declarations; implementation of the Additional Protocol, progress and experience; security of material; nuclear disarmament and ongoing monitoring and verification in Iraq; evolution of IAEA verification in relation to nuclear disarmament); integrated safeguards; physical protection and illicit trafficking; destructive analysis for safeguards; the additional protocol; innovative safeguards approaches; IAEA verification and nuclear disarmament; environmental sampling; safeguards experience; safeguards equipment; panel discussion on development of state systems of accountancy and control; information analysis in the strengthened safeguard system; satellite imagery and remote monitoring; emerging IAEA safeguards issues; verification technology for nuclear disarmament; the IAEA and the future of nuclear verification and security

  11. Canada and international safeguards. Verifying nuclear non-proliferation

    International Nuclear Information System (INIS)

    1990-01-01

    The Non-Proliferation Treaty (NPT) came into force in 1970 and now has about 140 signatory nations. By creating legal barriers against proliferation and by promoting an international non-proliferation ethic, the NPT has promoted international peace and security. A key ingredient has been the confidence generated through verification by IAEA safeguards. By the end of 1988 IAEA safeguards agreements had been concluded with about 100 countries, including Canada. Over 500 nuclear facilities worldwide are under safeguards or contain safeguarded nuclear material. The existence of this credible and effective safeguards system makes international trade in nuclear equipment and materials possible, monitoring the transfer of nuclear technology to developing countries as well as between industrial countries. Canada is committed to non-proliferation and IAEA safeguards. Canadian non-proliferation policy is among the strictest in the world, even though opportunities have been lost to sell Canadian technology abroad as a result

  12. International safeguards for critical facilities

    International Nuclear Information System (INIS)

    Ney, J.F.; Todd, J.L.

    1979-01-01

    A study was undertaken to investigate various approaches to provide international safeguards for critical facilities and to select an optimized system. Only high-inventory critical facilities were considered. The goal of the study was to detect and confirm the protracted or abrupt diversion of 8kg of plutonium or 25kg of the uranium isotope 235 within approximately a week of the diversion. The general safeguards alternatives considered were (1) continuous inspections by resident inspectors, with varying degrees of comprehensiveness, (2) periodic inspections by regional inspectors at varying time intervals, (3) unattended containment/surveillance measures, and (4) various combinations of the above. It was concluded that a practical and effective international safeguards system can be achieved by employing a method of continuously monitoring facility activities which could lead to diversion. This is in addition to the routine inspections typical of current international safeguards. Monitoring detects inventory discrepancies and violations of agreed-upon procedural restrictions, as well as unauthorized removal of Special Nuclear Materials (SNM). A special inventory is used following detection to confirm any suspected diversion. Comparison of 28 safeguards options led to the selection of a system for further development which uses a combination of surveillance and inspection by resident IAEA personnel, containment/surveillance by unattended equipment, and routine inventory sampling. A development programme is described which is intended to demonstrate the feasibility of several containment and surveillance measures proposed in the study. Included are a personnel portal and an instrument/material pass-through as well as associated recording and tamper-protection features. (author)

  13. US enrichment safeguards program development activities with potential International Atomic Energy Agency safeguards applications. Part 1. Executive summaries

    International Nuclear Information System (INIS)

    Swindle, D.W. Jr.

    1984-07-01

    The most recent progress, results, and plans for future work on the US Enrichment Safeguards Program's principal development activities are summarized. Nineteen development activities are reported that have potential International Atomic Energy Agency (IAEA) safeguards applications. Part 1 presents Executive Summaries for these, each of which includes information on (1) the purpose and scope of the development activity; (2) the potential IAEA safeguards application and/or use if adopted; (3) significant development work, results, and/or conclusions to date; and where appropriate (4) future activities and plans for continued work. Development activities cover: measurement technology for limited-frequency-unannounced-access stategy inspections; integrated data acquisition system; enrichment-monitoring system; load-cell-based weighing system for UF 6 cylinder mass verifications; vapor phase versus liquid phase sampling of UF 6 cylinders; tamper-safing hardware and systems; an alternative approach to IAEA nuclear material balance verifications resulting from intermittent inspections; UF 6 sample bottle enrichment analyzer; crated waste assay monitor; and compact 252 Cf shuffler for UF 6 measurements

  14. Nuclear safeguards and security: we can do better.

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, R. G. (Roger G.); Warner, Jon S.; Garcia, A. R. E. (Anthony R. E.); Martinez, R. K. (Ronald K.); Lopez, L. N. (Leon N.); Pacheco, A. N. (Adam N.); Trujillo, S. J. (Sonia J.); Herrera, A. M. (Alicia M.); Bitzer, E. G. (Edward G.), III

    2005-01-01

    There are a number of practical ways to significantly improve nuclear safeguards and security. These include recognizing and minimizing the insider threat; using adversarial vulnerability assessments to find vulnerabilities and countermeasures; fully appreciating the disparate nature of domestic and international nuclear safeguards; improving tamper detection and tamper-indicating seals; not confusing the inventory and security functions; and recognizing the limitations of GPS tracking, contact memory buttons, and RFID tags. The efficacy of nuclear safeguards depends critically on employing sophisticated security strategies and effective monitoring hardware. The Vulnerability Assessment Team (VAT) at Los Alamos National Laboratory has extensively researched issues associated with nuclear safeguards, especially in the areas of tamper/intrusion detection, transport security, and vulnerability assessments. This paper discusses some of our findings, recommendations, and warnings.

  15. Nuclear safeguards implementations in Taiwan

    International Nuclear Information System (INIS)

    Hou, R-H.; Chang, C-K.; Lin, C-R.; Gone, J-K.; Chen, W-L.; Yao, D.

    2006-01-01

    Full text: Now with six Nuclear Power Plant (NPP) units in operation, two Advanced Boiling Water Reactor (ABWR) units under construction, and other peaceful applications of nuclear and radiation technology expanding in great pace, the Atomic Energy Council (AEC) has been focused on reactor safety regulation, radiation protection, radioactive waste administration, environmental monitoring and R and D for technology development and other civilian nuclear applications. Despite Taiwan's departure from the United Nations and therefore its family member International Atomic Energy Agency (IAEA) in 1971, Taiwan remains its commitment to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). To date, Taiwan is still part of the international nuclear safeguards system and accepts IAEA's inspections in accordance with its regulations on nuclear safeguards. In 1998, Taiwan further agreed, through exchange of letters between the AEC and IAEA, to implementation of the measures provided for in the model Protocol Additional to its safeguards agreement. In this paper, we will introduce Taiwan's nuclear safeguards history and describe some highlights of safeguards implementation in recent years, such as complementary accesses, transparency visits, remote monitoring inspections, unannounced inspections, facility attachment termination for the decommissioned facilities, and annual safeguards implementation meeting with IAEA

  16. The safeguards active response inventory system (SARIS)

    International Nuclear Information System (INIS)

    Carlson, R.L.; Hairston, L.A.; O'Callaghan, P.B.; Grambihler, A.J.; Ruemmler, W.P.

    1987-01-01

    The Safeguards Active Response Inventory System (SARIS) is a computerized accountability system developed for nuclear materials control that incorporates elements of process monitoring, criticality safety, physical inventory and safeguards. It takes data from the process operations, stores it in an on-line database and translates the information into the formats needed by the various users. It traces the material through the process from feed to product; including recycle, waste and scraps streams. It models the process as the material changes form to ensure that artificial losses are not created. It automatically generates input to Nuclear Materials Management and Safeguards System (NMMSS), performs checks to prevent the possibility of a criticality accident, prepares an audit trail for Safeguards, prints labels for nuclear material containers, and produces DOE/NRC 741 forms. SARIS has been installed at three laboratories across the country

  17. Monitoring REDD+: From Social Safeguards to Social Learning

    Science.gov (United States)

    Ravikumar, A.; Andersson, K.

    2010-12-01

    Krister Andersson 1 and Ashwin Ravikumar 1 The UNFCCC requires countries that participate in the REDD+ (Reducing Emissions from Deforestation and Forest Degradation in Developing Countries) program to monitor both forest carbon inventories as well as the governance of REDD+ activities and their social consequences. Exactly how this should be done, however, remains an open question. This paper addresses this question by drawing on existing research on social-ecological systems and new institutional economics. We make the case for a monitoring system that goes beyond a narrow focus of qualitative indicators of REDD+ governance that seek to provide social safeguards for international investors to create a more comprehensive monitoring system that is useful for social learning about how policies affect a variety of forest outcomes. We describe the defining characteristics of five existing approaches to monitoring REDD+ governance. Applying evaluative criteria of affordability, comprehensiveness, transparency, uncertainty specification, and explanatory potential, we analyze the extent to which each of the programs contribute to broader social learning processes in participating countries. Our analysis finds that it makes sense to move from the current narrow focus of monitoring for control to monitoring for social learning. Particularly valuable to participating REDD+ actors would be the creation of learning systems that can help policy makers to identify opportunities for policy improvements, with the ultimate goal of making REDD+ more effective, efficient, and equitable. Such learning is not possible, however, without timely and systematic collection of data on the relationships between forests and forest users. 1University of Colorado at Boulder, Environmental Studies Program, Boulder, CO 80309-0397

  18. Using Process Load Cell Information for IAEA Safeguards at Enrichment Plants

    International Nuclear Information System (INIS)

    Laughter, Mark D.; Whitaker, J. Michael; Howell, John

    2010-01-01

    Uranium enrichment service providers are expanding existing enrichment plants and constructing new facilities to meet demands resulting from the shutdown of gaseous diffusion plants, the completion of the U.S.-Russia highly enriched uranium downblending program, and the projected global renaissance in nuclear power. The International Atomic Energy Agency (IAEA) conducts verification inspections at safeguarded facilities to provide assurance that signatory States comply with their treaty obligations to use nuclear materials only for peaceful purposes. Continuous, unattended monitoring of load cells in UF 6 feed/withdrawal stations can provide safeguards-relevant process information to make existing safeguards approaches more efficient and effective and enable novel safeguards concepts such as information-driven inspections. The IAEA has indicated that process load cell monitoring will play a central role in future safeguards approaches for large-scale gas centrifuge enrichment plants. This presentation will discuss previous work and future plans related to continuous load cell monitoring, including: (1) algorithms for automated analysis of load cell data, including filtering methods to determine significant weights and eliminate irrelevant impulses; (2) development of metrics for declaration verification and off-normal operation detection ('cylinder counting,' near-real-time mass balancing, F/P/T ratios, etc.); (3) requirements to specify what potentially sensitive data is safeguards relevant, at what point the IAEA gains on-site custody of the data, and what portion of that data can be transmitted off-site; (4) authentication, secure on-site storage, and secure transmission of load cell data; (5) data processing and remote monitoring schemes to control access to sensitive and proprietary information; (6) integration of process load cell data in a layered safeguards approach with cross-check verification; (7) process mock-ups constructed to provide simulated load

  19. Safeguards technology development for spent fuel storage and disposal

    International Nuclear Information System (INIS)

    Sanders, K.E.

    1991-01-01

    This paper reports on facilities for monitored retrievable storage and geologic repository that will be operating in the US by 1998 and 2010 respectively. The international safeguards approach for these facilities will be determined broadly by the Safeguards Agreement and the IAEA Safeguards Criteria (currently available for 1991-1995) and defined specifically in the General Subsidiary Arrangements and Specific Facility Attachments negotiated under the US/IAEA Safeguards Agreement. Design information for these facilities types, as it is conceptualized, will be essential input to the safeguards approach. Unique design and operating features will translate into equally unique challenges to the application of international safeguards. The development and use of new safeguards technologies offers the greatest potential for improving safeguards. The development and use of new safeguards technologies offers the greatest potential for improving safeguards by enabling efficient and effective application with regard to the operator's interest, US policies, and the IAEA's statutorial obligations. Advanced unattended or remote measurement, authentication of operator's measurement, authentication of operator's measurement data, and integration of monitoring and containment/surveillance potentially are among the most fruitful areas of technology development. During the next year, a long range program plan for international safeguard technology development for monitored retrievable storage and geologic repository will be developed by the International Branch in close coordination with the Office of Civilian Radioactive Waste Management. This presentation preliminarily identifies elements of this long range program

  20. FEMO, A FLOW AND ENRICHMENT MONITOR FOR VERIFYING COMPLIANCE WITH INTERNATIONAL SAFEGUARDS REQUIREMENTS AT A GAS CENTRIFUGE ENRICHMENT FACILITY

    International Nuclear Information System (INIS)

    Gunning, John E.; Laughter, Mark D.; March-Leuba, Jose A.

    2008-01-01

    A number of countries have received construction licenses or are contemplating the construction of large-capacity gas centrifuge enrichment plants (GCEPs). The capability to independently verify nuclear material flows is a key component of international safeguards approaches, and the IAEA does not currently have an approved method to continuously monitor the mass flow of 235U in uranium hexafluoride (UF6) gas streams. Oak Ridge National Laboratory is investigating the development of a flow and enrichment monitor, or FEMO, based on an existing blend-down monitoring system (BDMS). The BDMS was designed to continuously monitor both 235U mass flow and enrichment of UF6 streams at the low pressures similar to those which exists at GCEPs. BDMSs have been installed at three sites-the first unit has operated successfully in an unattended environment for approximately 10 years. To be acceptable to GCEP operators, it is essential that the instrument be installed and maintained without interrupting operations. A means to continuously verify flow as is proposed by FEMO will likely be needed to monitor safeguards at large-capacity plants. This will enable the safeguards effectiveness that currently exists at smaller plants to be maintained at the larger facilities and also has the potential to reduce labor costs associated with inspections at current and future plants. This paper describes the FEMO design requirements, operating capabilities, and development work required before field demonstration.

  1. Safeguard monitoring of direct electrolytic reduction

    Science.gov (United States)

    Jurovitzki, Abraham L.

    Nuclear power is regaining global prominence as a sustainable energy source as the world faces the consequences of depending on limited fossil based, CO2 emitting fuels. A key component to achieving this sustainability is to implement a closed nuclear fuel cycle. Without achieving this goal, a relatively small fraction of the energy value in nuclear fuel is actually utilized. This involves recycling of spent nuclear fuel (SNF)---separating fissile actinides from waste products and using them to fabricate fresh fuel. Pyroprocessing is a viable option being developed for this purpose with a host of benefits compared to other recycling options, such as PUREX. Notably, pyroprocessing is ill suited to separate pure plutonium from spent fuel and thus has non-proliferation benefits. Pyroprocessing involves high temperature electrochemical and chemical processing of SNF in a molten salt electrolyte. During this batch process, several intermediate and final streams are produced that contain radioactive material. While pyroprocessing is ineffective at separating pure plutonium, there are various process misuse scenarios that could result in diversion of impure plutonium into one or more of these streams. This is a proliferation risk that should be addressed with innovative safeguards technology. One approach to meeting this challenge is to develop real time monitoring techniques that can be implemented in the hot cells and coupled with the various unit operations involved with pyroprocessing. Current state of the art monitoring techniques involve external chemical assaying which requires sample removal from these unit operations. These methods do not meet International Atomic Energy Agency's (IAEA) timeliness requirements. In this work, a number of monitoring techniques were assessed for their viability as online monitoring tools. A hypothetical diversion scenario for the direct electrolytic reduction process was experimentally verified (using Nd2O3 as a surrogate for PuO2

  2. IAEA symposium on international safeguards. Extended synopses

    International Nuclear Information System (INIS)

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials

  3. SAFEGUARDS ENVELOPE: PREVIOUS WORK AND EXAMPLES

    International Nuclear Information System (INIS)

    Metcalf, Richard; Bevill, Aaron; Charlton, William; Bean, Robert

    2008-01-01

    The future expansion of nuclear power will require not just electricity production but fuel cycle facilities such as fuel fabrication and reprocessing plants. As large reprocessing facilities are built in various states, they must be built and operated in a manner to minimize the risk of nuclear proliferation. Process monitoring has returned to the spotlight as an added measure that can increase confidence in the safeguards of special nuclear material (SNM). Process monitoring can be demonstrated to lengthen the allowable inventory period by reducing accountancy requirements, and to reduce the false positive indications. The next logical step is the creation of a Safeguards Envelope, a set of operational parameters and models to maximize anomaly detection and inventory period by process monitoring while minimizing operator impact and false positive rates. A brief example of a rudimentary Safeguards Envelope is presented, and shown to detect synthetic diversions overlaying a measured processing plant data set. This demonstration Safeguards Envelope is shown to increase the confidence that no SNM has been diverted with minimal operator impact, even though it is based on an information sparse environment. While the foundation on which a full Safeguards Envelope can be built has been presented in historical demonstrations of process monitoring, several requirements remain yet unfulfilled. Future work will require reprocessing plant transient models, inclusion of 'non-traditional' operating data, and exploration of new methods of identifying subtle events in transient processes

  4. Information required from States, including 'small quantities protocol' status, under the Protocol Additional to Safeguards Agreements

    International Nuclear Information System (INIS)

    Tuley, N.

    1999-01-01

    The Model, or Additional, Protocol to the Model Safeguards Agreement, INFCIRC/153, contains, inter alia, provisions for expanded declarations from Member States to the IAEA. These provisions include earlier design information declarations and information on fuel cycles activities, such a mining and milling, that were not previously part of safeguards. The session discusses the extent of the expanded declarations and provides examples of the forms that will be used to provide the information to the Agency. (author)

  5. IAEA symposium on international safeguards. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials Refs, figs, tabs

  6. Coupling a transient solvent extraction module with the separations and safeguards performance model.

    Energy Technology Data Exchange (ETDEWEB)

    DePaoli, David W. (Oak Ridge National Laboratory, Oak Ridge, TN); Birdwell, Joseph F. (Oak Ridge National Laboratory, Oak Ridge, TN); Gauld, Ian C. (Oak Ridge National Laboratory, Oak Ridge, TN); Cipiti, Benjamin B.; de Almeida, Valmor F. (Oak Ridge National Laboratory, Oak Ridge, TN)

    2009-10-01

    A number of codes have been developed in the past for safeguards analysis, but many are dated, and no single code is able to cover all aspects of materials accountancy, process monitoring, and diversion scenario analysis. The purpose of this work was to integrate a transient solvent extraction simulation module developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM), developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The SSPM was designed for materials accountancy and process monitoring analyses, but previous versions of the code have included limited detail on the chemical processes, including chemical separations. The transient solvent extraction model is based on the ORNL SEPHIS code approach to consider solute build up in a bank of contactors in the PUREX process. Combined, these capabilities yield a more robust transient separations and safeguards model for evaluating safeguards system design. This coupling and initial results are presented. In addition, some observations toward further enhancement of separations and safeguards modeling based on this effort are provided, including: items to be addressed in integrating legacy codes, additional improvements needed for a fully functional solvent extraction module, and recommendations for future integration of other chemical process modules.

  7. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS

    International Nuclear Information System (INIS)

    JOE, J.

    2007-01-01

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders

  8. The new DMT SAFEGUARD low-cost GNSS measuring system and its application in the field of geotechnical deformation and movement monitoring

    Science.gov (United States)

    Schröder, Daniel

    2017-04-01

    epoch. Based on these requirements DMT has developed the new DMT SAFEGUARD GNSS. In this article the latest developments in the field of low-cost GNSS are shown by different examples from industry and authorities. By means of a detailed accuracy study the DMT SAFEGUARD GNSS system applicability will be demonstrated. The study shows possibilities to detect coordinate shifts on sub centimeter level by using suitable data processing approaches and permanent network solutions. In addition to the DMT SAFEGUARD GNSS system this article illustrates the combination with further relevant sensors to integrated multisensorial networks. Such networks include geodetic data, geophysical data, geotechnical data, video, audio etc. For the central integration of all sensor types DMT has developed a web-based monitoring system - DMT SAFEGUARD which offers individual customizing, sophisticated analysis tools as well as comprehensive reporting options.

  9. Safeguarding on-power fuelled reactors - instrumentation and techniques

    International Nuclear Information System (INIS)

    Waligura, A.; Konnov, Y.; Smith, R.M.; Head, D.A.

    1977-01-01

    Instrumentation and techniques applicable to safeguarding reactors that are fuelled on-power, particularly the CANDU type, have been developed. A demonstration is being carried out at the Douglas Point Nuclear Generating Station in Canada. Irradiated nuclear materials in certain areas - the reactor and spent fuel storage bays - are monitored using photographic and television cameras, and seals. Item accounting is applied by counting spent-fuel bundles during transfer from the reactor to the storage bay and by placing these spent-fuel bundles in a sealed enclosure. Provision is made for inspection and verification of the bundles before sealing. The reactor's power history is recorded by a track-etch power monitor. Redundancy is provided so that the failure of any single piece of equipment does not invalidate the entire safeguards system. Several safeguards instruments and devices have beeen developed and evaluated. These include a super-8 mm surveillance camera system, a television surveillance system, a spent-fuel bundle counter, a device to detect dummy fuel bundles, a cover for enclosing a stack of spent-fuel bundles, and a seal suitable for underwater installation and ultrasonic interrogation. The information provided by these different instruments should increase the effectiveness of Agency safeguards and, when used in combination with other measures, will facilitate inspection at reactor sites

  10. Safeguards-By-Design: Guidance and Tools for Stakeholders

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schanfein; Shirley Johnson

    2012-02-01

    Effective implementation of the Safeguards-by-Design (SBD) approach can help meet the challenges of global nuclear energy growth, by designing facilities that have improved safeguardability and reduced safeguards-related life cycle costs. The ultimate goal of SBD is to implement effective and efficient safeguards that reduce the burden to both the facility operator and the International Atomic Energy Agency. Since 2008, the National Nuclear Security Administration's Next Generation Safeguards Initiative's Safeguards By Design Project has initiated multiple studies and workshops with industry and regulatory stakeholders, including the IAEA, to develop relevant documents to support the implementation of SBD. These 'Good Practices Guides' describe facility and process design features that will facilitate implementation of effective nuclear material safeguards starting in the earliest phases of design through to final design. These guides, which are in their final editorial stages, start at a high level and then narrow down to specific nuclear fuel cycle facilities such as Light Water Reactors, Generation III/IV Reactors, High Temperature Gas Cooled Reactors, and Gas Centrifuge Enrichment Plants. Most recently, NGSI has begun development of a facility safeguardability assessment toolkit to assist the designer. This paper will review the current status of these efforts, provide some examples of these documents, and show some standard IAEA Unattended Instrumentation that is permanently installed in nuclear facilities for monitoring.

  11. Safeguards-By-Design: Guidance and Tools for Stakeholders

    International Nuclear Information System (INIS)

    Schanfein, Mark; Johnson, Shirley

    2012-01-01

    Effective implementation of the Safeguards-by-Design (SBD) approach can help meet the challenges of global nuclear energy growth, by designing facilities that have improved safeguardability and reduced safeguards-related life cycle costs. The ultimate goal of SBD is to implement effective and efficient safeguards that reduce the burden to both the facility operator and the International Atomic Energy Agency. Since 2008, the National Nuclear Security Administration's Next Generation Safeguards Initiative's Safeguards By Design Project has initiated multiple studies and workshops with industry and regulatory stakeholders, including the IAEA, to develop relevant documents to support the implementation of SBD. These 'Good Practices Guides' describe facility and process design features that will facilitate implementation of effective nuclear material safeguards starting in the earliest phases of design through to final design. These guides, which are in their final editorial stages, start at a high level and then narrow down to specific nuclear fuel cycle facilities such as Light Water Reactors, Generation III/IV Reactors, High Temperature Gas Cooled Reactors, and Gas Centrifuge Enrichment Plants. Most recently, NGSI has begun development of a facility safeguardability assessment toolkit to assist the designer. This paper will review the current status of these efforts, provide some examples of these documents, and show some standard IAEA Unattended Instrumentation that is permanently installed in nuclear facilities for monitoring.

  12. Network adaptable information systems for safeguard applications

    International Nuclear Information System (INIS)

    Rodriguez, C.; Burczyk, L.; Chare, P.; Wagner, H.

    1996-01-01

    While containment and surveillance systems designed for nuclear safeguards have greatly improved through advances in computer, sensor, and microprocessor technologies, the authors recognize the need to continue the advancement of these systems to provide more standardized solutions for safeguards applications of the future. The benefits to be gained from the use of standardized technologies are becoming evident as safeguard activities are increasing world-wide while funding of these activities is becoming more limited. The EURATOM Safeguards Directorate and Los Alamos National Laboratory are developing and testing advanced monitoring technologies coupled with the most efficient solutions for the safeguards applications of the future

  13. Integrated neutron/gamma-ray portal monitors for nuclear safeguards

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1994-01-01

    Radiation monitoring is one nuclear-safeguards measure used to protect against the theft of special nuclear materials (SNM) by pedestrians departing from SNM access areas. The integrated neutron/gamma-ray portal monitor is an ideal radiation monitor for the task when the SNM is plutonium. It achieves high sensitivity for detecting both bare and shielded plutonium by combining two types of radiation detector. One type is a neutron-chamber detector, comprising a large, hollow, neutron moderator that contains a single thermal-neutron proportional counter. The entrance wall of each chamber is thin to admit slow neutrons from plutonium contained in a moderating shield, while the other walls are thick to moderate fast neutrons from bare or lead-shielded plutonium so that they can be detected. The other type of detector is a plastic scintillator that is primarily for detecting gamma rays from small amounts of unshielded plutonium. The two types of detector are easily integrated by making scintillators part of the thick back wall of each neutron chamber or by inserting them into each chamber void. The authors compared the influence of the two methods of integration on detecting neutrons and gamma rays, and they examined the effectiveness of other design factors and the methods for signal detection as well

  14. Coupling a Transient Solvent Extraction Module with the Separations and Safeguards Performance Model

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F [ORNL; Birdwell Jr, Joseph F [ORNL; DePaoli, David W [ORNL; Gauld, Ian C [ORNL

    2009-10-01

    A past difficulty in safeguards design for reprocessing plants is that no code existed for analysis and evaluation of the design. A number of codes have been developed in the past, but many are dated, and no single code is able to cover all aspects of materials accountancy, process monitoring, and diversion scenario analysis. The purpose of this work was to integrate a transient solvent extraction simulation module developed at Oak Ridge National Laboratory, with the SSPM Separations and Safeguards Performance Model, developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The SSPM was designed for materials accountancy and process monitoring analyses, but previous versions of the code have included limited detail on the chemical processes, including chemical separations. The transient solvent extraction model is based on the ORNL SEPHIS code approach to consider solute build up in a bank of contactors in the PUREX process. Combined, these capabilities yield a much more robust transient separations and safeguards model for evaluating safeguards system design. This coupling and the initial results are presented. In addition, some observations toward further enhancement of separations and safeguards modeling based on this effort are provided, including: items to be addressed in integrating legacy codes, additional improvements needed for a fully functional solvent extraction module, and recommendations for future integration of other chemical process modules.

  15. Safeguards Envelope Progress FY10

    International Nuclear Information System (INIS)

    Metcalf, Richard

    2010-01-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details the additions to the advanced operating techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). Research this year focused on combining disparate pieces of data together to maximize operating time with minimal downtime due to safeguards. A Chi-Square and Croiser's cumulative sum were both included as part of the new analysis. Because of a major issue with the original data, the implementation of the two new tests did not add to the existing set of tests, though limited one-variable optimization made a small increase in detection probability. Additional analysis was performed to determine if prior analysis would have caused a major security or safety operating envelope issue. It was determined that a safety issue would have resulted from the prior research, but that the security may have been increased under certain conditions.

  16. Safeguards techniques and equipment. 2003 ed

    International Nuclear Information System (INIS)

    2003-01-01

    -destructive analysis (NDA) techniques, and compare their findings with the declared figures and the operator's records. The next level of verification has the aim of detecting whether a fraction of a declared amount is missing (partial defect) and may involve the weighing of items and measurements with NDA techniques such as neutron counting or gamma-ray spectrometry. For detecting bias defects, which would arise if small amounts of material were diverted over a protracted length of time, it is necessary to sample some of the items and to apply physical and chemical analysis techniques having the highest possible accuracy, typically less than one per cent. In order to apply these destructive analysis (DA) techniques, the IAEA requires access to laboratories which use such accurate techniques on a routine basis. Containment and surveillance (C/S) techniques, which are complementary to nuclear material accountancy techniques, are applied in order to maintain continuity of the knowledge gained through IAEA verification, by giving assurance that nuclear material follows predetermined routes, that the integrity of its containment remains unimpaired and that the material is accounted for at the correct measurement points. They also lead to savings in the safeguards inspection effort, e.g. by reducing the frequency of accountancy verification. A variety of C/S techniques are used, primarily optical surveillance and sealing. In remote monitoring, the unattended equipment transmits the data off-site. For unattended and remote monitoring, additional criteria must be met, including high reliability and authentication of the data source. Data communication costs have dropped dramatically in recent years. Data security is an important feature of unattended and remote monitoring systems. Environmental sampling, which allows detection of minute traces of nuclear material, was added to the IAEA's verification measures in the early 1990s as a powerful tool for detecting indications of undeclared

  17. Remote monitoring in safeguards: Security of information and enhanced cooperation

    International Nuclear Information System (INIS)

    Galdoz, Erwin; Calzetta, Osvaldo; Fernández Moreno, Sonia; Llacer, Carlos; Díaz, Gustavo; Vigile, Sebastián; Brunhuber, Christoph

    2011-01-01

    Unattended systems with remote transmission capabilities (RM) have the potential to improve safeguards efficiency. Moreover, the evolution of technology and the steady growing of nuclear materials subject to control, lead modern safeguards increasingly utilizing unattended equipment with the capability to store relevant data for long periods of time coupled with the option of being remotely accessed and checked. Remote inspection is still a concept under development, but it may end to be a powerful more efficient verification modality in medium term future. An important part of drawing meaningful safeguards conclusions rests on authenticity and reliability of the information on nuclear material and facilities acquired through the various verification activities and measures applied by IAEA and regional safeguards organizations, like ABACC. The increasing utilization of such technology to further optimize safeguards responds to a multifaceted environment where security of information for all relevant parties is of utmost importance. From the point of view of the IAEA and ABACC, the use of any technology for safeguards application, and specially the use of RM, requires to ensure the security of data collected to guarantee the validity and veracity of such information throughout the whole process (e.g., from collecting to reviewing). This is also valid to the SSAC involved in the process. Information security is also relevant for States and Operators. Assurance should be given that the information could not be withdrawn by non-authorized entities and that facility data is also fully secured. Another important aspect related to RM that may also fall in the security aspect of safeguards relevant information that merits further consideration, is the sharing of information between organizations like ABACC and the IAEA as well as the possibility to make this data available for States authorities purposes. This paper discusses three main themes related to RM: (i) the extent

  18. 7 CFR 4290.506 - Safeguarding the RBIC's assets/Internal controls.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Safeguarding the RBIC's assets/Internal controls... Safeguarding the RBIC's assets/Internal controls. You must adopt a plan to safeguard your assets and monitor... your control procedures. ...

  19. Canada and international safeguards. Verifying nuclear non-proliferation. Verification brochure no. 5

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Non-Proliferation Treaty (NPT) came into force in 1970 and now has about 140 signatory nations. By creating legal barriers against proliferation and by promoting an international non-proliferation ethic, the NPT has promoted international peace and security. A key ingredient has been the confidence generated through verification by IAEA safeguards. By the end of 1988 IAEA safeguards agreements had been concluded with about 100 countries, including Canada. Over 500 nuclear facilities worldwide are under safeguards or contain safeguarded nuclear material. The existence of this credible and effective safeguards system makes international trade in nuclear equipment and materials possible, monitoring the transfer of nuclear technology to developing countries as well as between industrial countries. Canada is committed to non-proliferation and IAEA safeguards. Canadian non-proliferation policy is among the strictest in the world, even though opportunities have been lost to sell Canadian technology abroad as a result.

  20. Facility Safeguardability Analysis In Support of Safeguards-by-Design

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Roald Wigeland; Robert Bari; Trond Bjornard; John Hockert; Michael Zentner

    2010-07-01

    The following report proposes the use of Facility Safeguardability Analysis (FSA) to: i) compare and evaluate nuclear safeguards measures, ii) optimize the prospective facility safeguards approach, iii) objectively and analytically evaluate nuclear facility safeguardability, and iv) evaluate and optimize barriers within the facility and process design to minimize the risk of diversion and theft of nuclear material. As proposed by the authors, Facility Safeguardability Analysis would be used by the Facility Designer and/or Project Design Team during the design and construction of the nuclear facility to evaluate and optimize the facility safeguards approach and design of the safeguards system. Through a process of “Safeguards-by-Design” (SBD), this would be done at the earliest stages of project conceptual design and would involve domestic and international nuclear regulators and authorities, including the International Atomic Energy Agency (IAEA). The benefits of the Safeguards-by-Design approach is that it would clarify at a very early stage the international and domestic safeguards requirements for the Construction Project Team, and the best design and operating practices for meeting these requirements. It would also minimize the risk to the construction project, in terms of cost overruns or delays, which might otherwise occur if the nuclear safeguards measures are not incorporated into the facility design at an early stage. Incorporating nuclear safeguards measures is straight forward for nuclear facilities of existing design, but becomes more challenging with new designs and more complex nuclear facilities. For this reason, the facility designer and Project Design Team require an analytical tool for comparing safeguards measures, options, and approaches, and for evaluating the “safeguardability” of the facility. The report explains how preliminary diversion path analysis and the Proliferation Resistance and Physical Protection (PRPP) evaluation

  1. Operations monitoring concept. Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Kerr, H.T.

    1985-01-01

    Operations monitoring is a safeguards concept which could be applied in future fuel cycle facilities to significantly enhance the effectiveness of an integrated safeguards system. In general, a variety of operations monitoring techniques could be developed for both international and domestic safeguards application. The goal of this presentation is to describe specific examples of operations monitoring techniques as may be applied in a fuel reprocessing facility. The operations monitoring concept involves monitoring certain in-plant equipment, personnel, and materials to detect conditions indicative of the diversion of nuclear material. An operations monitoring subsystem should be designed to monitor operations only to the extent necessary to achieve specified safeguards objectives; there is no intent to monitor all operations in the facility. The objectives of the operations monitoring subsystem include: verification of reported data; detection of undeclared uses of equipment; and alerting the inspector to potential diversion activities. 1 fig

  2. An Approach to Safeguards by Design (SBD) for Fuel Cycle Facilities

    International Nuclear Information System (INIS)

    Sankaran Nair, P.; Gangotra, S.; Karanam, R.

    2015-01-01

    Implementation of safeguards in bulk handling facilities such as fuel fabrication facilities and reprocessing facilities are a challenging task. This is attributed to the nuclear material present in the facility in the form of powder, pellet, green pellet, solution and gaseous. Additionally material hold up, material unaccounted for (MUF) and the operations carried out round the clock add to the difficulties in implementing safeguards. In facilities already designed or commissioned or operational, implementation of safeguards measures are relatively difficult. The authors have studied a number of measures which can be adopted at the design stage itself. Safeguard By Design (SBD) measures can help in more effective implementation of safeguards, reduction of cost and reduction in radiological dose to the installation personnel. The SBD measures in the power reactors are comparatively easier to implement than in the fuel fabrication plants, since reactors are item counting facilities while the fuel fabrication plants are bulk handling type of facilities and involves much rigorous nuclear material accounting methodology. The safeguards measures include technical measures like dynamic nuclear material accounting, near real time monitoring, remote monitoring, use of automation, facility imagery, Radio Frequency Identification (RFID) tagging, reduction of MUF in bulk handling facilities etc. These measures have been studied in the context of bulk handling facilities and presented in this paper. Incorporation of these measures at the design stage (SBD) is expected to improve the efficiency of safeguardability in such bulk handling and item counting facilities and proliferation resistance of nuclear material handled in such facilities. (author)

  3. Safeguards activities in Japan

    International Nuclear Information System (INIS)

    Osabe, Takeshi

    1998-01-01

    Current Japanese State System for Accountancy and Control (SSAC) has been developing and fully satisfies requirements of both IAEA Safeguards and bilateral partners. However, the public attention on the national and international safeguards activities were increased and the safeguards authorities were required to promote the objective assessment of safeguards implementation to avoid mistrust in safeguards activities which directly influence the public acceptance of nuclear energy in itself. Additionally, since Japan has promoted to complete nuclear fuel cycle including spent fuel reprocessing, enrichment and mixed oxide fuel fabrication this would require further assurance of Japanese non-proliferation commitment. Japan supports the introduction of strengthened safeguards. In this context it is particularly important to strengthen the relationship between national and the IAEA safeguards to contribute actively to the IAEA safeguards in development and utilization of new technologies towards more effective and efficient IAEA safeguards

  4. Safeguarding on-power fuelled reactors - instrumentation and techniques

    International Nuclear Information System (INIS)

    Waligura, A.; Konnov, Y.; Smith, R.M.; Head, D.A.

    1977-05-01

    Instrumentation and techniques applicable to safeguarding reactors that are fuelled on-power, particularly the CANDU type, have been developed. A demonstration is being carried out at the Douglas Point Nuclear Generating Station in Canada. Irradiated nuclear materials in certain areas - the reactor and spent fuel storage bays - are monitored using photographic and television cameras, and seals. Item accounting is applied by counting spent-fuel bundles during transfer from the reactor to the storage bay and by placing these spent-fuel bundles in a sealed enclosure. Provision is made for inspection and verification of the bundles before sealing. The reactor's power history is recorded by a Track-Etch power monitor. Redundancy is provided so that the failure of any single piece of equipment does not invalidate the entire safeguards system. Several safeguards instruments and devices have been developed and evaluated. These include a super-8-mm surveillance camera system, a television surveillance system, a spent-fuel bundle counter, a device to detect dummy fuel bundles, a cover for enclosing a stack of spent-fuel bundles, and a seal suitable for underwater installation and ultrasonic interrogation. (author)

  5. International safeguards for spent fuel storage

    International Nuclear Information System (INIS)

    Kratzer, M.; Wonder, E.; Immerman, W.; Crane, F.

    1981-08-01

    This report analyzes the nonproliferation effectiveness and political and economic acceptability of prospective improvements in international safeguard techniques for LWR spent fuel storage. Although the applicability of item accounting considerably eases the safeguarding of stored spent fuel, the problem of verification is potentially serious. A number of simple gamma and neutron nondestructive assay techniques were found to offer considerable improvements, of a qualitative rather than quantitative nature, in verification-related data and information, and possess the major advantage of intruding very little on facility operations. A number of improved seals and monitors appear feasible as well, but improvements in the timeliness of detection will not occur unless the frequency of inspection is increased or a remote monitoring capability is established. Limitations on IAEA Safeguards resources and on the integration of results from material accounting and containment and surveillance remain problems

  6. Safeguards technology research and development at CIAE

    International Nuclear Information System (INIS)

    Yang Qun

    2001-01-01

    Full text: China Institute of Atomic Energy (CIAE) is a multi-disciplinary institute under the leadership of China National Nuclear Corporation (CNNC). The Laboratory of Technical Research for Nuclear Safeguards was established at CIAE in 1991 to develop safeguards technology and to provide technical assistance to competent authorities for nuclear material management and control, which became one of the key laboratories approved by CNNC in 1993. The main research works for safeguards at CIAE include: nuclear material control and accounting, facilities license review and assessment, domestic inspection, NDA and DA analysis, physical protection and technical training. Research and development of equipment and technique for safeguards has been continuing at CIAE. A variety of NDA equipment that has different resolution and analysis capability has been developed. Method of NDA measurement has been investigated for nuclear material with different characteristics. Mathematics method such as Monte Carlo simulation is applied in NDA. Advanced destructive analysis (DA) instrument is installed at laboratory of CIAE, such as TIMS, ICP-MS and electronic chemistry analyzing system. The high accuracy results of element analysis and isotopic analysis for nuclear material can be obtained. It is possible to measure the types and quantities of nuclear material in a given area by means of NDA and DA. Physical protection system has also been developed. It consists of access control and management, various alarm (including perimeter alarm, intrusion alarms, fire alarms), video and audio monitors, intercommunication set and central console. The system can meet technical requirement for safeguards of first rank. Nuclear material accounting is an important aspect of safeguards research at CIAE. The computer software related to material accounting has been developed. It is the important task for scientists at CIAE to design and review nuclear accounting systems in various facilities. For

  7. Safeguards for final disposal of spent nuclear fuel. Methods and technologies for the Olkiluoto site

    International Nuclear Information System (INIS)

    Okko, O.

    2003-05-01

    The final disposal of the nuclear material shall introduce new safeguards concerns which have not been addressed previously in IAEA safeguards approaches for spent fuel. The encapsulation plant to be built at the site will be the final opportunity for verification of spent fuel assemblies prior to their transfer to the geological repository. Moreover, additional safety and safeguards measures are considered for the underground repository. Integrated safeguards verification systems will also concentrate on environmental monitoring to observe unannounced activities related to possible diversion schemes at the repository site. The final disposal of spent nuclear fuel in geological formation will begin in Finland within 10 years. After the geological site investigations and according to legal decision made in 2001, the final repository of the spent nuclear fuel shall be located at the Olkiluoto site in Eurajoki. The next phase of site investigations contains the construction of an underground facility, called ONKALO, for rock characterisation purposes. The excavation of the ONKALO is scheduled to start in 2004. Later on, the ONKALO may form a part of the final repository. The plans to construct the underground facility for nuclear material signify that the first safeguards measures, e.g. baseline mapping of the site area, need to take prior to the excavation phase. In order to support the development and implementation of the regulatory control of the final disposal programme, STUK established an independent expert group, LOSKA. The group should support the STUK in the development of the technical safeguards requirements, in the implementation of the safeguards and in the evaluation of the plans of the facility operator. This publication includes four background reports produced by this group. The first of these 'NDA verification of spent fuel, monitoring of disposal canisters, interaction of the safeguards and safety issues in the final disposal' describes the new

  8. Technological developments and safeguards instrumentation: Responding to new challenges

    International Nuclear Information System (INIS)

    Naito, K.; Rundquist, D.E.

    1994-01-01

    Entering the 1990s, technological tools that were in the research and development stage not so long ago are changing the way inspectors are able to verify nuclear materials at many facilities around the world. Many new instruments - ranging from advanced video monitoring systems to miniature detectors and analysers - already are in place. In some cases, they have been custom-made for specific safeguards tasks, or for placement in locations, such as underwater storage pools for spent reactor fuel, where inspectors cannot go. Standing behind the development of many of these new safeguards instruments are a number of factors. They include: technological advances In computer related fields, such as microprocessing and electronics, and specific areas of instrumentation; technical developments in the nuclear industry and Efficiency improvements and efforts to reduce the costs of safeguards implementation

  9. Nuclear Safeguards Culture

    International Nuclear Information System (INIS)

    Findlay, T.

    2015-01-01

    The paper will consider safeguards culture both at the IAEA and among member states. It will do so through the lens of organizational culture theory and taking into account developments in safeguards since the Iraq case of the early 1990s. The study will seek to identify the current characteristics of safeguards culture and how it has evolved since the 93+2 programme was initiated, as well as considering the roles of the most important purveyors of such culture, including member states and their national safeguards authorities, the General Conference and Board of Governors, the Director General, the Secretariat as a whole, the Safeguards Department and the inspectorate. The question of what might be an optimal safeguards culture at the Agency and among member states will be investigated, along with the issue of how such a culture might be engendered or encouraged. (author)

  10. 13 CFR 107.506 - Safeguarding Licensee's assets/Internal controls.

    Science.gov (United States)

    2010-01-01

    .../Internal controls. 107.506 Section 107.506 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION... Safeguarding Licensee's assets/Internal controls. You must adopt a plan to safeguard your assets and monitor... your control procedures. ...

  11. Preliminary considerations on developing IAEA technical safeguards for LMFBR power systems

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1980-09-01

    Nuclear fuel cycles safeguards should be considered in the dynamic context of a world deployment of various reactor types and varying availability of fuel-cycle services. There will be a close interaction between thermal-reactor cycles and the future deployment of fast breeders. The quantitites of plutonium and the reprocessing, conversion, fabrication, and storage methods of the fuel for the fast breeders will have a significant impact on safeguards techniques. The approach to the fast breeder fuel cycle safeguards follows the general safeguards system approach proposed by the IAEA. Objective of IAEA safeguards is the detection of diversion of nuclear material and deterrence of such diversion. To achieve independent verification of material balance accountancy requires the capability to monitor inventory status and verify material flows and quantities of all nuclear materials subject to safeguards. Containment and surveillance measures are applied to monitor key measurement points, maintain integrity of material balance, and complement material accountancy. The safeguards study attempts to develop a generic reference IAEA Safeguards System and explores various system options using containment/surveillance and material accountancy instrumentation and integrated systems designs

  12. Promoting global safeguards cooperation: Argentine-U.S. technical achievements

    International Nuclear Information System (INIS)

    Owens, L.; Smith, C.

    1996-01-01

    The bilateral ENREN (Argentina National Nuclear Regulatory Board)-DOE Safeguards Agreement was signed by Dr. Dan Beninson, ENREN, and Dr. Kenneth Baker, DOE, at the Peaceful Uses Conference in Bariloche in 1994. Two major activities identified for immediate cooperation were: nondestructive assay (NDA) techniques for Pilcaniyeu, and advanced containment and surveillance at Embalse. Both of these are discussed here. While the activities of the past year and a half are significant, many more opportunities remain for valuable cooperative partnering to discover more effective and efficient ways to apply safeguards. Several that have been identified by ENREN and DOE for 1996 are: (1) environmental monitoring as a safeguards technique; (2) Pilcaniyeu measurement studies and joint IAEA support program activities; (3) information management and analysis tools; (4) safeguards analytical laboratory support; (5) study of the safeguards approach for Embalse; (6) expansion of the remote monitoring system at Embalse; (7) use of ground-penetrating radar technology at Embalse; and (8) computerized material control and accounting tools for Pilcaniyeu

  13. Safeguards and security design guidelines for conceptual monitored retrievable storage (MRS) facilities

    International Nuclear Information System (INIS)

    Byers, K.R.; Clark, R.G.; Harms, N.L.; Roberts, F.P.

    1984-07-01

    Existing safeguards/security regulations and licensing requirements that may be applicable to an MRS facility are not currently well-defined. Protection requirements consistent with the NRC-graded safeguards approach are identified, as a baseline safeguards system with a comparison of the impacts on safeguards and security of salient features of the different storage concepts. In addition, MRS facility design features and operational considerations are proposed that would enhance facility protection and provide additional assurance that protection systems and procedures would be effectively implemented. 3 figures

  14. Strategic plan for the development of IAEA safeguards equipment

    International Nuclear Information System (INIS)

    Khlebnikov, N.

    2001-01-01

    Full text: The need for a top-down Safeguards Strategy to focus departmental objectives was recognized by the Programme Performance Appraisal System (PPAS) performed on the Equipment Development Project in 1999. The Department of Safeguards prepared at the end of 2000 a 5-year Strategic Plan to identify the changes and improvements expected to take place over the 2001-2005 period. Those Strategic Objectives were supposed to be used to properly plan IAEA Safeguards activities and define appropriate and coherent R and D programmes. The present paper describes the strategic directions that the IAEA will follow in the area of equipment development in order to meet the Safeguards Department long-term objectives for 2001-2005. The paper, which is derived from the IAEA Strategic Equipment Development Plan, prepared by the Division of Technical Support, includes two parts: general principles and policies applicable to all equipment development tasks; specific strategic guidance. The paper will not describe the detailed plans which are prepared based on the strategic plan on a biannual basis. Equipment development activities have been divided in five major projects (NDA, Seals, Surveillance, Unattended Monitoring and Remote Monitoring). Strategic directions for each of these projects will be described in the paper. Separate sections will deal with equipment development strategic guidance in the area of additional protocol inspections, JNFL projects, illicit trafficking and Trilateral Initiative. (author)

  15. Designing a safeguards approach for the transfer and storage of used fuel

    International Nuclear Information System (INIS)

    Benjamin, Robert; Truong, Q.S. Bob; Keeffe, Richard; Whiting, Neville; Green, Brian

    2001-01-01

    Full text: To provide needed space in the bays for continued CANDU reactor discharges, used fuel must be moved from the bays to dry storage facilities, which are built on site. Over the next decades, used fuel in the bays in Canada will be loaded into containers or transfer flasks and moved to the dry storage facilities. The IAEA currently verifies the transfer of used fuel to dry storage at the Point Lepreau and Gentilly and Pickering CANDU reactor stations. When the Bruce Used Fuel Dry Storage Facility starts operating in 2002 followed by the Darlington Used Fuel Dry Storage Facility in 2007-2009 increased Agency safeguards resources will be required. Safeguarding these new facilities and the flow of fuel to them would place additional demand on IAEA resources if the current approach, which relies heavily upon inspectors being present at the facility, were used. In a continuous search for more efficient approaches, the IAEA, the Canadian Nuclear Safety Commission, and the facility operators are working together to develop a safeguards scheme that depends less upon inspectors and more upon instruments, operator activity and remote monitoring. This paper describes the current approach to safeguarding used fuel in transit and in storage at the Pickering site and how that approach might be applied to the Bruce site. Alternative approaches are also discussed and their application to existing and future used fuel dry storage facilities is considered. Safeguards approaches under existing Safeguards Criteria are compared with approaches that might be possible under a safeguards regime strengthened by the Additional Protocol, and with approaches optimised under Integrated Safeguards. The technologies being considered to safeguard used fuel include position tracking using Global Positioning System (GPS), Geospatial Information System (GIS), radio frequency techniques, electronic seals, operator activity and remote surveillance and monitoring. (author)

  16. International Nuclear Safeguards Inspection Support Tool (INSIST)

    International Nuclear Information System (INIS)

    St. Pierre, D.E.; Steinmaus, K.L.; Moon, B.D.

    1994-07-01

    DOE is committed to providing technologies to the International Atomic Energy Agency (IAEA) to meet escalating monitoring and inspection requirements associated with the Non-Proliferation Treaty (NPT). One example of technology provided to the IAEA is the information management and remote monitoring capabilities being customized for the IAEA by the International Safeguards Division of the Office of Non-Proliferation and National Security. The ongoing Safeguards Information Management Systems (SIMS) program is an interlaboratory effort providing the IAEA with a range of information management capabilities designed to enhance the effectiveness of their nuclear inspection activities. The initial commitment involved the customization of computer capabilities to provide IAEA with the basic capability to geographically organize, store, and retrieve the large quantity of information involved in their nuclear on site inspection activities in Iraq. This initial system, the International Nuclear Safeguards Inspection Support Tool (INSIST), was developed by DOE's Pacific Northwest Laboratory (PNL). To date, two INSIST workstations have been deployed at the IAEA. The first has been used to support the IAEA Action Team in the inspection of Iraqi nuclear facilities since August 1993. A second, and similar, workstation has been deployed to support environmental monitoring under the IAEA 93+2 Programme. Both INSIST workstations geographically integrate analog (video) and digital data to provide an easy to use and effective tool for storing retrieving and displaying multimedia site and facility information including world-wide maps, satellite and aerial imagery, on site photography, live inspection videos, and treaty and inspection textual information. The interactive, UNIX-based workstations have a variety of peripheral devices for information input and output. INSIST software includes commercial-off-the-shelf (COTS) modules and application-specific code developed at PNL

  17. Safeguards System for the Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    Kim, Ho-dong; Lee, T.H.; Yoon, J.S.; Park, S.W; Lee, S.Y.; Li, T.K.; Menlove, H.; Miller, M.C.; Tolba, A.; Zarucki, R.; Shawky, S.; Kamya, S.

    2007-01-01

    The advanced spent fuel conditioning process (ACP) which is a part of a pyro-processing has been under development at Korean Atomic Energy Research Institute (KAERI) since 1997 to tackle the problem of an accumulation of spent fuel. The concept is to convert spent oxide fuel into a metallic form in a high temperature molten salt in order to reduce the heat energy, volume, and radioactivity of a spent fuel. Since the inactive tests of the ACP have been successfully implemented to confirm the validity of the electrolytic reduction technology, a lab-scale hot test will be undertaken in a couple of years to validate the concept. For this purpose, the KAERI has built the ACP Facility (ACPF) at the basement of the Irradiated Material Examination Facility (IMEF) of KAERI, which already has a reserved hot-cell area. Through the bilateral arrangement between US Department of Energy (DOE) and Korean Ministry of Science and Technology (MOST) for safeguards R and D, the KAERI has developed elements of safeguards system for the ACPF in cooperation with the Los Alamos National Laboratory (LANL). The reference safeguards design conditions and equipment were established for the ACPF. The ACPF safeguards system has many unique design specifications because of the particular characteristics of the pyro-process materials and the restrictions during a facility operation. For the material accounting system, a set of remote operation and maintenance concepts has been introduced for a non-destructive assay (NDA) system. The IAEA has proposed a safeguards approach to the ACPF for the different operational phases. Safeguards measures at the ACPF will be implemented during all operational phases which include a 'Cold Test', a 'Hot Test' and at the end of a 'Hot test'. Optimization of the IAEA's inspection efforts was addressed by designing an effective safeguards approach that relies on, inter alia, remote monitoring using cameras, installed NDA instrumentation, gate monitors and seals

  18. Nuclear safeguards technology handbook

    International Nuclear Information System (INIS)

    1977-12-01

    The purpose of this handbook is to present to United States industrial organizations the Department of Energy's (DOE) Safeguards Technology Program. The roles and missions for safeguards in the U.S. government and application of the DOE technology program to industry safeguards planning are discussed. A guide to sources and products is included

  19. Safeguards resource management

    International Nuclear Information System (INIS)

    Strait, R.S.

    1986-01-01

    Protecting nuclear materials is a challenging problem for facility managers. To counter the broad spectrum of potential threats, facility managers rely on diverse safeguards measures, including elements of physical protection, material control and accountability, and human reliability programs. Deciding how to upgrade safeguards systems involves difficult tradeoffs between increased protection and the costs and operational impact of protection measures. Effective allocation of safeguards and security resources requires a prioritization of system upgrades based on a relative measure of upgrade benefits to upgrade costs. Analytical tools are needed to help safeguards managers measure the relative benefits and costs and allocate their limited resources to achieve balanced, cost-effective protection against the full spectrum of threats. This paper presents a conceptual approach and quantitative model that have been developed by Lawrence Livermore National Laboratory to aid safeguards managers. The model is in the preliminary stages of implementation, and an effort is ongoing to make the approach and quantitative model available for general use. The model, which is designed to complement existing nuclear safeguards evaluation tools, incorporates a variety of factors and integrates information on the likelihood of potential threats, safeguards capabilities to defeat threats, and the relative consequences if safeguards fail. The model uses this information to provide an overall measure for comparing safeguards upgrade projects at a facility

  20. Nuclear safeguards technology handbook

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    The purpose of this handbook is to present to United States industrial organizations the Department of Energy's (DOE) Safeguards Technology Program. The roles and missions for safeguards in the U.S. government and application of the DOE technology program to industry safeguards planning are discussed. A guide to sources and products is included. (LK)

  1. The evolution of IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make `quantum jump` into new phase characterized by the IAEA as the `Strengthened Safeguards System`. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  2. The evolution of IAEA safeguards

    International Nuclear Information System (INIS)

    1998-01-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make 'quantum jump' into new phase characterized by the IAEA as the 'Strengthened Safeguards System'. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  3. IAEA safeguards for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement ofregional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards.

  4. Containment and surveillance - A principal IAEA safeguards measure

    International Nuclear Information System (INIS)

    Drayer, D.D.; Dupree, S.A.; Sonnier, C.S.

    1997-01-01

    The growth of the safeguards inspectorate of the Agency, spanning more than 40 years, has produced a variety of interesting subjects (legal, technical, political, etc.) for recollection, discussion, and study. Although the Agency was established in 1957, the first practical inspections did not occur until the early 1960s. In the early inspections, thee was little C/S equipment available, and no optical surveillance was used. However, by the third decade of the IAEA, the 1980s, many technology advances were made, and the level of C/S equipment activities increased. By the late 1980s, some 200 Twin Minolta film camera systems were deployed by the Agency for safeguards use. At the present time, the Agency is evaluating and beginning to implement remote monitoring as part of the Strengthened Safeguards System. However, adoption of remote monitoring by international agencies cannot occur rapidly because of the many technical and policy issues associated with this activity. A glimpse into the future indicates that an important element of safeguards instrumentation will be the merging of C/S and NDA equipment into integrated systems. The use of modern interior area monitors in International Safeguards also offers a great potential for advancing C/S measures. The research in microsensors is in its infancy, and the opportunities for their reducing the cost, increasing the life time, and increasing the reliability of sensors for safeguards applications are manifold. A period may be approaching in which the terminology of C/S will no longer have its original meaning, as integrated systems combining NDA instruments and C/S instruments are already in use and are expected to be the norm in the near future

  5. All-Source Information Acquisition and Analysis in the IAEA Department of Safeguards

    International Nuclear Information System (INIS)

    Ferguson, Matthew; Norman, Claude

    2010-01-01

    All source information analysis enables proactive implementation of in-field verification activities, supports the State Evaluation process, and is essential to the IAEA's strengthened safeguards system. Information sources include State-declared nuclear material accounting and facility design information; voluntarily supplied information such as nuclear procurement data; commercial satellite imagery; open source information and information/results from design information verifications (DIVs), inspections and complementary accesses (CAs). The analysis of disparate information sources directly supports inspections, design information verifications and complementary access, and enables both more reliable cross-examination for consistency and completeness as well as in-depth investigation of possible safeguards compliance issues. Comparison of State-declared information against information on illicit nuclear procurement networks, possible trafficking in nuclear materials, and scientific and technical information on nuclear-related research and development programmes, provides complementary measures for monitoring nuclear developments and increases Agency capabilities to detect possible undeclared nuclear activities. Likewise, expert analysis of commercial satellite imagery plays a critical role for monitoring un-safeguarded sites and facilities. In sum, the combination of these measures provides early identification of possible undeclared nuclear material or activities, thus enhancing deterrence of safeguards system that is fully information driven, and increasing confidence in Safeguards conclusions. By increasing confidence that nuclear materials and technologies in States under Safeguards are used solely for peaceful purposes, information-driven safeguards will strengthen the nuclear non-proliferation system. Key assets for Agency collection, processing, expert analysis, and integration of these information sources are the Information Collection and Analysis

  6. Safeguards resource management

    International Nuclear Information System (INIS)

    Strait, R.S.

    1986-01-01

    Protecting nuclear materials is a challenging problem for facility managers. To counter the broad spectrum of potential threats, facility managers rely on diverse safeguards measures, including elements of physical protection, material control and accountability, and human reliability programs. Deciding how to upgrade safeguards systems involves difficult tradeoffs between increased protection and the costs and operational impact of protection measures. Effective allocation of safeguards and security resources requires a prioritization of systems upgrades based on a relative measure of upgrade benefits to upgrade costs. Analytical tools are needed to help safeguards managers measure the relative benefits and cost and allocate their limited resources to achieve balanced, cost-effective protection against the full spectrum of threats. This paper presents a conceptual approach and quantitative model that have been developed by Lawrence Livermore National Laboratory to aid safeguards managers

  7. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    broaden the IAEA safeguards toolbox, the study recommends that the Agency consider closing potential gaps in safeguards coverage by, among other things: 1) adapting its safeguards measures based on a case-by-case assessment; 2) using more frequent and expanded/enhanced mailbox declarations (ideally with remote transmission of the data to IAEA Headquarters in Vienna) coupled with short-notice or unannounced inspections; 3) putting more emphasis on the collection and analysis of environmental samples at hot cells and waste storage tanks; 4) taking Safeguards by Design into account for the construction of new research reactors and best practices for existing research reactors; 5) utilizing fully all legal authorities to enhance inspection access (including a strengthened and continuing DIV process); and 6) utilizing new approaches to improve auditing activities, verify reactor operating data history, and track/monitor the movement and storage of spent fuel.

  8. Global nuclear material monitoring with NDA and C/S data through integrated facility monitoring

    International Nuclear Information System (INIS)

    Howell, J.A.; Menlove, H.O.; Argo, P.; Goulding, C.; Klosterbuer, S.; Halbig, J.

    1996-01-01

    This paper focuses on a flexible, integrated demonstration of a monitoring approach for nuclear material monitoring. This includes aspects of item signature identification, perimeter portal monitoring, advanced data analysis, and communication as a part of an unattended continuous monitoring system in an operating nuclear facility. Advanced analysis is applied to the integrated nondestructive assay and containment and surveillance data that are synchronized in time. End result will be the foundation for a cost-effective monitoring system that could provide the necessary transparency even in areas that are denied to foreign nationals of both US and Russia should these processes and materials come under full-scope safeguards or bilateral agreements. Monitoring systems of this kind have the potential to provide additional benefits including improved nuclear facility security and safeguards and lower personnel radiation exposures. Demonstration facilities in this paper include VTRAP-prototype, Los Alamos Critical Assemblies Facility, Kazakhstan BM-350 Reactor monitor, DUPIC radiation monitoring, and JOYO and MONJU radiation monitoring

  9. Past, present and future of safeguards implementation for the on-load RMBK-1500 reactors in Ignalina

    International Nuclear Information System (INIS)

    Zendel, M.; Yim, S.; Monticone, C.; Kurselis, S.

    1999-01-01

    The on-load refueled RBMKs ('Reactor Bolshoy Moschnosti Kanalniy - Large Power Channel Type Reactor') are very different from all other power reactors which the Agency has been safeguarding over the past decades. Distinct differences in fuel properties and handling necessitated the formulation of separate, facility specific approaches. The spent fuel management at the RBMKs in Ignalina uses hot cells to cut each spent fuel assembly into two subassemblies. A large number of subassemblies are subsequently stored in large capacity, compact storage baskets at the spent fuel storage ponds adjacent to the reactor hall. The development of the safeguards approach is presented considering limitation in core access, technological feasibility, operation mode and financial as well as human resources of the Agency. The safeguards approach is based on a quarterly inspection scheme using Containment and Surveillance (C/S) measures, verification of fresh and spent fuel by Non Destructive Assay (NDA), establishing of flow balances to complement the material accountancy and the application of neutron/gamma monitors in a continuous, unattended mode. The implementation of these safeguards measures is discussed and actual inspection experience with an emphasis on the application of the neutron/gamma monitors is given. The neutron/gamma monitors serve multiple safeguards functions, such as monitoring shipments of waste from cutting operations for irradiated fuel in the hot cells, confirming the unloading history for the on-load reactors, complementing C/S by detecting movements of irradiated fuel materials in the reactor halls and verifying the operational status and the power output of the reactors. Actual measurement results are presented to demonstrate their effectiveness. Power Considerations are given for future safeguards implementation matters at Ignalina Nuclear plant (INPP) including measures for the Strengthened Safeguards System (SSS). (author)

  10. Nuclear safeguards in challenging times [Experts on nuclear safeguards and verification assess the global picture

    International Nuclear Information System (INIS)

    Park, W.S.; Hillerman, J.

    2007-01-01

    Meeting at the IAEA's International Safeguards Symposium in October 2006, more than 500 experts from 60-plus countries and organizations addressed current and future challenges related to safeguards concepts, approaches, technologies, and experience. Sessions addressed five main issues driving developments: Current challenges to the safeguards system; Further strengthening safeguards practices and approaches; Improving the collection and analysis of safeguards information; Advances in safeguards techniques and technology; and Future challenges. Every four to five years, the IAEA brings together safeguards experts from all over the world at international symposia. In October 2001, they met in the shadow of 9/11 and the symposium included a special session on the prevention of nuclear terrorism

  11. IAEA safeguards for the 21st century

    International Nuclear Information System (INIS)

    1999-01-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement of regional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards

  12. Nuclear safeguards research and development

    Science.gov (United States)

    Henry, C. N.

    1981-11-01

    The status of a nuclear safeguard research and development program is presented. Topics include nondestructive assay technology development and applications, international safeguards, training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  13. The Canadian safeguards program

    International Nuclear Information System (INIS)

    Zarecki, C.W.; Smith, R.M.

    1981-12-01

    In support of the Treaty on the Non-Proliferation of Nuclear Weapons Canada provides technical support to the International Atomic Energy Agency for the development of safeguards relevant to Canadian designed and built nuclear facilities. Some details of this program are discussed, including the philosophy and development of CANDU safeguards systems; the unique equipment developed for these systems; the provision of technical experts; training programs; liaison with other technical organizations; research and development; implementation of safeguards systems at various nuclear facilities; and the anticipated future direction of the safeguards program

  14. DOE/ABACC safeguards cooperation

    International Nuclear Information System (INIS)

    Whitaker, J.M.; Toth, P.; Rubio, J.

    1995-01-01

    In 1994, the US Department of Energy (DOE) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) signed a safeguards cooperation agreement. The agreement provides for cooperation in the areas of nuclear material control, accountancy, verification, and advanced containment and surveillance technologies for international safeguards applications. ABACC is an international safeguards organization responsible for verifying the commitments of a 1991 bilateral agreement between Argentina and Brazil in which both countries agreed to submit all nuclear material in all nuclear activities to a Common System of Accounting and Control of Nuclear Materials (SCCC). DOE provides critical assistance (including equipment and training) through the Office of Nonproliferation and National Security to countries and international organizations to enhance their capabilities to control and verify nuclear material inventories. Specific activities initiated under the safeguards agreement include: (1) active US participation in ABACC's safeguards training courses, (2) joint development of specialized measurement training workshops, (3) characterization of laboratory standards, and (4) development and application of an extensive analytical laboratory comparison program. The results realized from these initial activities have been mutually beneficial in regard to strengthening the application of international safeguards in Argentina and Brazil

  15. Assessment of Process Monitoring Techniques for Pyro processing Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. E.; Kim, C. M.; Yim, M. S. [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    PM technologies can be used to inspect normal/off-normal operation with various data obtained from facility operations in real time to meet safeguards objectives. To support the use of PM technologies for the purpose of pyroprocessing safeguards, this study aims at identifying technologies that could be useful for PM purposes and evaluating their applicability to a pyroprocessing facility. This paper describes the development of the assessment criteria to evaluate the practicality of candidate technologies for PM based on a variety of requirements and considerations. By using the developed assessment criteria, application of technologies in the oxide reduction process was assessed as a test case example. Research is necessary to validate the criteria according to the needs of each unit process, perhaps based on expert elicitation and/or international collaboration with other expert organization(s). These advanced assessment criteria will serve a useful guideline for selecting appropriate candidate PM technologies for pyroprocessing safeguards. Based on the results of using these evaluation criteria, the optimum technologies can be successfully selected for use at a large scale pyroprocessing facility.

  16. Proliferation Resistance and Safeguards by Design: The Safeguardability Assessment Tool Provided by the INPRO Collaborative Project ''INPRO'' (Proliferation Resistance and Safeguardability Assessment)

    International Nuclear Information System (INIS)

    Haas, E.; Chang, H.-L.; Phillips, J.R.; Listner, C.

    2015-01-01

    Since the INPRO Collaborative Project on Proliferation Resistance and Safeguardability Assessment Tools (PROSA) was launched in 2011, Member State experts have worked with the INPRO Section and the IAEA Department of Safeguards to develop a revised methodology for self-assessment of sustainability in the area of proliferation resistance of a nuclear energy system (NES). With the common understanding that there is ''no proliferation resistance without safeguards'' the revised approach emphasizes the evaluation of a new 'User Requirement' for ''safeguardability'', that combines metrics of effective and efficient implementation of IAEA Safeguards including ''Safeguards-by-Design'' principles. The assessment with safeguardability as the key issue has been devised as a linear process evaluating the NES against a ''Basic Principle'' in the area of proliferation resistance, answering fundamental questions related to safeguards: 1) Do a State's legal commitments, policies and practices provide credible assurance of the exclusively peaceful use of the NES, including a legal basis for verification activities by the IAEA? 2) Does design and operation of the NES facilitate the effective and efficient implementation of IAEA safeguards? To answer those questions, a questionnaire approach has been developed that clearly identifies gaps and weaknesses. Gaps include prospects for improvements and needs for research and development. In this context, the PROSA approach assesses the safeguardability of a NES using a layered ''Evaluation Questionnaire'' that defines Evaluation Parameters (EP), EP-related questions, Illustrative Tests and Screening Questions to present and structure the evidence of findings. An integral part of the assessment process is Safeguards-by-Design, the identification of potential diversion, misuse and concealment strategies (coarse diversion path

  17. Tokai Advanced Safeguards Technology Exercise (TASTEX). An experience in international co-operation on safeguards

    International Nuclear Information System (INIS)

    Fukuda, G.; Koizumi, T.; Higuchi, K.

    1983-01-01

    TASTEX stands for Tokai Advanced Safeguards Technology Exercise, and was the joint programme of Japan, the United States of America, France and the International Atomic Energy Agency for developing, testing and evaluating advanced safeguards technology to be used in reprocessing facilities. The TASTEX programme, which started early in 1978 and successfully ended in May 1981, consisted of thirteen safeguards-technology-related tasks, from Task A to M. They were classified into four groups from the viewpoints of their usefulness and effectiveness: (1) Tasks technically feasible for international safeguards application in the near future: Tasks E, G, H and part of Task A (underwater CCTV and monitoring cameras); (2) Tasks which can be used in the future if research and development are continued: Tasks F, I, J, C and the other part of Task A (exclusive of the themes shown in (1)); (3) Tasks which may be used in future at the Tokai Reprocessing Facility if research and development are continued: Tasks K and L; and (4) Tasks which are difficult to be used at the Tokai Reprocessing Facility: Tasks B, D and M. The tasks classified under Group (1) are being developed further as part of the JASPAS (Japan Support Programme for Agency's Safeguards) project. (author)

  18. Operational facility-integrated computer system for safeguards

    International Nuclear Information System (INIS)

    Armento, W.J.; Brooksbank, R.E.; Krichinsky, A.M.

    1980-01-01

    A computer system for safeguards in an active, remotely operated, nuclear fuel processing pilot plant has been developed. This sytem maintains (1) comprehensive records of special nuclear materials, (2) automatically updated book inventory files, (3) material transfer catalogs, (4) timely inventory estimations, (5) sample transactions, (6) automatic, on-line volume balances and alarmings, and (7) terminal access and applications software monitoring and logging. Future development will include near-real-time SNM mass balancing as both a static, in-tank summation and a dynamic, in-line determination. It is planned to incorporate aspects of site security and physical protection into the computer monitoring

  19. IAEA Safeguards: Status and prospects

    International Nuclear Information System (INIS)

    Gruemm, H.

    1983-01-01

    The IAEA has just celebrated its 25th anniversary, and the first safeguards inspections were performed twenty years ago. Counting only since 1978, some 5100 inspections had been performed up to mid-1982, using a staff which now includes about 130 inspectors. Despite these impressive figures, and the fact that the IAEA has never detected any apparent diversion of nuclear materials, there are increasing public allegations that safeguards lack effectiveness. After briefly reviewing the nature of IAEA safeguards agreements, the paper examines the political and technical objectives of safeguards together with some of the criticisms which have been voiced. Allocation of limited safeguards resources is examined in terms of the sometimes conflicting allocation criteria which are contained in various safeguards documents. The paper argues that the credibility and deterrent effect of IAEA safeguards should not be underestimated. It should be of greater concern that a few States are known to be operating or constructing non-safeguarded nuclear facilities capable of producing weapons-grade nuclear materials. Thus the risk of safeguards would appear to be greatest at exactly the point where safeguards end. (author)

  20. The project 'nuclear safeguards'

    International Nuclear Information System (INIS)

    Gupta, D.

    1976-01-01

    A survey is given on the elaboration and implementation of a nuclear safeguards system which takes into account the economic needs of an expanding nuclear industry as well as the international monitoring commitments of the FRG under the Euratom and Non-Proliferation treaties. (RW) [de

  1. IAEA safeguards instrumentation: Development, implementation and control

    International Nuclear Information System (INIS)

    Rundquist, D.E.

    1983-01-01

    Extensive development efforts over the last 5 years have produced a number of new instruments to help the IAEA meet its safeguards obligations. Implementation of these new instruments is proceeding at a necessarily slower pace. To optimize the performance and reliability of the instrumentation systems when used in safeguards applications, increasing attention is needed to be spent on performance monitoring and control of the instruments. (author)

  2. Safeguards approaches for conversion and gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Stanuch, C.; Whitaker, M.; Lockwood, D.; Boyer, B.

    2013-01-01

    This paper describes recent studies and investigations of new safeguards measures and inspection tools to strengthen international safeguards at GCEPs (Gas Centrifuge Enrichment Plants) and conversion plants. The IAEA has indicated that continuous, unattended process monitoring should play a central role in future safeguards approaches for conversion plants and GCEPs. Monitoring safeguards relevant information from accountancy scales, process load cells, and unit header pipes can make existing safeguards approaches more efficient by replacing repetitive, routine, labor-intensive inspection activities with automated systems. These systems can make the safeguards approach more effective by addressing more completely the safeguards objectives at these facilities. Automated collection and analysis of the data can further enable the IAEA to move towards a fully-information driven inspection regime with randomized (from the operator's perspective), short-notice inspections. The reduction in repetitive on-site inspection activities would also be beneficial to plant operators, but only if sensitive and proprietary information can be protected and the new systems prove to be reliable. New facilities that incorporate Safeguards by Design into the earliest design stages can facilitate the effective DIV (Design Information Verification) of the plant to allow the inspectors to analyze the capacity of the plant, to project maximum production from the plant, and to provide a focus on the areas in the plant where credible diversion scenarios could be attempted. Facilitating efficient nuclear material accountancy by simplifying process pipework and making flow measurement points more accessible can allow for easier estimation of plant holdup and a potential reduction in the number of person-days of inspection. Lastly, a universal monitoring standard that tracks the location, movement, and use of UF 6 cylinders may enhance the efficiency of operations at industry sites and would

  3. Safeguards instrumentation: a computer-based catalog

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available

  4. Safeguards instrumentation: a computer-based catalog

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available.

  5. Trade Analysis and Safeguards

    International Nuclear Information System (INIS)

    Chatelus, R.; Schot, P.M.

    2010-01-01

    In order to verify compliance with safeguards and draw conclusions on the absence of undeclared nuclear material and activities, the International Atomic Energy Agency (IAEA) collects and analyses trade information that it receives from open sources as well as from Member States. Although the IAEA does not intervene in national export controls, it has to monitor the trade of dual use items. Trade analysis helps the IAEA to evaluate global proliferation threats, to understand States' ability to report exports according to additional protocols but also to compare against State declarations. Consequently, the IAEA has explored sources of trade-related information and has developed analysis methodologies beyond its traditional safeguards approaches. (author)

  6. Nuclear safeguards: a perspective

    International Nuclear Information System (INIS)

    Walske, C.

    1975-01-01

    Safeguards, both international and domestic, are discussed from the industrial viewpoint. Anti-criminal measures are considered in more detail. Areas of anti-criminal safeguards which need improvement are pointed out; they include communications, recovery force, and accounting

  7. New and Emerging Satellite Imaging Capabilities in Support of Safeguards

    International Nuclear Information System (INIS)

    Johnson, M.; Paquette, J.P.; Spyropoulos, N.; Rainville, L.; Schichor, P.; Hong, M.

    2015-01-01

    This abstract is focused on new and emerging commercial satellite imagery (CSI) capabilities. For more than a decade, experienced imagery analysts have been exploiting and analyzing CSI in support of the Department of Safeguards. As the remote sensing industry continues to evolve, additional CSI imagery types are becoming available that could enhance our ability to evaluate and verify States' declarations and to investigate the possible presence of undeclared activities. A newly available and promising CSI capability that may have a Safeguards application is Full Motion Video (FMV) imagery collection from satellites. For quite some time, FMV imagery has been collected from airborne platforms, but now FMV sensors are being deployed into space. Like its airborne counterpart, satellite FMV imagery could provide analysts with a great deal of information, including insight into the operational status of facilities and patterns of activity. From a Safeguards perspective, FMV imagery could help the Agency in the evaluation and verification of States' declared facilities and activities. There are advantages of FMV imaging capabilities that cannot be duplicated with other CSI capabilities, including the ability to loiter over areas of interest and the potential to revisit sites multiple times per day. Additional sensor capabilities applicable to the Safeguards mission include, but are not limited to, the following sensors: · Thermal Infrared imaging sensors will be launched in late 2014 to monitor operational status, e.g., heat from a transformer. · High resolution ShortWave Infrared sensors able to characterize materials that could support verification of Additional Protocol declarations under Article 2.a(v). · Unmanned Aerial Vehicles with individual sensors or specific sensor combinations. The Safeguards Symposium provides a forum to showcase and demonstrate safeguards applications for these emerging satellite imaging capabilities. (author)

  8. Selected topics in special nuclear materials safeguard system design

    International Nuclear Information System (INIS)

    King, L.L.; Thatcher, C.D.; Clarke, J.D.; Rodriguez, M.P.

    1991-01-01

    During the past two decades the improvements in circuit integration have given rise to many new applications in digital processing technology by continuously reducing the unit cost of processing power. Along with this increase in processing power a corresponding decrease in circuit volume has been achieved. Progress has been so swift that new classes of applications become feasible every 2 or 3 years. This is especially true in the application of proven new technology to special nuclear materials (SNM) safeguard systems. Several areas of application were investigated in establishing the performance requirements for the SNM safeguard system. These included the improvements in material control and accountability and surveillance by using multiple sensors to continuously monitor SNM inventory within the selected value(s); establishing a system architecture to provide capabilities needed for present and future performance requirements; and limiting operating manpower exposure to radiation. This paper describes two selected topics in the application of state-of-the-art, well-proven technology to SNM safeguard system design

  9. Filtering with the Centered Moving Median to Effectively Monitor Solution Processes for Safeguard Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Richir, Patrice; Dzbikowicz, Zdzislaw [Institute for Transuranium Elements (ITU), Joint Research Centre (JRC), European Commission, Ispra, Varese (Italy)

    2012-06-15

    Reprocessing plants require continuous and integrated safeguards activities by inspectors of the IAEA and Euratom because of their proliferation-sensitivity as complex facilities handling large quantities of direct use nuclear material. In support of both organizations, the JRC has developed a solution monitoring software package (DAI, Data Analysis and Interpretation) which has been implemented in the main commercial European reprocessing plants and which allows enhanced monitoring of nuclear materials in the processed solutions. This tool treats data acquired from different sensor types (e.g. from pressure transducers monitoring the solution levels in tanks). Collected signals are often noisy because of the instrumentation itself and/or because of ambient and operational conditions (e.g. pumps, ventilation systems or electromagnetic interferences) and therefore require filtering. Filtering means reduction of information and has to be applied correctly to avoid misinterpretation of the process steps. This paper describes the study of some filters one of which is the centered moving median which has been revealed as a powerful tool for solution monitoring.

  10. Safeguarding of large scale reprocessing and MOX plants

    International Nuclear Information System (INIS)

    Howsley, R.; Burrows, B.; Longevialle, H. de; Kuroi, H.; Izumi, A.

    1997-01-01

    In May 97, the IAEA Board of Governors approved the final measures of the ''93+2'' safeguards strengthening programme, thus improving the international non-proliferation regime by enhancing the effectiveness and efficiency of safeguards verification. These enhancements are not however, a revolution in current practices, but rather an important step in the continuous evolution of the safeguards system. The principles embodied in 93+2, for broader access to information and increased physical access already apply, in a pragmatic way, to large scale reprocessing and MOX fabrication plants. In these plants, qualitative measures and process monitoring play an important role in addition to accountancy and material balance evaluations in attaining the safeguard's goals. This paper will reflect on the safeguards approaches adopted for these large bulk handling facilities and draw analogies, conclusions and lessons for the forthcoming implementation of the 93+2 Programme. (author)

  11. IAEA safeguards and classified materials

    International Nuclear Information System (INIS)

    Pilat, J.F.; Eccleston, G.W.; Fearey, B.L.; Nicholas, N.J.; Tape, J.W.; Kratzer, M.

    1997-01-01

    The international community in the post-Cold War period has suggested that the International Atomic Energy Agency (IAEA) utilize its expertise in support of the arms control and disarmament process in unprecedented ways. The pledges of the US and Russian presidents to place excess defense materials, some of which are classified, under some type of international inspections raises the prospect of using IAEA safeguards approaches for monitoring classified materials. A traditional safeguards approach, based on nuclear material accountancy, would seem unavoidably to reveal classified information. However, further analysis of the IAEA's safeguards approaches is warranted in order to understand fully the scope and nature of any problems. The issues are complex and difficult, and it is expected that common technical understandings will be essential for their resolution. Accordingly, this paper examines and compares traditional safeguards item accounting of fuel at a nuclear power station (especially spent fuel) with the challenges presented by inspections of classified materials. This analysis is intended to delineate more clearly the problems as well as reveal possible approaches, techniques, and technologies that could allow the adaptation of safeguards to the unprecedented task of inspecting classified materials. It is also hoped that a discussion of these issues can advance ongoing political-technical debates on international inspections of excess classified materials

  12. Safeguards Culture

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2012-07-01

    The concepts of nuclear safety and security culture are well established; however, a common understanding of safeguards culture is not internationally recognized. Supported by the National Nuclear Security Administration, the authors prepared this report, an analysis of the concept of safeguards culture, and gauged its value to the safeguards community. The authors explored distinctions between safeguards culture, safeguards compliance, and safeguards performance, and evaluated synergies and differences between safeguards culture and safety/security culture. The report concludes with suggested next steps.

  13. Safeguards: the industry's role and views

    International Nuclear Information System (INIS)

    Walske, C.

    1975-01-01

    Possible improvements in the U. S. safeguards system are discussed: guard forces, physical protection, personnel clearance, accounting and monitoring in plants, communications, the command function, reinforcements, and intelligence information. (U.S.)

  14. IAEA monitoring field trials workshop

    International Nuclear Information System (INIS)

    Ross, H.H.; Cooley, J.N.; Belew, W.L.

    1995-01-01

    Recent safeguards inspections in Iraq and elsewhere by the International Atomic Energy Agency (IAEA) have led to the supposition that environmental monitoring can aid in verifying declared and in detecting undeclared nuclear activities or operations. This assumption was most recently examined by the IAEA's Standing Advisory Group on Safeguards Implementation (SAGSI), in their reports to the IAEA Board of Governors. In their reports, SAGSI suggested that further assessment and development of environmental monitoring would be needed to fully evaluate its potential application to enhanced IAEA safeguards. Such an inquiry became part of the IAEA ''Programme 93+2'' assessment of measures to enhance IAEA safeguards. In March, 1994, the International Safeguards Group at Oak Ridge hosted an environmental monitoring field trial workshop for IAEA inspectors to train them in the techniques needed for effective environmental sampling. The workshop included both classroom lectures and actual field sampling exercises. The workshop was designed to emphasize the analytical infrastructure needed for an environmental program, practical sampling methods, and suggested procedures for properly planning a sampling campaign. Detailed techniques for swipe, vegetation, soil, biota, and water associated sampling were covered. The overall approach to the workshop, and observed results, are described

  15. Holdup-related issues in safeguarding of nuclear materials

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1988-03-01

    Residual inventories of special nuclear materials (SNM) remaining in processing facilities (holdup) are recognized as an insidious problem for both safety and safeguards. This paper identifies some of the issues that are of concern to the safeguards community at-large that are related to holdup of SNM in large-scale process equipment. These issues range from basic technologies of SNM production to changing regulatory requirements to meet the needs of safeguarding nuclear materials. Although there are no magic formulas to resolve these issues, there are several initiatives that could be taken in areas of facility design, plant operation, personnel training, SNM monitoring, and regulatory guidelines to minimize the problems of holdup and thereby improve both safety and safeguards at nuclear material processing plants. 8 refs

  16. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pepper,S.; Rosenthal, M.; Fishbone, L.; Occhiogrosso, D.; Carroll, C.; Dreicer, M.; Wallace, R.; Rankhauser, J.

    2008-10-22

    In 2007, the National Nuclear Security Administration's Office of Nonproliferation and International Security (NA-24) completed a yearlong review of the challenges facing the international safeguards system today and over the next 25 years. The study found that without new investment in international safeguards, the U.S. safeguards technology base, and our ability to support International Atomic Energy Agency (IAEA) safeguards, will continue to erode and soon may be at risk. To reverse this trend, the then U.S. Secretary of Energy, Samuel Bodman, announced at the 2007 IAEA General Conference that the Department of Energy (DOE) would launch the Next Generation Safeguards Initiative (NGSI). He stated 'IAEA safeguards must be robust and capable of addressing proliferation threats. Full confidence in IAEA safeguards is essential for nuclear power to grow safely and securely. To this end, the U.S. Department of Energy will seek to ensure that modern technology, the best scientific expertise, and adequate resources are available to keep pace with expanding IAEA responsibilities.' To meet this goal, the NGSI objectives include the recruitment of international safeguards experts to work at the U.S. national laboratories and to serve at the IAEA's headquarters. Part of the latter effort will involve enhancing our existing efforts to place well-qualified Americans in a sufficient number of key safeguards positions within the IAEA's Department of Safeguards. Accordingly, the International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards (ERIS) on October 22 and 23, 2008. The ISPO used a workshop format developed earlier with Sonalysts, Inc., that was followed at the U.S. Support Program's (USSP's) technology road-mapping sessions. ISPO invited participants from the U.S. DOE, the IAEA, the U.S. national laboratories, private industry, academia, and

  17. Recent advances in safeguards operations

    International Nuclear Information System (INIS)

    Agu, B.; Iwamoto, H.

    1983-01-01

    The facilities and nuclear materials under IAEA safeguards have steadily increased in the past few years with consequent increases in the manpower and effort required for the implementation of effective international safeguards. To meet this challenge, various techniques and instruments have been developed with the assistance, support and cooperation of the Member States. Improved NDA equipment now permits accurate verification of plutonium and HEU bearing items; and optical and TV surveillance systems have improved remarkably. Experience in safeguarding nuclear facilities now includes fast-reactor fuel reprocessing and enrichment plants, even though the Hexapartite Safeguards Project is yet to define an agreed approach for safeguarding enrichment plants. The establishment of field offices now enables the IAEA to adequately implement safeguards at important facilities and also with more effective use of manpower. Closer cooperation with Member States via liaison or similar committees makes for effective safeguards implementation and the speedy solution of attendant problems. The technical support programmes from the Member States continue to provide the basis of the recent advances in safeguards techniques and instrumentation. (author)

  18. The international safeguards and domestic safeguards and security interface

    International Nuclear Information System (INIS)

    Whitworth, A.

    1996-01-01

    The International Safeguards Division, in conjunction with the Office of Safeguards and Security, organized a workshop on the international safeguards/domestic safeguards and security interface that was held in March 1996. The purpose of the workshop was to identify and resolve domestic safeguards and security issues associated with the implementation of International Atomic Energy Agency (IAEA) safeguards in the Department of Energy (DOE) complex. The workshop drew heavily upon lessons learned in the application of IAEA safeguards at storage facilities in oak Ridge, Hanford, and Rocky Flats. It was anticipated that the workshop would facilitate a consistent DOE safeguards and security approach for the implementation of IAEA safeguards in the DOE complex. This paper discusses the issues and resolutions of several issues raised at the workshop that involve primarily the domestic material control and accountability program

  19. Safeguards Culture: lesson learned

    International Nuclear Information System (INIS)

    Frazar, S.; Mladineo, S.V.

    2010-01-01

    After the discovery of Iraq's clandestine nuclear program in 1991, the international community developed new tools for evaluating and demonstrating states' nuclear intentions. The International Atomic Energy Agency (IAEA) developed a more holistic approach toward international safeguards verification to garner more complete information about states' nuclear activities. This approach manifested itself in State Level Evaluations, using information from a variety of sources, including the implementation of integrated safeguards in Member States, to reach a broader conclusion. Those wishing to exhibit strong nonproliferation postures to a more critical international community took steps to demonstrate their nonproliferation 'bona fides'. As these Member States signed and brought into force the Additional Protocol, submitted United Nations Security Council Resolution 1540 reports and strengthened their export control laws, the international community began to consider the emergence of so-called safeguards cultures. Today, safeguards culture can be a useful tool for measuring nonproliferation postures, but so far its impact on the international safeguards regime has been under appreciated. There is no agreed upon definition for safeguards culture nor agreement on how it should be measured.

  20. The Canadian Safeguards Support Program - A future outlook

    International Nuclear Information System (INIS)

    Keeffe, R.; Truong, Q.S. Bob

    2001-01-01

    Full text: The Canadian Safeguards Support Program (CSSP) is one of the first safeguards support programs with an overall objective to assist the IAEA by providing technical assistance and other resources and by developing equipment to improve the effectiveness of international safeguards. This paper provides a brief discussion of the evolution of the CSSP, from the beginning when the program was under joint management between the Atomic Energy Control Board (AECB) and Atomic Energy of Canada Limited (AECL), a Canadian crown corporation, until recent years when the AECB became responsible for all projects and financial management. Recently, new legislation came into force and the AECB became the Canadian Nuclear Safety Commission (CNSC). However, the mandate and management of the CSSP under the CNSC remain fundamentally unchanged. Major CSSP activities are devoted to the following areas: (a) Human resource assistance through the provision of cost-free experts (CFEs) to the IAEA; (b) Training of IAEA inspectors and facility operators, development of training resources and integrated approaches for training; (c) System studies, e.g. the development of integrated safeguards approach for CANDU reactors, geological repository, and physical model; (d) Equipment development, e.g. the VXI Integrated Fuel Monitor, Digital Cerenkov Viewing Device, seals, remote monitoring, encryption and authentication; (e) Information technology which includes satellite imagery, Geographical Information System (GIS), and position tracking of spent fuel containers. The CSSP has continued to evolve during the past 25 years. Although formerly larger the CSSP budget has settled to a stable level of just slightly above (Canadian) $2M. Leveraging of the CSSP budget through collaborations with several Member State Support Programs and Canadian government departments has provided mutual benefits for all parties involved and useful results that have been put into practical use by the IAEA. (author)

  1. Pickering safeguards: a preliminary analysis

    International Nuclear Information System (INIS)

    Todd, J.L.; Hodgkinson, J.G.

    1977-05-01

    A summary is presented of thoughts relative to a systems approach for implementing international safeguards. Included is a preliminary analysis of the Pickering Generating Station followed by a suggested safeguards system for the facility

  2. Facility Safeguardability Analysis in Support of Safeguards by Design

    International Nuclear Information System (INIS)

    Wonder, E.F.

    2010-01-01

    The idea of 'Safeguards-by-Design' (SBD) means designing and incorporating safeguards features into new civil nuclear facilities at the earliest stages in the design process to ensure that the constructed facility is 'safeguardable,' i.e. will meet national and international nuclear safeguards requirements. Earlier consideration of safeguards features has the potential to reduce the need for costly retrofits of the facility and can result in a more efficient and effective safeguards design. A 'Facility Safeguardability Analysis' (FSA) would be a key step in Safeguards-by-Design that would link the safeguards requirements with the 'best practices', 'lessons learned', and design of the safeguards measures for implementing those requirements. The facility designer's nuclear safeguards experts would work closely with other elements of the project design team in performing FSA. The resultant analysis would support discussions and interactions with the national nuclear regulator (i.e. State System of Accounting for and Control of Nuclear Material - SSAC) and the IAEA for development and approval of the proposed safeguards system. FSA would also support the implementation of international safeguards by the IAEA, by providing them with a means to analyse and evaluate the safeguardability of facilities being designed and constructed - i.e. by independently reviewing and validating the FSA as performed by the design team. Development of an FSA methodology is part of a broader U.S. National Nuclear Security Administration program to develop international safeguards-by-design tools and guidance documents for use by facility designers. The NNSA NGSI -sponsored project team is looking, as one element of its work, at how elements of the methodology developed by the Generation IV International Forum's Working Group on Proliferation Resistance and Physical Protection can be adapted to supporting FSA. (author)

  3. The state-level approach: moving beyond integrated safeguards

    International Nuclear Information System (INIS)

    Tape, James W.

    2008-01-01

    The concept of a State-Level Approach (SLA) for international safeguards planning, implementation, and evaluation was contained in the Conceptual Framework for Integrated Safeguards (IS) agreed in 2002. This paper describes briefly the key elements of the SLA, including State-level factors and high-level safeguards objectives, and considers different cases in which application of the SLA methodology could address safeguards for 'suspect' States, 'good' States, and Nuclear Weapons States hosting fuel cycle centers. The continued use and further development of the SLA to customize safeguards for each State, including for States already under IS, is seen as central to effective and efficient safeguards for an expanding nuclear world.

  4. Improved IAEA safeguards for closed nuclear fuel cycles

    International Nuclear Information System (INIS)

    1978-12-01

    The paper recognises the limitations of nuclear material accountancy in applying safeguards to future large scale processing plants. For those plants the following will be necessary: (i) The inclusion of safeguards requirements in design criteria. (ii) Extensive application of containment and surveillance with monitors on personnel and goods exits, pipework, tanks, etc. (iii) Continuous inspectorate measurement of input and output flows. Local IAEA laboratories to ensure timeliness. (iv) Upgrading of process control information to enable the inspectorate to monitor the in-process inventory. The inspectorates knowledge of the in-process inventory will be valuable in their assessment of any alarms given by the containment-surveillance system

  5. Technology Development of Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Kang, H. Y.; Ko, W. I. (and others)

    2007-04-15

    The objective of this project is to perform R and D on the essential technologies in nuclear material measurement and surveillance and verification system, and to improve the state of being transparent on the nuclear material management of DUPIC Fuel Development Facility (DFDF) through the evaluation of safeguard ability on non-proliferation fuel cycle and nuclear proliferation resistance. Nuclear material position scan system for the reduction of measurement error was developed for the spatial distribution search of spent fuel in DUPIC facility. Web-based realtime remote monitoring system was designed and constructed for satisfying the IAEA's performance criteria of continuous monitoring, and also developed a software for the function of remote control and message. And diversion paths in a proliferation resistant pyroprocess for SFR were analyzed and its protecting system against the diversion paths were suggested for enhancing proliferation resistance of advanced nuclear fuel cycle. These results could be used for planning the further R and D items in the area of safeguards. Those R and D results mentioned above would be helpful for increasing Korean nuclear transparency in the future.

  6. The future of IAEA safeguards: challenges and responses

    International Nuclear Information System (INIS)

    Pilat, Joseph F.; Budlong-Sylvester, Kory W.

    2011-01-01

    For nearly two decades, the International Atomic Energy Agency (lAEA) has been transforming its safeguards system to address the challenges posed by undeclared nuclear programs, the associated revelation of an extensive non-State nuclear procurement network and other issues, including past limits to its verification mandate and the burden of noncompliance issues. Implementing the new measures, including those in the Additional Protocol, and integrating new and old safeguards measures, remains a work in progress. Implementation is complicated by factors including the limited teclmological tools that are available to address such issues as safeguarding bulk handling facilities, detection of undeclared facilities/activities, especially related to enrichment, etc. As this process continues, new challenges are arising, including the demands of expanding nuclear power production worldwide, so-called safeguards by design for a new generation of facilities, the possible IAEA role in a fissile material cutoff treaty and other elements of the arms control and disarmament agenda, the possible role in 'rollback' cases, etc. There is no doubt safeguards will need to evolve in the future, as they have over the last decades. In order for the evolutionary path to proceed, there will inter alia be a need to identify technological gaps, especially with respect to undeclared facilities, and ensure they are filled by adapting old safeguards technologies, by developing and introducing new and novel safeguards teclmologies and/or by developing new procedures and protocols. Safeguards will also need to respond to anticipated emerging threats and to future, unanticipated threats. This will require strategic planning and cooperation among Member States and with the Agency. This paper will address challenges to IAEA safeguards and the technological possibilities and R and D strategies needed to meet those challenges in the context of the forty-year evolution of safeguards, including the

  7. Safeguard Vulnerability Analysis Program (SVAP)

    International Nuclear Information System (INIS)

    Gilman, F.M.; Dittmore, M.H.; Orvis, W.J.; Wahler, P.S.

    1980-01-01

    This report gives an overview of the Safeguard Vulnerability Analysis Program (SVAP) developed at Lawrence Livermore National Laboratory. SVAP was designed as an automated method of analyzing the safeguard systems at nuclear facilities for vulnerabilities relating to the theft or diversion of nuclear materials. SVAP addresses one class of safeguard threat: theft or diversion of nuclear materials by nonviolent insiders, acting individually or in collusion. SVAP is a user-oriented tool which uses an interactive input medium for preprocessing the large amounts of safeguards data. Its output includes concise summary data as well as detailed vulnerability information

  8. Safeguards effectiveness criteria and safeguards efficiency

    International Nuclear Information System (INIS)

    Stein, G.; Canty, M.J.; Knapp, U.; Munch, E.

    1983-01-01

    A critical examination of current tendencies in quantification, assessment and enhancement of the effectiveness of international safeguards is undertaken. It is suggested that the present narrow and overly technical interpretation of some elements of international safeguards is both impractical and detrimental. A pragmatic, case-bycase approach is called for to implement the provisions of safeguards agreements in a more balanced, efficient way

  9. Some developments in safeguards techniques

    International Nuclear Information System (INIS)

    Beets, C.

    1977-01-01

    The fundamental principles of safeguards and the research and development of safeguards techniques are described. Safeguard accountancy based upon the partition of the fuel cycle into suitable material balance areas will be further improved. Implementation of international safeguards in the European fuel fabrication and reprocessing facilities is described. The effectiveness of a material accounting system depends on the quality of the quantitative data. The allocation of the tasks in the framework of an integrated safeguards is concerned with R and D work only and has no bearing on the allocation of the implementation costs. Bulk measurements, sampling and destructive or non-destructive analysis of samples are described for the determination of batch data. Testing of the safeguards techniques as a keystone in relation to plant instrumentation programmes are still being developed throughout the world. In addition to accountancy and control, it also includes an effective physical security program. The system of international safeguards that prevailed in the sixties has been re-modelled to comply with the new requirements of the Non-Proliferation Treaty and with the growth of nuclear energy

  10. Integrated Safeguards Information System for Japan (ISIS-J) - Strengthening SSAC for Enhancing Confidence in Compliance with Safeguards Obligations -

    International Nuclear Information System (INIS)

    Iso, S.; Nishiyama, N.; Kumakura, S.; Takizawa, K.; Yoshida, H.; Kobayashi, I.; Kikuchi, M.; Kimura, N.; Matsubara, T.; Yatsu, S.

    2010-01-01

    IAEA has stated the importance of enhancing cooperation with SSAC. Therefore, Japan has developed the Integrated Safeguards Information System for enhancing confidence in compliance with the national obligation under the safeguards agreement and the additional protocol. Japan already established the National System including national inspections with NDA and DA verification functions and evaluation of data obtained from national inspections and has maintained the National System of safeguards as a SSAC in accordance with the safeguards agreement. Nuclear Material Control Center (NMCC) is engaged in national safeguards activities as designated organization of national inspectorate and information treatment including safeguards data analysis. Recently, purpose of IAEA's safeguards activities may shift to detection of proliferation based on plausible proliferation paths from detection of diversion by certain material accountancy measures. Major safeguards activities of IAEA have changed from quantitative aspects to qualitative them. As supplements for declining the quantitative measures such as the activities based on the safeguards criteria the IAEA would expect the SSAC functions for maintaining the activities of quantitative manners. Japan believes that the State's responsibility for enhancing cooperation between the National System and the IAEA must assure the confidence level of correctness and completeness of the State declarations with accurate and precise accountability as findings from SSAC. Japan has started the development of the strengthened and autonomous national system namely the Integrated safeguards Information System for Japan (ISIS-J) in order to fulfil our responsibility. Japan would seek to improve quality of information including nuclear material accounting data as well as expanded declaration relevant to nuclear activities in Japan, and to increase abilities for explaining safeguards relevant events in Japan. The enhanced findings could include

  11. Safeguards and Physics Measurements: Services

    International Nuclear Information System (INIS)

    Carchon, R.

    2000-01-01

    SCK-CEN's department of Safeguards and Physics Measurements provides a wide variety of internal and external services including dosimetry, calibration, instrumentation, whole body counting, safeguards and non-destructive analysis. Main developments in these areas in 1999 are described

  12. On-Line Monitoring for Control and Safeguarding of Radiochemical Streams at Spent Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Billing, Justin M.; Casella, Amanda J.; Johnsen, Amanda M.; Peterson, James M.

    2009-01-01

    Advanced techniques enabling enhanced safeguarding of the spent fuel reprocessing plants are urgently needed. Our approach is based on prerequisite that real time monitoring of the solvent extraction flowsheets provides unique capability to quickly detect unwanted manipulations with fissile isotopes present in the radiochemical streams during reprocessing activities. The methods used to monitor these processes must be robust and must be able to withstand harsh radiation and chemical environments. A new on-line monitoring system satisfying these requirements and featuring Raman spectroscopy combined with a Coriolis and conductivity probes, has been recently developed by our research team. It provides immediate chemical data and flow parameters of high-level radioactive waste streams with high brine content generated during retrieval activities from Hanford nuclear waste storage tanks. The nature of the radiochemical streams at the spent fuel reprocessing plant calls for additional spectroscopic information, which can be gained by the utilization of UV-vis-NIR capabilities. Raman and UV-vis-NIR spectroscopies are analytical techniques that have extensively been extensively applied for measuring the various organic and inorganic compounds including actinides. The corresponding spectrometers used under the laboratory conditions are easily convertible to the process-friendly configurations allowing remote measurements under the flow conditions. A fiber optic Raman probe allows monitoring of the high concentration species encountered in both aqueous and organic phases within the UREX suite of flowsheets, including metal oxide ions, such as uranyl, components of the organic solvent, inorganic oxo-anions, and water. The actinides and lanthanides are monitored remotely by UV-vis-NIR spectroscopy in aqueous and organic phases. In this report, we will present our recent results on spectroscopic measurements of simulant flowsheet solutions and commercial fuels available at

  13. Strengthening regional safeguards

    International Nuclear Information System (INIS)

    Palhares, L.; Almeida, G.; Mafra, O.

    1996-01-01

    Nuclear cooperation between Argentina and Brazil has been growing since the early 1980's and as it grew, so did cooperation with the US Department of Energy (DOE). The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was formed in December 1991 to operate the Common System of Accounting and Control of Nuclear Materials (SCCC). In April 1994, ABACC and the DOE signed an Agreement of Cooperation in nuclear material safeguards. This cooperation has included training safeguards inspectors, exchanging nuclear material measurement and containment and surveillance technology, characterizing reference materials, and studying enrichment plant safeguards. The goal of the collaboration is to exchange technology, evaluate new technology in Latin American nuclear facilities, and strengthen regional safeguards. This paper describes the history of the cooperation, its recent activities, and future projects. The cooperation is strongly supported by all three governments: the Republics of Argentina and Brazil and the United States

  14. AUTOMATED PROCESS MONITORING: APPLYING PROVEN AUTOMATION TECHNIQUES TO INTERNATIONAL SAFEGUARDS NEEDS

    International Nuclear Information System (INIS)

    O'Hara, Matthew J.; Durst, Philip C.; Grate, Jay W.; Devol, Timothy A.; Egorov, Oleg; Clements, John P.

    2008-01-01

    Identification and quantification of specific alpha- and beta-emitting radionuclides in complex liquid matrices is highly challenging, and is typically accomplished through laborious wet chemical sample preparation and separations followed by analysis using a variety of detection methodologies (e.g., liquid scintillation, gas proportional counting, alpha energy analysis, mass spectrometry). Analytical results may take days or weeks to report. Chains of custody and sample security measures may also complicate or slow the analytical process. When an industrial process-scale plant requires the monitoring of specific radionuclides as an indication of the composition of its feed stream or of plant performance, radiochemical measurements must be fast, accurate, and reliable. Scientists at Pacific Northwest National Laboratory have assembled a fully automated prototype Process Monitor instrument capable of a variety of tasks: automated sampling directly from a feed stream, sample digestion/analyte redox adjustment, chemical separations, radiochemical detection and data analysis/reporting. The system is compact, its components are fluidically inter-linked, and analytical results could be immediately transmitted to on- or off-site locations. The development of a rapid radiochemical Process Monitor for 99Tc in Hanford tank waste processing streams, capable of performing several measurements per hour, will be discussed in detail. More recently, the automated platform was modified to perform measurements of 90Sr in Hanford tank waste stimulant. The system exemplifies how automation could be integrated into reprocessing facilities to support international nuclear safeguards needs

  15. Development of DUPIC safeguards technology

    International Nuclear Information System (INIS)

    Kim, H. D.; Kang, H. Y.; Ko, W. I.

    2002-05-01

    DUPIC safeguards R and D in the second phase has focused on the development of nuclear material measurement system and its operation and verification, the development of nuclear material control and accounting system, and the development of remote and unmanned containment/surveillance system. Of them, the nuclear material measurement system was authenticated from IAEA and officially used for IAEA and domestic safeguards activities in DFDF. It was also verified that the system could be used for quality control of DUPIC process. It is recognised that the diagnostic software using neural network and remote and unmanned containment/surveillance system developed here could be key technologies to go into remote and near-real time monitoring system. The result of this project will eventually contribute to similar nuclear fuel cycles like MOX and pyroprocessing facility as well as the effective implementation of DUPIC safeguards. In addition, it will be helpful to enhance international confidence build-up in the peaceful use of spent fuel material

  16. A Mock UF6 Feed and Withdrawal System for Testing Safeguards Monitoring Systems and Strategies Intended for Nuclear Fuel Enrichment and Processing Plants

    International Nuclear Information System (INIS)

    Krichinsky, Alan M.; Bates, Bruce E.; Chesser, Joel B.; Koo, Sinsze; Whitaker, J. Michael

    2009-01-01

    This report describes an engineering-scale, mock UF6 feed and withdrawal (F and W) system, its operation, and its intended uses. This system has been assembled to provide a test bed for evaluating and demonstrating new methodologies that can be used in remote, unattended, continuous monitoring of nuclear material process operations. These measures are being investigated to provide independent inspectors improved assurance that operations are being conducted within declared parameters, and to increase the overall effectiveness of safeguarding nuclear material. Testing applicable technologies on a mock F and W system, which uses water as a surrogate for UF6, enables thorough and cost-effective investigation of hardware, software, and operational strategies before their direct installation in an industrial nuclear material processing environment. Electronic scales used for continuous load-cell monitoring also are described as part of the basic mock F and W system description. Continuous monitoring components on the mock F and W system are linked to a data aggregation computer by a local network, which also is depicted. Data collection and storage systems are described only briefly in this report. The mock UF 6 F and W system is economical to operate. It uses a simple process involving only a surge tank between feed tanks and product and withdrawal (or waste) tanks. The system uses water as the transfer fluid, thereby avoiding the use of hazardous UF 6 . The system is not tethered to an operating industrial process involving nuclear materials, thereby allowing scenarios (e.g., material diversion) that cannot be conducted otherwise. These features facilitate conducting experiments that yield meaningful results with a minimum of expenditure and quick turnaround time. Technologies demonstrated on the engineering-scale system lead to field trials (described briefly in this report) for determining implementation issues and performance of the monitoring technologies under

  17. Proposal for Monitoring Within the Centrifuge Cascades of Uranium Enrichment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, David R.

    2017-04-01

    Safeguards are technical measures implemented by the International Atomic Energy Agency (IAEA) to independently verify that nuclear material is not diverted from peaceful purposes to weapons (IAEA, 2017a). Safeguards implemented at uranium enrichment facilities (facilities hereafter) include enrichment monitors (IAEA, 2011). Figure 1 shows a diagram of how a facility could be monitored. The use of a system for monitoring within centrifuge cascades is proposed.

  18. New safeguards system and JNC's activities in the new safeguards system

    International Nuclear Information System (INIS)

    Iwanaga, Masayuki

    2000-01-01

    The Japan Nuclear Fuel Cycle Development Institute (JNC) has been developing the various area of the technology in the nuclear fuel cycle more than 30 years, as the leading organization. Standing on the accumulated experiences through those activities, JNC will construct the new fuel cycle concept based on the principle for safety, environment, economy and nonproliferation. In this process, evaluation of the specific nonproliferation features with the nuclear material control methods taking in to account of the safegurdability might have one of the major importance. On the other hand, recently, in addition to the conventional safeguards (INFCIRC153), an additional protocol (INFCIRC540) which defines the activities that complement the integrity of a member country's declaration has come into effect in several countries, including Japan. IAEA and other international organizations are now discussing the safeguards concept, which integrates the conventional as well as new safeguards measures. In JNC's efforts to construct the new fuel cycle concept, it is necessary to give sufficient consideration to reflect the integrated safeguards concept. In the process of implementing the concept of the new integrated safeguards system, we presume that changes will have to be made in the traditional approach, which mainly deals with nuclear material. It will become necessary to develop a concrete method and approach in order to analyze and evaluate information, and work will have to be undertaken to optimize such a method based on its effects and efficiency. JNC will make contributions to international society by making the best use of its experience and technological infrastructure to reflect further safeguards development program in JNC so that the new IAEA safeguards can be firmly established. Related to this point of view, the following two subjects is to be introduced on the whole; 1. JNC's experiences and expertise of the development of safeguards technology with the fuel

  19. A technical analysis of the IAEA nuclear safeguards

    International Nuclear Information System (INIS)

    Yoon, J. W.

    1998-01-01

    In the post-Cold War era, the threats of horizontal nuclear proliferation emerge as the forefront security issue while the nuclear arms races among existing nuclear weapon states reduce to a remarkable extent. In this context, there arises lots of research attention to the IAEA nuclear safeguards which have been viewed as the core of international monitoring on the clandestine nuclear activities of potential proliferators. However, previous attention tended to highlight the political aspects of the IAEA nuclear safeguards, centering on the possibilities and limitations of the IAEA's inspection authority. In contrast, this paper purports to focus on the technical aspects of the IAEA nuclear safeguards, so it can show the intrinsic problems of those safeguards in stemming the proliferation of nuclear weapons. This paper mainly deals with the technical objectives and options of the IAEA nuclear safeguards, the technical indices of clandestine nuclear activities, and some measures to improve the efficacy of the IAEA nuclear safeguards. Hopefully, this paper is expected to lead us to approach the issue of the North Korean nuclear transparency from the technical perspective as well as the political one

  20. Open source information acquisition, analysis and integration in the IAEA Department of Safeguards

    International Nuclear Information System (INIS)

    Barletta, M.; Zarimpas, N.; Zarucki, R.

    2010-10-01

    Acquisition and analysis of open source information plays an increasingly important role in the IAEA strengthened safeguards system. The Agency's focal point for open source information collection and analysis is the Division of Safeguards Information Management (SGIM) within the IAEA Department of Safeguards. In parallel with the approval of the Model Additional Protocol in 1997, a new centre of information acquisition and analysis expertise was created within SGIM. By acquiring software, developing databases, retraining existing staff and hiring new staff with diverse analytical skills, SGIM is pro actively contributing to the future implementation of information-driven safeguards in collaboration with other Divisions within the Department of Safeguards. Open source information support is now fully integrated with core safeguards processes and activities, and has become an effective tool in the work of the Department of Safeguards. This provides and overview of progress realized through the acquisition and use of open source information in several thematic areas: evaluation of additional protocol declarations; support to the State Evaluation process; in-depth investigation of safeguards issues, including assisting inspections and complementary access; research on illicit nuclear procurement networks and trafficking; and monitoring nuclear developments. Demands for open source information have steadily grown and are likely to continue to grow in the future. Coupled with the enormous growth and accessibility in the volume and sources of information, new challenges are presented, both technical and analytical. This paper discusses actions taken and future plans for multi-source and multi-disciplinary analytic integration to strengthen confidence in safeguards conclusions - especially regarding the absence of undeclared nuclear materials and activities. (Author)

  1. Safeguards and Non-destructive Assay

    International Nuclear Information System (INIS)

    Carchon, R.; Bruggeman, M.

    2001-01-01

    SCK-CEN's programme on safeguards and non-destructive assay includes: (1) various activities to assure nuclear materials accountancy; (2) contributes to the implementation of Integrated Safeguards measures in Belgium and to assist the IAEA through the Belgian Support Programme; (3) renders services to internal and external customers in the field of safeguards; (4) improves passive neutron coincidence counting techniques for waste assay and safeguards verification measurements by R and D on correlation algorithms implemented via software or dedicated hardware; (5) improves gamma assay techniques for waste assay by implementing advanced scanning techniques and different correlation algorithms; and (6) develops numerical calibration techniques. Major achievements in these areas in 2000 are reported

  2. Signal estimation and change detection in tank data for nuclear safeguards

    International Nuclear Information System (INIS)

    Burr, Tom; Suzuki, Mitsutoshi; Howell, John; Longo, Claire E.; Hamada, Michael S.

    2011-01-01

    Process monitoring (PM) is increasingly important in nuclear safeguards as a complement to mass-balance based nuclear materials accounting (NMA). Typically, PM involves more frequent but lower quality measurements than NMA. While NMA estimates special nuclear material (SNM) mass balances and uncertainties, PM often tracks SNM attributes qualitatively or in the case of solution monitoring (SM) tracks bulk mass and volume. Automatic event marking is used in several nuclear safeguards PM systems. The aims are to locate the start and stop times and signal changes associated with key events. This paper describes results using both real and simulated SM data to quantify the errors associated with imperfect marking of start and stop times of tank events such as receipts and shipments. In the context of safeguards, one can look both forward and backward in modest time intervals to recognize events. Event marking methods evaluated include differencing, multi-scale principal component analysis using wavelets, and piecewise linear regression (PLR). All methods are evaluated on both raw and smoothed data, and several smoothing options are compared, including standard filters, hybrid filters, and local kernel smoothing. The main finding for real and simulated examples considered is that a two-step strategy is most effective. First, any reasonably effective initial smoother is used to provide a good initial guess at change point locations. Second, PLR is applied, looking for one change point at a time. In contrast, PLR that allows for multiple change points simultaneously has worse performance.

  3. A view to the new safeguards system

    International Nuclear Information System (INIS)

    Tsuboi, Hiroshi

    2000-01-01

    The Additional Protocol to the Safeguards Agreement between Japan and the IAEA entered into force on 16 December 1999. An initial declaration of the expanded information will be provided to the IAEA by next June in accordance with the Additional Protocol. In Japan the new integrated safeguards system, which strengthens the effectiveness and improves efficiency of IAEA Safeguards, is considered to be very important issue. The establishment of a permanent and universal safeguards system including application of safeguards in Nuclear Weapon States also is an important issue from the view-point of not only non-proliferation but also nuclear disarmament. Safeguards are expected to have an increasingly important role. (author)

  4. Integrated safeguards: Australian views and experience

    International Nuclear Information System (INIS)

    Carlson, J.; Bragin, V.; Leslie, R.

    2001-01-01

    accesses, which in most cases have been undertaken at the Lucas Heights site. Under the integrated safeguards regime now being applied, the timeliness period for irradiated fuel has been changed from three months to 12 months, eliminating quarterly interim inspections. The four inspections each year have been replaced by one PIV (including comprehensive Design Information Verification activities), and an average of one unannounced inspection. The objectives of unannounced inspections include, to verify the fresh and spent fuel inventory and if possible the core fuel, and to confirm facility design information, the declared operation of the reactor, and the absence of undeclared activities. The term 'average' is important - to maintain deterrence, once an unannounced inspection has taken place, there will always be the possibility of a further unannounced inspection in the same year. Where possible, fuel transfers will be verified during the PIV or unannounced inspection(s), but the IAEA has indicated that if necessary additional inspections may be undertaken for this purpose. In addition to the inspections outlined above, there are five or six complementary accesses each year, mainly at the Lucas Heights site, but also encompassing uranium mines and LOFs (locations other than facilities). In most circumstances it is expected that complementary accesses would be carried out when inspectors are in Australia for routine inspections. The overall savings in inspection effort are expected to be about 45% (a reduction from 18 to 10 PDI) a year. However, this depends on whether additional inspections are required to verify fuel transfers - an area where Australia considers remote monitoring could be very useful. The paper discusses implementation issues such as the participation of national inspectors in inspections and complementary access, and the conduct of unannounced inspections. The value of unannounced inspections - i.e. inspections whose timing is unpredictable to the

  5. GPS positioning and desktop mapping. Applications to environmental monitoring. Report on task JNT B898 on the Finnish support programme to IAEA safeguards

    International Nuclear Information System (INIS)

    Kansanaho, A.; Ilander, T.; Toivonen, H.

    1995-10-01

    Satellite navigation has been used for in-field applications by the Finnish Centre for Radiation and Nuclear Safety since 1993. Because of this experience, training in the use of GPS positioning and desktop mapping was chosen as a task under the Finnish Support programme to IAEA safeguards. A lecture and a field experiment was held in the training course on environmental monitoring at the IAEA headquarters in June 1995. Real-time mapping of the co-ordinates and storing information on sampling sites and procedures can make safeguards implementation more efficient and effective. Further software development are needed for these purposes. (author) (6 figs.)

  6. IAEA safeguards - a 1988 perspective

    International Nuclear Information System (INIS)

    Jennekens, J.

    1988-01-01

    The problem of IAEA safeguards as regards its perspectives for 1988 is discussed. The necessity of balancing between safeguards measures required for the timely detection of nuclear material diversion to military purposes and measures to prove the absence of diversion is stated. Accurately working safeguards system aimed at the provision of nondiversion can include, as an accompanying component, any deterrence element required. Such a system will be more expensive than any other altrenatives but it will undoubtly be more suitable and accepatble

  7. Safeguards by design - The early consideration of safeguards concepts

    International Nuclear Information System (INIS)

    Killeen, T.; Moran, B.; Pujol, E.

    2009-01-01

    Full-text: The IAEA Department of Safeguards is in the process of formalizing its approach to long-range strategic planning. As a result of this activity new endeavours are being identified. One of these endeavours is to develop a concept known as Safeguards by Design. Safeguarding nuclear material and facilities can be made more effective and cost efficient by improving the safeguardability of the system. By taking into account design features that facilitate the implementation of international safeguards early in the design phase, a concept known as safeguards by design, the proliferation resistance of the system can be improved. This improvement process requires an understanding by designers and operators of safeguards and its underlying principles. To advance the safeguards by design approach, the IAEA determined that there is a need to develop written guidance. This guidance would help the major stakeholders - the designers, operators, owners, and regulatory bodies - to better understand how a facility could be designed, built and operated in such a way that effective safeguards could be implemented at reduced cost and with minimal burden to facility operations. By enlisting the cooperation of Member States through the support programme structure, the IAEA is working to first develop a document that describes the basic principles of safeguards, and the fundamental design features and measures that facilitate the implementation of international safeguards. Facility-specific guidance will then be developed utilizing the resources, expertise and experience of the IAEA and its Member States. This paper will review the foundation for the development of this task, describe the progress that has been made and outline the path forward. (author)

  8. Safeguards and Security progress report, January--December 1989

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.B.; Jaramillo, G.R. (comps.)

    1990-11-01

    From January to December 1989, the Los Alamos Safeguards and Security Research and Development (R D) program carried out the activities described in the first four parts of this report: Science and Technology Base Development, Basic Systems Design, Onsite Test and Evaluation and Facility Support, and International Safeguards. For the most part, these activities were sponsored by the Department of Energy's Office of Safeguards and Security. Part 1 covers development of the basic technology essential to continuing improvements in the practice of safeguards and security. It includes our computer security R D and the activities of the DOE Center for Computer Security, which provides the basis for encouraging and disseminating this important technology. Part 2 treats activities aimed at developing methods for designing and evaluating safeguards systems, with special emphasis on the integration of the several subsystems into a real safeguards system. Part 3 describes efforts of direct assistance to the DOE and its contractors and includes consultation on materials control and accounting problems, development and demonstration of specialized techniques and instruments, and comprehensive participation in the design and demonstration of advanced safeguards systems. Part 3 also reports a series of training courses in various aspects of safeguards that makes the technology more accessible to those who must apply it. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Part 5 reports several safeguards-related activities that have sponsors other than the DOE/OSS. 87 refs., 52 figs.

  9. Safeguards planning in a plant design process

    International Nuclear Information System (INIS)

    Heinrich, L.A.

    1977-01-01

    The safeguards efforts for the partitioning fuel cycle are considered. Included in the discussion are the organization of the safeguards study, the development of safeguards criteria, the expression of these criteria as requirements for facility design, and some preliminary details of the implementation of these requirements in facility and process layout

  10. Open source information acquisition, analysis and integration in the IAEA Department of Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, M.; Zarimpas, N.; Zarucki, R., E-mail: M.Barletta@iaea.or [IAEA, Wagramerstrasse 5, P.O. Box 100, 1400 Vienna (Austria)

    2010-10-15

    Acquisition and analysis of open source information plays an increasingly important role in the IAEA strengthened safeguards system. The Agency's focal point for open source information collection and analysis is the Division of Safeguards Information Management (SGIM) within the IAEA Department of Safeguards. In parallel with the approval of the Model Additional Protocol in 1997, a new centre of information acquisition and analysis expertise was created within SGIM. By acquiring software, developing databases, retraining existing staff and hiring new staff with diverse analytical skills, SGIM is pro actively contributing to the future implementation of information-driven safeguards in collaboration with other Divisions within the Department of Safeguards. Open source information support is now fully integrated with core safeguards processes and activities, and has become an effective tool in the work of the Department of Safeguards. This provides and overview of progress realized through the acquisition and use of open source information in several thematic areas: evaluation of additional protocol declarations; support to the State Evaluation process; in-depth investigation of safeguards issues, including assisting inspections and complementary access; research on illicit nuclear procurement networks and trafficking; and monitoring nuclear developments. Demands for open source information have steadily grown and are likely to continue to grow in the future. Coupled with the enormous growth and accessibility in the volume and sources of information, new challenges are presented, both technical and analytical. This paper discusses actions taken and future plans for multi-source and multi-disciplinary analytic integration to strengthen confidence in safeguards conclusions - especially regarding the absence of undeclared nuclear materials and activities. (Author)

  11. Research and development of safeguards measures for the large scale reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Masahiro; Sato, Yuji; Yokota, Yasuhiro; Masuda, Shoichiro; Kobayashi, Isao; Uchikoshi, Seiji; Tsutaki, Yasuhiro; Nidaira, Kazuo [Nuclear Material Control Center, Tokyo (Japan)

    1994-12-31

    The Government of Japan agreed on the safeguards concepts of commercial size reprocessing plant under the bilateral agreement for cooperation between the Japan and the United States. In addition, the LASCAR, that is the forum of large scale reprocessing plant safeguards, could obtain the fruitful results in the spring of 1992. The research and development of safeguards measures for the Rokkasho Reprocessing Plant should be progressed with every regard to the concepts described in both documents. Basically, the material accountancy and monitoring system should be established, based on the NRTA and other measures in order to obtain the timeliness goal for plutonium, and the un-attended mode inspection approach based on the integrated containment/surveillance system coupled with radiation monitoring in order to reduce the inspection efforts. NMCC has been studying on the following measures for a large scale reprocessing plant safeguards (1) A radiation gate monitor and integrated surveillance system (2) A near real time Shipper and Receiver Difference monitoring (3) A near real time material accountancy system operated for the bulk handling area (4) A volume measurement technique in a large scale input accountancy vessel (5) An in-process inventory estimation technique applied to the process equipment such as the pulse column and evaporator (6) Solution transfer monitoring approach applied to buffer tanks in the chemical process (7) A timely analysis technique such as a hybrid K edge densitometer operated in the on-site laboratory (J.P.N.).

  12. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    International Nuclear Information System (INIS)

    Andersson, Christer

    1999-03-01

    feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. It is also demonstrated in the study that more than 20% of the envisaged work tasks in all of the major Safeguards applications will achieve a better decision support from the use of commercial satellite imagery. At the same time the potential savings in costs is calculated to approximately USD 500,000 per year by reductions in on-site inspections and by more efficient planning and logistics. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in this study, is approximately USD 1,500,000 per year. This cost rises when utilising the full potential of high-resolution imagery in all five applications including monitoring and detection of undeclared facilities. The cost/benefit simulation is founded on an activity scenario with a staff of 4 experts working in an IAEA imagery unit with a workload of three dossiers or 'issues' per week. The imagery unit is built around an advanced workstation PC image processing system capable of handling several hundreds of pre-processed imagery per year

  13. Contribution of the 'safeguarded' to the development of safeguards

    International Nuclear Information System (INIS)

    Anderson, A.R.

    1977-01-01

    The development of an efficient system of international safeguards requires close and detailed interaction between the safeguarding authority and those being safeguarded, i.e. the plant operator and the State System to which he belongs. Such interaction is found in other control systems but the degree of international collaboration involved in safeguards is perhaps unique and it is valuable to review and analyse the contributions which have arisen from prudent management considerations. The familiar ''Blue Book'' (INFCIRC 153) recognizes clearly the need for an effective State's System of accounting for and control of nuclear materials as a necessary pre-requisite for the development and implementation of an effective IAEA system of safeguards. It is therefore helpful to summarize the relevant contributions from the 'safeguarded' in terms of the components of the State's System specified in paragraph 32 of the Blue Book. This paper reviews the continuing contributions stemming from plant and national experience, with particular emphasis on the development of measurement systems and physical inventory procedures relevant to safeguards. Attention is also drawn to those areas where the specific objectives of IAEA Safeguards lead to requirements additional to those required for management purposes. (author)

  14. The US Support Program to IAEA Safeguards Priority of Containment and Surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Diaz,R.A.

    2008-06-13

    The United States Support Program (USSP) priority for containment and surveillance (US) focuses on maintaining or improving the reliability and cost-effectiveness of C/S systems for IAEA safeguards, expanding the number of systems that are unattended and remotely monitored, and developing verification methods that help streamline the on-site inspection process. Existing IAEA C/S systems have evolved to become complex, integrated systems, which may include active seals, nondestructive assay (NDA) instruments, video cameras, and other sensors. These systems operate autonomously. They send analytical data to IAEA headquarters where it can be reviewed. These systems present challenges to the goals of improved system performance, standardization, reliability, maintainability, documentation, and cost effectiveness. One critical lesson from past experiences is the need for cooperation and common objectives among the IAEA, the developer, and the facility operator, to create a successful, cost effective system. Recent USSP C/S activities include Rokkasho Reprocessing Plant safeguard systems, production of a new shift register, numerous vulnerability assessments of C/S systems, a conduit monitoring system which identifies tampering of IAEA conduit deployed in the field, fiber optic seal upgrades, unattended monitoring system software upgrades, next generation surveillance system which will upgrade existing camera systems, and support of the IAEA's development of the universal nondestructive assay data acquisition platform.

  15. Safeguards and physics measurements

    International Nuclear Information System (INIS)

    Carchon, R.

    2002-01-01

    SCK-CEN's programme on safeguards and physics measurements involves gamma and neutron dosimetry, calibrations and irradiations, electronic support, metrology of various samples including internal contamination of human beings, of waste barrels and of fissile materials, neutron activation analysis, and radioisotope source preparation. The document reports on the main activities and achievements of the sections 'Instrumentation, Calibration and Dosimetry' and 'Safeguards and Nuclear Physics Measurements'

  16. Safeguards systems parameters

    International Nuclear Information System (INIS)

    Avenhaus, R.; Heil, J.

    1979-01-01

    In this paper analyses are made of the values of those parameters that characterize the present safeguards system that is applied to a national fuel cycle; those values have to be fixed quantitatively so that all actions of the safeguards authority are specified precisely. The analysis starts by introducing three categories of quantities: The design parameters (number of MBAs, inventory frequency, variance of MUF, verification effort and false-alarm probability) describe those quantities whose values have to be specified before the safeguards system can be implemented. The performance criteria (probability of detection, expected detection time, goal quantity) measure the effectiveness of a safeguards system; and the standards (threshold amount and critical time) characterize the magnitude of the proliferation problem. The means by which the values of the individual design parameters can be determined with the help of the performance criteria; which qualitative arguments can narrow down the arbitrariness of the choice of values of the remaining parameters; and which parameter values have to be fixed more or less arbitrarily, are investigated. As a result of these considerations, which include the optimal allocation of a given inspection effort, the problem of analysing the structure of the safeguards system is reduced to an evaluation of the interplay of only a few parameters, essentially the quality of the measurement system (variance of MUF), verification effort, false-alarm probability, goal quantity and probability of detection

  17. IAEA safeguards: some pros and cons

    International Nuclear Information System (INIS)

    Kelly, P.

    1986-01-01

    The author gives a personal view of the International Atomic Energy Agency's (IAEA) safeguards. The IAEA safeguards system is described (including containment, surveillance and inspection), and the limitations and strengths of the system are examined. (U.K.)

  18. Safeguards summary event list (SSEL)

    International Nuclear Information System (INIS)

    1989-07-01

    The Safeguards Summary Event List (SSEL) provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission (NRC). Because of public interest, also included are events reported involving byproduct material which is exempt from safeguards requirements. Events are described under the categories of bomb-related, intrusion, missing and/or allegedly stolen, transportation, tampering/vandalism, arson, firearms, radiological sabotage, nonradiological sabotage, alcohol and drugs, and miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels

  19. Safeguards Summary Event List (SSEL)

    International Nuclear Information System (INIS)

    Fadden, M.; Yardumian, J.

    1993-07-01

    The Safeguards Summary Event List provides brief summaries of hundreds of safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission. Events are described under the categories: Bomb-related, Intrusion, Missing/Allegedly Stolen, Transportation-related, Tampering/Vandalism, Arson, Firearms-related, Radiological Sabotage, Non-radiological Sabotage, and Miscellaneous. Because of the public interest, the Miscellaneous category also includes events reported involving source material, byproduct material, and natural uranium, which are exempt from safeguards requirements. Information in the event descriptions was obtained from official NRC sources

  20. The structure of nuclear safeguards systems

    International Nuclear Information System (INIS)

    Coulter, C.A.

    1989-01-01

    Safeguards systems for facilities that handle special nuclear material combine procedural, protective, and materials accounting elements to prevent and/or detect sabotage and diversion or theft of material. Because most of the discussion in this course is devoted to materials accounting topics only, this chapter provides a brief introduction to some of the procedural and protective elements of safeguards systems, placing the materials accounting system in its proper context. The chapter begins by reviewing certain pertinent DOE definitions and then surveys some protection requirements and technology - protective personnel, personnel identification systems, barriers, detectors, and communication systems. Considered next are the procedures of personnel selection and monitoring, definition and division of job functions, and operation. The chapter then describes the way the procedural, protective, and materials accounting elements can be combined, becoming a total safeguards system. Although such a system necessarily requires elements of procedure, protection, and materials accounting, only the materials accounting gives positive assurance that nuclear material is not diverted or stolen

  1. International safeguards 1979

    International Nuclear Information System (INIS)

    Fischer, D.

    1979-01-01

    First, the nature of the nuclear proliferation problem is reviewed. Afterward, the extent to which the risk of further horizontal proliferation of nuclear weapons is being contained by international agreements and by the application of the IAEA's safeguards under these agreements is investigated. The geographical scope of such safeguards, the gaps in safeguards coverage, and the political and technical effectiveness of such safeguards are examined. In conclusion, it is pointed out that IAEA safeguards are the cutting edge of almost every nonproliferation measure that has so far been applied or put forward. Safeguards would also play a part in any international scheme for limiting vertical proliferation. If the cutting edge of safeguards is blunted or if, for one reason or another, safeguards cannot be or are not being applied, the nonproliferation regime will suffer commensurate damage

  2. Safeguards Export-Import Training: Adapting to Changes in the Department of Safeguards Over 6 Years of Experience

    International Nuclear Information System (INIS)

    Chatelus, R.; ); Crete, J.-M.; Schot, P.-M.; Hushbeck, E.C.; Heine, P.

    2015-01-01

    Safeguards relevant information encompasses information available to the Agency in exercising its rights and fulfiling its obligations under relevant safeguards agreement(s). It includes information relating to nuclear or nuclear related trade like international transfers of nuclear material, or export (or import upon request by the Agency) of specified equipment described in annex 2 of the Additional Protocol. It may also include information provided by States on a voluntary basis. In 2005, the General Conference (see GC(49)/RES/13) encouraged the provision of information on procurement enquiries, export denials and other nuclear related information. Objectively and independently assessing this information and combining it with other Safeguards data and knowledge requires relevant expertise and well defined processes. Since 2008, the bi-annual Export-Import (EXIM) Training Workshop, jointly run by the IAEA Department of Safeguards and the U.S. Department of Energy, enables SG staff to develop competencies required for collecting, processing and drawing objective conclusions in this area. Over the years, more than 150 SG staff have been exposed to technical information on relevant non-nuclear material and equipment, trade data from different origins, analytical processes, and exercises to use this knowledge in realistic safeguards work scenarios. The EXIM training has also been an opportunity to develop analytical best practices and explore how this analytical work finds it place in the verification process. The paper describes the background and purpose of the EXIM training, how it helps Safeguards to independently collect and analyze relevant trade information to fulfil its obligations. It also touches on the lessons learned from six years of training experience, observing how the Department of Safeguards develops and implements structured processes to collect, process and evaluate safeguards relevant trade information, in order to establish findings and draw

  3. Safeguards and physics measurements

    Energy Technology Data Exchange (ETDEWEB)

    Carchon, R

    2002-04-01

    SCK-CEN's programme on safeguards and physics measurements involves gamma and neutron dosimetry, calibrations and irradiations, electronic support, metrology of various samples including internal contamination of human beings, of waste barrels and of fissile materials, neutron activation analysis, and radioisotope source preparation. The document reports on the main activities and achievements of the sections 'Instrumentation, Calibration and Dosimetry' and 'Safeguards and Nuclear Physics Measurements'.

  4. Concepts on integration of physical protection and material accounting functions in a safeguards system

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1981-01-01

    Concepts on integration of physical protection and material accounting systems to enhance overall safeguards capability are developed and presented. Integration is approached by coordinating all safeguards information through a safeguards coordination center. This center represents a higher level in a communication, data-processing, and decision-making structure which is needed for efficient real-time operation of the integrated system. The safeguards coordination center functions to assess alarm and warning data required to resolve threats in the safeguards system, coordinate information and interaction involving the material accounting, physical protection, and facility monitoring and control systems, and present a single unified interface for interaction with facility management, facility operations, safeguards system personnel, and response forces

  5. The evolution of safeguards

    International Nuclear Information System (INIS)

    Heinonen, O.

    1999-01-01

    The Agency's safeguards system has demonstrated a flexibility capable of responding to the verification demands of its Member States. It is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The Agency is in the process of strengthening safeguards in its verification of declared activities. Since the early 1990's the Board of Governors took up the issue of strengthening measures such as inspections at undeclared locations, the early provision of design information, a system of universal reporting on nuclear material and certain nuclear-related equipment and non-nuclear material. Following the Agency's 'Programme 93+2', a major step forward was the adoption by the Board of Governors of the Additional Protocol in May 1997. This included important strengthened safeguards measures based on greater access to information and locations. A number of member states have already indicated their willingness to participate in this system by signing the Additional Protocol and this is now in the early stages of implementation for a few states. (author)

  6. Safeguards on nuclear materials

    International Nuclear Information System (INIS)

    Cisar, V.; Keselica, M.; Bezak, S.

    2001-01-01

    The article describes the implementation of IAEA safeguards for nuclear materials in the Czech and Slovak Republics, the establishment and development of the State System of Accounting for and Control of Nuclear Material (SSAC) at the levels of the state regulatory body and of the operator, particularly at the Dukovany nuclear power plant. A brief overview of the historical development is given. Attention is concentrated on the basic concepts and legal regulation accepted by the Czech and Slovak Republics in accordance with the new approach to create a complete legislative package in the area of nuclear energy uses. The basic intention is to demonstrate the functions of the entire system, including safeguards information processing and technical support of the system. Perspectives of the Integrated Safeguards System are highlighted. The possible ways for approximation of the two national systems to the Safeguards System within the EU (EURATOM) are outlined, and the necessary regulatory and operators' roles in this process are described. (author)

  7. The European Safeguards Research and Development Association Addresses Safeguards and Nonproliferation

    International Nuclear Information System (INIS)

    Janssens-Maenhout, Greet; Kusumi, R.; Daures, Pascal A.; Janssens, Willem; Dickman, Deborah A.

    2010-01-01

    The renaissance of efforts to expand the use of nuclear energy requires the parallel development of a renewed and more sophisticated work force. Growth in the nuclear sector with high standard of safety, safeguards and security requires skilled staff for design, operations, inspections etc. High-quality nuclear technology educational programs are diminished from past years, and the ability of universities to attract students and to meet future staffing requirements of the nuclear industry is becoming seriously compromised. Thus, education and training in nuclear engineering and sciences is one of the cornerstones for the nuclear sector. Teaching in the nuclear field still seems strongly influenced by national history but it is time to strengthen resources and collaborate. Moreover with the current nuclear security threats it becomes critical that nuclear technology experts master the basic principles not only of safety, but also of nuclear safeguards, nonproliferation and nuclear security. In Europe the European Nuclear Education Network (ENEN) Association has established the certificate 'European Master of Science in Nuclear Engineering (EMSNE)' as the classic nuclear engineering program covering reactor operation and nuclear safety. However, it does not include courses on nonproliferation, safeguards, or dual-use technologies. The lack of education in nuclear safeguards was tackled by the European Safeguards Research and Development Association (ESARDA), through development and implementation of safeguards course modules. Since 2005 the ESARDA Working Group, called the Training and Knowledge Management Working Group, (TKMWG) has worked with the Joint Research Centre (JRC) in Ispra, Italy to organize a Nuclear Safeguards and Nonproliferation course. This five-day course is held each spring at the JRC, and continues to show increasing interest as evidenced by the positive responses of international lecturers and students. The standard set of lectures covers a broad

  8. Contribution of the ''safeguarded'' to the development of safeguards

    International Nuclear Information System (INIS)

    Anderson, A.R.

    1977-01-01

    The development of an efficient system of international safeguards requires close and detailed interaction between the safeguarding authority and those being safeguarded, i.e. the plant operator and the State System to which he belongs. Such interaction is found in other control systems but the degree of international collaboration involved in Safeguards is perhaps unique and it is valuable to review and analyse the contributions which have arisen from prudent management considerations. Management has many reasons to exercise stringent control of nuclear materials stemming from the value and hazardous nature of the materials being used, and the requirements of relevant national legislation. Because systems at a plant and within a State are generally designed to control quantities of nuclear materials within limits smaller than those specified in the I.A.E.A.'s Safeguards objectives, experience at the plant level has contributed significantly to the development of International Safeguards procedures. In making such contributions, plant management and the national authorities have a common objective with that of the I.A.E.A. in developing a Safeguards system which is both technically-effective and cost-effective. The pursuit of this objective requires that implementation of the Safeguards system can be modified in the light of relevant practical experience of plant operators and of the I.A.E.A. The familiar Blue Book (INFCIRC 153) recognises clearly the need for an effective State's System of accounting for and control of nuclear materials as a necessary pre-requisite for the development and implementation of an effective I.A.E.A. system of Safeguards. It is therefore helpful to review the relevant contributions from the 'Safeguarded' in terms of the components of the State's System specified in paragraph 32 of the Blue Book. This paper reviews the continuing contributions stemming from plant and national experience, with particular emphasis on the development of

  9. Concepts on integration of physical protection and material accounting functions in a safeguards system

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1981-01-01

    Concepts on integration of physical protection and material accounting systems to enhance overall safeguards capability are developed and presented. These concepts identify ways in which material accounting systems can be used to enable effective monitoring of authorized movement of nuclear material through physical protection boundaries. Concepts are also discussed for monitoring user access to nuclear material and for tagging user identification to material accounting transactions through physical protection functions. These result in benefits in detecting diversion and in positively tracing material movement. Finally, coordination of safeguards information from both subsystems in such an integrated system through a safeguards coordination center is addressed with emphasis on appropriate response in case of discrepancies

  10. Sensitivity analysis of high resolution gamma-ray detection for safeguards monitoring at natural uranium conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dewji, S.A., E-mail: dewjisa@ornl.gov [Oak Ridge National Laboratory, PO Box 2008 MS-6335, Oak Ridge TN 37831 (United States); Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States); Croft, S. [Oak Ridge National Laboratory, PO Box 2008 MS-6335, Oak Ridge TN 37831 (United States); Hertel, N.E. [Oak Ridge National Laboratory, PO Box 2008 MS-6335, Oak Ridge TN 37831 (United States); Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States)

    2017-03-11

    Under the policies proposed by recent International Atomic Energy Agency (IAEA) circulars and policy papers, implementation of safeguards exists when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed in previous work to develop and validate gamma-ray nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO{sub 2}(NO{sub 3}){sub 2}) solution exiting solvent extraction was identified as a key measurement point (KMP). Passive nondestructive assay techniques using high resolution gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely manner. Building upon the aforementioned previous validation work on detector sensitivity to varying concentrations of uranyl nitrate via a series of dilution measurements, this work investigates detector response parameter sensitivities to gamma-ray signatures of uranyl nitrate. The full energy peak efficiency of a detection system is dependent upon the sample, geometry, absorption, and intrinsic efficiency parameters. Perturbation of these parameters translates into corresponding variations of the 185.7 keV peak area of the {sup 235}U in uranyl nitrate. Such perturbations in the assayed signature impact the quality or versatility of the safeguards conclusions drawn. Given the potentially high throughput of uranyl nitrate in NUCPs, the ability to assay 1 SQ of material requires

  11. Development and evaluation of methods for safeguards use of solution monitoring data

    International Nuclear Information System (INIS)

    Burr, T.; Wangen, L.

    1996-09-01

    This report describes the effort to develop, implement, and evaluate data analysis methods for solution-monitoring measurements in the plutonium nitrate storage at the Tokai Reprocessing Plant (TRP). The intent is to address TRP-specific issues to some extent, as well as to anticipate the data analysis needs at future reprocessing plants (especially the new Rokkasho reprocessing plant (RRP)) in Japan. The essential difference between a plant like TRP and a more modern plant like RRP is that one expects more and better instrumentation in the tanks in a modern plant. Because the TRP solution monitoring hardware is scheduled to be upgraded, the authors de-emphasized the effort to handle information-poor plants like TRP. This report mostly describes the analysis methods and software for finding and identifying all key tank events. To a large extent they have to experiment with several candidate methods for implementing their analysis objectives. Therefore, they chose to use a prototyping software system called S-PLUS, which is an object-oriented statistical programming and graphics package. The intent is to eventually implement selected portions of their current solution-monitoring toolkit in a more robust and user-friendly system. The authors describe their current software system as being far more than they needed for their own in-house use (menus are provided for the user who doesn't want to type any S-PLUS commands), but less than is needed for a fieldable system. Mostly as a result of working on this project, they have come to conclude that solution monitoring is a potentially very valuable asset to nuclear safeguards at a modern reprocessing plant

  12. Advanced-safeguards systems development for chemical-processing plants. Final report for FY 1980

    International Nuclear Information System (INIS)

    Cartan, F.O.

    1981-04-01

    The program is installing a computer system to test and evaluate process monitoring as a new Safeguards function to supplement the usual physical security and accountability functions. Safeguards development sensors and instruments installed in the Idaho Chemical Processing Plant (ICPP) provide information via a data acquisition system to a Safeguards analysis computer. The monitoring function can significantly enhance current material control (accountability) and containment surveillance capabilities for domestic and international Safeguards uses. Installation of sensors and instruments in the ICPP was more than 75% complete in FY-1980. Installation work was halted at the request of ICPP operations near the end of the year to eliminate possible conflict with instrument calibrations prior to plant startup. Some improvements to the computer hardware were made during FY-1980. Sensor and instrument development during FY-1980 emphasized device testing for ICPP monitoring applications. Pressure transducers, pressure switches, a bubble flowmeter, and load cells were tested; an ultrasonic liquid-in-line sensor was developed and tested. Work on the portable, isotope-ratio mass spectrometer led to the comparison of the HP quadrupole instrument with a small magnetic instrument and to the selection of the quadrupole

  13. Legal instruments related to the application of safeguards

    International Nuclear Information System (INIS)

    Rames, J.

    1999-01-01

    This presentation discusses the legal framework of IAEA Safeguards which consists of a number of elements, including agreements calling for verification of nonproliferation undertakings, basic safeguards documents (INFCIRC/66/Rev.2, INFCIRC/153 (Corr..), INFCIRC/540 (Corr.), INFCIRC/9/Rev.2, GC(V)/INF/39), the safeguards agreements themselves, along with the relevant protocols and subsidiary arrangements, and finally the decisions, interpretations and practices of the Boards of Governors. Major differences between the various types of IAEA safeguards agreements are outlined. Procedures involved in the initiation, negotiation, conclusion and amendment of safeguard agreements are described

  14. Advanced safeguards systems development for chemical processing plants. Final report for Fiscal Year 1979

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1980-01-01

    A computer system is being installed by INEL to test and evaluate safeguards monitoring concepts in an operating nuclear fuel processing plant. Safeguards development sensors and instruments installed in the ICPP provide plant information to a computer data acquisition and analysis system. Objective of the system is to collect data from process and safeguards sensors and show how this data can be analyzed to detect diversion operations or improper plant operation, and to test the performance of the monitoring devices. Approximately one-third of the installation designs and one-eighth of the installations were completed in FY 1979. The ICPP processing schedule for FY 1980 permits installation of the remaining monitoring devices before process startup in the fourth quarter of FY 1980. All computer hardware was delivered and checked out in FY 1979. Computer software system designs were completed with the majority of the programming scheduled for FY 1980. Sensor and instrument development in FY 1979 emphasized device testing for ICPP monitoring applications

  15. Fish welfare assurance system: initial steps to set up an effective tool to safeguard and monitor farmed fish welfare at a company level

    NARCIS (Netherlands)

    Vis, van de J.W.; Poelman, M.; Lambooij, E.; Bégout, M.L.; Pilarczyk, M.

    2012-01-01

    The objective was to take a first step in the development of a process-oriented quality assurance (QA) system for monitoring and safeguarding of fish welfare at a company level. A process-oriented approach is focused on preventing hazards and involves establishment of critical steps in a process

  16. Technology of remote monitoring for nuclear activity monitoring

    International Nuclear Information System (INIS)

    Kwack, Ehn Ho; Kim, Jong Soo; Yoon, Wan Ki; Park, Sung Sik; Na, Won Woo; An, Jin Soo; Cha, Hong Ryul; Kim, Jung Soo

    2000-05-01

    In a view of safeguards monitoring at nuclear facilities, the monitoring is changing to remote method so that this report is described to remote monitoring(RM) applying on commercial NPP in Korea. To enhance IAEA safeguards efficiency and effectiveness, IAEA is taking into account of remote monitoring system(RMS) and testing as a field trial. IRMP(International Remote Monitoring Project) in participating many nations for development of RMS is proceeding their project such as technical exchange and research etc. In case of our country are carrying out the research relevant RM since acceptance RMS at 7th ROK-IAEA safeguards implementation review meeting. With a view to enhancement the RMS, installation location and element technology of the RM equipment are evaluated in a view of safeguards in Korea LWRs, and proposed a procedure for national inspection application through remote data evaluation from Younggwang-3 NPP. These results are large valuable to use of national inspection at time point extending installation to all Korea PWR NPP. In case of CANDU, neutron, gamma measurement and basic concept of network using optical fiber scintillating detector as remote verification method for dry storage canister are described. Also RM basic design of spent fuel transfer campaign is described that unattended RM without inspector instead of performing in participating together with IAEA and national inspector. The transfer campaign means the spent fuel storage pond to dry storage canister for about two months every year. Therefore, positively participation of IAEA strength safeguards project will be increased transparency for our nuclear activity as well as contributed to national relevant industry

  17. Technology of remote monitoring for nuclear activity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kwack, Ehn Ho; Kim, Jong Soo; Yoon, Wan Ki; Park, Sung Sik; Na, Won Woo; An, Jin Soo; Cha, Hong Ryul; Kim, Jung Soo

    2000-05-01

    In a view of safeguards monitoring at nuclear facilities, the monitoring is changing to remote method so that this report is described to remote monitoring(RM) applying on commercial NPP in Korea. To enhance IAEA safeguards efficiency and effectiveness, IAEA is taking into account of remote monitoring system(RMS) and testing as a field trial. IRMP(International Remote Monitoring Project) in participating many nations for development of RMS is proceeding their project such as technical exchange and research etc. In case of our country are carrying out the research relevant RM since acceptance RMS at 7th ROK-IAEA safeguards implementation review meeting. With a view to enhancement the RMS, installation location and element technology of the RM equipment are evaluated in a view of safeguards in Korea LWRs, and proposed a procedure for national inspection application through remote data evaluation from Younggwang-3 NPP. These results are large valuable to use of national inspection at time point extending installation to all Korea PWR NPP. In case of CANDU, neutron, gamma measurement and basic concept of network using optical fiber scintillating detector as remote verification method for dry storage canister are described. Also RM basic design of spent fuel transfer campaign is described that unattended RM without inspector instead of performing in participating together with IAEA and national inspector. The transfer campaign means the spent fuel storage pond to dry storage canister for about two months every year. Therefore, positively participation of IAEA strength safeguards project will be increased transparency for our nuclear activity as well as contributed to national relevant industry.

  18. Equipment support for the implementation of safeguards

    International Nuclear Information System (INIS)

    Arlt, R.; Bosler, G.; Goldfarb, M.; Schanfein, M.; Whichello, J.

    2001-01-01

    Full text: The provision of effective, reliable, and user-friendly equipment needed for the implementation of safeguards is one of the main objectives of the Division of Technical Services (SOTS) in the Department of Safeguards. As an outcome of a review by an independent external consultant firm, the instrumentation sections of the SGTS were reorganized in January 2001 into two new sections, the Section for NDA Systems and Seals (TNS) and Section for Installed Systems (TIE). Each section has 'cradle-to-grave' responsibilities for development, implementation, maintenance, and decommissioning of safeguards instruments and measurement systems. Unattended assay, monitoring and surveillance instruments are the responsibility of TIE while attended nondestructive assay (NDA) instruments and seals are handled by TNS. The principal goals of both sections are to define equipment requirements based on Departmental needs, to coordinate Support Programme tasks concerning development and implementation activities, to provide system engineering of commercial components, manage laboratory and to do field testing and prove system suitability for defined safeguards applications. In addition both sections coordinate equipment and supply needs for the Department, including acquisition, preparation, servicing, installation, commissioning, troubleshooting, maintenance and repair, ensuring their availability when needed. As required, TIE and TNS provide specialized field support to the Operations Divisions. Each section is working to standardize equipment as much as possible and reduce the number of instruments performing the same function. This reduces both inspector and technician training, required parts inventories, and overall life-cycle costs. Development based on User Needs from the Operations Divisions follows a strict quality control program that includes a thorough qualification testing procedure with the last phase being field-testing under actual facility conditions. A

  19. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Kiruna (Sweden)

    1999-03-01

    feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. It is also demonstrated in the study that more than 20% of the envisaged work tasks in all of the major Safeguards applications will achieve a better decision support from the use of commercial satellite imagery. At the same time the potential savings in costs is calculated to approximately USD 500,000 per year by reductions in on-site inspections and by more efficient planning and logistics. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in this study, is approximately USD 1,500,000 per year. This cost rises when utilising the full potential of high-resolution imagery in all five applications including monitoring and detection of undeclared facilities. The cost/benefit simulation is founded on an activity scenario with a staff of 4 experts working in an IAEA imagery unit with a workload of three dossiers or `issues` per week. The imagery unit is built around an advanced workstation PC image processing system capable of handling several hundreds of pre-processed imagery per year 10 refs, 9 figs, 5 tabs

  20. Safeguards

    International Nuclear Information System (INIS)

    Carchon, R.

    1998-01-01

    Safeguards activities at the Belgian Nuclear Research Centre SCK/CEN answer internal needs, support the Belgian authorities, and support the IAEA. The main objectives of activities concerning safeguards are: (1) to contribute to a prevention of the proliferation of nuclear materials by maintaining an up-to-date expertise in the field of safeguards and providing advice and guidance as well as scientific and technical support to the Belgian authorities and nuclear industry; (2) to improve the qualification and quantification of nuclear materials via nondestructive assay. The main achievements for 1997 are described

  1. Safeguards and security progress report, January-December 1985

    International Nuclear Information System (INIS)

    1987-03-01

    From January to December 1985, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Safeguards Operations, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers efforts of direct assistance to the Department of Energy and Nuclear Regulatory Commission licensee facilities. This assistance includes consultation on materials accounting problems, development and demonstration of specialized techniques and instruments, and comprehensive participation in the design and evaluation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this period was on continuing the activities of the Center for Computer Security, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards and international safeguards for reprocessing plants required a significant portion of our resources. All of these efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments

  2. Safeguards and security progress report, January-December 1985

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    From January to December 1985, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Safeguards Operations, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers efforts of direct assistance to the Department of Energy and Nuclear Regulatory Commission licensee facilities. This assistance includes consultation on materials accounting problems, development and demonstration of specialized techniques and instruments, and comprehensive participation in the design and evaluation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this period was on continuing the activities of the Center for Computer Security, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards and international safeguards for reprocessing plants required a significant portion of our resources. All of these efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments.

  3. Nuclear safeguards: power tool for ensuring nuclear safety and security

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2016-01-01

    The quantitative measurement of fissile nuclear materials through independent measurements is one of the cornerstones of the Nuclear Material Accounting and Control (NUMAC) edifice. The verification of the accountancy also represents one of the key elements of international nuclear materials Safeguards. The very basis of NUMAC is to ensure safeguarding nuclear material and to state with confidence, “no significant amount of nuclear material has been withdrawn from its intended civilian use.” Thus, materials accounting systems are designed to account for or keep track of the amounts and locations of sensitive nuclear materials by periodic measurements. The purpose of this activity is to detect missing items (gross defects). A variety of C/S techniques are used, primarily optical surveillance and sealing. These measures serve to back up nuclear material accountancy by providing means by which access to nuclear material can be monitored. Unattended monitoring is a special mode of application of NDA or C/S techniques, or a combination of these, that operates for extended periods of time. The complexity and diversity of facilities containing safeguarded nuclear material require a correspondingly diverse set of verification techniques and equipment. The equipment and techniques used in safeguards are briefly described in this talk

  4. A Safeguardability Check-List for Safeguards by Design

    Energy Technology Data Exchange (ETDEWEB)

    Sevini, F. [European Commission - Joint Research Centre, Institute for Transuranium Elements, Nuclear Security Unit, Ispra (Italy); Renda, G. [European Commission, DG Energy, Directorate E ' Nuclear Safeguards' , Unit 4 ' Inspections: reactors, storages and others facilities, Luxembourg (Luxembourg); Sidlova, V. [European Commission - Joint Research Centre, Institute for Transuranium Elements, Nuclear Security Unit, Ispra (Italy)

    2011-12-15

    Safeguards by design is a complex step-by-step interactive decision process involving various stake-holders and design choices to be made over a certain period of time. The resulting plant design should be a compromise among economical, safety, security and safeguards implementation constraints. Access to technology and equipment, as well as to the nuclear fuel cycle, determines the basic choices that the designer has to make. Once the boundary conditions for a given facility have been fixed, the designer still faces the challenge of setting several design and operational parameters that will require various trade-offs . Concerning safeguards, these can be seen in three groups, i.e. those related to the general design and its intrinsic proliferation resistance; those related to the specific lay-out and planning; those related to the actual safeguards instrumentation, its effectiveness and efficiency. The paper aims at describing a model for a phased, or 'layered' approach to safeguards-by-design, focusing on the example of off-load reactors.

  5. Legal instruments related to the application of safeguards

    International Nuclear Information System (INIS)

    Rockwood, Laura

    2001-01-01

    The legal framework of IAEA safeguards consists of a number of elements, not at all of which are documents. These elements include the Statute of the IAEA; treaties and supply agreements calling for verification of nonproliferation undertakings; the basic safeguards documents, the safeguards agreements themselves, along with the relevant protocols and subsidiary arrangements; and finally, the decisions, interpretations and practices of the Board of Governors. After a discussion of these elements the major differences between the various types of IAEA safeguards agreements are outlined. Finally the procedures involved in the initiation, negotiation, conclusion and amendment of safeguards agreements are described. (author)

  6. Process monitoring in modern safeguards applications

    International Nuclear Information System (INIS)

    Ehinger, M.H.

    1989-01-01

    From the safeguards standpoint, regulatory requirements are finally moving into the modern world of communication and information processing. Gone are the days when the accountant with the green eye shade and arm bands made judgments on the material balance a month after the balance was closed. The most recent Nuclear Regulatory Commission (NRC) regulations and U.S. Department of Energy (DOE) orders have very strict standards for timeliness and sensitivity to loss or removal of material. The latest regulations recognize that plant operators have a lot of information on and control over the location and movement of material within their facilities. This information goes beyond that traditionally reported under accountability requirements. These new regulations allow facility operators to take credit for many of the more informal process controls

  7. Unattended safeguards instrumentation at centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Smith, L. Eric; Lebrun, Alain R.; Labella, Rocco

    2014-01-01

    As global uranium enrichment capacity under international safeguards expands, the International Atomic Energy Agency (IAEA) is challenged to develop effective safeguards approaches at gaseous centrifuge enrichment plants, particularly high‑capacity plants, while working within budgetary constraints. New safeguards approaches should meet the high‑level verification objectives for such facilities (i.e., timely detection of: diversion of declared material, excess production beyond declared amounts, and production of enrichment levels higher than declared), but should also strive for efficiency advantages in implementation, for both the IAEA and operators. Under the Agency’s State- level approach to safeguards implementation, the Agency needs a flexible toolbox of technologies, allowing tailoring of safeguards measures for each individual enrichment facility. In this paper, the potential roles and development status for three different types of unattended measurement instrumentation are discussed. On‑Line Enrichment Monitors (OLEM) could provide continuous enrichment measurement for 100% of the declared gas flowing through unit header pipes. Unattended Cylinder Verification Stations (UCVS) could provide unattended verification of the declared uranium mass and enrichment of 100% of the cylinders moving through the plant, but also apply and verify an ‘NDA Fingerprint’ to preserve verification knowledge on the contents of each cylinder throughout its life in the facility. Sharing of the operator’s load cell signals from feed and withdrawal stations could count all cylinders introduced to the process and provide periodic monitoring of the uranium mass balance for in‑process material. The integration of load cell, OLEM and UCVS data streams offers the possibility for 100% verification of declared cylinder flow, and enables the periodic verification of the declared 235 U mass balance in the plant. These new capabilities would enhance the IAEA

  8. Key Nuclear Verification Priorities: Safeguards and Beyond

    International Nuclear Information System (INIS)

    Carlson, J.

    2010-01-01

    In addressing nuclear verification priorities, we should look beyond the current safeguards system. Non-proliferation, which the safeguards system underpins, is not an end in itself, but an essential condition for achieving and maintaining nuclear disarmament. Effective safeguards are essential for advancing disarmament, and safeguards issues, approaches and techniques are directly relevant to the development of future verification missions. The extent to which safeguards challenges are successfully addressed - or otherwise - will impact not only on confidence in the safeguards system, but on the effectiveness of, and confidence in, disarmament verification. To identify the key nuclear verification priorities, we need to consider the objectives of verification, and the challenges to achieving these. The strategic objective of IAEA safeguards might be expressed as: To support the global nuclear non-proliferation regime by: - Providing credible assurance that states are honouring their safeguards commitments - thereby removing a potential motivation to proliferate; and - Early detection of misuse of nuclear material and technology - thereby deterring proliferation by the risk of early detection, enabling timely intervention by the international community. Or to summarise - confidence-building, detection capability, and deterrence. These will also be essential objectives for future verification missions. The challenges to achieving these involve a mix of political, technical and institutional dimensions. Confidence is largely a political matter, reflecting the qualitative judgment of governments. Clearly assessments of detection capability and deterrence have a major impact on confidence. Detection capability is largely thought of as 'technical', but also involves issues of legal authority, as well as institutional issues. Deterrence has both political and institutional aspects - including judgments on risk of detection and risk of enforcement action being taken. The

  9. Key Nuclear Verification Priorities - Safeguards and Beyond

    International Nuclear Information System (INIS)

    Carlson, J.

    2010-01-01

    In addressing nuclear verification priorities, we should look beyond the current safeguards system. Non-proliferation, which the safeguards system underpins, is not an end in itself, but an essential condition for achieving and maintaining nuclear disarmament. Effective safeguards are essential for advancing disarmament, and safeguards issues, approaches and techniques are directly relevant to the development of future verification missions. The extent to which safeguards challenges are successfully addressed - or otherwise - will impact not only on confidence in the safeguards system, but on the effectiveness of, and confidence in, disarmament verification. To identify the key nuclear verification priorities, we need to consider the objectives of verification, and the challenges to achieving these. The strategic objective of IAEA safeguards might be expressed as: To support the global nuclear non-proliferation regime by: - Providing credible assurance that states are honouring their safeguards commitments - thereby removing a potential motivation to proliferate; and - Early detection of misuse of nuclear material and technology - thereby deterring proliferation by the risk of early detection, enabling timely intervention by the international community. Or to summarise - confidence-building, detection capability, and deterrence. These will also be essential objectives for future verification missions. The challenges to achieving these involve a mix of political, technical and institutional dimensions. Confidence is largely a political matter, reflecting the qualitative judgment of governments. Clearly assessments of detection capability and deterrence have a major impact on confidence. Detection capability is largely thought of as 'technical', but also involves issues of legal authority, as well as institutional issues. Deterrence has both political and institutional aspects - including judgments on risk of detection and risk of enforcement action being taken. The

  10. Promoting Safeguards Best Practice through the Asia-Pacific Safeguards Network (APSN)

    International Nuclear Information System (INIS)

    Floyd, R.; Everton, C.; Lestari, S.

    2015-01-01

    There is a growing international focus on effective regulatory oversight of nuclear energy across the three pillars of nuclear safety, security and safeguards. Regarding nuclear safeguards, States in the Asia-Pacific region recognize the importance of cooperation and sharing of experiences to ensure that this is implemented to high international standards. For this reason the Asia-Pacific Safeguards Network (APSN) was formed in 2009 - an informal network of departments, agencies and regulatory authorities with safeguards responsibilities from some 15 countries across the Asia-Pacific region. The objective of APSN it to bring States in the region together to develop practical measures for enhancing effective safeguards implementation, through workshops, sharing experiences and other safeguards projects. APSN works closely with the IAEA to achieve these objectives. This paper will outline the role and objectives of APSN and provide examples of how APSN work together to enhance safeguards effectiveness and raise awareness. The paper will also explore how this model of a broad community of States working together on safeguards could enhance implementation and awareness in other regions of the world. (author)

  11. Nuclear safeguards technology 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This publication presents the results of the sixth in a series of international symposia on nuclear material safeguards. Development efforts related to safeguards for reprocessing plants constituted over twenty per cent of the programme. Other papers present results of over four years of field testing of near real time material accountancy at a plant in Japan, and results for a lesser period of time at a plant in Scotland. Papers reporting work on destructive and non-destructive measurement procedures or equipment constituted another thirty per cent of the programme, more if measurements in reprocessing and poster presentations are included. In honour of the tenth anniversary of the founding of the Safeguards Analytical Laboratory, two sessions were devoted to a review of destructive analytical measurement procedures. Some subjects received only minor attention during the Symposium. The statistical theory of random sampling, safeguards for uranium enrichment plants, material accountancy systems and several other topics appear only incidentally in the programme, but primarily because there are few remaining problems, not because there is little remaining interest

  12. Symposium on International Safeguards: Preparing for Future Verification Challenges

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of the symposium is to foster dialogue and information exchange involving Member States, the nuclear industry and members of the broader nuclear non-proliferation community to prepare for future verification challenges. Topics addressed during the 2010 symposium include the following: - Supporting the global nuclear non-proliferation regime: Building support for strengthening international safeguards; Enhancing confidence in compliance with safeguards obligations; Legal authority as a means to enhance effectiveness and efficiency; Verification roles in support of arms control and disarmament. - Building collaboration and partnerships with other international forums: Other verification and non-proliferation regimes; Synergies between safety, security and safeguards regimes. - Improving cooperation between IAEA and States for safeguards implementation: Strengthening State systems for meeting safeguards obligations; Enhancing safeguards effectiveness and efficiency through greater cooperation; Lessons learned: recommendations for enhancing integrated safeguards implementation. - Addressing safeguards challenges in an increasingly interconnected world: Non-State actors and covert trade networks; Globalization of nuclear information and technology. - Preparing for the global nuclear expansion and increasing safeguards workload: Furthering implementation of the State-level concept and integrated safeguards; Information-driven safeguards; Remote data-driven safeguards inspections; Safeguards in States without comprehensive safeguards agreements. - Safeguarding advanced nuclear facilities and innovative fuel cycles: Proliferation resistance; Safeguards by design; Safeguards approaches for advanced facilities. - Advanced technologies and methodologies: For verifying nuclear material and activities; For detecting undeclared nuclear material and activities; For information collection, analysis and integration. - Enhancing the development and use of safeguards

  13. Safeguards Summary Event List (SSEL)

    International Nuclear Information System (INIS)

    1991-07-01

    The Safeguards Summary Event List (SSEL) provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission (NRC). Because of public interest, the Miscellaneous category includes a few events which involve either source material, byproduct material, or natural uranium which are exempt from safeguards requirements. Events are described under the categories of bomb-related, intrusion, missing and/or allegedly stolen, transportation, tampering/vandalism, arson, firearms, radiological sabotage, nonradiological sabotage, pre-1990 alcohol and drugs (involving reactor operators, security force members, or management persons), and miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels

  14. Some reflections on nuclear safeguards

    International Nuclear Information System (INIS)

    Campbell, Ross.

    1981-01-01

    The author doubts whether, in view of the 1976 policy of requiring adherence to the Non-Proliferation Treaty or equivalent IAEA safeguards, Canada still needs the 1974 policy of bilateral safeguards on technology as well as material. The opinion is expressed that bilateral safeguards create difficulties for the IAEA, and are resented by some potential customers. Much better, if it were achievable, would be a code agreed by a convention of vendors and customers alike, to include sanctions against transgressors. The author expresses confidence in the IAEA, but perceives a need for more men and money. Also needed are better instruments to account for materials

  15. Transit Matching for International Safeguards

    International Nuclear Information System (INIS)

    Gilligan, K.; Whitaker, M.; Oakberg, J.

    2015-01-01

    In 2013 the U.S. Department of Energy / National Nuclear Security Administration Office of Non-proliferation and International Security (NIS) supported a study of the International Atomic Energy Agency's (IAEA) processes and procedures for ensuring that shipments of nuclear material correspond to (match) their receipts (i.e., transit matching). Under Comprehensive Safeguards Agreements, Member States are obliged to declare such information within certain time frames. Nuclear weapons states voluntarily declare such information under INFCIRC/207. This study was funded by the NIS Next Generation Safeguards Initiative (NGSI) Concepts and Approaches program. Oak Ridge National Laboratory led the research, which included collaboration with the U.S. Nuclear Regulatory Commission, the U.S. Nuclear Material Management and Safeguards System (NMMSS), and the IAEA Section for Declared Information Analysis within the Department of Safeguards. The project studied the current transit matching methodologies, identified current challenges (e.g., level of effort and timeliness), and suggested improvements. This paper presents the recommendations that resulted from the study and discussions with IAEA staff. In particular, it includes a recommendation to collaboratively develop a set of best reporting practices for nuclear weapons states under INFCIRC/207. (author)

  16. Safeguarding research reactors

    International Nuclear Information System (INIS)

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  17. Reporting of safeguards events

    International Nuclear Information System (INIS)

    Dwyer, P.A.; Ervin, N.E.

    1988-02-01

    On June 9, 1987, the Commission published in the Federal Register a final rule revising the reporting requirements for safeguards events. Safeguards events include actual or attempted theft of special nuclear material (SNM); actual or attempted acts or events which interrupt normal operations at power reactors due to unauthorized use of or tampering with machinery, components, or controls; certain threats made against facilities possessing SNM; and safeguards system failures impacting the effectiveness of the system. The revised rule was effective October 8, 1987. On September 14, 1987, the NRC held a workshop in Bethesda, MD, to answer affected licensees' questions on the final rule. This report documents questions discussed at the September 14 meeting, reflects a completed staff review of the answers, and supersedes previous oral comment on the topics covered

  18. Development of an advanced safeguards system as a proliferation deterrent

    International Nuclear Information System (INIS)

    Ayers, A.A.; Barnes, L.D.

    1978-11-01

    The Advanced Safeguards System consists of Computerized Nuclear Materials Control and Accounting System, Physical Protection System, and Safeguards Coordination Center (SCC). Should all the computer-based monitoring systems be overcome (i.e., the NMC computer programmed not to recognize a materials inventory change, the SCC computer programmed to accept a falsified area and personnel authorization, and the physical security system programmed not to alarm for area intrusion), the requirements of the physical security system remain formidable barriers to successful theft since all SNM is separated from the uncontrolled areas by at least one entry control portal. An egress from the protected area--by either a vehicle through the vehicle access portal, or on foot through the personnel access portal--requires that the individuals be subjected to a search for metal and SNM before egress is permitted. The material access areas are further controlled by an interior access portal imposing the same SNM and metal search criteria. The portal search criteria are not subject to computer interpretation, but direct positive--negative indications to the portal patrolman. The physical security system then provides an independent backup should the computerized systems be defeated. Thus, the computer systems themselves will not, if defeated, guarantee an adversary success. The corollary also holds true; a defeat of the physical search elements of the physical security system will not guarantee adversary success because of the monitoring/surveillance function of the computerized systems. The complementary and overlapping nature of the safeguards systems is intended to provide multiple layers of safeguards, each layer providing an effective element of protection. Tests to date indicate that it appears feasible to meet operational objectives and maintain a high safeguards performance level using these concepts which are being incorporated into the Advanced Safeguards System.None

  19. Synergies across verification regimes: Nuclear safeguards and chemical weapons convention compliance

    International Nuclear Information System (INIS)

    Kadner, Steven P.; Turpen, Elizabeth

    2001-01-01

    In the implementation of all arms control agreements, accurate verification is essential. In setting a course for verifying compliance with a given treaty - whether the NPT or the CWC, one must make a technical comparison of existing information-gathering capabilities against the constraints in an agreement. Then it must be decided whether this level of verifiability is good enough. Generally, the policy standard of 'effective verification' includes the ability to detect significant violations, with high confidence, in sufficient time to respond effectively with policy adjustments or other responses, as needed. It is at this juncture where verification approaches have traditionally diverged. Nuclear safeguards requirements have taken one path while chemical verification methods have pursued another. However, recent technological advances have brought a number of changes affecting verification, and lately their pace has been accelerating. First, all verification regimes have more and better information as a result of new kinds of sensors, imagery, and other technologies. Second, the verification provisions in agreements have also advanced, to include on-site inspections, portal monitoring, data exchanges, and a variety of transparency, confidence-building, and other cooperative measures, Together these developments translate into a technological overlap of certain institutional verification measures such as the NPT's safeguards requirements and the IAEA and the CWC's verification visions and the OPCW. Hence, a priority of international treaty-implementing organizations is exploring the development of a synergistic and coordinated approach to WMD policy making that takes into account existing inter-linkages between nuclear, chemical, and biological weapons issues. Specific areas of coordination include harmonizing information systems and information exchanges and the shared application of scientific mechanisms, as well as collaboration on technological developments

  20. A Little Customs Glossary for IAEA Safeguards: Customs Procedures and Concepts that Matter for the Implementation of Modern Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Chatelus, Renaud [Consultant, Export Control and IAEA Safeguards Specialist, IAEA (International Atomic Energy Agency (IAEA))

    2012-06-15

    The additional protocols to the IAEA comprehensive safeguards agreements include provisions about the reporting by states of their imports and exports of listed equipment and non-nuclear material, also known as the 'trigger list', as well as nuclear materials. Beyond declarations and their verification, IAEA Safeguards also looks at other Imports and exports as part of its efforts to build confidence on the absence of undeclared nuclear activities or material. In all cases, information about international transfers of interest to Nuclear Safeguards is closely related to export control activities. But, if much has been written about the material and equipment to be declared, neither IAEA Safeguards nor Export control related documents provide much explanation about what exports and imports actually are. In fact, precise legal definitions are to be found generally in national customs regulations and international agreements on customs and trade. Unfortunately, these are not necessarily in line with Safeguards understanding. It is therefore essential that IAEA safeguards comprehends the customs concepts and procedures that are behind Safeguards relevant information.

  1. A Little Customs Glossary for IAEA Safeguards: Customs Procedures and Concepts that Matter for the Implementation of Modern Safeguards

    International Nuclear Information System (INIS)

    Chatelus, Renaud; )

    2012-01-01

    The additional protocols to the IAEA comprehensive safeguards agreements include provisions about the reporting by states of their imports and exports of listed equipment and non-nuclear material, also known as the “trigger list”, as well as nuclear materials. Beyond declarations and their verification, IAEA Safeguards also looks at other Imports and exports as part of its efforts to build confidence on the absence of undeclared nuclear activities or material. In all cases, information about international transfers of interest to Nuclear Safeguards is closely related to export control activities. But, if much has been written about the material and equipment to be declared, neither IAEA Safeguards nor Export control related documents provide much explanation about what exports and imports actually are. In fact, precise legal definitions are to be found generally in national customs regulations and international agreements on customs and trade. Unfortunately, these are not necessarily in line with Safeguards understanding. It is therefore essential that IAEA safeguards comprehends the customs concepts and procedures that are behind Safeguards relevant information.

  2. Video image processing for nuclear safeguards

    International Nuclear Information System (INIS)

    Rodriguez, C.A.; Howell, J.A.; Menlove, H.O.; Brislawn, C.M.; Bradley, J.N.; Chare, P.; Gorten, J.

    1995-01-01

    The field of nuclear safeguards has received increasing amounts of public attention since the events of the Iraq-UN conflict over Kuwait, the dismantlement of the former Soviet Union, and more recently, the North Korean resistance to nuclear facility inspections by the International Atomic Energy Agency (IAEA). The role of nuclear safeguards in these and other events relating to the world's nuclear material inventory is to assure safekeeping of these materials and to verify the inventory and use of nuclear materials as reported by states that have signed the nuclear Nonproliferation Treaty throughout the world. Nuclear safeguards are measures prescribed by domestic and international regulatory bodies such as DOE, NRC, IAEA, and EURATOM and implemented by the nuclear facility or the regulatory body. These measures include destructive and non destructive analysis of product materials/process by-products for materials control and accountancy purposes, physical protection for domestic safeguards, and containment and surveillance for international safeguards

  3. Safeguards and security progress report, January-December 1983

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.B. (comp.)

    1984-09-01

    From January to December 1983, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. This assistance includes consultation on materials accounting problems, development of specialized techniques and instruments, and comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this peiod was on continuing the activities of the Computer Security Center, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments.

  4. Safeguards and security progress report, January-December 1983

    International Nuclear Information System (INIS)

    Smith, D.B.

    1984-09-01

    From January to December 1983, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. This assistance includes consultation on materials accounting problems, development of specialized techniques and instruments, and comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this peiod was on continuing the activities of the Computer Security Center, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments

  5. International safeguards for reprocessing plants. Final report

    International Nuclear Information System (INIS)

    Kratzer, M.; Scheinman, L.; Sievering, N.; Wonder, E.; Lipman, D.; Immerman, W.; Elliott, J.M.; Crane, F.

    1981-04-01

    Proliferation risks inherent in reprocessing show the need to employ technically effective safeguards which can detect, with a high degree of assurance and on a timely basis, the diversion of significant quantities of fissionable material. A balance must be struck between what is technically feasible and effective and what is institutionally acceptable. Purpose of this report is to examine the several technical approaches to safeguards in light of their prospective acceptability. This study defines the economic, political and institutional nature of the safeguards problem; surveys generically alternative technical approaches to international safeguards including their effectiveness and relative development; characterizes the institutional implications and uncertainties associated with the acceptance and implementation of each technical alternative; and integrates these assessments into a set of overall judgments on feasible directions for reprocessing plant safeguards systems

  6. International safeguards for reprocessing plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, M.; Scheinman, L.; Sievering, N.; Wonder, E.; Lipman, D.; Immerman, W.; Elliott, J.M.; Crane, F.

    1981-04-01

    Proliferation risks inherent in reprocessing show the need to employ technically effective safeguards which can detect, with a high degree of assurance and on a timely basis, the diversion of significant quantities of fissionable material. A balance must be struck between what is technically feasible and effective and what is institutionally acceptable. Purpose of this report is to examine the several technical approaches to safeguards in light of their prospective acceptability. This study defines the economic, political and institutional nature of the safeguards problem; surveys generically alternative technical approaches to international safeguards including their effectiveness and relative development; characterizes the institutional implications and uncertainties associated with the acceptance and implementation of each technical alternative; and integrates these assessments into a set of overall judgments on feasible directions for reprocessing plant safeguards systems.

  7. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    International Nuclear Information System (INIS)

    Pepper, S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

    2009-01-01

    Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agency's (IAEA's) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNL's International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

  8. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pepper,S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

    2009-07-12

    Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agency’s (IAEA’s) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNL’s International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

  9. Nuclear safeguards research and development program. Status report, January--April 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sapir, J.L. (comp.)

    1977-06-01

    The status of the Nuclear Safeguards Research and Development program pursued by LASL Safeguards Groups Q-1, Q-2, Q-3, and Q-4 is presented . Topics covered include nondestructive assay technology development and applications, international safeguards, perimeter safeguards and surveillance, concepts and subsystems development (e.g., DYMAC program), integrated safeguards systems, training courses, and technology transfer.

  10. Nuclear safeguards research and development program. Status report, January--April 1977

    International Nuclear Information System (INIS)

    Sapir, J.L.

    1977-06-01

    The status of the Nuclear Safeguards Research and Development program pursued by LASL Safeguards Groups Q-1, Q-2, Q-3, and Q-4 is presented . Topics covered include nondestructive assay technology development and applications, international safeguards, perimeter safeguards and surveillance, concepts and subsystems development (e.g., DYMAC program), integrated safeguards systems, training courses, and technology transfer

  11. Nuclear facility safeguards systems modeling using discrete event simulation

    International Nuclear Information System (INIS)

    Engi, D.

    1977-01-01

    The threat of theft or dispersal of special nuclear material at a nuclear facility is treated by studying the temporal relationships between adversaries having authorized access to the facility (insiders) and safeguards system events by using a GASP IV discrete event simulation. The safeguards system events--detection, assessment, delay, communications, and neutralization--are modeled for the general insider adversary strategy which includes degradation of the safeguards system elements followed by an attempt to steal or disperse special nuclear material. The performance measure used in the analysis is the estimated probability of safeguards system success in countering the adversary based upon a predetermined set of adversary actions. An exemplary problem which includes generated results is presented for a hypothetical nuclear facility. The results illustrate representative information that could be utilized by safeguards decision-makers

  12. Development of safeguards approach for the Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Johnson, S.J.; Abedin-Zadeh, R.; Pearsall, C.; Chesnay, B.; Creusot, C.; Ehinger, M.; Kuhn, E.; Robson, N.; Higuchi, H.; Takeda, S.; Fujimaki, K.; Ai, H.; Uehara, S.; Amano, H.; Hoshi, K.

    2001-01-01

    Full text: The Rokkasho Reprocessing Plant (RRP), which is currently undergoing construction and commissioning by the Japan Nuclear Fuels Limited (JNFL), is scheduled to begin active operations in 2005. The planned operating capacity is 800 tonnes of spent fuel per year containing approximately 8 tonnes of plutonium. The International Atomic Energy Agency (IAEA) and the Japan safeguards authorities are working with JNFL to develop a Safeguards Approach that is both effective and efficient. In order to accomplish this goal, a number of advanced concepts are being introduced and many currently applied safeguards measures are being enhanced. These new and improved techniques and procedures will provide for more sensitive and reliable verification of nuclear material and facility operations while reducing the required inspection effort. The Safeguards Approach incorporates systematic Design Information Examination and Verification (DIE/DIV) during all phases of construction, commissioning and operation. It incorporates installed, unattended radiation and solution measurement and monitoring systems along with a number of inspector attended measurement systems. While many of the measurement systems will be independent-inspector controlled, others will require authentication of a split signal from operator controlled systems. The independent and/or authenticated data from these systems will be transmitted over a network to a central inspector center for evaluation. Near-Real-Time-Accountancy (NRTA) will be used for short period sequential analysis of the operator and inspector data which, when combined with Solution Monitoring data, will provide higher assurance in the verification of nuclear material for timeliness and of the operational status of the facility. Samples will be taken using a facility installed, but IAEA authenticated, automatic sampling system and will then be transferred to a jointly used IAEA-JSGO On-Site Laboratory (OSL). This paper provides an

  13. Safeguards effectiveness evaluations in safeguards planning

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.

    1987-01-01

    This paper describes analytic tools we developed to quantify the effectiveness of safeguards against theft of special nuclear material by insiders. These tools help identify vulnerabilities in existing safeguards, suggest potential improvements, and help assess the benefits of these upgrades prior to implementation. Alone, these tools are not sufficient for safeguards planning, since the cost of implementing all suggested upgrades almost always exceeds the available resources. This paper describes another tool we developed to allow comparsion of benefits of various upgrades to identify those upgrade packages that achieve the greatest improvement in protection for a given cost and to provide a priority ranking among cost-effective packages, thereby helping decision-makers select the upgrades to implement and highlight the mount of residual risk. 5 refs., 3 figs

  14. Integrated safeguards and facility design and operations

    International Nuclear Information System (INIS)

    Tape, J.W.; Coulter, C.A.; Markin, J.T.; Thomas, K.E.

    1987-01-01

    The integration of safeguards functions to deter or detect unauthorized actions by an insider requires the careful communication and management of safeguards-relevant information on a timely basis. The traditional separation of safeguards functions into physical protection, materials control, and materials accounting often inhibits important information flows. Redefining the major safeguards functions as authorization, enforcement, and verification, and careful attention to management of information from acquisition to organization, to analysis, to decision making can result in effective safeguards integration. The careful inclusion of these ideas in facility designs and operations will lead to cost-effective safeguards systems. The safeguards authorization function defines, for example, personnel access requirements, processing activities, and materials movements/locations that are permitted to accomplish the mission of the facility. Minimizing the number of authorized personnel, limiting the processing flexibility, and maintaining up-to-date flow sheets will facilitate the detection of unauthorized activities. Enforcement of the authorized activities can be achieved in part through the use of barriers, access control systems, process sensors, and health and safety information. Consideration of safeguards requirements during facility design can improve the enforcement function. Verification includes the familiar materials accounting activities as well as auditing and testing of the other functions

  15. Australian Safeguards and Non-Proliferation Office and the Chemical Weapons Convention Annual Report 1999-2000

    International Nuclear Information System (INIS)

    1999-01-01

    The Australian Safeguards and Non-Proliferation Office (ASNO) primary focus is national security-verification and treaty compliance across several regimes addressing weapons of mass destruction-linked to a major facilitation role in regard to industry compliance. The key aspect here is ensuring Australia's treaty commitments are met. Additionally, ASNO's activities are central to Government policy on the mining and export of uranium. Throughout the past year, ASNO continued to make a substantial contribution to the development of strengthened IAEA safeguards and the integration of strengthened safeguards with the established (classical) safeguards system. Australia played a key role in the negotiations leading to the adoption by the IAEA in 1997 of the Model Protocol, which provides the IAEA Secretariat with the authority to implement strengthened safeguards measures. In December 1997, Australia was the first country to bring into effect a Protocol with the IAEA based on this model. ASNO is working closely with the IAEA to develop the procedures and methods required to effectively implement the IAEA's authority and responsibilities as the Protocol enters general application. ASNO's As mentioned above, ASNO has developed and implemented new safeguards arrangements in Australia under the Protocol for strengthened safeguards, including facilitation of IAEA verification activities at the Ranger uranium mine-this is the first time the IAEA (under the Protocol) has visited a uranium mine and the lessons learned will help the IAEA develop its procedures. One major activity for ASNO is monitoring the progress of the Silex project to ensure that, as soon as appropriate, the technology is declared 'associated technology' and controlled in accordance with relevant legislative and Treaty requirements. In anticipation of this, ASNO has taken steps to protect the Silex technology against unauthorised access. Over the past 12 months, ASNO has established itself as the provisional

  16. International seminar on safeguards information reporting and processing. Extended synopses

    International Nuclear Information System (INIS)

    1998-01-01

    Review of the safeguards of information technology, its current developments and status of safeguards in Member States are described concerning especially the role of domestic safeguards in cooperation with IAEA Safeguards. A Number of reports is dealing with declarations provided to the IAEA pursuant to Protocols Additional to Safeguard agreements. The Information Section of the IAEA Safeguards Information Technology Division is responsible for the data entry, loading and quality control od State supplied declarations. A software system is used to process information which should be readily accessible and usable in implementation of the strengthened safeguards system. Experiences in combating illegal trafficking of nuclear materials in a number of countries are included

  17. Safeguards management inspection procedures

    International Nuclear Information System (INIS)

    Barth, M.J.; Dunn, D.R.

    1984-08-01

    The objective of this inspection module is to independently assess the contributions of licensee management to overall safeguards systems performance. The inspector accomplishes this objective by comparing the licensee's safeguards management to both the 10 CFR, parts 70 and 73, requirements and to generally accepted management practices. The vehicle by which this comparison is to be made consists of assessment questions and key issues which point the inspector to areas of primary concern to the NRC and which raise additional issues for the purpose of exposing management ineffectiveness. Further insight into management effectiveness is obtained through those assessment questions specifically directed toward the licensee's safeguards system performance. If the quality of the safeguards is poor, then the inspector should strongly suspect that management's role is ineffective and should attempt to determine management's influence (or lack thereof) on the underlying safeguards deficiencies. (The converse is not necessarily true, however.) The assessment questions in essence provide an opportunity for the inspector to identify, to single out, and to probe further, questionable management practices. Specific issues, circumstances, and concerns which point to questionable or inappropriate practices should be explicitly identified and referenced against the CFR and the assessment questions. The inspection report should also explain why the inspector feels certain management practices are poor, counter to the CFR, and/or point to ineffecive management. Concurrent with documenting the inspection results, the inspector should provide recommendations for alleviating observed management practices that are detrimental to effective safeguards. The recommendations could include: specific changes in the practices of the licensee, followup procedures on the part of NRC, and proposed license changes

  18. Institutionalizing Safeguards By Design for Nuclear Facilities

    International Nuclear Information System (INIS)

    Morgan, James B.; Kovacic, Donald N.; Whitaker, J. Michael

    2008-01-01

    Safeguards for nuclear facilities can be significantly improved by developing and implementing methodologies for integrating proliferation resistance into the design of new facilities. This paper proposes a method to systematically analyze a facility's processes, systems, equipment, structures and management controls to ensure that all relevant proliferation scenarios that could potentially result in unacceptable consequences have been identified, evaluated and mitigated. This approach could be institutionalized into a country's regulatory structure similar to the way facilities are licensed to operate safely and are monitored through inspections and incident reporting to ensure compliance with domestic and international safeguards. Furthermore, taking credit for existing systems and equipment that have been analyzed and approved to assure a facility's reliable and safe operations will reduce the overall cost of implementing intrinsic and extrinsic proliferation-resistant features. The ultimate goal is to integrate safety, reliability, security and safeguards operations into the design of new facilities to effectively and efficiently prevent diversion, theft and misuse of nuclear material and sensitive technologies at both the facility and state level. To facilitate this approach at the facility level, this paper discusses an integrated proliferation resistance analysis (IPRA) process. If effectively implemented, this integrated approach will also facilitate the application of International Atomic Energy Agency (IAEA) safeguards

  19. New Measures to Safeguard Gas Centrifuge Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Jr., James [ORNL; Garner, James R [ORNL; Whitaker, Michael [ORNL; Lockwood, Dunbar [U.S. Department of Energy, NNSA; Gilligan, Kimberly V [ORNL; Younkin, James R [ORNL; Hooper, David A [ORNL; Henkel, James J [ORNL; Krichinsky, Alan M [ORNL

    2011-01-01

    As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are being investigated that will be mutually beneficial to the facility operators and the IAEA. One of the key concepts being studied for application at future GCEPs is embracing joint use equipment for process monitoring of load cells at feed and withdrawal (F/W) stations. A mock F/W system was built at Oak Ridge National Laboratory (ORNL) to generate and collect F/W data from an analogous system. The ORNL system has been used to collect data representing several realistic normal process and off-normal (including diversion) scenarios. Emphasis is placed on the novelty of the analysis of data from the sensors as well as the ability to build information out of raw data, which facilitates a more effective and efficient verification process. This paper will provide a progress report on recent accomplishments and next steps.

  20. Next Generation Safeguards Initiative: 2010 and Beyond

    International Nuclear Information System (INIS)

    Whitney, J.M.; LaMontagne, S.; Sunshine, A.; Lockwood, D.; Peranteau, D.; Dupuy, G.

    2010-01-01

    Strengthening the international safeguards system is a key element of the U.S. non-proliferation policy agenda as evidenced by President Obama's call for more 'resources and authority to strengthen international inspections' in his April 2009 Prague speech. Through programs such as the recently-launched Next Generation Safeguards Initiative (NGSI) and the long standing U.S. Program of Technical Assistance to IAEA Safeguards, the United States is working to implement this vision. The U.S. Department of Energy's National Nuclear Security Administration launched NGSI in 2008 to develop the policies, concepts, technologies, expertise, and international safeguards infrastructure necessary to strengthen and sustain the international safeguards system as it evolves to meet new challenges. Following a successful 2009, NGSI has made significant progress toward these goals in 2010. NGSI has recently completed a number of policy studies on advanced safeguards concepts and sponsored several workshops, including a second international meeting on Harmonization of International Safeguards Infrastructure Development in Vienna. The program is also continuing multi-year projects to investigate advanced non-destructive assay techniques, enhance recruitment and training efforts, and strengthen international cooperation on safeguards. In December 2010, NGSI will host the Third Annual International Meeting on International Safeguards in Washington, DC, which will draw together key stakeholders from government, the nuclear industry, and the IAEA to further develop and promote a common understanding of Safeguards by Design principles and goals, and to identify opportunities for practical application of the concept. This paper presents a review of NGSI program activities in 2010 and previews plans for upcoming activities. (author)

  1. Building safeguards infrastructure

    International Nuclear Information System (INIS)

    Stevens, Rebecca S.; McClelland-Kerr, John

    2009-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of these three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the growth of nuclear power, and the infrastructure that supports them should be strengthened. The focus of this paper will be on the role safeguards plays in the 3S concept and how to support the development of the infrastructure necessary to support safeguards. The objective of this paper has been to provide a working definition of safeguards infrastructure, and to discuss xamples of how building safeguards infrastructure is presented in several models. The guidelines outlined in the milestones document provide a clear path for establishing both the safeguards and the related infrastructures needed to support the development of nuclear power. The model employed by the INSEP program of engaging with partner states on safeguards-related topics that are of current interest to the level of nuclear development in that state provides another way of approaching the concept of building safeguards infrastructure. The Next Generation Safeguards Initiative is yet another approach that underscored five principal areas for growth, and the United States commitment to working with partners to promote this growth both at home and abroad.

  2. Safeguards implementation in UP3 reprocessing plant

    International Nuclear Information System (INIS)

    Laurent, J.P.; Regnier, J.; Talbourdet, Y.; De Jong, P.

    1991-01-01

    The implementation of safeguards in a large size reprocessing plant is a challenge, considering the high throughput of nuclear material and the sophisticated automation of such facilities. In the case of UP3, a pragmatic and realistic approach has been devised and is applied through an efficient cooperation between the safeguards organizations, the french national authorities and the operator. In essence, they consist in verification of every significant inputs and outputs, in timely analysis by NDA (e.g. solutions of dissolution through an on site k-edge equipment), in monitoring selected parts of the inprocess inventory and in specific containment/surveillance systems for the spent fuel storage ponds and the PuO2 storage. (author)

  3. US remote monitoring operational experience

    International Nuclear Information System (INIS)

    Dupree, S.A.; Sonnier, C.S.

    1997-01-01

    Under international partnerships and bilateral agreements with the U.S. Department of Energy, Sandia National Laboratories, other national laboratories, and international partner organizations have emplaced remote monitoring systems in nuclear facilities and laboratories in various parts of the world for the purpose of conducting field trials of remote monitoring. The purpose of the present report is to review the results from these field trials and draw general conclusions regarding the trials. Many thousands of hours of sensor and system operation have been logged, and data have been retrieved from many locations. In virtually all cases the system components have functioned as intended and data have been successfully collected and transmitted for review. Comparisons between front-end-triggered video and time-lapse video have shown that the triggered record has captured all relevant monitored operations at the various nuclear facilities included in the field trials. We believe the utility and functional reliability of remote monitoring for international safeguards has been shown. However, it should be kept in mind that openness and transparency, including some form of short-notice inspections, are likely to be prerequisites to the safeguards implementation of remote monitoring in any State

  4. Remote monitoring field trial. Application to automated air sampling. Report on Task FIN-E935 of the Finnish Support Programme to IAEA Safeguards

    International Nuclear Information System (INIS)

    Poellaenen, R.; Ilander, T.; Lehtinen, J.; Leppaenen, A.; Nikkinen, M.; Toivonen, H.; Ylaetalo, S.; Smartt, H.; Garcia, R.; Martinez, R.; Glidewell, D.; Krantz, K.

    1999-01-01

    An automated air sampling station has recently been developed by Radiation and Nuclear Safety Authority (STUK). The station is furnished with equipment that allows comprehensive remote monitoring of the station and the data. Under the Finnish Support Programme to IAEA Safeguards, STUK and Sandia National Laboratories (SNL) established a field trial to demonstrate the use of remote monitoring technologies. STUK provided means for real-lime radiation monitoring and sample authentication whereas SNL delivered means for authenticated surveillance of the equipment and its location. The field trial showed that remote monitoring can be carried out using simple means although advanced facilities are needed for comprehensive surveillance. Authenticated measurement data could be reliably transferred from the monitoring site to the headquarters without the presence of authorized personnel in the monitoring site. The operation of the station and the remote monitoring system were reliable. (orig.)

  5. Safeguards '85

    International Nuclear Information System (INIS)

    Gruemm, H.

    1981-01-01

    IAEA safeguards watch over the pledge of those non-nuclear weapon countries, which are signatories to the NPT, to refrain from using nuclear installations for military purposes. At present, some 700 installations are inspected in 50 countries, among them 117 nuclear power plants. Further advancement of these safeguards measures serves to develop new methods and equipment for safeguards inspection, ensure that the growing numbers of new plants are inspected, and achieve complete coverage of the eleven countries not signatories to the NPT. However, the long term effectiveness of safeguards will depend on progress being made in the contractual obligations fur nuclear disarmament and in assuring the continuity of supply to non-nuclear weapon countries by the atomic powers and the supplier countries. (orig.) [de

  6. Scoping Study of Machine Learning Techniques for Visualization and Analysis of Multi-source Data in Nuclear Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yonggang

    2018-05-07

    In implementation of nuclear safeguards, many different techniques are being used to monitor operation of nuclear facilities and safeguard nuclear materials, ranging from radiation detectors, flow monitors, video surveillance, satellite imagers, digital seals to open source search and reports of onsite inspections/verifications. Each technique measures one or more unique properties related to nuclear materials or operation processes. Because these data sets have no or loose correlations, it could be beneficial to analyze the data sets together to improve the effectiveness and efficiency of safeguards processes. Advanced visualization techniques and machine-learning based multi-modality analysis could be effective tools in such integrated analysis. In this project, we will conduct a survey of existing visualization and analysis techniques for multi-source data and assess their potential values in nuclear safeguards.

  7. IAEA safeguards

    International Nuclear Information System (INIS)

    1985-01-01

    IAEA safeguards are a system of technical measures within the framework of international non-proliferation policy entrusted to the IAEA in its Statute and by other treaties. About 98% of the world's nuclear installations outside the nuclear-weapon countries are now under safeguards. This paper gives a review of IAEA activities in this field: objectives, agreements, work and development of staff of the IAEA's Department of Safeguards, instruments and techniques for direct measurement and verification of nuclear material. (author)

  8. Safeguards Implementation Practices Guide on Establishing and Maintaining State Safeguards Infrastructure

    International Nuclear Information System (INIS)

    2015-01-01

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreements. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This

  9. Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations

    Science.gov (United States)

    Warburton, Jamie Lee

    To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations. The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By evaluating the impact of process conditions, such as acid concentration, metal concentration and flow rate, on the sensitivity of the UV-Visible detection system, the process-monitoring concept is developed from an advanced application of fundamental spectroscopy. Systematic benchtop-scale studies investigated the system relevant to UREX or PUREX type reprocessing systems, encompassing 0.01-1.26 M U and 0.01-8 M HNO3. A laboratory-scale TRansUranic Extraction (TRUEX) demonstration was performed and used both to analyze for potential online monitoring opportunities in the TRUEX process, and to provide the foundation for building and demonstrating a laboratory-scale UREX demonstration. The secondary goal of the project is to simulate a diversion scenario in UREX and successfully detect changes in metal concentration and solution chemistry in a counter current contactor system with a UV-Visible spectroscopic process monitor. UREX uses the same basic solvent extraction flowsheet as PUREX, but has a lower acid concentration throughout and adds acetohydroxamic acid (AHA) as a complexant/reductant to the feed solution to prevent the extraction of Pu. By examining

  10. Safeguards Implementation at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juang; Lee, Sung Ho; Lee, Byung-Doo; Kim, Hyun-Sook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The main objective of the safeguards implementation activities is to assure that there are no diversions of declared nuclear material and/or no undeclared activity. The purpose of safeguards implementation activities is the assistance facility operators to meet the safeguards criteria set forth by the Atomic Energy Safety Acts and Regulations. In addition, the nuclear material and technology control team has acted as a contact point for domestic and international safeguards inspection activities and for the relevant safeguards cooperation. Domestic inspections were successfully carried out at the KAERI nuclear facilities pursuant to the domestic laws and regulations in parallel with the IAEA safeguards inspections. It is expected that safeguards work will be increased due to the pyro-related facilities such as PRIDE, ACPF and DUPIC, for which the IAEA is making an effort to establish safeguards approach. KAERI will actively cope with the plan of the NSSC by changing its domestic inspection regulations on the accounting and control of nuclear materials.

  11. International seminar on safeguards information reporting and processing. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    Review of the safeguards of information technology, its current developments and status of safeguards in Member States are described concerning especially the role of domestic safeguards in cooperation with IAEA Safeguards. A Number of reports is dealing with declarations provided to the IAEA pursuant to Protocols Additional to Safeguard agreements. The Information Section of the IAEA Safeguards Information Technology Division is responsible for the data entry, loading and quality control od State supplied declarations. A software system is used to process information which should be readily accessible and usable in implementation of the strengthened safeguards system. Experiences in combating illegal trafficking of nuclear materials in a number of countries are included Refs, figs, 1 tab

  12. Analysis on the status of the application of satellite remote sensing technology to nuclear safeguards

    International Nuclear Information System (INIS)

    Tao Zhangsheng; Zhao Yingjun

    2008-01-01

    Based on the application status of satellite remote sensing technology to nuclear safeguards, advantage of satellite remote sensing technology is analyzed, main types of satellite image used in nuclear safeguards are elaborated and the main application of satellite images is regarded to detect, verify and monitor nuclear activities; verify additional protocol declaration and design information, support performing complementary access inspections; investigate alleged undeclared activities based on open source or the third party information. Application examples of satellite image in nuclear safeguards to analyze nuclear facilities by other countries, the ability of remote sensing technology in nuclear safeguards is discussed. (authors)

  13. Safeguards on nuclear waste

    International Nuclear Information System (INIS)

    Crawford, D.W.

    1995-01-01

    Safeguards and security policies within the Department of Energy (DOE) have been implemented in a graded fashion for the protection, control and accountability of nuclear materials. This graded philosophy has meant that safeguards on low-equity nuclear materials, typically considered of low diversion attractiveness such as waste, has been relegated to minimal controls. This philosophy has been and remains today an acceptable approach for the planning and implementation of safeguards on this material. Nuclear waste protection policy and guidance have been issued due to a lack of clear policy and guidance on the identification and implementation of safeguards controls on waste. However, there are issues related to safe-guarding waste that need to be clarified. These issues primarily stem from increased budgetary and resource pressures to remove materials from safeguards. Finally, there may be an unclear understanding, as to the scope and content of vulnerability assessments required prior to terminating safeguards on waste and other discardable materials and where the authority should lie within the Department for making decisions regarding safeguards termination. This paper examines these issues and the technical basis for Departmental policy for terminating safeguards on waste

  14. Safeguards approach for conditioning facility for spent fuel

    International Nuclear Information System (INIS)

    Younkin, J.M.; Barham, M.; Moran, B.W.

    1999-01-01

    A safeguards approach has been developed for conditioning facilities associated with the final disposal of spent fuel in geologic repositories. The proposed approach is based on a generic conditioning facility incorporating common features of conditioning facility designs currently proposed. The generic facility includes a hot cell for consolidation of spent fuel pins and repackaging of spent fuel items such as assemblies and cans of pins. The consolidation process introduces safeguards concerns which have not previously been addressed in traditional safeguards approaches. In developing the safeguards approach, diversion of spent fuel was assessed in terms of potential target items, operational activities performed on the items, containment of the items, and concealment activities performed on the items. The combination of these factors defines the potential diversion pathways. Diversion pathways were identified for spent fuel pellets, pins, assemblies, canisters, and casks. Diversion activities provide for opportunities of detection along the diversion paths. Potential detection methods were identified at several levels of diversion activities. Detection methods can be implemented through safeguards measures. Safeguards measures were proposed for each of the primary safeguards techniques of design information verification (DIV), containment and surveillance (C/S), and material accountancy. Potential safeguards approaches were developed by selection of appropriate combinations of safeguards measures. For all candidate safeguards approaches, DIV is a fundamental component. Variations in the approaches are mainly in the degree of C/S measures and in the types and numbers of material accountancy verification measures. The candidate safeguards approaches were evaluated toward the goal of determining a model safeguards approach. This model approach is based on the integrated application of selected safeguards measures to use International Atomic Energy Agency resources

  15. Safeguarding the atom

    International Nuclear Information System (INIS)

    Fischer, D.; Szasz, P.

    1985-01-01

    Safeguards play a key role in verifying the effectiveness of restraints on the spread of nuclear weapons. This book is a study of the safeguards system of the International Atomic Energy Agency, an important element of the non-proliferation regime. It focuses on the politics of safeguards, especially the political problems of the IAEA and of the day-to-day application of safeguards. It contains a critical appraisal and proposals for ways of improving existing procedures and of adapting them to the political and technological changes of recent years. IAEA safeguards represent the world's first and so far only attempt to verify an arms control agreement by systematic on-site inspection, and their applicability to other arms control measures is examined. (author)

  16. The Concept of Goals-Driven Safeguards

    International Nuclear Information System (INIS)

    Wigeland, R.; Bjornard, T.; Castle, B.

    2009-01-01

    The IAEA, NRC, and DOE regulations and requirements for safeguarding nuclear material and facilities have been reviewed and each organization's purpose, objectives, and scope are discussed in this report. Current safeguards approaches are re-examined considering technological advancements and how these developments are changing safeguards approaches used by these organizations. Additionally, the physical protection approaches required by the IAEA, NRC, and DOE were reviewed and the respective goals, objectives, and requirements are identified and summarized in this report. From these, a brief comparison is presented showing the high-level similarities among these regulatory organizations' approaches to physical protection. The regulatory documents used in this paper have been assembled into a convenient reference library called the Nuclear Safeguards and Security Reference Library. The index of that library is included in this report, and DVDs containing the full library are available.

  17. Safeguards and security modeling for electrochemical plants

    International Nuclear Information System (INIS)

    Cipiti, B.B.; Duran, F.A.; Mendoza, L.A.; Parks, M.J.; Dominguez, D.; Le, T.D.

    2013-01-01

    Safeguards and security design for reprocessing plants can lead to excessive costs if not incorporated early in the design process. The design for electrochemical plants is somewhat uncertain since these plants have not been built at a commercial scale in the past. The Separation and Safeguards Performance Model (SSPM), developed at Sandia National Laboratories, has been used for safeguards design and evaluation for multiple reprocessing plant types. The SSPM includes the following capabilities: -) spent fuel source term library, -) mass tracking of elements 1-99 and bulk solid/liquids, -) tracking of heat load and activity, -) customisable measurement points, -) automated calculation of ID and error propagation, -) alarm conditions and statistical tests, and -) user-defined diversion scenarios. Materials accountancy and process monitoring data can provide more timely detection of material loss specifically to protect against the insider threat. While the SSPM is capable of determining detection probabilities and examining detection times for material loss scenarios, it does not model the operations or spatial effects for a plant design. The STAGE software was chosen to model the physical protection system. STAGE provides a framework to create end-to-end scalable force-on-force combat simulations. It allows for a complete 3D model of a facility to be designed along with the design of physical protection elements. This software, then, can be used to model operations and response for various material loss scenarios. The future integration of the SSPM model data with the STAGE software will provide a more complete analysis of diversion scenarios to assist plant designers

  18. Safeguards and security modeling for electrochemical plants

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, B.B.; Duran, F.A.; Mendoza, L.A.; Parks, M.J.; Dominguez, D.; Le, T.D. [Sandia National Laboratories, PO Box 5800 MS 0747, Albuquerque, NM 87185 (United States)

    2013-07-01

    Safeguards and security design for reprocessing plants can lead to excessive costs if not incorporated early in the design process. The design for electrochemical plants is somewhat uncertain since these plants have not been built at a commercial scale in the past. The Separation and Safeguards Performance Model (SSPM), developed at Sandia National Laboratories, has been used for safeguards design and evaluation for multiple reprocessing plant types. The SSPM includes the following capabilities: -) spent fuel source term library, -) mass tracking of elements 1-99 and bulk solid/liquids, -) tracking of heat load and activity, -) customisable measurement points, -) automated calculation of ID and error propagation, -) alarm conditions and statistical tests, and -) user-defined diversion scenarios. Materials accountancy and process monitoring data can provide more timely detection of material loss specifically to protect against the insider threat. While the SSPM is capable of determining detection probabilities and examining detection times for material loss scenarios, it does not model the operations or spatial effects for a plant design. The STAGE software was chosen to model the physical protection system. STAGE provides a framework to create end-to-end scalable force-on-force combat simulations. It allows for a complete 3D model of a facility to be designed along with the design of physical protection elements. This software, then, can be used to model operations and response for various material loss scenarios. The future integration of the SSPM model data with the STAGE software will provide a more complete analysis of diversion scenarios to assist plant designers.

  19. Coordinated safeguards for materials management in a fuel reprocessing plant. Volume I

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Schelonka, E.P.; Shipley, J.P.; Smith, D.B.; Augustson, R.H.; Barnes, J.W.

    1977-09-01

    A materials management system is described for safeguarding special nuclear materials in a fuel-reprocessing plant. Recently developed nondestructive-analysis techniques and process-monitoring devices are combined with conventional chemical analyses and process-control instrumentation for improved materials accounting data. Unit-process accounting based on dynamic material balances permits localization of diversion in time and space, and the application of advanced statistical methods supported by decision-analysis theory ensures optimum use of accounting information for detecting diversion. This coordinated safeguards system provides maximum effectiveness consistent with modest cost and minimum process interference. Modeling and simulation techniques are used to evaluate the sensitivity of the system to single and multiple thefts and to compare various safeguards options. The study identifies design criteria that would improve the safeguardability of future plants

  20. The UK safeguards R and D support program

    International Nuclear Information System (INIS)

    Patrick, B.H.; Andrew, G.; Tuley, J.N.

    1991-01-01

    The UK Safeguards R and D Programme in support of IAEA safeguards was formally initiated in 1981. Funding is provided by HM Government through the Department of Energy, responsibility for managing and carrying out the work being placed in the hands of the UK Atomic Energy Authority The programme covers safeguards in a variety of areas, including reprocessing and enrichment plants, nuclear materials in waste, authentication of facility computer systems, training courses for safeguards inspectors, containment and surveillance, destructive and non-destructive assay techniques and techniques for assessing diversion path analysis. In this paper an overview of the work is presented

  1. Course modules on nuclear safeguards and non-proliferation

    International Nuclear Information System (INIS)

    Bril, L.-V.; Janssens-Maenhout, G.

    2004-01-01

    Full text: One of major current concern in the nuclear field is the conservation of developed knowledge and expertise. The relevance of this subject is steadily increasing for several reasons: retirement of the generation of first industrial development of nuclear energy, only one new reactor under construction in Europe while several in Eastern and Asian countries, the public's concern on safety, radioactive waste and safeguards aspects, and some lack of interest common to many activities in engineering and physics. Moreover nuclear safeguards is nowadays characterised with an enlarged scope and no longer strictly limited to the accountancy of nuclear material; today it encompasses non proliferation of nuclear material, and deals with the control of dual use equipment and technologies, illicit trafficking and External Security. Some higher education networks, such as the European Nuclear Engineering Network (ENEN), have been established to make better use of dwindling teaching capacity, scientific equipment and research infrastructure, through co-operation amongst universities and research centres. The European Safeguards Research and Development Association (ESARDA) initiated the set-up of course modules under an e-learning medium, to preserve knowledge in nuclear safeguards. These course modules should be considered as basic pedagogical documentation, which will be accessible via the Internet. Monitoring or controlling of the accesses will be ensured. The modules are structured with an increasing level of detail, in function of the audience. On one hand the course modules should be attractive to University students in nuclear, chemical or mechanical engineering, in radiochemistry, statistics, law, political science etc. at universities or specialised institutes. On the other hand the course modules aim to give professionals, working on specific safeguards or non-proliferation issues an overview and detailed technical information on the wide variety of nuclear

  2. Domestic safeguards: annual report to Congress, fiscal year 1978

    International Nuclear Information System (INIS)

    1979-01-01

    The annual report includes an assessment of the effectiveness and adequacy of safeguards at facilities and activities licensed by the Commission. The report details NRC's criteria for judging the adequacy of safeguards at fuel cycle facilities; the report also summarizes actions required by NRC at any fuel facility whose safeguards systems are judged to provide less than high assurance protection against our design threat. The report also contains a discussion of NRC's criteria for safeguards adequacy at nuclear reactors and for transportation activities

  3. Inventory of safeguards software

    International Nuclear Information System (INIS)

    Suzuki, Mitsutoshi; Horino, Koichi

    2009-03-01

    The purpose of this survey activity will serve as a basis for determining what needs may exist in this arena for development of next-generation safeguards systems and approaches. 23 software tools are surveyed by JAEA and NMCC. Exchanging information regarding existing software tools for safeguards and discussing about a next R and D program of developing a general-purpose safeguards tool should be beneficial to a safeguards system design and indispensable to evaluate a safeguards system for future nuclear fuel facilities. (author)

  4. Safeguards and security progress report, January-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.B. (comp.)

    1986-01-01

    From January to December 1984, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. Part 2 treats activities aimed at the security of information and computer systems. was Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in benefiting from field experiences in operating environments.

  5. Safeguards and security progress report, January-December 1984

    International Nuclear Information System (INIS)

    Smith, D.B.

    1986-01-01

    From January to December 1984, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. Part 2 treats activities aimed at the security of information and computer systems. was Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in benefiting from field experiences in operating environments

  6. The safeguards options study

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D. [Los Alamos National Lab., NM (United States); Olsen, A.P.; Roche, C.T.; Rudolph, R.R. [Argonne National Lab., IL (United States); Bieber, A.M.; Lemley, J. [Brookhaven National Lab., Upton, NY (United States); Filby, E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq`s obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state.

  7. The safeguards options study

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D.; Olsen, A.P.; Roche, C.T.; Rudolph, R.R.; Bieber, A.M.; Lemley, J.; Filby, E.

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq's obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state

  8. Safeguarding and Protecting the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Bjornard, Trond; Garcia, Humberto; Desmond, William; Demuth, Scott

    2010-01-01

    International safeguards as applied by the International Atomic Energy Agency (IAEA) are a vital cornerstone of the global nuclear nonproliferation regime - they protect against the peaceful nuclear fuel cycle becoming the undetected vehicle for nuclear weapons proliferation by States. Likewise, domestic safeguards and nuclear security are essential to combating theft, sabotage, and nuclear terrorism by non-State actors. While current approaches to safeguarding and protecting the nuclear fuel cycle have been very successful, there is significant, active interest to further improve the efficiency and effectiveness of safeguards and security, particularly in light of the anticipated growth of nuclear energy and the increase in the global threat environment. This article will address two recent developments called Safeguards-by-Design and Security-by-Design, which are receiving increasing broad international attention and support. Expected benefits include facilities that are inherently more economical to effectively safeguard and protect. However, the technical measures of safeguards and security alone are not enough - they must continue to be broadly supported by dynamic and adaptive nonproliferation and security regimes. To this end, at the level of the global fuel cycle architecture, 'nonproliferation and security by design' remains a worthy objective that is also the subject of very active, international focus.

  9. Integrated safeguards and the role of the SSAC: an Australian perspective

    International Nuclear Information System (INIS)

    Carlson, John

    1998-01-01

    'Classical' safeguards retain a strong emphasis on facility-based materials accountancy, and are primarily concerned with verifying nuclear activities as declared by the State - the correctness of States' declarations. This decade, failure to adequately address the possibility of undeclared nuclear activities - the issue of the completeness of States' declarations - has been recognised as a major shortcoming in the classical safeguards system, and major efforts are being made to establish the Agency's capabilities in this regard. Current priorities include, ensuring the wide-spread conclusion of individual Additional Protocols so the Strengthened Safeguards System enters into general application without delay, and continuing the development of new methodologies - including associated quality assurance and evaluation. A major theme in current safeguards thinking is integration, the rationalisation of classical safeguards with the new safeguards strengthening measures. The strengthening of the IAEA safeguards system is a matter of the highest priority to Australia. Australia has had a major influence in this process, that is provision of consultancy services to the Agency on new safeguards and analytical techniques, and in the development and field testing of new safeguards technology such as remote surveillance. (Yi, J. H.)

  10. Technology development for DUPIC process safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J S; Kim, H D; Lee, Y G; Kang, H Y; Cha, H R; Byeon, K H; Park, Y S; Choi, H N [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    As the strategy for DUPIC(Direct Use of spent PWR fuel In CANDU reactor) process safeguards, the neutron detection method was introduced to account for nuclear materials in the whole DUPIC process by selectively measuring spontaneous fission neutron signals from {sup 244}Cm. DSNC was designed and manufactured to measure the account of curium in the fuel bundle and associated process samples in the DUPIC fuel cycle. The MCNP code had response profile along the length of the CANDU type fuel bundle. It was found experimentally that the output signal variation due to the overall azimuthal asymmetry was less than 0.2%. The longitudinal detection efficiency distribution at every position including both ends was kept less than 2% from the average value. Spent fuel standards almost similar to DUPIC process material were fabricated from a single spent PWR fuel rod and the performance verification of the DSNC is in progress under very high radiation environment. The results of this test will be eventually benchmarked with other sources such as code simulation, chemical analysis and gamma analysis. COREMAS-DUPIC has been developed for the accountability management of nuclear materials treated by DUPIC facility. This system is able to track the controlled nuclear materials maintaining the material inventory in near-real time and to generate the required material accountability records and reports. Concerning the containment and surveillance technology, a focused R and D effort is given to the development of unattended continuous monitoring system. Currently, the component technologies of radiation monitoring and surveillance have been established, and continued R and D efforts are given to the integration of the components into automatic safeguards diagnostics. (author).

  11. Safeguards in the Slovak Republic

    International Nuclear Information System (INIS)

    Vaclav, J.

    2010-01-01

    The former Czechoslovakia acceded to the Non-Proliferation Treaty in 1968. Based on requirements of the Safeguard Agreement the State System of Accounting for and Control of nuclear material has been established. After dissolution of Czechoslovakia the Slovak Republic succeeded to the Safeguards Agreement. As a regulator the Nuclear Regulatory Authority of the Slovak Republic (UJD) has been constituted. After European Union (EU) accession EU legislation became valid in the Slovak republic. Atomic Law No. 541/2004 Coll. on Peaceful Use of Nuclear Energy adopts this legislation. In the frame of strengthening the IAEA safeguards an implementation of the Protocol Additional became actual. The Protocol Additional was signed by the government of the Slovak Republic in September 1999. On 1 December 2005 safeguards agreement INFCIRC/193 including the relevant Additional Protocol entered into force. As an instrument supporting non-proliferation of nuclear weapons a control of export/import of nuclear material, nuclear related and dual-use material following the EC regulation 428/2009 of 5 May 2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual use items. The execution of accountancy and control of nuclear material inspection activities has been considerably influenced by the implementation of integrated safeguards, implemented in the Slovak Republic on 1 September 2009. The aim of mentioned integrated safeguards regime is to decrease the amount and difficulty of inspections. At the same time the possibility of accountancy and control of nuclear material inspections announced 24 hours in advance took effect. The execution of Protocol Additional inspections remains the same. Additionally to international safeguards system UJD has kept the national safeguards system which observes all nuclear material on the territory of the Slovak Republic. The government of the Slovak Republic plays active role within activities of the NSG

  12. IAEA safeguards for geological repositories

    International Nuclear Information System (INIS)

    Moran, B.W.

    2005-01-01

    In September. 1988, the IAEA held its first formal meeting on the safeguards requirements for the final disposal of spent fuel and nuclear material-bearing waste. The consensus recommendation of the 43 participants from 18 countries at this Advisory Group Meeting was that safeguards should not terminate of spent fuel even after emplacement in, and closure of, a geologic repository.' As a result of this recommendation, the IAEA initiated a series of consultants' meetings and the SAGOR Programme (Programme for the Development of Safeguards for the Final Disposal of Spent Fuel in Geologic Repositories) to develop an approach that would permit IAEA safeguards to verify the non-diversion of spent fuel from a geologic repository. At the end of this process, in December 1997, a second Advisory Group Meeting, endorsed the generic safeguards approach developed by the SAGOR Programme. Using the SAGOR Programme results and consultants' meeting recommendations, the IAEA Department of Safeguards issued a safeguards policy paper stating the requirements for IAEA safeguards at geologic repositories. Following approval of the safeguards policy and the generic safeguards approach, the Geologic Repository Safeguards Experts Group was established to make recommendations on implementing the safeguards approach. This experts' group is currently making recommendations to the IAEA regarding the safeguards activities to be conducted with respect to Finland's repository programme. (author)

  13. Evolution of safeguards systems design

    International Nuclear Information System (INIS)

    Shipley, J.P.; Christensen, E.L.; Dietz, R.J.

    1979-01-01

    Safeguards systems play a vital detection and deterrence role in current nonproliferation policy. These safeguards systems have developed over the past three decades through the evolution of three essential components: the safeguards/process interface, safeguards performance criteria, and the technology necessary to support effective safeguards. This paper discusses the background and history of this evolutionary process, its major developments and status, and the future direction of safeguards system design

  14. Measuring Safeguards Culture

    International Nuclear Information System (INIS)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-01-01

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  15. A quadrupole mass spectrometer system for nuclear safeguards applications

    International Nuclear Information System (INIS)

    Evans, P.J.

    1987-12-01

    An on-line enrichment monitor for nuclear safeguards-related surveillance of a pilot-scale gas centrifuge plant is described. This monitor utilises a quadrupole mass spectrometer to measure the isotopic composition of UF 6 in the feed and product gas streams. Details of the design and construction are given, and several difficulties are identified and discussed. Finally, the performance of this system is illustrated with typical results

  16. Australian Safeguards and Non-Proliferation Office, Annual Report 2001-2002

    International Nuclear Information System (INIS)

    2002-01-01

    During the year Australian Safeguards and Non-Proliferation Office (ASNO) continued our substantial contribution to the development and strengthening of international verification regimes concerned with weapons of mass destruction (WMD). Domestically, ASNO conducted, or contributed to, review of WMD- related legislation and administration, amending permits to enhance security arrangements, and beginning development of supporting legislative changes. Another major area of work is the replacement research reactor project, where ASNO has been closely involved through safeguards and security aspects. This year has been dominated by the terrorist attacks of 11 September 2001 on the United States, and ongoing consequences. These events, and the concern that terrorists would use WMD if they were able to acquire them, have served to emphasise the importance of effective counter-proliferation and counter-terrorism measures to complement the non-proliferation regimes. They have also focused attention on the need to deal with non- compliance with WMD treaty commitments. The key achivements reported for the year under review include: 1. All treaty and statutory requirements met in respect of: nuclear material and nuclear items in Australia, Australian uranium exports (Australian Obligated Nuclear Material), chemicals covered by the CWC (Chemical Weapons Convention) and establishment of CTBT(Comprehensive Nuclear-Test-Ban Treaty) monitoring stations; 2. Effective contribution to strengthening non-proliferation verification regimes and counter terrorism initiatives: ongoing support for IAEA safeguards development, regional outreach on IAEA safeguards, CWC implementation and encouraging CTBT ratification, ANSTO security upgraded; security plan approved for construction of replacement research reactor, review, with other responsible authorities, of security of CWC related chemicals, and radiation sources

  17. International safeguards

    International Nuclear Information System (INIS)

    Sanders, B.; Ha Vinh Phuong

    1976-01-01

    Since the start of the post-war era, international safeguards were considered essential to ensure that nuclear materials should not be diverted to unauthorised uses. In parallel, it was proposed to set up an international atomic energy agency within the United Nations through which international cooperation in nuclear matters would be channelled and controlled. Created in 1957, the IAEA was authorized to administer safeguards in connection with any assistance it provided as well as at the request of Member State and of any party to bilateral or multilateral arrangements in its ambit. Today, there are two international treaties requiring that its parties should accept Agency safeguards unilaterally, the Latin America Tlatelolco Treaty of 1967, and the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), operative since 1970, which requires in particular that non-nuclear weapon states should accept Agency safeguards on its peaceful nuclear activities. Thus while NPT covers peaceful nuclear activities indiscriminately in a country, the Agency's original safeguards system is applied according to specific agreements and to given facilities. A basic conflict has now emerged between commercial interests and the increasing wish that transfer of nuclear equipment and know-how should not result in proliferation of military nuclear capacity; however, serious efforts are currently in progress to ensure universal application of IAEA safeguards and to develop them in step with the uses of nuclear energy. (N.E.A.) [fr

  18. Bridging nuclear safety, security and safeguards at geological disposl of high level radioactive waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Niemeyer, Irmgard; Deissmann, Guido; Bosbach, Dirk

    2016-01-01

    Findings and recommendations: • Further R&D needed to identify concepts, methods and technologies that would be best suited for the holistic consideration of safety, security and safeguards provisions of geological disposal. • 3S ‘toolbox’, including concepts, methods and technologies for: ■ material accountancy, ■ measurement techniques for spent fuel verification, ■ containment and surveillance, ■ analysis of open source information, ■ environmental sampling and monitoring, ■ continuity of knowledge, ■ design implications. •: Bridging safety, security and safeguards in research funding and research activities related to geological disposal of high-level radioactive waste and spent nuclear fuel.

  19. Organizational Culture, 3S, and Safeguards by Design

    Energy Technology Data Exchange (ETDEWEB)

    Mladineo, Stephen V.; Frazar, Sarah L.

    2012-01-31

    While Safety and Security Culture are well socialized among nuclear facility designers, the concept of safeguards culture is less well defined. One area where safeguards culture may play a helpful role is in the area of Safeguards by Design. This paper will include a theoretical discussion of organizational culture, leading with safety culture and security culture that are well known, and positing that there may be room to think about safeguards culture along with the others. It will also examine the utility of the 3S concept and how this concept has been used in training for newcomer states. These will lead into a discussion of how the addition of safeguards to the mix of safety by design and security by design can be valuable, particularly as it is socialized to newcomer states.

  20. Safeguards Accountability Network accountability and materials management

    International Nuclear Information System (INIS)

    Carnival, G.J.; Meredith, E.M.

    1985-01-01

    The Safeguards Accountability Network (SAN) is an on-line accountability system used by Rocky Flats Plant to provide accountability control of its nuclear material inventory. The system is also used to monitor and evaluate the use of the nuclear material inventory against programmatic objectives for materials management. The SAN system utilizes two Harris 800 Computers as central processing units. Enhancement plans are currently being formulated to provide automated data collection from process operations on the shop floor and from non-destructive analysis safeguards instrumentation. SAN, discussed in this paper, is an excellent system for basic accountability control of nuclear materials inventories and is a quite useful tool in evaluating the efficient use of nuclear materials inventories at Rocky Flats Plant

  1. Handbook of nuclear data for safeguards

    International Nuclear Information System (INIS)

    Lammer, M.; Schwerer, O.

    1991-06-01

    This handbook contains nuclear data needed by safeguards users for their work. It was initiated by an IAEA working group, and the contents were defined by the relies to a questionnaire sent to safeguards specialists. This is a preliminary edition of the handbook for distribution to safeguards and nuclear data experts for review. The present edition of the handbook contains the following basic nuclear data: actinides: nuclear decay data, thermal neutron cross sections and resonance integrals, prompt neutron data, delayed neutron data; fission products: nuclear decay data, thermal neutron capture cross sections and resonance integrals; fission product yields. Also included are appendices that summarize the data requested by safeguards users, and that present a number of questions to them and to data experts on the data contained in this preliminary issue and about additional data for possible inclusion in future editions and updates of the handbook

  2. IAEA's Safeguards Implementation Practices Guides

    International Nuclear Information System (INIS)

    Mathews, C.; Sahar, S.; Cisar, V.

    2015-01-01

    Implementation of IAEA safeguards benefits greatly from effective cooperation among the IAEA, State or regional authorities (SRAs), and operators of facilities and other locations. To improve such cooperation, the IAEA has produced numerous safeguards guidance documents in its Services Series publications. The IAEA also provides assistance, training and advisory services that are based on the published guidance. The foundation of the IAEA's safeguards guidance is the Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols (IAEA Services Series 21) published in March of 2012. The large majority of States have concluded CSAs and therefore will benefit from this guidance. Many States with CSAs also have concluded small quantities protocols (SQPs) to their CSAs. In April of 2013, the IAEA published the Safeguards Implementation Guide for States with SQPs (IAEA Services Series 22). Other guidance focuses on specific topics such as preparing additional protocol declarations and nuclear material accounting. This paper will describe a recent effort to produce a ''Safeguards Implementation Practices'' (SIP) series of guides that will provide additional explanatory information about safeguards implementation, and share the practical experiences and lessons learned of States and the IAEA over the many decades of implementing safeguards. The topics to be addressed in four SIP guides include: 1) Facilitating IAEA Verification Activities; 2) Establishing and Maintaining State Safeguards Infrastructure; 3) Provision of Information to the IAEA; and 4) Collaborative Approaches to Safeguards Implementation. The SIP Guides build upon the content of IAEA Services Series 21. Because the SIP Guides are intended to share implementation practices and lessons learned of States, a number of experienced State experts have participated in the development of the documents, through a joint Member State Support Programme task

  3. Nonproliferation and safeguarding via ionization detection

    International Nuclear Information System (INIS)

    Koster, J.E.; Johnson, J.P.; Steadman, P.

    1995-01-01

    A significant signature of the presence of special nuclear material (SNM) is ionizing radiation. SNM naturally decays with the emission of alpha particles, gamma rays, and neutrons. Detecting and monitoring these emissions is an important capability for international safeguards. A new detection method collects the ions produced by such radiation in ambient air. Alpha particles in particular are specific to heavy nuclei but have very short range. The ions produced by an alpha, however, can be transported tens of meters to an ion detector. These new monitors are rugged, very sensitive, respond in real time, and in most cases are quite portable

  4. Technical Solution for Improved Safeguards/State Cooperation

    International Nuclear Information System (INIS)

    Miller, S.

    2015-01-01

    This paper will discuss an information technology solution to allow the IAEA Safeguards Department to improve cooperation with States. The solution will be a portal or hub to integrate the information, processes, and people between Safeguards and States. It will allow for two-way communication and collaboration between Safeguards staff and State representatives. This paper discusses the information security challenges inherent in building such a system. It proposes technical architectures that might allow the existing integration approach (e.g., encrypted email exchange) to be kept, while expanding it to include modern integration technologies (e.g., web services), as well explorer new collaborative web technologies. It looks at current Safeguards processes and approaches to cooperation and discusses efficiencies that could be achieved through the adoption of this technology solution. Example process areas for improvement include: a) Safeguards Agreements: States are obligated to submit data on their nuclear programme to the IAEA on a periodic basis. Declarations are received through two separate systems using encrypted email. The proposed solution would allow for enhanced exchange of declaration where States can submit any type of declaration using one system. When declarations are received and validated, an acknowledgement would automatically be sent to the State. The solution would provide the Safeguards Department the ability to ask for clarification as well as collaborate on the submitted declarations. Both the question and the response would be recorded in the system. The solution could also integrate tools allowing declarations to be added directly and validated before submission. b) Other areas that could benefit from this solution include declarations from States with small quantities protocol, facility declarations, as well as systems that support extra-budgetary funding (e.g., SPRICS). (author)

  5. Monitoring methods for nuclear fuel waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R B; Barnard, J W; Bird, G A [and others

    1997-11-01

    This report examines a variety of monitoring activities that would likely be involved in a nuclear fuel waste disposal project, during the various stages of its implementation. These activities would include geosphere, environmental, vault performance, radiological, safeguards, security and community socioeconomic and health monitoring. Geosphere monitoring would begin in the siting stage and would continue at least until the closure stage. It would include monitoring of regional and local seismic activity, and monitoring of physical, chemical and microbiological properties of groundwater in rock and overburden around and in the vault. Environmental monitoring would also begin in the siting stage, focusing initially on baseline studies of plants, animals, soil and meteorology, and later concentrating on monitoring for changes from these benchmarks in subsequent stages. Sampling designs would be developed to detect changes in levels of contaminants in biota, water and air, soil and sediments at and around the disposal facility. Vault performance monitoring would include monitoring of stress and deformation in the rock hosting the disposal vault, with particular emphasis on fracture propagation and dilation in the zone of damaged rock surrounding excavations. A vault component test area would allow long-term observation of containers in an environment similar to the working vault, providing information on container corrosion mechanisms and rates, and the physical, chemical and thermal performance of the surrounding sealing materials and rock. During the operation stage, radiological monitoring would focus on protecting workers from radiation fields and loose contamination, which could be inhaled or ingested. Operational zones would be established to delineate specific hazards to workers, and movement of personnel and materials between zones would be monitored with radiation detectors. External exposures to radiation fields would be monitored with dosimeters worn by

  6. Measuring Safeguards Culture

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-07-19

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  7. An Integrated Passive (Battery-Free) Seals-and-Tag for International Safeguards

    International Nuclear Information System (INIS)

    Nekoogar, F.; Dowla, F.

    2015-01-01

    The ability to reliably and securely automate the monitoring of SNM is an important goal in Safeguards. Although item level monitoring of SNM requires both seal and tag technologies, the two technologies thus far have been developed more or less independently, and had been a lack of an integrated compact system. An integrated seal-and-tag approach not only aids inspectors to perform their tasks effectively, this approach also allows real-time inspection in large scale facilities. A typical facility could be the size of a large warehouse with hundreds or thousands of items that need to be sealed and monitored in real-time. Previously we reported on advanced secure RF passive (battery-less) tags with special features including, long-range interrogation of passive tags, communicating with passive tags with strong encryption and dynamic authentication features, and the ability to place the tags directly on metal objects. In this paper, we report on a novel secure passive tag integrated with fibre optics seal that allows real-time monitoring of items through secure wireless communications that employs AES encryption and dynamic authentication. Furthermore, the devices can be networked for large scale operations. The proposed passive seal has the same capabilities as active seals in that it allows realtime monitoring. However, the battery lifetimes of conventional active seals are limited or unpredictable. As the long-term storage of SNM might last for several years, these passive seals having been integrated with passive RF tags, extends the lifetime of the physical seals and tags indefinitely, while getting the same performance of active seals and tags. The integrated seal-and-tag is transformational in addressing a critical need in Safeguards area for long-term real-time monitoring. (author)

  8. Work Group 1: Future Directions for International Safeguards

    International Nuclear Information System (INIS)

    Casterton, J.; Meylemans, P.

    2013-01-01

    The State-Level Concept (SLC) is a holistic approach to safeguards implementation, applicable to all States with safeguards agreements. It is based on a comprehensive and continuous State evaluation and a State level approach for each State, including a specific combination of safeguards measures. It is executed through an annual implementation plan. The SLC has the value of considering the State as a whole. It provides the opportunity to take State-specific factors into account through all stages of safeguards implementation. The implementation of the SLC permits the IAEA to be responsive to all kinds of changes arising from continuous analysis. As a result the safeguards conclusions remain soundly based and up-to-date. The SLC is implemented by the IAEA as a continuous process involving three major components: establishing knowledge about the State and drawing conclusions, determining the specific State level approach, and planning and implementing safeguards activities. The major products that emerge from this process are the State level approach, the annual implementation plan that is the basis for implementing safeguards activities in a State on an annual basis, and the safeguards conclusions, which are set out in the Safeguards Implementation Report on an annual basis. A better cooperation between IAEA and SSAC (State Systems of Accounting for and Control of nuclear material), RSAC (Regional State Systems of Accounting for and Control of nuclear material is important for developing and implementing SLC. The paper is followed by the slides of the presentation. (A.C.)

  9. The New Brunswick Laboratory Safeguards Measurement Evaluation Program

    International Nuclear Information System (INIS)

    Cacic, C.G.; Trahey, N.M.; Zook, A.C.

    1987-01-01

    The New Brunswick Laboratory (NBL) has been tasked by the U.S. Department of Energy (DOE) Office of Safeguards and Security (OSS) to assess and evaluate the adequacy of measurement technology as applied to materials accounting in DOE nuclear facilities. The Safeguards Measurement Evaluation (SME) Program was developed as a means to monitor and evaluate the quality and effectiveness of accounting measurements by site, material balance area (MBA), or unit process. Phase I of the SME Program, initiated during 1985, involved evaluation of the primary accountability measurement methods at six DOE Defense Programs facilities: Savannah River Plant, Portsmouth Gaseous Diffusion Plant, Y-12 Plant, Rocky Flats Plant, Rockwell Hanford Operations, and NBL. Samples of uranyl nitrate solution, dried plutonium nitrates, and plutonium oxides were shipped to the participants for assay and isotopic abundance measurements. Resulting data are presented and evaluated as indicators of current state-of-the-practice accountability measurement methodology, deficiencies in materials accounting practices, and areas for possible assistance in upgrading measurement capabilities. Continuing expansion of the SME Program to include materials which are representative of specific accountability measurement points within the DOE complex is discussed

  10. Strengthening of Organizational Infrastructure for Meeting IAEA Nuclear Safeguards Obligations: Bangladesh Perspective

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2010-01-01

    Safeguards are arrangements to account for and control the use of nuclear materials. This verification is a key element in the international system which ensures that uranium in particular is used only for peaceful purposes. The only nuclear reactor in Bangladesh achieved critically on September 14, 1986. Reactor Operation and Maintenance Unit routinely carries out certain international obligations which need to undertake as signatory of different treaties, agreements and protocols in the international safeguards regime. Pursuant to the relevant articles of these agreements/protocols, the reactor and associated facilities of Bangladesh (Facility code: BDA- and BDZ-) are physically inspected by the designated IAEA safeguards inspectors. The Bangladesh Atomic Energy Commission (BAEC) has recently created a new division called 'Nuclear Safeguards and Security Division' for enhancing the safeguards activities as per international obligations. This division plays a leading role in the planning, implementation, and evaluation of the BAEC's nuclear safeguards and nuclear security activities. This division is actively working with USDOE, IAEA and EU to enhance the nuclear safeguards and security activities in the following areas: - Analysis of nuclear safeguards related reports of 3 MW TRIGA Mark-II research reactor; - Upgrading of physical protection system of 3 MW TRIGA Mark-II research reactor, gamma irradiation facilities, central radioactive storage and processing facility and different radiation oncology facilities of Bangladesh under GTRI programme; - Supervision for installation of radiation monitoring system of the Chittagong port under USDOE Megaports Initiative Programmes for detection of illicit trafficking of nuclear and radioactive materials; - Development of laboratory capabilities for analysis of nuclear safeguards related samples; - Planning for development of organizational infrastructure to carry out safeguards related activities under IAEA different

  11. International safeguards: Accounting for nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.

    1988-09-28

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs.

  12. Principles in safeguards: A Canadian perspective

    International Nuclear Information System (INIS)

    Keen, L.J.

    2007-01-01

    L.J. Keen presented the Canadian perspective on safeguards. She noted that the IAEA safeguards system has responded well to challenges and has acted as the effective early warning system that it was intended to be. The exit from the non-proliferation regime by the Democratic People's Republic of Korea has demonstrated how effective safeguards and verification are seen to be in detecting proliferation activity. The main areas of importance for Canada are effectiveness, efficiency and transparency. Effectiveness requires information and access, and assures citizens of the exclusively peaceful uses of nuclear energy. Efficiency requires risk informed decisions for the sound allocation of resources and the early incorporation of proliferation resistance in design and construction, so that IAEA efforts can concentrate on where the risks are greatest. Openness and transparency include the public, and for the IAEA this includes its Member States since ultimately they control its activities and finances. Canada received its broader safeguards conclusion in 2005 and intends to maintain it. This will require continuous improvement in an era of rapid expansion of the nuclear industry. One problem foreseen is the adequate supply of qualified personnel, with the CNSC's resources growing at about 12%. The CNSC is looking at internal training programmes and internships

  13. International safeguards: Accounting for nuclear materials

    International Nuclear Information System (INIS)

    Fishbone, L.G.

    1988-01-01

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the ''non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs

  14. Safeguards and security. Progress report, August 1982-January 1983

    International Nuclear Information System (INIS)

    Smith, D.B.

    1983-11-01

    Activities are described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. This assistance includes consultation on materials accounting problems, development of specialized techniques and instruments, and comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats a relatively new set of Los Alamos activities aimed at the security of information and computer systems. Our focus this period was on continuing the activities of the Computer Security Center, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, in every case they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in benefiting from field experiences in operating environments

  15. Optimizing and joining future safeguards efforts by 'remote inspections'

    International Nuclear Information System (INIS)

    Zendel, M.; Khlebnikov, N.

    2009-01-01

    Full-text: Remote inspections have a large potential to save inspection effort in future routine safeguards implementation. Such inspections involve remote activities based on the analysis of data acquired in the field without the physical presence of an inspector, shifting the inspectors' priorities further toward unannounced inspections, complementary access activities and data evaluation. Large, automated and complex facilities require facility resident and specific safeguards equipment systems with features for unattended and remotely controlled operation as well as being integrated in the nuclear process. In many instances the use of such equipment jointly with the SSAC/RSAC and the operator is foreseen to achieve affordable effectiveness with a minimum level of intrusiveness to the facility operation. Where it becomes possible to achieve independent conclusions by this approach, the IAEA would make full use of the SSAC/RSAC, involving State inspectors and/or facility operators to operate inspection systems under remotely controlled IAEA mechanisms. These mechanisms would include documented procedures for routine joint-use, defining arrangements for data sharing, physical security and authentication mechanisms, recalibration and use of standards and software, maintenance, repair, storage and transportation. The level of cooperation and willingness of a State to implement such measures requested and properly justified by the IAEA will demonstrate its commitment to full transparency in its nuclear activities. Examples of existing remote inspection activities, including joint-use activities will be discussed. The future potential of remote inspections will be assessed considering technical developments and increased needs for process monitoring. Enhanced cooperation with SSAC/RSAC within the framework of remote inspections could further optimize the IAEA's inspection efforts while at the same time maintaining effective safeguards implementation. (author)

  16. Implementation of safeguards at modular vault dry store at Paks NPP in Hungary

    International Nuclear Information System (INIS)

    Safar, J.; Czoch, I.; Szoellosi, E.F.; Janov, J.; Sannie, G.; Daniel, G.; Szabo, J.L.

    1999-01-01

    A safeguards system has been implemented at the GEC-Alsthom designed Modular Vault Dry Store at Paks NPP in Hungary without previous safeguards related experience for this type of spent fuel storage. C/S measures and sealing have primary importance. In addition. spent fuel attribute signatures are detected by a fuel transfer monitor at the cask load/unload port. These are complemented with the corresponding accounting measures. (author)

  17. Coordinated safeguards for materials management in a nitrate-to-oxide conversion facility

    International Nuclear Information System (INIS)

    Dayem, H.A.; Cobb, D.D.; Dietz, R.J.; Hakkila, E.A.; Kern, E.A.; Shipley, J.P.; Smith, D.B.; Bowersox, D.F.

    1977-09-01

    The conceptual design of a materials management system for safeguarding special nuclear materials in a plutonium nitrate-to-oxide conversion facility is developed and evaluated. Dynamic material balances are drawn from information provided by nondestructive-analysis techniques, process-control instrumentation, and conventional chemical analyses augmented by process-monitoring devices. Powerful statistical methods, cast in the framework of decision analysis and applied to unit-process accounting areas, ensure adequate spatial and temporal quantification of possible diversion with minimal process disruption. Modeling and simulation techniques assist in evaluating the sensitivity of the system to various diversion schemes and in comparing safeguards strategies. Features that would improve the safeguardability of the conversion process are discussed

  18. Los Alamos safeguards program overview and NDA in safeguards

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1988-01-01

    Over the years the Los Alamos safeguards program has developed, tested, and implemented a broad range of passive and active nondestructive analysis (NDA) instruments (based on gamma and x-ray detection and neutron counting) that are now widely employed in safeguarding nuclear materials of all forms. Here very briefly, the major categories of gamma ray and neutron based NDA techniques, give some representative examples of NDA instruments currently in use, and cite a few notable instances of state-of-the-art NDA technique development. Historical aspects and a broad overview of the safeguards program are also presented

  19. Advanced safeguards research and development plan with an emphasis on its impact on nuclear power-plant design

    International Nuclear Information System (INIS)

    Tobin, S.J.; Demuth, S.F.; Miller, M.C.; Swinhoe, M.T.; Thomas, K.E.

    2007-01-01

    One tool for reducing the concern of nuclear proliferation is enhanced safeguards. Present safeguards have evolved over the past 40 years, and future safeguards will grow from this strong base to implement new technologies for improving our ability to quantify nuclear material. This paper will give an overview of the advanced technology research and development plan for safeguarding. One of the research facilities planned by the Department of Energy is the Advanced Fuel Cycle Facility (AFCF), to develop a novel nuclear fuel recycling program. Since the Advanced Fuel Cycle Facility will receive and reprocess spent fuel and will fabricate fast-reactor fuel, a wide breadth of safeguards technologies is involved. A fundamental concept in safeguards is material control and accounting (MCA). 4 topics concerning MCA and requiring further research have been identified: 1) measuring spent fuel, 2) measuring the plutonium content in the electro-refiner with pyro-processing, 3) measuring plutonium in the presence of other actinides, and 4) measuring neptunium and americium in the presence of other actinides. As for the long-term research and development plan for the AFCF, it will include improving MCA techniques as well as introducing new techniques that are not related to MCA, for example, enhanced containment and surveillance, or enhanced process monitoring. The top priority will stay quantifying the plutonium as accurately as possible and to reach this purpose 4 relevant technologies have been identified: 1) the microcalorimeter, 2) the passive neutron-albedo reactivity, 3) list-mode data acquisition, and 4) a liquid-scintillator multiplicity counter. Incorporating safeguards into the initial design of AFCF (safeguards by design) is a central concept. As the technology research and development plan for the Advanced Fuel Cycle Facility is examined, particular attention will be given to safeguards technologies that may affect the physical design of nuclear power plants

  20. Transformative monitoring approaches for reprocessing.

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin B.

    2011-09-01

    The future of reprocessing in the United States is strongly driven by plant economics. With increasing safeguards, security, and safety requirements, future plant monitoring systems must be able to demonstrate more efficient operations while improving the current state of the art. The goal of this work was to design and examine the incorporation of advanced plant monitoring technologies into safeguards systems with attention to the burden on the operator. The technologies examined include micro-fluidic sampling for more rapid analytical measurements and spectroscopy-based techniques for on-line process monitoring. The Separations and Safeguards Performance Model was used to design the layout and test the effect of adding these technologies to reprocessing. The results here show that both technologies fill key gaps in existing materials accountability that provide detection of diversion events that may not be detected in a timely manner in existing plants. The plant architecture and results under diversion scenarios are described. As a tangent to this work, both the AMUSE and SEPHIS solvent extraction codes were examined for integration in the model to improve the reality of diversion scenarios. The AMUSE integration was found to be the most successful and provided useful results. The SEPHIS integration is still a work in progress and may provide an alternative option.

  1. Nuclear safeguards policy

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Claims have been made that Australia's nuclear safeguards policy, announced in 1977, has changed. However, examination of the texts of nuclear safeguards agreements negotiated by Australia shows that the policy has been implemented and adhered to. The purpose of these agreements is to obtain assurance that uranium exported is used exclusively for peaceful purposes. The questions of reprocessing, transfer to third countries and the application of IAEA safeguards are discussed

  2. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Casey Durst

    2009-10-01

    legal document. As such, it is written in a legalese that is understood by specialists in international law and treaties, but not by most outside of this field, including designers of nuclear facilities. For this reason, many of the requirements have been simplified and restated. However, in all cases, the relevant source document and passage is noted so that readers may trace the requirement to the source. This is a helpful living guide, since some of these requirements are subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and nuclear facility operators to improve not only the effectiveness of international nuclear safeguards, but also the efficiency. As these improvements are made, the following guidelines should be updated and revised accordingly.

  3. Preliminary concepts: safeguards for spent light-water reactor fuels

    International Nuclear Information System (INIS)

    Cobb, D.D.; Dayem, H.A.; Dietz, R.J.

    1979-06-01

    The technology available for safeguarding spent nuclear fuels from light-water power reactors is reviewed, and preliminary concepts for a spent-fuel safeguards system are presented. Essential elements of a spent-fuel safeguards system are infrequent on-site inspections, containment and surveillance systems to assure the integrity of stored fuel between inspections, and nondestructive measurements of the fuel assemblies. Key safeguards research and development activities necessary to implement such a system are identified. These activities include the development of tamper-indicating fuel-assembly identification systems and the design and development of nondestructive spent-fuel measurement systems

  4. Agreement reached on integrated safeguards in European Union

    International Nuclear Information System (INIS)

    2010-01-01

    Full text: The International Atomic Energy Agency (IAEA), in cooperation with the European Commission, has reached agreement on arrangements to implement 'integrated safeguards' in all non-nuclear-weapon States of the European Union with significant nuclear activities. 'This important milestone is the result of the constructive common efforts of all parties concerned. It is a clear signal of the importance attributed by the EU and its Member States, as well as the IAEA, to the reinforcement of the nuclear non-proliferation regime,' said Andris Piebalgs, Member of the European Commission in charge of Energy. 'Once we have sufficient confidence that a State' s nuclear activities are purely peaceful, we can apply safeguards measures in a less prescriptive, more customised manner. This reduces the inspection burden on the State and the inspection effort of the IAEA, while enabling the IAEA to maintain the conclusion that all nuclear material has remained in peaceful activities,' said Olli Heinonen, Deputy Director General and Head of IAEA Safeguards Department. Background The Nuclear Non-Proliferation Treaty (NPT) is the main international Treaty prohibiting the spread of nuclear weapons. It entrusts the IAEA to verify that nuclear material is not diverted to nuclear weapons or other nuclear explosive devices through the application of 'safeguards'. IAEA safeguards include comprehensive safeguards agreements and additional protocols that enable the IAEA to conclude that all nuclear material has remained in peaceful activities in a State. Integrated Safeguards refers to the optimum combination of all safeguards measures available to the Agency under comprehensive safeguards agreements and additional protocols to achieve maximum effectiveness and efficiency in meeting the Agency ' s safeguards obligations. In the European Union, nuclear safeguards are implemented on the basis of the Euratom Treaty and trilateral agreements between Euratom, its Member States and the IAEA

  5. Safeguards systems analysis research and development and the practice of safeguards at DOE facilities

    International Nuclear Information System (INIS)

    Zack, N.R.; Thomas, K.E.; Markin, J.T.; Tape, J.W.

    1991-01-01

    Los Alamos Safeguards Systems Group personnel interact with Department of Energy (DOE) nuclear materials processing facilities in a number of ways. Among them are training courses, formal technical assistance such as developing information management or data analysis software, and informal ad hoc assistance especially in reviewing and commenting on existing facility safeguards technology and procedures. These activities are supported by the DOE Office of Safeguards and Security, DOE Operations Offices, and contractor organizations. Because of the relationships with the Operations Office and facility personnel, the Safeguards Systems Group research and development (R and D) staff have developed an understanding of the needs of the entire complex. Improved safeguards are needed in areas such as materials control activities, accountability procedures and techniques, systems analysis and evaluation methods, and material handling procedures. This paper surveys the generic needs for efficient and cost effective enhancements in safeguards technologies and procedures at DOE facilities, identifies areas where existing safeguards R and D products are being applied or could be applied, and sets a direction for future systems analysis R and D to address practical facility safeguards needs

  6. IAEA safeguards technical manual

    International Nuclear Information System (INIS)

    1982-03-01

    Part F of the Safeguards Technical Manual is being issued in three volumes. Volume 1 was published in 1977 and revised slightly in 1979. Volume 1 discusses basic probability concepts, statistical inference, models and measurement errors, estimation of measurement variances, and calibration. These topics of general interest in a number of application areas, are presented with examples drawn from nuclear materials safeguards. The final two chapters in Volume 1 deal with problem areas unique to safeguards: calculating the variance of MUF and of D respectively. Volume 2 continues where Volume 1 left off with a presentation of topics of specific interest to Agency safeguards. These topics include inspection planning from a design and effectiveness evaluation viewpoint, on-facility site inspection activities, variables data analysis as applied to inspection data, preparation of inspection reports with respect to statistical aspects of the inspection, and the distribution of inspection samples to more than one analytical laboratory. Volume 3 covers generally the same material as Volumes 1 and 2 but with much greater unity and cohesiveness. Further, the cook-book style of the previous two volumes has been replaced by one that makes use of equations and formulas as opposed to computational steps, and that also provides the bases for the statistical procedures discussed. Hopefully, this will help minimize the frequency of misapplications of the techniques

  7. Integration of the advanced transparency framework to advanced nuclear systems : enhancing Safety, Operations, Security and Safeguards (SOSS)

    International Nuclear Information System (INIS)

    Mendez, Carmen Margarita; Rochau, Gary Eugene; Cleary, Virginia D.

    2008-01-01

    The advent of the nuclear renaissance gives rise to a concern for the effective design of nuclear fuel cycle systems that are safe, secure, nonproliferating and cost-effective. We propose to integrate the monitoring of the four major factors of nuclear facilities by focusing on the interactions between Safeguards, Operations, Security, and Safety (SOSS). We proposed to develop a framework that monitors process information continuously and can demonstrate the ability to enhance safety, operations, security, and safeguards by measuring and reducing relevant SOSS risks, thus ensuring the safe and legitimate use of the nuclear fuel cycle facility. A real-time comparison between expected and observed operations provides the foundation for the calculation of SOSS risk. The automation of new nuclear facilities requiring minimal manual operation provides an opportunity to utilize the abundance of process information for monitoring SOSS risk. A framework that monitors process information continuously can lead to greater transparency of nuclear fuel cycle activities and can demonstrate the ability to enhance the safety, operations, security and safeguards associated with the functioning of the nuclear fuel cycle facility. Sandia National Laboratories (SNL) has developed a risk algorithm for safeguards and is in the process of demonstrating the ability to monitor operational signals in real-time though a cooperative research project with the Japan Atomic Energy Agency (JAEA). The risk algorithms for safety, operations and security are under development. The next stage of this work will be to integrate the four algorithms into a single framework

  8. Protecting safeguards information / Division of technical support

    International Nuclear Information System (INIS)

    2002-01-01

    This DVD contains two films representing the key aspects of the IAEA Department of Safeguards. 'Protecting Safeguards Information' is a narrative/fiction film which presents the Agency's information handling and protection measures. A security representative from a fictional nation receives a briefing on the procedures and methods used by the Department. These techniques will assure member states that the information they provide to the Agency is kept safe and confidential. 'Division of Technical Support' is a non-fiction documentary which presents a detailed look at the technical capabilities and management techniques used by the Agency in nuclear material accountancy. The film covers many aspects of safeguards equipment and techniques including: NDA and DA instruments, seals, surveillance, training, development and maintenance. Taken together, these films provide an introduction and overview to many important aspects of the IAEA Department of Safeguards. (IAEA)

  9. The SSAC in international safeguards and non-proliferation aspects

    International Nuclear Information System (INIS)

    Bett, F.L.; Humphreys, J.J.

    1989-01-01

    The history of international efforts against horizontal proliferation, including the Baruch Plan, bilateral safeguards agreement, IAEA safeguards, the Nuclear Non-Proliferation Treaty, the Zangger Committee, the Nuclear Supplier Group guidelines and the Physical Protection Convention, is reviewed. The role of IAEA NPT safeguards in verifying nondiversion and ensuring no misuse of supplied nuclear items is discussed. The vital importance of successful performance of this role to peaceful nuclear commerce is stressed. The application of NPT safeguards by the IAEA is described, particularly the IAEA's requirement that a State System of Accounting for and Control of Nuclear Material be established. Such a State System has two different but complementary areas of responsibility - ensuring that the use of nuclear material is controlled effectively and can be readily accounted for (this includes the area of physical protection), and providing accounts of nuclear material to responsible bodies such as the State's government and equally importantly to the IAEA for safeguards purpose, as the IAEA bases its conclusions about diversion on its verification of the data provided by the State System

  10. Integrating virtual reality applications in nuclear safeguards

    International Nuclear Information System (INIS)

    Barletta, Michael; Crete, Jean-Maurice; Pickett, Susan

    2011-01-01

    Virtual reality (VR) tools have already been developed and deployed in the nuclear industry, including in nuclear power plant construction, project management, equipment and system design, and training. Recognized as powerful tools for, inter alia, integration of data, simulation of activities, design of facilities, validation of concepts and mission planning, their application in nuclear safeguards is still very limited. However, VR tools may eventually offer transformative potential for evolving the future safeguards system to be more fully information-driven. The paper focuses especially on applications in the area of training that have been underway in the Department of Safeguards of the International Atomic Energy Agency. It also outlines future applications envisioned for safeguards information and knowledge management, and information-analytic collaboration. The paper identifies some technical and programmatic pre-requisites for realizing the integrative potential of VR technologies. If developed with an orientation to integrating applications through compatible platforms, software, and models, virtual reality tools offer the long-term potential of becoming a real 'game changer,' enabling a qualitative leap in the efficiency and effectiveness of nuclear safeguards. The IAEA invites Member States, industry, and academia to make proposals as to how such integrating potential in the use of virtual reality technology for nuclear safeguards could be realized. (author)

  11. IAEA safeguards assessments

    International Nuclear Information System (INIS)

    Gruemm, H.; Parisick, R.; Pushkarjov, V.; Shea, T.; Brach, E.

    1981-01-01

    This paper describes the safeguards program administered by the IAEA, which must provide assurance to the international community that agency safeguards have the capacity to deter diversion, if contemplated, to detect diversion, if undertaken, and to provide assurance that no diversions have occurred when none are detected. This assurance to the international community is based upon the capability of the Agency's safeguards program to detect diversion and its complementary effect of deterrance

  12. Safeguards as an evolutionary system

    International Nuclear Information System (INIS)

    Carlson, J.

    1998-01-01

    NPT safeguards pursuant to INFCIRC/153 retain a strong emphasis on materials accountancy, and are primarily concerned with verifying nuclear activities as declared by the State - the correctness of States' declarations. This decade, failure to adequately address the possibility of undeclared nuclear activities - the issue of the completeness of States' declarations - has been recognized as a major shortcoming in the safeguards system. Since the 'classical' safeguards system is unable to provide credible assurance of the absence of clandestine nuclear activities, substantial efforts are being made to strengthen the IAEA's capabilities in this regard. Agreement has been reached on a Model Protocol substantially extending the Agency's authority, and good progress has been made in developing the new approaches, technologies and techniques required to ensure this authority is used effectively. Increasingly, safeguards will involve more qualitative judgements. Transparency will be very important - without a clear understanding by Member States of how the Agency goes about its new tasks and reaches its conclusions about the absence of undeclared activities, the safeguards system will not fulfil its vital confidence-building role. A major theme in current safeguards thinking is integration, the rationalization of classical safeguards with the new safeguards strengthening measures. As part of the rationalization process, it is timely to re-assess traditional safeguards implementation practices. One of these is uniformity in the way safeguards activities are implemented in different States. Another is whether the traditional concept of safeguards confidentiality is consistent with the increasing importance of transparency. (author)

  13. Surveillance instrumentation for spent-fuel safeguards

    International Nuclear Information System (INIS)

    McKenzie, J.M.; Holmes, J.P.; Gillman, L.K.; Schmitz, J.A.; McDaniel, P.J.

    1978-01-01

    The movement, in a facility, of spent reactor fuel may be tracked using simple instrumentation together with a real time unfolding algorithm. Experimental measurements, from multiple radiation monitors and crane weight and position monitors, were obtained during spent fuel movements at the G.E. Morris Spent-Fuel Storage Facility. These data and a preliminary version of an unfolding algorithm were used to estimate the position of the centroid and the magnitude of the spent fuel radiation source. Spatial location was estimated to +-1.5 m and source magnitude to +-10% of their true values. Application of this surveillance instrumentation to spent-fuel safeguards is discussed

  14. The European experience in safeguarding nuclear fuel recycle processes and Pu stores

    International Nuclear Information System (INIS)

    Synetos, Sotiris

    2013-01-01

    Civil nuclear programs in the European Union member states have from their onset included fuel recycling as an option. The EURATOM Treaty gives to the European Commission the obligation to apply safeguards controls to all civil Nuclear Material in the European Union, and to facilitate the implementation of IAEA safeguards. The European Commission (EURATOM) has thus gained years of experience in safeguarding reprocessing plants, Pu storages, and MOX fuel fabrication plants and is currently participating in the development of approaches and measures for safeguarding long term repositories. The aim of this paper is to present the regulator's views and experience on safeguarding nuclear fuel recycle processes and Pu stores, which is based on the following principles: -) Early involvement of the control organizations in the design of the safeguards measures to be developed for a plant (currently referred to as Safeguards by Design); -) Early definition of a safeguards strategy including key measurement points; -) The design and development of plant specific Safeguards equipment, including an on site laboratory for sample analysis; -) The development by the operator of an appropriate Nuclear Material accountancy system to facilitate their declaration obligations; -) The introduction of an inspection regime allowing comprehensive controls under the restrictions imposed by financial and Human Resources limitations; -) Optimization of the inspection effort by using unattended measuring stations, containment and surveillance systems and secure remote transmission of data to the regulator's headquarters. The paper is followed by the slides of the presentation. (authors)

  15. Universal Authenticated Item Monitoring System (AIMS) second generation equipment

    International Nuclear Information System (INIS)

    Schoeneman, J.L.; Baumann, M.J.; Fox, L.J.; Jenkins, C.D.; Perlinsk, A.W.

    1992-01-01

    Sandia National Laboratories (SNL) is in the final stages of developing a Universal Authenticated Item Monitoring System (AIMS). When completed, AIMS will provide applicable agencies in the US government, and those in the International arena, with a secure and convenient method of monitoring the physical status of selected items. The benefit derived from this development activity will be the commercial availability of an item monitoring system with the capability for ''quick set-up'' monitoring, as well as long-term unattended monitoring. The AIMS includes a variety of sensors, a robust and authenticated radio frequency (RF) communication link, a Receiver Processing Unit (RPU), and an inspector-friendly personal computer (PC) interface for collecting, sorting, viewing and archiving pertinent event histories. The system will provide the capability to monitor selected items in a real-time mode, a remotely interrogated mode, and a stand-alone, unattended data collection mode. The sensor suite under development includes advanced motion sensors, interior volumetric intrusion sensors, Re-usable, In-situ Verifiable Authenticated (RIVA) fiber-optic seal sensors, generic utility sensors (to accommodate contact closure inputs), and radiation and environmental sensors. A new generation authentication algorithm recently has been developed that provides a high degree of system security 121. The AIMS has potential safeguards applications in the areas of arms control and treaty verification military asset control, International Atomic Energy Agency (IAEA) and Euratom safeguards verification activities, as well as domestic nuclear safeguard activities. Commercial applications could include high-value inventory control and security systems. This paper describes the second-generation AIMS along with its recently expanded sensor suite and enhanced data collection capabilities

  16. Beyond Human Capital Development: Balanced Safeguards Workforce Metrics and the Next Generation Safeguards Workforce

    International Nuclear Information System (INIS)

    2014-01-01

    Since its establishment in 2008, the Next Generation Safeguards Initiative (NGSI) has achieved a number of objectives under its five pillars: concepts and approaches, policy development and outreach, international nuclear safeguards engagement, technology development, and human capital development (HCD). As a result of these efforts, safeguards has become much more visible as a critical U.S. national security interest across the U.S. Department of Energy (DOE) complex. However, limited budgets have since created challenges in a number of areas. Arguably, one of the more serious challenges involves NGSI's ability to integrate entry-level staff into safeguards projects. Laissez fair management of this issue across the complex can lead to wasteful project implementation and endanger NGSI's long-term sustainability. The authors provide a quantitative analysis of this problem, focusing on the demographics of the current safeguards workforce and compounding pressures to operate cost-effectively, transfer knowledge to the next generation of safeguards professionals, and sustain NGSI safeguards investments.

  17. U.S. safeguards history and the evolution of safeguards research and development

    International Nuclear Information System (INIS)

    Brenner, L.M.; McDowell, S.C.T.

    1989-01-01

    In discussing the U.S. safeguards history and the evolution of safeguards research and development, five significant eras are identified. The period ending January 1, 1947, may be called the first era. Safeguards as known today did not exist and the classic military approach of security protection applied. The second era covers the period from 1947 to 1954 (when the Atomic Energy Act was completely rewritten to accommodate the then foreseen Civil uses Program and international cooperation in peaceful uses of nuclear energy), and the first steps were taken by the Atomic Energy Commission to establish material accounting records for all source and fissionable materials on inventory. The third era covers the period 1954 through 1968, which focused on nuclear safeguards in its domestic activities and made major policy changes in its approach to material control and accountability. The fourth era, 1968 to 1972 saw a quantum jump in the recognition and need for a significant safeguards research and development program, answered by the formation of a safeguards technical support organization at Brookhaven National Laboratory and a safeguards Laboratory at Los Alamos Scientific Laboratory for the development and application of non-destructive assay technology. The fifth era had its beginning in 1972 with the burgeoning of international terrorism. The corresponding need for a strong physical protection research and development support program was responded to by the Sandia National Laboratory

  18. The international safeguards system and physical protection

    International Nuclear Information System (INIS)

    Canty, M.J.; Lauppe, W.D.; Richter, B.; Stein, G.

    1990-02-01

    The report summarizes and explains facts and aspects of the IAEA safeguards performed within the framework of the Non-Proliferation Treaty, and shows perspectives to be discussed by the NPT Review Conferences in 1990 and 1995. The technical background of potential misuse of nuclear materials for military purposes is explained in connection with the physical protection regime of the international safeguards, referring to recent developments for improvement of technical measures for material containment and surveillance. Most attention is given to the peaceful uses of nuclear energy and their surveillance by the IAEA safeguards, including such new technologies and applications as controlled nuclear fusion, laser techniques for uranium enrichment, and particle accelerators. The report's concluding analyses of the current situation show potentials for improvement and desirable or necessary consequences to be drawn for the international safeguards system, also taking into account recent discussions on the parliamentary level. (orig./HP) [de

  19. Remote and unattended monitoring techniques

    International Nuclear Information System (INIS)

    Abedin-Zadeh, R.; Whichello, J.

    1998-01-01

    In the last years, there has been a tremendous growth in the number of unattended assay and monitoring systems in the field. These systems have enabled reduced presence of inspectors while increasing the verification coverage. As part of the Strengthened safeguards System and in particular as part of the measures to improve the cost-effectiveness of safeguards, the possibility of remote transfer of authenticated and encrypted video surveillance, seals and radiation sensor data via telephone or special satellite links have been demonstrated and the necessary arrangements and infrastructure have been prepared. The evaluation of field trials of the remote monitoring systems have shown that the systems are effective in monitoring events of safeguards relevance in near real times. The systems are competitive from a cost standpoint when compared to current methods. The reduction of inspection efforts can be realized by application of remote monitoring technique with scheduled inspections and more effectively with the short notice or unannounced random inspections. It is expected that, upon completion of the necessary arrangements with the Member States authorities, the safeguards department will implement the technique widely before the year 2000

  20. IAEA safeguards glossary

    International Nuclear Information System (INIS)

    1980-01-01

    An unambiguous definition and rationalization of many of the terms for the purpose of IAEA safeguards are given, with a view to improving the common understanding of such terms within the international community. The glossary focuses only on safeguards meanings in general, and IAEA meanings in particular, of the terms discussed. Terms belong to the following problems: nuclear and non-nuclear material, nuclear equipment, design of the safeguards approach, nuclear material accountancy, physical standards, sampling, measurements, statistical concepts and others

  1. Implementation of the CNEN's safeguards laboratory

    International Nuclear Information System (INIS)

    Almeida, S.G. de

    1986-01-01

    The International Safeguards Agreements between Brazil and others countries has been concluded with the participation of the International Atomic Energy Agency (AIEA), and involve the Physical Protection and Control of Nuclear Material activities, which set up the National Safeguards System. The Safeguards Laboratory was constructed to the implementation and maintenance of this National Safeguards System, under responsability of CNEN's Safeguards Division, in order to carry out measurements of nuclear materials under safeguards. Technical requirements applied to the construction, setting up and operation of the laboratory are showed. The first results refer to the implementation of safeguards methods and techniques, as well as its participation within international scientific and technical co-operation programs in the safeguards area, through of them we wait its credencement by the AIEA as Regional Safeguards Laboratory for every countries of the Latin America. (Author) [pt

  2. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  3. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  4. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  5. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  6. International safeguards for fast critical facilities

    International Nuclear Information System (INIS)

    Gunderson, D.O.; Todd, J.L.

    1978-12-01

    It was concluded that practical routine inventory verification techniques can be effective in detecting protracted diversion but will not meet the seven-day timeliness criteria either for protracted or large one-time diversions. An effective international safeguards system requires a method of continuously monitoring facility activities either with instrumentation, inspectors, or a combination thereof. It was also concluded that a resident inspector is required at this type of facility because of the many nonroutine operations. However, a single inspector cannot adequately monitor all activities to assure that no diversion is taking place. The use of existing structural features and unattended monitoring at portals as well as surveillance by a resident inspector can provide an effective detection capability. A rapid special inventory verification is required following detection to verify any suspected diversion

  7. Euratom Safeguards: Improving Safeguards by Cooperation in R&D and Implementation

    International Nuclear Information System (INIS)

    Schwalbach, P.; Schoop, K.; Ancius, D.; Marszalek, Y.; Smejkal, A.; Vaccaro, S.; De Baere, P.; Koutsoyannopoulos, C.; Meylemans, P.; Murtezi, M.; Persson, L.; Synetos, S.; Tempesta, S.; Canadell Bofarull, V.; Turner, D.; Goncalves, J.G.M.; Peerani, P.; Berndt, R.; Stringa, E.; Richir, P.; Sequeira, V.; Tagziria, H.; Janssens, W.A.M.; Zuleger, E.; Luetzenkirchen, K.; )

    2015-01-01

    Euratom Safeguards, implemented on the basis of the Euratom Treaty by the European Commission's Directorate Nuclear Safeguards, is the largest Regional Safeguards System and involved in many R&D activities of its own, often in close cooperation with external partners. Most of the results of these activities are shared with or offered to the IAEA. The work described in this paper is complementary to the projects run by the European Commission Cooperative Support Programme (ECSP) to the IAEA. The ECSP activities will be described elsewhere at this conference. The present paper will provide an overview on R&D activities run in addition to the ECSP, and will attempt to link them to the capabilities discussed by the IAEA in the Long Term R&D Plan. The range of topics will include work on unattended data acquisition systems (hard- and software), advanced data analysis tools, news from seals related technology, containment and design verification applications of 3D lasers, activities to keep standard measurement technologies sustainable etc. Work done with the IAEA in preparation of new facilities and facility types will be discussed briefly. The paper will also highlight some current challenges and make suggestions how to address them. (author)

  8. IAEA Guidance for Safeguards Implementation in Facility Design and Construction

    International Nuclear Information System (INIS)

    Sprinkle, J.; Hamilton, A.; Poirier, S.; Catton, A.; Ciuculescu, C.; Ingegneri, M.; Plenteda, R.

    2015-01-01

    One of the IAEA's statutory objectives is to seek to accelerate and enlarge the contribution of nuclear energy to peace, health and prosperity throughout the world. One way the IAEA works to achieve this objective is through the publication of technical series that can provide guidance to Member States. These series include the IAEA Services Series, the IAEA Safety Standard Series, the IAEA Nuclear Security Series and the IAEA Nuclear Energy Series. The Nuclear Energy Series is comprised of publications designed to encourage and assist research and development on, and practical application of, nuclear energy for peaceful purposes. This includes guidance to be used by owners and operators of utilities, academia, vendors and government officials. The IAEA has chosen the Nuclear Energy Series to publish guidance for States regarding the consideration of safeguards in nuclear facility design and construction. Historically, safeguards were often applied after a facility was designed or maybe even after it was built. However, many in the design and construction community would prefer to include consideration of these requirements from the conceptual design phase in order to reduce the need for retro-fits and modifications. One can then also take advantage of possible synergies between safeguards, security, safety and environmental protection and reduce the project risk against cost increments and schedule slippage. The IAEA is responding to this interest with a suite of publications in the IAEA Nuclear Energy Series, developed with the assistance of a number of Member State Support Programmes through a joint support programme task: · International Safeguards in Nuclear Facility Design and Construction (NP-T-2.8, 2013), · International Safeguards in the Design of Nuclear Reactors (NP-T-2.9, 2014), · International Safeguards in the Design of Spent Fuel Management (NF-T-3.1, tbd), · International Safeguards in the Design of Fuel Fabrication Plants (NF-T-4.7, tbd

  9. Safeguards and security research and development: Program status report, February-July 1981

    International Nuclear Information System (INIS)

    Henry, C.N.; Walton, R.B.

    1982-04-01

    This report, one of a series of biannual progress reports, describes the status of research and development in the Safeguards and Security Program at Los Alamos from February-July 1981. Most work covered here is sponsored by the Office of Safeguards and Security of the Department of Energy; however, project activities that are technically closely related to nuclear safeguards and security also are included where appropriate for conveying information useful to the nuclear community. The report comprises four major subject areas: Security Development and Support; Nuclear Materials Measurement and Engineering; Nuclear Facility Safeguards Support; and International Safeguards, Technology Transfer, and Training. Some technical topics included in the subject areas are computer and informational security, chemical and nondestructive analysis of nuclear materials, process modeling and analysis, nuclear materials accounting systems, evaluation of prototype measurement instrumentation and procedures in nuclear facilities, design and consultation for facilities, technical exchange, training courses, and international safeguards

  10. Safeguards and security research and development: Program status report, February-July 1981

    Energy Technology Data Exchange (ETDEWEB)

    Henry, C.N.; Walton, R.B. (comps.)

    1982-04-01

    This report, one of a series of biannual progress reports, describes the status of research and development in the Safeguards and Security Program at Los Alamos from February-July 1981. Most work covered here is sponsored by the Office of Safeguards and Security of the Department of Energy; however, project activities that are technically closely related to nuclear safeguards and security also are included where appropriate for conveying information useful to the nuclear community. The report comprises four major subject areas: Security Development and Support; Nuclear Materials Measurement and Engineering; Nuclear Facility Safeguards Support; and International Safeguards, Technology Transfer, and Training. Some technical topics included in the subject areas are computer and informational security, chemical and nondestructive analysis of nuclear materials, process modeling and analysis, nuclear materials accounting systems, evaluation of prototype measurement instrumentation and procedures in nuclear facilities, design and consultation for facilities, technical exchange, training courses, and international safeguards.

  11. Risk-informed approach for safety, safeguards, and security (3S) by design

    International Nuclear Information System (INIS)

    Suzuki, Mitsutoshi; Burr, Tom; Howell, John

    2011-01-01

    , advanced process monitoring is one of the synergetic methods included in this study, and simulation and modeling are used to demonstrate enhanced loss detection probability for safeguards. (author)

  12. Lessons learned in testing of Safeguards equipment

    International Nuclear Information System (INIS)

    Pepper, Susan; Farnitano, Michael; Carelli, Joseph

    2001-01-01

    Full text: During the 1990s, the IAEA Department of Safeguards began a transition from analog to digital equipment. This included surveillance equipment, seals, NDA measurement systems, and other instruments. The transition to digital equipment was intended to facilitate compatibility between and integration of instruments, remote communication of data, improved data storage, and modernization. Many of the instruments are designed to operate on battery power during loss of facility power, and therefore, are designed to consume minimal power. In 2000, the IAEA experienced a number of failures in digital image surveillance (DIS) equipment. A study of the performance data revealed that the failures occurred in 'high risk' environments where the systems were exposed to neutrons. As a supporter of IAEA equipment development and implementation, the U.S. Support Program worked with the IAEA, the equipment designer, and the equipment manufacturer in special meetings on DIS to determine the cause of the failures. It was as a result of these meetings that single event upset (SEU) was determined to be the root cause of the failures. The meeting participants also identified a list of actions to improve the reliability of DIS systems. As a result of the DIS meetings and the identified actions, the U.S. Support Program approved a request from the IAEA and established Task E.125, 'Remote Monitoring and Unattended Digital Surveillance Systems.' This task is an umbrella task intended to provide a mechanism for response to IAEA needs related to improving the reliability of unattended, remote monitoring and DIS equipment. Subtasks approved under this task include: E.125.1, 'SDIS Software Consolidation and DCM-14 Audit' - This subtask involves the consolidation of a number of individual upgrades to the SDIS and review of the DCM-14 software. As the sponsor of the design of the DCM-14 by Dr. Neumann, the German Support Program is also a participant in this subtask; E.125.2, 'DIS

  13. Nuclear safeguards research and development. Program status report, October 1980-January 1981

    International Nuclear Information System (INIS)

    Henry, C.N.

    1981-11-01

    This report presents the status of the Nuclear Safeguards Research and Development Program pursued by the Energy, Chemistry-Materials Science, and Operational Security/Safeguards Divisions of the Los Alamos National Laboratory. Topics include nondestructive assay technology development and applications, international safeguards systems. Also discussed are training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security

  14. Nuclear safeguards research and development. Program status report, October 1980-January 1981

    Energy Technology Data Exchange (ETDEWEB)

    Henry, C.N. (comp.)

    1981-11-01

    This report presents the status of the Nuclear Safeguards Research and Development Program pursued by the Energy, Chemistry-Materials Science, and Operational Security/Safeguards Divisions of the Los Alamos National Laboratory. Topics include nondestructive assay technology development and applications, international safeguards systems. Also discussed are training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  15. USSP-IAEA WORKSHOP ON ADVANCED SENSORS FOR SAFEGUARDS

    International Nuclear Information System (INIS)

    PEPPER, S.; QUEIROLO, A.; ZENDEL, M.; WHICHELLO, J.; ANNESE, C.; GRIEBE, J.; GRIEBE, R.

    2007-01-01

    The IAEA Medium Term Strategy (2006-2011) defines a number of specific goals in respect to the IAEA's ability to provide assurances to the international community regarding the peaceful use of nuclear energy through States adherences to their respective non-proliferation treaty commitments. The IAEA has long used and still needs the best possible sensors to detect and measure nuclear material. The Department of Safeguards, recognizing the importance of safeguards-oriented R and D, especially targeting improved detection capabilities for undeclared facilities, materials and activities, initiated a number of activities in early 2005. The initiatives included letters to Member State Support Programs (MSSPs), personal contacts with known technology holders, topical meetings, consultant reviews of safeguards technology, and special workshops to identify new and novel technologies and methodologies. In support of this objective, the United States Support Program to IAEA Safeguards hosted a workshop on ''Advanced Sensors for Safeguards'' in Santa Fe, New Mexico, from April 23-27, 2007. The Organizational Analysis Corporation, a U.S.-based management consulting firm, organized and facilitated the workshop. The workshop's goal was to help the IAEA identify and plan for new sensors for safeguards implementation. The workshop, which was attended by representatives of seven member states and international organizations, included presentations by technology holders and developers on new technologies thought to have relevance to international safeguards, but not yet in use by the IAEA. The presentations were followed by facilitated breakout sessions where the participants considered two scenarios typical of what IAEA inspectors might face in the field. One scenario focused on an enrichment plant; the other scenario focused on a research reactor. The participants brainstormed using the technologies presented by the participants and other technologies known to them to propose

  16. Safeguard sleuths

    International Nuclear Information System (INIS)

    Lowry, D.

    1989-01-01

    A report of the conference of the European Safeguards Research and Development Association, which tries to prevent the diversion of nuclear materials to military uses is given. Some of the problems encountered by safeguards inspectors are mentioned, such as being able to follow the material through the maze of piping in a reprocessing plant, the linguistic difficulties if the inspector does not speak the operator's language, the difference between precision and accuracy and the necessity of human inspection, containment and surveillance systems. Unexplained outages at a reprocessing plant are always treated as suspicious, as are power failures which prevent normal surveillance. The UK practice of allocating civil fuel temporarily to military use at Harwell also makes safeguard policing more difficult. (UK)

  17. Achievements to date in strengthened safeguards

    International Nuclear Information System (INIS)

    Heinonen, O.

    1999-01-01

    There is substantial progress in developing and implementing measures to strengthen the effectiveness and improve the efficiency of the Safeguards System. The measures comprise those to be implemented pursuant to the Agency's legal authority conferred by existing safeguards agreements as well as those to be implemented under the complementary legal authority conferred by Additional Protocols concluded on the basis of Document INFCIRC/540(Corrected). Activities on implementing measures under existing legal authority, particularly with respect to the evaluation of States' nuclear programmes, environmental sampling and the use of remote monitoring for safeguards purposes had been carried continuously ion the recent post. In 1998, additional protocols entered into force with four States (the Holy See, Jordan, New Zealand and Uzbekistan). Additional protocols with a further 27 States were approved by the Board and were awaiting ratification by the respective States. The additional protocol with Australia, which entered into force in December 1997, was being implemented following receipt of its Article 2 declaration. Agency consultations on concluding additional protocols take place with a number of States on a regular basis. As of 1 October 1999, Additional Protocols had been concluded and approved by the Board of Governors with a total of 45 States. Of these, Additional Protocols with 44 States had been signed and five had entered into force. (author)

  18. Role of physical protection and safeguards technology used to Nuclear Material Security

    International Nuclear Information System (INIS)

    Djoko-Irianto, Ign.

    2005-01-01

    The presence of nuclear materials at any nuclear facility must be in secure and must be known as safeguards purpose such as its position, from or type and amount. The clarification of the amount be reported to the national regulatory body and International Atomic Energy Agency (IAEA) as the International regulatory body. The national regulatory body and IAEA will then verify that report. The verification must be done to know there is no difference of the amount, and to give the assurance to the International community that any diversion of safeguarded nuclear material from civil use to a prescribed military purpose would be detected. To carry out verification, several verification techniques such as non-destructive analysis, surveillance, unattended and remote monitoring and environmental sampling are explained to convey the impression how those techniques are implemented. According to the security requirement, the physical protection system including all components of physical protection system have to be effectively designed

  19. Containment and surveillance systems for international safeguards

    International Nuclear Information System (INIS)

    Ney, J.F.

    1978-01-01

    Important criteria in measuring the effectiveness of IAEA safeguards include timeliness of detection of diversion, timeliness of reporting such detections, and confidence in determining the amount of material diverted. Optimum use of IAEA inspectors, combined with adequate instrumentation, can provide a practical means for achieving these criteria. System studies are being carried out for different types of facilities that may come under IAEA safeguards to determine the proper balance between inspector's efforts and the use of safeguards instrumentation. A description of a typical study is presented. Based on the results of these studies, the program undertaken to develop those containment and surveillance subsystems for which the technical feasibility and operational acceptability need to be established is described

  20. IAEA symposium on international safeguards

    International Nuclear Information System (INIS)

    1999-01-01

    The eighth IAEA Symposium on International Safeguards was organized by the IAEA in cooperation with the Institute of Nuclear Materials Management and the European Safeguards Research and Development Association. It was attended by over 350 specialists and policy makers in the field of nuclear safeguards and verification from more than 50 countries and organizations. The purpose of the Symposium was to foster a broad exchange of information on concepts and technologies related to important developments in the areas of international safeguards and security. For the first time in the history of the symposia, the IAEA is issuing proceedings free of charge to participants on CD-ROM. The twenty-two plenary, technical, and poster sessions featured topics related to technological and policy aspects from national, regional and global perspectives. The theme of the Symposium: Four Decades of Development - Safeguarding into the New Millennium set the stage for the commemoration of a number of significant events in the annals of safeguards. 1997 marked the Fortieth Anniversary of the IAEA, the Thirtieth Anniversary of the Tlatelolco Treaty, and the Twentieth Anniversary of the Department of Safeguards Member State Support Programmes. There were special events and noted presentations featuring these anniversaries and giving the participants an informative retrospective view of safeguards development over the past four decades. The proceedings of this symposium provide the international community with a comprehensive view of where nuclear safeguards and verification stood in 1997 in terms of the growing demands and expectations. The Symposium offered thoughtful perspectives on where safeguards are headed within the broader context of verification issues. As the world of international nuclear verification looks towards the next millennium, the implementation of the expanding and strengthened safeguards system presents formidable challenges

  1. Computer-based safeguards information and accounting system

    International Nuclear Information System (INIS)

    1977-01-01

    Acquiring, processing and analysing information about inventories and flow of nuclear materials are essential parts of IAEA safeguards. Safeguards information originates from several sources. The information to be provided is specified in the various safeguards agreements between the States and the IAEA, including both NPT agreements and safeguards trilateral agreements. Most of the safeguards information currently received by the IAEA is contained in accounting reports from the States party to the NPT. Within the frame of the material balance concept of NPT, three types of reports are provided to the IAEA by the States: Physical Inventory Listings (PIL); Inventory Change Reports (ICR); Material Balance Reports (MBR). In addition, facility design information is reported when NPT safeguards are applied and whenever there is a change in the facility or its operation. Based on this data, an accounting system is used to make available such information as the book inventories of nuclear material as a function of time, material balance evaluations, and analysis of shipments versus receipts of nuclear material. A second source of NPT safeguards information is the inspection activities carried out in the field as a necessary counterpart for verification of the data presented by the States in their accounting reports. The processing of inspection reports and other inspection data is carried out by the present system in a provisional manner until a new system, which is under development is available. The major effort currently is directed not to computer processing but toward developing and applying uniform inspection procedures and information requirements. A third source of NPT safeguards information is advanced notifications and notifications of transfer of source materials before the starting point of safeguards. Since, however, the States are not completely aware of the need and requirement to provide these data, this is a point to be emphasized in future workshops and

  2. Technology development for safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Kang, H. Y.; Song, D. Y. [and others

    2005-04-01

    The objective of this project are to establish the safeguards technology of the nuclear proliferation resistance to the facilities which handle with high radioactivity nuclear materials like the spent fuel, to provide the foundation of the technical independency for the establishment of the effective management of domestic spent fuels, and to construct the base of the early introduction of the key technology relating to the back-end nuclear fuel cycle through the development of the safeguards technology of the DFDF of the nuclear non-proliferation. The essential safeguards technologies of the facility such as the measurement and account of nuclear materials and the C/S technology were carried out in this stage (2002-2004). The principal results of this research are the development of error reduction technology of the NDA equipment and a new NDA system for the holdup measurement of process materials, the development of the intelligent surveillance system based on the COM, the evaluation of the safeguardability of the Pyroprocessing facility which is the core process of the nuclear fuel cycle, the derivation of the research and development items which are necessary to satisfy the safeguards criteria of IAEA, and the presentation of the direction of the technology development relating to the future safeguards of Korea. This project is the representative research project in the field of the Korea's safeguards. The safeguards technology and equipment developed while accomplishing this project can be applied to other nuclear fuel cycle facilities as well as DFDF and will be contributed to increase the international confidence in the development of the nuclear fuel cycle facility of Korea and its nuclear transparency.

  3. How safe are nuclear safeguards

    International Nuclear Information System (INIS)

    Sullivan, E.

    1979-01-01

    Reports of weaknesses in IAEA safeguards have alarmed the US and since September 1977, US officials have refused to certify that the IAEA can adequately safeguard nuclear material the US exports. For political reasons, the IAEA safeguards system cannot perform an actual policing role or physically protect strategic material. The IAEA can only send out inspectors to verify bookkeeping and install cameras to sound the alarm should a diversion occur. Based on these IAEA reports and on interviews with scientists and US officials, the following serious problems hampering the Agency's safeguards effort can be identified: no foolproof safeguards for commercial reprocessing plants, uranium enrichment facilities, or fast breeder reactors; equipment failure and unreliable instruments; faulty accounting methods; too few well-trained inspectors; restrictions on where inspectors can go; commercial conflicts. Programs by the US, Canada, West Germany, Japan, and developing nations devised to better safeguards are briefly discussed. Some experts question whether international safeguards can be improved quickly enough to successfully deter nuclear weapons proliferation, given the rapid spread of nuclear technology to the third world

  4. Nuclear Safeguards Infrastructure Development and Integration with Safety and Security

    International Nuclear Information System (INIS)

    Kovacic, Donald N.; Raffo-Caiado, Ana Claudia; McClelland-Kerr, John; Van sickle, Matthew; Bissani, Mo

    2009-01-01

    Faced with increasing global energy demands, many developing countries are considering building their first nuclear power plant. As a country embarks upon or expands its nuclear power program, it should consider how it will address the 19 issues laid out in the International Atomic Energy Agency (IAEA) document Milestones in Development of a National Infrastructure for Nuclear Power. One of those issues specifically addresses the international nonproliferation treaties and commitments and the implementation of safeguards to prevent diversion of nuclear material from peaceful purposes to nuclear weapons. Given the many legislative, economic, financial, environmental, operational, and other considerations preoccupying their planners, it is often difficult for countries to focus on developing the core strengths needed for effective safeguards implementation. Typically, these countries either have no nuclear experience or it is limited to the operation of research reactors used for radioisotope development and scientific research. As a result, their capacity to apply safeguards and manage fuel operations for a nuclear power program is limited. This paper argues that to address the safeguards issue effectively, a holistic approach must be taken to integrate safeguards with the other IAEA issues including safety and security - sometimes referred to as the '3S' concept. Taking a holistic approach means that a country must consider safeguards within the context of its entire nuclear power program, including operations best practices, safety, and security as well as integration with its larger nonproliferation commitments. The Department of Energy/National Nuclear Security Administration's International Nuclear Safeguards and Engagement Program (INSEP) has been involved in bilateral technical cooperation programs for over 20 years to promote nonproliferation and the peaceful uses of nuclear energy. INSEP is currently spearheading efforts to promote the development of

  5. Structure of safeguards systems

    International Nuclear Information System (INIS)

    Shipley, J.P.

    1978-06-01

    An effective safeguards system for domestic nuclear fuel cycle facilities consists of several important subsystems that must coordinate their functions with plant management and process control. The safeguards system must not unnecessarily disrupt plant operations, compromise safety requirements, or infringe on employee working conditions. This report describes concepts, which have been developed with the cooperation of the nuclear industry and the safeguards community, for achieving these objectives

  6. Novel technologies for safeguards

    International Nuclear Information System (INIS)

    Annese, C.; Monteith, A.; Whichello, J.

    2009-01-01

    Full-text: The International Atomic Energy Agency (IAEA) Novel Technologies Project is providing access to a wider range of methods and instruments, as well as establishing a systematic mechanism to analyse gaps in the inspectorate's technical support capabilities. The project also targets emerging and future inspectorate needs in the areas of verification and the detection of undeclared nuclear activities, materials, and facilities, providing an effective pathway to technologies in support of safeguards implementation. The identification of safeguards-useful nuclear fuel cycle (NFC) indicators and signatures (I and S) is a fundamental sub-task within the Project. It interfaces with other IAEA efforts currently underway to develop future safeguards approaches through undertaking an in-depth review of NFC processes. Primarily, the sub-task aims to identify unique and safeguards-useful 'indicators', which identify the presence of a particular process, and 'signatures', which emanate from that process when it is in operation. The matching of safeguards needs to detection tool capabilities facilitates the identification of gaps where no current method or instrument exists. The Project has already identified several promising technologies based on atmospheric gas sampling and analysis, laser spectrometry and optically stimulated luminescence. Instruments based on these technologies are presently being developed through support programme tasks with Member States. This paper discusses the IAEA's project, Novel Technologies for the Detection of Undeclared Nuclear Activities, Materials and Facilities and its goal to develop improved methods and instruments. The paper also describes the method that has been devised within the Project to identify safeguards-useful NFC I and S and to determine how the sub-task interfaces with other IAEA efforts to establish emerging safeguards approaches. As with all safeguards-targeted research and development (R and D), the IAEA depends

  7. The Agency's Safeguards System (1965)

    International Nuclear Information System (INIS)

    1965-01-01

    On 28 September 1965 the Board of Governors approved the Agency's revised safeguards system which is set forth in this document for the information of all Members. For ease of reference the revised system may be cited as 'The Agency's Safeguards System (1965)' to distinguish it from the original system - 'The Agency's Safeguards System (1961)'- and from the original system as extended to large reactor facilities - 'The Agency's Safeguards System (1961, as Extended in 1964)'

  8. Evolution of a safeguards support program: POTAS past and future

    International Nuclear Information System (INIS)

    Kessler, J.C.; Reisman, A.W.

    1992-01-01

    When the Non-Proliferation Treaty came into force, the International Atomic Energy Agency (IAEA) became for the first time responsible for implementing full-scope safeguards in many countries, including countries with large and sophisticated nuclear programs. The IAEA's Department of Safeguards did not have the safeguards technology appropriate for these rapidly expanding responsibilities, nor did it have a research and development program to respond to that need. In response to this situation, the United States initiated the US Program of Technical Assitance to IAEA Safeguards (POTAS) in 1977. This program was originally intended to be a 5-yr, $5 million program. As the United States and the IAEA began to implement this program, several things rapidly became clear. Meeting the evolving safeguards technology needs would require much more than $5 million; within the first 5 yr, the United States allocated more than $20 million. This paper summarizes the policies activities, and practices POTAS has employed in support of IAEA safeguards program

  9. The present status of IAEA safeguards on nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1979-02-01

    This paper examines the present approach of the International Atomic Energy Agency (IAEA) to safeguarding various types of facilities in the nuclear fuel cycle, in the hope that it will serve as useful background material for several of the various working groups of the International Nuclear Fuel Cycle Evaluation (INFCE). The objectives and criteria of safeguards as well as the specific safeguards techniques which are utilized by the Agency, are addressed. In Part I, a general overview of safeguards as well as a discussion of procedures applicable to most if not all IAEA safeguarded facilities are included. Part II is broken down into specific facility types and focusses on the particular safeguards measures applied to them. Safeguards have reached different degrees of development for different types of facilities, in part because the Agency's experience in safeguarding certain types is considerably greater than for other types. Thus the Agency safeguards described herein are not static, but are continuously evolving. This evolution results not only from the fact that larger and more complex facilities have been coming under safeguards. Changes are also continually being introduced based on practical experience and research and development aimed at improving safeguards efficiency, reducing intrusiveness into plant operations, minimizing operator and inspector radiation exposure, and reducing subjective evaluations in determining the effectiveness of safeguards. To these ends, the technical support programmes of various countries are playing an important role. It is emphasized that this paper is not intended to evaluate the effectiveness of Agency safeguards or to highlight problem areas. It is simply aimed at providing a picture of what safeguards are or are planned to be at various stages of the fuel cycle

  10. The Back-End of the Nuclear Fuel Cycle in Sweden. Considerations for safeguards and data handling

    Energy Technology Data Exchange (ETDEWEB)

    Fritzell, Anni (ES-konsult, Solna (Sweden))

    2011-01-15

    All nuclear facilities and activities in Sweden are under safeguards - an international monitoring system for all nuclear material. When the planned facilities for encapsulation and final disposal of spent nuclear fuel are constructed, they will also be covered by the safeguards system. The Swedish plans for final disposal is to emplace all spent fuel in a geological repository. The new facility type, the geological repository, will mean that the safeguards system is faced with new challenges, mainly since the nuclear material will be inaccessible after encapsulation and emplacement. This implies that, unlike for existing facilities, it is not possible to verify that the nuclear material is where it is declared to be or that it has the declared characteristics. This report consists of three parts, where each part investigates one aspect of safeguards for encapsulation and final disposal of spent nuclear fuel. The first part, Paper 1, presents a plausible safeguards approach for the two new facilities. The paper starts with an introduction to international safeguards and to the facilities. The facility layouts and processes are comprehensively described. The main part of Paper 1 is spent describing a safeguards system that covers all diversion paths for fissile material. The diversion paths are identified in the diversion path analysis which is the basis for Paper 3. A strategy to detect diversion is presented for each diversion path. The safeguards system comprises three main measures: 1. Verification of Nuclear Material Accountancy using, for example, verifying measurements and comparisons between shipment documents and receipt documents for transports. 2. Containment and Surveillance which are methods used to maintain continuity of knowledge of the nuclear material during periods between inspections. 3. Design Information Verification which is methods to verify that nuclear facilities are designed and operated according to declarations. The second part of the

  11. The Back-End of the Nuclear Fuel Cycle in Sweden. Considerations for safeguards and data handling

    International Nuclear Information System (INIS)

    Fritzell, Anni

    2011-01-01

    All nuclear facilities and activities in Sweden are under safeguards - an international monitoring system for all nuclear material. When the planned facilities for encapsulation and final disposal of spent nuclear fuel are constructed, they will also be covered by the safeguards system. The Swedish plans for final disposal is to emplace all spent fuel in a geological repository. The new facility type, the geological repository, will mean that the safeguards system is faced with new challenges, mainly since the nuclear material will be inaccessible after encapsulation and emplacement. This implies that, unlike for existing facilities, it is not possible to verify that the nuclear material is where it is declared to be or that it has the declared characteristics. This report consists of three parts, where each part investigates one aspect of safeguards for encapsulation and final disposal of spent nuclear fuel. The first part, Paper 1, presents a plausible safeguards approach for the two new facilities. The paper starts with an introduction to international safeguards and to the facilities. The facility layouts and processes are comprehensively described. The main part of Paper 1 is spent describing a safeguards system that covers all diversion paths for fissile material. The diversion paths are identified in the diversion path analysis which is the basis for Paper 3. A strategy to detect diversion is presented for each diversion path. The safeguards system comprises three main measures: 1. Verification of Nuclear Material Accountancy using, for example, verifying measurements and comparisons between shipment documents and receipt documents for transports. 2. Containment and Surveillance which are methods used to maintain continuity of knowledge of the nuclear material during periods between inspections. 3. Design Information Verification which is methods to verify that nuclear facilities are designed and operated according to declarations. The second part of the

  12. The challenges of integrating multiple safeguards systems in a large nuclear facility

    International Nuclear Information System (INIS)

    Lavietes, A.; Liguori, C.; Pickrell, M.; Plenteda, R.; Sweet, M.

    2009-01-01

    Full-text: Implementing safeguards in a cost-effective manner in large nuclear facilities such as fuel conditioning, fuel reprocessing, and fuel fabrication plants requires the extensive use of instrumentation that is operated in unattended mode. The collected data is then periodically reviewed by the inspectors either on-site at a central location in the facility or remotely in the IAEA offices. A wide variety of instruments are deployed in large facilities, including video surveillance cameras, electronic sealing devices, non-destructive assay systems based on gamma ray and neutron detection, load cells for mass measurement, ID-readers, and other process-specific monitors. The challenge to integrate these different measurement instruments into an efficient, reliable, and secure system requires implementing standardization at various levels throughout the design process. This standardization includes the data generator behaviour and interface, networking solutions, and data security approaches. This standardization will provide a wide range of savings, including reduced training for inspectors and technicians, reduced periodic technical maintenance, reduced spare parts inventory, increased system robustness, and more predictive system behaviour. The development of standard building blocks will reduce the number of data generators required and allow implementation of simplified architectures that do not require local collection computers but rather utilize transmission of the acquired data directly to a central server via Ethernet connectivity. This approach will result in fewer system components and therefore reduced maintenance efforts and improved reliability. This paper discusses in detail the challenges and the subsequent solutions in the various areas that the IAEA Department of Safeguards has committed to pursue as the best sustainable way of maintaining the ability to implement reliable safeguards systems. (author)

  13. Safeguards for geological repositories

    International Nuclear Information System (INIS)

    Fattah, A.

    2000-01-01

    Direct disposal of spent nuclear fuel in geological repositories is a recognised option for closing nuclear fuel cycles. Geological repositories are at present in stages of development in a number of countries and are expected to be built and operated early next century. A State usually has an obligation to safely store any nuclear material, which is considered unsuitable to re-enter the nuclear fuel cycle, isolated from the biosphere. In conjunction with this, physical protection has to be accounted for to prevent inadvertent access to such material. In addition to these two criteria - which are fully under the State's jurisdiction - a third criterion reflecting international non-proliferation commitments needs to be addressed. Under comprehensive safeguards agreements a State concedes verification of nuclear material for safeguards purposes to the IAEA. The Agency can thus provide assurance to the international community that such nuclear material has been used for peaceful purposes only as declared by the State. It must be emphasised that all three criteria mentioned constitute a 'unit'. None can be sacrificed for the sake of the other, but compromises may have to be sought in order to make their combination as effective as possible. Based on comprehensive safeguards agreements signed and ratified by the State, safeguards can be terminated only when the material has been consumed or diluted in such a way that it can no longer be utilised for any nuclear activities or has become practicably irrecoverable. As such safeguards for nuclear material in geological repositories have to be continued even after the repository has been back-filled and sealed. The effective application of safeguards must assure continuity-of-knowledge that the nuclear material in the repository has not been diverted for an unknown purpose. The nuclear material disposed in a geological repository may eventually have a higher and long term proliferation risk because the inventory is

  14. Advanced Nuclear Measurements - Sensitivity Analysis Emerging Safeguards, Problems and Proliferation Risk

    International Nuclear Information System (INIS)

    Dreicer, J.S.

    1999-01-01

    During the past year this component of the Advanced Nuclear Measurements LDRD-DR has focused on emerging safeguards problems and proliferation risk by investigating problems in two domains. The first is related to the analysis, quantification, and characterization of existing inventories of fissile materials, in particular, the minor actinides (MA) formed in the commercial fuel cycle. Understanding material forms and quantities helps identify and define future measurement problems, instrument requirements, and assists in prioritizing safeguards technology development. The second problem (dissertation research) has focused on the development of a theoretical foundation for sensor array anomaly detection. Remote and unattended monitoring or verification of safeguards activities is becoming a necessity due to domestic and international budgetary constraints. However, the ability to assess the trustworthiness of a sensor array has not been investigated. This research is developing an anomaly detection methodology to assess the sensor array

  15. Recent advances in IAEA safeguards systems analysis

    International Nuclear Information System (INIS)

    Bahm, W.; Ermakov, S.; Kaniewski, J.; Lovett, J.; Pushkarjov, V.; Rosenthal, M.D.

    1983-01-01

    Efficient implementation of effective safeguards, the objective of the IAEA's Department of Safeguards, would be unthinkable without carrying out systematic studies on many different problems related to technical and other aspects of safeguards. The System Studies Section of the Department concentrates its efforts on such studies with the purpose of elaborating concepts, criteria, approaches and rules for the implementation of safeguards. In particular, the Section elaborates concepts and approaches for applying safeguards at the complex facilities that are expected to enter under safeguards in the future, develops approaches and rules in the areas where the Agency is still gaining experience, and assists in the implementation of safeguards whenever problems requiring non-routine solutions arise. This paper presents examples of the present activities of the System Studies Section: development of guidelines for use by facility designers in order to make safeguards easier and more effective, studies on near-real-time material accountancy, preparation of safeguards approaches for specific facility types, preparation of model inspection activity lists for different facility types and alternative safeguards approaches and preparation of safeguards policy papers containing the rules and regulations to be followed in the design and implementation of safeguards. (author)

  16. INSTITUTIONALIZING SAFEGUARDS-BY-DESIGN: HIGH-LEVEL FRAMEWORK

    Energy Technology Data Exchange (ETDEWEB)

    Trond Bjornard PhD; Joseph Alexander; Robert Bean; Brian Castle; Scott DeMuth, Ph.D.; Phillip Durst; Michael Ehinger; Prof. Michael Golay, Ph.D.; Kevin Hase, Ph.D.; David J. Hebditch, DPhil; John Hockert, Ph.D.; Bruce Meppen; James Morgan; Jerry Phillips, Ph.D., PE

    2009-02-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities can reduce proliferation risks. A multi-laboratory team was sponsored in Fiscal Year (FY) 2008 to define a SBD process and determine how it could be incorporated into existing facility design and construction processes. The possibility to significantly influence major design features, such as process selection and plant layout, largely ends with the conceptual design step. Therefore SBD’s principal focus must be on the early inclusion of safeguards requirements and the early identification of beneficial design features. The result could help form the basis for a new international norm for integrating safeguards into facility design. This is an interim report describing progress and project status as of the end of FY08. In this effort, SBD is defined as a structured approach to ensure the timely, efficient, and cost-effective integration of international and national safeguards, physical security, and other nonproliferation objectives into the overall design process for a nuclear facility. A key objective is to ensure that security and nonproliferation issues are considered when weighing facility design alternatives. Central to the work completed in FY08 was a study in which a SBD process was developed in the context of the current DOE facility acquisition process. The DOE study enabled the development of a “SBD design loop” that is suitable for use in any facility design process. It is a graded, iterative process that incorporates safeguards concerns throughout the conceptual, preliminary and final design processes. Additionally, a set of proposed design principles for SBD was developed. A “Generic SBD Process” was then developed. Key features of the process include the initiation of safeguards design activities in the pre-conceptual planning phase, early incorporation of safeguards requirements into the project requirements, early appointment of an SBD team, and

  17. INSTITUTIONALIZING SAFEGUARDS-BY-DESIGN: HIGH-LEVEL FRAMEWORK

    International Nuclear Information System (INIS)

    Bjornard, Trond; Alexander, Joseph; Bean, Robert; Castle, Brian; DeMuth, Scott; Durst, Phillip; Ehinger, Michael; Golay, Michael; Hase, Kevin; Hebditch, David J.; Hockert, John; Meppen, Bruce; Morgan, James; Phillips, Jerry

    2009-01-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities can reduce proliferation risks. A multi-laboratory team was sponsored in Fiscal Year (FY) 2008 to define a SBD process and determine how it could be incorporated into existing facility design and construction processes. The possibility to significantly influence major design features, such as process selection and plant layout, largely ends with the conceptual design step. Therefore SBD's principal focus must be on the early inclusion of safeguards requirements and the early identification of beneficial design features. The result could help form the basis for a new international norm for integrating safeguards into facility design. This is an interim report describing progress and project status as of the end of FY08. In this effort, SBD is defined as a structured approach to ensure the timely, efficient, and cost-effective integration of international and national safeguards, physical security, and other nonproliferation objectives into the overall design process for a nuclear facility. A key objective is to ensure that security and nonproliferation issues are considered when weighing facility design alternatives. Central to the work completed in FY08 was a study in which a SBD process was developed in the context of the current DOE facility acquisition process. The DOE study enabled the development of a 'SBD design loop' that is suitable for use in any facility design process. It is a graded, iterative process that incorporates safeguards concerns throughout the conceptual, preliminary and final design processes. Additionally, a set of proposed design principles for SBD was developed. A 'Generic SBD Process' was then developed. Key features of the process include the initiation of safeguards design activities in the pre-conceptual planning phase, early incorporation of safeguards requirements into the project requirements, early appointment of an SBD team, and participation in

  18. Safeguards evolution towards unattended c/s (containment and surveillance) systems

    International Nuclear Information System (INIS)

    Valentino, Lucia I.; Saavedra, Analia D.; Castro, Laura B.; Maceiras, Elena; Llacer, Carlos D.; Vicens, Hugo E.; Mairal, Maria L.; Fernandez Moreno, Sonia

    2000-01-01

    This paper shows the development and evolution of safeguards towards the use of different containment and surveillance (C/S) systems, which involve the possibility of working unattended. They are designed to transmit safeguards relevant data remotely. It is believed that they would increase safeguards efficiency while maintaining or even enhancing their effectiveness. At present, unattended C/S systems with or without remote transmission are in place at several installations. In addition, some other possible applications are being tested. One of these is the Remote Monitoring Systems (RMS) field trial at Embalse nuclear power plant to cover the transfers of spent fuel from the ponds to the dry storage. Some of the matters to be addressed are of general nature (i.e. applicable to any unattended/remote system) while others depend on the specific application in a nuclear installation. Among others, the following are particularly important: -) Sharing of data with the SSAC; -) Impact of a failure of the RMS on the operator, IAEA and the SSAC; -) Provision of relevant operational and accounting information; -) Review of the current safeguard approach for the selected installation; -) RMS cost-effectiveness assessment. This paper describes the status of the RMS field trial as well as the current C/S system in place at Embalse nuclear power plant. (authors)

  19. FY 2008 Next Generation Safeguards Initiative International Safeguards Education and Training Pilot Progerams Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Dreicer, M; Anzelon, G; Essner, J; Dougan, A; Doyle, J; Boyer, B; Hypes, P; Sokova, E; Wehling, F

    2008-10-17

    Key component of the Next Generation Safeguards Initiative (NGSI) launched by the National Nuclear Security Administration is the development of human capital to meet present and future challenges to the safeguards regime. An effective university-level education in safeguards and related disciplines is an essential element in a layered strategy to rebuild the safeguards human resource capacity. Two pilot programs at university level, involving 44 students, were initiated and implemented in spring-summer 2008 and linked to hands-on internships at LANL or LLNL. During the internships, students worked on specific safeguards-related projects with a designated Laboratory Mentor to provide broader exposure to nuclear materials management and information analytical techniques. The Safeguards and Nuclear Material Management pilot program was a collaboration between the Texas A&M University (TAMU), Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). It included a 16-lecture course held during a summer internship program. The instructors for the course were from LANL together with TAMU faculty and LLNL experts. The LANL-based course was shared with the students spending their internship at LLNL via video conference. A week-long table-top (or hands-on) exercise on was also conducted at LANL. The student population was a mix of 28 students from a 12 universities participating in a variety of summer internship programs held at LANL and LLNL. A large portion of the students were TAMU students participating in the NGSI pilot. The International Nuclear Safeguards Policy and Information Analysis pilot program was implemented at the Monterey Institute for International Studies (MIIS) in cooperation with LLNL. It included a two-week intensive course consisting of 20 lectures and two exercises. MIIS, LLNL, and speakers from other U.S. national laboratories (LANL, BNL) delivered lectures for the audience of 16 students. The majority of students were

  20. FY 2008 Next Generation Safeguards Initiative International Safeguards Education and Training Pilot Programs Summary Report

    International Nuclear Information System (INIS)

    Dreicer, M.; Anzelon, G.; Essner, J.; Dougan, A.; Doyle, J.; Boyer, B.; Hypes, P.; Sokova, E.; Wehling, F.

    2008-01-01

    Key component of the Next Generation Safeguards Initiative (NGSI) launched by the National Nuclear Security Administration is the development of human capital to meet present and future challenges to the safeguards regime. An effective university-level education in safeguards and related disciplines is an essential element in a layered strategy to rebuild the safeguards human resource capacity. Two pilot programs at university level, involving 44 students, were initiated and implemented in spring-summer 2008 and linked to hands-on internships at LANL or LLNL. During the internships, students worked on specific safeguards-related projects with a designated Laboratory Mentor to provide broader exposure to nuclear materials management and information analytical techniques. The Safeguards and Nuclear Material Management pilot program was a collaboration between the Texas A and M University (TAMU), Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). It included a 16-lecture course held during a summer internship program. The instructors for the course were from LANL together with TAMU faculty and LLNL experts. The LANL-based course was shared with the students spending their internship at LLNL via video conference. A week-long table-top (or hands-on) exercise on was also conducted at LANL. The student population was a mix of 28 students from a 12 universities participating in a variety of summer internship programs held at LANL and LLNL. A large portion of the students were TAMU students participating in the NGSI pilot. The International Nuclear Safeguards Policy and Information Analysis pilot program was implemented at the Monterey Institute for International Studies (MIIS) in cooperation with LLNL. It included a two-week intensive course consisting of 20 lectures and two exercises. MIIS, LLNL, and speakers from other U.S. national laboratories (LANL, BNL) delivered lectures for the audience of 16 students. The majority of students

  1. Implementation of Safeguards in Thailand

    International Nuclear Information System (INIS)

    Rueanngoen, A.; Changkrueng, K.; Srijittawa, L.; Mungpayaban, H.; Wititteeranon, A.

    2015-01-01

    Thailand is a non-nuclear weapon state. The non-nuclear activities are mainly medical, agricultural, and industrial. Therefore, Thailand ratified the Nuclear Non-Proliferation Treaty (NPT) since 1972 and has been entry into force of the Comprehensive Safeguards Agreement (INFCIRC 241) since 1974. Based on the INFCIRC 153, Thailand established a system of accounting for and control of all nuclear material subject to safeguards under the Agreement. In order to ensure the peaceful use of nuclear in Thailand the Nuclear-Non- Proliferation Center of Office of Atoms for Peace (NPC, OAP) was established to act as State level Safeguards. NPC is responsible for keeping records and providing information under requirement of Comprehensive Safeguards Agreement. In addition, the strengthening of cooperation and good coordination between Thailand and IAEA are indeed important and necessary to implementation safeguards in country. Based on the report of IAEA safeguards statement, there is no indication of the diversion of nuclear materials or misuse of the facility or the items in Thailand. Up to present, nuclear activities in Thailand are peaceful without diversion of using. This paper reviews the current status of the implementation Safeguards in Thailand. (author)

  2. IAEA safeguard system

    International Nuclear Information System (INIS)

    Pontes, B.C.

    1987-01-01

    The intents of IAEA safeguards, analysing into the IAEA statutes, are presented. The different types of safeguard agreements; the measurements of accounting, containment and caution used by the operator and; the information to be provided and the verification to be developed by IAEA are described. (M.C.K.) [pt

  3. Introducing the Brazilian program of technical support to the International Atomic Energy Agency - Department of Safeguards

    International Nuclear Information System (INIS)

    Vinhas, Laercio A.; Palhares, Lilia C.; Dias, Fabio C.; Khlebnikov, Nikolai

    2009-01-01

    As an active Member State of the International Atomic Energy Agency (IAEA), Brazil has applied substantial resources in order to maintain the best possible cooperation with the Agency, aiming at a continuous improvement of the effectiveness and efficiency of the safeguards system. Over the last decades a number of projects, involving the participation of high-level Brazilian professionals in the nuclear area, have already been jointly completed. To continue providing this voluntary support to the IAEA Department of Safeguards for research, development and implementation, in 2006 Brazil decided to accept the IAEA's invitation to participate in the IAEA Member States Support Programmes initiative, which currently includes 21 Member States. The Research and Development (R and D) Programme for Nuclear Verification is the IAEA reference in this regard, establishing the high priority needs and describing each recognized departmental project. The Programme is issued every two years. The 'Brazilian Support Programme (BRZ SP)' was established on the basis of a set of administrative procedures titled 'Cooperation Arrangements and Guidelines', agreed between the Brazilian National Nuclear Energy Commission (CNEN) and the IAEA - Department of Safeguards. The scope of the BRZ SP includes: the participation in field tests and the evaluation of state-of-the-art technologies as requested by the IAEA for its safeguards applications; the training of safeguards personnel involved with safeguards implementation at both facility and State levels; laboratorial support in the area of destructive and nondestructive analysis of nuclear materials; the analysis of safeguards issues; information acquisition, analysis and evaluation; and the provision of human resources, such as experts and consultants to work directly with the IAEA Secretariat. The activities agreed under the BRZ SP are not restricted to CNEN staff members. Professionals from other Brazilian organizations may also be involved

  4. Evaluating alternative responses to safeguards alarms

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.; Judd, B.R.; McCord, R.K.

    1982-01-01

    This paper describes a quantitative approach to help evaluate and respond to safeguards alarms. These alarms may be generated internally by a facility's safeguards systems or externally by individuals claiming to have stolen special nuclear material (SNM). This approach can be used to identify the most likely cause of an alarm - theft, hoax, or error - and to evaluate alternative responses to alarms. Possible responses include conducting investigations, initiating measures to recover stolen SNM, and replying to external threats. Based on the results of each alarm investigation step, the evaluation revises the likelihoods of possible causes of an alarm, and uses this information to determine the optimal sequence of further responses. The choice of an optimal sequence of responses takes into consideration the costs and benefits of successful thefts or hoaxes. These results provide an analytical basis for setting priorities and developing contingency plans for responding to safeguards alarms

  5. Current technical issues in international safeguards

    International Nuclear Information System (INIS)

    Bennett, C.A.

    1977-01-01

    Safeguards systems, and the associated need for technical and systems development, reflect changing conditions and concerns associated with the nuclear fuel cycle and the safety and security of nuclear materials and facilities. In particular, the implementation of international safeguards has led to the recognition of certain technical issues, both old and new, which are in need of resolution. These are: 1. The grading of nuclear materials and facilities with respect to their relative safeguards significance. 2. The extension and upgrading of safeguards techniques to maintain adequate protection in view of constantly increasing amounts of material to be safeguarded. 3. The balance between safeguards mechanisms based on physical protection and material accounting, and the role of surveillance and containment in each case. 4. The role of information systems as a basis for both analytical feedback and the determination of the factors affecting system effectiveness and their interrelationship. 5. A determination of the degree to which the overall technical effectiveness of international inspection activities can be quantified. Each of these technical issues must be considered in light of the specific objectives of international safeguards, which differ from domestic safeguards in terms of the level of the threat, the safeguards mechanisms available, and the diversion strategies assumed. Their resolution in this international context is essential if the effectiveness and viability of international safeguards are to be maintained

  6. Safeguards agreements - Their legal and conceptual basis

    International Nuclear Information System (INIS)

    Sanders, B.; Rainer, R.H.

    1977-01-01

    The application of Agency safeguards requires treaty arrangements (Safeguards Agreements) between the State or States concerned and the Agency. The authority for the Agency to conclude such agreements and to implement them is provided for in the Agency's Statute. On the basis of the statutory provisions safeguards principles and procedures have been elaborated. These have been laid down in: The Agency's Safeguards System 1965, extended in 1966 and 1968; and the basis for negotiating safeguards agreements with NNWS pursuant to NPT. The verification of the undertaking by the State concerned not to use items subject to safeguards for purposes contrary to the terms of the agreement is ensured through the application of various safeguards measures. Containment and surveillance measures are expected to play an increasingly important role. One of the specific features of NPT Safeguards Agreements is the establishment of national systems of accounting and control of nuclear material. The majority of the agreements concluded under the non-NPT safeguards agreements implement obligations undertaken under co-operation agreements between States for peaceful uses of nuclear energy. These agreements naturally reflect approaches adopted by the parties, in particular regarding the circumstances under which safeguards should be applied. Thus, the concepts used in the non-NPT safeguards agreements and the Safeguards System document, which is incorporated in these agreements by reference, are in continuous evolution. The Agency's Safeguards System document (INFCIRC/66/Rev.2) continues to be supplemented in practical application and through explicit decision by the Board. The non-NPT safeguards agreements contain, besides technical safeguards provisions from this document, and further provision for notification, inventories and financial matters, legal and political provisions such as sanctions in the case of non-compliance, and privileges and immunities. The paper discusses the

  7. Where are we now? The strengthened safeguards system: Origins, aims, features, issues and prospects

    International Nuclear Information System (INIS)

    Schriefer, D.

    1998-01-01

    The present status of the strengthened safeguards system includes the origins, aims, features, issues and future prospects. The areas of emphasis concerning the strengthened safeguards system are: access to information (environmental sampling and improved information analysis), access to sites, rational use of resources (cost analysis of present safeguards, increased cooperation with state systems, cost savings in traditional safeguards activities)

  8. Analysis of facility-monitoring data

    Energy Technology Data Exchange (ETDEWEB)

    Howell, J.A.

    1996-09-01

    This paper discusses techniques for analysis of data collected from nuclear-safeguards facility-monitoring systems. These methods can process information gathered from sensors and make interpretations that are in the best interests of the facility or agency, thereby enhancing safeguards while shortening inspection time.

  9. Accountability and Transparency: Essential Underpinnings of Quality Safeguards

    International Nuclear Information System (INIS)

    Everton, C.; Floyd, R.

    2015-01-01

    The fundamental purpose of IAEA safeguards is to maintain confidence in the international community of the compliance of States with their respective non-proliferation commitments. The safeguards system for ensuring this compliance produces the most important output, the IAEA's compliance findings. Confidence in the findings of any compliance verification system requires some basic elements such as independence, accountability, transparency, and quality management systems. Quality management systems are an internal set of documents and procedures that, while clearly important, need to incorporate an external communication component in order to engender confidence as to how compliance is being managed and ensured. This paper will explore the importance of these fundamentals to confidence in IAEA safeguards compliance conclusions, with a focus on the external communication elements of accountability and transparency. Accountability and transparency will be considered with different communication channels through which safeguards implementation matters are explained and reported and at different levels, facility, State, regional, and the IAEA. This will include communications by: the IAEA and State authorities to the general public; State authorities to peers in other national safeguards authorities (regional and beyond); and, the IAEA and State authorities to the international community as represented through the Board of Governors and General Conference. Examples will be presented of good practices in these areas to encourage greater accountability and transparency in the work of safeguards. (author)

  10. Verification and the safeguards legacy

    International Nuclear Information System (INIS)

    Perricos, Demetrius

    2001-01-01

    A number of inspection or monitoring systems throughout the world over the last decades have been structured drawing upon the IAEA experience of setting up and operating its safeguards system. The first global verification system was born with the creation of the IAEA safeguards system, about 35 years ago. With the conclusion of the NPT in 1968, inspections were to be performed under safeguards agreements, concluded directly between the IAEA and non-nuclear weapon states parties to the Treaty. The IAEA developed the safeguards system within the limitations reflected in the Blue Book (INFCIRC 153), such as limitations of routine access by the inspectors to 'strategic points', including 'key measurement points', and the focusing of verification on declared nuclear material in declared installations. The system, based as it was on nuclear material accountancy. It was expected to detect a diversion of nuclear material with a high probability and within a given time and therefore determine also that there had been no diversion of nuclear material from peaceful purposes. The most vital element of any verification system is the inspector. Technology can assist but cannot replace the inspector in the field. Their experience, knowledge, intuition and initiative are invaluable factors contributing to the success of any inspection regime. The IAEA inspectors are however not part of an international police force that will intervene to prevent a violation taking place. To be credible they should be technically qualified with substantial experience in industry or in research and development before they are recruited. An extensive training program has to make sure that the inspectors retain their professional capabilities and that it provides them with new skills. Over the years, the inspectors and through them the safeguards verification system gained experience in: organization and management of large teams; examination of records and evaluation of material balances

  11. Licensee safeguards contingency plans

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The Nuclear Regulatory Commission is amending its regulations to require that licensees authorized to operate a nuclear reactor (other than certain research and test reactors), and those authorized to possess strategic quantities of plutonium, uranium-233, or uranium-235 develop and implement acceptable plans for responding to threats, thefts, and industrial sabotage of licensed nuclear materials and facilities. The plans will provide a structured, orderly, and timely response to safeguards contingencies and will be an important segment of NRC's contingency planning programs. Licensee safeguards contingency plans will result in organizing licensee's safeguards resources in such a way that, in the unlikely event of a safeguards contingency, the responding participants will be identified, their several responsibilities specified, and their responses coordinated

  12. Safeguards challenges of Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Ko, H. S.

    2010-01-01

    Although the safeguards system of Sodium Fast Reactor (SFR) seems similar to that of Light Water Reactor (LWR), it was raised safeguards challenges of SFR that resulted from the visual opacity of liquid sodium, chemical reactivity of sodium and other characteristics of fast reactor. As it is the basic concept stage of the safeguards of SFR in Korea, this study tried to analyze the latest similar study of safeguards issues of the Fast Breeder Reactor (FBR) at Joyo and Monju in Japan. For this reason, this study is to introduce some potential safeguards challenges of Fast Breeder Reactor. With this analysis, future study could be to address the safeguards challenges of SFR in Korea

  13. Development of in-field monitoring techniques. Report on Task FIN A845 on the Finnish Support Programme to IAEA Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Toivonen, H; Honkamaa, T; Kansanaho, A; Poellaenen, R [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland). Aerosol Lab.; Aarnio, P; Ala-Heikkilae, J; Nikkinen, M [Helsinki Univ. of Technology, Otaniemi (Finland). Nuclear Engineering Lab.

    1994-12-01

    Several in-field measuring techniques were identified for use in safeguards inspections. The radiation measurements play a major role in seeking environmetal signatures. A high-resolution gamma-ray spectrometer, either in-situ or in sample analysis, gives unequivocal evidence of nuclear activities on the site of interest. Although portable spectrometers are commercially available, hardware development and software tailoring seem to be necessary before efficient mobile measurements can be initiated. To understand trends and pattern of contamination, the results of the measurements have be displayed on digital maps. GPS-integration is an essential requirement for the equipment in environmental monitoring. (orig.) (14 refs., 5 figs., 17 tabs.).

  14. Development of in-field monitoring techniques. Report on Task FIN A845 on the Finnish Support Programme to IAEA Safeguards

    International Nuclear Information System (INIS)

    Toivonen, H.; Honkamaa, T.; Kansanaho, A.; Poellaenen, R.; Aarnio, P.; Ala-Heikkilae, J.; Nikkinen, M.

    1994-12-01

    Several in-field measuring techniques were identified for use in safeguards inspections. The radiation measurements play a major role in seeking environmetal signatures. A high-resolution gamma-ray spectrometer, either in-situ or in sample analysis, gives unequivocal evidence of nuclear activities on the site of interest. Although portable spectrometers are commercially available, hardware development and software tailoring seem to be necessary before efficient mobile measurements can be initiated. To understand trends and pattern of contamination, the results of the measurements have be displayed on digital maps. GPS-integration is an essential requirement for the equipment in environmental monitoring. (orig.) (14 refs., 5 figs., 17 tabs.)

  15. Safeguards can not operate alone

    International Nuclear Information System (INIS)

    Martikka, E.; Honkamaa, T.; Haemaelaeinen, M.; Okko, O.

    2013-01-01

    There are around 20 new states which are planning to use nuclear energy in the near future. Globally there are several nuclear power plants under construction and they will be bigger than ever. Also new type of nuclear facility, final disposal facility for spent nuclear fuel, will be constructed and in operation in Finland and Sweden in ca. 10 years time. It is evident that the nuclear world is changing much and quickly. After the Additional Protocol, safeguards are no longer only about accounting and control of nuclear materials, but also about verifying that there are no undeclared nuclear materials and activities in the state. It is not possible or effective anymore to implement safeguards without taking into account of the nuclear safety and security. The safeguards should not be isolated. The synergy between safeguards, security and safety exist, when implementing nationally that there are no undeclared nuclear materials or activities. In safeguards we could not do our duties effectively if we ignore some of those other S's. Safeguards by Design process does not work properly if only international safeguards and security requirements has been taken into account, it urges all 3S to be taken care at the same time. Safeguards should operate also with other synergetic regimes and organisations like CTBTO, Fissile Material Cut-off, disarmament, export control, border control,... The paper is followed by the slides of the presentation

  16. The international remote monitoring project and implication

    International Nuclear Information System (INIS)

    Sonnier, C.S.; Johnson, C.S.

    1994-01-01

    The future of remote monitoring in International Safeguards system is analyzed. Problems of an update on the International Remote Monitoring Project are considered. The Project allows to remotely transmit safeguards-relevant data directly to IAEA from nuclear facilities worldwide. Description of integrated monitoring system (IMS) is given. A key element of state-of-art of IMS is modular nodal system which accepts information from sensors and provides information to both a data storage unit and a transmitter. Remote Monitoring Systems of Australia and Sweden are presented. 3 figs

  17. U.S.-India safeguards dispute

    International Nuclear Information System (INIS)

    Sweet, W.

    1978-01-01

    The current U.S.-India dispute over nuclear safeguards is likely to be the single most important test of the Carter administration's anti-proliferation policies. The Carter administration wants India to accept comprehensive safeguards that would bar further production of nuclear explosives. The Desai government wants to maintain unsafeguarded facilities, in effect keeping the weapons option open. It has been a basic tenet of Indian nuclear policy since the mid-1950s that the big powers must disarm if the small powers are to renounce acquisition of nuclear weapons. As a matter of practical policy, India is willing to forego a nuclear deterrent only if sustained world pressure keeps China's nuclear aspirations in check. As a matter of basic principle, India regards it as unfair and imperialistic that the heavily armed big powers ask for special assurances from the lightly armed small powers. India takes the position that it will cooperate with the United States only voluntarily and only if the nuclear weapon states or at least the superpowers start to clean up their own act. The superpowers must (1) negotiate a comprehensive test ban treaty; (2) accept full-scope safeguards themselves, which would be tantamount to a ban on any further production of weapons-grade materials; and (3) make significant moves toward total nuclear disarmament. The dependence of India on the United States for nuclear supplies is almost negligible. India's major nuclear facilities in operation or under construction include five research reactors, seven power reactors and three reprocessing facilities. Of these 15 facilities, the United States supplied only one (the Tarapur reactor) and 12 of them are not under IAEA safeguards. The United States, in short, is threatening to terminate supplies of low-enriched uranium for just one reactor unless India places these 12 facilities under IAEA safeguards

  18. Application of safeguards procedures

    International Nuclear Information System (INIS)

    1977-01-01

    The earliest applications of safeguards procedures took place in a political and technical climate far different from that of today. In the early 1960's there was a fear of the proliferation possibilities which could arise as more and more countries acquired nuclear power plants. Today nuclear power is being produced in some 20 countries without resulting in nuclear weapons proliferation. The export of equipment and technology for the nuclear fuel cycle, however, has become the subject of current concern. In view of these developments, it is not surprising that techniques in the application of safeguards have also changed. In order to appreciate the nature of these changes, it is important to be aware of the original general attitude towards the technical problems of safeguards applications. Originally, the common attitude was that the objectives of safeguards were self-evident and the methods, while in need of development, were known at least in outline. Today, it has become evident that before a safeguards procedure can be applied, the objectives must first be carefully defined, and the criteria against which success in meeting those objectives can be measured must also be developed. In line with this change, a significant part of the effort of the safeguards inspectorate is concerned with work preliminary and subsequent to the actual inspection work in the field. Over the last two years, for example, a considerable part of the work of experienced safeguards staff has been spent in analysing the possibilities of diverting material at each facility to be safeguarded. These analyses are carried out in depth by a 'facility officer' and are subjected to constructive criticism by teams composed of staff responsible for similar types of facilities as well as other technical experts. The analyses consider the measures currently considered practicable, to meet the diversion possibilities and where necessary list the development work needed to overcome any present

  19. Safeguards by Design Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-13

    The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA’s limited budget. Dose to workers should always be as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).

  20. Safeguards by Design Challenge

    International Nuclear Information System (INIS)

    Alwin, Jennifer Louise

    2016-01-01

    The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA's limited budget. Dose to workers should always be as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).

  1. INL Human Resource Development and the Next-Generation Safeguards Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia, Fernando; Metcalf, Richard Royce Madison

    2010-07-01

    It is the stated goal of the Next Generation Safeguards Initiative (NGSI) to promote the development of a strengthened nuclear safeguards base, one with the potential to advance the secure and peaceful implementation of nuclear energy world-wide. To meet this goal, the initiative, among other things, has sought to develop a revitalized effort to ensure the continued availability of next generation safeguards professionals. Accordingly, this paper serves to outline the human capital building strategies taken by Idaho National Laboratory (INL) in line with the NGSI. Various components are presented in detail, including INL’s efforts directed at university outreach, in particular the laboratory’s summer internship program, along with the development of various innovative training programs and long-term oriented strategies for student professional development. Special highlights include a video training series, developed by INL in cooperation with LLNL and other laboratories, which sought to expose students and entry-level professionals to the concept and practice of international nuclear safeguards.

  2. Oak Ridge National Laboratory Next Generation Safeguards Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL; Eipeldauer, Mary D [ORNL; Whitaker, J Michael [ORNL

    2011-12-01

    In 2007, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined trends and events impacting the mission of international safeguards and the implications of expanding and evolving mission requirements on the legal authorities and institutions that serve as the foundation of the international safeguards system, as well as the technological, financial, and human resources required for effective safeguards implementation. The review's findings and recommendations were summarized in the report, 'International Safeguards: Challenges and Opportunities for the 21st Century (October 2007)'. One of the report's key recommendations was for DOE/NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency's General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: (1) Policy development and outreach; (2) Concepts and approaches; (3) Technology and analytical methodologies; (4) Human resource development; and (5) Infrastructure development. The ensuing report addresses the 'Human Resource Development (HRD)' component of NGSI. The goal of the HRD as defined in the NNSA Program Plan (November 2008) is 'to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.' One of the major objectives listed in the HRD goal includes education and training, outreach to universities, professional societies, postdoctoral appointments, and summer internships at national laboratories. ORNL is a participant in the NGSI program, together

  3. Selected nondestructive assay instrumentation for an international safeguards system at uranium enrichment plants

    International Nuclear Information System (INIS)

    Tape, J.W.; Baker, M.P.; Strittmatter, R.; Jain, M.; Evans, M.L.

    1979-01-01

    A selected set of nondestructive assay instruments for an international safeguards system at uranium enrichment plants is currently under development. These instruments are of three types: in-line enrichment meters for feed, product, and tails streams; area radiation monitors for direct detection of high-enriched uranium production, and an enrichment meter for spent alumina trap material. The current status of the development of each of these instruments is discussed, with supporting data, as well as the role each would play in a total international safeguards system. 5 figures

  4. Safeguards and security status report, August 1981-January 1982

    Energy Technology Data Exchange (ETDEWEB)

    Shipley, J.P. (comp.)

    1982-09-01

    From August 1981 through January 1982, the Los Alamos Safeguards and Security Program was involved in many activities that are described in the four parts of this report: Nuclear Facility Safeguards Support, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers those efforts of direct assistance to the Department of Energy and the Nuclear Regulatory Commission licensee facilities. This assistance varies from consultation on materials accounting problems, through development of specialized techniques and devices, to comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards helps make the technology more accessible to those who must apply it. Part 2 concerns a relatively new set of activities at Los Alamos aimed at the security of information and computer systems. The focus this period has been on furthering the development of the Computer Security Center, which provides the basis for encouraging and disseminating the emerging technology. Part 3 describes the development efforts that are essential to continued improvements in the practice of safeguards. Although these projects are properly classified as developmental, in every case they are directed ultimately at recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. In addition, enrichment plant safeguards, especially those concerning the Gaseous Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer.

  5. Safeguards and security status report, August 1981-January 1982

    International Nuclear Information System (INIS)

    Shipley, J.P.

    1982-09-01

    From August 1981 through January 1982, the Los Alamos Safeguards and Security Program was involved in many activities that are described in the four parts of this report: Nuclear Facility Safeguards Support, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers those efforts of direct assistance to the Department of Energy and the Nuclear Regulatory Commission licensee facilities. This assistance varies from consultation on materials accounting problems, through development of specialized techniques and devices, to comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards helps make the technology more accessible to those who must apply it. Part 2 concerns a relatively new set of activities at Los Alamos aimed at the security of information and computer systems. The focus this period has been on furthering the development of the Computer Security Center, which provides the basis for encouraging and disseminating the emerging technology. Part 3 describes the development efforts that are essential to continued improvements in the practice of safeguards. Although these projects are properly classified as developmental, in every case they are directed ultimately at recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. In addition, enrichment plant safeguards, especially those concerning the Gaseous Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer

  6. Swedish experiences in implementing national and international safeguards

    International Nuclear Information System (INIS)

    Nilsson, A.; Elborn, M.; Grahn, P.

    1991-01-01

    This paper reports that international safeguards have been applied in Sweden since the early 70s. Experiences have been achieved from exclusive bilateral and trilateral control followed by NPT safeguards in 1975. The Swedish State System for accountancy and Control (SSAC) includes all regulations that follows from prevailing obligations regarding the peaceful uses of nuclear material. The system has been developed in cooperation between the national authority, the Swedish Nuclear Power Inspectorate (SKI) and the Swedish nuclear industry. The paper presents experiences from the practical implementation of the SSAC and the IAEA safeguards system, gained by the SKI and the nuclear industry, respectively. Joint approaches and solutions to some significant safeguards issues are presented. The cooperation between the nuclear industry and the authority in R and D activities, in particular with respect to the Swedish Support Program is highlighted, e.g. the use of nuclear facilities in development or training tasks. some of the difficulties encountered with the system are also touched upon

  7. IAEA safeguards approaches and goals

    International Nuclear Information System (INIS)

    Khlebnikov, Nikolai

    2001-01-01

    IAEA safeguards provide a technical means of verifying that political obligations undertaken by States party to international agreements relating to the peaceful uses of nuclear energy are being honored. The Agency assures the international community that States party to Safeguards Agreements are complying with their undertaking not to use facilities and divert nuclear materials from peaceful uses to the manufacture of nuclear explosive devices. The task of IAEA safeguards can be summed up as to detect diversion of nuclear materials committed to peaceful uses of nuclear energy, or the misuse of equipment or facilities subject to certain safeguards agreements, and to deter such diversion or misuse through the risk of early detection. This lecture concentrates on the factors the Agency takes into account in designing and implementing safeguards approaches at facilities. (author)

  8. Nuclear safeguards surveys as performed by the Albuquerque operations office

    International Nuclear Information System (INIS)

    Jewell, D.

    1987-01-01

    The nuclear safeguards survey program as administered by the Albuquerque Operations Office (AL) is comprehensive in scope and evaluates the facility's safeguards program for an entire appraisal period. The survey program focuses on both the integrated and graded safeguards concepts and includes both compliance and performance evaluations. The program utilizes independent measurement support to verify facility inventory values and measurement system capabilities. The AL survey program is oriented towards facility development and management as opposed to development and management by numerous detailed departmental directives

  9. Addressing Safeguards Challenges for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Majali, Raed; Yim, Man-Sung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    IAEA safeguard system is considered the corner stone of the international nuclear nonproliferation regime. Effective implementation of this legal instrument enables the IAEA to draw a conclusion with a high degree of confidence on the peaceful use of nuclear material and activities in the state. This paper aims to provide an opportunity to address various challenges encountered by IAEA. Strengthening safeguards system for verification is one of the most urgent challenges facing the IAEA. The IAEA should be able to provide credible assurance not only about declared use of nuclear material and facilities but also about the absence of undeclared material and activities. Implementation of IAEA safeguards continue to play a vital role within the nuclear non-proliferation regime. IAEA must move towards more enhanced safeguards system that is driven by the full use of all the safeguards available relevant information. Safeguards system must be responsive to evolving challenges and continue innovation through efficient implementations of more effective safeguards.

  10. Nuclear safeguards

    International Nuclear Information System (INIS)

    Estrampres, J.

    2010-01-01

    Close cooperation with the Ministry of Industry with representation from the UNESA Safeguards Group, has meant that, after almost two years of intense meetings and negotiations, Spain has a specific plant to plant agreement for the application of Safeguards under this new method. This is an agreement which aims to be a benchmark for all other EU countries, as the IAEA tends to apply a generic agreement that, in many cases, majority interferes in the nuclear power plants own processes. (Author).

  11. Implementing Safeguards-by-Design

    International Nuclear Information System (INIS)

    Bjornard, Trond; Bean, Robert; Durst, Phillip Casey; Hockert, John; Morgan, James

    2010-01-01

    Excerpt Safeguards-by-Design (SBD) is an approach to the design and construction of nuclear facilities whereby safeguards are designed-in from the very beginning. It is a systematic and structured approach for fully integrating international and national safeguards (MC and A), physical security, and other proliferation barriers into the design and construction process for nuclear facilities. SBD is primarily a project management or project coordination challenge, and this report focuses on that aspect of SBD. The present report continues the work begun in 2008 and focuses specifically on the design process, or project management and coordination - the planning, definition, organization, coordination, scheduling and interaction of activities of the safeguards experts and stakeholders as they participate in the design and construction of a nuclear facility. It delineates the steps in a nuclear facility design and construction project, in order to provide the project context within which the safeguards design activities take place, describes the involvement of safeguards experts in the design process, the nature of their analyses, interactions and decisions, as well as describing the documents created and how they are used. Designing and constructing a nuclear facility is an extremely complex undertaking. The stakeholders in an actual project are many - owner, operator, State regulators, nuclear facility primary contractor, subcontractors (e.g. instrument suppliers), architect engineers, project management team, safeguards, safety and security experts, in addition to the IAEA and its team. The purpose of the present report is to provide a common basis for discussions amongst stakeholders to collaboratively develop a SBD approach that will be both practically useful and mutually beneficial. The principal conclusions from the present study are: (1) In the short term, the successful implementation of SBD is principally a project management problem. (2) Life-cycle cost

  12. Implementing The Safeguards-By-Design Process

    International Nuclear Information System (INIS)

    Whitaker, J. Michael; McGinnis, Brent; Laughter, Mark D.; Morgan, Jim; Bjornard, Trond; Bean, Robert; Durst, Phillip; Hockert, John; DeMuth, Scott; Lockwood, Dunbar

    2010-01-01

    The Safeguards-by-Design (SBD) approach incorporates safeguards into the design and construction of nuclear facilities at the very beginning of the design process. It is a systematic and structured approach for fully integrating international and national safeguards for material control and accountability (MC and A), physical protection, and other proliferation barriers into the design and construction process for nuclear facilities. Implementing SBD is primarily a project management or project coordination challenge. This paper focuses specifically on the design process; the planning, definition, organization, coordination, scheduling and interaction of the safeguards experts and stakeholders as they participate in the design and construction of a nuclear facility. It delineates the steps in a nuclear facility design and construction project in order to provide the project context within which the safeguards design activities take place, describes the involvement of the safeguards experts in the design process, the nature of their analyses, interactions and decisions, and describes the documents created and how they are used. This report highlights the project context of safeguards activities, and identifies the safeguards community (nuclear facility operator, designer/builder, state regulator, SSAC and IAEA) must accomplish in order to implement SBD within the project.

  13. Optimizing IAEA Safeguards

    International Nuclear Information System (INIS)

    Varjoranta, Tero

    2016-01-01

    IAEA safeguards make a vital contribution to international security. Through safeguards, the IAEA deters the spread of nuclear weapons and provides credible assurance that States are honouring their international obligations to use nuclear material only for peaceful purposes. Its independent verification work allows the IAEA to facilitate building international confidence and strengthening collective security for all.

  14. IAEA safeguards in new nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Catton, A. [International Atomic Energy Agency, Vienna (Austria); Durbin, K. [United States Department of Energy, Washington, D.C. (United States); Hamilton, A. [International Atomic Energy Agency, Vienna (Austria); Martikka, E. [STUK, Helsinki (Finland); Poirier, S.; Sprinkle, J. K.; Stevens, R. [International Atomic Energy Agency, Vienna (Austria); Whitlock, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The inclusion of international safeguards early in the design of nuclear facilities offers an opportunity to reduce project risk. It also has the potential to minimize the impact of safeguards activities on facility operations. Safeguards by design (SBD) encourages stakeholders to become familiar with the requirements of their safeguards agreements and to decide when and how they will fulfil those requirements. As one example, modular reactors are at a design stage where SBD can have a useful impact. Modular reactors might be turnkey projects where the operator takes ownership after commissioning. This comes with a legal obligation to comply with International Atomic Energy Agency (IAEA) safeguards requirements. Some of the newcomer countries entering the reactor market have little experience with IAEA safeguards and the associated non-proliferation obligations. To reduce delays or cost increments, one can embed safeguards considerations in the bid and design phases of the project, along with the safety and security considerations. SBD does not introduce any new requirements - it is a process whereby facility designers facilitate the implementation of the existing safeguards requirements. In short, safeguards experts share their expertise with the designers and vice versa. Once all parties understand the fundamentals of all of the operational constraints, they are better able to decide how best to address them. This presentation will provide an overview of SBD activities. (author)

  15. Task team approach to safeguards and security designs

    International Nuclear Information System (INIS)

    Zack, N.R.; Wilkey, D.D.

    1991-01-01

    In 1987, a U.S. department of Energy (DOE) supported task team was organized at the request of the DOE Idaho Field Office (DOE-ID) to provide support for safeguards and security (S and S) designs of the Special Isotope Separation (SIS) facility. Prior to deferral of the project, the SIS facility was to be constructed at the Idaho National Engineering Laboratory (INEL) to produce weapons grade plutonium from DOE owned fuel grade plutonium. The task team was assembled to provide the resources necessary to assure that S and S considerations were included as an integral part of the design of the facility, and that SIS designs would take advantage of available technology in the areas of physical security, measurements, accountability, and material and personnel tracking. The task team included personnel from DOE/Office of Safeguards and Security (DOE-OSS), DOE-ID, DOE contractors, and the national laboratories providing a wide range of expertise and experience. This paper reports that the team reviewed proposed designs and provided recommendations for safeguards and security features in each stage of the design process. The value of this approach to safeguards and security designs will be discussed with respect to benefits, lessons learned, and recommendations for future applications

  16. Design measures to facilitate implementation of safeguards at future water cooled nuclear power plants

    International Nuclear Information System (INIS)

    1999-01-01

    The report is intended to present guidelines to the State authorities, designers and prospective purchasers of future water cooled power reactors which, if taken into account, will minimize the impact of IAEA safeguards on plant operation and ensure efficient and effective acquisition of safeguards data to the mutual benefit of the Member State, the plant operator and the IAEA. These guidelines incorporate the IAEA's experience in establishing and carrying out safeguards at currently operating nuclear power plants, the ongoing development of safeguards techniques and feedback of experience from plant operators and designers on the impact of IAEA safeguards on plant operation. The following main subjects are included: The IAEA's safeguards function for current and future nuclear power plants; summary of the political and legal foundations of the IAEA's safeguards system; the technical objective of safeguards and the supply and use of required design information; safeguards approaches for nuclear power plants; design implications of experience in safeguarding nuclear power plants and guidelines for future water cooled reactors to facilitate the implementation of safeguards

  17. Safeguards and security benefits of project straight-line

    International Nuclear Information System (INIS)

    Jaeger, C.D.; Waddoups, I.G.

    1995-01-01

    As a result of a number of events the inventory of fissile materials no longer in nuclear weapons in the United States is increasing. This has led to a growing concern regarding the potential for theft and/or diversion and accountability of this material. Straight-Line is a project whose purpose is to demonstrate a site-independent system to monitor stored nuclear material (e.g. plutonium) and integrate the collection, processing and dissemination of information regarding this material. Safeguards and security (S ampersand S) goals of this project include data transfer of information on nuclear material to appropriate users to enhance S ampersand S, continuous on-line accountability, reduction of hands-on access to nuclear materials, incorporation of information security technologies, and early detection of tampering or unauthorized material movement. This paper addresses threat considerations, S ampersand S requirements, S ampersand S objectives, and issues for the Straight-Line project. S ampersand S features and benefits of this project are discussed with respect to existing item monitoring systems and/or other material tracking systems being developed

  18. Enrichment plant management and safeguards

    International Nuclear Information System (INIS)

    Hurt, N.H.

    1978-01-01

    The next increment of enrichment at Portsmouth will be gas centrifuge. The safeguards program at Portsmouth is discussed, including the DYMCAS system, the computerization, and the detectors. Control of the material access areas is discussed. The licensee material surveillance and verification program is also described

  19. Remote monitoring using technologies from the Internet and World Wide Web

    International Nuclear Information System (INIS)

    Puckett, J.M.; Burczyk, L.

    1997-01-01

    Recent developments in Internet technologies are changing and enhancing how one processes and exchanges information. These developments include software and hardware in support of multimedia applications on the World Wide Web. In this paper the authors describe these technologies as they have applied them to remote monitoring and show how they will allow the International Atomic Energy Agency to efficiently review and analyze remote monitoring data for verification of material movements. The authors have developed demonstration software that illustrates several safeguards data systems using the resources of the Internet and Web to access and review data. This Web demo allows the user to directly observe sensor data, to analyze simulated safeguards data, and to view simulated on-line inventory data. Future activities include addressing the technical and security issues associated with using the Web to interface with existing and planned monitoring systems at nuclear facilities. Some of these issues are authentication, encryption, transmission of large quantities of data, and data compression

  20. The Safeguards Analytical Laboratory (SAL) in the Agency's safeguards measurement system activity in 1990

    International Nuclear Information System (INIS)

    Bagliano, G.; Cappis, J.; Deron, S.; Parus, J.L.

    1991-05-01

    The IAEA applies Safeguards at the request of a Member State to whole or part of its nuclear materials. The verification of nuclear material accountability still constitutes the fundamental method of control, although sealing and surveillance procedures play an important complementary and increasing role in Safeguards. A small fraction of samples must still be analyzed at independent analytical laboratories using conventional Destructive Analytical (DA) methods of highest accuracy in order to verify that small potential biases in the declarations of the State are not masking protracted diversions of significant quantities of fissile materials. The Safeguards Analytical Laboratory (SAL) is operated by the Agency's Laboratories at Seibersdorf to provide to the Department of Safeguards and its inspectors such off-site Analytical Services, in collaboration with the Network of Analytical Laboratories (NWAL) of the Agency. In the last years SAL and the Safeguards DA Services have become more directly involved in the qualification and utilization of on-site analytical instrumentation such as K-edge X-Ray absorptiometers and quadrupole mass spectrometers. The nature and the origin of the samples analyzed, the measurements usually requested by the IAEA inspectors, the methods and the analytical techniques available at SAL and at the Network of Analytical Laboratories (NWAL) with the performances achieved during the past years are described and discussed in several documents. This report gives an evaluation compared with 1989 of the volume and the quality of the analyses reported in 1990 by SAL and by the NWAL in reply to requests of IAEA Safeguards inspectors. The reports summarizes also on-site DA developments and support provided by SAL to the Division of Safeguards Operation and special training courses to the IAEA Safeguards inspectors. 55 refs, 7 figs, 15 tabs

  1. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  2. SNAP/SOS: a package for simulating and analyzing safeguards systems

    International Nuclear Information System (INIS)

    Grant, F.H. III; Polito, J.; Sabuda, J.

    1983-01-01

    The effective analysis of safeguards systems at nuclear facilities requires significant effort. The Safeguards Network Analysis Procedure (SNAP) and the SNAP Operating System (SOS) reduce that effort to a manageable level. SNAP provides a detailed analysis of site safeguards for tactical evaluation. SOS helps the analyst organize and manage the SNAP effort effectively. SOS provides a database for model storage, automatic model generation, and computer graphics. The SOS/SNAP combination is a working example of a simulation system including executive-level control, database system, and facilities for model creation, editing, and output analysis

  3. Managing threats from emerging technologies: can safeguards show the way?

    International Nuclear Information System (INIS)

    Leffer, Teri N.

    2014-01-01

    The system of international nuclear safeguards implemented by the International Atomic Energy Agency (IAEA) is primarily a means of verification of states’ commitments under various legal instruments, principally the Nuclear Non‑Proliferation Treaty (NPT), to utilize controlled nuclear fission for peaceful purposes only. However, the safeguards system can also be seen as a mechanism through which states acted to reduce the threat posed by a new technology that had a transformative impact on existing national security paradigms when it emerged in the twentieth century. In the twenty‑first century, new technologies with equally profound national security implications are emerging. These include biotechnology and synthetic biology, nano technology, information technology, cognitive science, robotics and artificial intelligence. Throughout its history, the safeguards system has evolved to accommodate new technologies, new undertakings and new threats. Because multiple emerging technologies now constitute potential national security threats, it is appropriate to consider whether and how the lessons and successes of the safeguards system, including its capacity to evolve in response to changing requirements, could be leveraged to mitigate the threat posed by these new technologies. This paper addresses the possibility of re‑imagining safeguards in a way that makes them applicable to a broader range of technology‑based threats without compromising their effectiveness for their original purpose.

  4. Rural nurses' safeguarding work: reembodying patient safety.

    Science.gov (United States)

    MacKinnon, Karen

    2011-01-01

    Practice-based evidence includes research that is grounded in the everyshift experiences of rural nurses. This study utilized institutional ethnography to reembody the work of rural nurses and to explore how nurses' work experiences are socially organized. Registered nurses who work in small acute care hospitals were observed and interviewed about their work with the focus on their experiences of providing maternity care. The safeguarding work of rural nurses included anticipating problems and emergencies and being prepared; careful watching, surveillance, and vigilance; negotiating safety; being able to act in emergency situations; and mobilizing emergency transport systems. Increased attention to inquiry about safeguarding as an embodied nursing practice and the textual organization of the work of rural nurses is warranted.

  5. Safeguards and nonproliferation aspects of a dry fuel recycling technology

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1993-01-01

    Los Alamos National Laboratory undertook an independent assessment of the proliferation potentials and safeguardability of a dry fuel recycling technology, whereby spent pressurized-water reactor (PWR) fuels are used to fuel canadian deuterium uranium (CANDU) reactors. Objectives of this study included (1) the evaluation of presently available technologies that may be useful to safeguard technology options for dry fuel recycling (2) and identification of near-term and long-term research needs to develop process-specific safeguards requirements. The primary conclusion of this assessment is that like all other fuel cycle alternatives proposed in the past, the dry fuel recycle entails prolfferation risks and that there are no absolute technical fixes to eliminate such risks. This study further concludes that the proliferation risks of dry fuel recycling options are relatively minimal and presently known safeguards systems and technologies can be modified and/or adapted to meet the requirements of safeguarding such fuel recycle facilities

  6. Combined SAFE/SNAP approach to safeguards evaluation

    International Nuclear Information System (INIS)

    Engi, D.; Chapman, L.D.; Grant, F.H.; Polito, J.

    1980-01-01

    The scope of a safeguards evaluation model can efficiently address one of two issues: (1) global safeguards effectiveness or (2) vulnerability analysis for individual scenarios. The Safeguards Automated Facility Evaluation (SAFE) focuses on the first issue, while the Safeguards Network Analysis Procedure (SNAP) is directed towards the second. A combined SAFE/SNAP approach to the problem of safeguards evaluation is described and illustrated through an example. 4 refs

  7. Building safeguards infrastructure

    International Nuclear Information System (INIS)

    McClelland-Kerr, J.; Stevens, J.

    2010-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the clean and safe growth of nuclear power, and the infrastructure that supports these three areas should be robust. The focus of this paper will be on the development of the infrastructure necessary to support safeguards, and the integration of safeguards infrastructure with other elements critical to ensuring nuclear energy security

  8. Overview of the Facility Safeguardability Analysis (FSA) Process

    Energy Technology Data Exchange (ETDEWEB)

    Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Scott J.; Wigeland, Roald; Zentner, Michael D.

    2012-08-01

    Executive Summary The safeguards system of the International Atomic Energy Agency (IAEA) is intended to provide the international community with credible assurance that a State is fulfilling its safeguards obligations. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of IAEA safeguards as those safeguards evolve towards a “State-Level approach.” The Safeguards by Design (SBD) concept can facilitate the implementation of these effective and cost-efficient facility-level safeguards (Bjornard, et al. 2009a, 2009b; IAEA, 1998; Wonder & Hockert, 2011). This report, sponsored by the National Nuclear Security Administration’s Office of Nuclear Safeguards and Security, introduces a methodology intended to ensure that the diverse approaches to Safeguards by Design can be effectively integrated and consistently used to cost effectively enhance the application of international safeguards.

  9. The Office of Safeguards and Security Nonproliferation Support Program

    International Nuclear Information System (INIS)

    Desmond, W.J.

    1996-01-01

    The Nonproliferation Support Program was established in the Department of Energy, Office of Safeguards and Security on october 1, 1995. its mission includes providing assistance to Departmental efforts for improved international material protection, control and accounting programs by coordinating and leveraging domestic safeguards and security policy, practice and experience into the international arena. A major objective of the program is to balance US national security requirements with global support of the nonproliferation objectives. This paper describes the organization of the Office of Safeguards and Security and the Nonproliferation Support Program role and responsibility, and presents some of the current areas of program emphasis and activity

  10. Safeguards considerations related to the use of multi-purpose canisters in the Civilian Radioactive Waste Management system

    International Nuclear Information System (INIS)

    Floyd, W.C.

    1995-01-01

    The US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for disposing of the nation's high-level radioactive waste. Currently, DOE is considering the use of Multi-Purpose Canisters (MPCs) to containerize commercial spent nuclear fuel (SNF) to be handled by the system. To achieve its safeguards and security objectives, OCRWM plans to institute a US Regulatory Commission (NRC)-approved safeguards program. Since the Mined Geologic Disposal System (MGDS) facility and a possible Monitored Retrievable Storage (MRS) facility may be subject to selection for International Atomic Energy Agency (IAEA) inspections, the safeguards program for MPCs may not preclude compliance with the requirements of the IAEA's Annex D, Special Criteria for Difficult-to-Access Fuel Items. MPC safeguards are based on three principles: Verification, Material Control and Accounting, and Physical Protection

  11. Setting priorities for safeguards upgrades

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.; Judd, B.R.; Patenaude, C.J.; Sicherman, A.

    1987-01-01

    This paper describes an analytic approach and a computer program for setting priorities among safeguards upgrades. The approach provides safeguards decision makers with a systematic method for allocating their limited upgrade resources. The priorities are set based on the upgrades cost and their contribution to safeguards effectiveness. Safeguards effectiveness is measured by the probability of defeat for a spectrum of potential insider and outsider adversaries. The computer program, MI$ER, can be used alone or as a companion to ET and SAVI, programs designed to evaluate safeguards effectiveness against insider and outsider threats, respectively. Setting the priority required judgments about the relative importance (threat likelihoods and consequences) of insider and outsider threats. Although these judgments are inherently subjective, MI$ER can analyze the sensitivity of the upgrade priorities to these weights and determine whether or not they are critical to the priority ranking. MI$ER produces tabular and graphical results for comparing benefits and identifying the most cost-effective upgrades for a given expenditure. This framework provides decision makers with an explicit and consistent analysis to support their upgrades decisions and to allocate the safeguards resources in a cost-effective manner

  12. Safeguards operations in the integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Goff, K.M.; Benedict, R.W.; Brumbach, S.B.; Dickerman, C.E.; Tompot, R.W.

    1994-01-01

    Argonne National Laboratory is currently demonstrating the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The safeguards aspects of the fuel cycle demonstration must be approved by the United States Department of Energy, but a further goal of the program is to develop a safeguards system that could gain acceptance from the Nuclear Regulatory Commission and International Atomic Energy Agency. This fuel cycle is described with emphasis on aspects that differ from aqueous reprocessing and on its improved safeguardability due to decreased attractiveness and diversion potential of all process streams, including the fuel product

  13. Safeguards agreements - their legal and conceptual basis

    International Nuclear Information System (INIS)

    Sanders, B.; Rainer, R.

    1977-01-01

    The application of Agency safeguards requires treaty arrangements (''Safeguards Agreements'') between the State or States concerned and the Agency. The authority for the Agency to conclude such agreements and to implement them is provided for in the Agency's Statute (Articles II, III A.5 and XII). On the basis of the statutory provisions safeguards principles and procedures have been elaborated. These have been laid down in: (a) The Agency's Safeguards System 1965, extended in 1966 and 1968 (INFCIRC/66/Rev.2); and (b) The basis for negotiating safeguards agreements with NNWS pursuant to NPT (INFCIRC/153). The verification of the undertaking by the State concerned not to use items subject to safeguards for purposes contrary to the terms of the agreement is verified through the application of various safeguards measures (design review, records, reports and inspection). Containment and surveillance measures are expected to play an increasingly important role. NPT Safeguards Agreements foresee as one of their specific features the establishment of national systems of accounting and control of nuclear material. The majority of the agreements concluded under document INFCIRC/66/Rev.2 - i.e. the non-NPT safeguards agreements - implement obligations undertaken under co-operation agreements between States for peaceful uses of nuclear energy. These agreements naturally reflect approaches adopted by the parties, in particular as to the circumstances under which safeguards should be applied. Thus, the concepts used in the non-NPT safeguards agreements and the safeguards system of document INFCIRC/66/Rev.2 which is incorporated in these agreements by reference are in continuous evolution. Document INFCIRC/66/Rev.2 continues to be supplemented in practical application and through explicit decision by the Board. The non-NPT safeguards agreements contain, besides technical safeguards provisions from document INFCIRC/66/Rev.2, and further provision for notification, inventories

  14. Safeguards Strategy in Physical Protection System for Nuclear Installation

    International Nuclear Information System (INIS)

    Ade lndra B; Kasturi; Tatang Eryadi

    2004-01-01

    Safeguards strategy is directed at efforts of eliminating theft of nuclear materials and sabotage of nuclear installation. For achieving the above objective, it is necessary to set up safeguards strategy in physical protection of nuclear materials and installation. The safeguards strategy starts from anticipated security condition, list of thefts, planning referred to as safeguards planning. Safeguards planning are implemented in safeguards implementation, followed up then by evaluation. Results of evaluation are equipped with results of safeguards survey already developed. Safeguards' planning is made from these results and serve as guidelines for next safeguards implementation and is repeated to form a safeguard cycle. One safeguard cycle is made on a periodical basis, at least annually. (author)

  15. Cyber Security Evaluation of the Wireless Communication for the Mobile Safeguard Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, S.; Kim, Y.S.; Ye, S.H.

    2015-01-01

    This paper introduces cyber security evaluation results and a design of the wireless communication technology to apply to safeguard systems in nuclear power plants. While wireless communication technologies can generally make mobility and efficiency on plant operation, those have seldom been installed on the nuclear I&C systems due to the negative concern of unexpected outcomes that stem from electromagnetic interference and cyber attack. New design of advanced digital safeguard and I&C systems uses computer-based systems for the safeguard and safety functions. On the other hand, those are being exposed to various types of new and existing cyber threats, vulnerabilities and risks which significantly increase the likelihood that those could be compromised. In order to employ the wireless communication technology in safeguard function, licencees assess and manage the potential for adverse effects on safeguard and safety functions so as to provide high assurance that critical functions are properly protected cyber attack. It is expected that the safeguard function, specifically on the area of real-time monitoring, logging, can be enhanced by employing the mobile safeguard devices (: smart phone, laptop, smart pad, etc). In this paper, we deal with the cyber security evaluation, which consists of threat analysis, vulnerability test, establishment of security plan, and design solutions for the wireless communication on the basis of IEEE 802.11(Wi-Fi) protocol. Proposed evaluation and design solution could be a basis for the design of wireless communication and mobile safeguard systems in nuclear power plants. (author)

  16. Safeguards technology: present posture and future impact

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1976-01-01

    With widespread and growing concern over the issues of nuclear safeguards, international nuclear trade and nuclear weapons proliferation, the full development of the world's nuclear energy potential could well depend on how effectively the strategic nuclear materials that fuel nuclear power are controlled and safeguarded. The broad U.S. program in nuclear safeguards and security is directed toward a balanced safeguards system incorporating the two major components of physical security and materials control. The current posture of modern safeguards technology, its impact on plant operations, and the key role it must play in the implementation of stringent cost-effective safeguards systems in facilities throughout the nuclear fuel cycle are outlined

  17. Technical implementation in support of the IAEA's remote monitoring field trial at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Corbell, B.H.; Moran, B.W.; Pickett, C.A.; Whitaker, J.M.; Resnik, W.; Landreth, D.

    1996-01-01

    A remote monitoring system (RMS) field trial will be conducted for the International Atomic Energy Agency (IAEA) on highly enriched uranium materials in a vault at the Oak Ridge Y-12 Plant. Remote monitoring technologies are being evaluated to verify their capability to enhance the effectiveness and timeliness of IAEA safeguards in storage facilities while reducing the costs of inspections and burdens on the operator. Phase one of the field trial, which involved proving the satellite transmission of sensor data and safeguards images from a video camera activated by seals and motion sensors installed in the vault, was completed in September 1995. Phase two involves formal testing of the RMS as a tool for use by the IAEA during their tasks of monitoring the storage of nuclear material. The field trial to be completed during early 1997 includes access and item monitoring of nuclear materials in two storage trays. The RMS includes a variety of Sandia, Oak Ridge, and Aquila sensor technologies that provide video monitoring, radiation attribute measurements, and container identification to the on-site data acquisition system (DAS) by way of radio-frequency and Echelon LONWorks networks. The accumulated safeguards information will be transmitted to the IAEA via satellite (COMSAT/RSI) and international telephone lines

  18. New technologies for monitoring nuclear materials

    International Nuclear Information System (INIS)

    Moran, B.W.

    1993-01-01

    This paper describes new technologies for monitoring the continued presence of nuclear materials that are being evaluated in Oak Ridge, Tennessee, to reduce the effort, cost, and employee exposures associated with conducting nuclear material inventories. These technologies also show promise for the international safeguarding of process systems and nuclear materials in storage, including spent fuels. The identified systems are based on innovative technologies that were not developed for safeguards applications. These advanced technologies include passive and active sensor systems based on optical materials, inexpensive solid-state radiation detectors, dimensional surface characterization, and digital color imagery. The passive sensor systems use specialized scintillator materials coupled to optical-fiber technologies that not only are capable of measuring radioactive emissions but also are capable of measuring or monitoring pressure, weight, temperature, and source location. Small, durable solid-state gamma-ray detection devices, whose components are estimated to cost less than $25 per unit, can be implemented in a variety of configurations and can be adapted to enhance existing monitoring systems. Variations in detector design have produced significantly different system capabilities. Dimensional surface characterization and digital color imaging are applications of developed technologies that are capable of motion detection, item surveillance, and unique identification of items

  19. Application of safeguards techniques to the Eurodif gas diffusion plant

    International Nuclear Information System (INIS)

    Coates, J.H.; Goens, J.R.

    1979-01-01

    The characteristic features of gas diffusion plants are such that safeguards procedures specifically suited for this technique can be proposed. The first of these features is the fact that appreciably altering the enrichment level of the plant product is not possible without making easily detectable changes either in the plant structure itself or in the movement of incoming and outgoing materials. Furthermore, because of the size of gas diffusion plants large stocks of uranium are present in them. Although inventory differences may be small in relative terms, they are large in abosolute terms and exceed the quantities of low-enriched uranium considered significant from the standpoint of safeguards. Lastly, the impossibility for economic reasons for taking a physical inventory of the plant after it has been emptied prevents a comparison of the physical inventory with the book inventory. It would therefore seem that the safeguarding of a gas diffusion plant should be focused on the movement of nuclear material between the plant and the outside world. The verification of inputs and outputs can be considered satisfactory from the safeguards standpoint as long as it is possible to make sure of the containment of the plant and of the surveillance for the purpose of preventing clandestine alterations of structure. The description of the Eurodif plant and the movement of materials planned there at present indicate that the application of such a safeguards technique to the plant should be acceptable to the competent authorities. For this purpose a monitoring area has been set aside in which the inspectors will be able to keep track of all movements between the outside world and the enrichment plant

  20. Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections

    International Nuclear Information System (INIS)

    Toquam, J.L.; Morris, F.A.

    1994-09-01

    This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in open-quotes Observational Skillsclose quotes. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one or more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector's job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector's job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA's consideration in further developing its Safeguards training program

  1. Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections

    Energy Technology Data Exchange (ETDEWEB)

    Toquam, J.L.; Morris, F.A.

    1994-09-01

    This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in {open_quotes}Observational Skills{close_quotes}. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one or more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector`s job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector`s job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA`s consideration in further developing its Safeguards training program.

  2. The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Pepper S. E.; .; Worrall, L.; Pickett, C.; Bachner, K.; Queirolo, A.

    2014-08-08

    The U.S. National Nuclear Security Administration’s Next Generation Safeguards Initiative, the U.S. Department of State, and the International Atomic Energy Agency (IAEA) organized a a workshop on the subject of ”Software Sustainability for Safeguards Instrumentation.” The workshop was held at the Vienna International Centre in Vienna, Austria, May 6-8, 2014. The workshop participants included software and hardware experts from national laboratories, industry, government, and IAEA member states who were specially selected by the workshop organizers based on their experience with software that is developed for the control and operation of safeguards instrumentation. The workshop included presentations, to orient the participants to the IAEA Department of Safeguards software activities related to instrumentation data collection and processing, and case studies that were designed to inspire discussion of software development, use, maintenance, and upgrades in breakout sessions and to result in recommendations for effective software practices and management. This report summarizes the results of the workshop.

  3. Physical protection of nuclear facilities and materials. Safeguards and the role of the IAEA in physical protection

    International Nuclear Information System (INIS)

    Smolej, M.

    1999-01-01

    The physical protection and security of nuclear facilities and materials concerns utilities, manufactures, the general public, and those who are responsible for licensing and regulating such facilities. The requirements and process to ensure an acceptable physical protection and security system have been evolutionary in nature. This paper reviews the first step of such process: the State's safeguards system and the international safeguards system of the International Atomic Energy Agency (IAEA), including the relationship between these two safeguards systems. The elements of these systems that are reviewed include the State System of Accounting for and Control of Nuclear Material, physical protection measures, and containment and surveillance measures. In addition, the interactions between the State, the facility operator, and the IAEA are described. The paper addresses the IAEA safeguards system, including material accountancy and containment and surveillance; the State safeguards system, including material control and accountancy, and physical protection; the role of the IAEA in physical protection; a summary of safeguards system interactions.(author)

  4. The Impact of Interdependencies on the Effectiveness and Efficiency of Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Kyriakopoulos, Nicholas [Department of Electrical and Computer Engineering, The George Washington University, Washington, DC (United States)

    2012-06-15

    The purpose of Integrated Safeguards is to evaluate a State as a whole and provide credible assurance of the absence of undeclared nuclear activities. The new system is not viewed as an addition to the traditional safeguards system but as a collection of measures to verify the correctness and completeness of the declarations. The broadening of the scope to evaluate the State for the purpose of enhancing non-proliferation introduces uncertainties that affect the performance of the safeguards system. The processes within a State that Integrated Safeguards seeks to monitor are not clearly defined. Neither are the measurement and evaluation systems for the verification of the absence of undeclared activities. A refinement of the existing diversion process model is needed that takes into account the likelihood that a State would undertake a clandestine program. To develop such a model this paper examines the nuclear programs of seven States that have built or attempted to build nuclear weapons and one that is being accused of having one but denies it. Analysis of the factors that are essential in the decision of a State to embark on a nuclear weapons program indicates leads to the identification of certain indicators for clandestine nuclear weapons programs. It identifies the conditions and interdependencies that most likely lead those States to undertake clandestine weapons programs and develops a set of likelihood indicators that can be used in the application of safeguards to a State as a whole. Existence of serious conflicts involving territorial disputes, transparency in the social system, militarization of the State, and democratization of the political process are the common characteristics of those States. Although these are not easily quantifiable indicators, concepts such as fuzzy logic can be used to construct likelihood estimators for the presence of absence of clandestine programs leading to a State-specific safeguards approach adapted to the conditions of

  5. Evaluation of excess nuclear materials suitability for international safeguards

    International Nuclear Information System (INIS)

    Newton, J.W.; White, W.C.; Davis, R.M.; Cherry, R.C.

    1996-01-01

    President Clinton announced in March 1995 the permanent withdrawal of 200 tons of fissile material from the US nuclear stockpile. This action was made possible by the dramatic reduction in nuclear weapons stockpile size and a desire to demonstrate the US'' commitment to nonproliferation goals. To provide further assurance of that commitment, the US is addressing placement of these materials under International Atomic Energy Agency (IAEA) safeguards. An initial step of this overall assessment was evaluation of the nuclear materials'' suitability for international safeguards. US Department of Energy (DOE) field organizations reviewed a detailed listing of all candidate materials with respect to characterization status, security classification, and acceptability for international safeguards compared to specified criteria. These criteria included form, location, environment and safety considerations, measurability, and stability. The evaluation resulted in broad categorizations of all materials with respect to preparing and placing materials under IAEA safeguards and provided essential information for decisions on the timing for offering materials as a function of materials attributes. A plan is being prepared to determine the availability of these materials for IAEA safeguards considering important factors such as costs, processes and facilities required to prepare materials, and impacts on other programs

  6. Analysis of UREX+1a and Pyroprocessing Technologies from Safeguards Aspects

    International Nuclear Information System (INIS)

    Musembi, Mutava Victor; Jeong, Seung Young; Kwon, Eun Ha

    2013-01-01

    Various advanced and more easily safeguard-able reprocessing technologies have been proposed and are currently at different stages of development. This paper briefly analyses two proposed next generation reprocessing technologies, i. e. UREX+1a and pyroprocessing. It goes on to suggest various measures that can be taken to safeguard these technologies against nuclear proliferation. Due to the significant proliferation risks associated with PUREX, more proliferation resistant technologies are required in spent fuel reprocessing. UREX+1a and pyroprocessing can be suitable replacements since Pu is not separated from other TRUs after reprocessing. Implementations of technology specific safeguard measures can help enhance the proliferation resistance of these technologies. Since there is no technology which is foolproof, a MUF uncertainty estimation/quantification technology needs to be developed. These uncertainty estimates can then be used in a safeguards probabilistic risk assessment (PRA) system to quantify the risks associated with a particular reprocessing technology. To further safeguard these technologies, additional safeguard measures are needed for defense in depth. This may include implementation of multiple, independent, and redundant layers of defense such that no single layer, no matter how robust, is solely relied upon. Quantification of safeguard uncertainties related to UREX+1a and pyroprocessing can be used to benchmark these technologies against PUREX and between themselves for policy making

  7. Analysis of UREX+1a and Pyroprocessing Technologies from Safeguards Aspects

    Energy Technology Data Exchange (ETDEWEB)

    Musembi, Mutava Victor [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Seung Young [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kwon, Eun Ha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Various advanced and more easily safeguard-able reprocessing technologies have been proposed and are currently at different stages of development. This paper briefly analyses two proposed next generation reprocessing technologies, i. e. UREX+1a and pyroprocessing. It goes on to suggest various measures that can be taken to safeguard these technologies against nuclear proliferation. Due to the significant proliferation risks associated with PUREX, more proliferation resistant technologies are required in spent fuel reprocessing. UREX+1a and pyroprocessing can be suitable replacements since Pu is not separated from other TRUs after reprocessing. Implementations of technology specific safeguard measures can help enhance the proliferation resistance of these technologies. Since there is no technology which is foolproof, a MUF uncertainty estimation/quantification technology needs to be developed. These uncertainty estimates can then be used in a safeguards probabilistic risk assessment (PRA) system to quantify the risks associated with a particular reprocessing technology. To further safeguard these technologies, additional safeguard measures are needed for defense in depth. This may include implementation of multiple, independent, and redundant layers of defense such that no single layer, no matter how robust, is solely relied upon. Quantification of safeguard uncertainties related to UREX+1a and pyroprocessing can be used to benchmark these technologies against PUREX and between themselves for policy making.

  8. Nuclear Security and Nuclear Safeguards; Differences, Commonalities and Synergies

    International Nuclear Information System (INIS)

    Jorant, C.

    2015-01-01

    Reference to the three S's in the nuclear world is recurring and much has been said about the need to build on synergies to reinforce safeguards, safety and security. In practice, the 3S's communities are seldom interconnected even though some interaction can be observed between safety and security and security and safeguards. Ensuring a better understanding between those three sectors about their scope, requirements, implementation methods and tools would stimulate cooperation. The second Nuclear Security Summit and particularly the industry related event stressed the synergies between safety and security. The first IAEAs Security Conference organized in July 2013 did not address specifically nuclear safeguards and security relations. Last Security Summit took place in The Hague in March 2014 and this type of issue was not really raised either. The safeguards Symposium provides a timely opportunity to tackle possible enhanced cooperation between safeguards and security communities and assess the prospect for addressing such issue at the next and allegedly last security summit in 2016. This presentation will analyze the differences and commonalities between those two sectors, in particular with regards to the objectives and actors, the organization and technicalities, or to the conceptual approaches (DBT and APA/SLC, attractiveness/accessibility). It will then assess the possible synergies or cooperation between both communities. It will discuss the merits of a global and comprehensive involvement of the different actors, (State, industry and international bodies including the NGOs) and of exchanges on good practices to contribute to a common understanding and references while allowing for an adaptable and national approach. Indeed the need to reassure the stakeholders, including the general public, that security, as well as safeguards are addressed in a consistent manner worldwide is of utmost importance for building future nuclear energy programmes on a

  9. Process data in safeguards at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ehinger, M.H.

    1988-01-01

    The desire to improve timeliness and sensitivity of material control and accounting capabilities is the basis for evaluation and upgrade of regulatory requirements throughout the nuclear industry. Improvements invariably require better measurement capabilities and more frequent measurements. Operating plants typically include a broad range of measurements and equipment devoted to process control. How can these measurements be used to benefit safeguards? A part of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory has focused on the use of process data for safeguards. This report discusses recent safeguards demonstrations and current activities in a test facility at Oak Ridge

  10. Safeguards training at Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Dickman, D.A.

    1986-10-01

    Safeguarding our country's nuclear materials against theft or diversion is extremely important due to their significantly strategic value. In addition, nuclear materials also have an extremely high monetary value. The term ''safeguards'' is defined as an integrated system of physical protection, accountability, and material control measures designed to deter, prevent, detect, and respond to unauthorized possession and use of special nuclear materials. An aggressive Safeguards program, therefore, employs both good security measures and a strong material control and accountability system. For effective internal control of nuclear materials, having people qualified in the many aspects of safeguards and accountability is essential. At Pacific Northwest Laboratory (PNL), this goal is accomplished through a Laboratory-wide Safeguards Awareness Program. All PNL staff members receive a level of Safeguards training appropriate to their particular function within the Laboratory. This paper presents an overview of the unique training opportunities this topic provides and how the training goals are accomplished through the various training courses given to the staff members

  11. Defining and Measuring Safeguards Culture

    International Nuclear Information System (INIS)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2010-01-01

    In light of the shift toward State Level Evaluations and information driven safeguards, this paper offers a refined definition of safeguards culture and a set of metrics for measuring the extent to which a safeguards culture exists in a state. Where the IAEA is able to use the definition and metrics to come to a positive conclusion about the country, it may help reduce the burden on the Agency and the state.

  12. IAEA Safeguards Information System (ISIS)

    International Nuclear Information System (INIS)

    1984-10-01

    Publication of this technical document should serve for better understanding of the technical and functional features of the IAEA Safeguards Information System (ISIS) within the Agency, as well as in the National Systems of accounting for and control of nuclear material. It will also serve as a foundation for further development and improvement of the design and modifications of the Safeguards Information System and its services as a function of Safeguards implementation

  13. Nuclear fission and nuclear safeguards: Common technologies and challenges

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1989-01-01

    Nuclear fission and nuclear safeguards have much in common, including the basic physical phenomena and technologies involved as well as the commitments and challenges posed by expanding nuclear programs in many countries around the world. The unique characteristics of the fission process -- such as prompt and delayed neutron and gamma ray emission -- not only provide the means of sustaining and controlling the fission chain reaction, but also provide unique ''signatures'' that are essential to quantitative measurement and effective safeguarding of key nuclear materials (notably 239 Pu and 235 U) against theft, loss, or diversion. In this paper, we trace briefly the historical emergence of safeguards as an essential component of the expansion of the nuclear enterprise worldwide. We then survey the major categories of passive and active nondestructive assay techniques that are currently in use or under development for rapid, accurate measurement and verification of safe-guarded nuclear materials in the many forms in which they occur throughout the nuclear fuel cycle. 23 refs., 14 figs

  14. The basis for the strengthening of safeguards

    International Nuclear Information System (INIS)

    Goldschmidt, P.

    1999-01-01

    For the past 30 years, the International Atomic Energy Agency's safeguards system has contributed to the international non-proliferation regime, by providing, inter alia, assurances regarding the peaceful uses of declared nuclear material. However, the discovery of a clandestine nuclear weapons programme in Iraq in 1991 drew world-wide attention to the need to strengthen the system to address the absence of undeclared nuclear material and activities. Efforts to strengthen the IAEA's safeguards system began in 1991 and culminated in 1997 when the IAEA's Board of Governors approved a Model Protocol Additional to IAEA Safeguards Agreements which greatly expands the legal basis and scope of IAEA safeguards. Within this strengthened system it is expected that the IAEA be able to provide assurance not only of the absence of diversion of declared nuclear material but also on the absence of undeclared nuclear material and activities. This is to be done within a safeguards system that uses an optimal combination of all safeguards measures available, thereby achieving maximum effectiveness and efficiency within the available resources. This paper will summarize the evolution of the safeguards system, describe strengthened safeguards, report on the status of implementing the strengthening measures, and outline plans for integrating all available safeguards measures. (author)

  15. Information-Driven Safeguards: A Country Officer's Perspective

    International Nuclear Information System (INIS)

    Gyane, E.

    2010-01-01

    Since the transition from 'traditional' to strengthened safeguards, the evaluation and analysis of information has played an increasingly important role in the Agency's safeguards activities. During the State evaluation process, the Agency utilizes all available information for drawing credible safeguards conclusions. Besides State declared information and data gathered during inspections, a large number of information sources are reviewed for any indications of safeguards relevance. The State level approach - in contrast to the facility-based approach under traditional safeguards - considers the acquisition paths available to a State and adjusts safeguards intensity accordingly. An additional protocol widens the information base available to the Agency for analysis and evaluation and it extends the Agency's access rights in the field. The use of information for determining safeguards activities is often referred to as 'information-driven safeguards'. Country officers are inspectors in the Department of Safeguards Operations Divisions who are responsible for States and thus form the base of the Agency's information chain. The information-driven safeguards approach has led to a significant change in the role of inspector country officers: While the verification of declared nuclear material remains the cornerstone of the IAEA Safeguards System, country officers are now not only expected to be knowledgeable about the inspection-related aspects in their countries. They also need to act on information on their States coming from a variety of sources on an ongoing basis, in order to identify proliferation indicators at an early stage. Country officers thus analyse developments in their States as well as their States' relations with other States. They review scientific literature for research that could potentially be of safeguards relevance. They observe their States' nuclear facilities from satellite imagery. They evaluate reports on nuclear trade between their States

  16. International inspection activity impacts upon DOE safeguards requirements

    International Nuclear Information System (INIS)

    Zack, N.R.

    1995-01-01

    The US has placed certain special nuclear materials declared excess to their strategic needs under international safeguards through the International Atomic Energy Agency (IAEA). This Presidential initiative has obligated materials at several Department of Energy (DOE) facilities for these safeguards activities to demonstrate the willingness of the US to ban production or use of nuclear materials outside of international safeguards. However, IAEA inspection activities generally tend to be intrusive in nature and are not consistent with several domestic safeguards procedures implemented to reduce worker radiation exposures and increase the cost-effectiveness and efficiency of accounting for and storing of special nuclear materials. To help identify and provide workable solutions to these concerns, the Office of Safeguards and Security has conducted a program to determine possible changes to the DOE safeguards and security requirements designed to help facilities under international safeguards inspections more easily comply with domestic safeguards goals during international inspection activities. This paper will discuss the impact of international inspection activities on facility safeguards operations and departmental safeguards procedures and policies

  17. Safeguards for a nuclear weapon convention

    International Nuclear Information System (INIS)

    Fischer, D.

    1999-01-01

    An NDT presupposes a fundamental commitment by all parties to its final objective and hence requires a high and sustained level of confidence amongst all states concerned. The appropriate format for an Nuclear Disarmament Treaty (NDT) would probably be a multilateral treaty open to all states. The treaty must necessarily include the five nuclear weapon states and a procedure would have to be found for securing the ratification of the threshold states without conferring upon them the status of nuclear weapon states. While the IAEA may well be able to carry out the safeguards tasks required by an NDT it would probably be necessary to establish a new international organization to verify the elimination of all nuclear weapons. The experience of UNSCOM and the IAEA in Iraq, and of the IAEA in the DPRK, have shown how difficult the verification of international obligations is in the absence of a commitment to disarm, while the experience of the INF and START treaties, and of the IAEA in South Africa have shown how much simpler it is when the parties concerned are fully committed to the process. Verifying and safeguarding an NDT would be largely an extrapolation of activities already carried out by the nuclear weapon states under the INF and START treaties and by the IAEA in the routine application of safeguards as well as in its less routine work in Iraq, South Africa and the DPRK. Both the verification and safeguarding tasks would be made very much easier if it were possible to bring down to a few hundred the number of nuclear warheads remaining in the hands of any avowed nuclear weapon state, and to conclude a cutoff convention. Experience is needed to show whether the additional safeguards authority accorded to the IAEA by 'programme 93+2' will enable it to effectively safeguard the facilities that would be decommissioned as a result of an NDT and those that would remain in operation to satisfy civilian needs. Subject to this rider and on condition that the IAEA

  18. Concerns when designing a safeguards approach for the back-end of the Swedish nuclear fuel cycle

    International Nuclear Information System (INIS)

    Fritzell, Anni

    2006-03-01

    In Sweden, the construction of an encapsulation plant and a geological repository for the final disposal of spent nuclear fuel is planned to start within the next ten years. Due to Sweden's international agreements on non-proliferation, the Swedish safeguards regime must be extended to include these facilities. The geological repository has some unique features, which present the safeguards system with unprecedented challenges. These features include, inter alia, the long period of time that the facility will contain nuclear material and that the disposed nuclear material will be very difficult to access, implying that physical verification of its presence in the repository is not foreseen. This work presents the available techniques for creating a safeguards system for the backend of the Swedish nuclear fuel cycle. Important issues to consider in the planning and implementation of the safeguards system have been investigated, which in some cases has led to an identification of areas needing further research. The results include three proposed options for a safeguards approach, which have been evaluated on the basis of the safeguards authorities' requirements. Also, the evolution and present situation of the work carried out in connection to safeguards for geological repositories has been compiled

  19. Validating safeguards effectiveness given inherently limited test data

    International Nuclear Information System (INIS)

    Sicherman, A.

    1987-01-01

    A key issue in designing and evaluating nuclear safeguards systems is how to validate safeguards effectiveness against a spectrum of potential threats. Safeguards effectiveness is measured by a performance indicator such as the probability of defeating an adversary attempting a malevolent act. Effectiveness validation means a testing program that provides sufficient evidence that the performance indicator is at an acceptable level. Traditional statistical program when numerous independent system trials are possible. However, within the safeguards environment, many situations arise for which traditional statistical approaches may be neither feasible nor appropriate. Such situations can occur, for example, when there are obvious constraints on the number of possible tests due to operational impacts and testing costs. Furthermore, these tests are usually simulations (e.g., staged force-on-force exercises) rather than actual tests, and the system is often modified after each test. Under such circumstances, it is difficult to make and justify inferences about system performance by using traditional statistical techniques. In this paper, the authors discuss several alternative quantitative techniques for validating system effectiveness. The techniques include: (1) minimizing the number of required tests using sequential testing; (2) combining data from models inspections and exercises using Bayesian statistics to improve inferences about system performance; and (3) using reliability growth and scenario modeling to help specify which safeguards elements and scenarios to test

  20. 2. JAPAN-IAEA workshop on advanced safeguards technology for the future nuclear fuel cycle. Abstracts

    International Nuclear Information System (INIS)

    2009-01-01

    This international workshop addressed issues and technologies associated with safeguarding the future nuclear fuel cycle. The workshop discussed issues of interest to the safeguards community, facility operators and State Systems of accounting and control of nuclear materials. Topic areas covered were as follows: Current Status and Future Prospects of Developing Safeguards Technologies for Nuclear Fuel Cycle Facilities, Technology and Instrumentation Needs, Advanced Safeguards Technologies, Guidelines on Developing Instrumentation to Lead the Way for Implementing Future Safeguards, and Experiences and Lessons learned. This workshop was of interest to individuals and organizations concerned with future nuclear fuel cycle technical developments and safeguards technologies. This includes representatives from the nuclear industry, R and D organizations, safeguards inspectorates, State systems of accountancy and control, and Member States Support Programmes

  1. Integrated software package for nuclear material safeguards in a MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Schreiber, H.J.; Piana, M.; Moussalli, G.; Saukkonen, H.

    2000-01-01

    Since computerized data processing was introduced to Safeguards at large bulk handling facilities, a large number of individual software applications have been developed for nuclear material Safeguards implementation. Facility inventory and flow data are provided in computerized format for performing stratification, sample size calculation and selection of samples for destructive and non-destructive assay. Data is collected from nuclear measurement systems running in attended, unattended mode and more recently from remote monitoring systems controlled. Data sets from various sources have to be evaluated for Safeguards purposes, such as raw data, processed data and conclusions drawn from data evaluation results. They are reported in computerized format at the International Atomic Energy Agency headquarters and feedback from the Agency's mainframe computer system is used to prepare and support Safeguards inspection activities. The integration of all such data originating from various sources cannot be ensured without the existence of a common data format and a database system. This paper describes the fundamental relations between data streams, individual data processing tools, data evaluation results and requirements for an integrated software solution to facilitate nuclear material Safeguards at a bulk handling facility. The paper also explains the basis for designing a software package to manage data streams from various data sources and for incorporating diverse data processing tools that until now have been used independently from each other and under different computer operating systems. (author)

  2. Measurements Matter in Nuclear Safeguards & Security

    International Nuclear Information System (INIS)

    Aregbe, Y.; Jakopic, R.; Richter, S.; Schillebeeckx, P.; Hult, M.

    2015-01-01

    The deliverable of any laboratory is a measurement result with stated uncertainty and traceability (ISO/IEC 17025: 2005). Measurement results, particularly in safeguards, have to be accurate, comparable and traceable to a stated reference, preferably to the SI. Results provided by operator-, safeguards- or network laboratories have to be in compliance with specific quality goals for nuclear material and environmental sample analysis. Metrological quality control tools are prerequisites to build up confidence in measurement results that have to be translated into meaningful safeguards conclusions or to demonstrate conformity of findings with declared processes. The European Commission—Joint Research Centre (EC–JRC) has dedicated facilities, laboratories and projects to provide certified nuclear reference materials (CRM), to develop reference methods and to organize inter-laboratory comparisons (ILC) in compliance with ISO Guide 34, ISO17025 and ISO17043, including respective training. Recent examples are: – cooperation with the JAEA to investigate on the application of Neutron Resonance Densitometry (NRD) to quantify the amount of special nuclear material in particlelike debris of melted fuel as formed in the nuclear accident in Fukushima – training in metrology and gamma-ray spectrometry for EURATOM safeguards inspectors – development of uranium reference particle standards under a new EC support task to the IAEA. Currently, the JRC puts major efforts in producing CRMs and conformity assessment tools for “age-dating” of uranium and plutonium samples. They are needed for method validation in determining the date of the last chemical separation of uranium or plutonium from their daughter nuclides. These type of CRMs are not only needed in nuclear safeguards and forensics, but could support in the future a possible new type of “verification mechanism” as part of the Fissile Material Cut-off Treaty (FMCT), since measurements and measurement standards

  3. INL Active Interrogation Testing In Support of the GNEP Safeguards Campaign

    International Nuclear Information System (INIS)

    David L. Chichester

    2008-01-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. Work at Idaho National Laboratory (INL) in the area of active interrogation, using neutron and photon sources, has been under way for many years to develop methods for detecting and quantifying nuclear material for national and homeland security research areas. This research knowledge base is now being extended to address nuclear safeguards and process monitoring issues related to the Global Nuclear Energy Partnership (GNEP). As a first step in this area preliminary scoping studies have been performed to investigate the usefulness of using active neutron interrogation, with a low-power electronic neutron generator, to assay Department of Transportation 6M shipping drums containing uranium oxide fuel rodlets from INL's zero power physics reactor. Using the paired-counting technique during the die-away time period of interrogation, a lower detection limit of approximately 4.2 grams of enriched uranium (40% 235U) was calculated for a 40 minute measurement using a field portable 2.5 MeV neutron source and an array of 16 moderated helium-3 neutron tubes. Future work in this area, including the use of a more powerful neutron source and a better tailored detector array, would likely improve this limit to a much lower level. Further development work at INL will explore the applicability of active interrogation in association with the nuclear safeguards and process monitoring needs of the advanced GNEP facilities under consideration. This work, which will include both analyses and field demonstrations, will be performed in collaboration with colleagues at INL and elsewhere that have expertise in nuclear fuel reprocessing as well as active interrogation and its use for nuclear material analyses

  4. The emergence of internet-based virtual private networks in international safeguards

    International Nuclear Information System (INIS)

    Smartt, Heidi Anne

    2001-01-01

    Full text: The costs associated with secure data transmission can be an obstacle to International Safeguards. Typical communication methods are priced by distance and may include telephone lines, frame relay, and ISDN. It is therefore costly to communicate globally. The growth of the Internet has provided an extensive backbone for global communications; however, the Internet does not provide intrinsic security measures. Combining the Internet with Virtual Private Network technology, which encrypts and authenticates data, creates a secure and potentially cost-effective data transmission path, as well as achieving other benefits such as reliability and scalability. Access to the Internet can be achieved by connecting to a local Internet Service Provider, which can be preferable to installing a static link between two distant points. The cost-effectiveness of the Internet-based Virtual Private Network is dependent on such factors as data amount, current operational costs, and the specifics of the Internet connection, such as user proximity to an Internet Service Provider or existing access to the Internet. This paper will introduce Virtual Private Network technology, the benefits of Internet communication, and the emergence of Internet-based Virtual Private Networks throughout the International Safeguards community. Specific projects to be discussed include: The completed demonstration of secure remote monitoring data transfer via the Internet between STUK in Helsinki, Finland, and the IAEA in Vienna, Austria; The demonstration of secure remote access to IAEA resources by traveling inspectors with Virtual Private Network software loaded on laptops; The proposed Action Sheets between ABACC/DOE and ARN/DOE, which will provide a link between Rio de Janeiro and Buenos Aires; The proposed use at the HIFAR research reactor, located in Australia, to provide remote monitoring data to the IAEA; The use of Virtual Private Networks by JRC, Ispra, Italy. (author)

  5. The international safeguards profession

    International Nuclear Information System (INIS)

    Sanders, K.E.

    1986-01-01

    The International Atomic Energy Agency has established a staff of safeguards professionals who are responsible for carrying out on-site inspections to determine compliance with international safeguards agreements. By IAEA Statute, the paramount consideration in recruiting IAEA staff is to secure employees of the highest standards of efficiency, technical competence, and integrity. An analysis of the distribution of professionals in the IAEA Department of Safeguards has revealed some interesting observations regarding the distribution of grade levels, age, time in service, gender, and geographical origin. Following several earlier studies performed by contractors for ACDA, U.S. efforts have been undertaken to attract and better prepare candidates for working at the IAEA

  6. Satellite imagery in safeguards: progress and prospects

    International Nuclear Information System (INIS)

    Niemeyer, I.; Listner, C.

    2013-01-01

    The use of satellite imagery has become very important for the verification of the safeguards implementation under the Nuclear Non-Proliferation Treaty (NPT). The main applications of satellite imagery are to verify the correctness and completeness of the member states' declarations, and to provide preparatory information for inspections, complimentary access and other technical visits. If the area of interest is not accessible, remote sensing sensors provide one of the few opportunities of gathering data for nuclear monitoring, as for example in Iraq between 1998 and 2002 or currently in North Korea. Satellite data of all available sensor types contains a considerable amount of safeguard-relevant information. Very high-resolution optical satellite imagery provides the most detailed spatial information on nuclear sites and activities up to 0.41 m resolution, together with up to 8 spectral bands from the visible light and near infrared. Thermal infrared (TIR) images can indicate the operational status of nuclear facilities and help to identify undeclared activities. Hyper-spectral imagery allows a quantitative estimation of geophysical, geochemical and biochemical characteristics of the earth's surface and is therefore useful for assessing, for example, surface cover changes due to drilling, mining and milling activities. Synthetic Aperture Radar (SAR) image data up to 1 m spatial resolution provides an all-weather, day and night monitoring capability. However, the absence (or existence) of nuclear activities can never be confirmed completely based on satellite imagery. (A.C.)

  7. INDUSTRIAL CONTROL SYSTEM CYBER SECURITY: QUESTIONS AND ANSWERS RELEVANT TO NUCLEAR FACILITIES, SAFEGUARDS AND SECURITY

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

    2011-07-01

    Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's ability to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.

  8. Industrial Control System Cyber Security: Questions And Answers Relevant To Nuclear Facilities, Safeguards And Security

    International Nuclear Information System (INIS)

    Anderson, Robert S.; Schanfein, Mark; Bjornard, Trond; Moskowitz, Paul

    2011-01-01

    Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's ability to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.

  9. Combined SAFE/SNAP approach to safeguards evaluation

    International Nuclear Information System (INIS)

    Engi, D.; Chapman, L.D.; Grant, F.H.; Polito, J.

    1980-01-01

    Generally, the scope of a safeguards evaluation model can efficiently address one of two issues, (1) global safeguards effectiveness, or (2) vulnerability analysis for individual scenarios. The Safeguards Automated Facility Evaluation (SAFE) focuses on (1) while the Safeguards Network Analysis Procedure (SNAP) is directed at (2). SAFE addresses (1) in that it considers the entire facility, i.e., the composite system of hardware and human components, in one global analysis. SNAP addresses (2) by providing a safeguards modeling symbology sufficiently flexible to represent quite complex scenarios from the standpoint of hardware interfaces while also accounting for a rich variety of human decision making. A combined SAFE/SNAP approach to the problem of safeguards evaluation is described and illustrated through an example

  10. Prioritizing and scheduling Portsmouth Gaseous Diffusion Plant safeguards upgrades

    International Nuclear Information System (INIS)

    Edmunds, T.; Saleh, R.; Zevanove, S.

    1992-02-01

    As part of the Site Safeguards and Security Plan (SSSP), facilities are required to develop a Resource Plan (RP). The Resource Plan provides documentation and justification for the facility's planned upgrades, including the schedule, priority, and cost estimates for the safeguards and security upgrades. Portsmouth Gaseous Diffusion Plant (PORTS) management has identified and obtained funding approval for a number of safeguards and security upgrades, including line-item construction projects. These upgrade projects were selected to address a variety of concerns identified in the PORTS vulnerability assessments and other reviews performed in support of the SSSP process. However, budgeting and scheduling constraints do not make it possible to simultaneously begin implementation of all of the upgrade projects. A formal methodology and analysis are needed to explicitly address the trade-offs between competing safeguards objectives, and to prioritize and schedule the upgrade projects to ensure that the maximum benefit can be realized in the shortest possible time frame. The purpose of this report is to describe the methodology developed to support these upgrade project scheduling decisions. The report also presents the results obtained from applying the methodology to a set of the upgrade projects selected by PORTS S ampersand S management. Data for the analysis are based on discussions with personnel familiar with the PORTS safeguards and security needs, the requirements for implementing these upgrades, and upgrade funding limitations. The analysis results presented here assume continued highly enriched uranium (HEU) operations at PORTS. However, the methodology developed is readily adaptable for the evaluation of other operational scenarios and other resource allocation issues relevant to PORTS

  11. Strengthening the effectiveness and improving the efficiency of the IAEA safeguards system (Programme 93+2)

    International Nuclear Information System (INIS)

    Tani, Hiroshi

    1999-01-01

    Present safeguards systems against nuclear proliferation as well as their improvement activities for more effective results are reviewed. First, the mechanism of the NPT Safeguards System is explained, which is the grasp of inventories of nuclear materials through change and transfer booking starting with actual investigation. Then, other various safeguards systems are described, including TLATELOCO (Treaty for the prohibition of nuclear weapons in Latin America), VO (Voluntary Offer), OCA (Other Comprehensive Safeguards Agreement), PA (Project Agreement), US (Unilateral Submission), and OSA (Other Safeguards Agreement). Thirdly, the present status and problems of the nuclear proliferation prevention in the world are described, including competitive nuclear weapon development in India and Pakistan, and Iraq and North Korea problems. Lastly, the 93 + 2 plan to improve the present system is explained. (M.M.)

  12. State-wide performance criteria for international safeguards

    International Nuclear Information System (INIS)

    Budlong-Sylvester, K.W.; Pilat, Joseph F.; Stanbro, W.D.

    2001-01-01

    Traditionally, the International Atomic Energy Agency (IAEA) has relied upon prescriptive criteria to guide safeguards implementation. The prospect of replacing prescriptive safeguards criteria with more flexible performance criteria would constitute a structural change in safeguards and raises several important questions. Performance criteria imply that while safeguards goals will be fixed, the means of attaining those goals will not be explicitly prescribed. What would the performance objectives be under such a system? How would they be formulated? How would performance be linked to higher level safeguards objectives? How would safeguards performance be measured State-wide? The implementation of safeguards under performance criteria would also signal a dramatic change in the manner the Agency does business. A higher degree of flexibility could, in principle, produce greater effectiveness and efficiency, but would come with a need for increased Agency responsibility in practice. To the extent that reliance on prescriptive criteria decreases, the burden of justifying actions and ensuring their transparency will rise. Would there need to be limits to safeguards implementation? What would be the basis for setting such limits? This paper addresses these and other issues and questions relating to both the formulation and the implementation of performance-based criteria.

  13. Report on the 8. ESARDA course on nuclear safeguards and non-proliferation

    International Nuclear Information System (INIS)

    Grape, S.; Jonter, T.

    2013-01-01

    The 8. ESARDA course on nuclear safeguards and non-proliferation took place in Uppsala, Sweden, on September 12-16, 2011. 44 participants from 15 countries followed the one week long course, comprising four days of lectures, one group exercise and one full day visit to the Swedish final repository (SFR) for short-lived radioactive waste. The lectures covered political and technical aspects related to the general background of safeguards legislation and treaties, the nuclear fuel cycle, destructive and non-destructive safeguards techniques, physical protection, verification technologies such as nuclear material accountancy and control, safeguards inspections, remote monitoring, containment and surveillance, export control, illicit trafficking and nuclear forensics. The course also contained a group exercise, whereby the participants learnt about different nonproliferation treaties on/or related to Weapons of Mass Destruction (WMD): the Chemical Weapons Convention (CWC), the Biological and Toxin Weapons Convention (BWC), the nuclear Non-Proliferation Treaty (NPT) as well as the Comprehensive Nuclear Test Ban Treaty (CTBT) and the Fissile Material Cut-off Treaty (FMCT). The task of the group exercise was to discuss and compare the treaties with respect to obligations and rights of state parties, verification of compliance, membership, terrorism, similarities/differences, successes and failures. The paper is followed by the slides of the presentation

  14. Safeguards Considerations for the Design of a Future Fast Neutron Sodium Cooled Reactor

    International Nuclear Information System (INIS)

    Cazalet, J.; Raymond, P.; Masson, M.; Saturnin, A.

    2015-01-01

    Incorporating safeguards at an early stage of a reactor design is a way to increase the effectiveness and efficiency of safeguards measures minimizing the possibilities of misuse of the plant or nuclear material diversion. It also reduces the impact on the construction and operation cost. At the preliminary phase, the design will integrate: confinement, containment, surveillance features and non-destructive assay equipment. Taking into account these requirements will help the operator in the approval of the plant at the design phase by national and international authorities in charge of Nuclear Material accounting and safeguards. A large amount of work has been made by the GEN IV International Forum to assess the proliferation resistance of nuclear systems. The IAEA has developed guidelines on ''Safeguards by design'' describing reference requirements for future nuclear facilities. Based on these studies, this communication details implementation of safeguards in the design of a sodium cooled fast neutron reactor (SFR) currently studied in France. Specificities are the use of MOX fuel with high concentration of plutonium and the potential capacity of breeding. A great attention should be paid to avoid diversion of nuclear material contained in fresh or irradiated fuel. Scenarios of reactor misuse are analyzed. The identification of diversion pathways and requirements for nuclear material accountancy, leads to an approach of safeguards, specific to SFR: Material Balance Areas (MBA) and some key measurement points (KMP) are characterized. Specific instrumentation assay helping in the identification and/or characterization of fuel elements and the inventory of nuclear material is described. As concerns the fuel cycle, the safeguards of the reprocessing unit will be progressively increased through the development of materials monitoring and the implementation of these measures at strategic locations of buildings, thus providing real-time information

  15. The IAEA safeguards information system

    International Nuclear Information System (INIS)

    Gmelin, W.R.; Parsick, R.

    1976-01-01

    The IAEA safeguards under the Non-Proliferation Treaty is meant to follow the model agreement developed by the Safeguards Committee in 1970 and formulated in document INFCIRC/153, which contains provisions that Member States, having concluded Safeguards Agreements with the Agency, should provide design information and reports on initial inventories, changes in the inventories and material balances in respect of each nuclear facility and material balance area for all nuclear materials subject to safeguards. The Agency, on the other hand, should establish and maintain an accountancy system which would provide the data on the location and the movements of all nuclear material subject to safeguards on the basis of the reported information and information obtained during inspections in order to support the Agency's verification activities in the field, to enable the preparation of safeguards statements and to adjust the inspection intensity. Following these requirements, a computer-based information system has been developed and is being implemented and used routinely for input manipulations and queries on a limited scale. This information system comprises two main parts: Part 1 for processing the information as provided by the States, and Part 2 (still under development) for processing the inspection data obtained during verification. This paper describes the characteristics of the Agency information system for processing data under the Non-Proliferation Treaty as well as recent operational experience. (author)

  16. Radiation detectors as surveillance monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Dowdy, E.J.

    1981-01-01

    The International Atomic Energy Agency (IAEA) proposes to use personnel dosimetry radiation detectors as surveillance monitors for safeguards purposes. It plans to place these YES/NO monitors at barrier penetration points declared closed under IAEA safeguards to detect the passage of plutonium-bearing nuclear material, usually spent fuel. For this application, commercially available dosimeters were surveyed as well as other radiation detectors that appeared suitable and likely to be marketed in the near future. No primary advantage was found in a particular detector type because in this application backgrounds vary during long counting intervals. Secondary considerations specify that the monitor be inexpensive and easy to tamper-proof, interrogate, and maintain. On this basis radiophotoluminescent, thermoluminescent, and electronic dosimeters were selected as possible routine monitors; the latter two may prove useful for data-base acquisition

  17. Reactor antineutrino monitoring with a plastic scintillator array as a new safeguards method

    OpenAIRE

    Oguri, S.; Kuroda, Y.; Kato, Y.; Nakata, R.; Inoue, Y.; Ito, C.; Minowa, M.

    2014-01-01

    We developed a segmented reactor-antineutrino detector made of plastic scintillators for application as a tool in nuclear safeguards inspection and performed mostly unmanned field operations at a commercial power plant reactor. At a position outside the reactor building, we measured the difference in reactor antineutrino flux above the ground when the reactor was active and inactive.

  18. Additional physical access and new technologies for strengthened safeguards

    International Nuclear Information System (INIS)

    Tuley, N.

    1999-01-01

    For States with additional protocols, the Agency may request complementary access for any of the following reasons: (a) to ensure the absence of undeclared nuclear material and activities at sites of facilities or locations outside facilities (LOFs) or at other locations declared under Article 2 as containing nuclear material (Article 4.a.i); (b) to resolve a question relating to the correctness and completeness of the information provided pursuant to Article 2 or to resolve an inconsistency relating to that information (Article 4.a.ii); and (c) to confirm, for safeguards purposes, the State's declaration of the decommissioned status of a facility or of a LOF where nuclear material was used (Article 4.a.iii). Under additional protocols, the activities that the Agency may carry out in a State include visual observation, environmental sampling and non-destructive measurement. Agency guidelines for complementary access are being developed. In the late 1980s and in the 1990s, new technologies became available enabling the IAEA to detect even minute trace indicators of various types of nuclear activities. This technique which is known as environmental sampling, contributes to the confirmation of the absence of undeclared nuclear material or nuclear activities. Collection of environmental samples at or near a nuclear site combined with ultra-sensitive analytical techniques can reveal signatures of post and current activities in locations where nuclear material is being handled. Another important new technology is remote monitoring which makes use of unattended safeguards instrument systems and ships off-site the data gathered from those instruments to IAEA Headquarters. Cost effectiveness is a prime justification for adding this feature to unattended monitoring systems such as optical surveillance and advanced optical seals. (author)

  19. Improved verification methods for safeguards verifications at enrichment plants

    International Nuclear Information System (INIS)

    Lebrun, A.; Kane, S. C.; Bourva, L.; Poirier, S.; Loghin, N. E.; Langlands, D.

    2009-01-01

    The International Atomic Energy Agency (IAEA) has initiated a coordinated research and development programme to improve its verification methods and equipment applicable to enrichment plants. The programme entails several individual projects to meet the objectives of the IAEA Safeguards Model Approach for Gas Centrifuge Enrichment Plants updated in 2006. Upgrades of verification methods to confirm the absence of HEU (highly enriched uranium) production have been initiated and, in particular, the Cascade Header Enrichment Monitor (CHEM) has been redesigned to reduce its weight and incorporate an electrically cooled germanium detector. Such detectors are also introduced to improve the attended verification of UF 6 cylinders for the verification of the material balance. Data sharing of authenticated operator weighing systems such as accountancy scales and process load cells is also investigated as a cost efficient and an effective safeguards measure combined with unannounced inspections, surveillance and non-destructive assay (NDA) measurement. (authors)

  20. Improved verification methods for safeguards verifications at enrichment plants

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, A.; Kane, S. C.; Bourva, L.; Poirier, S.; Loghin, N. E.; Langlands, D. [Department of Safeguards, International Atomic Energy Agency, Wagramer Strasse 5, A1400 Vienna (Austria)

    2009-07-01

    The International Atomic Energy Agency (IAEA) has initiated a coordinated research and development programme to improve its verification methods and equipment applicable to enrichment plants. The programme entails several individual projects to meet the objectives of the IAEA Safeguards Model Approach for Gas Centrifuge Enrichment Plants updated in 2006. Upgrades of verification methods to confirm the absence of HEU (highly enriched uranium) production have been initiated and, in particular, the Cascade Header Enrichment Monitor (CHEM) has been redesigned to reduce its weight and incorporate an electrically cooled germanium detector. Such detectors are also introduced to improve the attended verification of UF{sub 6} cylinders for the verification of the material balance. Data sharing of authenticated operator weighing systems such as accountancy scales and process load cells is also investigated as a cost efficient and an effective safeguards measure combined with unannounced inspections, surveillance and non-destructive assay (NDA) measurement. (authors)

  1. Achieving the Benefits of Safeguards by Design

    International Nuclear Information System (INIS)

    Bjornard, Trond; Bean, Robert; Hebditch, David; Morgan, Jim; Meppen, Bruce; DeMuth, Scott; Ehinger, Michael; Hockert, John

    2008-01-01

    The overarching driver for developing a formalized process to achieve safeguards by design is to support the global growth of nuclear power while reducing 'nuclear security' risks. This paper discusses an institutional approach to the design process for a nuclear facility, for designing proliferation resistance, international safeguards and U.S. national safeguards and security into new nuclear facilities. In the United States, the need exists to develop a simple, concise, formalized, and integrated approach for incorporating international safeguards and other non-proliferation considerations into the facility design process. An effective and efficient design process is one which clearly defines the functional requirements at the beginning of the project and provides for the execution of the project to achieve a reasonable balance among competing objectives in a cost effective manner. Safeguards by Design is defined as 'the integration of international and national safeguards, physical security and non-proliferation features as full and equal partners in the design process of a nuclear energy system or facility,' with the objective to achieve facilities that are intrinsically more robust while being less expensive to safeguard and protect. This Safeguards by Design process has been developed such that it: (sm b ullet) Provides improved safeguards, security, and stronger proliferation barriers, while reducing the life cycle costs to the operator and regulatory agencies, (sm b ullet) Can be translated to any international context as a model for nuclear facility design, (sm b ullet) Fosters a culture change to ensure the treatment of 'nuclear security' considerations as 'full and equal' partners in the design process, (sm b ullet) Provides a useful tool for the project manager responsible for the design, construction, and start-up of nuclear facilities, and (sm b ullet) Addresses the key integration activities necessary to efficiently incorporate International Atomic

  2. Passive and Active Fast-Neutron Imaging in Support of Advanced Fuel Cycle Initiative Safeguards Campaign

    International Nuclear Information System (INIS)

    Blackston, Matthew A.; Hausladen, Paul

    2010-01-01

    Results from safeguards-related passive and active coded-aperture fast-neutron imaging measurements of plutonium and highly enriched uranium (HEU) material configurations performed at Idaho National Laboratory s Zero Power Physics Reactor facility are presented. The imaging measurements indicate that it is feasible to use fast neutron imaging in a variety of safeguards-related tasks, such as monitoring storage, evaluating holdup deposits in situ, or identifying individual leached hulls still containing fuel. The present work also presents the first demonstration of imaging of differential die away fast neutrons.

  3. Overcoming Safeguards Challenges

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2011-01-01

    The focus of the 2010 IAEA International Safeguards Symposium was how best, from a technical perspective, to prepare for future verification challenges during this time of change. By bringing together the leading experts in the field from across the world, this symposium provided an opportunity for stakeholders to explore possible solutions in support of the IAEA's nuclear verification mission, and to identify areas where the different stakeholders in the safeguards business can help address these challenges

  4. Safeguarding arms control

    International Nuclear Information System (INIS)

    Flanagan, S.J.

    1988-01-01

    This essay reviews the evolution of various safeguards concepts associated with U.S. Soviet arms control negotiations over the past twenty-five years. It explore in some detail the origins, nature, and effectiveness of the safeguards packages associated with six agreements: the Limited Test Ban Treaty (1963), the SALT I Interim Agreement (1972), the Anti-Ballistic Missile (ABM) Treaty (1972), the Threshold Test Ban Treaty (1974), the Peaceful Nuclear Explosions Treaty (1976) and the SALT II Treaty (1979). Finally, the implications of this historical record for developing future nuclear and conventional arms control accords and for shoring up existing pacts, such as the ABM Treaty, are assessed with a view towards practicable prescriptions for Western policymakers. The treaty eliminating intermediate-range nuclear forces (INF) incorporates several verification safeguards, and it is very likely that analogous measures would be attached to any accord constraining conventional forces in Europe

  5. Optimizing the IAEA safeguards system

    International Nuclear Information System (INIS)

    Drobysz, Sonia; Sitt, Bernard

    2011-09-01

    During the 2010 Non-Proliferation Treaty Review Conference, States parties recognized that the Additional Protocol (AP) provides increased confidence about the absence of undeclared nuclear material and activities in a State as a whole. They agreed in action 28 of the final document to encourage 'all States parties that have not yet done so to conclude and bring into force an AP as soon as possible and to implement them provisionally pending their entry into force'. Today, 109 out of 189 States parties to the NPT have brought an AP in force. The remaining outliers have not yet done so for three types of reasons: they do not clearly understand what the AP entails; when they do, they refuse to accept new non-proliferation obligations either on the ground of lack of progress in the realm of disarmament, or simply because they are not ready to bear the burden of additional safeguards measures. Strong incentives are thus needed in order to facilitate universalization of the AP. While external incentives would help make the AP a de facto norm and encourage its conclusion by reducing the deplored imbalanced implementation of non-proliferation and disarmament obligations, internal incentives developed by the Agency and its member States can also play an important role. In this respect, NPT States parties recommended in action 32 of the Review Conference final document 'that IAEA safeguards should be assessed and evaluated regularly. Decisions adopted by the IAEA policy bodies aimed at further strengthening the effectiveness and improving the efficiency of IAEA safeguards should be supported and implemented'. The safeguards system should therefore be optimized: the most effective use of safeguards measures as well as safeguards human, financial and technical resources would indeed help enhance the acceptability and even attractiveness of the AP. Optimization can be attractive for States committed to a stronger verification regime independently from other claims, but still

  6. Safeguards Network Analysis Procedure (SNAP): overview

    International Nuclear Information System (INIS)

    Chapman, L.D; Engi, D.

    1979-08-01

    Nuclear safeguards systems provide physical protection and control of nuclear materials. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of physical protection system effectiveness. This is achieved through a standard set of symbols which characterize the various elements of safeguards systems and an analysis program to execute simulation models built using the SNAP symbology. The outputs provided by the SNAP simulation program supplements the safeguards analyst's evaluative capabilities and supports the evaluation of existing sites as well as alternative design possibilities. This paper describes the SNAP modeling technique and provides an example illustrating its use

  7. Working Group 2: Future Directions for Safeguards and Verification, Technology, Research and Development

    International Nuclear Information System (INIS)

    Zykov, S.; Blair, D.

    2013-01-01

    For traditional safeguards it was recognized that the hardware presently available is, in general, addressing adequately fundamental IAEA needs, and that further developments should therefore focus mainly on improving efficiencies (i.e. increasing cost economies, reliability, maintainability and user-friendliness, keeping abreast of continual advancements in technologies and of the evolution of verification approaches). Specific technology areas that could benefit from further development include: -) Non-destructive measurement systems (NDA), in particular, gamma-spectroscopy and neutron counting techniques; -) Containment and surveillance tools, such as tamper indicating seals, video-surveillance, surface identification methods, etc.; -) Geophysical methods for design information verification (DIV) and safeguarding of geological repositories; and -) New tools and methods for real-time monitoring. Furthermore, the Working Group acknowledged that a 'building block' (or modular) approach should be adopted towards technology development, enabling equipment to be upgraded efficiently as technologies advance. Concerning non-traditional safeguards, in the area of satellite-based sensors, increased spatial resolution and broadened spectral range were identified as priorities. In the area of wide area surveillance, the development of LIDAR-like tools for atmospheric sensing was discussed from the perspective of both potential benefits and certain limitations. Recognizing the limitations imposed by the human brain in terms of information assessment and analysis, technologies are needed that will enable the more effective utilization of all information, regardless of its format and origin. The paper is followed by the slides of the presentation. (A.C.)

  8. Safeguards training at Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Dickman, D.A.

    1988-01-01

    In recent years considerable attention has been given to upgrading security education programs at facilities across the country. At Pacific Northwest Laboratory (PNL), a Laboratory-wide Safeguard Awareness Training Program has been established in order to raise the cognizance of the entire staff with regard to safeguards issues and concerns. This aggressive safeguards program involves a strong interface of physical security measure and material control and accountability systems. Within PNL, four distinct audiences were defined and a needs assessment analysis performed for each to determine specific training requirements. The target audiences identified were: material balance area (MBA) custodians, managers of material balance areas, material handlers, and new employees. Five safeguards training courses were created to meet the needs of those audiences. This paper discusses the development of the Safeguards Awareness Program at PNL and its benefits to the Laboratory

  9. NPT safeguards and the peaceful use of nuclear energy

    International Nuclear Information System (INIS)

    Kyd, D.R.

    1993-10-01

    Origin of safeguards system and of comprehensive safeguards agreements, assurance given by IAEA safeguards, penalties and sanctions in case of breach of a safeguards agreement, recent experiences with Iraq, South Africa and DPRK as well as limits of the safeguards system are described

  10. IAEA safeguards: Challenges and opportunities

    International Nuclear Information System (INIS)

    1993-01-01

    The history of the IAEA safeguards regime is described. New challenges and opportunities are discussed in connection with the discovery in Iraq of a clandestine nuclear weapons development programme, the difficulties experienced in the implementation of the safeguards agreement with the Democratic People's Republic of Korea, the conclusion of a comprehensive safeguards agreement with Argentina, Brazil and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, recent developments in South Africa, the emergence of newly independent States that made up the former USSR. 2 figs

  11. Concerns when designing a safeguards approach for the back-end of the Swedish nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fritzell, Anni (Uppsala Univ., Uppsala (Sweden))

    2008-03-15

    In Sweden, the construction of an encapsulation plant and a geological repository for the final disposal of spent nuclear fuel is planned to start within the next ten years. Due to Sweden's international agreements on non-proliferation, the Swedish safeguards regime must be extended to include these facilities. The geological repository has some unique features, which present the safeguards system with unprecedented challenges. These features include, inter alia, the long period of time that the facility will contain nuclear material and that the disposed nuclear material will be very difficult to access, implying that physical verification of its presence in the repository is not foreseen. This work presents the available techniques for creating a safeguards system for the backend of the Swedish nuclear fuel cycle. Important issues to consider in the planning and implementation of the safeguards system have been investigated, which in some cases has led to an identification of areas needing further research. The results include three proposed options for a safeguards approach, which have been evaluated on the basis of the safeguards authorities' requirements. Also, the evolution and present situation of the work carried out in connection to safeguards for geological repositories has been compiled

  12. IAEA preparations for the year 2000 compliance of safeguards equipment systems

    International Nuclear Information System (INIS)

    Aparo, M.; Barnes, B.; Lewis, W.; Hsiung, Sue

    1999-01-01

    The Department of Safeguards, IAEA, has used equipment systems for acquiring relevant data to support safeguards evaluation and verification activities. Typically an equipment system consists of EPROM (embedded system), a connecting personal computer with instrument software for data acquisition, and may include data evaluation software. Complementing the equipment systems is a collection of general evaluation software systems (application software) which support the analysis of the acquired data. In preparing for the year 2000 compliance of all safeguards systems, SGTS (Safeguards Division of Technical Services) in IAEA, must ascertain the equipment systems and the evaluation software authorised for inspection use can properly operate through the passage of year 2000. We present the year 2000 challenge for these systems, the approach we use to tackle the problem, and the status of our year 2000 project. (author)

  13. Improving the Transparency of IAEA Safeguards Reporting

    International Nuclear Information System (INIS)

    Toomey, Christopher; Hayman, Aaron M.; Wyse, Evan T.; Odlaug, Christopher S.

    2011-01-01

    In 2008, the Standing Advisory Group on Safeguards Implementation (SAGSI) indicated that the International Atomic Energy Agency's (IAEA) Safeguards Implementation Report (SIR) has not kept pace with the evolution of safeguards and provided the IAEA with a set of recommendations for improvement. The SIR is the primary mechanism for providing an overview of safeguards implementation in a given year and reporting on the annual safeguards findings and conclusions drawn by the Secretariat. As the IAEA transitions to State-level safeguards approaches, SIR reporting must adapt to reflect these evolutionary changes. This evolved report will better reflect the IAEA's transition to a more qualitative and information-driven approach, based upon State-as-a-whole considerations. This paper applies SAGSI's recommendations to the development of multiple models for an evolved SIR and finds that an SIR repurposed as a 'safeguards portal' could significantly enhance information delivery, clarity, and transparency. In addition, this paper finds that the 'portal concept' also appears to have value as a standardized information presentation and analysis platform for use by Country Officers, for continuity of knowledge purposes, and the IAEA Secretariat in the safeguards conclusion process. Accompanying this paper is a fully functional prototype of the 'portal' concept, built using commercial software and IAEA Annual Report data.

  14. Data Collection Guidelines for Consistent Evaluation of Data from Verification and Monitoring Safeguard Systems

    International Nuclear Information System (INIS)

    Castleberry, K.; Lenarduzzi, R.; Whitaker, M.

    1999-01-01

    One of the several activities the International Atomic Energy Agency (IAEA) inspectors perform in the verification process of Safeguard operations is the review and correlation of data from different sources. This process is often complex due to the different forms in which the data is presented. This paper describes some of the elements that are necessary to create a ''standardized'' structure for the verification of data. When properly collected and formatted, data can be analyzed with off-the shelf software applications using customized macros to automate the commands for the desired analysis. The standardized-data collection methodology is based on instrumentation guidelines as well as data structure elements, such as verifiable timing of data entry, automated data logging, identification codes, and others. The identification codes are used to associate data items with their sources and to correlate them with items from other data logging activities. The addition of predefined parameter ranges allows automated evaluation with the capability to provide a data summary, a cross-index of all data related to a specific event. Instances of actual databases are used as examples. The data collection guidelines described in this paper facilitate the use of data from a variety of instrumentation platforms and also allow the instrumentation itself to be more easily applied in subsequent monitoring applications

  15. Visualizing Safeguards: Software for Conceptualizing and Communicating Safeguards Data

    Energy Technology Data Exchange (ETDEWEB)

    Gallucci, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-12

    The nuclear programs of states are complex and varied, comprising a wide range of fuel cycles and facilities. Also varied are the types and terms of states’ safeguards agreements with the IAEA, each placing different limits on the inspectorate’s access to these facilities. Such nuances make it difficult to draw policy significance from the ground-level nuclear activities of states, or to attribute ground-level outcomes to the implementation of specific policies or initiatives. While acquiring a firm understanding of these relationships is critical to evaluating and formulating effective policy, doing so requires collecting and synthesizing large bodies of information. Maintaining a comprehensive working knowledge of the facilities comprising even a single state’s nuclear program poses a challenge, yet marrying this information with relevant safeguards and verification information is more challenging still. To facilitate this task, Brookhaven National Laboratory has developed a means of capturing the development, operation, and safeguards history of all the facilities comprising a state’s nuclear program in a single graphic. The resulting visualization offers a useful reference tool to policymakers and analysts alike, providing a chronology of states’ nuclear development and an easily digestible history of verification activities across their fuel cycles.

  16. Inspection technologies -Development of national safeguards technology-

    International Nuclear Information System (INIS)

    Hong, J. S.; Kim, B. K.; Kwack, E. H.

    1996-12-01

    17 facility regulations prepared by nuclear facilities according to the Ministerial Notices were evaluated. Safeguards inspection activities under Safeguards are described. Safeguards inspection equipments and operation manuals to be used for national inspection are also described. Safeguards report are produced and submitted to MOST by using the computerized nuclear material accounting system at state level. National inspection support system are developed to produce the on-site information for domestic inspection. Planning and establishment of policy for nuclear control of nuclear materials, international cooperation for nuclear control, CTBT, strengthening of international safeguards system, and the supply of PWRs to North Korea are also described. (author). 43 tabs., 39 figs

  17. Technical workshop on safeguards, verification technologies, and other related experience

    International Nuclear Information System (INIS)

    1998-01-01

    The aim of the Technical Workshop on safeguards was to encourage a clearer understanding of the IAEA Safeguards System, its origins and evolution and the present state of the art. Presentations held by the IAEA officials and outside experts examined as well other components of the non-proliferation regime, the current practices and procedures, and the future prospects. A series of presentations described the characteristics of the interaction between global and regional verification systems and described relevant past and present experience. Prominence given to such state of the art verification technologies as environmental sampling, satellite imaging and monitoring thorough remote and unattended techniques demonstrated, beyond any doubt, the essentially dynamic nature of verification. It is generally acknowledged that there have been major achievements in preventing spread of nuclear weapons, but no verification system can in itself prevent proliferation

  18. Technical workshop on safeguards, verification technologies, and other related experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    The aim of the Technical Workshop on safeguards was to encourage a clearer understanding of the IAEA Safeguards System, its origins and evolution and the present state of the art. Presentations held by the IAEA officials and outside experts examined as well other components of the non-proliferation regime, the current practices and procedures, and the future prospects. A series of presentations described the characteristics of the interaction between global and regional verification systems and described relevant past and present experience. Prominence given to such state of the art verification technologies as environmental sampling, satellite imaging and monitoring thorough remote and unattended techniques demonstrated, beyond any doubt, the essentially dynamic nature of verification. It is generally acknowledged that there have been major achievements in preventing spread of nuclear weapons, but no verification system can in itself prevent proliferation Refs, figs, tabs

  19. Safeguards Guidance for Designers of Commercial Nuclear Facilities – International Safeguards Requirements for Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

    2010-04-01

    For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

  20. Future issues in international safeguards

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Markin, J.T.; Mullen, M.F.

    1991-01-01

    The introduction of large bulk-handling facilities into the internationally safeguarded, commercial nuclear fuel cycle, increased concerns for radiation exposure, and the constant level of resources available to the International Atomic Energy Agency (IAEA) are driving new and innovative approaches to international safeguards. Inspector resources have traditionally been allocated on a facility-type basis. Approaches such as randomization of inspections either within a facility or across facilities in a State or the application of a fuel-cycle approach within a State are being considered as means of conserving resources. Large bulk-handling facilities require frequent material balance closures to meet IAEA timeliness goals. Approaches such as near-real-time accounting, running book inventories, and adjusted running book inventories are considered as means to meet these goals. The automated facilities require that safeguards measures also be automated, leading to more reliance on operator-supplied equipment that must be authenticated by the inspectorate. New Non-Proliferation Treaty signatory States with advanced nuclear programs will further drain IAEA resources. Finally, the role of special inspections in IAEA safeguards may be expanded. This paper discusses these issues in terms of increasing safeguards effectiveness and the possible impact on operators. 14 refs

  1. Strengthened safeguards: Present and future challenges

    International Nuclear Information System (INIS)

    Goldschmidt, Pierre

    2001-01-01

    Full text: The safeguards system is experiencing what has been seen as a revolution and, in doing so, it is confronting a series of challenges. These can be grouped into three areas. Drawing and maintaining safeguards conclusions - The process by which the safeguards conclusions are derived is based upon the analysis, evaluation and review of all the information available to the Agency. This process is on- going, but the State Evaluation Reports are compiled and reviewed periodically. For States with an additional protocol in force, the absence of indicators of the presence of undeclared nuclear material or activities provides the basis for the safeguards conclusion. Future challenges center on States' expectations of, and reactions to, the results of the evaluation and review process. Designing and implementing integrated safeguards - The conceptual framework of integrated safeguards is being actively pursued. Basic principles have been defined and integrated safeguards approaches have been developed for various types of facilities. Work is also progressing on the design of integrated safeguards approaches for specific States. Complementary access is being successfully implemented, and procedures for the use of unannounced inspections are being developed with the prospect of cost- effectiveness gains. Costs neutrality vs. quality and credibility - The Department faces serious staff and financial challenges. It has succeeded so far in 'doing more' and 'doing better' within a zero-real growth budget, but the scope for further significant efficiency gains is exhausted. There is no capacity to absorb new or unexpected tasks. Difficulties in recruiting and retaining qualified and experienced staff exacerbate the problems and add to costs. The Director General of the IAEA has referred to the need for new initiatives to bridge the budgetary gap; a possible measure is proposed. The tasks of meeting the challenges and demands of strengthened safeguards have been added to

  2. Advanced digital video surveillance for safeguard and physical protection

    International Nuclear Information System (INIS)

    Kumar, R.

    2002-01-01

    Full text: Video surveillance is a very crucial component in safeguard and physical protection. Digital technology has revolutionized the surveillance scenario and brought in various new capabilities like better image quality, faster search and retrieval of video images, less storage space for recording, efficient transmission and storage of video, better protection of recorded video images, and easy remote accesses to live and recorded video etc. The basic safeguard requirement for verifiably uninterrupted surveillance has remained largely unchanged since its inception. However, changes to the inspection paradigm to admit automated review and remote monitoring have dramatically increased the demands on safeguard surveillance system. Today's safeguard systems can incorporate intelligent motion detection with very low rate of false alarm and less archiving volume, embedded image processing capability for object behavior and event based indexing, object recognition, efficient querying and report generation etc. It also demands cryptographically authenticating, encrypted, and highly compressed video data for efficient, secure, tamper indicating and transmission. In physical protection, intelligent on robust video motion detection, real time moving object detection and tracking from stationary and moving camera platform, multi-camera cooperative tracking, activity detection and recognition, human motion analysis etc. is going to play a key rote in perimeter security. Incorporation of front and video imagery exploitation tools like automatic number plate recognition, vehicle identification and classification, vehicle undercarriage inspection, face recognition, iris recognition and other biometric tools, gesture recognition etc. makes personnel and vehicle access control robust and foolproof. Innovative digital image enhancement techniques coupled with novel sensor design makes low cost, omni-directional vision capable, all weather, day night surveillance a reality

  3. Croatian Support for Strengthening International Safeguards

    International Nuclear Information System (INIS)

    Cizmek, Ankica; Novosel, Nevenka

    2010-01-01

    Nuclear science and technology has the potential to contribute to health and prosperity. However, it is also the basis for the development of nuclear weapons. The acceptance and implementation of IAEA safeguards therefore serve as important confidence building measures, through which a State can demonstrate, and other States can be assured, that nuclear energy is being used only for peaceful purpose. Practically, all countries around the world use nuclear techniques for a variety of peaceful purposes, including food and water security, energy, industrial application and human health. Only a few of these activities involve the type of nuclear material that could potentially be diverted to make nuclear weapons or other explosive devices. And here the safeguards are on duty. The safeguards system aims at detecting the diversion of nuclear material. In this paper will be presented international conventions and bilateral agreements in the field of nuclear safety as well as the Croatian cooperation with international organizations and associations in the nuclear area, such as Nuclear Supplier Group, Zangger Committee, Wassenaar Arrangement, Comprehensive Nuclear-Test- Ban treaty Organization, Euratom and civil expert groups of NATO. (author)

  4. Technology transfer - insider protection workshop (Safeguards Evaluation Method - Insider Threat)

    International Nuclear Information System (INIS)

    Strait, R.S.; Renis, T.A.

    1986-01-01

    The Safeguards Evaluation Method - Insider Threat, developed by Lawrence Livermore National Laboratory, is a field-applicable tool to evaluate facility safeguards against theft or diversion of special nuclear material (SNM) by nonviolent insiders. To ensure successful transfer of this technology from the laboratory to DOE field offices and contractors, LLNL developed a three-part package. The package includes a workbook, user-friendly microcomputer software, and a three-day training program. The workbook guides an evaluation team through the Safeguards Evaluation Method and provides forms for gathering data. The microcomputer software assists in the evaluation of safeguards effectiveness. The software is designed for safeguards analysts with no previous computer experience. It runs on an IBM Personal Computer or any compatible machine. The three-day training program is called the Insider Protection Workshop. The workshop students learn how to use the workbook and the computer software to assess insider vulnerabilities and to evaluate the benefits and costs of potential improvements. These activities increase the students' appreciation of the insider threat. The workshop format is informal and interactive, employing four different instruction modes: classroom presentations, small-group sessions, a practical exercise, and ''hands-on'' analysis using microcomputers. This approach to technology transfer has been successful: over 100 safeguards planners and analysts have been trained in the method, and it is being used at facilities through the DOE complex

  5. Safeguards culture on 3S interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yon Hong; Lee, Na Young; Han, Jae-Jun [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2015-05-15

    But when proliferation of nuclear weapon does happen due to violation of safeguards, the impact would be no smaller compare to the others. Therefore, it should be treated as important as the others. In fact, safeguards culture wasn't issued first time in this paper. However, the past safeguards culture only meant the conception based upon specific purpose. But it should be generalized to extend the target and scope enough to cover any possible misbehavior. The aforementioned NMAC will be a quite meaningful research subject not just for strengthening safeguards culture, but also for the security and safeguards interface. Recognizing the importance of this, the , IAEA has developed a set of technical criteria based on the IAEA implementing guide entitled Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities(in publication) and a methodology to assess the use of a facility's NMAC system for nuclear security. IAEA has established an expert team to continuously evaluate and apply NMAC systems going forward. In the process of such efforts, the ROK should work to select and apply appropriate features so as to build a more improved safeguards culture and to determine the best practice.

  6. Safeguards culture on 3S interfaces

    International Nuclear Information System (INIS)

    Jeong, Yon Hong; Lee, Na Young; Han, Jae-Jun

    2015-01-01

    But when proliferation of nuclear weapon does happen due to violation of safeguards, the impact would be no smaller compare to the others. Therefore, it should be treated as important as the others. In fact, safeguards culture wasn't issued first time in this paper. However, the past safeguards culture only meant the conception based upon specific purpose. But it should be generalized to extend the target and scope enough to cover any possible misbehavior. The aforementioned NMAC will be a quite meaningful research subject not just for strengthening safeguards culture, but also for the security and safeguards interface. Recognizing the importance of this, the , IAEA has developed a set of technical criteria based on the IAEA implementing guide entitled Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities(in publication) and a methodology to assess the use of a facility's NMAC system for nuclear security. IAEA has established an expert team to continuously evaluate and apply NMAC systems going forward. In the process of such efforts, the ROK should work to select and apply appropriate features so as to build a more improved safeguards culture and to determine the best practice

  7. System aspects on safeguards for the back-end of the Swedish nuclear fuel cycle

    International Nuclear Information System (INIS)

    Fritzell, Anni

    2008-03-01

    This thesis has investigated system aspects of safeguarding the back-end of the Swedish nuclear fuel cycle. These aspects include the important notion of continuity of knowledge, the philosophy of verifying measurements and the need to consider the safeguards system as a whole when expanding it to include the encapsulation facility and the geological repository. The research has been analytical in method both in the identification of concrete challenges for the safeguards community in Paper 1, and in the diversion path analysis performed in Paper 2. This method of work is beneficial for example when abstract notions are treated. However, as a suggestion for further work along these lines, a formal systems analysis would be advantageous, and may even reveal properties of the safeguards system that the human mind so far has been to narrow to consider. A systems analysis could be used to model a proposed safeguards approach with the purpose of finding vulnerabilities in its detection probabilities. From the results, capabilities needed to overcome these vulnerabilities could be deduced, thereby formulating formal boundary conditions. These could include: The necessary partial defect level for the NDA measurement; The level of redundancy required in the C/S system to minimize the risk of inconclusive results due to equipment failure; and, Requirements on the capabilities of seismic methods, etc. The field of vulnerability assessment as a tool for systems analysis should be of interest for the safeguards community, as a formal approach could give a new dimension to the credibility of safeguards systems

  8. System aspects on safeguards for the back-end of the Swedish nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fritzell, Anni (Dept. of Physics and Astronomy, Uppsala Univ., Uppsala (Sweden))

    2008-03-15

    This thesis has investigated system aspects of safeguarding the back-end of the Swedish nuclear fuel cycle. These aspects include the important notion of continuity of knowledge, the philosophy of verifying measurements and the need to consider the safeguards system as a whole when expanding it to include the encapsulation facility and the geological repository. The research has been analytical in method both in the identification of concrete challenges for the safeguards community in Paper 1, and in the diversion path analysis performed in Paper 2. This method of work is beneficial for example when abstract notions are treated. However, as a suggestion for further work along these lines, a formal systems analysis would be advantageous, and may even reveal properties of the safeguards system that the human mind so far has been to narrow to consider. A systems analysis could be used to model a proposed safeguards approach with the purpose of finding vulnerabilities in its detection probabilities. From the results, capabilities needed to overcome these vulnerabilities could be deduced, thereby formulating formal boundary conditions. These could include: The necessary partial defect level for the NDA measurement; The level of redundancy required in the C/S system to minimize the risk of inconclusive results due to equipment failure; and, Requirements on the capabilities of seismic methods, etc. The field of vulnerability assessment as a tool for systems analysis should be of interest for the safeguards community, as a formal approach could give a new dimension to the credibility of safeguards systems

  9. Safeguards and retrievability from waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Danker, W.

    1996-05-01

    This report describes issues discussed at a session from the PLutonium Stabilization and Immobilization Workshop related to safeguards and retrievability from waste forms. Throughout the discussion, the group probed the goals of disposition efforts, particularly an understanding of the {open_quotes}spent fuel standard{close_quotes}, since the disposition material form derives from these goals. The group felt strongly that not only the disposition goals but safeguards to meet these goals could affect the material form. Accordingly, the Department was encouraged to explore and apply safeguards as early in the implementation process as possible. It was emphasized that this was particularly true for any planned use of existing facilities. It is much easier to build safeguards approaches into the development of new facilities, than to backfit existing facilities. Accordingly, special safeguards challenges are likely to be encountered, given the cost and schedule advantages offered by use of existing facilities.

  10. Recruitment of U.S. citizens for vacancies in IAEA Safeguards

    International Nuclear Information System (INIS)

    Pepper, S.E.; Decaro, D.; Williams, G.; Carelli, J.; Assur, M.

    1999-01-01

    The International Atomic Energy Agency (IAEA) relies on its member states to assist with recruiting qualified individuals for positions within the IAEA's secretariat. It is important that persons within and outside the US nuclear and safeguards industries become aware of career opportunities available at the IAEA, and informed about important vacancies. The IAEA has established an impressive web page to advertise opportunities for employment. However, additional effort is necessary to ensure that there is sufficient awareness in the US of these opportunities, and assistance for persons interested in taking positions at the IAEA. In 1998, the Subgroup on Safeguards Technical Support (SSTS) approved a special task under the US Support Program to IAEA Safeguards (USSP) for improving US efforts to identify qualified candidates for vacancies in IAEA's Department of Safeguards. The International Safeguards Project Office (ISPO) developed a plan that includes increased advertising, development of a web page to support US recruitment efforts, feedback from the US Mission in Vienna, and interaction with other recruitment services provided by US professional organizations. The main purpose of this effort is to educate US citizens about opportunities at the IAEA so that qualified candidates can be identified for the IAEA's consideration

  11. Some basic concepts of fast breeder reactor safeguards

    International Nuclear Information System (INIS)

    Tkharev, E.; Walford, F.J.

    1987-04-01

    The range of discussion topics of this report is restricted to a few key areas of safeguards importance at Fast Breeder Reactors (FBR) only. The differences between thermal and fast reactors that may have safeguards significance in the case of FBRs are listed. The FBR principles of design are mentioned. The relevant safeguards objectives and criteria are given. The fundamental issues for safeguarding FBR are treated. An outline safeguards approach is presented. Model inspection activities are mentioned. 4 figs

  12. Verifying compliance with nuclear non-proliferation undertakings: IAEA safeguards agreements and additional protocols

    International Nuclear Information System (INIS)

    2008-06-01

    This report provides background information on safeguards and explains procedures for States to conclude Additional Protocols to comprehensive Safeguards Agreements with the IAEA. Since the IAEA was founded in 1957, its safeguards system has been an indispensable component of the nuclear non-proliferation regime and has facilitated peaceful nuclear cooperation. In recognition of this, the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) makes it mandatory for all non-nuclear-weapon States (NNWS) party to the Treaty to conclude comprehensive safeguards agreements with the IAEA, and thus allow for the application of safeguards to all their nuclear material. Under Article III of the NPT, all NNWS undertake to accept safeguards, as set forth in agreements to be negotiated and concluded with the IAEA, for the exclusive purpose of verification of the fulfilment of the States' obligations under the NPT. In May 1997, the IAEA Board of Governors approved the Model Additional Protocol to Safeguards Agreements (reproduced in INFCIRC/540(Corr.)) which provided for an additional legal authority. In States that have both a comprehensive safeguards agreement and an additional protocol in force, the IAEA is able to optimize the implementation of all safeguards measures available. In order to simplify certain procedures under comprehensive safeguards agreements for States with little or no nuclear material and no nuclear material in a facility, the IAEA began making available, in 1971, a 'small quantities protocol' (SQP), which held in abeyance the implementation of most of the detailed provisions of comprehensive safeguards agreements for so long as the State concerned satisfied these criteria. The safeguards system aims at detecting and deterring the diversion of nuclear material. Such material includes enriched uranium, plutonium and uranium-233, which could be used directly in nuclear weapons. It also includes natural uranium and depleted uranium, the latter of which is

  13. Verifying compliance with nuclear non-proliferation undertakings: IAEA safeguards agreements and additional protocols

    International Nuclear Information System (INIS)

    2008-04-01

    This report provides background information on safeguards and explains procedures for States to conclude Additional Protocols to comprehensive Safeguards Agreements with the IAEA. Since the IAEA was founded in 1957, its safeguards system has been an indispensable component of the nuclear non-proliferation regime and has facilitated peaceful nuclear cooperation. In recognition of this, the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) makes it mandatory for all non-nuclear-weapon States (NNWS) party to the Treaty to conclude comprehensive safeguards agreements with the IAEA, and thus allow for the application of safeguards to all their nuclear material. Under Article III of the NPT, all NNWS undertake to accept safeguards, as set forth in agreements to be negotiated and concluded with the IAEA, for the exclusive purpose of verification of the fulfilment of the States' obligations under the NPT. In May 1997, the IAEA Board of Governors approved the Model Additional Protocol to Safeguards Agreements (reproduced in INFCIRC/540(Corr.)) which provided for an additional legal authority. In States that have both a comprehensive safeguards agreement and an additional protocol in force, the IAEA is able to optimize the implementation of all safeguards measures available. In order to simplify certain procedures under comprehensive safeguards agreements for States with little or no nuclear material and no nuclear material in a facility, the IAEA began making available, in 1971, a 'small quantities protocol' (SQP), which held in abeyance the implementation of most of the detailed provisions of comprehensive safeguards agreements for so long as the State concerned satisfied these criteria. The safeguards system aims at detecting and deterring the diversion of nuclear material. Such material includes enriched uranium, plutonium and uranium-233, which could be used directly in nuclear weapons. It also includes natural uranium and depleted uranium, the latter of which is

  14. Towards Compact Antineutrino Detectors for Safeguarding Nuclear Reactors

    International Nuclear Information System (INIS)

    Meijer, R.J. de; Smit, F.D.; Woertche, H.J.

    2010-01-01

    In 2008 the IAEA Division of Technical Support convened a Workshop on Antineutrino Detection for Safeguards Applications. Two of the recommendations expressed that IAEA should consider antineutrino detection and monitoring in its current R and D program for safeguarding bulk-process reactors, and consider antineutrino detection and monitoring in its Safeguards by Design approaches for power and fissile inventory monitoring of new and next generation reactors. The workshop came to these recommendations after having assessed the results obtained at the San Onofre Nuclear Generator Station (SONGS) in California. A 600 litre, 10% efficiency detector, placed at 25m from the core was shown to record 300 net antineutrino events per day. The 2*2.5*2.5 m 3 footprint of the detector and the required below background operation, prevents an easy deployment at reactors. Moreover it does not provide spatial information of the fissile inventory and, because of the shape of a PBMR reactor, would not be representative for such type of reactor. A solution to this drawback is to develop more efficient detectors that are less bulky and less sensitive to cosmic and natural radiation backgrounds. Antineutrino detection in the SONGS detector is based on the capture of antineutrinos by a proton resulting in a positron and neutron. In the SONGS detector the positron and neutron are detected by secondary gamma-rays. The efficiency of the SONGS detector is largely dominated by the low efficiency for gamma detection high background sensitivity We are investigating two methods to resolve this problem, both leading to more compact detectors, which in a modular set up also will provide spatial information. One is based on detecting the positrons on their slowdown signal and the neutrons by capturing in 10 B or 6 Li, resulting in alpha-emission. The drawback for standard liquid scintillators doped with e.g. B is the low flame point of the solvent and the strong quenching of the alpha signal. Our

  15. The Argentine remote monitoring and surveillance system

    International Nuclear Information System (INIS)

    Bonino, A.; Roca, J.L.; Perez, A.; Pizarro, L.; Krimer, M.; Teira, R.; Higa, Z.; Saettone, S.; Monzon, J.; Moroni, D.

    1996-01-01

    The Scientific and Technical Support Department of the Argentine National Board of Nuclear Regulation (ENREN) has developed a Remote Monitoring and Surveillance System (RMSS) that provides a media to verify state of variables related to the monitoring and surveillance activities of nuclear facilities, mainly safeguard applications. RMSS includes a variety of on site installed sensors, an authenticated radiofrequency communication link, a receiver processing unit, an active vision set and a user friendly personal computer interface to collect, view and store pertinent histories of events. A real time data base allows consulting, maintenance, updating and checking activities. RMSS could be integrated into a LAN or WAN via modem for use in a remote operation scheme. In this paper a description of the RMSS is provided. Also, an overview of the RMSS operation at one facility under safeguards belonging to the National Commission of Atomic Energy (CNEA) is presented. Results and conclusions of the system associated with this facility are given. (author). 37 figs

  16. The Argentine remote monitoring and surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, A; Roca, J L; Perez, A; Pizarro, L; Krimer, M; Teira, R; Higa, Z; Saettone, S; Monzon, J; Moroni, D [Ente Nacional Regulador Nuclear, Buenos Aires (Argentina). Dept. Apoyo Cientifico y Tecnico

    1997-12-31

    The Scientific and Technical Support Department of the Argentine National Board of Nuclear Regulation (ENREN) has developed a Remote Monitoring and Surveillance System (RMSS) that provides a media to verify state of variables related to the monitoring and surveillance activities of nuclear facilities, mainly safeguard applications. RMSS includes a variety of on site installed sensors, an authenticated radiofrequency communication link, a receiver processing unit, an active vision set and a user friendly personal computer interface to collect, view and store pertinent histories of events. A real time data base allows consulting, maintenance, updating and checking activities. RMSS could be integrated into a LAN or WAN via modem for use in a remote operation scheme. In this paper a description of the RMSS is provided. Also, an overview of the RMSS operation at one facility under safeguards belonging to the National Commission of Atomic Energy (CNEA) is presented. Results and conclusions of the system associated with this facility are given. (author). 37 figs.

  17. Framework for analyzing safeguards alarms and response decisions

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.; Judd, B.R.; McCord, R.K.

    1982-01-01

    This paper describes a quantitative approach to help evaluate and respond to safeguards alarms. These alrms may be generated internally by a facility's safeguards systems or externally by individuals claiming to possess stolen Special Nuclear Material (SNM). This approach can be used to identify the most likely cause of an alarm - theft, hoax, or error - and to evaluate alternative responses to alarms. Possible responses include conducting investigations, initiating measures to recover stolen SNM, and replying to external threats. Based on the results of each alarm investigation step, the evaluation revises the likelihoods of possible causes of an alarm, and uses this information to determine the optimal sequence of further responses. The choice of an optimal sequence of responses takes into consideration the costs and benefits of successful thefts or hoaxes. These results provide an analytical basis for setting priorities and developing contingency plans for responding to safeguards alarms

  18. IAEA safeguards and non-proliferation

    International Nuclear Information System (INIS)

    Harry, R.J.S.

    1995-02-01

    An overview is given of the efforts to contain the nuclear weapons proliferation during half a century of man-controlled nuclear fission. An initial policy of denial did not work, a following period of cooperation needed a gradual strengthening of international assurances on the exclusively peaceful character of the flourishing use of nuclear techniques for power generation and of other applications. The focus of the nuclear weapon proliferation concern changed from the highly developed states to developing states. The Non-Proliferation Treaty laid the basis for a unique system of voluntarily accepted international inspections to verify the peaceful use of nuclear energy. The IAEA got the task to implement this 'Full Scope Safeguards' on all nuclear material and all nuclear activities in the non-nuclear weapon states. Thanks to the structure of the IAEA, in which both proponent and states with a critical attitude take part in the decision making process on the IAEA execution of its tasks, a balanced, and widely acceptable system emerged. International developments necessitated additional improvements of the non-proliferation system. The increase of strength of sub-national groups triggered international cooperation on physical protection, about a quarter of a century ago. More recently, it appeared that NPT states with assumed nuclear weapon ambitions operated in the margins between the interpretation of IAEA safeguards and the spirit and purpose of NPT. Improvements of the IAEA safeguards and a stronger cooperation between states, including the constraints which exporting states have imposed on nuclear supplies, strengthen the safeguards system. The important reductions in the two largest nuclear weapon arsenals lead, together with the delay in the fast breeder implementation, to large stockpiles of nuclear weapon usable materials. Also in this areas new internationally credible assurances have to be obtained, that these materials will never return to nuclear

  19. IAEA safeguards and non-proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Harry, R J.S.

    1995-02-01

    An overview is given of efforts to contain the nuclear weapons proliferation during half a century of man-controlled nuclear fission. An initial policy of denial did not work, a following period of cooperation needed a gradual strengthening of international assurances on the peaceful character of the flourishing use of nuclear techniques for power generation and of other applications. The focus of the nuclear weapon proliferation concern changed from the highly developed states to developing states. The Non-Proliferation Treaty laid the basis for a unique system of voluntarily accepted international inspections to verify the peaceful use of nuclear energy. The IAEA got the task to implement this `Full Scope Safeguards` on all nuclear material and all nuclear activities in the non-nuclear weapon states. Thanks to the structure of the IAEA, in which both proponent and states with a critical attitude take part in the decision making process on the IAEA execution of its tasks, a balanced, and widely acceptable system emerged. International developments necessitated additional improvements of the non-proliferation system. The increase of strength of sub-national groups triggered international cooperation on physical protection, about a quarter of a century ago. More recently, it appeared that NPT states with assumed nuclear weapon ambitions operated in the margins between the interpretation of IAEA safeguards and the spirit and purpose of NPT. Improvements of the IAEA safeguards and a stronger cooperation between states, including the constraints which exporting states have imposed on nuclear supplies, strengthen the safeguards system. The important reductions in the two largest nuclear weapon arsenals lead, together with the delay in the fast breeder implementation, to large stockpiles of nuclear weapon usable materials. Also in this areas new internationally credible assurances have to be obtained, that these materials will never return to nuclear weapon applications.

  20. Pebble bed modular reactor safeguards: developing new approaches and implementing safeguards by design

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Brian David [Los Alamos National Laboratory; Beddingfield, David H [Los Alamos National Laboratory; Durst, Philip [INL; Bean, Robert [INL

    2010-01-01

    The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguards criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.